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Cirrhosis is the common end-stage of chronic liver diseases of different etiology.

The altered bile acids metabolism in the cirrhotic liver and the increase in the

blood-brain barrier permeability, along with the progressive dysbiosis of

intestinal microbiota, contribute to gut immunity changes, from compromised

antimicrobial host defense to pro-inflammatory adaptive responses. In turn,

these changes elicit a disruption in the epithelial and gut vascular barriers,

promoting the increased access of potential pathogenic microbial antigens to

portal circulation, further aggravating liver disease. After summarizing the key

aspects of gut immunity during homeostasis, this review is intended to update

the contribution of liver and brain metabolites in shaping the intestinal immune

status and, in turn, to understand how the loss of homeostasis in the gut-

associated lymphoid tissue, as present in cirrhosis, cooperates in the advanced

chronic liver disease progression. Finally, several therapeutic approaches

targeting the intestinal homeostasis in cirrhosis are discussed.
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1 Background

Cirrhosis is an evolving liver disease that leads to portal hypertension and hepatic

insufficiency. During cirrhosis, the composition of intestinal microbiota is dynamically

altered. This microbiota state, known as dysbiosis, induces an increased intestinal

permeability and gut barrier dysfunction. In these conditions, the homeostatic contribution

of the liver and the brain to gut immunity that is established through the gut-liver-brain axis is

then affected, accelerating disease decompensation and complications (1, 2). This review

outlines intestinal immunity characteristics in the homeostatic condition and how

metabolites derived from liver and brain during cirrhosis contribute to disturbing the gut

tissue microenvironment, which further contributes to progression of advanced chronic disease.
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1.1 Intestinal immune milieu in homeostasis

Multiple barriers separate the commensal microbes in the gut

from blood, avoiding bacteria entering the systemic circulation.

From the lumen inwards, tissue arrangement comprises the mucus

layer, the epithelial barrier, the immune system layer, and the gut

vascular barrier (GVB) (3) (Figure 1).

The mucus layer acts as a frontline barrier separating the

intestinal lumen from underlying tissues. Mucins comprising the

outer thick mucus layer, which help the adhesion of

microorganisms and their products, are produced by goblet and

epithelial cells, and facilitate the opsonizing activity of plasma cell-

derived secretory Immunoglobulin A (sIgA) (Table 1). Mucins can

be found either as membrane-attached, such as MUC1, MUC3,

MUC4, MUC13, and MUC17, or as secreted gel-forming mucins,

like MUC2, MUC5AC, MUC5B, and MUC6 (47). Particularly,

MUC2 offers static protection and restricts the potential

activation of dendritic cells (DC), conferring them a tolerogenic

state through stimulation of interleukin 10 (IL-10) production and

TNF-a signaling inhibition (48).

The physical barrier integrated by mucins is reinforced by

antimicrobial peptides (AMPs), that are produced by enterocytes

and Paneth cells, and by microbial metabolites from commensal

microbiota (49). AMPs act as efficient barrier against enteric

pathogens (50). Cathelicidins, defensins and the regenerating islet-

derived protein III-gamma (Reg3g) prompt antimicrobial and anti-

inflammatory functions, and induce immune cell recruitment,

bacterial phagocytosis, and epithelial healing. The recently

described lipopeptides, C14-R1 and C12-R2, have also shown AMP

activity through the production of reactive oxygen species (ROS) (51).

On the other hand, the barrier features of the mucus layer are

completed with microbial metabolites produced by bacterial

fermentation of dietary components, such as short-chain fatty acids

(SCFAs). SCFAs regulate most intestinal epithelial cell functions,

including cell turnover (52), mucus secretion by goblet cells (53), tight

junction (TJ) proteins expression (54) and inflammasome- or

hypoxia-inducible factor-mediated epithelial integrity (55, 56).

Below the mucus layer, the epithelial barrier maintains gut

homeostasis and regulates immune responses (50). Epithelial cells are

sealed by tight and adherens junctions (TJ and AJ, respectively), which

are finely regulated by the influence of proinflammatory cytokines, and

by signaling kinases and cytoskeleton, like myosin light chain kinases

(5, 57). Intestinal epithelial cells possess a tightly regulated and

specifically localized set of Pathogen-associated molecular pattern

(PAMP) receptors and their signaling components for microbial

detection. This innate immune-recognition equipment enables them

to respond to microorganisms, thereby initiating the first steps in the

host-pathogen interaction by regulating the immune response (58, 59).

In addition, some studies unveil intestinal epithelial cells as non-

professional antigen-presenting cells inducing inflammation or

promoting tolerance (60–62). Following the detection of intestinal

microbes through PAMP receptors, some specialized epithelial cells,

such as goblet or Paneth cells (Table 1), respond generating molecules

that protect mucosa from commensal microbes and invading

pathogenic microorganisms, as mentioned above.
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The Gut-associated lymphoid tissue (GALT) comprises both

organized tissues such as lymphoid follicles, Peyer’s patches, and

mesenteric lymph nodes (MLNs), where immune responses are

induced, and scattered immune cells throughout the surface

epithelium of the mucosa and in the underlying lamina propria,

where effector functions are carried out (63).

