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Automatic segmentation of medical images has been a hot research topic in the

field of deep learning in recent years, and achieving accurate segmentation of

medical images is conducive to breakthroughs in disease diagnosis, monitoring,

and treatment. In medicine, MRI imaging technology is often used to image brain

tumors, and further judgment of the tumor area needs to be combined with

expert analysis. If the diagnosis can be carried out by computer-aided methods,

the efficiency and accuracy will be effectively improved. Therefore, this paper

completes the task of brain tumor segmentation by building a self-supervised

deep learning network. Specifically, it designs a multi-modal encoder-decoder

network based on the extension of the residual network. Aiming at the problem

of multi-modal feature extraction, the network introduces a multi-modal hybrid

fusion module to fully extract the unique features of each modality and reduce

the complexity of the whole framework. In addition, to better learn multi-modal

complementary features and improve the robustness of the model, a pretext task

to complete the masked area is set, to realize the self-supervised learning of the

network. Thus, it can effectively improve the encoder’s ability to extract multi-

modal features and enhance the noise immunity. Experimental results present

that our method is superior to the compared methods on the tested datasets.

KEYWORDS

self-supervised learning, multi-modal, hybrid fusion, medical image segmentation,
medical image segmentation based on self-supervised hybrid fusion network
1 Introduction

In recent years, medical image segmentation has become a hot topic in the area of

medicine, and its purpose is to clearly show the changes of anatomical or pathological

structures in medical images. Popular medical image segmentation tasks include liver,

brain and its tumor segmentation, optic disc segmentation and cell segmentation, lung and

lung nodule segmentation, etc. Brain tumor segmentation is considered to be one of the

most challenging problems in this field (1). And computer-aided segmentation of medical

images has become a highly valuable research content (2). In order to help clinicians make
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2023.1109786/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1109786/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1109786/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2023.1109786&domain=pdf&date_stamp=2023-04-14
mailto:lzhuo0310@126.com
mailto:yuanhonglab@163.com
https://doi.org/10.3389/fonc.2023.1109786
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2023.1109786
https://www.frontiersin.org/journals/oncology


Zhao et al. 10.3389/fonc.2023.1109786
accurate judgments, it is necessary to extract and segment some key

targets of medical images (3, 4).

Therefore, many research works have proposed different

models for the medical image segmentation problem. For

example, encoder-decoder based segmentation models are widely

used in medical image segmentation (5). In order to solve the

medical image segmentation problem, Ronneberger et al. (6)

proposed the U-Net model, which won several firsts in the cell-

level segmentation task competition at that time. Due to the

characteristics of medical imaging devices, multi-modal is often

involved in medical applications (7). In recent years, although the

network models applied to medical image processing are mainly

focused on single-modal models, there are still studies on multi-

modal network models, which makes up for the shortcomings of

single-modal models in dealing with different modalities (8, 9).

However, medical images are difficult to obtain, resulting in the

small amount of data (10). This problem is more pronounced in

multi-modal analysis, because such learning methods require more

modalities of data and are more demanding on the dataset. In

addition, due to the noise in medical images and the subtle

differences between human organs, the automatic segmentation of

medical images also requires strong robustness of the network.

Besides, most of the current medical image segmentation research

work is supervised learning, which often requires a large amount of

data. Therefore, the self-supervised learning method is more

advantageous in this case. It can achieve the training effect with

less data, which is especially suitable for multi-modal networks (11).

Medical image segmentation relies heavily on large labeled

datasets, which are difficult to achieve due to the expense and

time required to generate expert annotations. Self-supervised

learning offers a promising solution to this problem by using

unsupervised pre-training on unlabeled data, which can reduce

the burden of manual annotation. However, most self-supervised

learning approaches neglect the multi-modal nature of medical

images, which is essential for accurate analysis and diagnosis, and

integrating cross-modal information is necessary for effective

segmentation. Chaitanya et al. (12) proposed a semi-supervised

approach to volumetric medical image segmentation that extends

the contrastive learning framework by leveraging domain-specific

and problem-specific cues, and achieved substantial improvements

over other self-supervision and semi-supervised learning

techniques. Wu et al. (13) proposed a federated contrastive

learning framework for volumetric medical image segmentation

with limited annotations, which exchanged features in the pre-

training process to provide diverse contrastive data to each site for

effective local contrastive learning while keeping raw data private.

Taleb et al. (14) proposed a self-supervised method that leverages

multiple imaging modalities through a multimodal puzzle task,

which confused image modalities at the data-level to learn a

modality-agnostic feature embedding, and utilized cross-modal

generation techniques for multimodal data augmentation,

achieving better semantic representations and improved data-

efficiency. Taleb et al. (15) proposed 3D versions of five different

self-supervised methods in the form of proxy tasks, facilitating

neural network feature learning from unlabeled 3D images, and

yielding more powerful semantic representations that enable
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solving downstream tasks more accurately and efficiently, even

when transferring the learned representations to a small

downstream-specific dataset. Zou et al. (16) presented a trusted

brain tumor segmentation network that generates robust

segmentation results and reliable uncertainty estimations. The

model uncertainty used subjective logic theory and gathers

reliable evidence from the features to obtain the final

segmentation results. The proposed model is evaluated on the

BraTS, 2019 (17) dataset through qualitative and quantitative

experiments. Li et al. (18) proposed Segtran, an alternative

segmentation framework based on transformers for medical

image segmentation. Segtran incorporated large context and high

spatial resolutions, resulting in unlimited “effective receptive fields”

even at high feature resolutions.

