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Abstract

Nonlinear regression and nonlinear regularization are two powerful approaches to segmenta-

tion and nonlinear �ltering. The former stems from the study of classic nonlinear �lters, e.g.,

the median, in the sense that �ltering is performed by regression over (\projection onto") e.g.,

a set of median root signals, and it admits a constrained Maximum Likelihood interpretation.

The latter has been developed to overcome the poor edge-preservation performance of classic

linear regularization approaches (e.g., Tikhonov), and it admits a Bayesian interpretation. Each

approach has its bene�ts and drawbacks. In this correspondence we propose a hybrid approach

which largely combines the best of both worlds, and can be e�ciently implemented via the

Viterbi algorithm.
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I. Introduction

Edge detection and its dual problem of segmentation are important in low-level vision [1]. One

may choose from a number of possible approaches, including statistical formulations, usually

based on Markov models [2], [3], [4], [5], [6], [7], [8], [9], [10], classic nonlinear �lters, e.g.,

the median, coupled with post-�ltering detection [11], [12], [13], [14], [15], [16], [17], nonlinear

regression [18], [19], [20], [21], and nonlinear regularization e.g., [22], [23], [1], [24], [25], among

others.

Nonlinear regularization admits a Bayesian-Markovian interpretation; nonlinear regression ad-

mits a constrained Maximum Likelihood interpretation (although both were conceived starting

from non-statistical perspectives). Both have unique strengths, and some drawbacks. The

purpose of this correspondence is to propose and investigate a hybrid nonlinear regression-

regularization approach, largely combining the best of both worlds.

The idea of combining nonlinear regression and regularization is related in spirit to the idea of

combining deterministic (rule-based) and statistical prior knowledge about a source which one

is trying to estimate; cf. the important work of Grenander, Mil ler, et al [26], [27].

A. Organization

The rest of this correspondence is organized as follows. In section II we review some important

background. Our hybrid approach is introduced in section III; an important result concerning

idempotence of the proposed hybrid �lter, and, therefore, existence of and convergence to root

signals, is also presented in this section. A speci�c instance of our hybrid approach is presented

in section IV, which includes two useful design-oriented results, and a detailed illustrative simu-

lation experiment, highlighting the features of the proposed hybrid approach and the prior art.

Conclusions are drawn in section V.

II. Background

A. Nonlinear Regularization

For reference purposes, let us de�ne regularization as the following general problem1

1This problem may also be interpreted as a global regression problem [1]; in contrast, our use of nonlinear

regression refers to l ocal regression problems.
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Problem 1: Regularization: Given y = fy(n)gN�1n=0 , �nd bx = fbx(n)gN�1n=0 to

minimize : d(y;x) + g(x)

where, usually, d(y;x) =
PN�1

n=0 dn(y(n); x(n)).

Note that the term nonlinear regularization has to do with whether or not the optimization

problem above admits a linear solution with respect to the input data y; nonlinear regularizing

functionals (e.g. quadratic) g(�) may well lead to a linear solution. In general, the regularization

problem does not admit a linear solution.

Weak Continuity (WC), developed by Mumford-Shah [22], [23] and Blake-Zisserman [1] (see

also Morel and Solimini [24]), is, in a sense, the next logical step beyond Tikhonov regularization.

WC attempts to �t piecewise-smooth candidate interpretations to the observable data (thus the

term weak continuity).

Since in practice we often deal with digital data, i.e., sequences of �nite-alphabet variables,

in order to avoid unnecessary complication, we present a digital version of discrete-time WC

(following Blake and Zisserman [1]).

Problem 2: Weak Continuity: Given a (generally real-valued) sequence of �nite extent

y = fy(n)gN�1n=0 2 RN , �nd a �nite-alphabet sequence, bx = fbx(n)gN�1n=0 2 AN (the repro-

duction process; usually, A is e.g., f0; 1; � � � ; 255g), and a sequence of boolean edge markers,

be = fbe(n)gN�1n=1 2 f0; 1g
N�1 (the edge process), so that the following cost is minimized

VWC(y;x; e) =
N�1X
n=0

(y(n)� x(n))2 +
N�1X
n=1

h
�2WC(x(n)� x(n� 1))2(1� e(n)) + �e(n)

i

Here, � is a non-negative real.

If (x(n)� x(n� 1))2 is too large, one has the option of declaring an edge in between x(n) and

x(n� 1) by choosing e(n) = 1, and thus paying only �, instead of �2WC(x(n)� x(n� 1))2. One

can �rst minimize with respect to the edge process, then minimize the resulting functional with

respect to the reproduction process. Since the �rst sum in the combined cost does not depend on

the edge process, it is easy to see [1, pp. 43, 112{114] that the optimization above is equivalent

to minimizing

V
0

WC(y;x) =
N�1X
n=0

(y(n)� x(n))2 +
N�1X
n=1

h�;�WC (x(n)� x(n� 1))
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by appropriate choice of reproduction process, x, where h�;�WC : Z 7! R is de�ned as

h�;�WC (t) =

8><
>:

�2WCt
2 ; t2 < �

�2
WC

� ; otherwise

This is depicted in Figure 1. The associated optimal edge process can be implicitly inferred,

once the optimal reproduction process is determined, by level tests on the �rst order residuals,

bx(n)� bx(n� 1), of the optimal reproduction process.

