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Abstract

Automated recognition of features from CAD models has been attempted for a wide range
of application domains. In this paper we address the problem of representing and recognizing
the complete class of features in alternative interpretations for a given design.

We present a methodology for recognizing a class of machinable features and addressing the
computational problems posed by the existence of feature-based alternatives. Our approach ad-
dresses a class of volumetric features that describe material removal volumes made by operations
on 3-axis vertical machining centers including: drilling, pocket-milling, slot-milling, face-milling,
chamfering, �lleting, and blended surfaces.

This approach recognizes intersecting features and is complete over all features in our class;
i.e., for any given part, the algorithm produces a set containing all features in our class that
correspond to possible operations for machining that part. This property is of particular signif-
icance in applications where consideration of di�erent manufacturing alternatives is crucial.

This approach employs a class of machinable features expressible as MRSEVs (a STEP-based
library of machining features). An instance of this methodology has been implemented using
the ACIS solid modeler and the National Institutes of Health C++ class library (NIHCL).

1 Introduction

In general, there may be many di�erent ways to manufacture a given design. It is becoming in-
creasingly evident that consideration of these manufacturing alternatives is crucial for tasks such as
manufacturability analysis and process planning. How easy it is to manufacture a design, or whether
it will be possible to meet the design speci�cations at all, may depend on which manufacturing
alternative is chosen.

In the speci�c case of machining, di�erent ways to manufacture a design for a machinable part
correspond to di�erent interpretations of the design as sets of machining features. Ideally, we would
like a feature recognition system to �nd the machining features corresponding to all of the di�erent
ways in which the design could be machined. However, for complex parts, it usually is not feasible



simply to enumerate all of the feature instances, because the number of them can be very large, or
even in�nite|and in most cases, very few of the potential feature instances for a part will make
practical manufacturing sense.

To address this need, this paper presents a methodology for recognizing a class of \well-behaved"
machinable features that are useful for manufacturing. These features could then be used as
input to a variety of possible applications, such as manufacturability analysis, automated redesign,
process planning, or part-code generation for group technology. Our approach has the following
characteristics:

1. It is complete over all features in our class; i.e., for any given part, the set of features produced
by the algorithm contains all features in our class that correspond to machining operations
on that part, regardless of how complicated the intersections are among those features.

2. It is capable of identifying and eliminating some machining features as inaccessible. The
features eliminated are guaranteed to be inaccessible in all potential operation plans for the
given design.

3. Applications such as manufacturability analysis and automated redesign require features that
correspond directly to manufacturing operations. The class of machinable features we em-
ploy are expressible as MRSEVs (a PDES/STEP-based library of machining features) [23].
MRSEVs are de�nable using EXPRESS (the PDES information modeling language) and as
PDES form features. By employing a set of features based on a standard interchange format
such as STEP, we are attempting to use an independently de�ned feature class and address
a domain of machinable parts of interest to a large community.

4. The algorithms have been implemented and are being incorporated as part of the IMACS1

design critiquing system under development at the University of Maryland's Institute for
Systems Research.

Section 2 presents a survey of related work in the areas of feature recognition and handling
alternative interpretations. Section 3 de�nes the class of machining features that we will consider
in this paper and introduces the essential terminology for describing the recognition problem and
alternative feature interpretations. Section 4 describes a methodology for recognizing instances
from our feature class from a solid model of a part, provides an analysis of the completeness and
complexity of the approach, and gives a brief overview of how the output of the feature recognition
system can be employed to generate and evaluate alternative feature interpretations of the part.
Section 5 discusses our implementation of this system and illustrates three example parts. Section 6
outlines how this methodology is used to generate and evaluate alternative feature-based models
for the part. Lastly, Section 7 gives conclusions and future directions for work in this area.

2 Related Work

Feature-based CAD/CAM techniques have been an important research area over the past decade.
Feature recognition has been successfully employed for a variety of applications including process
planning, design analysis, and part code generation for group technology. Signi�cant e�ort has been
directed towards de�ning sets of form features to �t the requirements for individual applications
and exploit the strengths of the pattern searching or knowledge-based techniques used to recognize

1Interactive Manufacturability Analysis and Critiquing System.
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them. For a more comprehensive overview of feature-based manufacturing techniques, the reader
is referred to [41].

2.1 Feature Recognition

In one of the early e�orts on feature extraction, Woo [44] proposed a method for �nding general
depression and protrusion features on a part by decomposing the convex hull of the solid model.
The approach had several problems, including the existence of pathological cases in which the
procedure would not converge. The non-convergence of Woo's approach has been solved in recent
work by Kim [20, 21, 43], whose system produces a decomposition of the convex hull of a part
as general form features. Extension of this method from polyhedra to the more general surfaces
required for realistic parts is currently under investigation.

The seminal work of Henderson [16] applied rule-based systems on the feature recognition prob-
lem and has served as a foundation for more recent AI-based approaches. Henderson has also made
extensive use of graph-based methodologies: in [10] making use of graph-based algorithms to �nd
protrusion and depression features. In Chuang and Henderson [2], graph-based pattern matching is
used to �nd feature patterns from part geometry and topology. Chuang and Henderson [3] were the
�rst to note the need to explicitly address both computational complexity and decidability when
de�ning the feature recognition problem. Their paper formalized the problem of recognition of
features (including compound features) by parsing a graph-based representation of a part using a
web grammar. More recently, Gavankar and Henderson [33] adapted neural networks to recognize
features from polyhedral objects. Peters [30] describes techniques for training neural networks to
recognize feature classes that can be customized by the end user.

