THESIS REPORT
Ph.D.

Robustness Study of Free-Text Speaker

Identification and Verification

by Y-H. Kao
Advisor: J.S. Baras

Ph.D. 93-9

INIR

INSTITUTE FOR SYSTEMS RESEARCH

Sponsored by

the National Science Foundation
Engineering Research Center Program,
the University of Maryland,

Harvard University,

and Industry

Robustness Study of Free-Text

Speaker Identification and Verification
by

Yu-Hung Kao

Dissertation submitted to the Faculty of the Graduate School
of The University of Maryland in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
1992

Advisory Committee:

Professor John S. Baras, chairman/advisor
Professor Thomas Fuja

Professor Benjamin Kedem

Professor Prakash Narayan

Doctor Raja Rajasekaran

ABSTRACT

Title of Dissertation: Robustness Study of Free-Text

Speaker Identification and Verification

Yu-Hung Kao, Doctor of Philosophy, 1992

Dissertation directed by: Professor John S. Baras
Department of Electrical Engineering
Martin Marietta Chair in Systems Engineering

Usable free-text speaker identification and verification systems must exhibit
robustness under varying operational conditions. We studied the degree of ro-
bustness provided by various signal processing techniques - spectrum subtrac-
tion, bandpass liftering, RASTA filtering, ISDCN, and stereo database normal-
ization. The experiments were performed on a widely used, challenging long
distance telephone database. This database consists of data recorded at two
different sites, with data from one site much poorer in quality than the other;
further, the recording equipment had been inadvertently changed for the later
half of the sessions resulting in a significantly changed environment. Our study
identifies the combination of techniques that provides consistent and significant
improvements; our results surpass other published results on the same task. We
further verified the results on two other databases and achieved consistent im-
provements. Detailed results on exhaustive experimentation are presented along

with appropriate discussions.

Acknowledgements

There are a number of people to whom I am indebted, and whom I would like
to thank. First, there are those who had taught me and inspired me, whether
through courses, books, papers or conversations; 1 cannot possibly name them
all, but I remember every precious moment I spent with them. Without their
contributions, this work will not be possible. I would like to thank Professor
Baras, my very resourceful advisor, for his guidance and support all through
my graduate study. I would like to thank Dr. Rajasekaran, for providing the
opportunity for me to work with the speech group at Texas Instruments. This
wonderful experience made my life more productive and enjoyable. Finally, I
would like to thank my parents, for their love and encouragement. Through
life’s ups and downs, joy and pain; they showed me there is always hope and

told me never to give up. I would like to dedicate this thesis to them.

11

Contents

1 Introduction 1
1.1 Introduction« o v v v i 1
1.2 Basicproblemsin AST 2

1.2.1 Efficiency« oo oo 2
1.2.2 Feature Extraction 2
1.2.3 Distance Measures oo 3
1.2.4 Channel Normalization 3
1.2.5 Fixed-Text vs. Free-Text 4
1.3 Modeling Methodso oo 5
1.3.1 Parametric. . . .« ¢ v« o vt e e e e 5
1.3.2 Non-parametric « . v o v v ot 5
1.4 SUMIMATY .« o v v e e e e e e oo e e e e 6

2 Transformation Space 7
2.1 Decorrelation Matrix oo 7
2.2 Discriminant Matrix [9
2.3 Insufficient Training Data Problems 12

2.3.1 Sub-space Grouping Based on Human Knowledge 12
2.3.2 Covariance Pooling 14
9.3.3 Stabilization e 15

iii

3

Noise Reduction

3.1
3.2

3.3

Bandpass Filtering Is Not Enough
Spectrum Subtraction
3.21 Algorithm
3.2.2 Nonspeech Detection

Results . . . o v v e e e e e e e e e e e e e

Phonetic Segmentation

4.1
4.2

4.3
4.4

4.5

Introduction . « « v v e e e e e e e e e e e e
Algorithms oo
4.2.1 Speaker Models
4.2.2 Speaker Identification.
4.2.3 Speaker Verification.
Database . « « o v v e e e e e e e e e e e e e
Experiments and Results
4.4.1 Phonetic Segmentation
4.4.2 VQ Codebook Size
4.4.3 Featlres . . v v v v v v v o e e e e
4.4.4 Noise Reduction and Filtering
4.4.5 Speaker Verification.
DiSCUSSIONS « « v v v v v o e e e e e e e e e e e

Gaussian Mixture

5.1
5.2
5.3

5.4

Introduction . « « v v v v e e e e e e e e e e e
Model Parameters. o v v v i b e e e

Model Parameter Training Using Expectation Maximization Al-

v

18
18
18
19
20
21

6 Channel Normalization Using Stereo Database

6.1 Introduction v v v v v v v e
6.2 The Channel Model e e e e e e e e
6.3 Stereo Databaseo
6.4 SNR Dependent Normalization
6.5 Codeword Dependent Normalization
6.6 Results and Conclusions o

7 Bandpass Liftering

71 Introduction o o oo
7.2 Bandpass Liftering« ..o
7.3 Results and Conclusion

8 RASTA Filtering
81 Introduction « v v v v v v i e
8.2 RASTA Filtering o oo v v v oo
8.3 Scallergrams v v o v o v e

8.4 Results and Conclusions o« o oo

9 ISDCN
9.1 Introduction ¢ o v v vt it
0.2 ISDCN . . . e
9.3 Results . . .« v v v e e e e e

10 Results
10.1 Database . . v v o v v e e e e e e e
10.2 Speaker Identification
10.3 Speaker Verification oo

10.4 Discussion and Conclusions« .o

41
41
41

45
47
47

49
49
51

54
54
54
56
69

11 Speaker Verification 86

11.1 Introduction « « v v i 86
11.2 Speaker Verification. e e 87
11.3 Results and Motivation 88
11.3.1 Database oo 88

11.3.2 Experiments«o 39

11.4 Relative Ranking o oo 90
11.5 COMPATISOTL . « « v v v v v v e e oo e e 92
11.6 DISCUSSION .« « v v v v o e e e e e e e e 93

A Linear Predictive Analysis Frond End 101
Al LPCFront End oo 101
A.2 Durbin’s Algorithmo 103
A.3 Cepstral Coefficients 104

B Frequency Warping 107
B.1 Digital Warping of Spectra 107
B.2 Digital Warping of Spectra by Time Domain Filtering 109

C Phonotactic Grammar For Phoneme Recognition 111
C.1 Imtroduction v v v v v e 111
C.1.1 general_phonotactic 112

C.1.2 background 112

C.1.3 syllable 112

C.ld onset . . v v v v e e e e e e e 113

C.1.5 nucleus. . . v v v v v e e 114

C1.6 coda . . v v v i e 115

C.1.7 suffix o 116

vi

C.1.8 consonants

vil

List of Figures

3.1

4.1
4.2

4.3

6.1
6.2
6.3

7.1
7.2

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

Recognition rate increases as input utterance length increases

Recognition rate vs. input utterance length.
Recognition rate vs. input utterance length for different VQ code-
boOK SIZES . &+ v v v e e e e e e e e e e e e

Open set speaker verification ROC

Cepstrum after channel effect
Sennheiser microphone waveform

Crown microphone waveform.

Variance analysis for cepstrum L e e

Bandpass liftering window

Frequency response of RASTA bandpass filter
The idea of RASTA filtering
The computation of cepstrum
baseline, Deviation = 210.5
RASTA, Deviation = 163.6
baseline, Deviation = 1305.2
RASTA, Deviation = 124.1
baseline, Deviation =103.3

RASTA, Deviation =32.3

viil

51
52

55
56
56
59
59
59
59
60
60

8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19
8.20
8.21
8.22
8.23
8.24
8.25
8.26
8.27
8.28
8.29
8.30
8.31
8.32
8.33
8.34
8.35
8.36

baseline, Deviation = 200.5 60
RASTA, Deviation =51 60
baseline, Deviation = 37.7 61
RASTA, Deviation =21 61
baseline, Deviation = 44.8 61
RASTA, Deviation = 18.7o v 61
baseline, Deviation =324 62
RASTA, Deviation =19.2 o 62
baseline, Deviation =31 62
RASTA, Deviation =16.4 62
baseline, Deviation =29.3 63
RASTA, Deviation =13.4 63
baseline, Deviation =21 63
RASTA, Deviation = 10o 63
baseline, Deviation = 27.5« ... 64
RASTA, Deviation =14.6 64
baseline, Deviation = 31.7 64
RASTA, Deviation =13.2o 64
baseline, Deviation =19.9 65
RASTA, Deviation = 10.4 oo 65
baseline, Deviation = 19.1 65
RASTA, Deviation =8« oo 65
baseline, Deviation = 12.2 66
RASTA, Deviation =6.9 66
baseline, Deviation = 10.6 66
RASTA, Deviation =5.9 oo 66
baseline, Deviation = 11.7 67

1X

8.37 RASTA, Deviation = 5.6 v o v v oo 67

8.38 baseline, Deviation =8.9o 67
8.39 RASTA, Deviation =4.8 oo 67
8.40 baseline, Deviation =6.2 68
8.41 RASTA, Deviation = 3.1 oo 68
8.42 baseline, Deviation = 6.6 68
8.43 RASTA, Deviation =3.3« o oo v oo v 68
8.44 unadjusted and adjusted deviation ratios 70
10.1 Typical waveform of San Diego data 78
10.2 Typical waveform of Nutley data 78
10.3 ROC for 26 San Diego speakers 82
10.4 ROC for 25 Nutley speakers 83
10.5 ROC for combined 51 speakers. 84
11.1 Absolute score threshold vs. relative ranking threshold 96

11.2 True speaker rejection and impostor acceptance vs. threshold,
using absolute threshold value to decide reject / accept 97

11.3 Zoom inof Figure 11.2 oo oo 97

11.4 ROC plot of Figure 11.2, Prob(detection) vs. Prob(false alarm) 98

11.5 ROC plot using “relative ranking” approach 98
11.6 baseline, equal error rate 13% vs. 5.5% 99
11.7 bandpass liftering, equal error rate 12% vs. 2.5% 99
11.8 RASTA, equal error rate 21% vs. 6% 100
11.9 BPL + RASTA, equal error rate 18% vs. 2.56%.. 100
A.l Cepstrum analysis oo e 106
B.1 Frequency vs. warped frequency 110

B.2 Spectrum before and after warping

x1

List of Tables

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4

5.1

5.2

5.3

5.4

5.5

5.6

5.7

Identification results before noise reduction, within the great divide
Identification results before noise reduction, across the great divide

Identification results after noise reduction, within the great divide

Identification results after noise reduction, across the great divide

Identification results: 26-speaker San Diego data, noise reduced
Identification results: 51-speaker complete data, noise reduced .
Identification results: 26-speaker San Diego data

Identification results: 51-speaker complete data

Identification results using Gaussian mixture, within the great
divide e
Identification results using Gaussian mixture, across the great
divide e e
Identification results using VQ, within the great divide
Identification results using VQ, across the great divide
Identification results using Gaussian mixture, after ISDCN, within
the great divide
Identification results using Gaussian mixture, after ISDCN, across
the great divide e
Identification results using VQ, after ISDCN, within the great
divide e

X1i

o
[y

o
Pt

37

38

38

38

39

39

5.8 Identification results using VQ, after ISDCN, across the great divide 40
6.1 Identification results of baseline vs. SDN vs. CDN 48
7.1 Identification results before bandpass liftering, within the great
divide o e e e 52
79 Identification results before bandpass liftering, across the great
divide e e e e e e 53
73 Identification results after bandpass liftering, within the great divide 53
74 Identification results after bandpass liftering, across the great divide 53
8.1 Deviations from line : £ = y before and after RASTA 69
8.2 Identification results of baseline vs. SDN vs. CDN vs. RASTA . 70
9.1 Identification results, baseline, within the great divide T4
9.2 Identification results, baseline, across the great divide 75
9.3 Identification results, ISDCN, within the great divide 75
9.4 Identification results, ISDCN, across the great divide 75
9.5 Identification results, noise reduction and ISDCN, within the
great divide oo 76
0.6 Identification results, noise reduction and ISDCN, across the great
divide e 76
9.7 Identification results, bandpass liftering, noise reduction and IS-
DCN, within the great divide 76
0.8 Identification results, bandpass liftering, noise reduction and IS-
DCN, across the great divide. 76
10.1 Identification results: Within the great divide 79
10.2 Identification results: Across the great divide. 80

x1i1

10.3 Comparison between the best published result and BPL & RASTA 80

11.1 Sorted scores before and after RASTA filtering 91
11.2 Train on true speaker utterancés, test on impostor utterances. . 94
11.3 Train on true speaker utterances, test on true speaker utterances 94

11.4 Train on impostor utterances, test on impostor utterances . . . 95

X1v

Chapter 1

Introduction

1.1 Introduction

The purpose of AST (Automatic Speaker Identification) is to output the identity
of a person based on this person’s speech data. While fingerprints or retinal
scans are usually more reliable than ASI, ASI has the convenience of easy data
collection over the telephone.

There are two sources of variation among speakers : 1) Difference in vo-
cal cords and vocal tract shapes; 2) Difference in speaking styles. There are no
acoustic cues specifically or exclusively dealing with speaker identity. Most of the
parameters and features used in speech analysis contain information useful for
the identification of both speakers and spoken messages. ASI can be categorized
into two cases : text-dependent and text-independent. In the text-dependent
case, we can obtain the features attached to a specific sound (e.g. phoneme)
and the remainder of the identification process is just template matching. In the
text-independent case, we usually use long-term statistics averaged over whole
utterances. The text-independent case, which is the object of this thesis, i1s par-
ticularly important, because ASI usually deals with un-cooperative situatiqns,

where it is impossible to ask the person being tested to speak a particular text.

1.2 Basic problems in ASI

1.2.1 Efficiency

In theory, a speaker recognizer could be as simple as a large dictionary where
each entry is a stored waveform associated with a speaker identity. Given an
input utterance, the dictionary would be searched to find an exact match (or
a close match), and then the system can output the corresponding identity.
However, this is impractical due to the enormous memory and computation
required. We need to reduce the amount of data and the computational com-
plexity to make ASI practical. These problems are solved by feature extraction

(Section 1.2.2) and speaker modeling (Section 1.3).

1.2.2 Feature Extraction

To reduce the amount of data, we need to extract features instead of using
raw speech waveforms. However, it is not currently known what features carry
speaker-dependent information. There is no simple answer to this question.
Since we know that people have different vocal cords and vocal tracts, formant
frequencies and linear predictive coefficients (LPC, LSP, cepstrum, mel-cepstrum
...) provide some initial good candidates. Besides extracting useful features, in
order to improve performance, we also have to find out which features have
“better discriminating ability”. There are ways to “rank” features according to
their “effectiveness” in classification [6] [23] [9]. Evaluation of the effectiveness
of cepstral coefficients can be found in Chapter 7, Figure 7.1.

We found that the LPC cepstrum coefficients give us the best performance;

the description of our LPC front end can be found in Appendix A.

o]

1.2.3 Distance Measures

In a classification task, after the features are extracted, we need to define a
distance measure. Actually, this step is inseparable from feature extraction.
The effectiveness of a feature depends on the distance measure and
vice versa. For example, Euclidean distance or other more complicated dis-
tance measure (Chapter 2) are used in non-parametric classification (e.g. vector
quantization); however, in parametric modeling the underlying pdf is often used

(Chapter 5).
1.2.4 Channel Normalization

Because ASI data are often collected via telephone, and different handsets have
different responses and noises, we need to find ways to offset these undesirable
effects. This is important in order to obtain a robust ASI algorithm. To offset
linear response, we can either choose features invariant to it [11] or compute
offset values [22]. To remove noise, we can find a noise model for a particular

channel and then try to remove the noise according to this model [12].

We devoted most of this thesis in addressing this problem. Without channel
robustness, ASI is useless in real world applications - where the most potential

of ASI technology can be expected. We studied the following techniques:

Noise reduction (spectrum subtraction): Chapter 3.

o Normalization using stereo database training: Chapter 6.

Bandpass liftering: Chapter 7.

RASTA filtering: Chapter 8.

e ISDCN: Chapter 9.

We found that the stereo database technique is very useful in channel nor-
malization; however, it is not usually available. Noise reduction helps in some
cases (King database, 26 San Diego speakers) but hurts in others (for speech
data with either very good or very bad qualities it does not predict the noise
well and will degrade recognition performance). Bandpass liftering and RASTA
filtering not only give us significant and consistent improvement on the three
databases (King, Total voice, and CSR) we evaluated, but they are also the
easiest (ideas are simple and computation is low). ISDCN gives us consistent
improvement, but not significant. Compared to bandpass liftering and RASTA

filtering, the “price performance” of ISDCN seems low.

