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Abstract

Title of Dissertation: Robust Control of Set-Valued Discrete Time Dynamical
Systems.

Nital S. Patel, Doctor of Philosophy, 1995

Dissertation directed by: John S. Baras
Professor
Electrical Engineering

This thesis deals with the robust control of nonlinear systems subject to persistent
bounded non-additive disturbances. Such disturbances, could be due to exogenous
signals, or internal to the system as in the case of parametric uncertainty. The
problem solved could be viewed as an extension of ['-optimal control to nonlinear
systems, however, now under very general non-additive disturbance assumptions.
We model such systems as inclusions, and set up an equivalent robust control
problem for the now set-valued dynamical system. Due to the fact, that inclusions
could arise from other considerations as well, we solve the control problem for
this general class of systems. The state feedback problem is solved via a game
theoretic approach, wherein the controller plays against the plant. For the output
feedback case, the concept of an information state is employed. The information

state dynamics define a new infinite dimensional system, and enables us to achieve



a separation between estimation and control. This concept is extended to the case
of delayed measurements as well. For motivational purposes, we formally derive
the information state from a risk-sensitive stochastic control problem via small
noise limits. In general, the solution to the output feedback case involves solving
an infinite dimensional dynamic programming equation. One way of avoiding this
computation in practice is to consider certainty equivalence like controllers. This
issue is considered, where we generalize the certainty equivalence controller to ob-
tain other non-optimal, but dissipative output feedback policies. The approach
followed yields both necessary and sufficient conditions for the solvability of the

problem. We also present some applications of the theory developed.
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Chapter 1

Introduction

Robust control addresses the problem of designing high performance controllers
when there is uncertainty in the system to be controlled. Various methodologies
for robust control have evolved over the past decade. Linear systems have been
the focus of attention, although research in nonlinear robust control is also gaining

ground. We consider two distinct methodologies here.

The first one, Hy, control evolved from a paper by Zames [58], where one is con-
cerned with minimizing the H,, norm of the transfer function (T,,) relating the
exogenous inputs (w) to the regulated output (z), (see figure 1.1). In the time
domain, the Hy norm of Ty, is nothing but the {* gain of the closed-loop system
(from w to z). Motivated by the fact that such a definition (in terms of the 12
gain) is independent of linearity, van der Schaft [53] postulated an equivalent per-
formance problem for nonlinear systems in terms of minimizing the 1?2 gain from w

to z, i.e. given a nonlinear system (X), with zero initial conditions, find a controller



Plant

Controller

Figure 1.1: General plant-controller configuration.

1 such that

sup =l <v (1.1)

wel2([0,00)) w0 [|W]]

where v > 0 is given. This soft constrained problem, also called nonlinear Hy, has
a game theoretic interpretation, and a large body of literature has evolved around
it [6],[26], [28],[29],[31],[54]. However, certain key issues remain unresolved. The
primary one being, what interpretation does the /> norm attenuation have in terms
of performance specifications? Historically, H,, was postulated as a frequency
domain methodology for linear controller synthesis. For the linear case, the Hy
technique can be employed to shape the maximum singular value plots (which
reduce to Bode plots for single input single output systems) of the sensitivity and
complimentary sensitivity functions. For the general nonlinear case, one does not

have such a nice interpretation. In [54] it was shown that the linearized nonlinear



state feedback H,, controller is identical to a linear H, controller designed for the
linearized plant with the same attenuation level v. However, an analogous result for
output feedback control has not been obtained. Also, notice that the supremum in
equation (1.1) allows the noise to take on arbitrary large values. In the linear case,
we can employ scaling to show that there is no conservativeness in this definition
[24]. For the nonlinear case, however, this could yield extremely conservative
policies. Finally, the case of parametric uncertainty, which is tackled in the linear
case by representing it as a multiplicative perturbation (in the frequency domain)

presents special difficulties in the nonlinear case.

The second methodology, based in the time domain, evolved from a paper by
Vidyasagar [55). It deals with minimizing the [* norm of the regulated output (2)
given persistent bounded exogenous inputs (w). For the linear case, this is called
the {'-optimal control problem. The solution to this problem was first obtained
by [15], who employed Youla parameterization to parameterize all stabilizing com-
pensators, and then solved for the optimal compensator via duality wherein the
optimization can be recast as a linear programming problem. It has been noted
that even the state feedback compensator could be dynamic [18], and this has
led researchers to search for nonlinear static state feedback laws. A number of
approaches based on identifying controlled-invariant sets have evolved [11],[50].
These sets, for the linear case are polytopes, and one again ends up with a lin-

ear programming problem. However, for the nonlinear case this niceness is lost.



Moreover, these invariance based methods fail to extend to the output feedback

case.

This dissertation is concerned with developing a framework for synthesizing control
policies for general nonlinear systems subject to persistent bounded non-additive
disturbances. The aim is to obtain ultimate boundedness controllers, where the
bounding set is now specified by performance considerations. This problem can be
viewed as an extension of ['-optimal control to nonlinear systems. We employ a
non-traditional approach to the synthesis problem, by first converting the system

into an inclusion, where the right hand side is now given by a set-valued map.

Example 1: Let the system be given by

Thr1 = [Tk, vk, wi) (1.2)
Yk+1 = Q(IL‘k,Uk,’Uk)

with wx, € W, v, € V for all k. Here, W and V are appropriate bounding sets
for the noise inputs. We recast this system as an inclusion by defining set-valued

maps F, and G as follows:

Flauw) £ U f@uw)
weWw
Gw = U gl
vey
and rewrite the system (1.2) as
Tk+1 € ]:(xkauk) (13)

Y1 € G(Tk,ur)



i.e. as an inclusion. This idea, of modeling dynamic systems as inclusions is not
new. In fact, the study of such equations (albeit in continuous time) was initiated
by Zaremba in 1934, and Marchaud in 1938. Interest was revived in the early sixties
by the work of Fillipov and Wazewski. In this regard, we mention the pioneering
work by Filippov [20] on discontinuous systems (e.g. systems subject to friction).
In fact, it seems that set-valued maps have been carefully - maybe unconsciously
- hidden in control theory. This is exemplified by the fact, that over the past
several decades starting from the work of Schweppe [48], several researchers have
developed (set-valued) ellipsoidal techniques for estimating the set of feasible states
of linear systems subject to bounded noise [17],[21],[48],[34]. Striking similarities
have emerged, between some of these algorithms, and well established techniques
such as weighed recursive least squares, and the Kalman-Buchy solution to the
Wiener filtering problem. However, these ellipsoidal techniques have not enjoyed
much success as aiding in a synthesis theory. A notable exception is the work by
Kurzhanski and Valyi [35] for the state feedback case, where the authors combined

ellipsoidal techniques and viability theory [2].

Note that, description (1.3) is quite general, in the sense, that one could arrive at

it by other considerations.

Example 2: Consider the model for a hybrid system where an upper logical level

switches between different plants, depending on observed events {23],[42]. Here,



we assume that the system is subject to bounded additive noise.
Thp1 = [ (T, up) + Wi, To =T (1.4)

zr € R", u, € R™, i=1,...,N, and wy € B.(0), where B.(0) C R" denotes the

closed ball of radius € centered at 0. We define

]—'(ack,uk) é U fi($kauk) + Be(o)

=1
Then, it can be argued that any trajectory generated by (1.4), can also be generated
by the inclusion

Tg+1 € }-(.'L'k,'U/k), Top =12

Stability results for hybrid systems (1.4) based on Lyapunov-like functions have
been presented in [12],[42]. However, no concept of robust performance (in the
sense of minimizing variations in the regulated outputs due to switching between
different plant models and noise), particularly for the output feedback case exists

for such systems.

Another common example is a special case of (1.2), where the noise contains com-
ponents representing parametric uncertainty. Stabilization results for such (linear)
systems (without exogenous noise) based on Lyapunov functions, and Ricatti equa-
tions can be found in [43],[46],[59],[33],[45]. In [7], Barmish et al. consider a similar
problem, but now with bounded additive noise, and the aim is to obtain ultimately

boundedness control under certain matching conditions. Linear inclusions also



occur in global linearization of nonlinear systems ([38],[37]). Furthermore, inclu-
sions could arise naturally when the available information about the system is not

sufficient to generate a reliable model.

The main contributions of this thesis are as follows: (i) We develop a rigorous
framework for solving control problems for systems modeled as inclusions. Of par-
ticular interest here, is the fact that nonlinear systems under very general bounded
noise structure can be represented as inclusions. Our approach yields both neces-
sary and sufficient conditions for solvability. (ii) We give an example of a stochastic
control problem, which is subject to both uniform and Gaussian noise. Under large
deviations type limits on the Gaussian component, the problem tends to a deter-
ministic robust control problem. This aids in motivating the problem formulation,
and the information state employed to solve the output feedback problem. (iii)
Some results are presented, which could enable one to view the information state as
a weighed indicator function of the set of feasible states. (iv) We discuss certainty
equivalence, and give a condition under which certainty equivalence holds. This
condition maybe more tractable than the one currently existing in the literature.
We also establish that the condition under which certainty equivalence holds is
equivalent to the existence of a solution to a functional equation. (v) In doing
so, we also give a class of controllers, which although non-optimal, guarantee that
the closed-loop system satisfies a dissipation inequality. (vi) We explicitly treat

the delayed measurement case. The main motivating factor for doing so was its



importance to industry?.

To illustrate the use of this methodology, we present several examples. These
are based on (i) an unstable nonlinear plant, (ii) a discontinuous system with

parametric uncertainty, and (iii) run by run control, where we consider the prob-

lems of end-pointing and rate control in a low pressure chemical vapor deposition

(LPCVD) reactor.

Some of the developments require the notions of continuity of set-valued maps and
limits of sequences of sets. For a general background in set-valued calculus, we

refer the reader to {5],{16],3],[13].
1.1 Organization of the Thesis

We start by stating the problem in the next section. The motivation for the choice
of cost function is delayed till chapter 3, where we consider a risk-sensitive stochas-
tic control problem. It is observed that when we take the small noise limits of this
problem, we can recover the deterministic cost function. However, the main aim
of chapter 3 is to motivate the information state recursion employed to solve the
output feedback problem in chapter 4. Chapter 3 is in that sense motivational,
but serves two important purposes. Firstly, it links the problem under considera-

tion to a stochastic control problem, and secondly it shows that the information

1n this regard, we are grateful to Dr. Stephanie W. Butler of Texas Instruments for some
interesting discussions.



state is a weighed indicator function of the set of feasible states. How one applies
the cost function to the problem of controller synthesis is illustrated in chapter 6,
which presents a design framework, and some examples. Chapters 2 and 4 deal
with the state feedback and output feedback cases respectively. The approach is
motivated by recent results obtained in the nonlinear H,, context by [31], which
employs the dynamic game framework of [8]. In our case, we have an unusual
game, in the sense that the controller is now playing against the system itself. For
the infinite time case, we employ the theory of dissipative systems [57] to write
down a version of the bounded real lemma. The latter is expressed in terms of
a dissipation inequality, which has appeared repeatedly in literature dealing with
nonlinear and linear robust control (e.g. [6],[26],[27],[28],[31],[44] ,[54],[24]). Chap-
ter 4 also contains the case of delayed measurements, considering its importance

to practical applications.

The results obtained in chapter 4, involve solving an infinite dimensional dynamic
programming problem. A standard practice has been to employ a certainty equiv-
alence controller [52]. In chapter 5, this issue is examined, and the notion of cer-
tainty equivalence is generalized to yield non-optimal dissipative policies. Finally,

chapter 6 gives some applications of the methodology developed.

Before, concluding this section, we hint at the structure of the controller obtained.
The controller is separated, in the sense it has two parts corresponding to estima-

tion and control, and this is shown in figure 1.2.



k+1

Figure 1.2: Structure of the controller.

1.2 Problem Formulation

The system under consideration (X), is expressed as

Tr+1 c ]:(.’Ek,’LLk) , T (S X()
2 Y1 € G(wk, ux) (1.5)
Z+1 — l(CC]H_l,Uk) y k= 0,1,...

Here, z;, € R" are the states, uy, € U C R™ are the control inputs, yx € R! are

the measured variables, and z; € R? are the regulated outputs.

Remark 1.1 Note that the regulated output 2z is expressed in terms of z;4, and
ug. The presence of uy is incorporated for the sake of generality. In most situations
of interest, u; will not be present. This fact will be made explicit in chapter 6.
This differs from the traditional linear quadratic type cost, which includes a term
in the control. Linear quadratic control can qualitatively be viewed as “minimum
effort” control. However, the justification for minimizing control effort has never
been clarified. A common view due to Athans [1] is that minimizing control effort
and state excursions reduces the likelihood that nonlinearities (e.g. saturation) will

be encountered during a disturbance. For the case at hand, we could explicitly

10



specify the control bounds in the definition of U. Furthermore, as will be shown
in chapter 6, the augmented plant could contain filters to further shape the control
response. In that case, we could re-index the regulated output as z; = I(z;). The
(apparently) strange indexing of z is necessary to maintain indexing compatibility

with the system dynamics.

1.2.1 Notation

Some of the notation employed in the thesis will be as follows:

| - | denotes any suitable norm.
z;; denotes a sequence {Zj, Tiy1,...,T;}
},‘7,6(:::) denotes the truncated forward cone of the point z € R™ [4]. In particular
0.%(2) = {zok|zis1 € F(zj,ui),7=0,...,k — 1,20 = z}.

ie. I'Gy (z) is the set of all possible state trajectories that the system can gen-
erate in the time interval [0, k], given a control policy «, and initial condition

z.
X% (xo) C R as the cross section of the forward cone of 2, at time instant k.

We furthermore write 7,5 € I'y,(z) to denote the set of trajectories such that

re Fg,k(x) and s;41 € F(rj,u;) fori=0,...,k—1.

11



B,(b) denotes an open ball of radius a centered at b, and B, (b) similarly denotes

a closed ball.

S and O denote the space of static state and dynamic output feedback policies
respectively. If & € S, then for any k, the control value u, = a(zx) €
U. Furthermore, we write S; ; to denote policies defined only for the time
interval 4, + 1,...,7. Similarly, if € O, then for any k, ux = @(y14) € U.
Furthermore, O; ; is defined in a similar manner as S; ;.

oy : R* — R’ is defined by

A{ 0 fzeM (1.6)

Ou(z) = —0o else
For the output feedback case, we define

7,1{(350) = {yix | yr+1 € G(ah,ur), Vz € FS,K—1($0)}

0% (x0) = {zok €T%x(x0) | Uhr1 € G(mr,wi), 6=0,...,K —1}
We will also write r, s € [(%(z) in a similar manner as for I'§ x(z).

Finally, given any set-valued map A(z), we occasionally write

AM) = | Al2)

reM

Remark 1.2 Of particular interest here, is the case, when | - | denotes the oo

norm. But since the results are norm-independent, we choose to pursue this level

of generality.

12



1.2.2 Assumptions

The following assumptions are made on the system X

Al. 0 € X,.
A2. F(z,u), G(x,u) are compact for all z € R" and u € U.

A3. The origin is an equilibrium point for F, G and . i.e.
F(0,0)30; 6(0,0)30; 1(0,0)=0
A4. There exists an € > 0, such that for all z € R*, u € U, Be(r) C F(z,u) for
some r € F(z,u), € >€e>0.
A5, I(-,u) € CY(R") for all u € U and is such that, 3y, > 0, such that

-

k= {s € R*| JueU st ’%l(s,u)

is compact and contains the origin Vvy > Ypin.

A6. U C R™ is compact.

Remark 1.3 The smoothness assumptions in A5 can be relaxed. This is consid-
ered in Appendix A. Also, in A5, we can replace compactness by boundedness (see
remark 2.14). Furthermore, in A5, we can get away with a subset of the states

being bounded, provided we can use invariance to establish that the remaining

13



states are bounded as well. We can also relax assumption A4, to let F be locally
connected. How one deals with these situations is very much problem dependent,
and for clarity of exposition we assume that the above assumptions hold. Remark
6.2, on page 105 illustrates the idea via an example. To this end note that A5 is
not particularly restrictive, since a common cost (often encountered in practice),
I(z) = zTQz, with Q > 0, trivially satisfies the assumption. Here, 2T denotes the

vector transpose.

Remark 1.4 We have assumed that the initial states (zo) belong to a set X,
rather than all of R™. The reason being, we could have actuator limits (imposed
by U). In which case, we may want a bounded X,. It is easy to come up with
examples of systems, where allowing arbitrary z, results in unreasonable problems.

As an example consider the following system

Tr+1 € [3, 4]£L‘k + ug + [—1, 1]

with U = [—1,1]. Let zo = 10. Clearly, one can check by direct computation that

for any trajectory r of this system we have r, — oo as k — co.

Remark 1.5 We could have also assumed that the set-valued maps have convex
images. There is no loss of generality, considering that under mild assumptions the
trajectories of the original system are dense in those generated by the convexified

(relaxed) system (Filippov-Wazewski theorem [3]).