De Floriani [7] employed graph-based algorithms for �nding bi-connected and tri-connected
components to partition a polyhedral part into several varieties of protrusion and depression fea-
tures. Joshi's [18] approach used subgraph isomorphism algorithms to match feature patterns to
patterns in the topology of polyhedral parts. Sakurai [40] developed a graph-based system capable
of handling limited types of user-de�ned features, providing for a degree of application-speci�c
customizability. In many of these approaches, the graph-based representation schemes have proven
di�cult to extend to the more complex surfaces and features found in realistic manufacturing prob-
lems. Corney and Clark [4, 5] have had success extending the capabilities of graph-based algorithms
to more general 212 -dimensional parts.

Kyprianou [24] presented the �rst e�ort to use a grammatical approach to parse solid models
of parts for group coding. Methods based on graph-grammars have been used both to recognize
features [32, 38] and to translate between di�ering feature representations [37]. Peters [31] analyzes
the combinatorial complexity of graph and grammatical approaches to feature recognition and
presents heuristics to reduce it. To address such combinatorial problems, recent work by Gadh and
Prinz [9] describes techniques by abstracting an approximation of the geometric and topological
information in a solid model and �nding features in the approximation.

The work of Dong [8] included formalization of a feature description language and was the
�rst to employ a frame-based reasoning system to extract machining features for computer-aided
process planning. Dong's approach included the ability to construct volumetric features from
surface features and perform an analysis of tool accessibility.

The ability to recognize interacting features has been a goal of a number of numerous research
e�orts, among them [8, 9, 18]. The approach of Marefat [27] built on the representation scheme of
Joshi [18] and used a combination of expert system and hypothesis testing techniques to extract
surface features from polyhedral objects and handle a variety of their geometric interactions. Mare-
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fat argues that his approach is complete over a class of polyhedral features, i.e., that it generates
all features in his class that can be found from the geometry of a part.

The most comprehensive approach to date for recognizing features and handling their interac-
tions has been the OOFF system (Object-Oriented Feature Finder) of Vandenbrande [42]. Vanden-
brande's work, using a knowledge-based approach like Dong's, provides a framework for recognizing
a signi�cant class of realistic machining features of interest for process planning via arti�cial intelli-
gence techniques in combination with queries to a solid modeler. He formalized a class of machining
features and presented recognition \hints" for each class. The hints are extracted from the solid
model and classi�ed as to their potential for building a feature instance; unpromising hints are
discarded. A frame-based reasoning system then acts on the hints and attempts to complete a
feature frame with information needed to construct geometrically maximal feature instances. One
of the fundamental contributions of Vandenbrande's work was a formal method for representing
interactions among the features by calculating the \required" and \optional" volumes for each
promising feature instance.

The recent work Laakko and M�antyl�a [25] couples feature-based design and feature recognition
to provide for incremental feature recognition. This type of approach identi�es changes in the
geometric model as new or modi�ed features while preserving the existing feature information.
They also provide for some form of customizability with use of a feature-de�nition language to add
new features into the system.

2.2 Finding Alternative Feature Interpretations

The AMPS process planning system [1] uses heuristics for feature re�nement to combine a set of
features into a more complex feature, or split a feature into two or more features.

Karinthi [19] completed the �rst systematic work on the generation of alternative interpretations
of the same object as di�erent collections of volumetric features. They present an algebra for
computing alternate interpretations of parts resulting from algebraic operations on the features.

The OOFF system of Vandenbrande [42] produces some alternative feature interpretations.
However, the generation of alternatives is not well controlled nor is the class of alternatives produced
by OOFF speci�ed.

In recent work by Sakurai [39], the volume to be machined is decomposed into cells. Exhaus-
tively, each combination of cells is then matched against user-de�ned feature templates. While the
method is capable of generating all alternative feature interpretations composed of the primitive
cells, it does so at a large combinatorial cost.

Waco and Kim [43] have extended convex decomposition techniques to produce alternative
decompositions of the removal volume through aggregating and growing form feature primitives.

3 Preliminaries

A common class of solids are those described by r-sets with manifold boundaries [26, 36]. In
the context of this paper, a solid is an r-set whose boundary is a manifold consisting of planar,
elliptical, toroidal, conical and spherical surfaces. A design is speci�ed in terms of a solid model
and associated design attributes (such as tolerances, design features, and geometric and topological
speci�cations) that are to be realized through machining operations. In this paper, we will focus
on the geometric and topological design attributes.

A machined part, P , is a solid object represented by a CAD model of the part design to be
produced by a �nite set of machining operations. For example, Figure 1(a) shows a design for
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(c): stock (before machining) (d): the delta volume

Figure 1: An example part and stock.

a socket and Figure 1(a) as CAD model of the design. The initial workpiece, S, is the solid
object of raw stock material to be acted upon by a set of machining operations generating features
(Figure 1(c)). Machining operations remove material from the initial workpiece in order to create
the design attributes of the part (i.e., P � S). As illustrated in Figure 1(d), the total removal
volume is referred to as the delta volume (�), and it is the regularized di�erence [17] of the initial
workpiece and the design: � = S �� P .