>From the form of V
0

WC
one may readily see why WC is the next logical step beyond Tikhonov

regularization: WC replaces the regularizing quadratic form in Tikhonov regularization with a

hard-limited quadratic. In general, classical optimization techniques, like steepest descent, are

not applicable to nonconvex problems like WC [28], even if these problems only involve continuous

variables; this is due to the existence of local minima [28].

There exist essentially two ways to go about solving WC: Dynamic Programming (DP) [29],

and the so-called Graduated Non Convexity (GNC) algorithm [1]. The GNC is suitable for

optimization over bx 2 RN , i.e., the continuous-valued case, and it does not lend itself to discrete-

valued problems, i.e., bx 2 AN [28]. There are two DP algorithms for WC, one that works by

DP over \time" (in a manner very similar to the Viterbi Algorithm [30], [31], [32]) and requires

x to be quantized [33]; and another that works by DP over \edges" [28], and works for either

continuous or discrete-valued x, i.e., either bx 2 RN , or bx 2 AN . The latter is much slower

than the former for moderate jAj. Here we consider the discrete-valued problem, and opt for

the former; throughout, we use DP over \time" to solve WC in O(jAj2N). DP is exact, i.e.,

it provides a true minimizer; GNC has been proven to do so for a large class of inputs [1], but

not for an arbitrary input. The drawback of DP is that it does not easily generalize in higher

dimensions (however, cf. [34]). The GNC, in comparison, carries over quite e�ortlessly in higher

dimensions. The GNC is a special case of Mean Field Annealing [35].

As mentioned earlier, WC and the GNC can be interpreted from a Bayesian estimation view-

point; they are closely related to Maximum A Posteriori (MAP) inference for Markov models

and associated annealing-type algorithms [2], [35], [3], [4], [5], [6], [8], [9], [10].

A related optimization has been advocated by Leclerc [36] (also cf. [7]), based on theMinimum

Description Length (MDL) principle of Rissanen [37]. The MDL principle can be related to an

instance of the MAP principle, with a certain suitable choice of prior. In Leclerc's formulation
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one seeks to minimize

VMDL(y;x) =
N�1X
n=0

(y(n)� x(n))2

�2
+

N�1X
n=1

�MDL [1� �(x(n) � x(n� 1))]

by appropriate choice of reproduction process, x, where � is the Kronecker delta function, and

�2 is noise variance. Here, �MDL � 0. We should note that this cost is only an approximation

to the MDL objective function obtained under certain assumptions. MDL, in general, need not

take this form.

Leclerc pointed out that, in the case of one-dimensional data, one can readily �gure out a DP

program to minimize VMDL, and provided a GNC-like algorithm for two-dimensional data.

Both WC and MDL seek to minimize a cost of the following general form

V(y;x) =
N�1X
n=0

dn(y(n); x(n)) +
N�1X
n=1

gn(x(n); x(n� 1))

In case x 2 AN , jAj <1, Leclerc's MDL formulation is a special case of WC. Indeed, if �WC is

su�ciently large (i.e., �2WC > �), then, t being integer, h�;�WC (t) = � [1� �(t)]. This is depicted

in Figure 2. If, in addition, � = �MDL�
2, then WC reduces to Leclerc's MDL approach.

Both WC, and Leclerc's MDL approach are powerful and meritorious paradigms; however, in

the context of edge detection in the presence of impulsive noise, both exhibit a shortcoming: they

are susceptible to noise-induced outliers2 which are locally inconsistent with the data. Consider

an input consisting of a single Kronecker delta, of height �. If (�
�
)2 > 2�MDL, then Leclerc's

MDL approach will preserve this delta; similarly, if �2 > �
�2
WC

, and �2 > 2�, then WC will

also preserve it. Thus, for each given choice of respective optimization parameter(s), one can

�nd a su�ciently large � so that both WC and Leclerc's MDL approach will preserve outliers

of magnitude � �.

WC and MDL are susceptible to these outliers because they both stipulate a model which

classi�es powerful outliers as information-bearing signal. In the context of segmentation, this

means that outliers are segmented as separate regions (which can later be merged with other

more signi�cant regions). However, in the context of edge detection in the presence of strong

impulsive noise interference this behavior is undesirable; these outliers are usually associated

with the noise rather than the signal.