14



1.2.3 Statement of the Problem

The robust control problem can now be stated as:
Given ¥ > Ymin, find a controller u (€ S or O depending on what is measured)

such that the closed loop system X* satisfies the following three conditions:

C1. XU is weakly asymptotically stable, in the sense that for any trajectory z, and
for each k, there exists an oy, € F(zk, ux) such that, the sequence ap — 0
as k — oo. ie. [5]

0e hgr_l}loglff(xk, Uk)
C2. X% is ultimately bounded.
C3. (Finite Gain) There exists a finite §%(z) > 0, with 3%(0) = 0 such that

o<
sup O | U(rign, ws) = Usiqn, w) |2 =7 | risa = sinn 7S BY(20), (1.7)
r,s€T%(z0),r#s ;=0

Vz, € Xo. The above condition states a performance specification in terms
of the (Lipschitz) induced norm. The reason for choosing this form of the
cost function is elaborated upon in the next section. Define I'*(0) Ilzé {r,s €
I'*(0) | r — s € I?}. Then, the above guarantees that for r, s € I'*(0) |,

{ —1
w1020 = 50
7,8€T%(0)],2,7#s “7' - 3”[2

<7
provided, of course that | - | now denotes the Euclidean norm.

Although not explicitly stated, in what follows it is sufficient that 3*(z) be

defined only on Xj.

15



We call the closed-loop system finite gain if C3 is satisfied.

Remark 1.6 Condition C3 yields a soft-constrained problem, and typically one

carries out ~y-iterations to obtain the sub-optimal 7.

Remark 1.7 Assumptions A4 and A5 ensure non-triviality of C3. In particular,
assumption A4 precludes single-valued systems, for which C3 is trivially satisfied
for any value of . Also, assumption A5, precludes ! from being uniformly Lipschitz
continuous, since for such functions C3 is satisfied by any control policy for «y large

enough.

Remark 1.8 We can also generalize equation (1.7) as

00
sup Z [1(riz1, wi) — U(Sig1, us) P — VP|ria — sinal? < B¥(2o)
7,5€0%(z0),r#S ;=0

for any p € [1,00). The results presented in this thesis for the deterministic
problem remain unchanged. However, in order to maintain compatibility with
the results from chapter 3 (where we consider a stochastic control problem), we

explicitly set p = 2.
1.2.4 Motivating the Cost

In this section, we try to motivate the cost employed in condition C3. The aim of

the robust control problem, is to attenuate the influence of the set-valued dynamics

16



Figure 1.3: Set of possible state trajectories.
on the regulated output z. To this end consider a finite time problem, where the
time horizon is 2. We are given a v > 0, and an admissible control policy u. We

denote the initial state value by Z.

Consider figure 1.3. From Z, we can go to any point in F(Z, ug). Suppose that the
next state the system goes to is r;. Note that the system could have also gone to
s;. Now, from r; we can go to any arbitrary point in F(ry, u1), where u, is the
control value at time £ = 1. We again pick two points rg, s2 in F(ry,u1). The

variation in the regulated output that could occur is therefore,
1
2

(111 o) — st wo) 2 + (2, wr) = Usa, wr)?)

where we assume we are working with the Euclidean norm. We now normalize this

17



by the distance between r and s, i.e. by

N

(|T‘1 — 81|2 + |7'2 — 82|2)

The reason for doing so is we are trying to attenuate the influence of the set-
valued dynamics on the regulated output, and not the variation in the regulated
output itself. We can write the worst-case normalized variation in the regulated

output as

N

(11(ry, wo) — U(s1,u0)|> + [1(ra, ur) — U(s2,w1)[*)

1
2

sup
r,sEFgJ(E) (]7'1 - 5112 + |T2 - 8212)

If £ = 0, we now require that for the given -, the control policy be such that this

worst-case normalized variation is bounded by 7y, or that

2

Sup Z |l(Tk9 uk—l) — l(sk,uk_1)|2 - 72|Tk _ Sk|2 S 0
,5€TG 5 (0) k=1

Then, generalizing to arbitrary Z € X, we require the existence of a finite §*(z) >
0, 8%(0) = 0, such that

2

sup 3 |1(re, u—1) — sk, wk-1)|> — V2Irk — sk|? < B4(Z)
r,sGl"ga(i) k=1

for all T € X,. This condition requires that the worst-case normalized variation of
the regulated output be finite for all initial conditions. One now repeats the above

process for an arbitrary large time horizon to obtain equation (1.7).
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Chapter 2

The State Feedback Case

In the state feedback case, the problem is to find a controller u € S, i.e. ux = u(zy),
with uy € U(zy), where U : R* — R™, such that the three conditions (C1-C3)
stated on page 15 are satisfied. We pursue this level of generality here, due to the
importance of this problem to the case when one has state constrained controls [2].
The special case of this is clearly U(z) = U. We also assume that the set-valued

map U (z) assumes compact values for all z € R".
2.1 Finite Time Case

For the finite time case, conditions C1 and C2 of section 1.2.3 are not required.
From condition C3 of section 1.2.3 we require the existence of a finite 8% (o),

B%(0) = 0 such that

x

-1
(1 1ries ) = Usiv,w) PP =77 | riss = s 2) < Bi(o),

o,
I
o

(2.1)
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VK > 1,Vr,s € I'f k(20), V2o € Xo
2.1.1 Dynamic Game

Here, the robust control problem is converted into an equivalent dynamic game.
For u € Sg k-1 and & € Xi(zo), where X (x¢) is the set of states that the system

can achieve at time k if it were started from z,, define

K-1
Jek(u) = sup {3 (1 Ursgr, wi) = Usizr, wi) [P =7 | ripn — sen 1)} (2.2)

rs€lg x(%) =k

Clearly

Jj,k(’U,) Z O

Now, the finite gain property can be expressed as below

Lemma 2.1 ¢ is finite gain on [k,K] if and only if there exists a finite 8% (Z),

B%(0) = 0 such that

Jos(u) < B4(z), j €[k, K], Vi € Xo (2.3)

The problem is hence reduced to finding a u* € Sk x—1 which minimizes Jz k.
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2.1.2 Solution to the Finite Time State Feedback Robust
Control Problem

We can solve the above using dynamic programming. Define

K-1
Ve(z) = _inf Sup {Z | (i, wi) = U(Sis1, ) > =% [ rii—si [P} (24)

uESK, k-1 r,s€l} ( (Z) =k

The corresponding dynamic programming equation is

Vi(e) = inf, g7 suPrser@ull Hrw) —U(s,u) [P =7* [ 7 — s > +Vin(r)}
VK(CE) =0
(2.5)

Note that we have abused notation, and here u is a vector instead of a function as

in equation (2.4).

Theorem 2.2 (Necessity) Assume that u* € Sy x_1 solves the finite time state
feedback robust control problem. Then, there exists a solution V' to the dynamic

programming equation (2.5) such that Vi (z) > 0, V4(0) =0, k € [0, K —1], 7 € X.
Proof:
For z € Xy, k € [0, K — 1] define
V() = inf J;
bo) = dof  Jop(u)

Then, we have

*

0< Vil(z) < B (z), kel0,K—-1], z€ X
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Thus, V4 is finite on Xj, and by dynamic programming, V satisfies equation (2.5).

Also, since 8% (0) = 0, V4(0) = 0.

Theorem 2.3 (Sufficiency) Assume that there exists a solution V' to the dynamic
programming equation (2.5), such that Viy(z) > 0, V4(0) = 0, k € [0, K — 1],
x € Xo. Let u* € Sk x—1 be a control policy such that uj achieves the minimum in
equation (2.5) for k =0,..., K — 1. Then u* solves the finite time state feedback

robust control problem.

Proof: Dynamic programming arguments imply that for a given z € Xy

Vo(z) = Jop(u*) = inf  Jyo(u)

UESO,K—I

Thus u* is an optimal policy for the game and lemma 2.1 is satisfied with u = u*,

where we obtain % (z) = V().

2.2 Infinite Time Case

Here, we are interested in the limit as K — co. Invoking stationarity equation

(2.5) becomes

V(z) = inf sup {V(s)+ | l(r,u) —l(s,u) | —y*|r—s 1>} (2.6)
uEU(z) r,s€F(z,u)
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2.2.1 The Dissipation Inequality

We say that the system X% is finite gain dissipative if there exists a function
V(z) (called the storage function), such that V(z) > 0, V(0) = 0, and it satisfies

the dissipation inequality

V)2  sup  {V(s)=7"|r—sP+]lra()-isa@) "} (27

" rseF(z,a(z))

Vz € XE(IL’()),V]C > O,VCEO S X()

where @(z) is the control value for state .

Theorem 2.4 Let u € S. The system X% is finite gain if and only if it is finite

gain dissipative.

Proof:
(i) Assume XV is finite gain dissipative. Then equation (2.7) implies
k-1 k-1
Vize) > V(re) =¥ D | rig1 — sivn P+ 2 | Wrin, ws) — Usiza, wsi) 2,

1=0 1=0

Vk > 0; Vr,s € I™(zo)

Since V > 0 for all 7,5 € ['§;(x0), this implies
k-1
3 Uriens i) — Usirn, ws) P =7 | o1 — sipa < V(@0)

1=0

Thus X" is finite gain.
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(i) Assume X is finite gain. For any zo € X, and k > 0, define for z € X (o)

j-1

Vi@, mo) = sup {D | Urips, ) — Usivn,w) 2 =7 | raga — sip1 [}
rsel¥(z) =0

Then we have for any z € X}(xo)
0 < Vi(z,30) < B*(z0), Vi >0
Furthermore
kajﬂ(x,xo) > Vk'fj(x,xo) , Vo € X (zo)
Furthermore, note that by time invariance, Vk‘fj(x,xo) depends only on z and j.
Thus if z € X (z3) N X (22) then V¥ ;(z,x§) = Vit ;(z, z3). Hence,

Vk’fj(x,xo) — V¥(=z), ask — 00, Vo € XZ(20),k > 0,20 € Xo

Also, we have

0 < V*(x0) < B(w0)

Since

V() = ;Ielg V¥(z) = V¥z) < V¥(z)

dynamic programming implies that V*(z) solves the dissipation inequality 2.7 for
all z € X2(zo), k > 0, 7o € Xo. Furthermore V*(z) > 0 and V*(0) = 0. Thus V*

is a storage function and hence ¥* is finite gain dissipative.
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We now have to show that the control policy u € Sjp o) Which renders ¥ finite gain
dissipative, also guarantees ultimate boundedness of trajectories, and furthermore
under a certain detectability type assumption, the existence of a sequence o, €

F(xn, un) such that lim,,. o, = 0. The above can be also expressed as [5]

0 € lim inf F(zx, ux)
k—ro0

We, first study the convergence of

We= sup (|U(r, @) — @1, W) > =7 |7 — Ziya %)
TE]'-((I_:,',’Ei)

to zero, where T is a trajectory generated by the control u.

Lemma 2.5 If W — 0, as kK — oo, then Ve > 0, 3K such that Vk > K, 30
such that

T — Tkt1 |< 0 = | l(izkﬂ,ﬂk) — l(T, ’l—l,k) |< €

Proof:

Suppose to the contrary. Then Je > 0 such that, VK, 3k > K, such that V6 > 0
| r = Zppr |< 6 =>| U(Tpgr, W) — Ur,Gk) > €

Fix ¢ such that 0 < § < € and § < v/e. Then for any s € Bs (Zk+1) N F(ZTk, uk)

C f(i:k,uk)
| U kgr,u) = U8, ) 1P =7 | Ten —s P> e =6 =1

This contradicts the convergence of W'
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Remark 2.6 The above lemma gives a necessary condition for the sequence W

to converge.

Lemma 2.7 If W2 — 0, as k — oo, then Ve, € > 0, € > € > 0, 3K such that

Vk > K, 3r € B(Tgy1) N F(Zx, Ux) with 7 # T and

| 1(r, ag) — U(Zps1, ) |
| 7 — Zpq |

<y+é€ (2.8)

Proof:

By contradiction. 3¢, € > 0, € > € > 0, such that VK 3k > K such that

| 1(r, ) — UZkt1, Tr) |
| r — Ziy1 |

>+ &, Vr € B(Zps1) [\ F(Zk, Ur)s T # Thta
Hence, 31 > 0 such that
| U, k) = UErer, W) P =7 | 7 = Brn P20 |7 = T 7
Let r € B(Zky1) N F(Tk, Gx) be such that € >| r — Zx41 [> 5. Thus,
2 2 2 e N

| U, ) = U@k, W) [ =7 [ 7 = Ten P20 =1
Hence, 37 > 0 such that VK, 3k > K such that
Wy >4

Hence, we get a contradiction.
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Corollary 2.8 If W} — 0, as k — oo, then

, 0., _ _
lim sup | 8—l($k+1,uk) 1<~
k—o0 xz

Proof:

Take the limit in equation (2.8) as €, ¢ — 0, and use Assumption A4.

Before we can prove weak asymptotic stability, we need the following additional

assumption on the system 3.
A7. Assume that for a given v > 0, the system X% is such that

. 0, _
lim sup | 8—l($k+1auk) <«
k—o0 z

implies 0 € liminfy o0 F(Zk, U)-

Remark 2.9 The assumption above, can be viewed to be analogous to the de-

tectability assumption often encountered in Hy, control literature e.g. [44],[27].

The following theorem gives a sufficient condition for weak asymptotic stability.
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Theorem 2.10 If for a given v > 0, X% is finite gain dissipative and satisfies

assumption A7, then X% is weakly asymptotically stable.

Proof:
From the dissipation inequality (2.7), we obtain for any z¢ € X,
K -
ST Ui, @) = Usizr, @) |2 =27 | i1 — siga P< V(mo), VK 1,5 € T%(x0).
i=0
In particular for any x € I'*(z)
K —
Z W < V(my), VK
k=0
We know that W > 0, Vk. This implies that
W —0 ask — o0
Hence, by corollary 2.8 and assumption A7, we obtain

0 € lim inf.’F(a‘:k, ﬂk)
k—ro0

This implies that 3o, € F(Z,, @y,) such that lim, . on, = 0.

Hence, Vz € T'*(xy), Ja, € F(xn, Uy,) such that lim, . o = 0.

Corollary 2.11 If X% is finite gain dissipative, then ¥* is ultimately bounded.
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Proof: In the proof of theorem 2.10 , we observe that if 2% is finite gain dissipative,
then

WE—0ask— o0

Hence, by corollary 2.8

lim sup
k—o0

<7

a—xl(le-Ia Uy

Which implies that =, — L7, as k — oo, which is bounded by assumption A5,
section 1.2.2. Since, suppose not. Then there exists an ¢ > 0, s.t. VK > 0,
3k > K, such that B.(zx) N L? = ¢. This implies that there exists an € > 0, such

that VK > 0, 3k > K, such that | 21(zk41, k)| > 7 + € Which implies that

. 0 _
lim sup %l(xlﬁl,uk) >

k—00

A contradiction.

Remark 2.12 Furthermore, if we impose sufficient smoothness assumptions on
¥, such that V is continuous, then all trajectories generated by X are stable in
the sense of Lyapunov. In particular, V then becomes a Lyapunov function. To
this effect, the recent work by Blanchini [10] is similar in spirit. He constructs
state feedback compensators for discrete time linear systems to achieve ultimate
boundedness control via set-induced Lyapunov functions. This procedure was then

applied to the state feedback {'-optimal control problem [11].
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Remark 2.13 It is clear from above and from lemma 2.5, that we do need some
form of continuity assumption on [ as a necessary condition for the system to be

finite gain dissipative.

Remark 2.14 We can replace the compactness assumption (A5, page 13) on L7
by boundedness, in which case we would have z; — L7, as k — oo, in corollary

2.11.

2.3 Solution to the State Feedback Problem

Although, the results above indicate that the controlled dissipation inequality is
both a necessary and sufficient condition for the solvability of the state feedback
robust control problem, we state the necessary and sufficient conditions in terms

of dynamic programming equalities.

Theorem 2.15 (Necessity) If a controller @ € S solves the state feedback robust
control problem, then there exists a function V(z) such that V(z) > 0, V(0) =0

and V satisfies the following equation i.e.

V(z) = inf sup {|l(r,u) — l(s,u)|2 - 72|r — s|2 +V(r)} (2.9)
wel (z) r,seF(xu)

oS Xg(xo), k > 0, Zg € X().

30



Proof: Construct a sequence V;, j =0, ... of functions as follows

‘/j+1(x) = lnquU(z) Supr,sef(z,u){”(r; U’) - l(S, u)|2 - 72|T - 312 + V}(T)}
Volz) =0
Clearly,

Vi(z) >0, Vz e R", Vj >0

and

Vin(z) > Vi(z) , Vz € R?, j >0

For any zy € X, and k > 0, pick an z € X} (zo). Then dynamic programming

arguments imply that

Furthermore, note that V;(z) depends only on j and z. Hence,

Vi(z) — V(z) as j — o0, Vz € X (z0), k>0, 7o € Xo

and by definition, V satisfies equation (2.9). Furthermore, V(z) > 0 and V(zo) <

B%(zo). Hence, V(0) = 0.