3.1 Feature Class

In a machining operation, a cutting tool is swept along a trajectory, and material is removed by
the motion of the tool relative to the current workpiece. The volume resulting from a machining
operation is called a machining feature. A machining feature corresponds to a single machining
operation made on one machine setup. Each machining feature has a single approach direction (or
orientation) for the tool|this is represented by a unit vector, ~v.

In this paper, we will consider features to be instances of feature types, parameterized solids
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Attributes Description

Drilling Feature

location p

radius r

orientation ~v

depth d

depth
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x

x

zorientation

location

Milling Feature

location p

orientation ~v

depth d

edge pro�le E

bottom blend btype; bd
island edge pro�les I

depth

profileislands

y

x

x

z

round edge blend

Chamfering Feature

location p

orientation ~v

edge pro�le E

depth d

angle a

end radius re

x

y

profile

end radius

location

angle

depth

orientation

{ x

z

Filleting Feature

location p

orientation ~v

radius r

edge pro�le E

end radius re radius

x

z
orientation

x

y
location

profile

Figure 2: Classes of machining features.
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Figure 3: Parameterized feature instances.

(a): round blend (b): at blend (c): no blend

Figure 4: Bottom blend types.

that correspond to various types of machining operations on a 3-axis machining center. We will use
the following feature types, which are adapted from Kramer's library of Material Removal Shape
Element Volumes (MRSEVs) [23]:2

1. In order to create a drilling feature, we will sweep a drilling tool of radius r for a distance
d along the trajectory represented by its orientation vector ~v, ending at a datum point p, as
shown in Figure 2. Thus, the volume describing the drilling feature can be modeled as a
parameterized volume, as shown in Figure 3(a), consisting of a cylinder of radius r boolean
unioned with a cone that represents the conical tip of the drilling tool. The conical tip has
a tip angle that describes the shape of the surface of the drilling tool end. We assume there
exist a �nite number of possible tip angles based on the drilling tools that are available; for
simplicity all of the examples of drilling features in this paper have tip angles of 120 degrees.

2Kramer's MRSEVs are volumetric features that categorize the shapes of volumes that can be removed by opera-
tions on a 3-axis machining center. They can be de�ned using the EXPRESS modeling language and as STEP form
features. The features described in this paper correspond to MRSEV hole, pocket, and edge-cut feature types.
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(a):pocket-milling feature (b):face-milling feature (c):step-milling feature

Figure 5: Subclasses of milling features. Arrows denote feature orientation.

2. To create a milling feature, we will sweep a milling tool whose orientation vector is ~v, starting
at a datum point p, and moving through a swept volume of depth d whose cross-sectional
area is bounded by an edge pro�le [23] E = fe1; e2; : : :eng, as shown in Figure2. Thus, the
volume describing the milling feature can be modeled as a parameterized volume, as shown
in Figure3(b).3 The parameters for this volume also include the following:

� Within the area bounded by the edge pro�le E there may be a �nite set I of zero or
more islands. Each island i in I is bounded by its own edge pro�le Ei.

� Depending on the shape of the milling tool, there may be a transition surface between
the bottom face of the milling feature and its side and island faces. There are three
possibilities for the shape of this transition surface, as shown in Figure 4. To represent
which of these shapes a milling feature has, we will associate an optional bottom blend
type btype and dimension bd with the feature.

Suppose f is a milling feature with an edge pro�le E. Then each edge e of E bounds some
side face s of f . If it is possible to sweep s for some nonzero distance away from f without
intersecting the part, then we will say that e is open; otherwise e is closed. Depending on
which edges of E are open and which edges of E are closed, milling features can be partitioned
into the following three subclasses:

(a) Figure 5(a) shows an example of a pocket-milling feature. For this subclass of milling
feature, each edge in the edge pro�le E is closed.

(b) Figure 5(b) shows an example of a face-milling feature. For this subclass of milling
feature, there are no islands or bottom blends and all of the edges in the edge pro�le E
are open.

(c) Figure 5(c) shows an example of a step-milling feature. For this subclass of milling
feature, at least one, but not all, of the edges in E are open.

3The parameters of the volume describing milling feature do not require that all of the corners be round. Thus,
the volume they de�ne will not always correspond directly to a milling operation; for example, all three of the features
in Figure5(c) qualify, geometrically, as milling features according to our de�nition. Pro�le o�setting (described in
Section3.4) is performed in a later step to modify the volumes so they do correspond to milling operations. Once
altered, the volumes initially identi�ed without corner radii produce alternative features useful during the redesign
process, where one might need to minimize tool changes or machine setups.
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3. To create a chamfering feature, we will sweep a chamfering tool whose orientation vector is ~v,
starting at a datum point p and moving at a depth d along a trajectory described by an edge
pro�le E = fe1; e2; : : :eng, as shown in Figure 2. Thus, the volume describing the chamfering
feature can be modeled as a parameterized volume, as shown in Figure 3(c). The parameters
for this volume also include the cutting tool's tip angle a (we assume that there is tooling
available with a 45 degree tip angle); and an optional end radius, re, to denote the conical
surface that might be left at the start and end of a chamfer.