2In the digital world, there is really no such thing as an impulse; a better substitute term would be outlier, or

outlying burst.
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Of course, there is no universal agreement on what constitutes an edge and what constitutes

an outlier, and we will certainly steer clear of o�ering a suggestion. Even though de�ning an

edge or an outlier can be a delicate and potentially troublesome task, de�ning what distinguishes

an edge from an outlier is arguably easier. The following axiom adopts a simple and intuitive

viewpoint:

True edges in the data should be consistent, in the sense that they should manifest themselves

as jump level changes in between two locally approximately 
at regions of su�cient breadth, and

this is what distinguishes an edge from an outlier.

This leads to nonlinear regression ideas.

B. Nonlinear Regression

Nonlinear regression exploits prior knowledge about the signal and the noise by picking a

solution (estimate) from a characteristic set, C, of candidate solutions compatible with given

prior knowledge about the signal, with the goal of minimizing a noise-induced distortion measure

between the solution and the observation; i.e.,

Problem 3: Nonlinear Regression:

minimize :
N�1X
n=0

dn(y(n); x(n))

subject to : x = fx(n)gN�1n=0 2 C

Nonlinear regression may be interpreted as a generalized projection, or as constrained Maximum

Likelihood, provided that the noise sequence can be assumed to be independent, dn(y(n); x(n)) =

dn(y(n) � x(n)) and equal to minus the logarithm of the noise marginal at time n evaluated at

y(n)� x(n).

Observe that if dn(�; �) is a distance for all n (and even under milder conditions [20], [21]),

then the root set (or, domain of invariance: the class of signals that are invariant under the

regression) of nonlinear regression is precisely the characteristic set of the regression. This kind

of precise control over the root set is certainly appealing, as it is the closest nonlinear �ltering

analog3 to controlli ng a linear �lter's passband. Observe that this type of control is not, in

general, available in nonlinear regularization approaches, like WC, whose input-output analysis

3Although the concept of a nonlinear �lter's root signal set is far less powerful than the concept of passband for

linear �lters, exactly because the principle of superposition does not hold.
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is very di�cult [1], [24]. One may work out results that exclude certain signals from the root

set of WC, and we will do this in the sequel. A full characterization of root signal structure for

WC appears to be very di�cult, and this di�culty carries over, in part, to our proposed hybrid

regression-regularization approach.

Speci�c instances of nonlinear regression can be found in [18], [19], [20], [21]. These include

Problem 4: VORCA �ltering: [20]

minimize :
N�1X
n=0

dn(y(n); x(n))

subject to : x = fx(n)gN�1n=0 2 PN
M

where PN
M is the set of all sequences of N elements of A which are piecewise constant of plateau

(run) length�M . This regression explicitly formalizes the axiom that edges should be consistent,

in the sense of exhibiting su�cient breadth in both directions. This regression can be e�ciently

implemented via the Viterbi Algorithm in time O((jAj2 + jAj(M � 1))N) [20].

Locally monotonic regression [18], [19] is another example. This regression is the optimal

counterpart of iterated median �ltering. It involves the concept of local monotonicity, which we

need to de�ne. Local monotonicity is a property of sequences that appears in the study of the

set of root signals of the median �lter [12], [11], [14], [15], [16], [17]; it constraints the roughness

of a signal by limiting the rate at which the signal undergoes changes of trend (increasing to

decreasing or vice versa).

Let x be a real-valued sequence (string) of length N , and 
 be any integer less than or equal

to N . A segment of x of length 
 is any substring of 
 consecutive components of x. Let

xi+
�1i = fx(i); � � � ; x(i+ 
 � 1)g, i � 0; i + 
 � N , be any such segment. xi+
�1i is monotonic

if either x(i) � x(i+ 1) � � � � � x(i+ 
 � 1), or x(i) � x(i+ 1) � � � � � x(i+ 
 � 1).

De�nition 1: A real-valued sequence, x, of length N , is locally monotonic of degree � � N (or

lomo-�, or simply lomo in case � is understood) if each and every one of its segments of length

� is monotonic.

Throughout the following, we assume that 3 � � � N . A sequence x is said to exhibit an

increasing (resp. decreasing) transition at coordinate i if x(i) < x(i+ 1) (resp. x(i) > x(i+ 1)).

If x is locally monotonic of degree �, then x has a constant segment (run of identical symbols)

of length at least �� 1 in between an increasing and a decreasing transition; the reverse is also

true [18], [11]. If 3 � � � � � N , then a sequence of length N that is lomo-� is lomo-� as well;
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thus, the lomotonicity of a sequence is de�ned as the highest degree of local monotonicity that

it possesses [18].