Theorem 2.16 (Sufficiency) Assume that there exists a solution V' to the station-
ary dynamic programming equation (2.9) for all z € R", satisfying V(z) > 0 and

V(0) = 0. Let u(z) be the control value which achieves the minimum in equation
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(2.9). Then @ € S solves the state feedback robust control problem provided that

Y satisfies assumption A7.

Proof: Since V satisfies equation (2.9), 3% satisfies equation (2.7) with equal-
ity. Hence, ¥% is finite gain dissipative, and hence by theorem 2.4, ¥* is finite
gain. Furthermore, by theorem 2.10 £* is weakly asymptotically stable and by

corollary 2.11 % is ultimately bounded.

Remark 2.17 The condition that a solution exist for all z € R" is quite strong.
It is sufficient that a solution exist on a set D C R", with a corresponding control
policy 4, provided Ug,ex, [*(zo) C D. This may however be difficult to check in

practice.

Corollary 2.18 If X, = R", then the existence of a solution to the stationary
dynamic programming equation (2.9) for all z € R", is both a necessary and
sufficient condition for the existence of a solution to the state feedback robust

control problem.

Remark 2.19 It can be seen from the statement of theorem 2.15 and the proof

of theorem 2.16, that we could have expressed the necessary and sufficient condi-
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tions for the solvability of the state feedback robust control problem in terms of

dissipation inequalities.
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Chapter 3

The Information State

This chapter is aimed at motivating the cost definition used so far, as well as to
obtain an information state recursion for the output feedback problem. A key idea
used is that if we start out with a risk-sensitive stochastic control problem, and
take the small noise limits, we obtain the formulation for a robust control problem

for a deterministic system.

The main steps are as follows. In section 3.1, we consider a risk-sensitive stochastic
control problem. We employ the idea in [31], where the small noise limit of a risk-
sensitive stochastic control problem is taken to formally obtain an information state
solution to the deterministic nonlinear Hy, control problem. In [31] an exponential
cost function motivated from [9] was used, and small noise limits taken. We use
the information state recursion derived from the stochastic control problem as the
basis to an information state controller for the deterministic problem. From our

viewpoint, the stochastic control problem is entirely motivational, and we drop
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most of the assumptions associated with the small noise limit derivation when

considering the deterministic problem in section 3.2.

For the remainder of this chapter, we assume that |- | denotes the Euclidean norm.

3.1 The Stochastic Control Problem

We will consider a special case of the risk sensitive stochastic control problem. On

a probability space (2, S,P*) consider the stochastic control problem

Teyr = &+ Wiy, & € F(xk, uk)
Yes1 = Vit Vkins v € G(z5)
on the finite time interval k = 0,..., K — 1. The process y° € R is measured, and

is called the observation process. z¢ € R" represent the states. For convenience,

we will write the dynamics as
Th1 € F(h, uk) + Wip
Yir1 € G(Th k) + Vi

Let W, Vi, denote the complete filtrations generated by (2§ 4, ¥5 ) and yg ;, respec-

tively. We assume

Bl. y5=0

B2. {wg} is an R"-valued i.i.d. noise sequence with density

v (w) = (2re) M exp(=g; | w 7).
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B3.

B4.

B5.

B6.

B7.

BS.

{vt} is a real-valued i.i.d. noise sequence with density

¢°(v) = (2me) "2 exp(—5- | v |*), independent of {w§}.

{&} is an R"-valued independent noise sequence with & € F(zf, ux), having
a uniform density x(z5,ux) = ( fgef-(z;,uk) d¢)~!. Furthermore, for each k, &
is independent of w{ and vf, | = k + 1,..., K. Similarly, {15} is a R-
valued independent noise sequence with v§ € G(z%) having a uniform density
0(z5) = (f,,eg(zi) dv)~!. Furthermore, for each k, vj is independent of &,

€ £ —
wl+1, vl+1 fOI‘l—k,..,K—l

The controls u; take values in U C R™ assumed compact and are ) mea-

surable.

F is a set-valued map from R" x R™ to R", uniformly continuous in z,
uniformly in u € U. G is a set-valued map from R" to R, satisfying the

same assumptions as F.

Furthermore, F, G assume convex compact values and have a non-empty
interior for all z and u. Y, # are uniformly continuous in z, uniformly in

u € U, and are bounded.

-n/2

x5 has density p = (2m) "2 exp(FH|z(?).
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Note that assumption B7 places restrictions on F, G. An example of F which

satisfies these assumptions is
F(z,u) = Az + Bu + B,(0)

where, A, and B are matrices of appropriate dimensions, and B,.(0) is the closed
ball of radius r, centered at 0. At time k, let U(k) denote the set of control functions
i which satisfy B5, i.e. uy take values in U, and are a function of yg,. Note that
&, v will in general depend on all the past values of w®, and v*, through the state
25 _;, and control uy_;. For I > 0, we write Uy = U(k)UU(k+1)---UU(k+1).

The cost function is defined for admissible u € Up g_1, 1 > 0 by

K
T4 (p, u) = B [exp h (Z L(a, k. uk_l))]

k=1
and the partially observed risk-sensitive stochastic control problem is to find u* €
Up k-1 such that

J*(p,u*) = inf J"(p,u)

uelp, k-1

We further assume that

B9. L € C(R" x R" x R™) is single-valued, nonnegative, bounded and uniformly

continuous.
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3.1.1 Change of Measure

Using an idea from [19], suppose there exists a reference measure Pt such that

under P, {y¢} is i.i.d. with density ¢°, independent of {z}} where z° satisfies
Tiy1 € F (g ue) + Wipy

Define

fg(wf_l) ¢ (vf +&)d¢
¢ (vf)

AL =TI, (9(3315—1)
and define P! by setting

dP1
dPu

—_ >
= /\k
W

i.e. by setting the Radon-Nykodym derivative, restricted to Wj to equal Af. Note
that in general, P at k, may depend on the states 2§, _, (but not on z}), however

we hide this to prevent notational clutter. Then

Lemma 3.1 Under P1, the random variables {yf} are i.i.d. with density function

¢°.

Proof: Let t € R, and consider

Pl(ys < tWie1) = ENI(yf < 8) Wi

EY[AL(yg < )| We-1]
E[Af [ Wy1]

Now

BN Went] = Mafehn) [ [ 07 +€)dedyf
Tr—1
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— 6_ 9 xE_ / / ¢E £ d Ed
k-10(z%-1) owr ) IR (vr)dyrd€
by changing the order of integration and by
a change of variables.

= A

and

BAI( < O] = Afaflei) fip [ T < 0970 + €)dgd
g1
= A0y [ [T < 09 () dyid
k-10(z5_1) owi_) IR (Vi )9° (ye)dyid€
by changing the order of integration and by

a change of variables.
t
= N [ WDy

The result follows.

It is clear that under PY, yf, and z are independent. Furthermore, the existence
of P! is guaranteed by Kolmogorov’s extension theorem. In a similar manner, we

define the inverse transformation relating P* to P1 as follows.

ap*

= ZZ = Hleqle(xle—la yle)
dPt Wi

where
A Jowp_p ¥ Wi-O%
We(zf_y,97) = O(xf_)— 1<¢>E(yf)

= 0(z7_1) Jous_ ) exp(— 2 (GIEI* — v7€))dE
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3.1.2 Information State

We consider the space L®(R") and its dual L**(R"). We will denote the natural
bilinear pairing between L*®(R") and L>*(R") by < 7,n > for 7 € L**(R"),

n € L*°(R").
We define the information state process o} € L**(R") by

k
< 0.11:76’,'7 >= Ef [n(wi) exp (g‘ ZL(xle’wle7ul—l)> Zz | yk]

1=1
for all test functions n € L®(R™), for k = 1,..., K, with of* = p € L'(R"). We

introduce the bounded linear operator ¥#€ : L*(R") — L*°(R") defined by
2, y)n(€) & [ [ e=r)exp (EL(z =) nie)drd=e € px(E )
and its adjoint #* : L2*(R") — L**(R") defined by

2, )0 () 2 [ [ x(€ Wi e=r)exp (e 2 =) W€ wo(€)drdg

(3.1)
Lemma 3.2 The information state ok satisfies
Proof:
<ofm> =
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=

k
:EJr [ eXP <€ZL$1,’UJZ€,U1_1)) Zz|yk]
=1

Ef [n(ﬂﬁi) exp (

o=

L} wf, us-1) ) ¥¥(afy, )

k—1
exp (g > L(zf, wj, Ul—l)) Zp |yk]
=1

/’L £ £ £
Ef [/R" /}_(wk-1 ) n(z) exp (EL(Z’ z-—r, uk_l)) Ue (x5 _1, Ug):

k-1

X(Tk_1, Uk—1) €Xp (g > L(zf, wy, ul_1)> ZE W (z — r)drdz |yk]

=1

3 H
— < [ [ e (L2 )

x (s up—1) P (-, yp)V (2 — r)drdz >

= < 05y, 2P (uk—1, Y)n >

= < X (Uk-1, Yp)Ok—15 1 >

for any n € L*°(R").

Observe that for all u € Uy x—1, we have

Ef[< off

Thus, the cost can be expressed as a function of o

,1>] = E!E [exp (g YK, L(xf, wt, ul_l)) Z5 DJKH
= Ef|exp (g YK, L(x§, wE, Ul—1)) Z}'}]
= J"(p,u)

¢ alone, and hence the name

information state for o} is justified.
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3.1.3 Small Noise Limit

We first define some spaces following [31]. For v € M 2 {yeR*|m >0,7% >0}
define
NP ay | s
D" ={pe C(R") | p(z) < —m |z [ +m}

DE {peCR") |p(zx) L —m |z |> 4+, for some v € M}

We equip these spaces with the topology of uniform convergence on compact sub-

sets. Define A¥* : D — D by
Lx = AN ~ 1 2
AP (u,y)p(z) = sup $p(€)+ sup |L(z,z—ru)——|z—7]"]—
¢ R reF(€,u) 2p
for p € D.

Then we have

Theorem 3.3
lim = log SM* (u, y)e? = A (u, y)p

e—0 il

in D uniformly on compact subsets of U x R x D” for each v € M.

Proof:

From (3.1) we have

ilog She (u, y)e(2) =
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€ pf—1 ne
—1lo /n/ / ex —(— z—r1 > ——log(2me) + L(z, 2z — r,u)+
Iz EIR" Jrew Jocoe) T € 2u| | 24 (2me) + L )

(&) + %logx(ﬁ,U) n —Zlogﬁ(f) - % [% s |? —syD drd¢

Under the assumptions made on the system, a straightforward application of the

Varadhan-Laplace lemma (Appendix B) yields the result.

Remark 3.4 In particular, setting o#¢ = e*? in equation (3.2), and employing

the result of theorem 3.3, we obtain

_ B 1
Fei(z) = sup {pk(5)+ sup (L(z,z—r,uk)——u—rt?)—
reF(&ug) 2”’

1 . 1
— inf (5 | S |2 —Syk+1)} (33)

11 5€6(0)

fork=0,..., K - 1.

3.2 The Deterministic Case

We now consider the deterministic problem. The system is defined as

2{ Tryr € F(wp, ux) (3.4)

Uk+1 € G(zk)

for k = 0,...,K — 1. We assume that the system (3.4) satisfies the relevant
assumptions of section 3.1. Namely, that F, G take on compact values with non-

empty interior, and uy € U, with U compact. We first simplify the information
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state recursion (3.3) for this case. Here, it is assumed that we have access to the
function L, which is tied to the particular kind of robust control problem being

considered. More will be said about this in the next subsection.

We carry out the following change of variables in equation (3.3)

>
!

po(T) Do(z)

_ 1k—1
pk(@‘ﬂZlyﬁl ?, k=1,.. K.
3=0

[1>

k()

Then equation (3.3) can be written as

1
pry1(x) = sup {pk(f) + sup (L(z,x — T Uug) — " |z —r i2> —
cc R rEF(€,uk) H
L inf (s - gpe)? (3.5)
— 1 — .
21 560(e) Yk+1

Using the convention that the supremum over an empty set is —oo, we can place

a natural restriction on £. Define
Qz,y,u) £ {¢ € R |z € F(6,w) and y € G(€)}

This just ensures that the values of & are compatible with z, u, and y, given the

dynamics (3.4). Then equation (3.5) can be written as

pen(e)=  suwp {pk<e>+ up (L(x,x—r,uw—ilx—rﬁ)} (36)

£€Q(x,ypy1,Uk) reF(€,ug)

or

Dk+1 = H(Pk, Yk+1, Uk)

Do =D
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Remark 3.5 Here, p is a function which weighs the initial states zo € R". In

particular, it could incorporate any a prior: information we have about z.
3.2.1 Motivating the Robust Control Problem

Consider the information state recursion (3.6), with zo = 0. Then the appropriate
choice for p is p = 60y, where § is as defined in equation (1.6). By inspection, one
obtains

k-1

1
pe() = sup {3 L(royn, iy = sien,w) — o= Irss — s’ e =x} - (3.7)
r,sel"g:}c’ (0) =0 2:”

where I'(’%(0) is the set of all state trajectories zox that can be generated by
the closed loop system X%, which are compatible with the measurements y; 5 (see
section 1.2.1). We now consider the following control problem for the system (3.4).
Find a control policy u € Og x_1, such that

K-1 1

> {L(Tksr, Thr1 — Ska1s k) — 5—I7k41 — Ska]*} <0 (3.8)
k=0 2p

over all trajectories r, s € T'§ x(0). Note that, if r — s € ([0, K]), then the above

guarantees that

=

(ZkK:_ol L(Tlc+1, Tk+1 — Sk+1, Uk)) 1

<
|l — sl ~ V2

This immediately yields a method to set up robust control problems for the system

Y. Consider for example the following regulated output.

Zp+1 = h(Tpi1, uk)
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where z;, evolve via the dynamics (3.4). One could now consider attenuating the
(Lipschitz) induced norm of z, (provided of course that h is not, say, uniformly

Lipschitz continuous in z) by defining L as

L(r,w,u) = |h(r,u) — h(r — w,u)|?

Then, we obtain the cost considered in in this thesis. Note that alternate costs are

possible by defining L differently.

3.2.2 Information State and Feasible States

For the remainder of the chapter, we let zo € R" be arbitrary, but known. An
interesting property of the information state is that it also acts as an indicator

function for feasible states.

Definition: For a given initial state zo, an output trajectory y; x+1, and a control
trajectory ugk, a state Zyy1 is called feasible at time k + 1 if there exists a state
trajectory Tg 41 With Zx11 = Zg41 such that z;41 € F(zj,u;) and yj 1 € G(z;) for

j=0,...,k

Remark 3.6 Hence, one could think of feasible states at a given time instant, to be
those values which the system states could assume given the available information

up to that time.
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Consider now the following recursion

AV (o) = F(GHyker) N X" (o), we), k=0,...,K -1
X (xo) = {zo}

where G 1(yxy1) = {z € R" | yp41 € G(x)}, and for a set M C R", we define

F(M’ u) = UzEM:F(l')u)

Lemma 3.7 Z € X} (xo) if and only if Z is feasible at time & + 1.

Proof:
We show this by induction on k. Clearly for £ = 0 the assertion holds. Assume it

to be true for k. Now consider instance k + 1.

(i) Suppose Z € X" (o). Then there exists a £ such that T € F(£, ux) and

£ € G (Yer) ﬂ X (o).

Hence, ¢ is feasible at time k, and is such that yz1 € G(&). Hence, by definition
7 € F(&, uy) is feasible at time k + 1.
(ii) Suppose 7 is feasible at time £+ 1. Then by definition there exists a trajectory

To k41 such that z € AY"(xo), and yr11 € G(zx). Hence,

Tk € G (yhr1) () AL (o)

Thus,

T =Tps1 € F(G (Y1) ﬂ AL (o), ur) = Xg(20)
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Define the following limiter function 7(-) : R, — R~ as

A0 ifz>0

(@) :{ T else

where R, denotes the extended real line and R~ denotes {z € R, | z < 0}. Also,

recall the definition of §y; : R* — R* from equation (1.6)

Theorem 3.8 Suppose py = 0{4,} then

7(pk(z)) = Oxp(0) (2), VZ € R"

Proof:
First notice that if py = {4}, then for a given x € R" either pi(z) > 0 or
pr(z) = —oo. Now

T(po(z)) =0iff z = o

Assume true for py(z) and let z € X} (zo). Then there exists a {£ € R" such that

z € F(&, ur), y € G(€) and & € XY"(xo). Hence pi(£) > 0 and

1
sup L(z,z —rup) — — |z —7[*>0
Te]:(fyuk) 2”

Hence

1
Pei1(2) > pe(©) + sup L(z,z—rup) — o= [z —7 [*>0
reF (& ug) 2#’

Hence, 7(pry1(z)) = 0.
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Now let 7(prs1(z)) = 0. i.e. pgi1(z) > 0. This implies that = is such that
v € F(é,ur), venr € G(€) and pi(£) # —oo for some £ € R". Hence, pi(€) > 0

and thus £ € XY"“(xo) by assumption. Hence,

£ e X (x0) (G (yks)

Therefore,

v € F(&uy) € FXP(20) NG (Ykt1), uk)
= Xi(zo)

Hence, z € X2 (o).