4. To create a �lleting feature, we will sweep a �lleting tool with orientation vector ~v and radius
r, starting at a datum point p, and moving at a depth d along a trajectory described by
an edge pro�le E = fe1; e2; : : :eng, as shown in Figure 2. Thus, the volume describing the
�lleting feature can be modeled as a parameterized volume as shown in Figure 3(d). Note
that each edge e in the edge pro�le E bounds a curved surface of radius r that is tangent to
the orientation vector ~v at the edge e.

The parameters for this volume also include an optional end radius, re, to denote the toroidal
surface that might be left at the start and end of a �llet. We will assume that there is a �nite
set of available tools, each with �xed radii.

M is the set of all instances of the above feature types. For each feature f in M, type(f) is f 's
feature type.

3.2 Primary Features

Removal volumes for these features are bounded by di�erent types of surfaces, each of which (planar,
conical, etc.) may be considered the subset of the boundary of one or more instances of machining
features. For realistic machined artifacts only a few of these features yield reasonable machining
operations.

We will be interested in features that correspond to the maximal realistic machinable volume
made by a single machining operation in a single machining setup. Such features can be easily
truncated to produce the machining volumes used in actual operation plans [15, 13].

Let M be a set of features, and f be any feature in M . Then f is M -primary if f satis�es the
following properties:

� f removes as much stock material as possible without intersecting P . In other words, f
does not intersect P , and there is no feature instance g in M that has the same machining
operation and orientation as f , does not intersect P , and removes more material than f .
More formally, there is no g in M with the same orientation vector as f such that f \�P = ;,
type(f) = type(g), g \� P = ;, and (f \� S) � (g \� S).

� f is the smallest feature in M that satis�es the above property. In other words, for every
feature instance f 0 in M that satis�es the above property, f � f 0.

A feature is primary if it is M-primary.
As an example, the feature shown in Figure 6(a) is not primary because it describes only a

portion of the maximum possible removal volume, and the feature shown in Figure 6(b) is primary
because it describes the maximum possible removal volume.
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(a): non-primary step-milling feature (b): primary step-milling feature

(c): o�set primary step-milling feature

Figure 6: Examples of non-primary, primary, and an o�set primary feature instances.

3.3 Well-Behaved Features

Given solids representing the part P and the stock S as input, ideally, one would like an algorithm
that returns the set of all features that can be used to generate an operation plan for producing
P from S. This is an unrealistic expectation, because for even simple P and S there may be,
theoretically speaking, in�nitely many possible feature instances, even when restricted to primary
features [14]. This raises the following question: of potentially in�nite many features, which should
be recognized?

To eliminate many unrealistic feature possibilities, we de�ne a feature f to be well-behaved if it
satis�es any of the following properties:

1. f is an M -primary drilling feature, where M is the set of all drilling features f in M such
that a subface of one of f 's side or ending surfaces is part of b(�), the boundary of �.

2. f is a primary milling feature, and f subsumes an M -primary milling feature, where M is
the set of all milling features f in M such that f 's bottom is coplanar with two or more
non-collinear edges of �. For an example, see Figure 9(c).

3. f is an M -primary �lleting or chamfering feature, where M is the set of all �lleting and
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(a): drilling feature from Figure 3(a). (b): milling feature from Figure 3(b).

Figure 7: Accessibility volumes associated with a drilling and a milling feature.

chamfering features f in M such that every edge in f 's edge pro�le is an edge of � and
b(f) \� b(�) 6= ;.

3.4 O�setting and Accessibility

Although the feature types de�ned earlier are intended to correspond to machining operations,
speci�c feature instances may sometimes present unrealistic machining requirements. Our approach
addresses the machining issues described below.

Tooling Constraints. Some features may violate constraints on the physical dimensions of tool-
ing (e.g., limits on the maximum radius for drilling features and limits on dimension for surfaces
identi�ed as blends, �llets, or chamfers). We will want to disregard such features.

Accessibility. Some feature instances might not be machinable due to a variety of machining
considerations, and we want to avoid generating these features. In general, accessibility is a very
complicated property to verify. It depends on the shape and dimensions of the machine tool and
cutting tool, and the order in which the features are machined|all of which are decided when
an operation plan is generated. Development of a general methodology for determining whether a
feature f is accessible would require generating all of the alternative operation sequences employing
the feature f , to see if f is accessible in any one of them. Such algorithms have been developed in
the context of generating and evaluating alternative operation plans [11, 15, 12], but are beyond
the scope of feature recognition per se.

For the purposes of this paper, we use the following criteria to eliminate obviously inaccessible
features. For each feature f we calculate an accessibility volume, acc(f), that corresponds to the
volume swept out by the non-cutting portion of the tool that machines f . If acc(f) has a non-empty
intersection with the part P , then feature f is inaccessible in every operation plan for P , and thus
can be discarded. In Figures 7(a) and (b), the accessibility and removal portions of feature volumes
are illustrated.
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E

open edges

closed edges

(a): pro�le E (b): before o�setting (c): after o�setting

Figure 8: An example of edge pro�le o�setting.

O�setting. A feature may contain sharp corners that cannot be machined by a milling tool, or
the most cost-e�ective way to mill a volume may be to perform the machining operation using the
largest possible tool. Such situations may require that the tool move outside the boundary of the
stock material.