1.2.5 Fixed-Text vs. Free-Text

Most speaker identification / verification systems use fixed-text mode, because
fixed-text mode has higher identification accuracy. However, our requirement is
free-text mode. We investigate the idea of “converting” free-text mode to fixed-
text mode by automatic phonetic segmentation (Chapter 4). Our investigation

showed inconclusive results:

e Detailed phonetic segmentation performed worse than no phonetic seg-

mentation.

e Broad class phonetic segmentation performed as well as no phonetic seg-

mentation.
The results suggest two problems that need further study:

1. The accuracy of phonetic segmentation should be improved.

4

2. Training data for each phonetic class may be insufficient.

1.3 Modeling Methods

1.3.1 Parametric

Features can be assumed Gaussian distributed, speaker models can be built by
training the mean and covariance of the distribution for each speaker (Chap-
ter 5). After the models are built, the classification is simply to compute a score

(e.g. log likelihood) with respect to each speaker model:

Score; = (1 — a)COV(Z;, S) + aMEAN(p;, 2;) (1.3.1)

Here the COV term is proportional to the log likelihood of observing the data
(with mean removed) under the assumption that the data is Gaussian distributed
with covariance ¥;. The MEAN term is the log likelihood of observing = given
model j is true. (S is the sample covariance and z is the sample mean, ¥; and

i; are the covariance and the mean of speaker model j, [11]).

Parametric modeling is used in Chapter 5 only; all other results are based

on VQ.
1.3.2 Non-parametric

The advantage of non-parametric approaches is that they do not assume any
particular distribution (any such assumption can be wrong). The disadvan-
tage is that they are more susceptible to noise and linear distortion. Vector
Quantization is the most widely used approach; however, there are many vQ

structures, from the classic LBG [18] [10] to tree structure [6] (9], plus some

other modifications ([7] ...). Examples using this approach can be found in [25]
and [14].

Classic VQ faces the high computational complexity problem. Tree struc-
tured VQ is efficient in computation and needs very small space to store clas-
sification rules. However, when a new speaker is enrolled, rules have to be

re-computed, which is very expensive in computation.

1.4 Summary
This thesis has the following components :

e Database: Three databases are evaluated:

— King: telephone quality, Section 10.1.
— Total voice: telephone quality, Section 11.3.1.

— CSR (part): studio quality, stereo recording, Section 6.3.

Robustness: As described in Section 1.2.4, Chapters 3, 6, 7, 8, and 9.

Modeling: Gaussian Mixture vs. VQ, Chapter 5.
¢ Phonetic segmentation: Chapter 4.

e Speaker verification: Speaker verification is more useful than speaker iden-
tification in real world applications. We dedicate Chapter 11 to describe
the difference between verification and identification, and address some
facts that we have learned from the study of the identification problem

and apply them to the verification problem.

Chapter 2

Transformation Space

2.1 Decorrelation Matrix

First we consider the within class distribution; the ideal feature vector should
not have redundancy in representing signal. Suppose p is the parameter vector.
Its components may be correlated, but we don’t want redundancy among these
components, so we use a linear transformation matrix to map this parameter
vector (with correlated components) into a feature vector (with uncorrelated
components).

In the following we describe how we compute this decorrelation transforma-
tion matrix. Suppose 7 is the parameter vector with correlated components,

and [C] = E[ppT] is the within class covariance matrix. First we compute the

eigenvalues and eigenvectors of [C], Ai and €,Vi=1,---,n,
([C] = X[Ihe; = 0 (2.1.1)
[Cle: = A€ (2.1.2)
[CllEii6s -+ &] = [Eri€r---Eal[A] (2.1.3)

where

A 0 0
w=|o o (.14
[e]” = [1i&; - &) (2.1.5)
Then, using [¢] = ([e]")™",
[Clle}" = [[A] (2.1.6)
(IO = [A] (2.1.7)
€] [CTle) = [A] (2.1.8)

Suppose ¥ = [¢] p is the transformed feature vector, then
E[557) = E(le] f(le] ") = Elle] 55" [e]"] = [€)[C1] = [A] (2.1.9)

Up to here, we have the decorrelation transformation matrix, [¢], which can
convert parameter vectors p into feature vectors ¥, and the feature vectors have
a diagonal covariance matrix [A]. Furthermore, we can modify the transforma-
tion to make the covariance matrix an identity matrix [/]. Suppose the new

transformation is [X] = [A~%/?] [¢], where

JIM 0 0 -
(A7) = 0 W0 e (2.1.10)
0 0 1/ -

Then ¢ = [X]p, and
E[w57] = E[A™Y [l 57 [e]” (A7) = [(AT/2AATA = 1] (2.1.11)

We thus obtain the transformation [X] = [A~!/?][¢] which maps parameter

vectors into feature vectors with uncorrelated components, and unit variances

for all components.

2.2 Discriminant Matrix

After considering the within class distribution to remove the redundancy in
signal representation, we now consider the inter class distribution because our
goal is to discriminate between classes. Decorrelation only removes redundancy
in signal representation. Since our goal is to discriminate between different
classes, we need to find out which of the decorrelated components contribute
more to discrimination. This will help us to construct the best feature space for
discrimination.

After decorrelation, all dimensions have equal weights (unit variances), which
means that we give each dimension equal significance regarding the distance
measure (using Euclidean distance), which is not necessarily the optimal feature
space regarding the discrimination problem at hand. There are several ways to
solve this problem. Usually one selects those dimensions with large eigenvalues,
because the eigenvalue is the variance of that dimension, and from the view
point of information theory, those dimensions with large variances usually carry
more information. However, this is not necessarily true. It is possible that large
variances are due to large noise, and we may want to choose those dimensions
with small variances, because they are stable and thus can reliably represent sig-
nal information. This later choice also has a serious problem: although stability
is a good property, what if the corresponding dimensions don’t discriminate?

Stable but non-discriminating features are useless!

That is why we need to consider the inter class distributions, we let the

statistics decide the best feature space. Here is how we do it:

Suppose [C,] is the inter class covariance matrix, and [X] is the decorrelation
matrix derived in the previous section. First we compute [C}] = [X][C:][X 17,
and then perform eigen-analysis on [C1], to obtain the eigenvalues A7 and the
eigenvectors €7, Vi = 1,---,n. We define matrices [A;] and [g;] similarly as in
the previous section. The final discriminant matrix is [Xa] = [e2][X]. We can
factor it into [D][V], where [V] is normalizing each row of [X4], and [D] is a

diagonal matrix with the length of each row as diagonal entries.

This discriminant matrix [Xj] has two desirable properties :

e For within class parameter vectors p,

E(XJF([Xdp)"] = Elle)(X1507[X]"[e2]"] (2.2.12)
= [eIXICNX] e (2.2.13)
= [e)l)e)T = 1) (2.2.14)

e For inter class parameter vectors 7,

E[XJ7(XJPT] = Elle](X]7 [X])[e:]"] (2.2.15)
= [e]XNCAX) e (2.2.16)
= [e[Callea)” = [As] (2.2.17)

As shown, this discriminant matrix in addition to decorrelating the within class
parameters, also identifies the discrimination ability of each dimension. Indeed
the covariance matrix of the transformed, inter class parameter vectors is (A,
and a feature dimension with associated large variance means that this dimen-

sion is wide spread, therefore it has good discrimination ability. Consequentially

10

we can choose dimensions with large A?’s, and construct the best discriminant
space.

Below we discuss some motivation insights and justify the use of the discrim-

inant matrix as described above:

1. Why do we want the feature vectors to have uncorrelated components?
Because we want to remove the redundancy in signal representation. For
a typical distance measure, say Euclidean distance, we sum the square of
the differences of each component. If the components are correlated, then
this summation does not accumulate independent information properly. It
is just like covariance weighted distance : (Z — TS~ — §) with respect

to Buclidean distance : (£ —)7 (Z — 7).

9. Why do we normalize the variances of all dimensions into unity (in the
decorrelation matrix derivation)? Because we want a fair comparison in
X¥’s (inter class variances) in the discriminant matrix computation. Di-
mensions with large within class variances (A;’s) will tend to have large
inter class variances (A\¥'s); in this case, a large A} does not represent bet-
ter discrimination ability, because its corresponding large A; (within class
variances) means it is unstable, and this will hurt discrimination. In order
to have a fair comparison among the A?’s, we have to first normalize all

within class variances to be the same.

3. Why do we want to choose those dimensions with large inter class vari-
ances (A\?’s)? This is obvious; components with large inter class separation
can discriminate better. Usually the more information we have, the better

the performance will be. So why not use all the dimensions? Based on

11

experiments, we know that as the information amount (the number of pa-
rameters) increases, the performance will not increase indefinitely. Instead,
it will reach a maximum and then decrease. The reason for this is that
after a certain point contaminated information is used. This provides the
reason for using the discriminant matrix: to keep only good information

and throw away bad information.

After all the derivations, the idea behind this discriminant matrix is very
simple : suppose [C] is the within class covariance matrix, and [C.] is the inter

class covariance matrix, we just want to maximize :

[Cs]
[C]

(2.2.18)

2.3 Insufficient Training Data Problems

2.3.1 Sub-space Grouping Based on Human Knowledge

Usually we need an amount of data equivalent to 10 times the dimension of
training data to compute reliable statistics, e.g. to compute a 10 * 10 covariance
matrix, we need at least about 100 vectors (dimension 10) of training data.
However, enough training data are not easy to get in real applications. When
we don’t have enough training data, human knowledge is very important in order
to control the disturbances in empirical statistics caused by insufficient training
data.

For example, in the computation of the decorrelation matrix, if we have
enough training data, we can input all dimensions into the computation, and
then the covariance matrix will designate what dimensions correlate with each

other. However, if training data are insufficient, then it is very likely that

12

the covariance matrix will have non-zero entries where those dimensions don’t
correlate. These errors are caused by insufficient training data.

One simple way to fix this problem is to decorrelate only those dimensions
that are likely to be correlated. For example, if we have both spectrum coef-
ficients and absolute energy in our parameters, we should not put them into a
decorrelation computation together, because the spectrum coefficients are nor-
malized, so they are not likely to be correlated with absolute energy. If we
compute their covariance values without any rationale, then we are likely to
get non-zero values between uncorrelated parameters due to insufficient train-
ing data, and these erroneous non-zero covariance values will hurt the good
statistics.

The idea is to select a sub-space that is likely to contain correlated dimen-
sions, based on knowledge, and then perform decorrelation in this sub-space
only. Suppose the full covariance matrix of the whole parameter space is [C],
dimension 10 * 10, but we know that the first 5 dimensions are independent of
the last 5 dimensions. Therefore we want to decorrelate these two sub-spaces
separately. We can define a pre-transformation matrix selecting the first 5 di-

mensions :

1 00000O0O0COTO0O
01 0000O0O0CO0®O
[A]=]0010000000 (2.3.19)
0001000000
0000100000
First we compute,
[C1 = [P)[CIA) (2.3.20)

which is the covariance matrix of the subspace, then we perform eigen analysis

13

on [C'], and get eigenvector matrix [¢], and eigenvalue matrix {A]. Then the

transformation matrix

[X1] = [A™Y?)[e][P] (2.3.21)

will transform the first 5 dimensions into uncorrelated, unit variance features.

Similarly, we can compute the transformation matrix for the last 5 dimen-

sions, simply by replacing the pre-transformation matrix with,

0000010000
0000001000
(P]=]0000000100 (2.3.22)
0000000010
0000000O00O0O!

Suppose the transformation matrix is [Xo], then appending [X3] to [X1], results
in a 10 * 10 transformation matrix, which decorrelates only within each sub-
space.

The pre-transformation matrix can be made to not only select a sub-space,
but also transform the space. The decorrelation can be performed in a cas-
cading fashion, using human knowledge and experiences, to construct the best

transformation matrix under the constraint of limited training data.

2.3.2 Covariance Pooling

Sometimes the number of training instances is even less than the dimension of
the parameter vector; thus the covariance matrix is not even positive definite
(singular). In that case, we can pool (average) many singular matrices to form
a pooled matrix, and usually this pooled matrix is non-singular and has all

positive eigenvalues. Even if the matrix is positive definite, by pooling matrices

14

we typically can get better estimates.

This situation often occurs when we compute within class covariance ma-
trices, as the number of classes increases, because the amount of training data
is fixed, so the training data falling into a particular class decreases. When
the training data is not enough to form a non-singular matrix, we can pool all
the within class covariance matrices and usually get a non-singular matrix. Co-
variance pooling not only solves the singular matrix problem, it also has good
physical meaning interpretation : averaged covariances can smooth out distur-

bances and give a good estimate of the covariances among all those parameters.

2.3.3 Stabilization

Covariance pooling is not the only way to solve the singular covariance matrix
problem, with a little twiddling, we can convert a singular matrix into a non-
singular matrix and still retain the property of the original matrix without too
much distortion.

First we need to understand the effects of scalar multiplication and identity
addition to the eigen-analysis of a matrix. Suppose an eigenvalue and eigenvector
of the matrix [C] are A and € And suppose Ao and €, are the eigenvalue and

eigenvector of a[C].

(@[C] = AalI])Ex =0 (2.3.23)

Let Ay = aX, then

(afC] — NI} = O (2.3.24)

15

Therefore,

Ao = aX = al

Next, suppose \s and &3 are the eigenvalue and eigenvector of [C] + B[I],

([C1+ BlI] = Ag)es =

([C1= (s —B])Es =

Let X = \g — 3,

([C1=X[I])és =0

Therefore,

L]
Qi
i
oy

M=N+B=r+0

(2.3.31)

(2.3.32)

(2.3.33)

Based on these simple computations, if we have a covariance matrix [C], which

has some negative eigenvalues, or we are not very confident about because of

insufficient training data, we can modify it into a[C]+(1 —a)[/]. Its eigenvectors

16

will be the same, and eigenvalues will change to a) + (1 —). For A =1, there
is no change, but for A < 1, the changed eigenvalue becomes larger, while for
X > 1, it becomes smaller. That means outliers are modified towards 1, thus

stabilizing the covariance matrix.

17

Chapter 3

Noise Reduction

3.1 Bandpass Filtering Is Not Enough

For telephone speech data sampled at 8 KHz (4 K spectrum), we usually use
300 to 3300 Hz bandpass filtering to remove noises outside the normal human
speech spectrum. However, bandpass filtering can only handle noises with spe-
cific frequency ranges, e.g. 60 Hz static humming. To deal with more diffusive
(white) noises, as in our case, simple filtering based on frequency contents won’t
work. We have to model the noise differently, therefore we choose the spectrum

subtraction approach (5].

3.2 Spectrum Subtraction

We use the following assumption to develop this algorithm: the background
noise is acoustically or digitally added to the speech. The noise environ-
ment remains stationary (at least in a short time sense) so the noise spectrum
can be estimated from the nonspeech period just before the speech begins. For
a slowly varying nonstationary noise environment, we can use a speech detector
to decide when to use the data to model the noise, and when to subtract the

noise from the noise inflicted speech.

18

3.2.1 Algorithm

1. Input speech frame, 256 samples per frame, shifted by 128 samples; so half
of the frame is overlapped with the previous frame. Multiply by Hanning

window to smooth the frame.
2. FFT the windowed signal to compute the complex spectrum.

3. Compute the energy magnitude and phase of the spectrum. In the follow-
ing steps, we want to modify the energy but save the original phase for

IFFT reconstruction.

4. Subtract noise energy profile from the energy of the signal, where the noise
energy profile is updated from time to time to accommodate possible time

varying noise.
5. Half wave rectification: Set those coefficients with negative energy to zero.

6. Residual noise reduction: In each frequency bin, if the energy is smaller
than the maximum of the noise estimate, then it is very likely to be noise.
We set its value to be the minimum in its time neighborhood. The rationale
behind this smoothing is as follows: If it is noise, then it is likely to be a
burst, setting it to be the minimum within its neighbors will remove this
burst; if it is speech, then it will be stable for more than one frame, setting

it to be the minimum within its neighbors will still retain its value.

7. Nonspeech test. If it is nonspeech, then update the noise energy profile,
and further attenuate the energy. Nonspeech detection is the most difficult
step.

8. (Optional) Bandpass filtering.

19

10.

11.

Use the modified energy and original phase to reconstruct the complex

spectrum.
IFFT on the complex spectrum to reconstruct the time signal.

Overlap addition with the previous frame to compute the output signal.

Note that the Hanning window overlapping is equivalent to the original.

Since we have spectrum values in the middle of the processing, it is very easy

to do bandpass filtering - simply attenuate the values at those unwanted bands.

3.2.2 Nonspeech Detection

Because the noise level can vary a lot, any fixed threshold algorithm will not

work well. One reliable way to check for noise is using a “two-pass” approach.

The first pass scans the signal and builds the histogram of {rame energies, decides

the noise level; then the second pass performs the noise subtraction.

. Compute energy of each frame.

. Sort.

Pick the value at 20th percentile as the threshold.

Designate those frames with energy larger than 2 * threshold as well as
their neighbors with energy larger than 1.5 * threshold as speech frames.

Designate the others as nonspeech frames.

The rationale behind this algorithm is that speech frames are likely to be

continuous, so we choose those frames with large energy and their neighbors as

speech.