Remark 3.9 Thus, we see that the information state can be transformed by a

simple limiting operation to the indicator function of the set of feasible states.

This has consequences on the solvability of the problem. In particular, (skipping

ahead for the moment),

Remark 3.10 Suppose the system starts from rest (i.e. zp = 0). Then, from
corollary 4.9, if we start with zo = 0 with py = d0}, then the information state is
always non-positive. Hence, it is zero on feasible states, and —oo elsewhere. Thus,
instead of computing the information state via (3.6), one could consider propagat-
ing the set of feasible states (the so called problem of guaranteed estimation

[49],[34]).
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Chapter 4

Output Feedback Case

We now consider the output feedback robust control problem. We denote the set
of control policies as O. Hence, if u € O, then ux = f(y14). Although, one
could extend the developments in chapter 3, we choose to develop the solution
independently. Thus, this chapter is independent of chapter 3, and the role of

chapter 3 is mainly motivational.
4.1 Finite Time

For the finite time case, we are only interested in the satisfaction of condition C3
of section 1.2.3, page 15. Hence, the problem is, given vy > Ymn, and a finite time
interval [0, K], find a control policy u € Og k-1, such that there exists a finite
quantity 8% (x) with §%(0) = 0 and

K-1

| l 7'1+1>Uz - l(32+1auz) | _’7 | Tit1 — Si+1 | < :BK(xO)
i=0

30



VT,S € FS’K(J;O), V.’IIO € Xo

4.1.1 Dynamic Game

In this section, we transform the output feedback robust control problem to a

dynamic game. We introduce the function space.
E={p: " — R'}

For u € Og g1, and p € £ define a functional J,;(u) by

k
A
Jpp(uw) = sup  sup  {p(zo)+> | 1(si, uim1) —U(ri, uim1) [ =7 | si—ri [?} (4.1)
20E€Xo r,s€l¥(zo) i=1
fork=0,...,K.

Remark 4.1 The functional p € £ in equation (4.1) can be chosen to reflect any

a priori knowledge concerning the initial state zo of X*.

The finite gain property of 3* can now be expressed in terms of J as follows.

Lemma 4.2 (i) 2%, is finite gain on [0,K] if and only if there exists a finite quantity

B%(xo), Bi(0) =0, such that
Toogy k(1) < Bic(w0), k=0,....K

(i) S* is finite gain on [0, K], if and only if there exists a finite S > 0 on X,

with §%(0) = 0, such that

J_g}t{,k(’u,) <0, k=0,...,K
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where d(;} is defined in equation 1.6.

For notational convenience, we introduce the following pairing

(p,q) = sup {p(z) +q(z)}
xERn

and a restricted version

(p,g| X) = :g}g{p(w) +q(z)}

Lemma 4.3 If each map ¥ is finite gain on [0, K], then

(p,O | XO) < JP,K(U‘) < (pa ﬁ}t{ | XO)

Proof:

Set r = s € I'%(z) in equation (4.1). Then clearly
(9,0 | Xo) < Jpx(u)
Since, ¥F_ is finite gain on [0, K] for all zo € X, this implies that for any z¢ € X,
K
p(xo) + 3 | Usi, uimt) = Ui, uim1) |2 =72 | si—ri [P< p(2o) + B (%0) < (p, Bk | Xo)

=1

Hence, J, x(u) < (p, B% | Xo)-
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Thus, we can define

dom J, x(u) = {p € E: (p,0 | Xo), (p, B% | Xo) is finite }
The finite time output feedback dynamic game is to find a control policy u €
Oo,k -1, which minimizes Jp k.

4.1.2 Information State Formulation

Motivated by the results obtained in chapter 3, for a fixed y1 4 € A'f,k(Xo), and

u k-1, we define the information state p; € £ by

k
A
pe(z) = sup sup  {po(zo) + Z | 1(si, ui—1) — U(ri, ui—1) |2 -
z9€Xo r,ser‘g”}:(zo) i=1
Vi ri— s || e =z} (4.2)

Here, the convention is that the supremum over an empty set is —oo. Furthermore,
for convenience we redefine py as

po(z) ,ifz € X
-0 ,else

po(z) = {

Clearly, if X" is finite gain, then
—00 < p(z) < (po, Bk) < +00
and a finite lower bound for pi(z) is obtained for all feasible z € R".

Now, define H(p,u,y) € £ by

2 sup {p(&) + B(&, z,u,y)} (4.3)
teR"

H(p, u,y)(z)
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where the function B is defined by

A SuPsG}'(f,v)ﬂ Wz, v) = (s, v) |2 if { z € F(v)
B(& z,v,y) = -7 |z —s*} € G(&v)

—00 else

Lemma 4.4 The information state is the solution of the following recursion

Pr+y1 = H(pk,ukayk+1)a k:O’aK_]- (44)
Po € & '
Proof:

We use induction. Assume that (4.4) is true for 0,..., k; we must show that pxy1

defined by (4.2) equals H (pg, uk, Yk+1). Now

H(pg, ug, Y1) (@) = sup {px(§) + B(&, @, up, Yrr1) }
teR”

= sup {pe(§) + sup (| Uz, ux) — (s, ux) |2 -
ceR" SEF(&ur)

72 | r—Ss l2 | Yr+1 € g(&auk)ax € f(é-yuk)}

= prs1(z)

by the definition (4.2) for p, and pg41.

Remark 4.5 Note that we can write
k—1
pr(x) = sup  {po(&) + > B(&i,&iv1r uir Yir1) | & =z}

EET} (Xo) i=0

fork=1,...,K.
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Remark 4.6 The relationship between the information state and the indicator
function of the feasible sets was established in chapter 3. In particular, it was
established that if py = 65}, then px(z) > 0 if and only if z € AY"(zo), where

XY (xo) is the set of feasible states at time k, given w1 and y .

Theorem 4.7 For u € Ogx_1, p € &, such that J,x(u) is finite, we have

Jox(w) = sup {(px,0) | po =p}, k €[0,K] (4.5)
Y1,k €A% (Xo)

Proof:

We have

sup  {(px,0) | po = p}
y1,6 €A% (Xo)

= sup sup  {p(%) +
y1,k€A%(Xo) €€T5Y (Xo)

k-1
> B(&, Eiv1y i Yig1) }

=0

k
= sup sup {p(zo) + D | (s, ui1)

z0€X0 r,sEI“O‘,k(zo) i=1

—U(ri,uim1) [P =7 | i — s |}

= Jpr(u)

Remark 4.8 This representation theorem is actually a separation principle.
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The following corollary enables us to express the finite gain property of £* in terms

of the information state p.

Corollary 4.9 For any output feedback controller v € Oy g_1, the closed loop

system XU is finite gain on [0, K] if and only if the information state p; satisfies

sSup {(pk,O) |p0:_ﬂ}t(}§0, Vk € [OvK]
Y1,k €A%(Xo)

for some finite 8% (o) > 0, 2o € Xo, with 8% (0) = 0.

Remark 4.10 Thus the name information state for p is justified, since p; con-
tains all the information relevant to the finite gain property of ¥* that is available

in the observations y; .

The information state dynamics (4.4) may be regarded as a new (infinite dimen-
sional) control system Z, with control u and uncertainty parameterized by y. The
state pg, and the disturbance yj, are available to the controller, so the original out-
put feedback dynamic game is equivalent to a new game with full information.
The cost is now given by (4.5). Note that, now the control will depend only on

the information state. Hence, the controller has a separated structure.

We now need an appropriate class I; k1 of controllers, which feedback this new

state variable. A control u belongs to I; x_1, if for each k € [i, K — 1], there exists
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a map i from a subset of E¥~**1 (sequences p; ) into U, such that uj, = a(pix).
Note that since p; depends on the observable information y; x, Iox—1 C Og -1, for

k=1,... K.

4.1.3 Solution to the Finite Time Output Feedback Ro-
bust Control Problem

We use dynamic programming to solve the game. Define the value function by

Mi(p)= inf  sup {(pk,0) | po = p} (4.6)

u€00,k-1 yeAT ;(Xo)

for k € [0, K], and the corresponding dynamic programming equation is

My (p) = uleanr Sgt{Mk_l(H(p,u,y))}, k€[l K] (4.7)

with the initial condition

Remark 4.11 In the above equations, we have inverted the time index to enable
ease of exposition when dealing with the infinite time case. Since, the system is
assumed to be time invariant, it does not matter if we write the equations as above,

or as

Mj(p) = inf_sup {My1(H(p,u,9))}, k € [0, K — 1]
ueUyeRt

with the initial condition
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as far as we invert the index of the control policy obtained by solving equation

(4.7).

Define for a function M : £ — R,

dom M = {p € £ | M(p) finite}

Theorem 4.12 (Necessity) Assume that @ € Og gx_; solves the finite time output
feedback robust control problem. Then there exists a solution M to the dynamic
programming equation (4.7) such that dom J, k(@) C dom M, Mi(—pB%) = 0,

My (p) > (p,0), p € dom My, k € [0, K].

Proof:

For p € dom J, k(u), define My(p) by (4.6). Then

Mk (p) = inf Jp’k (’LL)

ueOO,k—l

Now, we also have

k
Miy(p) = inf sup sup {p(zo) + Y | U(si,uiz1) — Uri,uia) [

€00, k-1 o€ Xg 7,5€TE (o) i=1

—v* | si =i [}

For u = @, by using the finite gain property for ¥* we get
Mi(p) < SUPayexo SUPreers ,(ao) 1P(@0) + Tizy | U(siy i) — Urs, Bis) I?

) -2 | si — i |*}
< (p,B%)
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Thus, dom Jp k(@) C dom M. Also

M;(p) > (p,0)

Also —% < 0, with 8% (0) = 0, and hence My(—pF%) = 0.

Theorem 4.13 (Sufficiency) Assume there exists a solution M to the dynamic
programming equation (4.7) on some non-empty domain dom My, such that —3 €
dom My (B(z) > 0 and finite for all z € Xy, with 3(0) = 0), My(-8) = 0,
My(p) > (p,0), k € [0, K]. Let u* € Ip k1 be a policy such that uy = @3 _;(pr),
k=0,..., K—1; where 4} (p) achieves the minimum in (4.7), py = —f3, and let p be
the corresponding information state trajectory with py € dom Mg_,, k=1,..., K.

Then u* solves the finite time output feedback robust control problem.

Proof:
We see that

Mk(p) = Jp.x(u*) < Jpx(u)

for all u € Og x_1, p € dom Mg. Now

sup  {(pk,0) | po=—B} < Mkg(-B)=0

yeAY . (Xo)
which implies by corollary 4.9 that X" is finite gain, and hence u* solves the finite

time output feedback robust control problem.
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Corollary 4.14 If the finite time output feedback robust control problem is solv-
able by an output feedback controller @ € Og g_1, then it is also solvable by an

information state feedback controller u* € Iy x_1.

4.2 Infinite Time Case

For the infinite time case, we need to satisfy the conditions C1-C3 stated in section
1.2.3, page 15. We pass to the limit as K — oo in the dynamic programming
equation (4.7).

lim M (p) = M(p)

k—00

where Mj(p) is defined by (4.6), to obtain a stationary version of equation (4.7)

M(p) = uiéltff S“I%{M (H(p,u,y))} (4.8)

4.2.1 Dissipation Inequality

The following lemma is a consequence of corollary 4.9.

60



Lemma 4.15 For any u € O, the closed loop system >* is finite gain if and only

if the information state satisfies

sup  sup {(px,0) | po =B} <0 (4.9)
k>1 yeAr  (Xo) ’

for some finite 8%(x¢) > 0 on X,, with 5%(0) = 0.

By using lemma 4.15 we say that the information state system Z* ((4.4) with
information state feedback u € I) is finite gain if and only if the information state
p satisfies equation (4.9) for some finite 3%(zo), with §*(0) = 0. If £* is finite
gain, we write

dom Jp(u) = {p € £ | (p,0), (p, ) finite}

where J,(u) = supy>q Jp.x(u)-

We say that the information state system Z* is finite gain dissipative if there
exists a function (storage function) M(p), such that dom M contains —3 (8 > 0
and finite for all z € X,, with 3(0) = 0), M(p) > (p,0), M(—pB) =0, and satisfies

the following dissipation inequality

M(p) > sgt{M(H(p,ﬂ(p),y))}, Vp € dom M (4.10)

Note that if =% is finite gain dissipative, and p € dom M, then H(p,@(p),y) €

dom M for all y € R'. Consequently, py € dom M, implies p; € dom M, Vk > 0.
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Lemma 4.16 M; is monotone non-decreasing. i.e.

My () < Mi(p)

Proof:

Note that

k
Mi(p) = sup  sup {p(wo) + D | Uri, uiz1) — I(ss, ui—1) 12— | si— 7 |*}

zo€Xo r,sEI‘g’k(zo) i=1

Then for any € > 0, choose z, € X, and r',s € I‘g,k_l(xg) such that
! k_l ! ! ! !
Mi-1(p) < p(mo) + 2 | Uy wima) = Uspyuimn) |2 =72 [ 15— s; |7 +e
1=1

Let 7y = g, and define 7, s € Ty (z0) by r = r',s=s on[0,k—1], and ry = si.

Then

k
Mi(p) > pmo) + 3 | Uri, uica) — Usi,wica) P =7 [ i — 83 |2

=1
k-1
> p(xp) + Z | l(%ui—l) - l(si’ui—l) |2 —’72 | i —s; |2 +
i=1
| l('f'k, uk—l) - l(sk‘a uk—l) |2
> Mi_1(p) — €

Since € > 0 is arbitrary, letting e — 0+ gives

My (p) > Mi-1(p)
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We are now in a position to prove a version of the bounded real lemma for the

information state system Z=.

Theorem 4.17 Let u € I. Then the information state system =* is finite gain if

and only if it is finite gain dissipative.

Proof:
(1)

Assume that Z¥ is finite gain dissipative. Then by the dissipation inequality (4.10)
M(pi) < M(po), Yk >0, Vy € A, (Xo)
Setting po = —/3, and using the fact that M(p) > (p,0), we get
(Px, 0) < M(=B) =0, Yk > 0,Vy € AY (o)
Therefore Z* is finite gain, with py = —f.

(i)

Assume Z* is finite gain. Then
(p,0) < Jpx(u) < (p,B"), Vk 2 0,p € dom Jp(u)
Writing My(p) = Jpx(u), so that

(p,0) < Mi(p) < (p, 8*), k> 0,p € dom Jp(u)
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By lemma 4.16, M) is monotone non-decreasing. Therefore

M(p) = lim My(p)

k—00

exists, and is finite on dom M,, which contains dom Jp(u).

To show that M, satisfies the dissipation inequality (4.10), fix p € dom M,, y € R',

and € > 0. Select k£ > 0, and §; x—1 such that

M,y(H(p,u(p), y)) < (Pr-1,0) +¢

where, p;, j =0,...,k —1is the information state trajectory generated by 7, with

Do = H(p’ u(p), y)'

Define
]y Jifi=1
Yi= g Lifi=2,....k
and let p;, 7 =0,. ..,k denote the corresponding information state trajectory with
po = p- Then

Ma(p) Z (pkao)
= (ﬁk—ho)

> Ma(H(pa u(p)a y)) — ¢

Since, y and ¢ are arbitrary, we have

M,(p) > sup M,(H(p,u(p),y))
veR'
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Hence, M, solves the dissipation inequality. Also, by definition (p,0) < M,(p) <

(p, B%). This implies that M,(—p"*) = 0. Thus, E* is finite gain dissipative.

We, now again assume that X% satisfies assumption A7 on page 27.

Theorem 4.18 Let u € I. If Z* is finite gain dissipative and >* satisfies assump-

tion A7, then X% is weakly asymptotically stable.

Proof:

Inequality (4.10) implies
k
sup  sup  {p(zo) + D | U(ri,uin1) = U(ss,uim1) [* 7" | 85 —7i |} < M(p)
o€ X0 r,sel"g,k(a:o) i=1
for all kK > 1. Let 2o € Xy, and let p = —(*. Then the above gives
k
sup  {D_ | Uriyui-1) — U(si, ui1) 12 —y% | s — 7 I’} < M(p) + B*(z0) < +00
r,sel‘g,k(a:o) i=1
For any 7 € I't (o), there is a sequence

we = sup  {|Ug,uk) = Uhur) P =1 g =R [}
g,hG}'(Fkauk)

> 0
Also, from above we obtain that

k
S W} < 400, Yk >0

=0
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Hence, W* — 0, as k — oo and by corollary 2.8 and assumption A7
0 € lim inf F (7, ux)

k—>00

Hence, X% is weakly asymptotically stable.

Corollary 4.19 If Z* is finite gain dissipative, then " is ultimately bounded.

Proof: Similar to that of corollary 2.11.

We also need to show that the information state system =* is stable.

Theorem 4.20 Let u € I. If =¥ is finite gain dissipative, then =* is stable on all

feasible z € R™.