In the steady state, neutrophils, located in the lamina propria,

produce ROS and neutrophil extracellular traps (NETs) helping

eliminating microbes translocated across the mucosal epithelium

and facilitating tissue healing or immune cell recruitment (18).

Eosinophils produce mediators including fibroblast growth factor

(FGF)-2 and transforming growth factor (TGF)-b to promote tissue

remodeling and repair (64, 65). In addition, mast cells, localizing

along the gastrointestinal tract, differentially express PAMP

receptors depending on their location and develop a fundamental

regulatory and defensive function (26, 66). Intestinal macrophages

remove senescent, apoptotic epithelial cells and promote epithelial

integrity. They can also capture and destroy any bacteria that breach

the barrier or send cellular processes across the epithelial barrier to

sample luminal contents, which transfer to Dendritic cells (DCs) for

presentation to T cells in the draining MLNs. Through their

production of immunoregulatory cytokines, such as IL-10 and

TGF-b, they maintain and facilitate secondary expansion of

regulatory T cells (Tregs). In a similar manner, they support T

helper (Th)17 cells and type 3 Innate lymphoid cells (ILC3) through

their production of IL1-b (20). Also, differentially localized DC

subsets can capture translocated IgA immune complexes (67) and

continuously sample the lumen to establish a tolerogenic response

to innocuous antigens (22). Finally, several innate lymphocytes like

NK cells, invariant natural killer T cells (iNKT), and mucosal-

associated invariant T (MAIT) cells have been identified as

important in controlling gut immunity. Together with ILC3 and

gamma delta (gd)T, both iNKT and MAIT cells contribute to gut

barrier integrity by producing IL-22, which is also important for

promoting antibacterial defense (68–70) (Figure 1 and Table 1).

Th cells control the entry of translocated antigens at the gut

(71). However, the sustained activation and proliferation of the Th

response is an impeller of chronic inflammation. On the other hand,

regulatory T (Treg) cells in the gut secrete TGF-b that negatively

regulates T cell function (41). Both Th17 and Treg subsets show

reciprocal phenotype plasticity based on the environmental milieu

(72). Any imbalance between these populations in a tissue highly

exposed to bacteria such as the gut barrier leads to a dysregulated

mucosal immune response, with consequences for liver regulation

and disease (73, 74) (Figure 1 and Table 1).

Just below the effector sites of the immune system layer, an

additional cellular barrier, the GVB, controls entry into the portal

circulation and access to the liver (75). Thus, if a molecule or a

microorganism crosses the muco-epithelial barrier and escapes the

local immune system, even to reach the systemic circulation the

GVB must be disrupted. The GVB is characterized by the presence

of TJ and AJ, which strictly control paracellular trafficking of solutes

and fluids, together with other cell types, such as pericytes or

fibroblasts, associated with the microvasculature and involved in

the maintenance of the GVB, where they form a vascular unit.
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1.2 The liver contributes to shaping gut
immune landscape

Liver-derived molecules interact with the gut regional immune

system defining tolerogenic or pathological interactions. In addition

to metabolic functions, bile acids (BAs) are synthesized in the liver

and incorporated by intestinal epithelial cells, exerting several

immunomodulatory activities (76). Firstly, BAs induce anti-
Frontiers in Immunology 03
inflammatory responses through farnesoid X receptor (FXR) and

Takeda G-protein-coupled receptor 5 (TGR5) on many tissues such

as liver, intestine, or brain. Particularly, in macrophages, TGR5

activation inhibits nuclear translocation of nuclear factor kB (NF-

kB), reducing the secretion of proinflammatory mediators such as

TNF-a, IL-1b, IL-6, IFN-g and nitric oxide (NO) (77, 78). Secondly,
BAs interact with intestinal microbiota helping maintain its eubiotic

state. In fact, a decrease in BAs levels may induce an overgrowth
FIGURE 1 (Continued)
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FIGURE 1 (Continued)