In the 1-D �nite-data case, iterations of median �ltering are known to converge regardless of

the original input (modulo some pathological cases) to a locally monotonic signal of lomo-degree

related to the size of the median window, and resembling the original input. However, this

resemblance cannot be quanti�ed, and, in general, the result of iterated median �ltering is not

the best (e.g., in the l1, or l2 sense) locally monotonic approximation to the original input signal.

This gave rise to the idea of locally monotonic regression, proposed by Restrepo and Bovik [18].

They developed an elegant mathematical framework in which they studied locally monotonic

regressions in RN . The problem was that their regression algorithms entailed a computational

complexity which was exponential in N (the size of the sample). Motivated by this observation,

and the fact that median �ltering of digital signals always results in digital signals, Sidiropoulos

proposed

Problem 5: Digital Locally Monotonic Regression: [21]

minimize :
N�1X
n=0

dn(y(n); x(n))

subject to : x = fx(n)gN�1n=0 2 �(�;N;A)

where �(�;N;A) is the set of all sequences of N elements of A which are locally monotonic of

lomo-degree � [21].

This latter problem can be e�ciently solved via the Viterbi Algorithm in time O(jAj2�N), i.e.,

linear in N [21].

Both approaches are robust, in the sense of suppressing impulsive noise while preserving salient

edge signals. However, both do not take into account edge strength i.e., the magnitude of jump

level changes. This often results in undesirable ripple in the solution, and it happens exactly

because pure nonlinear regression does not explicitly account for roughness/complexity, i.e., unlike

WC, it does not incorporate a roughness/complexity penalty into the cost function: as long

as a solution remains within the characteristic set of the regression, it may follow relatively

insigni�cant input features.
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III. Weak Continuity with Structural Constraints

We have seen that nonlinear regression, by virtue of its reliance on hard structural constraints,

is robust in the presence of outliers, yet it may trace relatively insigni�cant edge features. On

the other hand, nonlinear regularization (and WC in particular) ranks the importance of edge

features by means of their signi�cance in terms of the incurred approximation error [1], yet it does

not exhibit the same degree of robustness in the presence of outliers. It appears quite natural,

then, to endow WC with improved robustness by proposing the following hybrid optimization:

Problem 6: Weak Continuity with Structural Constraints (WCSC):

minimize :V(y;x) =
N�1X
n=0

dn(y(n); x(n)) +
N�1X
n=1

gn(x(n); x(n� 1))

subject to : x 2 C

where C is the set of all sequences of N elements of A satisfying some local hard structural

constraint. Here, again, d(x;y) =
PN�1

n=0 dn(y(n); x(n)) is a �delity measure, and g(x) =PN�1
n=1 gn(x(n); x(n� 1)) is a roughness-complexity measure.

When C = PN
M Runlength-Constrained Weak Continuity (RC-WC) results; similarly, if C =

�(�;N;A), then Locally Monotonic Weak Continuity (LM-WC) results. VORCA is a special

case of RC-WC, and so is WC, MDL. Digital locally monotonic regression is a special case of

LM-WC, and so is WC, MDL.

It should be noted that the incorporation of hard structural constraints is not the only way to

handle outliers in the context of nonlinear regularization; e.g., cf. [9].

It is not di�cult to see that RC-WC, and LM-WC can be solved using exactly the same

resources and computational structures as VORCA, and digital locally monotonic regression, re-

spectively. The extension to weak continuity (i.e., the incorporation of the �rst-order roughness-

complexity measure g(x) =
PN�1

n=1 gn(x(n); x(n � 1)) into the cost functional) essentially comes

for free; we skip the details and refer the reader to [20], [21]. One basically has to set up a suit-

able Viterbi trellis, and specify the cost of one-step state transitions. The resulting complexity

of RC-WC, LM-WC is O((jAj2 + jAj(M � 1))N), O(jAj2�N), respectively. The necessary spec-

i�cations for setting up suitable RC-WC, or LM-WC trellises are presented in Appendices A, B,

respectively. Observe that these work for any choice of �delity and roughness-complexity mea-

sures of the above general form. It should be noted that one could consider roughness-complexity

measures of order higher than one. Yet this entails a signi�cant increase in computational com-
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plexity of the resulting Trellis-type implementation. For this reason we chose to work with �rst

order roughness-complexity measures.

A. Existence of and convergence to the WCSC root set

Observe that the WCSC problem above always has a solution, albeit not necessarily a unique

one4. We have the following important characterization Theorem.

Theorem 1: If d(�; �) is a distance metric5, and we resolve ties by selecting a solution of least

roughness-complexity6, then WCSC is an idempotent operation, i.e., it converges to an element

of its root set in just one application. This is true for all characteristic sets, C, and, therefore,

also for pure WC.

Proof: Consider an arbitrary input, y, and let bx be a corresponding WCSC solution,

computed in accordance with the tie-breaking strategy in the statement of the Theorem. In

addition, let ex be a solution to the WCSC problem for input bx. Suppose that ex, bx are distinct.