Proof:

The dissipation inequality (4.10) implies that
pr(z) < (P, 0) < M(py) < +o00

for all py € dom M, and for all k > 0. For the lower bound, note that by definition

(4.2)

pe(z) = sup  sup  {po(zo) + X | (s, uimt) — Uriywica) PP =% [ 73 — s [°}
z0€Xo T,sEFg)k(-’BO) i=1
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For any zy € X, this implies that for any feasible z € R"
pe(z) > po(xe) > —00, Yk >0

Therefore, =* is stable.

4.3 Solution to the Output Feedback Robust
Control Problem

As in the state feedback case, it can be inferred from the previous results, that the
controlled dissipation inequality (4.10) is both a necessary and sufficient condition

for the solvability of the output feedback robust control problem.

However, we now state necessary and sufficient conditions for the solvability of
the output feedback robust control problem in terms of dynamic programming

equalities.

Theorem 4.21 (Necessity) Assume that there exists a controller 4 € O which
solves the output feedback robust control problem. Then there exists a function
M(p), such that dom J,(@) C dom M(p), M(p) > (p,0), M(-B%) = 0 and M

solves the stationary dynamic programming equation

M(p) = uientfj S‘Et {M(H(p,u,y))} (4.11)

for all p € dom J,(a).
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Proof: For p € dom Jy(@), define Mi(p), k =0,... as follows

My(p) = infueUsuPye‘Rt Mi—1(H (p, u,y))
(p,0)

=
S
I

Clearly

(p,0) < Mi(p) < (p, %) < +00, Vp € dom J,(a)

Furthermore, a modification of lemma 4.16 establishes that

Miy1(p) > Mi(p), Vp € dom Jy(q)

Hence,

Mi(p) — M(p) as k — oo

and M (p) satisfies equation (4.11) for all p € dom J,(%).

Furthermore, dom J,(@) C dom M(p) and (p,0) < M(p) < (p, B*). Thus, since

6" <0, §(0) = 0, M(~g%) = 0.

Theorem 4.22 (Sufficiency) Assume that there exists a solution M to the sta-
tionary dynamic programming equation (4.11) on some non-empty domain dom M,
such that —3 € dom M, (B(z) > 0, and finite Vz € X, with (0) = 0),
M(—B) = 0, and M(p) > (p,0). Let & € I be a policy such that #%(p) achieves
the minimum in (4.11). Let po = —f, and let pj be the corresponding information

state trajectory satisfying pr € dom M, k = 0,1,.... Then, & € I solves the
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information state feedback robust control problem if the closed loop system X%

satisfies assumption A7.

Proof: Since M satisfies equation (4.11), X* satisfies equation (4.10) with equal-
ity. Hence, =% is finite gain dissipative and by theorem 4.17, Z* is finite gain.
Furthermore, theorem 4.18 establishes that X% is weakly asymptotically stable,
and by corollary 4.19 X% is ultimately bounded. Also by theorem 4.20, = is stable

for all feasible z € R".

Remark 4.23 As in the state feedback case, we can from the statement of theo-
rem 4.21 and the proof of theorem 4.22, obtain necessary and sufficient conditions

for the solvability of the robust control problem in terms of dissipation inequalities.

4.4 Delayed Measurements

In this section, we present some results for the case of delayed measurements.
We will restrict ourselves to the finite time case. Hence, we need only satisfy
condition C3, of section 1.2.3, page 15. The infinite time case can be tackled
as in the case of no delay, by writing down a dissipation inequality based on the
stationary dynamic programming equation. It is interesting to observe, that for

the delayed measurement case, the information state is no longer just the cost to
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come function. Furthermore, we will see that the we now have to also solve an
open-loop dynamic programming equation, in addition to solving the filter equation
for the information state, and the dynamic programming equation to obtain the

control.

The system under consideration is

Trr1 € F(Tk,ur)
)Y Yk+1 € g(xk—r, uk—‘r) (412)
Zer1 = U(Trgr, ug).

Here, z;, € R" are the states, 3, € R are the measurements. ux € U C R™ are
the control inputs, and z;, € R? are the regulated outputs. Here, 7 > 0 is assumed

to be fixed. It is clear that if k¥ < 7, then no measurements y; are available.

We denote the space of output feedback policies as O. Hence, if u € O then

ug = u(Yr 415, Yok—1), Where in general s;; is the vector [s; Siy1- .. 55)-

Before proceeding further, we introduce the spaces
AN n *
E={p:R"—> R}

and

L{ké{u:uzui,j,uteU,iStSj,OSj—iSk,oruzqﬁ}.
Now consider their direct sum
DégéBUT_l:{[Z] :pGE,uGUT_l}

and define the operators 7, : D — &, and 7 : D — U™ ! as

([z])-ssn((2])
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Also, we associate with a sequence u; ; its length given by o(u) = j — i+ 1. Here,
we use the convention that o(¢) = 0. We now consider the functional (similar to

the delay free case)

k-1

A

Lp,k:(u) = sup sup {P(xo) + Z ll(Ti+1,ui) - l(8i+1,ui)|2 - 72|Tz'+1 - 5i+1|2}
zoe R ms€TG . (20) i=1

Then, we have

Lemma 4.24 (i) X is finite gain on [0, K] if and only if there exists a finite

quantity G%(-) > 0, such that
(i) If each map X% is finite gain on [0, K], then

(p,0) < Ly x(u) < (p, Bx)-

The robust control problem can now be expressed as, find u* € Og -1, such that
Lpy(u?) = inf Lpk(u)

UEO(),k_l

4.4.1 Information State

For a fixed ug k-1, Yr+1,k € A?H,k(Xo), we define the cost to come function p;, € £

as
A k-1
pk(CIJ) = sup sup {po(l‘o) + Z |l(’l"i_|_1, 'U,z) — l(8i+1, ui)|2 — (413)
zoERﬂ 7'7‘961-‘8’;‘,(150) 1=0
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V|riv1 — six1l® i 76 = 2, i1 € G(ricr, ui—r), 7 < i < k— 1},
We would like to express pr as a dynamical equation. For this purpose, define
H(p,u,y) € € as done in the delay free case (c.f. equation 4.3).

Let € D, and define the shift/pad operation n: U™"! x U — U™"! by

A Uj 41 ifj—i<7'—1
(i g, ujy1) = 1
Uit1,j+1 €IS€

and the functional J : D — R* by

o(me(fr))—1

. A . .
J(Pe)(x) = sup sup  {m@Be)(@o)+ D N(riyr, ma(Br)s) —
zoc " rseroi(g’:z)(pk)) i=0
l(sz+17 7T2(plc) )| -7 Irz+1 - Sz+1| 7ﬂa(m(ﬁk)) = .’L‘} (414)

where 7, (P ); denotes the ith element of m(py), assuming that the indexing starts
from 0. In particular, if w2 (x) = ¢, then J(px)(x) = 71(Pr)(z). We now define the

functional F' € D by

F(ﬁbuk;yk—i—l)(ﬂf)é H (m, (p 2 (1(3 ))O’gkﬂ)(x)

Then we have the following result:

Lemma 4.25 The cost to come function (p) is the solution to the following re-

cursion

=] Prn = F(?k:“k,ykﬂ)’ke[o’K_l] (4.15)
Per1 = J(Drt1)

for any po € D of the form [I:; ], with pg € €.
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Proof:

Given the initial condition of the form py = l Z:; ], with py € £, we have

. 7) = 7T1(ﬁk+1)($) _ H(ﬁ(ﬁk),7T2(Ak)0,yk+1)(33)
P (@) = [ T2 (Pr+1) ] B [ n(m2(Pr), uk)

By the definition of 7 it is clear that

Uo k ifk<r
Up—ry1k L k2>T.

To(Prt1) = {
Also, by definition,
H(m1(Pr), T2 (Pr)o, Yk+1)(z) = po(z) f b < 7
else, if kK > 7, we have

H("Tl (ﬁk)’ 7T2(13k)0a yk+1)(x) = H(7T1 (ﬁk), Uk—7,y yk+1)(:c)

= sup {7T1 (ﬁk) (g) + B(ga T, Uk, yk+1)}

teR"
= sup {m(B)(€)+ sup |i(z,uk—r) -
EERn sef(gwuk—r)

Us, we—r)|* =’z — sI* 1 7 € F(§, u—),

Yk+1 S g(ga uk——'r)}'

Which implies that

1 (Pr1)(®) = SUD, R SUPraers, . (ao){P0(T0) + X0 [U(risns i) —
Usit1, wi)|® — PPlrisn — sial? (4.16)

Thert1 = T, Yiy1sr € G(Tiyu;),0<i < k—7}
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for k > .

Recalling the definition of J (equation (4.14)), and assuming k < 7, we have

J(ﬁk+1)(x) = SupgeR" sup 7o (Pr+1) {pO(f) + Zf:o ll(si+17 7T2(ﬁk+1)i)_
T,S€F0,k+1 (E)

Urivt, Ta(Pre1)i)|* — VPUrier — Si1l? : Tog1 = 2}

which equals py,; by definition.

Now, assuming that £ > 7, we obtain

k
J(Pr+1)(z) = sup sup {m1(Pr41)(§) + Z |1(ri1, T2 (Prr1)ir—1-k)
teR® r,serzz_(fi’”cl_l(g) i=k—7+1

—U(Sis1, T2 (Prar)isr—1-8) > — V2|riz1 — Sis1]® : Thy1 = @}

= pry1 by substituting m (gy1) from equation (4.16).

Similar to the case of no delay, we get the following theorem which expresses the

L in terms of p.

Theorem 4.26 For u € Ogx_1, p € €, such that Ly (u) is finite, we have

SupyEA:‘H‘k(Xo){(pk’O) :po=p}, ke[t +1,K]
{(pkHO) Do = p}a k S T.

Lpy(u) = {

Proof:

Similar to Theorem 4.7.
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This immediately yields the following corollary.

Corollary 4.27 For any output feedback controller v € Op x_1, the closed-loop
system X* is finite gain if and only if p satisfies

SUPycae, | ,(Xo) {(J(ﬁk),o) Do = { *;{ ]}, Vk € [t +1,K]
{60.0:50= ¥ |} e ion

for some finite 8% (z) > 0, 85 (0) = 0.

0>

(4.17)

In fact, the above result yields a separation principle, in the sense that p, € D
contains all the relevant information required to solve the problem. This justifies
naming p € D obtained via dynamics (4.15), with initial conditions of the form
[13; ], po € € the information state. In particular, we have transformed the
problem into one with full information, with a new (infinite dimensional) system

=, whose states are pg, and the disturbance are the measurements yx. The cost is

now given by (4.17).

Remark 4.28 Note that the information state is no longer the cost to come, as
it was in the case of no measurement delay. However, in the case, we have 7 = 0,

the two definitions coincide.

Remark 4.29 Furthermore, note that we could have taken the supremum in equa-

tion (4.17) over y € A}, (X)), since the cost is independent of \yk, for k € [0, 7).
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4.4.2 Solution to the Delayed Measurement Problem

We employ dynamic programming to solve the problem. Define

2

M (p) inf sup  {(J(Px),0) : Po = p}. (4.18)

u€00,-1 yeAY , (Xo)
For a function M : D — R*, we write
dom M = {p € D: M(p) is finite}
and, we also write

dom L.x(u) = {p € € : Ly is finite}.

Now consider the following dynamic programming equation.

Wk(ﬁ) = infueUsupyeRt{Wk——l(F(ﬁa uay))}
p € dom Wy, k € [1, K] (4.19)

Wo®) = (m(»),Q5")
where QO ) is obtained via the following open-loop dynamic programming equa-

tion

AP = spcrmmo (I m@)e) = e m@P = = s+
( QEY(M}, z € R, k=0,...,0(ma(p)) -
Qiron(@) = O

(4.20)

Lemma 4.30 Let p € D, and let Qoz(p ) be obtained as a solution to the open-loop

dynamic programming equation (4.20). Then
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Proof:

Dynamic programming arguments imply that

7 P(@) = sup, e o ATTS T (i, ma(B)i) — Usivr, ma(P)s)

0,0 (72 (5))

—72[7"i+1 - 3i+1|2}'

Which in turn implies that

M), QF?) = supe pr{m @)+
Sup w9 (P) ({) ZU("2(73))— |l(Ti+19 9 (ﬁ)l)

oo (ra(5)) ) ) )
—l(s,+1,7r2(p)1)| — Y?|riy1 — Si+1)°}
sup,. g~ J (D) ()

= (J(),0).

Theorem 4.31 Let W be the solution of the dynamic programming equation

(4.19), initialized via (4.20). Then W = M.

Proof:

Note that My(p) = (J(p),0) = Wy(p). We now establish that M satisfies (4.19).

We use induction. Let this be true for k. Then we have
Mi1(p) = infuco,, SUPyear , ., (xo){(J(Pr41),0) : Do = P}
= inf, ysup, gt infyeo, , supyeA;,Hl(XO){(J(ﬁkH), 0):

pr=H(p,u,y)}
(where we interchange the minimization over u; s and
maximization over y;, since u;y is a function of y;. )

inf woeU up R lnfueook 1 SupyeA k(}'(Xo,uo)){( (pk)70) :

po = H(p,u,y)}
(due to time invariance.)

= inf g7 sup . R My (H(p,u,y)).
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Hence, since My = Wp, an induction argument also establishes that My = Wi,

k € [0, K].

We now state the necessary and sufficient conditions for the solvability of the finite

time robust control problem.

Theorem 4.32 (Necessity) Assume that u® € Og k1 solves the finite time output
feedback problem for the system subject to a constant measurement delay of 7 > 0.
Then there exists a solution M to the dynamic programming equation (4.19),
such that dom L. x(u°) C m(dom M), My ({ _ff D =0, Mi(p) > (J(p),0),

p € dom My, k € [0, K].

Proof: We first establish that My (p) > (J(p),0). Let p € dom M. We can write
Mi(p) as
My(p) = infueoq,-, SUP, ¢ R™ SUPrsers , (zo) 1 (B) (T0) + i 1(riv, us)

(i1, w)|? — Y?riz1 — sir1l*}
> (J(p),0).

Let p € dom L. x(u®), and set p = [ z ] Now by (4.18)

Mk ([ z :|> = infueOo,k—l Lp,k(’u’)

< Lp,k(uo)
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Thus, dom L. g (u°) C dom Mj. Since, B (z) > 0, §% (0) = 0, we have

(5]

This implies that M; ([ _gK ]) = 0. Also Theorem 2 establishes that M is the

unique solution to the dynamic programming equation (4.19).

Theorem 4.33 (Sufficiency) Assume there exists a solution M to the dynamic

programming equation (4.19) on some non-empty domain dom M, such that

[—(f] € dom My, M ({ _f D = 0, for some 8 > 0, (0) = 0 and also
that My (p) > (J(p),0), for all p € dom My, k € [0,K]. Let ux(p) achieve the
minimum in (4.19) for each p € dom My, k € [1, K|. Let u* be a policy such that
u} = tg_r(Px), where Py is the corresponding trajectory with initial conditions
Po = [ _f }, assuming Py, € dom Mg _, k € [0, K]. Then u* solves the finite-time

output feedback problem for the system subject to a constant delay of 7 > 0.

Proof: Observe that

M; ([ Z D = Lypp(u”) < Lp(u)

-3

for all u € Og g1, { } € dom M. Hence,

sup {(J(ﬁk>,o>:ﬁo=[ ; ],u=u*}SMk(—ﬂ)=0

yeA] 1 (Xo)
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which implies by corollary 4.27 that $*" is finite gain, and thus u* solves the finite

time output feedback problem.

Remark 4.34 Note the strong resemblance of the necessary and sufficient condi-
tions for solvability of the delayed measurement problem to those when we have no

delay. In fact, our conditions collapse to those of the delay free case, when 7 = 0.

Remark 4.35 We see that solvability of the delayed measurement case requires:
(i) existence of a solution p to (4.15), (ii) existence of a solution Q™®) to (4.20),
(iii) existence of a solution M to (4.19), and (iv) a coupling condition, viz. py €

dom MK—k-
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Chapter 5

Reducing Controller Complexity

This chapter will consider some of the issues arising in trying to reduce the con-
troller complexity. In general solving the output feedback dynamic programming
equation

M(p) = inf sup M(H(p,u,y)) (5.1)

uclU yGRt

is computationally hard. We will first consider the certainty equivalence controller,
and then generalize the notion of certainty equivalence. A sufficiency condition
exists for a certainty equivalence controller to be optimal. This condition deals
with the ability to rewrite the upper value function of the output feedback game
in terms of the upper value function of the state feedback game. We will give
another condition which is implied by the former, which no longer includes the
upper value function of the output feedback game (something which we are trying
to avoid having to compute in the first place!). We will also establish that the

upper value function of the state feedback game is the unique solution (if the
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solution exists at all) of the equation

M(p)=(p,U),Vpe&
where U : R" — R.