After a possible milling pro�le has been identi�ed, we will want to adjust its pro�le to provide an
o�set feature such as shown in Figure 8, that takes these machinability considerations into account.
In the �gure, the edges of pro�le E have been o�set to take into account the radius of a cutting
tool. An example of an o�set step-milling feature is given in Figure 6(c). Our method for feature
o�setting is summarized in Section 4.6.

4 Recognizing Features

The feature recognition problem can be de�ned as follows: given a part P and a piece of stock S,
return the set of feature instances F found from P and S. Our algorithm for this problem has two
components. The �rst builds the set of well-behaved feature instances, as outlined below:

Build Well-Behaved Features(P; S)
INPUT: solid models of a part P and stock S

OUTPUT: the set of well-behaved feature instances, F .

1. Initialize F = ;.

2. For all geometric attributes (such as edges, faces, and vertices) g of P and S �� P do

(a) For each feature type t in M

i. Construct all well-behaved feature instances of type t capable of creating g, as
described in Sections 4.1 through 4.3.

ii. Add these feature instances to F

3. Return(F)

12



edgee1

edgee2

edgee1

edgee2

edgee1

edgee2

(a): bottomed milling feature (b): bottomless milling feature (c): through milling feature

Figure 9: Cases of possible milling features.

A second procedure adjusts the set of well-behaved features, F , discarding inaccessible ones
and, where possible, o�setting edge pro�les:

Build Features(P; S)
INPUT: solid models of a part P and stock S

OUTPUT: a set of feature instances, F .

1. F = Build Well-Behaved Features(P; S)

2. For each feature f in F do

(a) Perform an inaccessibility check of f

(b) If f is inaccessible, remove it from F

3. For each milling feature f in F do

(a) O�set the edge pro�le of f

(b) Perform an inaccessibility check of f

(c) If f is inaccessible, remove it from F

(d) Examine the edge pro�le of f to identify subclassi�cation for milling feature (i.e., pocket-
milling, face-milling, or step-milling).

4. Return(F)

As space limitations preclude giving an implementation-level description, the remainder of this
section will outline the geometric procedures for constructing individual well-behaved primary
feature instances.

4.1 Constructing Drilling Features.

Drilling features are perhaps the most straightforward to recognize. An instance of a drilling feature
can be found from any subface of a conical end surface or the cylindrical side face. From a portion
of the conical ending surface, one can determine both the location and the orientation of the drilling
feature. The radius r for the primary feature is calculated based on two observations: �rst, it must
be less than or equal to the maximum radius in the available set of drilling tools. Second, it is
the largest value such that the removal volume of the feature does not interfere with the part.

13
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Figure 10: Finding instances of chamfering features.

The depth of the drilling feature is the minimal distance from its location to a point outside the
workpiece along its orientation.

From a portion of a cylindrical side face of a drilling feature, one can determine the radius and
orientation of a primary drilling feature. In the event that the surface was produced by a hole
extending through the part, there are two possible primary feature instances: one in each direction
along the axis of the cylindrical surface. For non-through features (those accessible in only one
direction) the location for the primary feature instance can be found from the end surface, if one
exists, or by calculating the deepest point at which the conical tip of the drilling tool may be placed
without intersecting the part.

4.2 Constructing Face-Milling, Step-Milling and Pocket-Milling Features.

Construction of a milling feature starts at an edge of the part, e1. Each edge e1 in the part has the
potential of belonging to three di�erent types of feature instance:

1. As pictured in Figure 9(a), edge e1 is an edge of one of the bottom surfaces of a milling
feature (i.e., e1 could have been created as part of the planar bottom face or a blend surface
of the feature).

2. As pictured in Figure 9(b), edge e1 could be an edge of a side surface of a milling feature
having no bottom surface present in the part.

3. As pictured in Figure 9(c), edge e1 could be a subset of an edge of a side surface of a milling
feature which extends through the part. This type of feature is often called a through pocket.

The orientation of the milling feature is determined from the edges e1 and e2, where e2 is
another distinct coplanar edge in the boundary of P . For a given e1, there are in the worst case
O(n) possible orientations for a primary milling feature, where n is the number of edges in the part
P . Through pockets, because they can be milled from either of two setup directions, are modeled
as two features with opposite orientations.
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Figure 11: Finding instances of �lleting features.

The pro�le of the milling feature can be computed as a normal projection of the part faces that
lie in the half-space above (with respect to the orientation) the plane containing the bottom surface
of the feature. The projection is computed onto the plane containing the edges e1 and e2 (shown
in Figure 14(a)). In the �rst and second cases, this plane is the bottom surface of a milling feature
that creates the edges and their adjacent surface. Note that this still applies when the bottom
surface of the feature has been eliminated through interactions with other features and no longer
exists in the model of the part P . In the event that e1 or e2 belong to a surface that is a bottom
blend for the milling feature, then the edge pro�le is adjusted to take into account the blend radius
of the milling tool.

In the third case, the feature extends through the part and thus has no bottom surface present
in the delta volume. For this situation, the plane containing e1 and e2 provides the orientation
vector ~v for the through feature. The part faces are mapped onto a projection plane perpendicular
to ~v, arriving at a cross-section of the through feature capable of creating these edges and surfaces.

Islands are found from the intersection of the face covering E with the part. Lastly, bottom
blends are incorporated by examining the surfaces of P adjacent to E for candidate surfaces. If
any blend surfaces are found, the pro�le is adjusted and the feature volume modi�ed. Based on the
edge pro�le and feature orientation, E and ~v, the milling feature can be classi�ed as pocket-milling,
face-milling, or step-milling.