20

3.3 Results

We refer to section 4.3 for a detailed description of the test database used. We

compared results before and after noise reduction, for both within and across

the great divide. The results are on King database, 26 San Diego speakers.

e No noise reduction: Table 3.1 and Table 3.2.

training session | test session | recognition rate
123 4 18/26
123 5 19/26
678 9 24/26
678 10 24/26
B average ‘ 81.7% |

Table 3.1: Identification results before noise reduction, within the great divide

training session | test session | recognition rate
678 4 2/26
678 3 4/26
123 9 1/26
123 10 2/26
B average | 8.7%]

Table 3.2: Identification results before noise reduction, across the great divide

e After noise reduction: Table 3.3 and Table 3.4.

training session | test session | recognition rate
123 4 25/26
123 5 25/26
678 9 23/26
678 10 23/26
| average | 92.3% |

Table 3.3: Identification results after noise reduction, within the great divide

As we can see in the Tables 3.1, 3.2, 3.3, and 3.4, noise reduction improves

the performance in the case of “within the great divide”; however, in the “across

21

training session | test session | recognition rate
678 4 2/26
678 5 2/26
123 9 2/26
123 10 2/26
[average l 7.7% |

Table 3.4: Identification results after noise reduction, across the great divide

recognition rate

1 T 1 T T T
0.9
0.8
0.7
0.6
0.5
0.4
0.3 26 speakers, noise reduction ——
51 speakers, noise reduction ——
02 26 speakers, baseline —
0.1 51 speakers, baseline - - - - |
0 | | ! 1 I
0 10 20 30 40 50 60

utterance length (sec)

Figure 3.1: Recognition rate increases as input utterance length increases

the great divide” case, performance is still very poor. We need to use channel
normalization techniques to deal with this problem. Figure 3.1 shows that the
recognition rate increases as input utterance length increases; it includes the
complete 51 speakers result. Note that the utterance length includes silence;

and for the King database, about half of the materials are silence or nonspeech.

22

Chapter 4

Phonetic Segmentation

4.1 Introduction

In this chapter we present the results of experimental investigations into several
aspects of free-text speaker identification and speaker authentication using a
long-distance telephone database, described in [11]. Specifically, the following
speaker identification experiments were carried out to analyze the effects of the

following;:

1. Using phonetic segments provided by a speaker independent recognizer.

2. Using broad phonetic class segments, obtained by pooling classes from the

segments used in item 1 above.
3. VQ codebook size for the feature vector.

4. Using various parameters as feature vectors: log area ratios, LPC cepstral

coefficients, and reflection coeflicients.

5. Noise reduction including bandpass filtering.

Open set speaker verification was carried out using broad phonetic class

speaker models along with noise reduction.

23

We conducted experimental investigation of free-text speaker identification
methods based on long-term statistics with widely-used long distance telephone
database [11]. On a 26-speaker subset, we obtained an average correct identi-
fication of 93.3%. On the complete 51-speaker set, we obtained 67.6% correct
identification. Our speaker verification experiments on the database provided
receiver operating characteristics (ROC) comparable to or better than the ones

available in open literature.

4.2 Algorithms

4.2.1 Speaker Models

A speaker model consists of one or more vector quantization (VQ) codebooks
of a speech parameter vector (for example, LPC cepstral coefficients) derived
from the training utterances of the speaker. A single codebook is used when no
phonetic hypotheses are to be exploited; all non-speech frames are eliminated by
energy thresholding, and the speech frames are utilized to build the VQ code-
book. Multiple codebooks are used for phonetic hypothesization experiments.
The untranscribed training utterances are segmented by a speaker-independent
continuous speech recognizer into phonetic categories. A 'V Q codebook for each
phonetic category (or broad phonetic category) is built from the corresponding
phonetic segments. A phonotactic grammar was used to improve the perfor-
mance of the phonetic hypothesization, Appendix C. Phonetic models used in
the recognizer were derived from the Voice Across America (VAA) database

described in [28].

24

4.2.2 Speaker Identification

For our non-phonetic method (single VQ codebook speaker model), each frame
of the test utterance is first classified as speech or non-speech; then the features
of the speech frames are compared with the model of each of the speakers in
the population to generate the distance score (distortion) for each candidate
speaker according to a pooled speaker discrimination metric (refer to Chapter 2).
The candidate speaker with the least accumulated distortion is declared as the
identified speaker. The pooled speaker discrimination metric is derived from
the training data by maximizing the F-ratio to improve separability between
speaker classes (Chapter 2). We also developed an alternative method employing
a speaker-independent continuous speech recognizer, whose output consists of
hypothesized phonetic segments. The frames of speech from a phonetic category
is compared with the candidate speaker model for that category as per the
pooled speaker discrimination metric. Thus, a distortion for each of the observed
phonetic categories in the utterance is calculated. These distortions are summed
(it is possible to do so in a weighted manner; but this was not done) over all
observed phonetic categories to provide the total distortion for each candidate
speaker. Again, the candidate speaker with the least distortion is declared as

the identified speaker.

4.2.3 Speaker Verification

VQ speaker models described in Section 4.2.1 were used along with Euclidean
distance as the metric. We chose not to use the pooled speaker discrimination
metric because it would have provided an unfair statistical knowledge of the

impostors. In this paradigm, half the population (by choosing alternate speak-

25

ers) was used as impostors, and the target speaker and “normalizing” speakers
came from the other half. The total distortion over the input test utterance
is computed for the target speaker as well as for each of the “normalizing”
speaker. If the total distortion provided by the target speaker is lower than that
of the “normalizing” speaker models, the test utterance is verified as belonging
to the target speaker; otherwise the test utterance is declared as belonging to

an impostor.

4.3 Database

The database utilized in this study is the digitized subset of speech data collected
in 10 sessions from 51 speakers, speaking on several topics (so that the speech is
natural) over a long distance telephone line. Of the 51 speakers, 26 were based
in San Diego, CA, and 25 in Nutley, NJ. The data from Nutley speakers were
considerably noisier than that from San Diego speakers. Further, the equipment
used for recording had changed from session 6 onwards, establishing a division
of the database into two portions - sessions 1 through 5 (Divl), and sessions
6 through 10 (Div2). The nominal duration of the utterances in each session
was about 45 seconds; when non-speech frames were eliminated, the average
duration of the speech segments was about 23 seconds. When the speaker-
independent continuous speech recognizer with the phonotactic grammar was
used, and non-phonetic categories (silence, background, inhalation, exhalation
etc.) were eliminated, the average duration of the speech segments was only
about 29 seconds. Our experiments were conducted for both the 26-speaker
(San Diego) subset and the total 51-speaker set. Training and test material

were mostly restricted to Divl or Div2 (within the “great divide”). We describe

26

in Chapter 10 our complete experiments including both “within” and “across”

the great divide.

4.4 Experiments and Results

4.4.1 Phonetic Segmentation

Previous published research [8] [19] [24] and informal discussions with various
speech researchers in this area provided a mixed review of the value of auto-
matic phonetic segmentation. This observation, along with the belief that the
act of converting free, unknown text to known, but unfixed text (performed
with acoustic consistency) should help, motivated us to investigate this aspect.
Allowing 49 phonetic categories, with a 10-element VQ codebook for each cat-
egory (20 LPC cepstral coefficients), as the speaker model, an average correct
speaker identification of 89.4% was obtained for the 26-speaker (San Diego) set;
over all the 51 speakers, it was 63.2%. By collapsing the phonetic categories
into 11 broad classes, and retraining the 10-element VQ codebook for each of
the 11 classes, an improved average recognition of 93.3% was obtained for the
26-speaker set; an average recognition of 67.6% resulted for the 51-speaker data.
When no phonetic marking was used with a 110-element VQ codebook, the re-
sults were nearly identical to that of broad phonetic class method, and .better
than that of detailed phonetic marking (49-category), the results are shown in
Tables 4.1 and 4.2.

Figure 4.1 shows the correct speaker identification rate as a function of input

speech durations (including non-speech).

These above results were based on data where noise suppression was used

(refer to Chapter 3).

Session No. | No. of speakers correctly identified
Training [Test | A | B | C
1,2,3 4 25 25 24
1, 2,3 5 24 24 24
6,7,8 | 9 | 24 24 33
6,7, 8 10 24 24 22
Average 93.3% | 93.3% 89.4%

e A : Non-phonetic
¢ B : Broad Phonetic (11 classes)

e C : Detailed Phonetic (49 phones)

Table 4.1: Identification results: 26-speaker San Diego data, noise reduced

4.4.2 VQ Codebook Size

With non-phonetic models, the codebook size was varied between 5 and 110.
The performances were virtually identical for codebook sizes of 25, 55 or 110.

With a codebook of size 10, it was noticeably worse, Figure 4.2.

4.4.3 Features

The effect of using various speech parameters for speaker identification was
studied with the detailed phonetic model approach. LPC cepstral coeflicients
of dimension 20 yielded 89.4%, 10-th order log area ratio coefficients 86.5% and
10-th order reflection coefficients, 83.7% for the 26 San Diego speaker exper-
iments. For the total 51-speaker experiment, the corresponding performances
were 63.2%, 61.3%, and 59.3% respectively. All other results presented in this

thesis were obtained with LPC cepstral coeflicients.

28

Session No. No. of speakers correctly identified
Training | Test A | B | C
1,2,3 4 36 36 34
1,2,3 5 31 34 31
6, 7,8 9 37 37 34
6,7,8 10 33 31 30
Average 67.2% | 67.6% 63.2%

e A : Non-phonetic
¢ B : Broad Phonetic (11 classes)

o C : Detailed Phonetic (49 phones)

Table 4.2: Identification results: 51-speaker complete data, noise reduced

4.4.4 Noise Reduction and Filtering

Preliminary listening and spectrographic analyses of the database clearly showed
the noisy nature of the data, especially that of the Nutley speakers. The spectral
subtraction [5] method of noise suppression, along with bandpass filtering (300
- 3300 Hz), was used to preprocess the database. Experimental results indicate
that noise suppression increased the speaker identification rate by an additional
10% for both non-phonetic and phonetic methods. What is surprising is that
the performance with the relatively cleaner San Diego data (26-speaker set) also
showed the improvement. The effects of noise suppression are brought out in

the performance results shown in Table 4.3 and 4.4.

4.4.5 Speaker Verification

A set of preliminary speaker verification experiments were carried out on the
database. The following three sets of data were considered: (1) 26-speaker San
Diego speakers, (ii) 25-speaker Nutley speakers, and (iii) 51-speaker total pop-

ulation. Speaker models were based on broad phonetic classes, and Euclidean

29

recognition rate

1 1 | | T T
0.9
0.8
0.7
0.6
0.5
0.4

26 speakers, broad phonetic class (11) — |
51 speakers, broad phonetic class (11) —
0.3 HJ 26 speakers, no phonetic marking —
51 speakers, no phonetic marking - - - -

1

0.2 26 speakers, phonetic marking (49) - - -]|
0.1 51 speakers, phonetic marking (49) - -~

0 ! | L L 1
0 10 20 30 40 50 60

utterance length (sec)

Figure 4.1: Recognition rate vs. input utterance length

distance was used as the metric. Half of the speakers are registered targets, the
other half are impostors. Targets claim their own true identities (to compute
detection rate), impostors claim all the registered target identities (to compute
false alarm rate). The speaker models were derived from sessions 1, 2 and 3 for
Divl data experiments, and from sessions 6, 7 and 3 for Div2 data experiments.
Test data came from sessions 4 and 5 for Div1 experiments and 9 and 10 for Div2
experiments. Figure 4.3 presents the receiver operating characteristics (ROC,

prob(detection) vs. prob(false alarm)) for the three data sets.

4.5 Discussions

Our experiments indicate that detailed phonetic hypothesization for building
speaker models and identification did not provide improvement over a non-

phonetic model approach. We believe that this result may be due to inadequate

30

recognition rate

1 T T
09k 00 AT
0.8 F gH. .00 e -
0.7 I N
06 [_
05+ - -
0.4 f - J
' size = 110 —
03 H. size = 55 —
: size = 25 —
021 size = 10 -~ - |
0-1'] size = 5 - 4
0 | ! | i 1
0 10 20 30 40 50 60

utterance length (sec)

Figure 4.2: Recognition rate vs. input utterance length for different VQ code-
book sizes

training data, and possibly due to some poor phonetic segmentation. A thorough
experiment with expert-marked speech data will indeed be very revealing; such
data is usually limited (resulting in poor training of speaker models) and hard to
obtain. However, if orthographic transcription of the data is available, we could
perform supervised recognition [27] to obtain a reasonably good phonetic mark-
ing to enable us to determine the value of this approach. A suitable candidate
would be the Switchboard database [8], where the orthographic transcriptions
along with word-level segmentation (guided by a pronunciation dictionary) are

available.

Broad phonetic class speaker models performed as well as non-phonetic mod-
els with equivalent size codebook, and much better than phonetic models. Broad
phonetic models also provide computational advantage in the distortion compu-

tation portion because of the smaller size codebooks (11 10-element codebooks

31

Session No. | No. of speakers correctly identified
Training | Test | A’ | A | B | B
1,2,3 4 25 22 24 20
1,2,3 5 24 20 24 18
6,7,8 9 24 23 23 24
6, 7,8 10 24 22 22 21
Average 93.3% | 83.7% | 89.4% | 79.8%

o A : Non-phonetic
e B : Detailed Phonetic (49 phones)

e A’ and B’ are noise suppressed versions of A and B

Table 4.3: Identification results: 26-speaker San Diego data

vs. 110-element codebook); but the computational burden of speaker indepen-
dent recognition will have to be taken into account in the overall computational
requirements. Noise suppression proved to be very valuable indeed. The average
correct identification increased by 10%. We were surprised that it improved the
results for even the relatively clean data from San Diego speakers. Preliminary
speaker verification experiments provided very encouraging results compared to
other published results [15]. By incorporating a speaker discrimination scheme

specific to the verification paradigm, we hope to improve our performance.

32

Session No. | No. of speakers correctly identified
Training | Test | A’ | A | B [B
1, 2,3 4 36 31 34 28
1,23 | 5 31 25 31 29
6,7,8 9 37 33 34 30
6, 7,8 10 33 29 30 27
Average 67.2% | 57.8% | 63.2% 55.9%

e A : Non-phonetic
e B : Detailed Phonetic (49 phones)

e A’ and B’ are noise suppressed version of A and B

Table 4.4: Identification results: 51-speaker complete data

1 — E——
0.95 / o |

o -
0.9t o~
,

0.85F /" ’san piego, 26" — |
1 ‘Nutley, 25 < |
. V4 "All, 517 e

.
-

ke ~ .
o 0.7 Sr I,'

0.65 f -
0.6]
0.55F -

0.5 L L 1 1 1 1 H 1 L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
pPf

Figure 4.3: Open set speaker verification ROC

33

Chapter 5

Gaussian Mixture

5.1 Introduction

While vector quantization makes it possible to model speech with non-parametric
discrete distributions, a severe loss of information may occur. Using VQ mod-
eling, we only know the centroid of each cluster, but have no idea about the
variance of each cluster or the weighting of each cluster compared to the whole
training set. In contrast, continuous parameter modeling is able to preserve more
acoustic information, at the cost of more computational complexity. Gaussian
distribution is commonly used in modeling random processes; however, a single
Gaussian distribution can only model unimodal behavior, thus resulting in mod-
eling inaccuracies when the random process under consideration has more than
one mode. In the case of speaker identification, each speaker model usually has
more than one mode (because different phonetic events will cluster into different
modes), and it is thus very clear that single mode Gaussian distributions are not
adequate in building speaker models. If single mode Gaussian distributions are
used to build speaker models, the resulting failure to model multimode behavior
can easily destroy any leverage from the additional acoustic information gained

from continuous modeling.

34

Because of this trade-off between discrete models (VQ) and continuous mod-
els (Gaussian), a modeling approach (Gaussian Mixture) that combines VQ and
Gaussian has been proposed [4]. It has been first used in HMM speech recog-
nition to model the observation distributions of those states with multimode
behavior, which cannot be properly modeled by a single Gaussian distribution.
It has also been applied to the speaker identification problems [26] [22] [21] [20],
where although the VQ approach can describe a speaker’s feature space quite

well, the Gaussian Mixture approach can provide more texture to the models.

5.2 Model Parameters

The model is described by a mixture of finite number of pdf’s, each pdf is a
Gaussian distribution. Suppose there are M such pdf’s (cluster) for a model.
Each cluster is represented by Gaussian parameters: sm = {Cm: ttm, Bm},m =

1,..., M, then the whole model is represented by
A = {cm) ftm, Rulm =1,2,..., M} (5.2.1)

where ¢y, fim, Rm are respectively the cluster weight, the mean vector, and the
covariance matrix of the m-th cluster. It has to satisfy the probability con-
straint: Z%ﬂ emN(z4; tm, Rm) = 1. The probability of a feature vector zy

given a speaker model A is

M
p(zelA) = 3 enN (26 fm, i) (5.2.2)

m=1

where N(z; fim, Rm) is a multivariate Gaussian probability density function of

observing a feature vector z; given model parameters: fm and R,,, which can

35

be written explicitly as

1
@r)V AR

N (¢ pim Bom) = B TR i) (5.2.3)

Compared to VQ modeling, Gaussian Mixture provides not only cluster cen-

troids pm (as in VQ), but also cluster weights ¢,, and covariance matrices R,..