Gut-liver-brain axis in health and cirrhosis, highlighting the intestinal immune milieu. The intestinal epithelial barrier is a multi-layered structure that
separates bacteria in the intestinal lumen from the systemic circulation. In healthy individuals, eubiosis, a tolerant immune system and an efficient
innate antibacterial defense maintain the integrity of the epithelial and vascular barriers. Cirrhosis is associated with an altered microbiome which
results from decreased bile flow, with deficient levels of primary but increased of secondary bile acids, together with intestinal hypomotility. Gut
dysbiosis drives bacterial colonization of the inner mucous layer of the intestine, which facilitates the interaction of bacteria with the immune
system, resulting in intestinal inflammation with recruitment and activation of immune system cells. Composition and severity of intestinal
inflammation change with cirrhosis progression. Intestinal inflammation in the compensated stage is featured by activated innate cells, including
DCs producing TNF-a and showing increased phagocytic and migratory abilities, along with the activation of the adaptive immune system, mainly
located in the intraepithelial compartment. In the decompensated stage, intestinal immune system derangement is characterized by non-activated
DCs, with lowered TNF-a secretion, and deficient phagocytosis and migration abilities, as well as expansion of activated macrophages and Th1
lymphocytes with concomitant Th17 reduction. Inflammation results in the release of proinflammatory cytokines and ROS, which worsens epithelial
and the vascular barrier damage, hyperpermeability and access of bacterial products to the liver (via portal vein Flow) and to the systemic
circulation. Elevated systemic levels of proinflammatory cytokines, PAMPs and DAMPs accelerate cirrhosis progression and increase the blood-
brain-barrier permeability, inducing neuroinflammation (astrocyte swelling, activated microglia and immune system infiltration), which activates
hypothalamic-pituitary-adrenal axis, and affects intestinal barrier integrity. Within the gut, the altered microbiota can produce neurotransmitters,
amino acids and microbial metabolites. These metabolites can travel through portal circulation to interact with the host immune system, influence
metabolism and/or affect local neuronal cells of the enteric nervous system and afferent pathways of the vagus nerve that signal directly to the
brain. DC, dendritic cell; Treg, regulatory T cells; Tc, cytotoxic T cell; Th, helper T cell; ILC, innate lymphoid cell; NK cell, natural killer cell; NKT cell,
natural killer T cell, MAIT cell, mucosal-associated invariant T cell, AMP, antimicrobial peptides; MUC-2, mucin-2; FXR, Farnesoid X receptor, TJ,
Tight junction, BA, bile acid; NO, nitric oxide; IL-, interleukin; CCL2, C-C motif ligand 2; PAMPs, pathogen-associated molecular patterns; 318
DAMPs, damage-associated molecular patterns, ROS, radical oxygen species; TNF-g, tumor necrosis factor-alpha; IFN-g, interferon g; ACTH,
adrenocorticotrophic hormone; BBB, blood-brain barrier; HPA, hypothalamic-pituitary-adrenal.
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ofpathogenic Gram-negative bacteria, with raised levels of

lipopolysaccharide (LPS) (79) and subsequent induction of

proinflammatory responses in the gut. Moreover, BAs such as

deoxycholic acid have a direct impact on microbial membranes

due to its hydrophobicity and detergent properties. Indirectly, BAs

binding to FXR induces the control of gut microbiota through the

production of intestinal antimicrobial molecules, such as

angiogenin 1, that help control microbial overgrowth (80).

Together with BAs, IgA is the main isotype participating in

microbial control in the gut-liver axis. Though main contribution

on microbiota regulation is proportioned by sIgA produced by

intestinal plasma cells, liver-derived IgA also contributes to the

regulation of intestinal microbiota (81). Regardless the source, the

sIgA patrols the intestinal mucus barrier, protecting epithelial cells

and opsonizing luminal bacteria (15) without inducing a deleterious

local inflammatory response (82). In fact, sIgA deficiency has been

shown to disrupt the gut barrier via increased translocation of

commensal bacteria (83).

The rest of metabolites and intermediaries drained by the liver

into systemic circulation such as free fatty acids, choline and ethanol

metabolites have also an impact on the physiological conditions of the

gut, as they contribute to modulate the gut barrier interaction

between the microbiome and the immune system (73).
1.3 The brain contribution in gut
immune response

Gut-brain axis involves a bidirectional communication route

with a cellular and molecular interchange modulated by threatening

inflammatory insults. Intestinal microbiota and its products can

directly modulate the central nervous system (CNS) immune profile

(84). Though specific immune responses coming from CNS and

controlling the gut remains still elusive, different mechanisms have

been recently uncovered (85). On this point, systemic, neuronal,
Frontiers in Immunology 04
and cellular intercommunication pathways have been described.

First, systemic proinflammatory elements can alter blood brain

barrier (BBB), as it happens with GVB, leading to increased

permeability and passage of inflammatory products along the

axis. Thus, neuroinflammatory triggering by such products could

give rise to potential intestinal tract immune responses, as

glucocorticoids release under hypothalamic-pituitary-function

adrenal (HPA) activation, can modulate intestinal functions (84)

(Figure 1). Moreover, neuronal connection of the CNS with the gut

allows the signaling communication and the inhibition of

proinflammatory macrophages, as well as M cell function to

control pathogen irruption and microbiota homeostasis

(Figure 1). Additionally, dysbiosis induced by stress and intestinal

Th17 production of IL-17A, has been described to feedback this

stress response (86).
2 Altered gut-liver-brain
axis in cirrhosis

2.1 Gut barrier dysfunction in cirrhosis

In cirrhosis, the intestinal barrier is markedly disturbed,

prompting the passage of live bacteria and bacterial components

or metabolites to the internal milieu in experimental models and

patients (5, 16, 87). This derangement increases in severity as

cirrhosis progresses (Figure 1).