In this chapter we will be interested in the infinite time case, and in establishing
conditions for the output feedback policy to be dissipative. A standing assumption
throughout this chapter will be that the domain of the upper value function V of the
state feedback game is large enough to encompass all points where the information
state py is not equal to —oo, for all k. i.e. let dom V £ {z € R"|V(z) < 400},

and let dom p; 2 {z € R"|py is finite}. Then

dom py Cdom V, Vk >0

5.1 Certainty Equivalence

Since, Whittle [56] first postulated the minimum stress estimate for the solution of a
risk-sensitive stochastic optimal control problem, it has evolved into the certainty
equivalence principle. The latter states that under appropriate conditions, an
optimal output feedback controller can be obtained by inserting an estimate of the
state into the corresponding state feedback law. In general, however the controller
so obtained is non-optimal. The certainty equivalence property is known to hold
for linear systems with a quadratic cost [8]. The recent interest in nonlinear Hy

control has led researchers to examine whether, certainty equivalence could be
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carried over to nonlinear systems. If certainty equivalence were to hold, it would
result in a tremendous reduction in the complexity of the problem. In a recent
paper [32], sufficient conditions were given for certainty equivalence to hold in
terms of a saddle point condition. Also, in [30], a simple example is given to
demonstrate the non-optimal nature of the certainty equivalence controller. An

implementation of the certainty equivalence controller can be found in [52].

The certainty equivalence controller is constructed as follows. We identify p; as

the past stress, and V as the future stress, and then compute

Iy € arg ;ﬁgﬁ{pk(x) +V(x)} (5.2)

and use the feedback policy ux(pr) = ur(Zx), where urp is the optimal state feed-
back policy. In [30] a sufficient condition is stated for certainty equivalence to hold.

This condition is

Theorem 5.1 (Certainty Equivalence) Let M be the upper value function for
the output feedback game. Let V be the upper value function of the state feedback

game. Then the certainty equivalence controller is optimal, provided

M (px) = (px, V) (5.3)

for all k, where py is the information state trajectory generated by the system.
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Unfortunately, the result above involves the quantity M, which we are trying to
avoid computing. In addition, since the information state trajectory is not known

a priori, we may need to actually check for all p € £.

For the delayed measurement case, the results remain identical with p; being re-
placed by J(pr) where J(pi) is as defined in equation (4.1). In particular, the
certainty equivalence controller can now be constructed as follows. Given the in-
formation state py at time k, and V' the upper value function of the state feedback

game, we compute

2y € arg m%{J(ﬁk)(x) +V(z)} (5.4)

T€

and implement uy(px) = up(Zx), where up is the optimal state feedback policy.

We now turn to generalizations of certainty equivalence, and some of the bearings

these have on the certainty equivalence controller.
5.2 Reduced Complexity Controllers

In this section, we present conditions for a reduced complexity controller to exist.
These conditions apply for both optimal and non-optimal policies. In general,
conditions for an optimal solution may not be satisfied. Hence, one may be satisfied
with a reduced complexity non-optimal policy, which guarantees dissipativity of
the closed-loop system. In the special case, we show that the policies so obtained

are certainty equivalence policies. Furthermore, in doing so, we will be able to give
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an equivalent sufficiency condition for certainty equivalence which may be more

tractable than the one given above.

The dynamic programming equation (5.1), is infinite dimensional in general.
Hence, this motivates us to search for reduced complexity control policies, which
preserve the stability properties of the closed-loop system. We again introduce the

function 6, € € as defined by equation (1.6)

For a given x € R", and u € U, we define
Qo,u) £ {€€ R |z € F(E u)}.

Then we have the following basic result.

Lemma 5.2 Let h: R" x R — R". Then for any u € U, we have

sup sup h(z,§) = sup sup h(ru)
ve " §ez,u) tcR" reF(§u)

Proof:

For any € > 0 there exists a ¢ € R", and a &° € (¢, u), such that

sup sup h(z,€) < h(z&) +e
a:ERn LeQ(z,u)

< sup h(r,&)+e
rEF(§°u)

< sup sup h(r,f)+e
teR" reF(6u)

Since ¢ is arbitrary, the result follows.
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The reverse inequality can be shown as follows.

sup sup h(.’E,f) > h(xaé‘)a T G:F(gau)
ze R" £€Q(z,u)

> sup h(r§)
reF(&,u)

> sup sup h(r¢)
é’eRn Te]:(é-,’u)

Define, J§, : R" x U — R as

a,u) {pm b osup {Uru)—Usu) =7 —s P +U<r>}}

r,s€F(x,u)

We now state a fundamental result, which will be used repeatedly.

Lemma 5.3 Foranyu € U,and U : R" — R, and p; € £,

sup JP¥(z,u) > sup (H(px,u,y),U).

zGRﬂ yERt
Proof:
sup (pks1,U) = sup sup sup {px(&) + sup (|l(z,u)—I(r,u) |> —
yeRt yeRt e R" ee R” reF(&,u)

vz =1 Plze Fu)y € g u)+U()}
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< sup sup {pk(§)+ sup (|l(z,u)—i(ru) |* -
zERn 669(1")“) TE}-(f,u)

v lz—r)+U()}

= sup {pp(&) + sup |lz,u)=I(ru) > —*|lz—r|"+
{ERn ’I“,(L‘E]'-(E,’u)

U(z)}

= sup J;(& u)
e R

We now state the main theorem, which gives a sufficient condition for the existence

of dissipative reduced complexity policies.

Theorem 5.4 Given U : R* - R, U > 0, and U(0) = 0. If for all p, € £

(pr,U) > inf sup Ji(z,u)
uel e R

then 4(py) € argmin gy sup . g~ J¢' (2, u), solves the output feedback problem,

and the associated storage function is W{(px) = (px, U).

Proof:

(px,U) > inf sup Ji*(z,u)
uGUzeR"

= sup JH(z,u(pr))
zcR"

> sup (H(px, @(pk),y),U)
yERt
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Furthermore, (pg, U) > (pk,0), and (—U,U) = 0. Hence, (px, U) is a storage func-
tion, and 4 is a (non-optimal) solution to the output feedback problem, with the

information state trajectory initialized by py = —U.

Remark 5.5 We could have considered any 4y such that

sup JU(z,u(x)) > sup JiF(z, ).
e R" zeR"

where U is a storage function for the state feedback game, and u(-) is the corre-

sponding state feedback policy.

Corollary 5.6 (Certainty Equivalence) Given U = V, the upper value func-
tion of the state feedback game, and the optimal state feedback policy up. If for
all pr, € &

(pr, V) = inf sup JY¥(z,u) (5.5)
“eUzERn

then u(py) = up(2), where & € argmax, g~ {px(z) + V(z)}, is an optimal control

policy for the output feedback problem.

Proof:

Clearly (5.5) implies that

sup JP*(z,up(z)) = sup inf JP*(z,u) = inf sup JP*(z,u)
ccR" zcR" welU welU zeR"
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Hence, a saddle point exists, and so for any & € argmax__ g~ (pr(z) + V(z)), and

U= ’U,F(.’ii),

(px, V) = JU¥(Z,4) = sup Jp¥(z, @) > sup (H(p, 4,y),V)
zGRn yERt

Hence, W (pir) = (px, V) is a storage function, and W(d(3) = V(z), the optimal
cost of the state feedback game. Hence, the policy is optimal for the output feed-

back game.

Remark 5.7 It is sufficient that the conditions in theorem 5.4 and corollary 5.6
hold only for all px, kK =0,1,.... If this is the case, then U need not be a storage
function for the state feedback problem. It is only when we need the conditions to

hold for p; € {d(;} | z € dom U} that U is forced to be a storage function.

In general, conditions for the optimal policy maybe difficult to establish. However,
there may exist non-optimal state feedback policies such that their storage func-
tions satisfy the conditions of theorem 5.4. In that case, using such non-optimal

policies will guarantee that the system is dissipative.

We now return to equation (5.3) which characterizes certainty equivalence in terms

of the upper value function of the output feedback game.
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Lemma 5.8 Let @ € Z be , with W its storage function. Then

W{px) > inf sup JH(z,u), k=0,1,...
uelU ze B”

where, U(z) £ W (0(z})-

Proof:

o
Wipr) > sup {pe(x)+ sup 3 | U(riv w) — U(sipr,u) |° —
zeR" €L oy (@) i=k

’)’2 | Ti+1 — Sit1 |2}

= sup {p(e) + sup  ([U(r,a(pe)) = Us, i) [P =" [ —s [P+

CEGR T,SE}-(E,’E(pk))
o0
sup Z | Z(T£+17“i) - l(sg+1’ui) |2 “'72 | T;+1 - 3;+1 lz)}

rl’slel"f“_l’oo)(r) i=k+1

= sup {mk(2)+ sup  (|U(ralpe) —Us,Alpe) [P =" [ r—s " +

e R r,s€F(x,a(pr))
o ¢]
sup {5{1"} (&) + sup Z | l(’r;—l—l,ui) - l(S;+17ui) |2 -
€€Rn Tl’slerrk+l,oo)(§) i=k+1

72 | T§+1 - 5;+1 |2})}

Vv

inf sup {pe(@) + sup (| U(ru)—U(s,u) 2 =" [r—s | +U(r))}
welU " r,s€F(z,u)

= inf sup JE(z,u
UGU ZJER" v ( )

Theorem 5.9 (Unicity) Let M be the upper value function of the output feed-
back game. If there exists a function U : R* — R, such that M (px) = (px, U), for

all p € &, then U =V, the upper value function of the state feedback game.
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Proof:
We have

(pr, U) = M(px) > inf sup JEr(z,u).
UEUzeRn

Let @(p) € argmin gy sup,. g~ J¢/ (z,u). Then

(pe, U) > sup JB(z,0(pr))
e R”

> sup (H(px, @(px), ), U)
veR'

= sup M(H(pk,’a(pk)ay))
ye R’

Hence, @ is an optimal policy since (py, U) = M(po),V po € €. Thus,

M(p) = sup M(H (px, 4(pr),y))
yeR'

which implies that

(pr,U) = inf_ sup JiF(z,u).
“eUzeRn

Setting, px = 05, We obtain
U(z) = inf  sup {|i(r,u)—1(s,u) |?—v*{r—s |2 +U(r)}.

uwelU r,s€F(z,u)

Hence, U = V.

Corollary 5.10 If there exists a py such that M(px) # (pk, V), then there exists

no function Y : R* — R, such that M(p) = (p,Y) forallp € £.
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Corollary 5.11 Let W be a storage function for an (non-optimal) information
state feedback policy @ € Z, and let W(pr) = (px,U), k > 0. Then 4(pi) €
argmin, gy Sup,. p" JP¥(x,u) solves the output feedback problem with the storage
function W (p). Furthermore, is we insist that W (d(s}) = (0(2},U), V2 € dom U,
then U is a storage function for a (non-optimal) state feedback policy. Also, if
W = M, the upper value function of the output feedback game, then the controller

is a certainty equivalence controller.

Remark 5.12 It is clear from the proof of theorem 5.9 , that if (5.3) holds, then
so does (5.5). However, (5.5) is a more tractable condition, since it does not
involve the upper value function M, which is what we are trying to avoid having

to compute in the first place.

In particular, we also have the following result, which states a sufficient condition

for certainty equivalence to hold, in terms of solvability of a functional equation.

Corollary 5.13 (Certainty Equivalence) Let M be the upper value function

of the output feedback game. Then certainty equivalence holds if the equation

M(p) = (p,U), forallpe &
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has a solution U : R* — R.
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Chapter 6

Applications

We first discuss some consequences of the methodology developed, before treating
the general design problem. Let us start by recalling the definition of controlled-

invariant sets [50].

Definition: Let F : R" x R™ — R" be a set-valued map. Leti/ : R® - U C R™
be a set-valued map. The set X C R" is called controlled-invariant under (F, )

if for every x € K, there is a u € U(z) such that F(z,u) C K.

This definition can be interpreted as saying that there exists a control policy u*
such that under u*, the state trajectory of the system (F,U) is viable in K, i.e.

zr € K for all £ > 0 [2].

The notion of controlled-invariance plays a fundamental role in several method-
ologies of controller design. The most prominent amongst these being I*-optimal

control for linear systems, where one is concerned with attenuating the influence of
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persistent bounded additive noise [55]. The solution to this problem was first ob-
tained by [15]. It has been noted, that for such problems, the linear state feedback
compensator could be dynamic [18]. Recently, researchers have tried to obtain
static nonlinear compensators [11],[50]. The key ideas here are the construction of
an appropriate controlled-invariant set. However, it is not clear how the methodol-
ogy will extend to the measurement feedback case. In passing, we note that these
problems are related to the targeting problems considered by [35]. In particular,
given a set M, find a state feedback policy u, such that if zo € M, then z; € M
for all k > 0, else if zy & M, then 7, — M as k — oco. In the [! case, the
requirements are weaker, since we require that if o = 0, then z; € M for all k
(assuming that 0 € M) and if 2o # 0 then z; — M, as k — oo. Here, the set M
is defined in a suitable fashion. The set M thus includes the positive limit set of

trajectories generated by the controlled system, with O in the positive limit set.

Now let * be the positive limit set of any trajectory {xy} generated by the set-

valued dynamical system

Trp+1 € f(xk,uk), zo € Xo
Yor1 € G(Tk, ux)

via a (state or output feedback) control policy u. Let v > 0 be given, and let

-

[: R" x U — RY be a C! function such that

3}
4 A n
L= {s € R*|3u € U s.t. ’—(%l(s,u)

is compact and contains the origin. Then we have
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Theorem 6.1 Suppose there exists a solution to the robust control problem, with

an admissible control policy u*. Then for any trajectory z € I'* (X)),

K¥ c L

Furthermore, if 2o = 0, then z; € £” for all £ > 0.

Proof:

The proof follows from corollary 2.11 for the state feedback case, and corollary

4.19 for the output feedback case.

Thus, we see that the choice of the regulated output yields a bounding set around
the positive limit set of the controlled inclusion. Hence, given a regulated output
h(z), and a desired v, we construct I(z) = [y h(s)ds, and solve the robust control
problem. If the problem has a solution then we obtain |h(zi)| < v, for all &,
given zo = 0. Else if 7o # 0, then limsup;_,, |h(zx)| < . This yields a method
of constructing output feedback ultimate boundedness controllers for nonlinear
systems subject to persistent bounded excitation. Before considering this, we
present an example based on targeting of inclusions. The problem of synthesizing

state feedback policies (in the linear case) was considered by [35].
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Example: Targeting Inclusions. Given an inclusion

Tpy1 € Flop, ur)
Yer1 € G(zk,ur)

zo € Xy. Consider the problem of synthesizing an output feedback policy such
that

T — 5(07 Q)
where £(0, Q) represents an ellipsoid given by
£0,Q) = {z € R"| 2"Qz < 1}

where zT denotes the transpose of the vector z. Here, @ > 0 is a positive definite

symmetric matrix. Now define
1
zg = Efo sz

where Q% > 0 is the positive definite square root of (). Let v = 1, and solve
the output feedback robust control problem (with |- | representing the Euclidean

norm). Suppose, a solution exists with u* the corresponding policy. Then we have

lim supy_,0, @72k < 7
which implies that
lim supy o, 74 Qzr < 72 =1

and hence, z, — £(0,Q) as k — oo.
6.1 Ultimate Boundedness Control

Consider the system in figure 6.1. Here C represents the controller section to
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Figure 6.1: A typical feedback configuration.

be synthesized, P the (nonlinear) plant and w are the persistent bounded noise
signals. The aim is to maintain the error, e as close to 0 as possible. u is an
intermediate control signal with u € U, where U could represent the actuator
limits. Here, & represents the augmented plant. W, represents the (stable linear)
filter incorporated to shape the controller output. Hence, u, is the control signal
seen by the plant, and the implemented controller will consist of both C' and W,,.
It is assumed that there is no direct feed-through of the signal u to e. One way
of ensuring this is to force W, to be strictly proper. This is a mild requirement,
since in most practical situations high frequencies in the control action (chatter)
are undesirable. Wy, W, W represent (stable) filters which weigh the noise signal
w. Note that W, and W5 are shown for purposes of clarity only, since they could
be incorporated in W,. We assume that there is no direct feed-through of the noise
w to e. This is mainly a technical assumption, since we have been working with

single-valued regulated outputs. This assumption can be dropped, if we consider,
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for example the Chebyshev center of the (now set-valued) regulated output &.

The Chebyshev center e} of the set & is defined through the relation

. _ — *
migg e~ e =gl -6

and is obviously the center of the smallest ball that includes the set £. Further-
more, if & is convex, then ef € &. There is no loss of generality in doing so, since
if the noise is bounded, then the error (e) is also bounded around the Chebyshev
center (e}), and one can explicitly obtain this bound. The system 3 is converted
to its state space form, with the states represented by z. We also assume that
z = 0, u = 0 is an equilibrium point for the system X, with w = 0. The system

can now be re-written as an inclusion.

Now define z, = s(ex) = I(zk), where [ is such that [(0) = 0, and L7 is compact
and contains the origin (this condition is in general stronger than necessary, and
one may be able to invoke invariance arguments to relax it, in particular, one may
be able to show that if the states which appear in [ are ultimately bounded, then
all the other states are as well). Let K" represent the positive limit set of any state
trajectory. The synthesis problem is, given v > 0, wy € W, find a controller C*
(corresponding to a policy u*), such that K c L7, with 0 € K*". Clearly, by
appropriately defining I, one should be able to induce various properties on the
closed-loop system. This has still to be looked into. For example, if e; = h(zx),
then by defining I(z) = J5 h(£)dE, we can bound the magnitude of the error e, in

the sense, if £o = 0, then |eg| <  for all k, else if o # 0, then limsup,_,, |ex| < 7.
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We now consider some examples. Due to the computational complexity associ-
ated with dynamic programming, the systems and control objectives considered
have been kept as simple as possible. In each case, we carry out vy iterations sim-
ilar to those in linear H, control [14],[24], and implement the controller which

corresponds to the smallest value of v obtained.