5.3 Model Parameter Training Using Expec-
tation Maximization Algorithm

A Maximum Likelihood (ML) training procedure, the Expectation Maximization
(EM) algorithm can be used to train the Gaussian Mixture parameters. Suppose
we have a set of training vectors, X = {z|t = 1,...,T}, and we decide there

are M mixtures in this model. The iterative algorithm is as follows:

1. Initialization: provide some initial estimate of the Gaussian mixture model

AO = {0 4O RO\m =1,2,..., M} (5.3.4)

9. Expectation: compute the posterior probability (the probability of being

in cluster s,, of model A(¥) given the observation Tt), p(sm|:1:t, A, as

p(ze|pl), RY))ch,
SM_ p(e|u), R))C
where p(z:|u$), RY) = N(z; p), RY).

p(smlze, A¥)) = (5.3.5)

3. Maximization: re-estimate the Gaussian Mixture parametefs by adjust-
ing the parameters, @ @ and R®). such that the total log likelihood

function, L = L, log p(z:|A), is maximized. The resulting re-estimation

formulae are:

(’+1) = Zp Smlxt,A) (536)

36

m

LG+ = Ty p(smlzs AY) - 2y

Z?:l P(Sm‘xt, A(i))

R+ — 23;1 p(sm|zt, A(i)) Az — pom) (e — ,Um)T

4. Check convergence criterion: if converge, stop; if not. goto step 2.

5.4 Result

We used feature vectors after noise reduction (Chapter 3) and bandpass lifter-
ing (Chapter 7). Diagonal covariance matrices were used in Gaussian Mixture
models instead of full covariance matrices. The same number of clusters (30
clusters) was used in each speaker model for both VQ and Gaussian Mixture;
therefore the model size for the Gaussian Mixture model is about twice that of
a VQ model. We compare the Gaussian Mixture modeling with VQ modeling.

The results are provided for the King database, 26 speakers, for both within and

across the great divide.

izt P(sm|ze, AD)

e Gaussian Mixture modeling: Table 5.1 and Table 5.2.

training session | test session | recognition rate
123 4 25/26
123) 25/26
678 9 26/26
678 10 24/26
[average | 96.2% |

Table 5.1: Identification results using Gaussian mixture, within the great divide

¢ VQ modeling: Table 5.3 and Table 5.4.

As shown above, Gaussian Mixture does provide better performance in the

“within the great divide” test; however, in the “across the great divide” test,

37

training session | test session | recognition rate
678 4 6/26
678 5 8/26
123 9 3/26
123 10 4/26
| average | 20.2% |

Table 5.2: Identification results using Gaussian mixture, across the great divide

training session | test session | recognition rate
123 4 24/26
123 5 24/26
678 9 23/26
678 10 24/26
| average l 91.3% j

Table 5.3: Identification results using VQ, within the great divide

VQ performs a little better.

Since ISDCN (refer to Chapter 9) can improve the “across the great divide”

performance on a VQ system, we suspect that it can also be applied to the

Gaussian Mixture system. By replacing the VQ centroids in the normalization

codebook with Gaussian Mixture centroids (im), we can perform the ISDCN

algorithm exactly the same as in the VQ system. Here we do not consider

the distortion in covariances, it has been reported {11] that variances are less

affected (than means) under change of environments. The identification results

after performing ISDCN are:

training session | test session | recognition rate
678 4 6/26
678 5 9/26
123 9 3/26
123 10 5/26
| average] 22.1% |

Table 5.4: Identification results using VQ, across the great divide

38

e Gaussian Mixture modeling: Table 5.5 and Table 5.6.

training session | test session | recognition rate
123 4 25/26
123 5 25/26
678 9 26/26
678 10 23/26
| average | 95.2%)

Table 5.5: Identification results using Gaussian mixture, after [ISDCN, within
the great divide

training session | test session | recognition rate
678 4 14/26
678 5 13/26
123 9 10/26
123 10 8/26
I average l 43.3% |

Table 5.6: Identification results using Gaussian mixture, after ISDCN, across

the great divide

e VQ modeling: Table 5.7 and Table 5.8.

training session | test session | recognition rate
123 4 25/26
123 5 25/26
678 9 26/26
678 10 26/26
| average | 98.1% J

Table 5.7: Identification results using VQ, after ISDCN, within the great divide

As shown above, ISDCN can also improve the “across the great divide”
performance as much as it can in VQ. (Although the “within the great divide”
performance degrades a little bit, this perturbation is not unusual when the

performance is already high before normalization).

39

training session | test session | recognition rate
678 4 14/26
678 5 14/26
123 9 11/26
123 10 13/26
| average I 50% |

Table 5.8: Identification results using VQ, after ISDCN, across the great divide

40

Chapter 6

Channel Normalization Using
Stereo Database

6.1 Introduction

The easiest way to normalize channel variations is to “learn” the channel char-
acteristics and then compensate it according to what we have learned. The
question is how to characterize the channels?

We can put the same signals into different channels and then measure the
output signals; of course, the output signals will be different because of the
different channel effects. From these different output signals we can learn the
characteristics of different channels. For example, we can compute the spectra
of these output signals, and then compare them with one another. This way we
can learn that, for example, channel “A” amplifies low frequency components
while channel “B” amplifies high frequency components; we can measure the

different degrees of amplification and then compensate the spectra.

6.2 The Channel Model

Since we use cepstral coefficients as features, the channel effects become “addi-

tive”. As shown in Figure 6.1, the signal spectrum S(f) passes through channel

41

S) —»| H() |—> SOHE —| log(*

— > log(S(f))+log(H(f)) — | IDFT(*)

—— IDFT(log(S(f))) + IDFT(log(H(f)))
Figure 6.1: Cepstrum after channel effect

H(f) and becomes S(f)H(f). Cepstrum is the inverse Fourier transform of log
spectrum, so the channel affected Cepstrum is IDFT(S(f)) + IDFT(H(f)).
Now that the channel effect H(f) is an additive term, we can simply estimate
this term and then subtract to compensate for it.
In the following sections, we will introduce the stereo database used for the

channel characterization and two different normalization schemes.

6.3 Stereo Database

To estimate the channel effect H(f), a stereo database is needed. By stereo
database we mean that for one utterance, two simultaneous recordings are made.
This way we have the same input utterances to both channels (e.g. two different
microphones with different frequency responses); and then get two different
output recordings. These two recordings are of the same length, and can be
compared “sample by sample”.

A portion of the CSR (Continuous Speech Recognition) database was used in
our experiments. CSR is a stereo database, studio quality, recorded by two dif-
ferent microphones simultaneously (Sennheiser vs. Crown or SONY; Sennheiser

is a better microphone). We used 30 speakers in this particular experiment

42

(including male and female), each speaker was asked to speak 40 adaptation
sentences (designed to be phonetically rich and balanced). There are totally
30 (speakers) * 40 (adaptation sentences) * 2 (microphones) = 2400 sentences.
Figure 6.2 and 6.3 shows the waveforms of the same utterance recorded by
two different microphones, it is clear that Sennheiser’s waveform is hetter than

Crown’s.

43

1500
1000 } ‘ .

500

=500

-1000

-1500

waveform from Sennheiser microphone

Figure 6.2: Sennheiser microphone waveform

1500
1000 | 1

500 | .

-500 f z 1

-1000 ‘ 4

~1500

waveform from Crown microphone

Figure 6.3: Crown microphone waveform

44

CSR is a much “easier” database compared to “King” or “Total-Voice”

database. It is:

e Studio quality: as opposed to telephone quality.

o Including both male and female: as opposed to all male; for speaker iden-

tification, it is easier to tell form male to female than from the same sex.

¢ Phonetically balanced: as opposed to spontaneous speech; it contains rich

phonetic contents for training and recognition.

We use the first 10 Sennheiser sentences for speaker model training, and the
other 30 Crown (or SONY) sentences for testing. For each test sentence, an
identification decision was made. It would be too easy if we use all 30 sentences
to make one identification decision.

When the first 10 Sennheiser sentences were used for training and the other
30 Sennheiser sentences were used for testing (thus the training and testing data
are from the same microphone, they are still different sentences with different
speech contents), then 100% identification rate was achieved for all 30 (speakers)
* 30 (sentences) = 900 tests. In the following sections, the experiments are

exclusively “cross microphone” tests.

6.4 SNR Dependent Normalization

In Figure 6.1, suppose the cepstrum from mic-1 is
IDFT (log(S(f))) + IDFT(log(H:(f))) (6.4.1)

and the cepstrum from mic-2 is

IDFT(log(S(f))) + IDFT(log(Hs(f))) (6.4.2)

45

The difference (normalization vector) between each stereo pair of cepstra can be

represented as:
IDFT(log(H(£))) — IDFT(log(Hi(£))) (6.4.3)

and they should be all the same (at least similar) for all the frames. However,

this is not the case. The normalization vectors are different for different frames.

We can use an idea borrowed from speech coding - “perceptual weighting”.
In the analysis by synthesis coding process, speech residual (error) spectra are
weighted less at high SNR and weighted more at low SNR. This is because at
frequency bins with high SNR, the error is likely to be masked by the strong
signal, so the error is not as “perceivable”, therefor weighted less; while at low

SNR, it is not masked and thus needs to be weighted more.
Following this concept, we can classify the normalization vectors (6.4.3) ac-
cording to their segmental SNR’s.

- Zall training vectors 2-all snr(G2 — &)8(snr — snry)

Nsnr; =

(6.4.4)

all training vectors 2all sor 6(snr — snry)

where ¢, is the cepstrum vector from mic-1, and ¢; is its counterpart from
mic-2. fignr, is the normalization vector for frames with SNR at level snry;
§(z) = 1 only when z = 0, otherwise it is 0. Basically we collect all the ¢
and & pairs with SNR = snr;, the normalization vector Tisnr; 18 computed by
averaging all the difference vectors &; —¢; at this SNR level. Then we can use the

normalization vectors to normalize test vectors according to their SNR values.

46

6.5 Codeword Dependent Normalization

Similarly, we can classify the normalization vectors according to the codeword
clusters in the speaker model codebooks. This requires a little more computation

because we have to find which cluster the training pair, ¢1 and ¢z, belongs to.

The reason that we classify the normalization vectors according to their
codeword clusters is because similar feature vectors are likely to be affected by
the channel in the same way. If we cluster the difference vectors, ¢; — ¢1, we can

see that they cluster pretty much according to how ¢; and ¢, cluster.

T 2 all training vectors Tall cw(@ — &)é(cw — cwi)

New; —

(6.5.5)

2all training vectors Zall cw 6(cw — cwy)

Basically we collect all & and ¢; pairs that belong to cluster cwi; the normal-
ization vector i, is computed by averaging all the difference vectors ¢, — ¢y in
this codeword cluster. Then we can use the normalization vectors to normalize

‘test vectors according to their cluster allocations.

6.6 Results and Conclusions

As shown in Table 6.1, both normalization algorithms perform well, error was
reduced from 35 (out of 900) to 9 and 3 for SDN and CDN respectively. Because
this is an easy database, with performances this close, it is difficult to decide
which algorithm performs better by looking at identification rates only. To
compare the performance more precisely, we defined another measure - distance

ratio:

47

d(test utterance, correct model)

(6.6.6)

distance ratio = -
d(test utterance, incorrect models)

Smaller distance ratio means winning by a “larger” margin, which is better.
As shown in Table 6.1, CDN indeed performs better than SDN judging from both

:dentification rate and distance ratio. This comes at a price - more computations.

Equipped with a stereo database, it is very easy to characterize the channel
differences. We presented two ways to classify the normalization vectors - SNR
dependent and codeword dependent. They all perform pretty well. There exist
other modeling methods, it should be easy to come up with different modifica-
tions according to different recognition structures.

We can actually make the normalization vectors depend on both SNR and
codeword, thus increase the modeling resolution. However, there exists a trade
off between channel modeling resolution and the amount of training data. Higher
resolution can characterize channel statistics more precisely, but it also means
fewer training data. Suppose we have 10000 training frames, if we have 20 SNR
bins, in average 500 frames will be available to train the normalization vector of
each SNR bin. However, if 200 SNR bins were used, in average only 50 frames
will be available to train each normalization vector, which may be insufficient.

Higher resolution is better only when there exist enough training data.

r] baseline[SDN! CDI\LI

ID-rate | 96.111% 99% | 99.67%
distance-ratio | 0.64899 | 0.63238 | 0.61414

Table 6.1: Identification results of baseline vs. SDN vs. CDN

48

Chapter 7

Bandpass Liftering

7.1 Introduction

Most speech recognition systems use some type of spectral analysis as front ends.
The two spectral analysis methods most frequently used are filter bank analysis
and linear prediction.

Filter bank approaches typically use a bank of 8 to 32 bandpass filters, uni-
formly spaced or warped according to the sensitivity of the ear to different
frequency bands. These bandpass filters are generally highly overlapped. One
advantage of the filter bank approach (or other FFT based methods) is that
each frequency channel is treated independently, i.e. there are no global con-
straints on the spectrum, thus there are no constraints on the filter bank outputs.
Distortions caused by different microphones, different background noises, and
different transmission channels can be dealt with quite easily without compli-
cation caused by model assumptions. However, time and frequency resolution
is a big limitation on the filter design: we cannot have high resolution on both
time and frequency. The filter bank approach is also very susceptible to varia-
tions in speech excitation, such as the change of fundamental frequency, which

is inevitable in natural speech from utterance to utterance.

49

The alternative to filter bank analysis is linear prediction. It assumes an
all pole model of the speech production mechanism to model the short time
speech spectrum. The advantage of this approach is that it leads to a consistent
and meaningful resolution of the source-tract interaction, and therefore it al-
leviates the excessive sensitivity to fundamental frequency variations in speech
excitation. However, this approach introduces its own artifacts.

Suppose we use a Gaussian process to drive an all-pole filter, and then analyze
the output waveform to compute the cepstral coefficients. We also collect mixed
data from the real speech. If we plot the ratio of the variances of the simulated
fixed filter data to the variances of the mixed data, it is clearly seen that the ratio
increases as the cepstrum index increases. The increase in variance ratio with
increasing cepstral coefficient index indicates the diminishing discriminating
power of the higher order coefficients. This shows that the variability of higher
order coefficients is an inherent disadvantage of the linear prediction process.

Figure 7.1 shows the variance analysis for all 20 dimensions of cepstral coef-
ficients. It is clear that both within class and inter-class variances decrease as

cepstrum index increases. We now consider the variable:

. inter-class variance
F-ratio = ——— - (7.1.1)
within class variance

Larger F-ratio means better discrimination power. As shown in Figure 7.1, the
F-ratio is larger in the middle of the cepstrum and lower on both sides.

On the other hand, channel variation often affects the lower order coefficients
much more than higher order coefficients. For example, the effect of different
channel frequency responses is usually most prominent in the first couple of

cepstral coefficients.

50

7.2 Bandpass Liftering

Because the higher order coefficients have less discriminating power and the
lower order coefficients are more susceptible to channel variation, as an engi-
neering compromise, we use a window function to de-emphasize both higher
and lower order coefficients. We call this approach bandpass liftering [16]. The

window used is:

w(k) = 1 + hsin(rk/L) (7.2.

o
Q]
~—

where h = L/2, k =1,2,...,L and w(k) = 0 for other £.
We use 20-dimension cepstral coefficients as feature vectors, the bandpass

liftering weighting is shown in Figure 7.2.

L T T T L] L§ T T
within class wvariance —

inter—-class variance -~
F~ratio -~

o o O o o o o o o
H N W s 0y N 0 0 »

(@]
1
!
!
]
1
H
1
1
1
i
i
t
i
1
1
|
1
L4
|
i
1
b
H

0 2 4 6 8 10 12 14 16 18 20
cepstrum index

Figure 7.1: Variance analysis for cepstrum

31

11 T
10 in (PI*x/20)
9

8

7

6

5

4

3

2

1

0 L ; .

0 5 10 15 20

Figure 7.2: Bandpass liftering window

7.3 Results and Conclusion

We compared results before and after bandpass liftering, for both within and

across the great divide. The results are on the King database, 26 San Diego

speakers.

e Noise reduction, no weighting of coefficients: Table 7.1 and Table 7.2.

training session | test session | recognition rate
123 4 25/26
123 5 25/26
678 9 23/26
678 10 23/26
| average l 92.3% |

Table 7.1: Identification results before bandpass liftering, within the great divide

o Noise reduction, and bandpass liftering: Table 7.3 and Table 7.4.