Gut barrier dysfunction affects both physical (muco-epithelial

and GV barriers) and immunological layers, and results in

hyperpermeability of the whole intestine (5, 13, 88). Disrupted

mucosal barrier integrity plays a pivotal pathophysiological role

not only because it increases the risk of severe complications such

as spontaneous infections, but also and more importantly,

because it affects the natural history of liver disease and

patient survival.
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TABLE 1 Role of immune cells involved in gut homeostasis and abnormalities produced in cirrhosis.

Cell type Immune function References Intestinal mucosa abnormalities in
cirrhosis

References

Intestinal
epithelial
cells

Enterocytes
Form TJ structures; produce antimicrobial
molecules (Reg3g and Lypd8); express pIgR

(4) Shedding and apoptosis, decreased TJs and
AMPs Reg3b and Reg3g

(5–7)

Paneth
cells

Produce AMPs a-defensin 5 (HD5), HD6 and
Reg3g

(4, 8, 9) Defective production of AMPs (a-defensins and
Reg3 proteins)

(6, 7, 10, 11)

Goblet
cells

Produce mucin and anti-inflammatory molecules
(trefoil factor 3, RELMbeta)

(4, 12) Loss of goblet cells and decreased MUC2
resulting in reduced mucous layer thickness

(13)

Microfold
(M) cells

Uptake of antigens
(4, 14) N/R

Tuft cells Sense luminal helminths

sIgA (produced by
plasma cells)

Binding and retention of bacteria in the
intestinal lumen

(15) Reduced synthesis in the jejunum and
diminished fecal content

(5, 16, 17)

Neutrophils
Elimination of translocated microbes, facilitation
of mucosal healing, recruitment of other immune
cells

(18, 19) N/R

Macrophages
Bactericidal activity, transfer of acquired antigen to
DC for presentation to T cells, production of
immunoregulatory cytokines IL-10 and TGF-b

(20)
Activated CD14+Trem1+iNOS+ secreting IL-6,
IL-8, NO and MCP-1

(21)

Dendritic cells
Maintenance of tolerogenic state; initiation and
differentiation of adaptive immune responses

(22) Deficient phagocytosis, migration capacity, and
TNF-a production

(23)

Eosinophils Cytotoxic effect, modulation of B and T cells (24, 25) N/R

Mast cells
Innate response, antigen clearance, release of
histamine, proteases, and prostaglandins

(26, 27)
N/R

ILC1 (including NK
cells)

Cytotoxicity, macrophage activation (28, 29) Expanded showing increased IFN-g production
(5)

ILC2 Immunity to helminths (28) N/R

ILC3
Host defense against extracellular bacteria and
fungi

(28)
Reduced IL-22 production by ILC3s which
promotes diminished intestinal Reg3g expression,
resulting in bacterial translocation to the liver

(30)

iNKTs
Response to lipid antigen, production of cytokines
and chemokines

(28)
Expanded in intestinal lamina propria, but
reduced IL-17 production

(5)

Tgamma-delta Defense against infection and wound healing (31) Expanded in intestinal lamina propria (5)

MAIT cells
Modulation of host-microbial interplay,
antibacterial immunity

(32, 33)
N/R

Th CD4+

Th17
Neutrophilic inflammation, response to
extracellular bacteria and fungi

(34–39)

Diminished in the lamina propria
(5)

Th1
Monocytic inflammation, response to intracellular
bacteria, protozoans, and viruses

Increased production of IFN-g in the small
intestine

(5)

Th22 Mucosal host defense, secretion of beta-defensins (40) N/R

Treg
Tissue homeostasis and tolerogenic cytokine
production

(41–44) Expanded in the lamina propria
(5)

Tc CD8+ Cytotoxic activity (45) Expanded showing high IFN-g production (5)

Memory
T cells

Central
memory T
cells

Re-exposure with their cognate antigen
recirculating between secondary lymph organs and
blood

(46)
Expanded in the small intestine

(5)

Effector
memory T
cells

Re-exposure with their cognate antigen
recirculating between peripheral circulation and
tissue

Expanded in the small intestine
F
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frontiersin.org

https://doi.org/10.3389/fimmu.2023.1139554
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Muñoz et al. 10.3389/fimmu.2023.1139554
2.1.1 Deranged muco-epithelial and gut vascular
barrier permeability

Intestinal dysbiosis is the dominant player that sets the basis for

epithelial barrier disruption. The gut microbiome in cirrhosis is

characterized by reduced diversity and shows a significantly

increased abundance of potentially pathogenic bacteria such as

Enterococcaceae, Staphylococcaceae and Enterobacteriaceae, and a

reduced relative abundance of potentially beneficial autochthonous

bacteria such as Lachnospiraceae and Ruminococcaceae (89–91).

Dysbiosis likely results from reduced bile flow with deficient levels

of primary but increased levels of secondary BAs to the gut (92–94),

which in turn results in reduced intestinal FXR signaling (10, 95),

along with intestinal hypomotility. Intestinal dysbiosis and changes

in BAs drive intestinal barrier functional abnormalities through

changes in mucosal immunity and deficiencies in innate

mechanisms of defense against bacteria (Figure 1).