6.2 Unstable Nonlinear Plant

This example is taken from [22], and concerns the stabilization and disturbance
rejection for a single state unstable nonlinear plant. The system is given by

g B0
= u-z ’81.0+K1/m+z/K2+w

y = x

Here, y is the reactant concentration, ¢ is the dimensionless time, u is the feed
reactant concentration, K;, K, are kinetic constants, 5 is a constant, and w repre-
sents the input disturbance, and is assumed to belong to [—0.05,0.05]. The values
of the parameters are chosen as in [22] to be § = 2, K; = 0.01, and K; = 0.1.
Furthermore, we assume that U = [0,5]. The model for single enzyme-catalyzed
reaction with substrate-inhibited kinetics [41] as well as the model for the ethylene
hydrogenation in an isothermal CSTR [39] are of the above form. The model has
two stable and one unstable steady state points. The unstable steady state is at

Z = 0.125, and @ = 0.9834.

We discretize the system via the Euler transform. Recently, [40] showed that under
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very mild assumptions, trajectories of such a discretization converge to those of
the original inclusion, as the time step tends to zero. The sampling interval chosen
is 0.1. We set

Zes1 = 1000(244q — T)?

and carry out dynamic programming. We choose Az = 0.001, and Au = 0.05. The
dynamic programming equation converges after 10 iterations, and optimal value
of v lies between 11.518 and 11.508. The controller implemented corresponds to
v = 11.518. We plot the control values versus the state in figure 6.2. Observe that
the controller can be very well approximated by a linear one, and we obtain the

following linear control policy

up = —12.29(z; — 0.125) + 0.9834

This policy is then used instead of carrying out a table look-up.

For the simulations, we employ a zero-order hold with a sampling time of 0.1. The
initial state is chosen as £y = 0.14. We induce a pulse disturbance of magnitude
0.05 from ¢t = 10 to ¢t = 30. The pulse train has a period of 3, and a pulse width
of 1.5. This is followed by a 0.2Hz sinusoid with an amplitude of 0.05. The state

trajectory is shown in figure 6.3.

We observe that the controller stabilizes the system in the absence of noise, and

when the noise is introduced, the state gets perturbed by an amount equal to
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Figure 6.2: Control values vs. states.

0.0057. Note that this is consistent, since, we have

0
5;”(3319)' <7

which implies that

11.518
0.0058

2000|z), — 0.125|
|z — 0.125]

IAIN

102



0.14 ! ! ! ! ! ! ! ! '

0135F - S S ST e S S S S S 4

0.13

3]

c

O

O

0.125

0.12

SO S S (A (O G S SR SN

0 5 10 15 20 25 30 35 40 45 50
Time

Figure 6.3: State trajectory with system subject to a pulse/sinusoidal disturbance.

6.3 Discontinuous System with Parametric Un-
certainty

We consider a discontinuous system given by
[k + 2] + (c1 — 2)0[k + 1] + (1 — ¢1)0[k] + cofsgn(6[k + 1] — 0[k]) = caulk] (6.1)

with 6[1] = 6[0] = 0. Here 8 is the position in radians, and the nominal values of
the parameters are: ¢? = 0.162, ¢} = 0.1, ¢ = 6.43 x 107, and f° = 7.2 x 1072,
Furthermore, —10 < wu[k] < 10, and we assume that the actual values of the

parameters are within £10% of the nominal. The above system corresponds to
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a sampling time of 0.01s. The controller is supposed to reject output additive
disturbances (i.e. y[k] = 0[k] — r[k]) of magnitude +0.25 radians, with a cutoff at

0.5 Hz. We first carry out the H, design.

6.3.1 H, Design

We, first smoothen and approximately linearize the system (6.1) via dithering and
nonlinear (tanh(@[k] — 8[k — 1])) feedback, to obtain G°(z) = WO—HTT) as the
nominal plant. Due to the pole at z = 1, it is not possible to carry out an H, design
on this nominal plant. So, we apply a unity feedback, and shift the pole away from
1. Thus, we work with P%(2) = Hig(o%—) Representing the parameter variations as
a multiplicative perturbation (A,,(z)), we obtain ||Ap|le < 0.25. Transforming

the discrete time plant into continuous time, using the inverse Tustin transform

(which preserves the Hy, norm), the problem can be stated as: Given P°(s), Wi(s),
pWITw,e

Ws(s), and W3(s), maximize p, while ensuring that | WoTy 4 < 1, where Ty ¢
WgTw’y .

is the sensitivity function, Ty, is the complementary sensitivity function, and

Twu is the transfer function from the disturbance to the controller output. Here,

Ws(s) = 0.25, Wy(s) = 10722£18 and W;(s) = -*-. The solution is obtained via

s+3507 s+m”

[14]. We get p = 8.625, and the corresponding controller Cp(2) is

81.832% — 137.8623 — 25.372% + 137.862z — 56.45
2% —2.412% +1.4522 + 0.362 — 0.39

which can now be transformed to correspond to the original plant G(z) by Ce(2) =

CP(Z) + 1.
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6.3.2 Set-valued Design

As in the H, case, we pick Wi(s) = ;7. We discretize it using the Euler trans-

form, which is known to preserve the Hy, and ! norms [51]. Weighing the distur-
bance with W, we obtain z3[k + 1] = 0.9686x3[k] + 0.0314r with r € [-0.25,0.25].
Furthermore transforming (6.1) into its state space form, and allowing for param-

eter variations, we obtain

zilk+1] € Az k] +Eulk]+C

Tk +1] = x3[k] + 0.01z4[k]

z3lk+1] € 0.9686m3[k] -+ 0.0314[—0.25, 0.25]
ylk+1] = zofk] — z3[k]

zZlk+1] = 10(za[k + 1] — z3[k + 1])?

with z1[0] = z,[0] = z3]0] = 0. Here, A = [0.8212,0.8542], £ = [0.05787,0.07073],
and C = [—0.08712,0.08712]. Note that 6[k] = z,[k], and the error e[k] = y[k]. To
avoid the infinite time dynamic programming, in practice we implement a certainty

equivalence controller (equation (5.2)).

Remark 6.2 The system above clearly violates assumptions A4, A5 of section
1.2.2, page 13. However, we can indirectly establish ultimate boundedness. Note
that A4 and A5 are employed to establish properties of the state trajectory

provided that the robust control problem has a solution. However, violation of
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these assumptions does not violate the solvability of the problem. Let I(z3,x3) =

10(zy — z3)2. Suppose, that the problem has a solution. Then we obtain

o,
lim sup | =—(@a[k + 1), z3[k + 1])| < v
k—o0 ax3

Note that the derivative is taken with respect to z3 alone, since z3[k + 1] evolves
through single-valued dynamics. This implies that for any arbitrary e > 0, 3K > 0,
s.t.

20|zo[k] — z3[k]| <y +eforall k > K

Now, z3 is always bounded. Hence, x, is ultimately bounded, and for this to be

true, from the dynamics of x5 we obtain that z; is ultimately bounded as well.

We solve the state feedback problem with z; € [-2.5,2.5], Azy = 0.1, 25 €
[-0.3,0.3], Az, = 0.01, z3 € [-0.35,0.35], Azz = 0.05, and we use Au = 0.5. For
this discretization, the optimal value of v lies between 0.12 and 0.14. We pick v =
0.14. The dynamic programming equation converges after 14 iterations. For the
certainty equivalence controller, since the system is initially at rest, we pick py =
d{0} as the initial value for the information state recursion. While carrying out the
simulations, the plant parameters c;, ¢, c3, and f are sinusoidally varied between
their nominal values at frequencies of 0.1, 0.2, 0.25, and 0.4 Hz respectively. Figure
6.4 shows the error incurred due to a sinusoidal disturbance of frequency 0.5Hz,
and having a magnitude 0.05 radians. The dashed line represent the error response

of the H,, controller, the solid line represents that due to the set-valued design,
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Figure 6.4: Error incurred under sinusoidal disturbance of 0.05 radians.

and the dash-dot line shows the disturbance. Clearly, the performance for both

the designs is comparable.

However, if we increase the amplitude of the disturbance to 0.15 radians, the Hy,
controller becomes unstable due to saturation of the input. This is shown in figure
6.5. Moreover, using a more stringent Wa(s) during the H, design process, yields
a controller that is ineffective in rejecting disturbances (due to extremely small
values of p). Figure 6.6 shows the response of the set-valued design to a sinusoidal
disturbance having an amplitude of 0.25 radians. Finally, figure 6.7 shows the

response of both the H,, and the set-valued design to a step disturbance.
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Figure 6.5: Error incurred under sinusoidal disturbance of 0.15 radians.

6.4 Run by Run Control

This section develops an application of the set-valued design to the problem of run
by run (RbR) control. We consider the problems of end-pointing and LPCVD rate

control.

6.4.1 End-Pointing

The scenario is as follows. Lots, consisting of 24 wafers are processed through

a single wafer reactor. Here, we assume that the process under consideration is
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Figure 6.6: Error incurred under sinusoidal disturbance of 0.25 radians.
deposition. Measurements are carried out on the last wafer of each lot. The aim is
to determine the processing time, so as to achieve a given target thickness. Here,
it is assumed that the processing time per wafer is constant for all wafers across a
lot. We assume that the process is subject to three kinds of noise: (i) variation in
the average deposition rate at the test wafer from lot to lot, (ii) variation in the
instantaneous rate from test wafer to test wafer, due to changes in both the wafer
surface, and deposition conditions, and (iii) measurement noise, either due to finite
resolution of the measurement apparatus, or due to experimental error. Here, the

basic process can be modeled as (assuming for now that we have no measurement
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Figure 6.7: Error incurred under step disturbances.
delay)
Trk+1 = Tk + Uk
Eev1 = (Fi+wi)le
Jk+1 = (P + we)te +my
Riyy = Ti

where 7 is the average deposition rate for the test wafer for lot k, ék-}-l is the
actual deposition thickness on the test wafer for lot &k for a deposition time tx, and
Ur+41 is the measured thickness. Also, T} is the target thickness for lot k. Here,
vi is the noise used to model the variation in the average deposition rate, wy is
the noise used to model the rate variation per wafer, and my is the noise modeling

the measurement error. It is assumed that the controller knows T} before the
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processing time for lot £ is computed.

We now give some (fictitious) numbers to énable simulations. It is assumed that
the nominal (or average) thickness required is T = £ = 1500A. Furthermore, the
nominal deposition rate of the apparatus is assumed to be 7 = 300A/min, and
hence the nominal deposition time is £ = 5 min. Hence, we can now express the

system in terms of deviations from the nominal, i.e. as

Th+1 = Tkt Uk

Epv1 = Trlk + Tt + trg + (T4 te)wy

Ry = T

Yk+1 = rity + Tty + t_’f‘k + (f + tk)wk + my

here, 7, = 7 — 7, tx = tx — I, etc. We can now interpret [ry & Tx] as the states,
and [Ry, yx] as the measurements. Also, note that before the deposition time for
lot k is computed, we also know T;. Hence, what is not known on the onset of
run k are &, i.e. the actual deposition for lot £ — 1, and 7, i.e. the deposition
rate for lot k. The deposition time is fixed to belong to the set ¢, € [—4.8,20],
where this restriction could be obtained via scheduling constraints. Furthermore,
we assume that r, € R, where R denotes the operating range of the equipment.
Here, it is assumed that R = [—125,300]. The operating range denotes the range
of parameter values over which the equipment is supposed to be operating. If the
rate exceeds this range, it is assumed that a maintainence call will be placed. The
controller can raise a maintainence alarm by checking the information state, since
during normal operation we should have pi(r,€,T) = —oo for all r ¢ R. This

follows from subsection 3.2.2, and the fact that R¢ is an infeasible set. Hence, if
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pr(r, &, T) # —oo for some r ¢ R, a maintainence alarm is issued.

Now let v, and wy be zero mean, Gaussiaﬁ, with standard deviations o, = 4, and
0w = 1 respectively. Also, the measurement error is modeled as being uniformly
distributed between —10A and 10A. Such a distribution models the resolution
limit of the measurement apparatus. Considering the £+30,, and +30,, limits on

vk, and wy, we obtain the following set-valued dynamical system

Thr1 € T+ [—12, 12]

k1 € Trbp T+ try + (f-l- tk)[——3, 3]

Ry = Ti

Yetr1 € Tk + Tlg + {T‘k + (f-i" tk)[—3, 3] + [—10, 10]

Furthermore, we define the regulated output z; as

Zry1 = 0.1(&k41 — Ri1)?

where we assume that there is no cost associated with the control action. Note
that since we have no information on the power spectrum of the noise, we try to
attenuate the influence of the noise on the regulated output over all frequencies.
Now, assuming that r, € R, we solve the state feedback problem assuming that
V(r,&,T) = 0 for all ¢ R. We iteratively test different values of v, and the
smallest value of v which yields V(0,0,0) = 0 is found to be 6.5. Hence, this is
the guaranteed value of which is true for the nominal deposition over the entire
operating range R. It is clear that the value of v depends on the operating range
R. In fact, the smaller the range R the smaller the value of y. We assume that

the initial rate is within 2204 /min of the nominal value 7, and hence initialize the
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information state as po(r,&,T) = 0 if r € [—20, 20], or po(r,&,T) = —oo else. The

certainty equivalence controller (5.2) is then implemented.

We also consider the case having a one lot delay, where the measurement is now

given by
Yk+1 € Te_1tp_1 + Tlg—1 + {Tk—l + (Z-'f- tk:—l)[_3, 3] + [—10, 10]

and we again implement the certainty equivalence controller (5.4). We compare the
performance of the robust controller designed, to a simple controller obtained via
an EWMA estimate of the rate. Here, we assume that the initial rate is perfectly
known. This controller is implemented as:

a = A (—ﬂi) + (1= AN)ak—1

th—1—-r

o=k
with a equal to the initial rate. Here, we choose A = 0.1 (a typical value for the
EWMA weight [25]), and A = 0.8. Also, 7 = 0 for the case with no delay, or 7 =1

if we have a one lot delay. Note that the above implementation is simplistic, in

that it assumes that the rate remains more or less constant over runs.

Figure 6.8 illustrates the behavior of the controllers when the equipment has a
steady rate drift of 84/min between lots with the target held at 15004. As ex-
pected, the EWMA controller with A = 0.1 (even with no measurement delay) is
unable to compensate for the drift, and yields a large offset. The performance is
definitely better for A = 0.8. Furthermore, we observe that the robust controller

compensates for both the cases i.e. with no delay, and with one lot delay, although
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Figure 6.8: End-Pointing: Process under a steady rate drift of 8A/min between
lots.

the performance is better when we have no delay. Here, it should be noted that
unless explicitly stated, in all figures the plots show the actual deposition (£), and

not the measured one (y).

The above is an extreme situation, and we now let all the noises entering the sys-
tem be random. So v, and wy, are zero mean, Gaussian, with standard deviations
o, = 4, 0, = 1 respectively, and my, is uniformly distributed between —10 and 10.
However, we execute a sequence of target changes. The case having no measure-
ment delay is shown in figure 6.9. We see that the robust controller is able to track
the target much more tightly than the EWMA controller, which tends to drift

around the target. Figure 6.10 shows what happens when we have a one lot delay
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Figure 6.9: End-Pointing: Process subject to random noise and no measurement
delay.

in the measurements. The performance of both controllers degrade, however, the

robust controller tracks the target much more tightly than the EWMA controller.

Table 6.1, gives the mean and standard deviation (STD) of the errors for the cases

discussed above. Here the error is given by

error = actual deposition — target
So far, we have assumed that the system conforms to the model assumptions. One
would however, like a course of action in case the system does in fact violate the

model assumptions. If the model has been correctly defined, the probability of

this occurring should be negligible (i.e. << 1%), and we may never observe a
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Figure 6.10: End-Pointing: Process subject to random noise and one lot measure-

ment delay.

violation in practice. However, if the model is incorrectly defined, the chances

of violation increases. Here, the violation is caused by either, bad data points,

i.e. violating the bounds on the measurement error, or an exceptional process

shift. This would result in the information state being set to —oo for all the states,

since the observations would no longer conform to the system dynamics. This is a

EWMA Robust
A=0.1 A=0.38
Drift Mean | STD Mean | STD | Mean | STD
Steady | No delay 209.60 | 83.43 | 33.57 | 11.34 | 13.73 | 11.75
1 lot delay | 223.72 | 102.80 | 59.53 | 22.74 | 25.66 | 16.54
Random | No delay 11.67 |22.14 |{0.19 |17.65|-0.89 | 11.87
1 lot delay | 4.75 23.96 |-0.22 | 23.82|-1.03 | 14.12

Table 6.1: End-Pointing: Error statistics of the controllers.
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potentially hazardous situation since the controller will stall.