52

training session | test session | recognition rate
678 4 2/26
678 3 2/26
123 9. 2/26
123 10 2/26
l average [7% |

Table 7.2: Identification results before bandpass liftering, across the great divide

training session | test session | recognition rate
123 4 24/26
123 3 24/26
678 9 23/26
678 10 24/26
| average [91.3% |

Table 7.3: Identification results after bandpass liftering, within the great divide

We can see the obvious improvement in the “across the great divide” training-
test case; however, the “within the great divide” performance suffers a little bit,

which is common in channel normalization operations.

More extensive experimental results are presented in Chapter 10.

training session | test session | recognition rate
678 4 6/26
678 5 9/26
123 9 3/26
123 10 5/26
| average | 221% |

53

Table 7.4: Identification results after bandpass liftering, across the great divide

Chapter 8

RASTA Filtering

8.1 Introduction

Although a stereo database is a very powerful tool for channel normalization,
it is not usually available; therefore the algorithms introduced in Chapter 6 are
not applicable.

RASTA (RelAtive SpecTrA) filtering does not require stereo database; yet in
our evaluation, it performs better than algorithms that require stereo database,
Table 8.2. Moreover, the idea of RASTA is very simple, and the computational

complexity is very low.

8.2 RASTA Filtering

Channel variations come from different frequency responses of the channels and
also from background noises. Compared to speech signals, these channel effects
are “stationary” or “slowly varying”. We can use a highpass filter to remove the
lower frequency components of the spectrum and still preserve the speech. Of
course, we cannot remove too much of the lower frequency components, they may
contain important speech information. The proper design of the filter requires

experiments.

o4

To be able to “filter out” the slowly varying channel effect, H(f), it must
be an “additive” term instead of a “multiplicative” term as in the case of the
corrupted spectrum, S(f)H(f); Thus the operation log is required on spectrum
for this conversion. Figure 8.2 shows RASTA filtering being applied to log
spectrum. If RASTA is applied on spectrum directly, it will not work.

We use cepstrum as feature vector, which is the inverse Fourier transform of
Jog spectrum, as shown in Figure 8.3. The channel effect term is an “additive”

term, RASTA filtering can be applied directly on the cepstral coefficients.

We use a bandpass filter:

02+ 0.1z7' = 0.1z73 — 0.2z7*

H(z) (1 —0.98z71)z*

with its frequency response shown in Figure 8.1.

gain

o 1 L i
0 1 2 3 4 5 6
frequency, Pi = 1/2 sampling frequency

Figure 8.1: Frequency response of RASTA bandpass filter

55

S(hf —| HE) |— SOHE) — log*)

—— log(S(f)) +1log(H(f)) — |RASTA filtering

— log(S())

Channel effect H(f) is usually stationary or slowly varying
compared to S(f), therefore it can be filtered out by the
RASTA (RelAtive SpecTrA) filter. Log(*) operation is
necessary before the RASTA filtering.

Figure 8.2: The idea of RASTA filtering

s(t) — | LPC analysis |— S() —— |log(*)

—» log(S(f)) —| IDFT(*) | —> cepstrum

Figure 8.3: The computation of cepstrum

We collect all the cepstrum vectors in time order, &¢.t=0,1,2,...,N, and
then filter each dimension i, i = 0,...,19, respectively with the RASTA filter;
i.e. feed the sequence - ¢, = 0,1,2,...,N to the filter, and do this for all

i,i=0,...,19.
8.3 Scattergrams

One way to measure the effectiveness of channel normalization algorithms is by
inspecting the “scattergrams”. However, stereo database, where speech data
transmitted through two channels are recorded simultaneously, is required to
compute the scattergrams. In our experiments, we used the CSR (Continuous

Speech Recognition) database, where each utterance is recorded by two different

56

microphones (Sennheiser vs. Crown or SONY) simultaneously. Because of the
simultaneous recording of two channels, “sample by sample” matph makes the
exact comparison of channel eﬂ‘ects‘ possible. Here we compare the cepstral
coefficients, frame by frame, dimension by dimension.

Ten sentences were used in the following analysis. The average length of each
sentence is about 5 seconds. For 10 ms frames length, 16 KHz sampling rate, it
amounts to 10#5/(10%10~3) = 5000 frames. 20-dimensional cepstral coefficients
were computed, ¢ to cig. For each frame, we used ¢; from microphone 1 as «
coordinate, ¢; from microphone 2 as y coordinate to construct a point in the
scattergram, thus 5000 points were constructed for dimension ¢. From Figure 8.4
to Figure 8.43 we show the scattergrams from dimension 0 to 19, the left figure
is baseline, the right figure is after RASTA filtering normalization. It is clear
to see that the scattergrams after RASTA filtering are more aligned with the
line: z = y (the most significant change can be observed in dimension 1), which
means the cepstral coefficients from two different microphones are “normalized”
to be equal to each other.

It is not easy to obtain the “quantitative” improvements from RASTA filter-
ing by simply inspecting the scattergrams, we can only know it is “better”. To
measure the improvements, we can compute the distance of each point to the

line: z =y, i.e.

£~ JPI0 I 50 532)

where Cis the point, 8 is the angle between ¢ and the vector (1,1). We call

this d? deviation, and the deviation values (accumulated for all 5000 points) are

o7

listed with each scattergram. As shown, RASTA filtering improves (decreases)
the deviation values.

Because of the “filtering” nature of the RASTA processing, the cepstral
coefficients will become “smaller” after the processing; therefore the “deviation”
measure mentioned above is not a fair comparison. Because the absolute values
of the cepstral coefficients tend to be smaller after RASTA filtering, the distances
of the points to the line: z = y also tend to be smaller consequentially. This
decrease in distances has nothing to do with whether the points conform to the
line: z = y or not. To offset this effect and have a fair comparison, we normalize
the deviation with variance. We can compute the variance of all the points in

each figure, (0z,0,), 0 = (05 + 0y)/2, and then adjust the deviation, i.e.

.. deviation
deviationggjysted = ——— (8.3.3)
o

Now the comparison is “fair”. Table 8.1 lists all the deviations and adjusted
deviations for each cepstral dimension. The deviation ratios (RASTA to base-
line) are listed, too. As shown in Table 8.1, although the adjusted deviation
ratio is not as good as the unadjusted, they are all smaller than 1, which means
RASTA filtering improves the scattergrams for all dimensions. Figure 8.44 is
the diagram for deviation ratios before and after the variance adjustment. Di-

mension 1 shows the most significant improvement from RASTA.

58

3 — 3 ——
5t baseelme.AQ;:. 5t §ASTA.(')$‘_€, :
1 b
N N
o o 0
o -~
g =
_l 3
_2 b
3 & .
3 -3 -2 -1 0 1 2 3
mic-1 mic-1
Figure 8.4: baseline, Deviation = Figure 8.5: RASTA, Deviation =
210.5 163.6
1.5 T T T T 1.5 v T r r r
r S r.
1t baseéeline.l !
y 0.57¢ y 0.5
é 0 é 0
0.5t -0.9
_l i . _1 I H
-1.5 e : . -1.5 : - : : :
-1.5 -1 -0.5 0 0.5 1 1.5 -1.5 -1 -0.5 0 0.5 1 1.5
mic-1 mic-1
Figure 8.6: baseline, Deviation = Figure 8.7: RASTA, Deviation =
1305.2 124.1

39

1.5

0.5 7

mic-2
[on]

-0.5 ¢

-1.5
-1.5

Figure 8.8:
103.3

-1 -0.5 0

mic-1

0.5

1 1.

baseline, Deviation =

mic—2
o

1

a

1

Figure 8.10:
200.5

-1 -0.5 0

mic-1

0.5

11

baseline, Deviation =

5

.5

60

mic—2
o

-1.5

-1.5 -1 =0

Figure 8.9: RASTA, Deviation = 32.3

mic—-2
o

-1.5

-1.5 -1 -0

Figure 8.11: RASTA, Deviation = 51

"RASTA.2'

1

mic-1

.5 0 0.5 1 1.5

'RASTA.3'

1

.5 0 0.5 1 1.5

mic—-1

1 T T y 1 T —T i
0.8t 0.8 | "RASTA.4' -
0.67 0.6 AR
0.4 ¢ 0.4 71

~ 0.2t N 0.2}
0 0 v 0
E-0.2 E-0.2}
-0.4 ¢ -0.4 ¢
-0.6 1 -0.6r1
-0.8 ¢ -0.8 ¢
-1 . s : L -1 1 L L :
-1 -0.6 -0.2 0.2 0.6 1 -1 -0.6 -0.2 0.2 0.6 1
mic-1 mic-1
Figure 8.12: baseline, Deviation = Figure 8.13: RASTA, Deviation = 21
37.7

1 T T T 1 T U — T
0.8t 'baseline.5’ - 0.8t 'RASTA.5' -
0.6t 0.6
0.4 ¢ 0.4 ¢

~ 0.2} ~ 0.2}

) 0 0 0

T -0.2} E-0.2 | ‘
-0.4 ¢ -0.4 1
0.6} -0.6
-0.8 -0.8 ¢

-1 ii 1 H . A -1 L . : I L

-1 -0.6 -0.2 0.2 0.6 1 -1 -0.6 -0.2 0.2 0.6 1

mic-1 mic-1

Figure 8.14: baseline, Deviation Figure 8.15: RASTA, Deviation =
44.8 18.7

61

0.8
0.6r
0.4t
~ 0.27 ~
o 0 0
- -
0.2} G
0.4} -0
0.6} -0
-0.8 : y -0.
-0.8 -0.4 0 0.4 0.8
mic-1
Figure 8.16: baseline, Deviation = Figure
324 19.2
0.8 , :
0.6 f "baséline.7’
0.4 -
~ 0.27 N
o o} 0
- ot
0.2} € -0
-0.4 i -0
-0.6 | ; -0
-0.8 : ‘ ' -0.
-0.8 -0.4 0 0.4 0.8
mic-1
Figure 8.18: baseline, Deviation = 31 Figure
16.4

62

o O o O

0 o SN O NSO
————r— T %

oo o O

i i !

-0.8 -0.4 0 0.4 0.8
mic-1

8.17: RASTA, Deviation =

8 : :

6t ' RASTA. 7’

At f

2 L

0

2t

At

6 |

8 : i '

-0.8 -0.4 0 0.4 0.8
mic-1

8.19: RASTA, Deviation =

0.8 T r
0.6 | 'baseline.8’ -
0.4t T
~ 0.2t N
o0 0
-~ -
§-0.2} E -0
-0.4 ¢t -0
-0.6 -0
-0.8 . L -0.
-0.8 -0.4 0 0.4 0.8
mic-1
Figure 8.20: baseline, Deviation = Figure
29.3 13.4
0.47 ’baséline,9’ : 0.
0.2} 0
N N
| |
0 0 v
ot -t
g £
-0.2 -0.
0.4 b -0.
-0.4 0 0.4
mic-1

Figure 8.22: baseline, Deviation = 21

63

O O O o

0.8

8 . . .

6t ’E_(ASTA.8’

At 5

2t

0

2t

At

6t

8 i L i

-0.8 -0.4 0 0.4
mic-1

8.21: RASTA, Deviation =

4t "RASTA. 9’

2t :

O L

2 L

'}

-0.4 0 0.4

mic-1

Figure 8.23: RASTA, Deviation = 10

mic—2
O

-0.4

Figure 8.24: baseline, Deviation

27.5

mic-1

0.4

mic—2

-0

Figure 8.26: baseline, Deviation

3L.7.

.4

0

mic-1

0.4

64

mic—2

mic—2

Figure
13.2

0.47¢

0.2

Figure 8.
14.6

T T

"RASTA. 10’

0 0.4

25: RASTA, Deviation =

'RASTA.11" -

0 0.4

8.27: RASTA, Deviation =

0.4 ‘ 0.4t 'Ré*STA-_.l_,Z_'
0.2} 0.2 |
N N
o 0 5 0
- -
= =]
-0.2 -0.2
-0.4 -0.4
-0.4 0 0.4 -0.4 0 0.4
mic-1 mic-1
Figure 8.28: baseline, Deviation = Figure 8.29: RASTA, Deviation =
19.9 10.4
0.4 ' ; . 0.4 , : ;
0.3t 'baseline.13’ 0.3t "RASTA.13'
0.2} ‘ 0.2} eon
o 0,17 ~« 0.1t
5 o o 0
- -
E-0.1¢ E-0.1¢
-0.2 ¢ -0.2 ¢
-0.37¢ -0.3 ¢t
-0.4 -0.4 + : :
-0.4 0.4 -0.4 -0.2 0 0.2 0.4
mic-1 mic-1
Figure 8.30: baseline, Deviation = Figure 8.31: RASTA, Deviation = 8
19.1

65

mic—-2

mic—2

Figure
10.6

B W N = O N W e
T 7

W N e O N W e

T T

’baseiine.lé"-

L i

-0.2 0 0.2
mic-1

]
(o]
N

8.32: baseline, Deviation

0.4

-0.2 0
mic-1

|
(]
N

0.2

8.34:

0.4

baseline, Deviation =

66

mic—2

o O O O

.4 : :

3t 'RASTA.14" - |

2 t ' .

At

0

At

2- R

3t :

4 : : -

-0.4 -0.2 O 0.2 0.4
mic-1

Figure 8.33: RASTA, Deviation = 6.9

4 T Y v

3t 'RASTA.15'

2t e

1t

0

1t

2t

3t

. 4 ! H "

0.4 -0.2 0 0.2 0.4
mic-1

Figure 8.35: RASTA, Deviation = 5.9

0.3 1 l T 0-3 T '
0.2 base%mg.w 0.2 | RASTA.1.6
0.1 0.1¢

§)

0 0 0 0

- -

g &
-0.1 -0.1¢
-0.2 -0.2
-0.3 : -0.3 ‘ * '

-0.2 0 0.2 -0.2 0 0.2
mic-1 mic-1
Figure 8.36: baseline, Deviation = Figure 8.37: RASTA, Deviation = 5.6
11.7

0.3 - ; 0.3 - ~ -
0.2 baselé}n'e:l_?,‘ 0.2 | RP%ASTA.'l?

X 0.1 . Y 0.1

2 o :)
-0.1 -0.1
-0.2 -0.2
-0.3 — : - -0.3 : - .

-0.2 0 0.2 -0.2 0 0.2
mic-1 mic-1

Figure 8.38: baseline, Deviation = 8.9 Figure 8.39: RASTA, Deviation = 4.8

67

0.3 4 ¥ v 0,3 Y ¥

0. base%lne.IB '- 0.2 RéSTA.lB

~ o 0.1

0 0 0

.g .rE-{
-0.1
-0.2

. : -0.3 . ' '
-0.2 0 0.2 -0.2 0 0.2
mic-1 mic-1

Figure 8.40: baseline, Deviation = 6.2 Figure 8.41: RASTA, Deviation = 3.1

0.3 T
0.2 ¢
0.171

"RASTA. 19’

mic—2
mic—2
<D

-0.17¢
-0.2 ¢

0.3 — : l
-0.2 0 0.2
mic-1

Figure 8.42: baseline, Deviation = 6.6 Figure 8.43: RASTA, Deviation = 3.3

68

Baseline deviation RASTA deviation Deviation ratio
Index | un-adjusted | adjusted unadjusted | adjusted unadjusted | adjusted

0 210.51 158.80 163.56 145.47 0.78 0.92
1 1305.21 7977.61 124.14 1021.88 0.10 0.13
2 103.30 1189.76 32.29 508.24 0.31 0.43
3 200.47 2058.08 50.99 726.97 0.25 0.35
4 37.66 481.46 20.96 372.07 0.56 0.77
5 44.77 772.89 18.73 449.11 0.42 0.58
6 32.38 693.58 19.17 564.26 0.59 0.81
7 30.96 1021.96 16.37 785.69 0.53 0.77
8 29.33 1182.58 13.44 812.77 0.46 0.69
9 20.95 1204.73 10.08 921.07 0.48 0.76
10 27.49 1445.22 14.64 1194.29 0.53 0.83
11 31.68 2075.94 13.24 1371.18 0.42 0.66
12 19.86 1255.89 10.45 984.49 0.53 0.78
13 19.13 2057.98 8.05 1407.45 0.42 0.68
14 12.23 1506.05 6.89 1322.53 0.56 0.88
15 10.61 1628.67 5.85 1482.21 0.55 0.91
16 11.74 1996.81 5.64 1484.82 0.48 0.74
17 8.87 1746.98 4.80 1496.69 0.54 0.86
18 6.24 1771.86 3.14 1546.79 0.50 0.87
19 6.61 1871.62 3.33 1515.66 0.50 0.81

Table 8.1: Deviations from line : z = y before and after RASTA

8.4 Results and Conclusions

We compared the RASTA filtering with normalization algorithms using stereo
database - SNR dependent normalization and codeword dependent normaliza-
tion; Chapter 6. Table 8.2 shows the results. This experiment was performed
on the CSR database, 30 speakers. The test conditions were exactly the same
as in Chapter 6 - train on the first 10 Sennheiser sentences, test on the other 30

Crown (or SONY) sentences. The results are averaged from 900 tests.