The microbiome has been proposed to play a key role in mucus

synthesis, release and barrier-function (96). In bile duct ligated

(BDL) cirrhotic rats, there is lower mucus thickness, mucus weight

per ileum length, and goblet cell numbers in the terminal ileum

compared to healthy controls, predominantly with a reduction in

mucin-filled goblet cells. This is associated with bacterial

overgrowth in the inner most mucus layer (13). The closer

proximity of bacteria to epithelial cells is one of the factors

contributing to the passage of bacterial products in cirrhosis.

In humans and experimental models of cirrhosis, the observed

structural changes in the small intestine include increased inter-

enterocyte spacing with disorganization of TJ and AJ proteins,

decreased intestinal mucosal proliferation and proliferation/

apoptosis ratio, increased intestinal oxidative stress, edema of the

lamina propria, infiltration by immune system cells, fibromuscular

proliferation and a lowered villous/crypt ratio (5, 10, 21, 97–99).

Diminished expression of zonula occludens-1 (ZO-1), occludin,

claudin-1 and e-cadherin, and increased expression of claudin-2

have been reported in the small intestine of patients and

experimental models of cirrhosis, especially in decompensated

ones, with a concomitant increase produced in intestinal

permeability, supporting the dynamic relationship between portal

hypertension, gut bacterial translocation (GBT) and TJ and AJ

expression in intestinal epithelial cells (5, 10, 21, 98). Portal

hypertension results in intestinal mucosa hypoperfusion and

hypoxia, which exacerbate oxidative damage in the gut mucosa

(100). ROS can also enhance bacterial adhesion to epithelial cells

and facilitate GBT across the mucosa (101). Increased

cyclooxygenase-2 activity contributes to intestinal barrier

disruption, as its inhibition increases ZO-1 and e-cadherin

expression as well as intestinal permeability in rats with

cirrhosis (102).

GVB is also profoundly altered in pre-clinical models of

cirrhosis (13). This pathological endothelial permeability and

accessibility in cirrhotic mice is associated with augmented

expression of plasmalemma vesicle-associated protein (PV1), an

integral membrane protein associated to the diaphragms of

endothelial fenestrae, in intestinal vessels. Gut dysbiosis drives

GVB disruption associated with liver disease, as mice receiving

fecal microbiota transplantation (FMT) from high fat diet-fed mice,
Frontiers in Immunology 06
a pre-clinical model of non-alcoholic steatohepatitis, displayed

increased PV1 expression in the small intestine compared to

recipients receiving FMT from mice under control diet (103).

2.1.2 Compromised antimicrobial host defense
Besides damage to the physical barriers, cirrhosis is also

associated with compromised antimicrobial host defense, which

concerns certain specialized populations of epithelial cells having

particularly important roles in innate immune defense of the

intestine, such as Paneth cells, as well as innate immune cells. In

this sense, the loss of Paneth cell a-5, a-6 and a-7-defensins,
lysozyme and Reg3g AMPs has been described in experimental

models and patients with cirrhosis (6, 10, 11, 30, 104). Interestingly,

some of these changes have been associated with GBT in CCl4-

induced ascitic cirrhotic rats. Moreover, a diminished activity

against E. coli and Enterococcus faecalis in the distal ileum has

been found in rats with cirrhosis with GBT compared with non-

GBT (11). Of note, a negative correlation between a-5, and a-7-
defensins expression and circulating endotoxin levels has been

described in cirrhotic patients (104). Therefore, a deficiency in

Paneth cell AMPs likely decreases mucosal killing activity with a

consequent shift of the luminal bacterial composition associated

with intestinal bacterial overgrowth and increased GBT in liver

cirrhosis. In this regard, angiogenin-1 is an AMP transcriptionally

regulated by FXR (105), which displays a selective bactericidal

activity against Gram negative bacteria and modulates intestinal

inflammation (106). Reduced ileum expression of angiogenin-1 has

been observed in rats with CCl4-induced cirrhosis with ascites

suffering GBT (10).

2.1.3 Skewed gut innate and adaptive
immune responses

Both structural changes and compromised antimicrobial host

defense in the small intestine allow for bacterial colonization of the

inner mucous layer and further promote the interaction of an

altered gut microbiota, including an augmented bacterial burden

and abundance of potentially pathogenetic taxa, with mucosal

immune system cells. The consequence of this interaction

between pathobionts and GALT is a state of subclinical

inflammation with activation of innate immune cells, leading to

proinflammatory cytokine and chemokine release, oxidative stress,

and further recruitment of lymphocytes (11, 13, 21, 23, 107, 108).