Clearly, both bx, and ex are necessarily in C. Therefore, from optimality of bx for input y over C it

follows that

d(y; bx) + g(bx) � d(y; ex) + g(ex) (1)

On the other hand, from optimality of ex for input bx over C it follows that

d(bx; ex) + g(ex) � d(bx; bx) + g(bx)
or, since d(�; �) is a distance metric

d(bx; ex) + g(ex) � g(bx) (2)

Add d(y; bx) to both sides of this inequality to obtain

d(y; bx) + d(bx; ex) + g(ex) � d(y; bx) + g(bx)
By the triangle inequality we have that d(y; ex) � d(y; bx) + d(bx; ex); it then follows that

d(y; ex) + g(ex) � d(y; bx) + g(bx) (3)

4Non-uniqueness usually complicates the analysis of optimization problems; e.g., cf. [20], and the proof of the

next Theorem.

5Usually the case in practice.
6This is easy to implement in a trellis computation by keeping track of the roughness-complexity measure accrued

so far by partial solutions using an auxiliary state variable, by virtue of the fact that roughness-complexity is a

sum of state transition costs.
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>From the inequalities (1) and (3) it follows that

d(y; ex) + g(ex) = d(y; bx) + g(bx)
i.e., there exists a tie between ex and bx for input y. Given the tie-breaking strategy in the

statement of the Theorem, it follows that

g(bx) � g(ex) (4)

since bx is a least roughness-complexity solution for input y over C. However, inequality (2),

combined with the fact that d(�; �) is a distance metric, and the assumption that ex, bx are distinct,

implies that

g(ex) < g(bx) (5)

Inequalities (4) and (5) constitute a contradiction; it follows that the hypothesis that ex, bx are

distinct is false. This deduction works for arbitrary y; the proof is therefore complete.

This is a very useful result, for it demonstrates that, provided distortion is a distance metric,

the root set of WCSC is well-de�ned, and, in fact, one application of WCSC is su�cient for

convergence to a root signal, regardless of choice of roughness-complexity measure, g(�) and

characteristic set C. This is a highly desirable property, both from a theoretical, and from a

practical viewpoint [38].

What is the root set of WCSC? It is obvious that (provided distortion is a distance) the root

set of WCSC is a subset of its characteristic set C. Actually, it is possible to show that the root

set is usually a proper subset of C. We will provide some results in this direction in the following

section, although, in general, a complete root signal analysis of WCSC appears to be very hard.

Still, knowing that the root set is a subset of C is better than what we can currently say about

pure WC.

B. Design

Given the general WCSC formulation above, one needs to choose dn, gn, and the charac-

teristic set C for a particular problem in hand. >From a Bayesian perspective, the formula-

tion above is tantamount to MAP estimation of a signal x in additive noise, provided that

dn(y(n); x(n)) = dn(y(n) � x(n)), the noise sequence can be assumed to be independent (and

independent of the signal) with marginal at time n given by e�dn(�), and the signal prior is e�g(x)
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= e�
P
N�1

n=1
gn(x(n);x(n�1)) over C, and zero elsewhere. So, at least in principle, dn, gn, and C can

be estimated from training data.

The choice of dn is relatively easier; e.g., dn(y(n)� x(n)) proportional to jy(n)� x(n)j means

one expects to be dealing with Laplacian (long-tailed) noise. The choice of gn, and C is far

more critical, as it constitutes the signal model, which is usually much harder to infer from

limited training data. It is for this reason that, for the purposes of segmentation and nonlinear

�ltering, we choose to restrict C to be PN
M and �(�;N;A), respectively, which have been proven

to be useful characteristic sets from a pure regression viewpoint, and gn to �2 times a WC-type

hard-limited notch function. This suggests a useful class of signal models, not apparent from a

Bayesian perspective, and reduces the choice of signal model down to selecting two parameters7.

With these choices, what remains to be investigated is the interplay between M or �, and

�2. We know that, at least for some speci�c choices, e.g., M = 1, leading to WC, MDL,

or �2 = 0, leading to VORCA, or digital locally monotonic regression, we may expect good

nonlinear �ltering results. The point is that can we make even better choices. To see this, let us

consider a concrete instance of RC-WC.

IV. A specific instance of RC-WC

Let dn(y(n); x(n)) = jy(n)� x(n)j, gn(x(n); x(n� 1)) = �2 [1� �(x(n)� x(n� 1))], for all n,

and C = PN
M , i.e., consider

minimize :V(y;x) =
N�1X
n=0

jy(n)� x(n)j+ �2
N�1X
n=1

[1� �(x(n) � x(n� 1))]

subject to : x 2 PN
M

We will need the following de�nitions.

De�nition 2: An isolated outlying burst of width w < M is a deviation from a plateau, of the

type depicted in Figure 3.