RASTA filtering performs even better than SDN and CDN, which is quite
phenomenal, because RASTA does not “learn” the characteristics of different

channels as SDN and CDN do, what it does is “blindly” filter out slowly varying

69

‘unadjusted deviation ratio’ <—
’adjusted deviation ratio’ —4— |
0.1+ -

0 ! 1 | 1 | L 1 ! |

0 2 4 6 8 10 12 14 16 18 20
Cepstrum Index

Figure 8.44: unadjusted and adjusted deviation ratios

B [baseline]| SDN | CDN | RASTA |

ID-rate 96.111% 99% 09.67% | 99.78%
distance-ratio | 0.64899 | 0.63238 | 0.61414 | 0.73322

Table 8.2: Identification results of baseline vs. SDN vs. CDN vs. RASTA

components. The distance ratio of RASTA is a little worse than baseline; this 1s
perceivable because larger scores improve (decrease) more than smaller scores;

we refer to Chapter 11 for further discussion of this point.

More extensive results of RASTA filtering are presented in Chapter 10.

70

Chapter 9

ISDCN

9.1 Introduction

The purpose of this chapter is to evaluate yet another channel normalization
algorithm: ISDCN (Interpolated SNR Dependent Cepstrum Normalization) [1]
[2] [3]. We assume that there are two kinds of environmental variations: addi-
tive background noise and spectral tilt (introduced by linear filtering). A robust
system needs to compensate for these two degradations, which are caused by
collecting training and test data under different environments. ISDCN does not
need a stereo database to estimate the compensation vectors; the noise and spec-
tral tilt vectors are estimated while vector quantizing the distorted test vectors
to the standard (clean) codebook by minimizing the accumulated VQ distortion
iteratively. Another difference of ISDCN from traditional methods was moti-
vated by perceptual consideration: instead of being computed independently,
noise and spectral tilt vectors are combined into one single compensation vec-
tor with adjustable weights depending on instantaneous SNR. At higher SNR,
more of the compensation comes from spectral tilt; while at lower SNR more
of the compensation comes from noise. This idea is very similar to the percep-

tual weighting widely used in speech coding, where noise is masked by strong

71

components in the spectrum. We have tried the ISDCN algorithm on the King
database, with 26 speakers, 10 sessions per speaker. Sessions 1 to 5 and ses-
sions 6 to 10 are recorded under different environments. The identification
rate of cross-environment test was improved from 8.6% to 28.8%; in the same-
environment case, performance was also improved from 81.7% to 86.5%. Because
both environments in the King database are noisy, after adding noise reduction
pre-processing and then ISDCN channel normalization, the performance was
further improved to 46.2% (across the great divide) and 89.4% (within the great
divide). When bandpass liftering weighting was applied to the cepstral vectors,
the performance was further improved to 50% and 98.1%.

ISDCN (Interpolated SNR Dependent Cepstrum Normalization) does not
need stereo database. Basically it assumes that there are two components con-
tributing to channel variation: background noise 7 and spectral tilt ¢. The
degree of contributions of these two components (to the final correction vector)
depends on SNR, i.e., the correction vector is a linear combination of these two.
According to this assumption, we can compute 7 (which is fixed through all
iterations) , and estimate ¢ iteratively by minimizing accumulated vector quan-
tization error. Finally we get the correction vector and subtract it from the

input vectors to get the normalized output vectors.

9.2 ISDCN

In the following we define all the terms used in this algorithm:

o 7;,1 =0 to N-1: input frames.

e #; i= 0 to N-1: output frames (normalized).

72

o {i],1=0to M-I codebook vectors, M is the codebook size.
e w: correction vector.

o fi(z): interpolation function (between 7 and ¢).

4 = 7 — W(R, §, SN R;) (9.2.1)
@R, §, SNR;) = it + (§— 7) f(SNR:) (9.2.2)
1

@) = T e mam B) (9.2.3)

Note that f;(z) interpolates between the noise 7 at low SNR and the spec-
trum tilt ¢ at high SNR. At low SNR, fi(z) = 0, and the correction vector w
is mostly from 7i; at high SNR, fi(z) = 1, and @ is mostly from ¢. fi(x) is
monotonic and smooth. -

7 can be reliably estimated by averaging noise frames (we used an energy
threshold to determine noise frame). ¢ needs to be estimated iteratively. In
order to do that, we want to minimize the accumulated vector quantization

error,

N-1
D(#,d,k) = 3 |5 — 6(#, ¢, SN R:) — kIl (9-2.4)

=0

where &lki] is the best codeword for frame .

Therefore, we use the following algorithm to estimate ¢ :

1. Start with an estimate for §(%), and set j = 1.

2. Encode all frames, i.e. find k; that minimize the distortions:

12 — (7,49, SNR:) — k)P, 0 i S N~ (9:2.5)

73

3. Estimate ¢V¥) from all the frames:

PRI Gk ki o i FACRE)
NSUf(SNR)

(9.2.6)

4. Tf § has converged, stop; otherwise, goto step 2.

In the implementation, we choose a; = B; = 3, and ¢ = 0. We believe that
setting §(® to zero vector may not be a good choice, there should be a way to
estimate a better initial value. When the spectral tilt is large, this algorithm
may converge to incorrect codebook regions. If we have a good estimate for §(®

as a starting point, it will converge to better regions.

9.3 Results

In the “King” database, sessions 1 to 5 and sessions 6 to 10 are recorded under
different environments (different background noises and different microphone
responses) - the great divide. The following results are on 26 San Diego speakers,

for both within and across the great divide.

e Raw data, no noise reduction, no ISDCN: Table 9.1 and Table 9.2.

training session | test session recognition rate
123 4 18/26
123 3 19/26
678 9 24 /26
678 10 24/26
[average | 81.7% |

Table 9.1: Identification results, baseline, within the great divide
o After channel normalization (ISDCN), no noise reduction: Table 9.3 and
Table 9.4.

e Noise reduction and ISDCN: Table 9.5 and Table 9.6.

74

training session | test session recognition rate
678 4 2/26
678 5 4/26
123 9 1/26
123 10 2/26
| average | 8.7% |

Table 9.2: Identification results, baseline, across the great divide

training session | test session recognition rate
123 4 21/26
123 5 21/26
6738 9 24/26
678 10 24/26
| average] 86.5% |

Table 9.3: Identification results, ISDCN, within the great divide

e Bandpass liftering, noise reduction and ISDCN: Table 9.7 and Table 9.8.

As shown in the Tables 9.1 to 9.8, the ISDCN channel normalization al-

gorithm improves the “across the great divide” performance, and it does not

disturb the “within the great divide” performance (it even improves it). We

will try a better estimate of initial spectrum tilt §(©, we believe it will help the

estimate to converge to a better final value.

training session | test session recognition rate
678 4 10/26
678 5 8/26
123 9 5/26
123 10 7/26
[average | 28.8% |

5

Table 9.4: Identification results, ISDCN, across the great divide

training session | test session recognition rate
123 4 24/26
123 5 24/26
678 9 23/26
678 10 22/26
[average | 89.4% |

Table 9.5: Identification results, noise reductio

training session | test session recognition rate
678 4 12/26
678 5 13/26
123 9 14/26
123 10 9/26
r average l 46.2% 4]

Table 9.6: Identification results, noise reductio

training session | test session recognition rate
123 4 25/26
123 5 25/26
678 9 26/26
678 10 26/26
| average | %1% |

Table 9.7: Identification results, bandpass liftering, noise
within the great divide

n and ISDCN, within the great

n and ISDCN, across the great

reduction and ISDCN,

training session | test session recognition rate
678 4 14/26
678 5 14/26
123 9 11/26
123 10 13/26
[average | 50% |

Table 9.8: Identification results, bandpass liftering, noise reduction and ISDCN,

across the great divide

76

Chapter 10

Results

10.1 Database

The database utilized in this study is the narrowband portion of the “King”
database, collected in 10 sessions from 51 male speakers, 26 from San Diego and
25 from Nutley. The speakers were asked to talk about several topics, so that
the speech is natural and spontaneous. The data were collected over long dis-
tance telephone line, and the data for the 25 Nutley speakers were much noisier
than that of the 26 San Diego speakers. The speech material from each session
is approximately 45 seconds long; the data were digitized at 8 kHz and 12-bit
resolution. Sessions 1 to 5 and sessioné 6 to 10 were collected under different
environments. This division of data, “the great divide”, results in serious degra-
dation of performance as observed in [11] when training on one set and testing
on the other. Also the Nutley data are much noisier than San Diego data. We
performed our experiments in three contexts: San Diego alone (26 speakers),
Nutley alone (25 speakers), and all 51 speakers combined. Further, the exper-
iments were carried out across “the great divide” for the most challenging test
condition. Figure 10.1 and Figure 10.2 show the typical waveforms of San Diego

data and Nutley data. The quality of Nutley is much worse.

77

1000
800 |
600
400
200

-200
-400
-600
-800
-1000 |

~1200

King database, San Diego data

Figure 10.1: Typical waveform of San Diego data

1000
800
600
400
200

i i

-200

-400

-600

-800

! .HI“IIH‘I;‘MIJ\ ‘ l;l“l‘“‘

{
'

ﬁ

-1000

King database, Nutley data

Figure 10.2: Typical waveform of Nutley data

78

r Baseline J

San Diego (26) | Nutley (25) | All (51)

ID-rate 81.73% 35% 58.82%

Average-rank 2.01923 - 5.58 3.87745
[Bandpass Liftering]

San Diego (26) | Nutley (25) | All (51)

ID-rate 85.58% 47% 66.67%

Average-rank 1.68269 4.11 2.88725

ﬁ RASTA]

San Diego (26) | Nutley (25) | All (51)

ID-rate 91.35% 50% 71.08%
Average-rank 1.10577 3.51 2.29902
[Bandpass Liftering & RASTA B

San Diego (26) | Nutley (25) | All (51)
ID-rate 94.23% 61% 77.94%
Average-rank 1.07692 2.72 1.89706

Table 10.1: Identification results: Within the great divide

10.2 Speaker Identification

Table 10.1 shows the results “within the great divide”, table 10.2 shows the
results “across the great divide”. As the robustness processing techniques were

added, the performance improved significantly.

e Within the great-divide: train on sessions 1, 2, and 3, test on sessions 4

and 5; train on sessions 6, 7, and 8, test on sessions 9 and 10.

e Across the great-divide: train on sessions 1, 2, and 3, test on sessions 9

and 10; train on sessions 6, 7, and 8, test on sessions 4 and 5.

Table 10.3 shows the comparison of our results with [11], for 16 San Diego

speakers, trained on sessions 1, 2, and 3, tested on sessions 9 and 10.

79

r Baseline J

San Diego (26) | Nutley (25) | All (51)

ID-rate 7.69% 36% 19.61%

Average-rank 10.0385 6.49 11.4608
r Bandpass Liftering ;]

San Diego (26) | Nutley (25) | All (51)

ID-rate 36.54% 46% 36.76%

Average-rank 4.86538 4.86 6.37745
| RASTA |

San Diego (26) | Nutley (25) | All (51)

ID-rate 42.31% 53% 43.63%

Average-rank 4.56731 3.35 6.23039
[Bandpass Liftering & RASTA |

San Diego (26) | Nutley (25) | All (51)

ID-rate 77.88% 65% 58.82%

Average-rank 1.86538 2.24 3.48529

Table 10.2: Identification results: Across the great divide

[[[11] | BPL & RASTA |
ID-rate 75% 87.5%
Average-rank | 1.56 1.12

Table 10.3: Comparison between the best published result and BPL & RASTA

80

10.3 Speaker Verification

We performed “open set speaker verification” on the “King” database. Half of
the speakers were registered speakers, the other half impostors. All registered
épeakers claimed their true identities; these attempts were used to compute
detection rate. All impostors claimed all registered speaker identities; these
attempts were used to compute the false alarm rate. There are more impostor
attempts than true speaker attempts. For example, in San Diego data, 26
speakers, 13 are registered speakers and the other 13 are impostors. For each
session of data, there are 13 true speaker attempts and 13 (impostors) * 13
(registered speaker identities) = 169 impostor attempts. As in the speaker
identification case, sessions 1, 2, and 3 were used to train division 1 models,
sessions 6, 7, and 8 were used to train division 2 models. sessions 4, 3, 9, and

10 were used for tests. The results were averaged on four tests:

e Within the great divide: Train on sessions 1, 2, and 3; test on sessions 4

and 5. Train on sessions 6, 7, and 8, test on sessions 9 and 10.

e Across the great divide: Train on sessions 1, 2, and 3; test on sessions 9

and 10. Train on sessions 6, 7, and 8, test on sessions 4 and 5.

Figure 10.3, 10.4, and 10.5 show the ROC plots for San Diego, Nutley and

all 51 speakers experiments respectively. There are four curves in each figure:

e b: baseline, within the great divide.
e n: normalized (bandpass liftering & RASTA), within the great divide.

e bx: baseline, across the great divide.

81

1

09 L. -
0.8 - " .
0.7+ -
0.6 .

Pd
0.5 -
04+ -

03} bx — -

0.2 nx - - -

0.1 ! 1 | { |]] 1 |
0 01 02 03 04 05 06 07 03 0.9 1
Pf
e Within the great divide, equal error rate: 8% vs. 1%.

o Across the great divide, equal error rate: 42% vs. 13%.

Figure 10.3: ROC for 26 San Diego speakers

e nx: normalized (bandpass liftering & RASTA), across the great divide.

10.4 Discussion and Conclusions

Tables 10.1 and 10.2 clearly show the independent contributions of bandpass lif-
tering and RASTA to performance improvement. Bandpass liftering deempha-
sizes the highly variant and noisy cepstral coefficients and is a static correction.
RASTA smoothes all of the cepstral coefficients by a bandpass filtering operation
thereby attempting to remove the effects of the channel aﬁd the transducer. In
this sense, the spoken material is “self-normalized,” providing robustness. Thus,

by combining the static (bandpass liftering) and dynamic (RASTA) techniques,

82

09

0.8

Pd 0.7

0.6 -

0.5 -

04 1] ! 1 1 ! | 1 !
0 01 02 03 04 05 06 07 08 09
Pf

oo

e Within the great divide, equal error rate: 27% vs. 16%.

e Across the great divide, equal error rate: 35% vs. 18%.

Figure 10.4: ROC for 25 Nutley speakers

83

0.9
0.8
0.7k

Pd 06
05 F
04 F

0.3

0.2 L L ! 1 L 1 ! L 1
0 01 02 03 04 05 06 07 08 09 1
Pf

o Within the great divide, equal error rate: 15% vs. 9%.

e Across the great divide, equal error rate: 30% vs. 15%.

Figure 10.5: ROC for combined 51 speakers

84

we obtain the benefits of both techniques. Note that improvements are dramatic
when the testing is across the great-divide. An interesting observation is that
we get these improvements without using any specific noise-removal technique,
such as spectral subtraction used in [17]. We have verified the consistency of
these results on an independent database, called the continuous speech recogni-
tion (CSR) database. CSR consists of simultaneous recording of speech material
from subjects using two different types of microphones. Hence CSR provides an
excellent means of not only establishing consistency of our results, but also to
develop insight into why these techniques work. This is accomplished by exam-
ining scattergrams of the various cepstral coefficients for recording with the two
different microphones with and without robustness processing. As shown in the
scattergrams in Section 8.3, the cepstral coeflicients of mic-1 vs. mic-2 are more
aligned with z = y after RASTA filtering. All of the above discussions hold for
speaker verification as well.

We have identified, by systematic investigation, a combination of techniques
that provides a very robust performance. However, additional work is needed
to improve the performance across the great divide to be at the level of per-
formance within the great divide. Also, additional investigations planned with
experimentation on a highly challenging corpus, the Switchboard [13], will shed

further light.

85

Chapter 11

Speaker Verification

11.1 Introduction

Speaker verification is more useful than speaker identification in real world ap-

plications. The difference between them is:

e Speaker identification: For test speaker z, it is known that this speaker
is one of the m “registered speakers” (for these speakers we have trained
models). The task is to decide which one of these m “known” speakers

the test speaker z is.

o Speaker verification: For test speaker z who claims identity 7 (¢ is one
of the m “registered speakers”), the task is a binary decision — accept or
reject. Depending on whether speaker z is one of the m registered speakers

or not, the problem is further classified into:

— Close set speaker verification: Speaker z is one of the m registered

speakers.

— Open set speaker verification: Speaker z is not one of the m registered

speakers.

86

While speaker identification is much easier than open set speaker verification
(which is most useful in applications), we found that it is beneficial to study an
easier problem before the challenging one because it is easier to interpret the
results and gain insights. Besides, we found a simple method to convert a speaker
identification system into a speaker verification system, so the improvements
achieved in speaker identification system can be readily translated into speaker
verification systems.

In the following sections we will introduce the traditional speaker verification

algorithms, and then compare our new approach with it.

11.2 Speaker Verification

Because speaker verification is a binary decision — accept or reject, it is only
natural to base this decision on a “threshold”. When speaker “x” claims iden-
tity “i”, we compute the score of the input utterance with respect to speaker
model “i”. If the score is better than the threshold - accept; otherwise - reject,

Figure 11.1.