Experimental studies have shown the increased expression of

Toll-like receptor 4 (TLR4) and the proinflammatory cytokine TNF-

a in the terminal ileum of CCl4-cirrhotic rats, especially in those with

GBT (10, 109). In addition, the TNF-a levels in both the serum and

multiple organs are significantly increased in CCl4-cirrhotic rats with

compared with those without GBT (109) Similarly, patients with

advanced cirrhosis with ascites exhibit elevated blood TNF-a levels

along with an increase in the local production of TNF-a in theMLNs,

which correlates with GBT (110). These findings suggest that, in

cirrhosis, bacterial overgrowth and endotoxins significantly stimulate

the secretion of TNF-a in the small intestine through the activation of

TLR4. In the gut, immune dysregulation with a functional

proinflammatory switch contributes to perpetuate intestinal barrier

failure and GBT, both to the MLNs, and to the liver through the
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portal-venous route, due to disruption of the GVB (5, 13, 23, 107,

109). Subsequently, clearance deficiency by the cirrhotic liver allows

bacteria and PAMPs getting into the systemic circulation (5, 13, 23,

107–109, 111). Recirculation of gut activated effector immune system

cells along with inflammatorymediators, such as TNF-a, PAMPs and

damage-associated molecular patterns (DAMPs) spreads the systemic

inflammatory response inducing circulatory and remote organ

dysfunction (91, 107, 109–113) (Figure 1).

Regarding to innate immune cells, a deranged innate immune

response has an important contribution to the gut barrier

disruption that occurs in cirrhosis patients and experimental

models and includes: i) activated CD14+Trem1+inducible nitric

oxide synthase (iNOS)+ macrophages, secreting IL-8, CCL2, IL-6

and NO, which correlate with an increased expression of claudin-2

(21); ii) an increased number of activated CD103+ DCs producing

TNF-a and showing higher phagocytic and migratory abilities,

when GBT is not present, which switch to a non-activated

phenotype, and relatively deficient function when cirrhosis

progresses and GBT occurs, likely facilitating bacterial passage

(23); iii) the expansion of IFN-g-secreting gdT- and NK cells, that

could be related with TJ disorganization (5); and iv) a reduced IL-22

production by ILC3s which promotes diminished intestinal Reg3g
expression, resulting in GBT to the liver (30) (Figure 1 and Table 1).

Changes in the small intestine’s adaptive immune response are

also prominent especially as cirrhosis progresses to the ascites stage,

and consist of: i) high infiltration of several activated Th and

cytotoxic T (Tc) CD8ab+ cell subsets (5, 109); ii) high

proportion of Th1 and IFN-g-producing Tc cells, which directly

correlates with gut permeability that is probably due to endocytosis

of TJ proteins (5, 114); iii) Th17 depletion, which also contributes to

barrier damage as IL-17 play a role in intestinal epithelium

homeostasis by inducing TJ function and AMPs production

(115); iv) increased numbers of Tregs in a likely response to

bacterial challenge, although they seem unable to offset the

proinflammatory immune response; and v) an increased number

of B cells, which contrasts with the reduced synthesis of IgA in the

jejunum of rats with cirrhosis and the diminished fecal IgA content

of the intestine in cirrhotic rats (5, 16, 17) (Figure 1 and Table 1).

Intestinal dysbiosis leads to a dysregulation of the innate and

adaptive immune responses of the intestinal mucosa that further

contribute to bacterial mucosal adhesion and colonization, as well

as intestinal hyperpermeability. As cirrhosis progresses from the

preascitic to the ascitic stage a dysregulated mucosal immune

system contributes to the derangement of epithelial TJ, reduced

secretion of AMPs and impaired phagocytic function of DCs, which

facilitate the increased passage of bacteria and bacterial products to

the systemic circulation (Figure 1 and Table 1).

The key pathogenetic role of bacteria is confirmed by the

reversibility of most intestinal immune abnormalities and increased

gut permeability provoked by antibiotic-induced microbiome

reorganization (5, 23). Consistently, antibiotics reduce immune cell

infiltration in the intestinal mucosa of cirrhotic animals. Of note, bowel

decontamination normalizes the frequencies of proinflammatory IFN-

g and TNF-a cytokines, the phagocytic activity of DCs, and gut

permeability, as revealed by a reduction in fecal albumin loss and by

fully suppressed GBT in cirrhotic rats with ascites (5, 23).
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2.2 Disturbed gut-brain function during
cirrhosis

Amild neurocognitive dysfunction is present in as much as 80%

of patients with cirrhosis. This condition, named minimal or covert

hepatic encephalopathy (HE) affects quality of life (116) and

predicts the development of overt HE (117). This complication

encompasses a wide range of cognitive, psychomotor and

psychiatric disturbances that heralds a poor prognosis with

negative impact on health-related quality of life, liver transplant

priority and patient survival (118, 119).

From a neurologic point of view, hepatic encephalopathy in

cirrhosis is primarily astroglial in nature, characterized by

Alzheimer type 2 astrocytosis together with activation of

microglia indicative of neuroinflammation (120, 121).

Inflammation and hyperammonemia are associated with

enhanced cognitive impairment in patients with cirrhosis (122). It

has been proposed that inflammation synergistically acts with

ammonia in driving nitrosation of brain proteins in BDL cirrhotic

rats (123). Proinflammatory cytokine levels are also increased in

patients with covert hepatic encephalopathy (124), and these

inflammatory mediators have been correlated with serum

ammonia in patients with extrahepatic portal venous obstruction

(125). The relevance of the neutrophil response in the pathogenesis

of hepatic encephalopathy has also been documented (126), and

proinflammatory IL-1b and IL-6 have been correlated with

neurocognitive scores and with health-related quality of live

questionnaires in patients with cirrhosis (127) (Figure 1).