De�nition 3: An isolated pro�le of saliency (sum of absolute deviations; here simply the width-

strength product) � = w �H is an equidistant deviation from a plateau, of the type depicted in

Figure 4.

7Note that other classes of signal models have been investigated in the context of MRF's; e.g., cf. [4] and

references therein.
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In the strict sense, isolated means that the entire input consists of the given feature; in practice

it means that the given feature is away from possible interactions with other input features8.

The following two claims provide guidelines on how to choose M ,�2. These claims apply to this

particular instance of RC-WC.

Claim 1: Assume that M is odd. RC-WC eliminates all isolated outlying bursts of width

w � M�1
2 , regardless of �2, and the same is true for �2 = 0, i.e., plain VORCA �ltering with

respect to the above choice of dn(�; �).

Proof: In reference to Figure 3, since w < M , the next best candidate (modulo a shift which

is irrelevant here) after just drawing a straight line at the plateau level would be one consisting

of just three constant segments, the middle of which is of width M , as shown with a dotted line

in Figure 3. This is because any two-segment solution would incur a cost that can be made as

large as one wishes (this is where the assumption that one deals with isolated features comes into

play). Now, the level of this middle segment should be chosen optimally so as to minimize the

sum of absolute errors. This amounts to constant regression over M symbols under an absolute

error criterion, and it is well known [18] that the answer is provided by the median of these M

symbols. However, since only w � M�1
2 of these M symbols are potentially di�erent from the

plateau level (l in Figure 3), it follows that the absolute majority of these M symbols is equal to

the plateau level, and, therefore, the median produces this level at its output: the best solution

amounts to simply drawing a straight line at the plateau level.

Claim 2: RC-WC suppresses all isolated pro�les of saliency (width-strength product) � =

w �H < 2�2, i.e., mends the weak edges at the endpoints of such pro�les, and the same holds for

M = 1, i.e., plain WC with respect to the above choice of dn(�; �), gn(�; �).

Proof: In reference to Figure 4, the next best candidate after just drawing a straight line

at the plateau level would be (if allowed by the runlength constraint) one consisting of just three

constant segments, exactly following the input in Figure 4 (again, this is where the assumption

that one deals with isolated features comes into play). Such a candidate would incur a cost of

at least 2�2, whereas the straight line solution carries a cost of � = w �H < 2�2.

The overall conclusion is that this particular instance of RC-WC suppresses features of either

(i) width w � M�1
2 (M : odd), regardless of strength, or (ii) saliency � = w � H < 2�2. This

8This type of analysis of isolated features is typical of WC, and it is necessitated by analytical di�culties in

dealing with potential interactions [1, e.g., cf. pp. 58, 67, 100, 143, 215].
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allows us to essentially separately �ne-tune two important aspects of �lter behavior. Given an

estimate of maximum outlying burst duration, we pick M to eliminate outlying bursts. Given

that we desire to suppress insigni�cant pro�les producing spurious weak edges, signi�cance being

quanti�ed by pro�le saliency, we pick �2. In a nutshell, M controls outlier rejection, whereas �2

controls residual ripple.

It is obvious that the root set of RC-WC (LM-WC) is a subset of PN
M (�(�;N;A)). In fact,

one may exclude certain elements of PN
M (�(�;N;A)) from the root set, based on Claim 2 above,

or equivalent results for other instances of RC-WC (LM-WC). Further re�nement of root signal

analysis is hampered by the very same factors that complicate the root signal analysis of pure

WC.

A. An Illustrative Simulation Experiment

Figure 6 depicts a noisy input sequence. This input has been generated by adding noise on

synthetic piecewise-constant data, depicted in Figure 5. The noise is white Gaussian; a simulated

error burst has also been added to test outlier rejection capability. The outlying burst in Figure

6 has length 6 and saliency (here, sum of absolute burst errors) 120. The noiseless signal in

Figure 5 consists of two rectangular pulses. The �rst has length 40 and saliency 120; the second

has length 20 and saliency 60.

In reality, one rarely has a precise noise model available, and practitioners will opt for e.g.,

tried-and-true l2 or l1 distance metrics, depending on whether the noise appears to be closer to

Gaussian (short-tailed) or Laplacian (long-tailed), respectively. If the noise appears to be mixed

(as is the case here due to the simulated outlying burst), this choice is not obvious. We chose the

l1 metric for it provides for improved outlier rejection, although this choice does not appear to be

critical9. We selected C = PN
M , since this is a natural parameterized constraint set for piecewise

constant signals. Finally, we chose gn to be a hard-limited MDL-type notch: gn(x(n); x(n � 1))

= �2 [1� �(x(n) � x(n� 1))], for all n.