The threshold value is decided by many training instances. In Figure 11.2,
the zazis is threshold, the yazis is error rate; the decreasing curves represent
true speaker rejection rate, increasing curves the impostor acceptance rate. This
plot is the result of 1250 true speaker attempts, and 1250 impostor attempts.
The score computed for each attempt is the “distance” between the input utter-
ance and the claimed identity model, the lower the better. If the score is lower
than the threshold - accept; otherwise - reject. As the threshold increases, it be-
comes easier to be accepted; therefore the true speaker rejection rate decreases

and the impostor acceptance rate increases. A low true speaker rejection rate

87

and a low impostor acceptance rate are desired; but as we change the threshold
value, trade-off is being made between these two error rates — one decreases,
while the other increases. Usually people choose the threshold value at “equal
error” point (where the two curves cross) as the operating threshold. At this
threshold, true speaker rejection rate and impostor acceptance rate are the same.

The major problem associated with using an absolute threshold value for
different input utterances is “normalization”. The length and content of the
input utterance may vary. For longer utterances, the scores (distances) will -
become larger; for speech contents of vowels, the scores will become smaller
because of better match with the models (compared with consonants - consonant
models are more difficult to train and match). The length problem is easy to
solve: we can normalize the scores according to time, which can be measured
precisely. The speech content problem is not easy to normalize; it is essentially
a “speech recognition” problem, which by itself is no less difficult than speaker
verification.

Because of this normalization problem, we developed a new algorithm with

“self-normalization” property.

11.3 Results and Motivation

11.3.1 Database

The database used for the speaker verification experiment is the “Total-Voice
database”. It has 50 speakers, 25 males and 25 females. Only male data are
used in this experiment. There is a different ID number (10 digits) for each
speaker. Each speaker called in 25 times from different places, using different

telephone handsets. In each call, the speaker gives six utterances; three of them

88

are true speaker attempts (the speaker speaks his (or her) own ID number), the
other three are impostor attempts (the speaker tries to 1mpose each one of the
25 speakers in each call (male imposes male, female imposes female only)). We
call the three utterances t1, t2, and t3 (“t” stands for token).

There are 25 (speakers) * 25 (true speaker attempts) ™ 3 (repetitions) =
1875 true speaker utterances, and also 1875 impostor utterances. (Actually in
the 25 impostor attempts from each speaker, there is one attempt that.should
be considered as true speaker attempt because the speaker speaks his own ID
number.)

This is a very difficult database because it is telephone speech, and from
different handsets. Also we have to make a decision from a 10-digit utterance,

which is very short.
11.3.2 Experiments

This is a free-text speaker verification:

e Training: Use 25 t1 impostor utterances from each speaker to train the
speaker model. Because these 25 utterances include all the 25 different

ID’s, the training material covers all the phonetic events.

e Test: Use t2 and t3 true speaker utterances to compute the true speaker
rejection rate, that amounts to 25 (speakers) * 25 (true speaker attempts)
* 2 (t2 and t3) = 1250 attempts. Use t2 and t3 impostor utterances (also

1250 attempts) to compute the impostor acceptance rate.

We tried four speech front ends: 1) baseline, 2) bandpass liftering, 3) RASTA
filtering, and 4) BPL + RASTA. Figure 11.2 shows the error rate plot. Fig-

ure 11.3 shows the zoom in of the equal error points area. The lower the equal

89

error point, the better the performance. Although bandpass liftering improves
the performance, we were surprised to see that RASTA, which performs so well
in our speaker identification experiments, actually “decreases” the speaker ver-
ification performance!

There must be a reason to explain this, and we found the answer lies in the

difference between “absolute threshold vs. relative comparison”.

11.4 Relative Ranking

We can inspect the scores of both true speaker attempts and impostor attempts
before and after RASTA filtering to see what has changed. Table 11.1 shows the
sorted scores before (column 2) and after (column 4) RASTA filtering, column
1 and 3 shows whether the score is a true speaker score (1) or an impostor score
(0). As shown in the table, the scores improve in general (become smaller), but
the impostor scores improve “more” than the true speaker scores (0.4 vs. 0.06).

In the absolute threshold approach, if true speaker scores and impostor scores
improve as much, the performance stays the same; if true speaker scores improve
more than impostor scores, the performance becomes better; but when impostor
scores improve more than true speaker scores, the performance become worse.
The reason why impostor scores improve more is quite straight forward: because
the impostor scores are originally bad and larger, thus leave more room for
improvement.

Why in the speaker identification experiment this uneven improvement does
not cause trouble and RASTA filtering still improves identification performance?
It is because in the speaker identification experiment the scores are not compared

with an absolute threshold, but compared with “peer scores”, i.e. the score

90

rBaseline | RASTA J

1]0.16695 | 0 | 0.10563
110.17544 | 1| 0.10651
1]0.17919 | 1| 0.10663
110.17954 | 0 | 0.10765
110.18245 | 1| 0.10843
1]10.18278 | 1| 0.11057
1]0.18442 | 1| 0.11245
110.18517 { 1| 0.11400
110.18564 | 0 | 0.11421
1]0.18642 | 0 | 0.11449
110.18696 | 1| 0.11455
1]0.18751 | 1| 0.11618
1]0.19016 | 1| 0.11855
110.19059 | 1} 0.11893
110.19091 | 1| 0.11895
0] 0.70576 | 0| 0.37748
0] 0.70801 | 0 | 0.37754
0| 0.70802 | 0| 0.38021
0] 0.71076 | 0 | 0.38051
0| 0.71548 | 0| 0.38224
0|0.72282 | 0| 0.38972
01 0.72528 | 0| 0.39246
0 0.72976 | 0 | 0.39389
0| 0.74229 | 0 | 0.39543
0} 0.75965 | 0| 0.39691
0| 0.76707 | 0| 0.39892
01]0.76728 | 0| 0.41661
0| 0.78016 | 0 | 0.42243
0] 0.78134 | 0| 0.42771
0 0.87750 | 0 | 0.44899

Table 11.1: Sorted scores before and after RASTA filtering

91

with respect to speaker model “i” is compared with scores with respect to other
speaker models. This way, the peer scores are all dependent on input utterance,
they all adapt “together”, we don’t have to worry about the normalization

problem. It is “self-normalized”.

Following this idea, we can change the verification algorithm from compar-
ing with an absolute threshold into comparing with peer scores, as shown in
Figure 11.1. Instead of computing the score of claimed identity model only, we
compute scores with respect to all the registered models, then compute the rank
of the score of the claimed identity. If the rank is better than the threshold rank
- accept; otherwise - reject.

Another way to interpret this relative ranking approach is speaker “discrim-
ination”. Like the computation of the discriminant distance matrix mentioned
in Section 2.2, it is a statistic of all the data, then the information can be used
to help in the discrimination decision. Relative ranking can be considered as a

“discrete discriminant”.

11.5 Comparison

Instead of error rate plots as in Figure 11.2 and 11.3, we use ROC (Receiver
Operating Characteristics, Prob(detection) vs. Prob(false alarm)) plot to com-
pare the absolute threshold and relative ranking approaches. Figure 11.4 is the
ROC of Figure 11.2. Figure 11.5 is the ROC using relative ranking approach. In
Figure 11.4, the RASTA curve is much worse than the baseline curve; however,
in Figure 11.5, most of the RASTA curve is better than baseline curve (only at
very restrictive threshold levels RASTA performs a little worse). The bandpass

liftering + RASTA front end, relative ranking approach curve achieves the best

92

performance of all curves - 2.5% equal error rate.

Figure 11.6 to Figure 11.9 compare the ROC curves of relative ranking vs.
absolute threshold under four different front ends; equal error rates are listed
with figures, too. The cross point of ROC curve and the linex = 1 —y is
the equal error point. In all four situations, the improvement from absolute
threshold to relative ranking is consistent and quite substantial.

Although the performance is for free-text speaker verification, it is even bet-

ter than some fixed-text speaker verification systems. (equal error rate 2.5% vs.

4%)
11.6 Discussion

There are two points needed to be addressed when using this relative ranking

approach instead of the absolute threshold approach:

e The choice of operating point: When using the absolute threshold ap-
proach, the threshold can be chosen from an infinite set of numbers of
continuous real values; however, in the relative ranking approach, when
there are 25 registered speakers, there are only 25 possibilities of thresh-
old rank. This limitation implies that the operating point may not be
allocated with high resolution, e.g. the choice between 1% true speaker
rejection, 10% impostor acceptance or 10% true speaker rejection, 1% im-
postor acceptance. Although 5% equal error rate point can be interpolated
between these two choices, it does not e);ist. This limitation can be solved

by increasing the number of registered speakers.

93

e Phonetic coverage in the speaker model: Good phonetic coverage in the
training material for each speaker is required, while it is not required in
fixed-text speaker verification training. Because the input test utterance
is compared with “all” the speaker models, if the models do not cover the
acoustic space, then the “speech factor” will interfere with the speaker
verification. Speech features are more salient than speaker features (that
is why “speaker-independent” speech recognition is possible), this speech

factor will often hurt the speaker matching badly.

We performed the following three experiments on the total voice database

to prove this point:

1. Train on true speaker utterances, test on impostor utterances: Ta-

ble 11.2.
| | Baseline | BPL | RASTA | BPL+ RASTA |
[D-rate 84.8% |86.8% | 67.2% 78.8%
average-rank | 1.444 1.284 | 2.024 1.512

Table 11.2: Train on true speaker utterances, test on impostor utterances

2. Train on true speaker utterances, test on true speaker utterances:

Table 11.3.
| [Baseline | BPL | RASTA | BPL + RASTA |
ID-rate 98.4% | 99.6% | 99.6% 100%
average-rank 1.08 1.02 1.004 1

Table 11.3: Train on true speaker utterances, test on true speaker utterances

3. Train on impostor utterances, test on impostor utterances: Table 11.4.

When trained on true speaker utterance, the training material only con-

tains each speaker’s ID number, which means insufficient phonetic cover-

94

r [Ba,seline | BPL] RASTA I BPL + RASTM

ID-rate 93.2% | 98% | 92.8% 98.4%
average-rank | 1.148 | 1.052 | 1.152 1.028

Table 11.4: Train on impostor utterances, test on impostor utterances
age.
In experiment 1, RASTA decreases ID-rate. That is because speech fea-
tures are more salient than speaker features, RASTA helps speech recog-
nition more than speaker identification. The test impostor speech will be

matched with the model of the person being imposed, because they have

the “same speech”.

In experiment 2, we use true speaker utterances as test utterances. In this
way, the correct match has same speech materials in both training and test
data; therefore the confusing factor from speech was removed. As shown,

RASTA improves the ID-rate and average-rank.

In experiment 3, we used impostor utterances for training, which means
more ID numbers and better phonetic coverage. (we used 10 impostor sen-
tences, with some overlapping ID numbers, in average about 7 ID numbers
were covered in these 10 sentences. Compared with 25 speaker ID’s, this
is still not very good coverage.) As shown in experiment 3, with better
phonetic coverage in training material, RASTA does not decrease perfor-
mance as much as in experiment 1 (0.4% vs. 17.6%, this decrease, 0.4%,
is statistically insignificant); and BPL + RASTA achieves the best perfor-

mance.

95

speaker x
claims identity i

absolute score < accept
threshold reject

absolute threshold approach

———» d(speaker x, model i)

d(speaker x, model 1)

d(speaker x, model 2) compute
speakerx .. . rank of
claims identity 1 d(speaker x, model i) d(speaker x, model i)
d(speaker x, model m)
accept
relative ranking P
threshold reject

relative ranking approach

Figure 11.1: Absolute score threshold vs. relative ranking threshold

96

error rate

o o o o o o o o o

o B N W s o N o v B
1

- baselAne — |
bandpass liftefing — -
i STA === i
BPL +/ RASTA
0 50 100 150 200 250 300

threshold

Figure 11.2: True speaker rejection and impostor acceptance vs. threshold,
using absolute threshold value to decide reject / accept

error rate

L] ., L ¥ ¥ ¥ i L T T

\\\\x\\ baseline;7ﬁ5‘
S~ e bandpass liftering -—
e RASTA

e

e

el
-
-
s

4”
\\\\\
""""""""

100

105 110 115 120 125 130 135 140 145 150
threshold

Figure 11.3: Zoom in of Figure 11.2

97

baseline — |

bandpass liftering -—- -
RASTA = |

BPL + RASTA ~--

Pd
o o o o o o

(en]

O i 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Pf

Figure 11.4: ROC plot of Figure 11.2, Prob(detection) vs. Prob(false alarm)

1 , ' .
baseline —

0.98 bandpass liftering -——-- 4
] RASTA =

0.96 BPL + RASTA — |

0.94 |

D0.92]

0.9 |

0.88 | |

0.86 F]

0.84 . L . 1 1 i 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pf

Figure 11.5: ROC plot using “relative ranking” approach

98

1 == r

f/-_-

0 - baseline, absolute — |
. baseline, relative -——
0. J
0. i
0. B
o 0.]

0. R
0.]
0. .
0.1¢ J
0 1 L L 1
0 0.2 0.4 0.6 0.8 1
Pf

bandpass liftering, absclute —
bandpass liftering, relative

Pd

pf

Figure 11.7: bandpass liftering, equal error rate 12% vs. 2.5%

99

1 Y o e T T Y T
r'-‘

Ve " RASTA, absolute — |
7 RASTA, relative -——--

Pd

o (&) (=) (o) o
o
T
1

(e
—
1

O L b | 1 | 1 L 1 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 C.9 1
Pf

Figure 11.8: RASTA, equal error rate 21% vs. 6%

BPL + RASTA, absolute — |
BPL + RASTA, relative -—

Pd

O 1 i 1 1 1. 1 1 1 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
pPf

Figure 11.9: BPL 4+ RASTA, equal error rate 18% vs. 2.5%

100

Appendix A

Linear Predictive Analysis
Frond End

A.1 LPC Front End

Assuming an all-pole, order p speech production model, the system transfer

function 1s:

=70 =TT ST ot (A.1.1)

For the above model, the speech samples s(r) are related to excitation samples

u(n) by a simple difference equation:

Zaks n — k) + Gu(n) (A.1.2)

The coefficients ax can be estimated from speech data. We form a linear pre-

dictor with prediction coefficients a; defined as a system whose output is:
P
=Y aps(n — k) (A.1.3)
The prediction error is:

e(n) = s(n) — 3(n i aps(n — k) (A.1.4)

101

We select the coefficients ax so as to minimize the average prediction error:

E, = Y ei(m) | (A.1.5)

m

= Z(sn) — 3n(m))? (A.1.6)

> (sn(m) — Z asp(m)2 (A.1.7)

m

where s,,(m) = s(m+n), a segment of speech samples of length m starting from
time n. We can find the values of a; that minimize E, by setting 0E,/0a; =

0,i=1,2,...,p, therefore getting the equations:

an(m —1)sp(m Z astn —k),1<i:<p (A.1.8)

m k=1 m
Assume
bl k) = sn(m —i)sn(m — k) (A.1.9)

The above equation can be rewritten into:
P
=Y uda(i, k), 1< i< p (A.1.10)

o can be computed by solving the above linear equation set. The minimum

mean-squared prediction error can be shown to be:

E, = Zsi(Zastn Ysn(m — k) (A.1.11)

k=1 m
= ¢.(0,0) = > ax¢a(0, k) (A.1.12)
k=1

In our implementation, the window length is 30 ms, the frame step is 20 ms
(thus there is a 10 ms overlap). Each speech frame is first pre-emphasized,

y(n) = z(n) — 0.97 * z(n — 1), then Hamming window is applied.