We can check for violation in the following rﬁanner. Let the measurement delay be
7. Assume we have just finished with run k. Then the controller flags a violation
if given the current information state p;_,, the recipe ux_,, and the measurement
Yk+1,
H(pr—r, Ug—r, Yk+1) = —00, for all z € R”

To recover from this situation, we reinitialize the information state. At this time,
all we can say is that the process has either shifted by an exceptional amount, or
that yx41 is an exceptionally bad data point. Note that we are using the term
exceptional to classify this situation, since the model already incorporates both
expected measurement errors, and process shifts. To reinitialize the information

state sequence, we do the following:
1. Define p_, in the following manner

e (z) 2 Ph—r(z) if pr_r(z) # —00
Pe-r\%) = 0 if pr_,(z) = —00 and yx4+1 € G(T, Up—r)

2. Now define pgi1-, as

= sup {pr_-(€) + B(&, 7, up—r)}
teR"

Pk+1—¢($)

where B is defined as
~ A
B({,x, U) = sup {ll(x,u) - l(s,u)|2 - 72|$ - S|2}
SEF(Eu)

if z € F(&,u), or else is equal to —oo.
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The information state is now propagated as before from the next run onwards,
unless another violation is flagged. Note, that this also gives an indication about
changes in the model assumptions. In particular, very frequent violations would

imply that the model was grossly inaccurate to start with.

We now present a simulation of the above case for end-pointing. To simulate this
case, we set the target as 1500A4. All the noise entering the system is now random,
except for lot 5, and lot 14. During lot 5, we set vs = 120. This corresponds to an
exceptional process shift. During lot 14, we set m;4 = 130 and w4 = 4. This
corresponds to a bad data point. Large values for the shift, and measurement
error have been chosen to amplify their effects. Figure 6.11 shows the actual
and measured deposition trajectories for both the cases, i.e. when we have no
measurement delay (figure 6.11 (top)), and the case when we have a one lot delay
(figure 6.11 (bottom)). The actual deposition is shown by a solid line, and the
measured deposition by a dashed line. We also plot the target, which is a straight
line corresponding to a thickness of 15004. For the case when we have no delay,
the controller recovers immediately from the shift. In the case when we have a
lot delay, the effects are more pronounced. In the case of exceptional shift the
controller can only bring the process back to target after two runs. This is as
expected, since the measurement is available to the controller only after the run
following the shift, i.e. after run 6. The effect of the bad data point does not seem

to be significant, although the controller does flag a violation.
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6.4.2 LPCVD Rate Control

In this section, we will briefly consider the inverse problem, i.e. of controlling
the rates in an LPCVD reactor. The model we work with is an experimentally
determined one, and is presented in [36]. Here, we limit our attention to the
deposition on the first and last wafer. We augment the models with drift terms.
The models express the deposition rates in terms of deposition temperature T,
deposition pressure P, and the silane flow rate (). They are given by

Ry = exple,+cInP+ T +ceQ7 1Y)+ dy

A 5 | 1-8CR1Q!
— gsftl
Ry R, [1+S'CgsR1Q_1] + da

(6.2)

with the rates expressed in A/min, P in mtorr, T in K, and @ in sccm. The
parameters are given [36] to be ¢; = 20.65, c; = 0.29, c3 = —15189.21, ¢4y =
—47.97, §' = 4777.8, and C,; = 1.85 x 107°, where we have dropped the units for
convenience. di, and dj represent the drift terms. The actual rates (R, and Ry)
are obtained from the above model by adding a zero mean noise to Rl and Rz. The
noise is assumed to be Gaussian with a variance of 9. Furthermore, we assume that
the maximum drift expected between runs is 0.3. This actually represents a shift
of o in 10 runs, and may be too large to be true in practice. However, we choose
this value, since it enables us to see the corrective action of the RbR controller in
a fewer number of runs. The targets T} for Ry, and T5 for R, are fixed at 169.75
A/ min and 141.7 A /min respectively. It is also assumed that the other parameters

of the model do not undergo changes from run to run. We also assume that what
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is to be controlled are the measured rates (R; and Rj), since we do not have any
information of the actual rates. We can express the system in a set-valued form as

done in the previous example. The exact equations are

C1 [k + 1] = [k]
Cz[k + 1] = C2[k]
C3[k + 1] = C3[k]
alk+1] = clk]
S'Cyslk +1] = S'Cylk]
dilk+1] € di[k] +[-0.3,0.3]
dolk +1] € dqlk] +[-0.3,0.3]
Rifk+1] € f(P[k],T[k],Q[K]) +[-9,9]
Rolk+1] € f(P[K],T[K], Qk])9(Q[K]) + da[k] + [-9,9]
yl[k+1] € f(P[k_T]aT[k_T]aQ[k_T])+[_g,9]
yolk +1] € F(Plk— 1], Tlk — 71, Qlk — g(Qlk — 7]) + dalk — 7] +[~9, 9]
where

f(Plk], T[k], Q[k]) = exp(ci[k] + co[k] In P[k] + ca[kIT[K] ™" + sl KIQ[K] ) + da K]

and

1= SC, KA (PIK, TIK], QD@L
9QW) = T5c, (k17 (PR, TR, QIR)QIF

where we have not shown the dependence of f and g on the parameters (ci, ¢z,
etc.) for convenience. Here [c1 ¢z ¢35 ¢4 S'Cys di dy Ry Ry] represent the states,
and [y; yo] represent the measurements. Also 7 > 0 represents the measurement
delay. We assume that the operating region of the equipment R is £20% around the
parameters (i.e. ¢, ¢y etc.), and with the drifts di, and d, restricted to [—30, 30].

The regulated output is given by

2l +1) = (Ri[k + 1] = T0)* + (Ro[k + 1] — To)?
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Solving the state feedback problem (after centering the system around the origin),
and forcing the control inputs (i.e. P, T, and @) to lie in the experimental design
space [36], we obtain the value of v as 30. We then implement the certainty
equivalence controllers given by equation (5.2) for the case of no delay, and equation
(5.4) for the case of one lot delay. Here, we assume that the system starts from 0,

and hence we set py = d(03.

For the purposes of simulation, we allow the drift to be zero mean, Gaussian with
a standard deviation of 0.1. We force a process shift during run 4. This shift
corresponds to a change in c3 of 580, ¢4 of —8, Cys of 1 X 1076, d; of 2.5, and d3
of 11. After this, we force bad data points during run 10, by forcing n; = 20, and
ns = —20. Finally, we subject the process to a steady drift of 0.3 for both R; and R,
between runs 15 and 30. Figure 6.12 (top) illustrates the controller performance
for Ry, and figure 6.12 (bottom) for R,. The horizontal lines show the target,
the solid line is the case when we have no measurement delay, and the dotted
line is the case when we have a one lot delay. It is observed that the controller
effectively compensates against these disturbances. We again observe that the shift
is compensated for in the very next run in case of no delayed measurements, and

after two runs in the case of one run measurement delay.
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Chapter 7

Concluding Remarks

In this thesis, we have considered the problem of constructing robust controllers
for set-valued discrete time dynamical systems. An application of the techniques
developed to the problem of rejecting persistent bounded (non-additive) distur-
bances for nonlinear systems was presented. The methodology developed could be

viewed as being analogous to the [!-optimal control problem for linear systems.

A number of problems remain open. Clearly, the most pressing one is the de-
velopment of good approximations to the problem in order to avoid the infinite
dimensional dynamic programming encountered during output feedback. General-
ization of certainty equivalence is one way of attacking this problem, although, the
issue has yet to be satisfactorily resolved. An alternative is to obtain finite dimen-
sional approximations to the information state. In either case, one still needs to
solve a finite dimensional dynamic programming equation. Here, due to the “curse

of dimensionality” practical applications are somewhat limited. In this area, the
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issues are similar to solutions to other optimal, and stochastic control problems
solved via dynamic programming. Progress in addressing this issue is being made
by a number of researchers, with an excellent, and extremely readable treatment in
[47]. We note here, that the optimization problem to be solved at each time step is
simpler in our case (when compared to say other nonlinear dynamic games), since
by converting the system to a set-valued form, we have in a sense “smoothened”
out the exact dependence on the disturbances. Also, more applications need to be
developed. There is also a need to investigate, whether (if at all), a closed form
solution exists for special cases. Finally, one would like an extension of this theory
to continuous time. In this regard, one would still have to discretize the prob-
lem in order to obtain computational solutions. To this end, the Euler transform

employed in the examples could play a fundamental role [40].
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Appendix A

Smoothness of the Cost Function

The assumption, that I(-,u) € C'(R"), for all u € U can be dropped, if one

considers the perturbed system
Tr+1 € .7:(13;‘;, uk) + BC(O) = .'FG(JJ;C, uk) (Al)

for some arbitrary € > 0. Let the set of trajectories corresponding to F be denoted

by T'*, and those corresponding to F¢ be I'**. Then clearly
[(xzq) C Int T™¢(x0)
for all zy € Xj.
Assumption A4 on page 13 may now be dropped, and assumption A5 maybe

replaced by the following.

A5’ I(-,u) : R* — R, is continuous for all v € U, and is such that, its direc-

tional derivatives with respect to the first argument exist for all =, and
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u € U. Assume that there exists a v, > 0 such that
L2 {s € R"| Ju e U s.t. |Dil(s,u)| <7}

is bounded, and contains the origin for all ¥ > . Here, |Dgl(s,u)| is
defined by

ID41(s, u)] = sup | DR(s, w)
h|=1
where D"I(s,u) is the directional derivative of I(-,u) with respect to its

first argument at the point s in the direction h. i.e.

lim (s + ht,u) — (s, u)

h —
Dgl(s,u) = t—0+ t

Consider a sequence {z}32, such that
Trp1 € Int F(zg, ug)
for all k. Now construct the sequence {W¥}22, as
we=sup  (|i(r,w) — o, w)l = FIr — 2w l’)
reFe(zy,ux)

Then we have

Lemma A.1 If W¢ — 0, as k — oo, then for all h, |a] =1, for all €, €62 > 0, 3K,

such that Vk > K, and for all
T = Tg41 + e1h € Te(ack,uk)
we have

|l (zks1 + €1h, ug) — U @kg1, ur)|
€1

<v+e€ (A2)
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Proof:

Suppose not, i.e. there exists h, |h| = 1, and there exist €, €2 > 0, such that for

all K, 3k > K such that 2y, + e1h € F¢(z, ux) and

|l(.’L‘k+1 + €1h, uk) - l(zkH, uk)|
€1

>+ é€
Which implies that there exists an n > 0 such that

ll(zxs1 + €1h, ug) — W(Tpys, we)|? — Y26 >0 >0
This implies that there exists an s € F¢(z, ux) such that

(s, ux) — Uzksr, ue) | = 7Pls — zpa]? >0 > 0

Which means W}* > 7, a contradiction.

This immediately yields the following corollary.

Corollary A.2 Let W¢ be constructed as above. If Wi — 0, as k — oo, then

limsup | Dyl(Tkt1, uk)| < ¥

k—o0

Proof:
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Take the limit in equation (A.2), as ¢; — 0 to obtain

lim sup sup |D2l(xk+1a ug)| < v+ €
k—oo  |h|=1

Since €5 is arbitrary, the result follows.

We can now obtain a version of the bounded real lemma . Only the state feedback

case is presented here, and is similar to theorem 2.4.

Theorem A.3 If for a given v > 0, £%. is finite gain dissipative, then X% is

ultimately bounded.

Proof:

From the dissipation inequality (2.7), we obtain for any zy € X,

k
Z |1(rig1, us) — l(5i+17ui)12 - ’YZ|T¢+1 - 3i+1|2 < V(o)

=0
for all k, r, s € T%<(xp).
In particular, for any trajectory x € I'%(z,) C Int I'“(z,), we have

k
ZW;‘ < V(zo), Vk
=0

Which implies that

W' —0asi— 00
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and hence z; — £, as k — oo, for any arbitrary ¢ > 0.

Since, suppose not. Then, there exits an €y, €3 > 0, such that for all K, there

exists a £ > K such that

Bey(Tx+1) ﬂ L =¢

Which implies, that there exists an €5 > 0, such that for all K, 3k > K, such that
|Dpl(zgt1,uk)| > v+ €2

This contradicts (via corollary A.2) the fact that W' — 0 as k — co.
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Appendix B

The Varadhan-Laplace Lemma

Here, we give an extension of the Varadhan-Laplace lemma presented in [32]. Be-
low p denotes a metric on C'(R" x RP) corresponding to uniform convergence
on compact subsets. B,(z) denotes the open ball centered at z of radius r.
L&(-) : R* — RP defined as Furthermore, it is assumed that | - | denotes the
Euclidean norm. In what follows, F¢, F, denote single-valued maps, and G* is a

set-valued map. We also define, L&(M) as

Ly(M) 2 | G%)

zeM

Lemma B.1 Let A be a compact space, F¢, F, € C(R" x RP) and assume

i. lim, 04 SUPgeq P(FE, Fo) =0

ii. The function F, is uniformly continuous in each argument on each set

Br(0) x B;(0); R, R > 0, uniformly in a € A.

131



iii. 3v; > 0, v, > 0 such that
Fi(z,w), Fa(z,w) < —m (|2 2+ w*) + 7
Vz € R", Yw € R™, Va € A, Ve > 0.

iv. G* : R® - R™ is a set-valued map, uniformly continuous with convex

compact values on each set Bgr(0), uniformly in a € A.

v. IntG* # ¢,V € R", Va € A.

Then
lim s 610/ / F@w)/equdr — sup  sup Fy(z,w)| =0
5_’0+alelg ¢ IR Game we mEI%wEG‘P(w) (@)
Proof:
Write

F¢ = sup sup Fj(z,w)
ze " weG(x)

F, = sup sup Fy(z,w)
ze R" weG(z)
Then our assumptions ensure that

Fe_F|=0

lim sup
e—0+ acA

For a given ¢ > 0, define

By = {x € R" | 3w € G*(z) s.t. Fi(z,w) > F; — 5}
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Then assumption (iii) ensures that there exists R > 0 s.t.
B¢ c Bg(0).

Furthermore, by Berge’s theorem [13], L& (Bg(0)) is compact. Hence, 3R > 0 such

that L&(Br(0)) C Bg(0).

By hypothesis (iii) on Bg(0) x B;(0) and using the uniform convergence of F; to

F, on Bg(0) x B(0), 3r > 0 such that

i)
|z — 2| < —72: implies |F:(z,w) — F:(z',w)| < 5

for all w € By, V7,2’ € Br(0), a € A and € > 0 sufficiently small. And
T c . ) )
lw —w'| < 3 implies |F: (z,w) — F;(z,w')| < 3

Vz € Br(0), Yw,w' € Bx(0), a € A and ¢ > 0 sufficiently small.
Pick a

zt € argmax sup F(z,w) C Bg(0)
" weGe(x)

and

w; € argwergaaés)Fi(wZ,w) C By(0)

By compactness, w: € G*(z5).

Now, let € be such that 0 < € < £, and define
T
WE{w]| |w—uf|<=—é

2

Then, by the uniform continuity of G* on Bj(0), 37 such that Vz with | 25—z |< 7

G z) (YW # ¢
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Va € A.
Let 7 = min{%,#}. Then, Vz € By(z%) and for any wg € G*(z) N\ W
Be(wg) (1G*(2) # ¢
and for any w € B;(w?) N G*(z)
| w—wi |< =
Hence,
B:(z%) C By, Va € A,e > 0 sufficiently small.

Now, let
A
of = exp(Ff(z, w)/e)dwdx
22 Je f oy (@ 0)e)

For each x € Bx(z%) pick a wi(z) € G*(z) N W. Then

of > / / exp(F; (z,w)/e)dwdz
#(25) 4G () [ Be(wg (2)) (Fa )/€)

Fe—§
> / / exp( = )dwdz
#(5) J G () ) Be(wg (2)) €

> Cmfmaf exp (F“ . 5)

€

eloga: > elogC™F™af + F: -6

> F,—30

for all £ > 0 sufficiently small and for all a € A.
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Next, for R > 0 write

A .
. = Fy(z, dwd
ta /IIISR /’IUGG“(z) exp (F, (z, w)/e) dwdz +

CXP I : x dwdzx
‘/|;|>R~/10€G“(x) ( a( ,'LU)/E)
= J+ K
Note that
: lcgaz EIOgJ O(K/J)

for R sufficiently large.

Let

Then

A
2
]

»4

o
——
Q
|
2
I~y
N

< Cpgrexp(—C'/e)
where Cg,C1,Co > 0, and C' > 0 for R large enough.
Increase R if necessary to ensure that
argznel% wesggz) FZ(z,w) C Bg(0)

Then

elogJ < elog exp (Fj /6) dwdz

jz|<R /wEG“(sc)
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< elog Mg /MSRexp (Fj/s) dx

< elogC,R"Mp + F¢

Thus

elogai < F, +36

for all € > 0 sufficiently small and for all @ € A. Thus
sup |elogaf — F,| < 38

acA

for all € > 0 sufficiently small.
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