With these choices, we may use the claims above to help us pick appropriate values for the two

optimization parameters. Accordingly, we selected the values �2 = 15, and M = 15. This way

we may guarantee the suppression of any isolated outlying burst of length up to 7 (just above

what is required to suppress the simulated burst), and any isolated constant segment of saliency

9Qualitatively comparable results have been obtained using the l2 metric.
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less than 30 (conservatively below the saliency of the weakest signal feature).

For M = 1, we obtain plain WC, and the results for �2 = 55; 50; 45; 20; 15 are depicted in

Figures 7, 8, 9, 10, and 11, respectively. Observe that, even though the saliency of the outlying

burst is the same as that of the �rst signal pulse, WC �rst segments the burst (which lacks

su�cient consistency) rather than the pulse. Actually, as illustrated by these Figures, WC

cannot properly segment the signal in this example, without also segmenting the burst, i.e.,

it cannot di�erentiate between a consistent pulse and a relatively inconsistent outlying burst.

This is because WC ranks features by saliency, and saliency is not an unambiguous indicator

of consistency; what distinguishes the signal in Figure 5 from the burst is consistency but not

saliency. Also observe that (even though we used l1 instead of l2 distance) WC exhibits the so-

called uniform localization property in scale-space: as �2 is reduced new edges may be introduced,

but previously detected edges remain stable (lines in scale-space are vertical) [1]. This is a

desirable property [1].

For �2 = 0, we obtain plain VORCA, and the results for M = 45; 40; 30; 25; 15 are depicted in

Figures 12, 13, 14, 15, and 16, respectively. Observe that, as expected, VORCA �rst segments

out the stronger signal pulse, while virtually eliminating the outlying burst. It then proceeds to

segment the second (weaker) signal pulse, while at the same time producing ripple artifacts due

to the burst and the Gaussian noise. These artifacts become progressively signi�cant as M is

reduced. Notice that, even at M = 45, the e�ect of the burst is never completely eliminated, due

to the end-transient e�ect. Also observe that VORCA does not enjoy the uniform localization

property of WC, although edges appear to be stable over wide ranges of values of M .

For �2 = 15, and M = 15 we have hybrid RC-WC, and the result is depicted in Figure 17.

RC-WC largely combines the power of both methods. The notable exception relative to WC is

the loss of the uniform localization property (in RC-WC \scale" depends on both �2 and M ;

varying M does not necessarily lead to a stable scale-space).

The overall run time is about 2 seconds, for jAj = 50 levels, on a SUN SPARC 10, using simple

C-code. Much better benchmarks may be expected for smaller alphabets and/or by implementing

the algorithm in dedicated Viterbi hardware (cf. [32] and references therein).

V. Conclusions

We proposed WCSC, a hybrid nonlinear regression-regularization approach for segmentation

and nonlinear �ltering. The proposed approach draws on earlier work in WC and nonlinear re-
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gression, combines the best of both worlds (with the notable exception of the uniform localization

property of WC), and can be e�ciently implemented via the Viterbi algorithm.

Two types of WCSC have been discussed: RC-WC, and LM-WC. Due to space limitations,

the emphasis here was on RC-WC. Depending on the kind of roughness-complexity regularizing

functional used, LM-WC can be very di�erent from RC-WC. In particular, the characteristic set

of RC-WC is a proper subset of that of LM-WC. The latter, e.g., includes ramp signals, and

all monotonic signals. For relatively mild roughness-complexity penalties, LM-WC may follow

ramp edges, whereas RC-WC will convert these to step edges. LM-WC is computationally more

complex than RC-WC.

WCSC does not incorporate an explicit blur model. It may restore blurred and noisy edges, but

in a somewhat ad-hoc manner. If the data is blurred and the blur is e.g., asymmetric, restoration

may fail to properly localize edges. The incorporation of an explicit blur model into the present

paradigm may be worthwhile in cases where the present approach fails.
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VII. Appendix A { RC-WC

One starts by de�ning a state with respect to the given hard constraint.

De�nition 4: Given any sequence x = fx(n)gN�1n=0 , x(n) 2 A; n = 0; 1; � � � ; N � 1, de�ne its

associated state sequence, sx =
n
[x(n); lx(n)]

T
oN�1
n=�1

, where [x(�1); lx(�1)]
T = [�;M ]T ; � 2 A,

and, for n = �1; � � � ; N � 2

lx(n+ 1) =

8><
>:

min flx(n) + 1; Mg ; x(n+ 1) = x(n)

1 ; otherwise

[x(n); lx(n)]
T is the state at time n, and it assumes values in A� f1; � � � ;Mg.

The state sequence captures all the essential elements of the past history of its associated value

sequence with respect to the given hard constraint. One basically sets up a trellis consisting of N
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stages, each stage consisting of jAjM states. For implementation, all state variables are dummy

variables, in the sense that it is left to the state transition logic to enforce the \de�nition" of

e.g., lx(n), and admissible state evolution.