102

A.2 Durbin’s Algorithm

Assume the autocorrelation function is wide-sense stationary:
bn(i, k) = Ru(ji — k), i =1,2,...,p, k=0,1,....p (A.2.13)

To determine the prediction coefficients o we must solve:

- RO) Rl R® - Rp-1][a] [BD]
R1) RO) RL) - Rp-2) || e | |&Q
R(2) R(1) R(O) -+ R(p-—-3) as | _ | RB3)

1) Rp-2) Be-3) - RO Jlay) RO

(A.2.14)
The following is Durbin’s algorithm to solve ai (we remove the subscript n
from R,, since this algorithm is applied to a set of autocorrelation coeflicients

R.(3),i =0,1,...,p at a particular time n):

E©® = R(0) (A.2.15)

ko= (R(z‘)—ia&"‘”R(z‘—j))/E“-”, 1<i<p (A.2.16)
i=1

= Ky (A.2.17)

o) = oY kel 1< <i-1 (A.2.18)

EW = (1-kHECY (A.2.19)

These steps are carried out iteratively for 7 = 1,2,...,p and the final solution
is:

aj=aP, 1< <p (A.2.20)

103

The model gain G can be computed as (from the minimum mean-squared pre-

diction error):

G? = R(0) —fp; arR(k) (A.2.21)
k=1

A.3 Cepstral Coefficients

We can now compute the cepstral coefficients ¢, from «y. The definition of

cepstral coefficients (refer to Figure A.1, (¢;,i =0,...,00)) is
G o
1 = L2 3.22
" 1— ko k™ ,;,c (4.3.22)
p 0
In(G) = In(1 = > oz) =co+ Dz ™" (A.3.23)
k=1 n=1

Now we have

co = In(G) (A.3.24)
To derive the other ¢,,n = 1,..., 00, we can differentiate (A.3.23) with respect
to z,
! Zp: kogz "t = i negz” ! (A.3.25)
1 - ZZ:l akz'—k k=1 n=1
P P 00
> kaz "1 =(1-) axz)Y nepz ! (A.3.26)
k=1 k=1 n=1
P P 0
> kapzF = (1= axz™F) > ne,z" (A.3.27)
k=1 k=1 n=1
14 o] p o0
Z kaz"F = 2 nepz " — Z Z noycyz~ "R (A.3.28)
k=1 n=1 k=1 n=1

104

Now let’s compare the coefficients of 2~™ of both sides of the equation. Let

n + k = m, and using the substitution: n =m — &,

m—1

mamz T = MCp2 Z m — k)akCm—krz " (A.3.29)
k=1

Thus for 1 < m < p,

m—1
= Qamnm + Z(akcm_k (A.3.30)
And for p < m,
Pom—k
=Y (C=S)aren-s (A.3.31)
k=1

Now we can rearrange (A.3.24), (A.3.30) and (A.3.31) and obtain a recursive
formula to compute the cepstral coefficients (cp,n = 0,...,00) from LPC coef-

ficients ax, k= 1,...,p.

o = 1n(G) (A3.32)
n—1 k
chn = Oan+ Z(YekQn-k,for 1 <n <p (A.3.33)
P k
¢, = Z(l — —)en—kag,for n > p (A.3.34)
k=1 n

105

pulse train
S W vocal tract
A | H() — S(OH(f) — | log(*)
white noise bt

IDFT(log(S
—» log(S(f)) +log(H(H)) — |IDFT(*) | —> +IDF(T?1gc§g((g()ﬂ)))

Usually the dimension of cepstral coefficients are less than 20,

not long enough to capture the pulse train repetition of S(f);

therefore, cepstrum represents the "impulse response” of vocal tract, h(t).
However, h(t) = IDFT(log(H(f))) instead of IDFT(H(f)).

Figure A.1: Cepstrum analysis

106

Appendix B

Frequency Warping

B.1 Digital Warping of Spectra

In a variety of applications, it is useful to transform a sequence to a new se-
quence whose Fourier transform is equal to the Fourier transform of the original
sequence on a distorted (warped) frequency scale. For instance, because of dif-
ferent sensitivities of human perception towards different frequency bands, we
can give different weights to these bands according to physiological or experi-
mental analysis. Bilinear transform is used for this frequency warping purpose.
Let’s focus on any mapping # = m(z) which maps the unit circle in the z plane
to the unit circle in the # plane. Letting Q be angular frequency in the z plane

and {2 be angular frequency in the Z plane, we want Z = m(z) to satisfy
&% = m(e?) (B.1.1)

or

~

Q= 6(Q) (B.1.2)

where m[e/¥] = %% Therefore, if the spectrum of g is to be a warped version of

the spectrum of f,, the transform 2z = m(z) must have an all-pass characteristic,

107

like
. 1 —agz™

where a} is the complex conjugate of ax.

In order that m(z) be invertible and in the form already given, the coeflicient
ar must be such that the interval —7 < Q) < = maps one-to-one to the interval
—x < Q) < 7. A necessary (but not sufficient) condition for this to be true 1s
that the number of zeros minus the number of poles of m(z) which lie inside
the unit circle be plus or minus unity. A useful choice of m(z) is a first-order
all-pass of the form
1

| — az-
5= m(z) = ——

(B.1.4)

Z—l — a*
where 0 <| a |< 1. For real values of parameter a, the mapping between the

frequency variables () and Q is given by

. (1 — a?)sin(Q)

O =6(Q) :tan'l[(l o) sl] (B.1.5)

An alternative form is

asin(Q)

A:e =0 j] P e .
Q=0(0) + 2tan [1 2 cos(()

(B.L.6)

If the parameter a is picked to be real and between 0 and 1, the effect on the
spectrum of f, will be to sample with higher resolution at low frequencies and
with lower resolution at higher frequencies. If instead, a is negative between 0
and -1, the effect is reversed, that is, the spectrum of f, is evaluated with greater
resolution at high frequencies than at low frequencies. By letting the parameter
a assume complex values, the point of maximal resolution can be placed at any

desired frequency.

Usually people use positive a, which emphasize lower frequencies. For in-

108

stance, SPHINX use 0.6. However, that is for “speech recognition” purpose,
in which lower frequencies (major formant frequencies) are more important. In

“speaker identification”, higher frequencies may be more important.

B.2 Digital Warping of Spectra by Time Do-
main Filtering

Cepstrum is a time domain signal, there exists a way to do frequency warping
by time domain filtering. If we perform the following algorithm on a time series,
its frequency spectrum will be warped with a warping coefficient a. Since we use
cepstral coefficients as our feature vectors, being able to do frequency warping

by time domain filtering is much more efficient.

Jon = alfon-1— 0]+ fon (B.2.7)
.él,n = al§1.n-1— 0] + Jo,n-1 (B.2.8)
Gen = alGkn-1 — Gk—1n] + Gr-1n-1,k = 2,3, (B.2.9)

In Figure B.1, we show the frequency warping with different a. In Figure B.2,
we show the spectra of a signal before and after frequency warping with « = 0.6.
The original spectrum has four equally-spaced, equal-magnitude components;
after the warping, lower frequency components acquire higher resolution and

their magnitudes are amplified more than higher frequency components.

109

3F T 3 -;O ------ .
____________ 5.6 ---
5.5 b o a=0.9 = i
7
r: e
3 2r / I
o P
3 /
“ 4
w 1.5t / -
o /
m II
& //
d i/ k
3 III
O SoF :"/ -
O y X)i 1 L 1
0 0.5 1 1.5 2 2.5 3
frequency
Figure B.1: Frequency vs. warped frequency
10000 T T T T | x
9000 - oyjginal spectrum — -
8000 + spectrum after wafping: @ = 0.6 — _
7000 - -
6000 [-
5000 +~ N
4000 - _
3000 - ’ -
2000 - i
1000 + -
0 AN SOV-VAN !

0 20 40 60 80 100 120 140
frequency .

Figure B.2: Spectrum before and after warping

110

Appendix C

Phonotactic Grammar For
Phoneme Recognition

C.1 Introduction

The ambition of this project is to perform speaker recognition on free text. So
the accuracy of speech recognition directly affects the performance of speaker
recognition. In our previous experiments, the results show that if we use null
grammar to do the speech recognition, there will be a lot of illogical phone
streams got recognized. For example, t, s, p, t ... and we know that these
phone sequences can not possibly be from normal English speeches. So under
the assumption that the test utterances are real speeches, we can use linguistic
knowledge to constrain the grammar instead of using a null grammar. And after
using the grammar described below, we do get better speech recognition results.
People may want to argue that speech recognition is not necessary for speaker
identification, because human can recognize speaker without knowing the real
text. However, the statistics shows that the variances between different phones
from the same speaker are larger than the variances between the same phones
from different speakers. That proves speech recognition front end sure will help

in speaker identification task. And it is well known that text-dependent speaker

111

identification performs far better than text-independent speaker identification.
So it makes sense to convert text-independent problem into text-dependent.
This observation also proves the reason why we can do speaker-independent

speech recognition.

C.1.1 general phonotactic

start(<S>).
<S> —> BACKGROUND <5>.
<S> —> word <5>.
<S> —> “.

start(word).
word —> syllable restofword.
restofword —> syllable restofword.
restofword —> suffix.

restofword —> “”.

C.1.2 background

start(BACKGROUND).
BACKGROUND —> $SILENCE.
BACKGROUND —> SINHALATION.
BACKGROUND —> SEXHALATION.
BACKGROUND —> <NULL>.

C.1.3 syllable

start(syllable).

syllable —> onset syll.1.

112

syllable —> nucleus syll.3.
syll.1 —> nucleus syll.3.
syll.3 —> coda.

syll.3 —> .
C.1.4 onset

start(onset).
onset —> onset_consonant.
onset —> s s_cluster.
onset —> pbf pbf_cluster.
onset —> tdth tdth_cluster.
onset —> kg kg_cluster.
onset —> sh 1.
start(s_cluster).
s_cluster —> p pbf_cluster.
s_cluster —> t tdth_cluster.
s_cluster —> k kg_cluster.
s_cluster —> m.
s_cluster —> n.
s_cluster —> L.
s_cluster —> w.

s_cluster —> f.

start(pbf).
pbf —> p.
pbf —> b.
pbf —> f.

113

start(pbf_cluster).
pbf_cluster —> L.

pbf_cluster —> r.

start(tdth).
tdth —> t.
tdth —> d.
tdth —> th.

start(tdth_cluster).
tdth_cluster —> r.

tdth_cluster —> w.

start(kg).
kg —> k.
kg —> g.

start(kg-cluster).
kg_cluster —> .
kg_cluster —> 1.

kg_cluster —> w.

C.1.5 nucleus

start(nucleus).
nucleus —> vocalicnucleus.
nucleus —> syll nasal.
start(vocalic_nucleus).
vocalic_nucleus —> y uw.
vocalic_nucleus —> aa.

vocalic_nucleus —> ae.

114

vocalic_nucleus —> ah.
vocalic_nucleus —> ao.
vocalic_nucleus —> aw.
vocalic_nucleus —> ax.
vocalic_nucleus —> axr.
vocalic_nucleus —> ay.
vocalic_nucleus —> eh.
vocalic_nucleus —> ih.
vocalic_nucleus —> ix.
vocalic_nucleus —> iy.
vocalic_nucleus —> ow.
vocalic_nucleus —> oy.
vocalic_nucleus —> uh.
vocalic_nucleus —> uw.
vocalic_nucleus —> er.
vocalic_nucleus —> ey.
vocalic_nucleus —> el.
start(syll-nasal).
syll_.nasal —> em.

syll.nasal —> en.

C.1.6 coda

start(coda).
coda —> obstruent.
coda —> n.

coda —> m.

115

coda —> ng.
coda —> nasal_cluster.

coda —> liquid.

coda —> liquid obstruent.

coda —> liquid m.

coda —> liquid n.

coda —>r L.
coda —> s p.
coda —> s t.
coda —> s k.

coda —> sh t.

coda —> ks.
start(nasal-cluster).

nasal_cluster —> m p.

nasal_cluster —> m f{.

nasal_cluster —> n ch.

nasal_cluster —> n jh.

nasal_cluster —> ng k.

start(liquid).
liquid —> 1.
liquid —>r.

C.1.7 suffix

start(suffix).
suffix —> t.
suffix —> d.

116

sufix —> s.

suffix —> z.

suffix —> th.
suffix —> s t.
suffix —> t s.

suffix —> d z.

suffix —> th s.

C.1.8 consonants

start(onset_consonant).

onset_consonant —> obstruent.

onset_consonant —> onset_sonorant.

start(obstruent).
obstruent —> b.
obstruent —> ch.
obstruent —> d.
obstruent —> dh.
obstruent —> f.
obstruent —> g.
obstruent —> jh.
obstruent —> k.
obstruent —> p.
obstruent —> s.
obstruent —> sh.
obstruent —> t.

obstruent —> th.

obstruent —> v.
obstruent —> z.
obstruent —> zh.
start(onset_sonorant).
onset_sonorant —> m.
onset_sonorant —> n.
onset_sonorant —> L.
onset_sonorant —> T.
onset_sonorant —> w.
onset_sonorant —> wh.
onset_sonorant —> y.
onset_sonorant —> hh.

onset_sonorant —> dx.

118

Bibliography

(1]

[6]

Alejandro Acero. Acoustical and Environmental Robustness in Automatic
Speech Recognition. PhD thesis, Department of Electrical and Computer

Engineering, Carnegie Mellon University, 1990.

Alejandro Acero and Richard M. Stern. Environmental robustness in auto-
matic speech recognition. In International Conference on Acoustics, Speech,

and Signal Processing, 1990.

Alejandro Acero and Richard M. Stern. Robust speech recognition by nor-
malization of the acoustic space. In International Conference on Acoustics,

Speech, and Signal Processing, 1991.

Gerome R. Bellegarda and David Nahamoo. Tied mixture continuous pa-
rameter models for large vocabulary isolated speech recognition. In Inter-

national Conference on Acoustics, Speech, and Signal Processing, 1989.

Steven F. Boll. Suppression of acoustic noise in speech using spectral sub-
traction. IEEE Transactions on Acoustics, Speech, and Signal Processing,

ASSP-27(2), April 1979.

Leo Breiman, Jerome H. Friedman, Richard E. Olsen, and Charles J. Stone.
Classification and Regression Trees. Wadsworth Statistics and Probability

Series, 1984.

119

7]

[12]

(13]

(14]

William H. Equitz. A new vector quantization clustering algorithm. [EEE
Transactions on Acoustics, Speech, and Signal Processing, ASSP-37(10),
Oct. 1989.

S. Furui. Research on individuality features in speech waves and automatic

speaker recognition techniques. Speech Communication 5, 1986.

Saul B. Gelfand, C. S. Ravishankar, and Edward J. Delp. An iterative grow-
ing and pruning algorithm for calssification tree design. IEEE Transactions

on Acoustics, Speech, and Signal Processing, ASSP-13(2), Feb. 1991.

Allen Gersho. On the structure of vector quantizers. [EEE Transactions

on Information Theory, IT-28(2), March 1982.

Herbert Gish. Robust discrimination in automatic speaker identification.
In International Conference on Acoustics, Speech, and Signal Processing,

1990.

Herbert Gish, Michael Krasner, William Russell, and Jare3d Wolf. Methods
and experiments for text-independent speaker recognition over telephone
channels. In International Conference on Acoustics, Speech, and Signal

Processing, 1986.

John J. Godfrey, Edward C. Holliman, and Jane McDaniel. Switchboard:
Telephone speech corpus for research and development. In International

Conference on Acoustics, Speech, and Signal Processing, 1992.

Yifan Gong and Jean-Paul Haton. Text-independent speaker recognition
by trajectory space comparison. In International Conference on Acoustics,

Speech, and Signal Processing, 1990.

120

[15]

[17]

[19]

[21]

A. L. Higgins and L. G. Bahler. Text-independent speaker verification by
discriminant count. In International Conference on Acoustics, Speech, and

Signal Processing, 1991.

Biing-Hwang Juang, Lawrence R. Rabiner, and Jay G. Wilpon. On the use
of bandpass liftering in speech recognition. IEEE Transactions on Acous-

tics, Speech, and Signal Processing, ASSP-35(7), July 1987.

Yu-Hung Kao, P. K. Rajasekaran, and John S. Baras. Free-text speaker
identification over long distance telephone channel using hypothesized pho-
netic segmentation. In International Conference on Acoustics, Speech, and

Signal Processing, 1992.

Yoseph Linde, Andres Buzo, and Robert M. Gray. An algorithm for vec-
tor quantizer design. IEEE Transactions on Communications, COM-28(1),

Jan. 1980.

T. Matsui and S. Furui. A text-independent speaker recognition method ro-
bust against utterance variation. In International Conference on Acoustics,

Speech, and Signal Processing, 1991.

D. A. Reynolds and R. C. Rose. An integrated speech-background model
for robust speaker identification. In International Conference on Acoustics,

Speech, and Signal Processing, 1992.

R. C. Rose, J. A. Fitzmaurice, E. M. Hofstetter, and D. A. Reynolds.
Robust speaker identification in noisy environment using noise adaptive
speaker models. In International Conference on Acoustics, Speech, and

Signal Processing, 1991.

121

[22]

[26]

[27]

[28]

R. C. Rose and D. A. Reynolds. Text-independent speaker identification
using automatic acoustic segmentation. In International Conference on

Acoustics, Speech, and Signal P%‘ocessing, 1990.

Marvin R. Sambur. Selection of acoustic features for speaker identification.
IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-

23(2), April 1975.

M. Savic and J. Sorensen. Text-independent speaker recognition based on

phonetic segmentation. In Speech Research Symposium X, 1990.

F. K. Soong, A. E. Rosenberg, L. R. Rabiner, and B. H. Juang. A vector
quantization approach to speaker recognition. In International Conference

on Acoustics, Speech, and Signal Processing, 1935.

Belle L. Tseng, Frank K. Soong, and Aaron E. Rosenberg. Continuous prob-
abilistic acoustic map for speaker recognition. In International Conference

on Acoustics, Speech, and Signal Processing, 1992.

B. Wheatley. Robust automatic time alignment of orthographic transcrip-
tions with unconstrained speech. In International Conference on Acoustics,

Speech, and Signal Processing, 1992.

B. Wheatley and J. Picone. Voice across america: Toward robust speaker-
independent speech recognition for telecommunications applications. Digi-

tal Signal Processing, April 1991.