4.3 Constructing Chamfering Features and Filleting Features.

Given a surface s that is a portion of a face of a chamfering or �lleting feature as shown in
Figures 10(a) and 11(a), we construct a feature instance as follows:

1. Determine the set of possible orientations for feature instances that may have made the
surface. For chamfering features, this set contains each vector ~v such that ~v is perpendicular
to an edge of the delta volume and the angle between ~v and s is one of the available tip angles
for chamfering tools. For �lleting features, this set contains each vector ~v that is tangent to
s and is perpendicular to an edge of the delta volume.
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2. For each possible orientation, �nd the edge pro�le E for f and �nd the adjoining surfaces
made by the operation. Figures 10(b) and 11(b) indicate the orientations for a chamfering
tool and �lleting tool.

3. Construct the feature instances, as shown in Figures 10(c) and 11(c).

4.4 Computational Complexity

Some approaches to feature recognition are based on data structures abstracted from a solid model
of a part, such as graph-based methods [7, 18, 4, 5]. For such approaches, the computational cost
can be calculated by counting the basic operations that need to be performed by the procedure.
Peters [31] uses a similar approach to compute abstract complexity bounds on instances of the
feature recognition problem itself.

Other approaches to feature recognition, including the one described in this paper, employ
extensive queries to the solid modeling system to extract feature instances. In this case, the
complexity of feature recognition algorithms depends on the cost incurred by executing queries
to the solid modeler|and this in turn depends on many implementation-speci�c details such as
data representation and overhead costs of the solid modeler. Therefore, we describe the complexity
of our feature recognition algorithms simply in terms of the number of solid modeling operations
required.

Let n be the number of edges in the boundary representation of the delta volume. Then, in gen-
eral, the number of entities in the boundary representation is O(n).4 The algorithm Build Well-

Behaved Features considers each of these n entities. At each entity, individual well-behaved
feature instances are constructed. Each aspect of the delta volume's boundary representation can
belong to at most O(n) well-behaved features. Constructing each of these feature instances involves
a constant number of calls to solid modeling operations. Thus the overall complexity of the algo-
rithm to Build Well-Behaved Features is (O(n2g(n))), where g(n) is an upper bound on the
complexity of individual solid modeling operations.

While there is no authoritative reference on the general complexity of solid modeling operations
such as booleans, sweeps, and the like, consensus appears to be that the complexity of boolean
operations lie between O(n2) and O(n4) or O(n5) time, depending on many implementation-speci�c
details. Thus the complexity of Build Well-Behaved Features is between O(n4) and O(n6)
or O(n7).

4.5 Alternatives and Completeness

It has been pointed out by Marefat [27, 28] that existing feature recognition methodologies have
had only limited success in identifying and describing alternative feature interpretations. There
are a variety of reasons for this shortcoming. For example, since features can intersect with each
other, the introduction of a new feature into a design can divide other features into spatially disjoint
component|components which may be computationally expensive to identify and recombine. This
poses di�culty for traditional approaches: rule-based methods must capture all geometric situations
that arise from the choice of feature hints and the ambiguities inherent in manipulating multiple

4In the worst case for this class of manifold parts and for these boundary data structures, we can say the size is
O(jEj+ jV j+ jF j) where E; S; and F are the sets of edges, vertices, and faces of � respectively. By Euler's equation
2 = jV j� jEj+ jF j, we can simplify this to be jV j+ jEj+ jF j = 2+2jEj or O(jEj)|where jEj is the number of edges
of �.
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interpretations with many separate rules; graph-based algorithms must syntactically or structurally
capture these complexities.

In the existing literature, there have been several e�orts at generating the complete class of
alternative interpretations for a part. The feature algebra of Karinthi [19], starting from a sin-
gle initial feature interpretation, exhaustively generates alternative interpretations of the part by
manipulating the features with algebraic operators, but does not include a methodology for recog-
nizing the features. Sakurai [39] presents a system that decomposes the volume to be machined
into disjoint cells and then recombines the cells to form compound feature instances. Both of these
methods are prone to combinatorial obstacles, are limited to polyhedral models, and address only
rudimentary machining features and machining constraints.

In order to address this problem, we will de�ne a feature recognition algorithm to be complete
over some class of features T if for any given part P it produces the set of all features in T that
appear in P .5 This has the following immediate consequences:

� It is impossible for a feature recognition algorithm to be complete over the set of machining
featuresM, because there are parts for which there are an in�nite number of possible instances
of machining features.

� Even if we restrict ourselves to primary features, completeness is still impossible: there are
simple machinable parts that can have in�nitely many primary features.

� There are only �nitely (in fact, polynomially) many well-behaved features for any given part.
Thus completeness over the set of well-behaved features is an attainable goal.

An argument that the procedure Build Well-Behaved Features is complete over the class
of well-behaved features can be made as follows. Given a part P , a piece of stock S, and a
well-behaved feature instance f from P , f contributes some unique geometric and topologic char-
acteristics to the boundary of P , and Build Well-Behaved Features makes use of them to
reconstruct f . For each geometric and topological attribute of P , all features capable of producing
that entity are eventually produced. More speci�cally, there are three possible cases:

1. f is a drilling feature. Then the boundary of the delta volume, b(�), must contain a portion
of f 's cylindrical side face or conical end face. Build Well-Behaved Features uses this
face portion to determine the proper orientation and other parameters for f (as described in
Section 4).