A link between altered flora (higher Veillonellaceae), poor

cognition, endotoxemia, and inflammation (IL-6, TNF-a, IL-2,
and IL-13) has been described in cirrhotic patients with

compared with those without HE. In addition, in the cirrhosis

group, Alcaligeneceae and Porphyromonadaceae positively

correlated with cognitive impairment (128). An increased risk of

cognitive impairment in patients with cirrhosis and bacterial

infections has been reported, including those with subclinical

cognitive alterations (129). In this latter group of patients, even

bacterial antigen translocation, without the need of an over

infection, is associated with increased serum ammonia and NOx

levels, and a more severe neurocognitive condition (130).

Finally, the relationship between Th17 cells and cognitive

impairment has also been documented. Th17 cells have been

described to cross the BBB and promote brain injury in

neurological diseases (131). Systemic inflammation associated

with cirrhosis may therefore increase BBB permeability and

facilitate brain T cell recruitment in the context of advanced liver

disease (Figure 1).
3 Therapeutic approaches targeting
the intestinal homeostasis in cirrhosis

Abnormalities in microbiota composition and bacterial

overgrowth set the stage for the gut-liver axis disruption with

intestinal barrier failure, which is distinctive of cirrhosis. These

facts enable increased passage to the bloodstream of bacteria or
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their products, which promote systemic inflammation and bacterial

infections, and worsen cirrhosis progression. The disrupted gut-

liver axis observed in cirrhosis is a topic of active research,

considering its contribution to disease progression. We thereby

briefly summarize novel therapeutic approaches to target the gut-

liver axis aimed to halt cirrhosis progression.
3.1 Antibiotics

The effects of bowel decontamination with poorly absorbable

antibiotics are the redistribution of microbiota composition,

reduced intestinal permeability and GBT, and improved

proinflammatory activation of mucosal and circulating immune

cells along with circulatory dysfunction in human and experimental

models (5, 112). Norfloxacin and ciprofloxacin are standard of care

for primary and secondary prevention of spontaneous bacterial

peritonitis, and norfloxacin reduces the risk of infection and 6-

month mortality in patients with advanced cirrhosis (132, 133).

Rifaximin is a broad-spectrum compound that improves and

prevents overt hepatic encephalopathy and ameliorates systemic

inflammation and endotoxinemia in patients with cirrhosis and

encephalopathy (134, 135). Rather than promoting bowel

decontamination, rifaximin exerts its effects by eliminating

polarization of the gut microbiome via suppression of mucin-

degrading species rich in sialidase and known to induce gut

barrier damage while preserving beta-diversity, e.g. Streptococcus

and Veillonella spp (135). Rifaximin associated with simvastatin to

prevent Acute-on-Chronic Liver Failure and reduce complications

in decompensated cirrhosis is being currently tested in clinical trials

(NCT03780673). Alternatives to antibiotics are a topic of research

as their long-term use has been linked to reduced bacterial diversity

and multidrug-resistant microorganisms (136).
3.2 Probiotics and diet

Probiotics displace resident dysbiotic bacteria and reconstitute a

healthy microbiome. Bifidobacterium pseudocatenulatum

CECT7765 induces a shift towards an TLR2-mediated anti-

inflammatory cytokine profile in intestinal lymphocytes and

macrophages, improves gut barrier integrity, reduces intestinal

permeability, and decreases bacterial DNA translocation, serum

endotoxin levels and burden of bacterial antigens in the liver in

cirrhotic patients and experimental models (137–139). Lactobacillus

rhamnosus GG supernatant therapy also increases mRNA

expression of TJ proteins and reduces intestinal permeability in a

mouse model of chronic-binge alcohol feeding. This therapy led to a

decrease of GBT to the liver and an overall balance restored of

Tregs, Th17s, and IL-17 (140, 141). Furthermore, probiotic

supplementation has shown significantly increase serum

neopterin levels and the production of ROS by neutrophils (142).

These findings might explain the beneficial effects of probiotics on

immune function, as well as in ameliorating gut barrier dysfunction

in cirrhosis. However, studies on the impact of probiotics on

cirrhosis complications and progression, including hepatic
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encephalopathy, have severe methodological limitations and

patient numbers have been too small to draw valid conclusions.

In parallel, an international study has shown that a diet rich in

coffee, tea, fresh vegetables and fermented milk is associated with an

increased diversity of microbiota species and reduced number of

hospitalizations in patients with cirrhosis, suggesting the benefits of

dietary modulation of the gut microbiome in favor of liver

health (143).
3.3 Gut molecular adsorbents

Another therapeutic approach is to reduce the amount of bacterial

toxin being absorbed from the intestine in patients and experimental

models with chronic liver disease. In contrast to the strategies based on

the prolonged use of antibiotics that reduce intestinal bacterial

populations, use of scavengers of bacterial toxins has the advantage

of avoiding the risk of establishing antimicrobial drug resistant

intestinal bacteria. Yaq-001 is a non-absorbable activated charcoal

with a high adsorptive capacity for endotoxins and other products of

bacterial metabolism preventing their absorption into the bloodstream.