One in turn visits each stage, and each state in a given stage, and minimizes a cumulative cost

using the one-step transition-cost rule that follows.

Let c (sx(n)! sx(n+ 1)) denote the cost of a one-step state transition, and _;^ denote logical

OR, AND, respectively. Recall that, in so far as the hard constraint is concerned, every run of

length � M is acceptable, and, in order to save on the number of required states, every run

length above M can be mapped back to M . Then

if

[((lx(n) < M) _ (n � N �M)) ^

((x(n+ 1) 6= x(n)) _ (lx(n+ 1) 6= min flx(n) + 1;Mg))]

_

[(lx(n) =M) ^ (x(n+ 1) = x(n)) ^ (lx(n+ 1) 6=M)]

_

[(lx(n) =M) ^ (x(n+ 1) 6= x(n)) ^ (lx(n+ 1) 6= 1)]

then c
�
[x(n); lx(n)]

T ! [x(n+ 1); lx(n+ 1)]T
�
=1

else c
�
[x(n); lx(n)]

T ! [x(n+ 1); lx(n+ 1)]T
�
=

dn+1(y(n+ 1); x(n+ 1)) + gn+1(x(n+ 1); x(n))

VIII. Appendix B { LM-WC

Again, one starts by de�ning a state with respect to the given hard constraint.

De�nition 5: Given any sequence x = fx(n)gN�1n=0 , x(n) 2 A; n = 0; 1; � � � ; N � 1, de�ne its

associated state sequence, sx =
n
[x(n); lx(n)]

T
oN�1
n=�1

, where [x(�1); lx(�1)]
T = [�; �� 1]T ; � 2

A and, for n = �1; � � � ; N � 2

lx(n+ 1) =

8>>>><
>>>>:

sgn(lx(n)) �min fabs(lx(n)) + 1; �� 1g ; x(n+ 1) = x(n)

1 ; x(n+ 1) > x(n)

�1 ; x(n+ 1) < x(n)
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where sgn(�) stands for the sign function, and abs(�) stands for absolute value. [x(n); lx(n)]
T is

the state at time n, and it assumes values in A� f�(�� 1); � � � ;�1; 1; � � � ; �� 1g.

The state sequence captures all the essential elements of the past history of its associated value

sequence with respect to the given hard constraint. As before, one sets up a trellis consisting of

N stages, each stage consisting of jAj2(��1) states. One in turn visits each stage, and each state

in a given stage, and minimizes a cumulative cost using the following one-step transition-cost

rule.

As before, c (sx(n)! sx(n+ 1)) denotes the cost of a one-step state transition, and _;^ denote

logical OR, AND, respectively. Then,

if :

(lx(n+ 1) = 1) ^ (x(n) < x(n+ 1)) ^ [(lx(n) > 0) _ (lx(n) = �(�� 1))]

_

(lx(n+ 1) = �1) ^ (x(n) > x(n+ 1)) ^ [(lx(n) < 0) _ (lx(n) = �� 1)]

_

(1 < lx(n+ 1) < �� 1) ^ (x(n) = x(n+ 1)) ^ (lx(n+ 1) = lx(n) + 1)

_

(�(�� 1) < lx(n+ 1) < �1) ^ (x(n) = x(n+ 1)) ^ (lx(n+ 1) = lx(n)� 1)

_

(lx(n+ 1) = �� 1) ^ (x(n) = x(n+ 1)) ^ [(lx(n) = �� 1) _ (lx(n) = (�� 1)� 1)]

_

(lx(n+ 1) = �(�� 1)) ^ (x(n) = x(n+ 1)) ^ [(lx(n) = �(�� 1)) _ (lx(n) = �(�� 1) + 1)]

then : c
�
[x(n); lx(n)]

T ! [x(n+ 1); lx(n+ 1)]T
�
= dn+1(y(n+1); x(n+1))+gn+1(x(n+1); x(n))

else : c
�
[x(n); lx(n)]

T ! [x(n+ 1); lx(n+ 1)]T
�
=1
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Fig. 5. The noise-free test data
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Fig. 6. Noisy input sequence
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Fig. 7. Output of WC, �2 = 55.
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Fig. 8. Output of WC, �2 = 50.

20 40 60 80 100 120 140 160 180 200 220
0

5

10

15

20

25

30

35

40

45

Fig. 9. Output of WC, �2 = 45.
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Fig. 10. Output of WC, �2 = 20.
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Fig. 11. Output of WC, �2 = 15.
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Fig. 12. Output of VORCA, M = 45.
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Fig. 13. Output of VORCA, M = 40.
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Fig. 14. Output of VORCA, M = 30.
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Fig. 15. Output of VORCA, M = 25.
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Fig. 16. Output of VORCA, M = 15.
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Fig. 17. RC-WC, M = 15, �2 = 15, combines the

power of both methods
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