2. f is a milling feature. Then since f is well-behaved, b(f)\� b(�) must contain two edges, e1
and e2, that are perpendicular to f 's orientation. Build Well-Behaved Features checks
all of the possibilities for e1 and e2, thus �nding both the proper orientation for f and a
location from which to determine the edge pro�le for f . The remainder of the parameters for
feature f are calculated using the orientation and the edge pro�le.

3. f is a chamfering or �lleting feature. Then the edges of f 's edge pro�le are edges in b(�)
and b(f) \� b(�) is non-empty. By examining the edges and faces in b(�) as described in
Section 4, an orientation for f is calculated. Using edge pro�le E, the other surfaces made
by the machining operation are found by examining the part topology, and the volumetric
feature instance is built.

5A formal proof of completeness of a feature recognition procedure would be quite complicated. It would require
mathematically rigorous de�nitions of features and the feature recognition problem, and a proof that for every instance
of the problem, the algorithm halts and returns the correct answer. This is discussed in more detail in [35].
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Figure 12: Feature recognition within the IMACS system.

4.6 Feature O�setting

O�setting the edge pro�le of a potential milling feature involves the following steps:

1. Estimation of an optimal tool size. In a typical milling operation, a larger tool diameter
implies a shorter cutting trajectory and less operation cost and time. However, a variety of
constraints resulting from the geometric con�guration of the pro�le will restrict the maximum
tool size that can be employed. In this step, the geometry of the pro�le is used to calculate
an upper bound on the tool size.

2. Alteration of the pro�le. In some pro�les, the estimation of tool size may reveal machin-
ability problems. For example, two adjacent closed pro�le edges meeting at a convex corner
results in a tool radius estimate of zero; a narrow distance between closed edges in the pro�le
may return an estimate smaller than the smallest available tool. This step modi�es pro�les
by o�setting convex corners inward to account for the corner radius left by a tool (shown for
the closed edges in Figures 8(b) and (c)) or by dividing an otherwise unmachinable pro�le
into a set of multiple pro�les that can be machined with the available milling tools.

3. O�setting the pro�le. After �nding a usable bound on the tool size, the open edges of
a milling feature are o�set to account for the radius of the milling tool, shown for the open
edges in Figures 8(b) and (c). The tool can move on or outside these edges during machining.

A more detailed presentation of feature o�setting appears in [35, 12].
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Figure 13: The features identi�ed by Build Features for the part shown in Figure 1(b). Those
features occuring in feature-based models are denoted within the box.
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Figure 14: Steps in recognizing a bottomless pocket-milled feature.

Figure 15: A part with a variety of feature interactions.

5 Implementation and Examples

As an instance of this feature recognition methodology, we have built a proof-of-concept implemen-
tation in C++ using version 3.0.1 of the AT&T C++ compiler from SUN Microsystems running
on a SPARCStation model 10-30 workstation; version 1.5.1 of Spatial Technologies' ACIS c Solid
Modeling Kernel; and version 3.14 of the NIH C++ Class Library from the National Institutes of
Health. Also being employed in our development e�orts are Ithaca Software's HOOPS c Graphics
System and the Tcl/Tk embeddable command language and user interface toolkit developed at the
University of California at Berkeley.

This recognition algorithm is being incorporated into the Interactive Manufacturability Analysis
and Critiquing System (IMACS) under development at the University of Maryland's Institute for
Systems Research. Within IMACS, as illustrated in Figure 12, the role of the feature recognition
module is to produce the set of well-behaved features from the part's geometry and topology. In
the current version of the implementation, we have omitted bottom blended surfaces and some
instances of chamfer and �llet features as they were non-essential cases for current application
requirements.

The second IMACS module uses this set of features to generate and evaluate alternative oper-
ation plans for the part by incorporating precedence constraints and information about machining
parameters. The cost and time for operation plans satisfying the design requirements are used to
estimate a rating of the part's manufacturability [15].

A third module formulates redesign suggestions based on plan information and the set of well-
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Figure 16: Twelve milling features from Figure 15.

behaved features. By making modi�cations to the operations in the previously generated plans,
it creates modi�ed versions of the design that, in addition to satisfying design requirements, have
improved manufacturability [6]. The new designs are presented to the designer as alternative
possibilities to be considered.

The following examples illustrate some of the functionality of our approach:

Example 1 In the case of the part in Figure 1, the 32 o�set, accessible well-behaved features are
pictured in Figure 13.

Example 2. One of the more di�cult feature instances to recognize is that of a pocket-milled
feature whose bottom surface has been removed through interaction with other features. Fig-
ure 9(b), presents a part with interacting milling features. In this case, the bottom surface of the
pocket-milled feature has been eliminated through interaction with other features.

For this feature, the orientation is determined from the edges e1 and e2. A pro�le for the
feature is found through the projection of the part faces along the normal of the plane passing
through e1 and e2, as shown in Figure 14(a). One projection direction along the normal yields a
non-empty edge pro�le E; the location for the bottom surface of the pocket-milling feature can
then be calculated (Figure 14(b)). The edge pro�le E can then be swept to produce an instance of
a primary pocket-milling feature m1, shown in Figure 14(c).