Evidence in BDL rats showed that Yaq-001 was associated with shifts in

microbiome composition, attenuated the LPS-induced production of

ROS by monocytes, and reductions in liver injury and portal pressure

(144). A phase-II clinical study in patients with cirrhosis and diuretic-

sensitive ascites treated with Yaq-001 or placebo for 12 weeks suggested

proof of a mechanism that Yak-001 modulated systemic

endotoxinemia and inflammation by improving gut inflammation

and its permeability (NCT03202498).
3.4 FMT

FMT restores a healthy gut microbial environment and

physiological colonization via different routes of administration.

Microbiota transplantation in patients with recurrent hepatic

encephalopathy proved safe in the long-term and has shown to

rescue antibiotic-associated disruption in microbial diversity,

improve cognitive function, and reduce encephalopathy

recurrence and hospitalizations (145). These studies have involved

a limited number of patients and efficacy trials are pending. In this

regard, FMT is currently being tested in a randomized controlled

trial in patients with decompensated cirrhosis to address survival

and liver related outcomes (NCT04932577).
3.5 FXR agonists

Diminished luminal BA availability in cirrhosis provokes a

reduction in intestinal FXR signaling which seems, at least partly,

to mediate the gut barrier disruption in cirrhosis, as FXR-agonists

reduce GBT via the portal-venous route to the liver (13). In

experimental cirrhosis, FXR activation by obeticholic acid (OCA)

increases ileal protein expression of the main TJ proteins and AMP

secretion (10, 13), influences intestinal epithelial cell proliferation and

apoptosis (146), and exerts potent antiinflammatory actions in the
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intestine, stabilizing epithelial integrity (10). Herein, OCA impacts

the mucous machinery by increasing ileal goblet cell numbers in

cirrhotic animals (13). On the vascular side, the FXR agonist OCA

stabilizes the dysfunctional GVB in experimental cirrhosis (13).
3.6 Administration of IL-22

IL-22, a cytokine member in IL-10 family, is mainly secreted

by various immune cells, such as ILCs and MAIT cells, which

targets epithelial cells in several organs, including the intestine

and the liver. IL-22 promotes survival and proliferation of

hepatocytes and liver progenitor cells, thereby promoting liver

repair (147). Additionally, IL-22 increases the expression of

intest inal Reg3 lectins, which maintain low bacterial

colonization of the inner mucus layer and reduce GBT to the

liver. In a mouse model of ethanol-induced liver disease,

intestinal IL-22 has the beneficial effect of reducing GBT in the

intestine by increasing the expression of Reg3g. Bacteria

engineered to produce IL-22 in the intestine (without

increasing systemic IL-22) ameliorate experimental ethanol-

induced steatohepat i t is via induction of Reg3g (30) .

Importantly, due to this combination of protective effects in the

liver and in the intestinal barrier IL-22 is a promising drug for the

treatment of alcoholic hepatitis.
4 Concluding remarks

While the gut immunity during homeostasis plays a crucial role

in liver and brain functions, mainly through its interaction with

symbiotic microbiota, the progression of advanced chronic liver

disease significantly compromises the immunological behavior at

the gut and brain barriers of cirrhotic patients. Therefore,

therapeutic options aimed at restoring gut immune homeostasis

in these patients are of relevance to prevent cirrhosis-derived
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complications. However, despite intense experimental research, its

translation into clinic remains a lengthy goal.
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Th1 polarization and monocyte TNF-a production: first steps to systemic
inflammation in rats with cirrhosis. Hepatology (2005) 42:411–9. doi: 10.1002/
hep.20799

108. Ubeda M, Munoz L, Borrero MJ, Dıáz D, Francés R, Monserrat J, et al. Critical
role of the liver in the induction of systemic inflammation in rats with preascitic
cirrhosis. Hepatology (2010) 52:2086–95. doi: 10.1002/hep.23961

109. Liu L, Zhang C, Hu Y, Zhou L, Tan Q. Changes in gut toll-like receptor-4 and
nod-like receptor family pyrin domain containing-3 innate pathways in liver cirrhosis
rats with bacterial translocation. Clin Res Hepatol Gastroenterol (2016) 40:575–83. doi:
10.1016/j.clinre.2016.02.008

110. Genesca J, Marti R, Rojo F, Campos F, Peribáñez V, Gónzalez A, et al.
Increased tumour necrosis factor alpha production in mesenteric lymph nodes of
cirrhotic patients with ascites. Gut (2003) 52:1054–9. doi: 10.1136/gut.52.7.1054

111. Albillos A, Martin-Mateos R, van der Merwe S, Wiest R, Jalan R, Álvarez-Mon
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