Example 3. Figure 15 illustrates a complex solid with a variety of volumetric feature interactions.
While itself not a particularly useful component, it does present some aspects of the geometric and
topological complexities to be found in realistic components. In particular, this example has 346
faces in P and 413 faces in �. This part, considered with a rectangular block of stockmaterial, yields
106 well-behaved drilling and twelve well-behaved milling features. The twelve milling features are
shown in Figure 16.
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Figure 17: Two alternative feature-based models for the part in Figure 1(b).
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6 Feature-Based Models

As mentioned in Section 5, the features produced by the Build Features algorithm given in
Section 4 are used as input to a module that uses these features to generate and evaluate alternative
operation plans for the machining of the part. A key step in generating alternative operation plans is
to generate alternative feature-based models, which are sets of features that correspond to possible
ways to machine the part.

A feature-based model (FBM) is a �nite set of feature instances F = ff1; f2; f3; : : : ; fng (in this
case from the class of machining featuresM), that describe the volume of material to be removed
by a set of machining features to create a part P from a piece of stock S. More speci�cally, an
FBM is any �nite set of machining features with the following properties:

1. Su�ciency: the features in F describe one possible way to interpret �: S �� P �
S
f2F f .

2. Necessity: no proper subset of F contains �: for all fi 2 F; S �� P 6�
S
f2(F�ffig) f . In this

way, an FBM does not contain redundant features and each feature of F contributes to the
interpretation of the part.

3. Validity: in general, validity would require that f meet machinability requirements such
as those for accessibility, �xturability, and tolerances. However, development of a general
methodology that simultaneously considers all of these issues is beyond the scope of this
work. Thus, in this paper, we will consider a feature to be valid if it is not inaccessible as
discussed in Section 3.4, and if the volume described by f does not intersect the part P ; i.e.,
for all fi in F; fi \� P = ;.

There may be many FBMs of P and S, each corresponding to a di�erent interpretation of the part
P as a subset of the set of well-behaved features F found by Build Features. A particular F

need not model the optimal way of creating the design as there may exist many alternatives, each
corresponding to a di�erent collection of machining operations that could be used to produce the
design from a given piece of stock material.

As an example, for the part P pictured in Fig. 1(b), F contains 32 feature instances, as shown
in Figure 13. These features can be used to generate 512 di�erent FBMs for the part; Figure 17
shows the two of the possible FBMs:

F1 = fh1; h2; h3; h4; h5; h6; h7; m1; m2; m3; m4; m5; m6g

and
F2 = fh1; h2; h3; h8; h9; h10; h11; m1; m2; m7; m8; m9; m10g:

Generation and evaluation of operation plans is performed by generating FBMs and determining
possible orders in which the features in the FBM might be machined. Since each FBM is basically
an irredundant set cover of the delta volume produced from the feature alternatives, models can be
generated using variations on irredundant-set-covering techniques [34, 29], using pruning heuristics
to discard unpromising FBMs. The generation and evaluation of machining alternatives is discussed
in greater detail in [15, 13].

7 Discussion and Conclusions

In this paper, we have presented an algorithmic approach for recognition of a class of machinable
features from solid models. Potential applications for our approach include process planning, NC
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part programming, �xture design and selection, and manufacturability evaluation. We are incor-
porating this approach into a system for automatically analyzing designs and providing feedback
to the designer about their manufacturability: the IMACS design analysis and critiquing system
under development at the University of Maryland's Institute for Systems Research.

Some of the distinguishing characteristics of our approach include:

1. The feature recognition algorithm is complete over our class of features, regardless of whether
the features intersect with each other in complex ways. Knowing the limits on complete-
ness is useful for applications such as manufacturability analysis, in which determining the
manufacturability of a design may require trying many alternative feature-based models to
calculate which provide the best operation plans.

2. Our approach incorporates characteristics to aid in downstream applications such as man-
ufacturability evaluation and process planning: it handles features created by a variety of
machining operations, including drilling, milling, chamfering, blending, and �lleting; when
possible, the features recognized are o�set to account for the dimensions of the cutting tool
to be used; and inaccessible features are discarded.

3. The algorithm's worst-case time complexity is polynomial in the number of edges in the
delta volume and requires only a quadratic number of solid modeling operations. This repre-
sents an improvement over approaches that employ techniques that include exponential-time
algorithms, and those that attempt to produce all of the often exponential number of feature-
based models during the recognition phase. It should be noted that some of these existing
approaches include the complex computations related to downstream applications as part of
the recognition phase.

Some of the issues not yet addressed by this work include the following:

1. It would be valuable to investigate whether or not the completeness and complexity results
can be extended to more complex feature types (such as composite features or feature groups)
or to more diverse manufacturing domains and processes.

2. In recognizing features, our approach currently uses only geometric and topological informa-
tion. It will be important to eventually incorporate the use of information such as tolerances,
design features, functional requirements, and data relating to design history and intent.

Future goals include extending our results to include other, more complex, features; adapting the
implementation to operate incrementally (i.e., making the necessary changes to the set of feature
alternatives as the designer interactively makes design modi�cations); and exploring how to reduce
the time complexity through simpli�cation of the CAD model while still maintaining completeness.
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