Inspired by these, we propose a self-supervised multi-modal

brain tumor segmentation framework with hybrid fusion of

modality-specific features (SM-ResUNet). We innovatively extend

Res-UNet (19, 20) into a multi-modal network, introduce the modal

fusion and attention methods in each skip connection, and

implement a self-supervised learning mechanism for improving

network robustness and optimizing its performance. We design a

pretext task capable of exploiting cross-modal information rather

than simply using single image information as in most previous

studies. Multi-modal networks are able to use unique encoders for

feature extraction for each modality, and the multi-modal network

structure can be complementary to the assisted task design model,

so multi-modal is necessary. Moreover, we design a novel feature

fusion scheme to support input of different numbers of modalities,

and capture the relevant information of each modality feature

through an attention mechanism. On this basis, the multi-modal

Res-UNet is employed as the backbone structure of the model,

which is suitable for the segmentation task of medical images. The

SM-ResUNet is based on a semantic segmentation architecture of

multi-modal input, which makes full use of independent features in

multi-modal data. During the training process, the overfitting

problem caused by small datasets can be alleviated by jointly

training a pretext task with the segmentation network. We

validate the effectiveness of the SM-ResUNet on the BraTS brain

tumor segmentation dataset. Experiments show that the SM-

ResUNet is overall better than other compared models, which

proves the effectiveness and usability of the SM-ResUNet.
2 Method

The SM-ResUNet we designed is shown in Figure 1, the

network is implemented based on Res-UNet, and a multi-modal

mechanism is introduced. The multi-modal features are fused

through Hybrid Attentional Fusion Block (HAFB), and the

attention mechanism is employed to extract valuable information

(21). At the bottleneck layer between the encoder and the decoder,

each multi-modal feature is extracted with different receptive fields

through Atrous Spatial Convolutional Pyramid Structure (ASPP)

(22–24), so as to make full use of the valuable information in each

modality. In addition, the self-supervised learning is introduced

into the network to improve the robustness of the network and the
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feature extraction ability of the encoder. Specifically, in Section 1,

we will describe the multi-modal encoder and decoder structure and

its function in our proposed network. In Section 2, we will introduce

the HAFB module in detail. In Section 3, we will present the

implementation of the self-supervised learning mechanism and

illustrate the effectiveness of this approach.
2.1 Multi-modal encoder and decoder

To support multi-modal inputs, multiple encoders are used in

the network to achieve feature extraction for each modality. The

network structure includes a decoder, which restores the fused

multi-modal features to the original image size through several

residual convolutions and upsampling, and obtains the

segmentation result.

Four encoders are adopted in the network, and each encoder is

used to perform feature extraction on its corresponding modality to

obtain independent latent features. Each encoder has four layers of

the same structure, which contains one residual convolution and

downsampling. After residual convolution, the network obtains a

feature map with the same size as the input image and different

number of channels. Then the feature map goes through the pooling

layer, which changes the image size to 1/2 of the original size.

After repeating the above process four times, each encoder

outputs a feature map that is 1/16 the size of the original image.

Each encoder is calculated as follows,

Conv (x) = ReLU (BN(j3�3(x))) (1)

ResConv (x) = j1�1(x) + Conv2(DP(Conv1(x))) (2)

EL (x) = MP(ResConv(x)) (3)
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Encode (x) = EL4(EL3(EL2(EL1(x)))) (4)

where jn�n represents the convolution operation with a

convolution kernel size of n×n, BN is the batchnorm layer, DP is

the dropout layer, and MP is the max pooling layer. ELi represents

the layer i of the encoder. The number of channels will not be

changed by Conv2, except that the first layer is determined

according to the number of initial convolution kernels. The

number of output feature map channels of Conv1 and j1�1 are

twice the number of the input in ResConv.

Each decoder in the network ends up with a specific ASPP

structure (23). The ASPP employs multiple dilation rate

convolution kernels to obtain latent features, and can sample the

given input through dilated convolution at different sampling rates

to capture the context of the feature map at multiple scales, so as to

more accurately locate different size of brain tumor. The input to

each ASPP is the feature map of its corresponding modality.

Corresponding to the encoder, a decoder needs to be introduced

into the network structure to decode the output of the encoder. It

contains multiple upsampling, to restore the feature map to the

original image size, and to determine the segmentation result of

each local feature. In the last layer of the decoder, a convolution is

adopted to change the number of channels into the number of final

segmentation types. Each channel corresponds to a classification,

and the value of the pixel at the corresponding position represents

the score in that classification. After four times of upsampling and

residual convolution, the decoder will output a feature map that is

16 times the size of the output of the encoder. For the decoder, the

following operations are performed,

DL (x) = ResConv(TransConv(x)) (5)

Decode (x) = DL1(DL2(DL3(DL4(x)))) (6)
FIGURE 1

The overall structure of the network. The basic framework used in this work is Res-UNet with skip connections and residual convolution, which is
suitable for automatic segmentation of brain tumor medical images.
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where ResConv is calculated in the same way as Equation 1-2.

TransConv is transpose convolution. DLi represents the layer i of

the decoder. At the end of the decoder, a convolution of size 3×3 is

set up, so that the number of image channels is the same as the

number of segmentation types.
2.2 Hybrid attentional fusion block in
skip connection

We employ the soft attention mechanism, HAFB (25), for

multi-modal fusion and place it in skip connections in the

network. In each skip connection of the network, HAFB is

integrated for multi-modal fusion of the features in the same

layer of encoder. This structure combines a multi-modal fusion

method on the basis of an attention structure, which is suitable for

the multi-modal network structure used in this paper, and can

retain the representative features of each modality while

maintaining the stability of the network.

This fusion block can fuse multi-modal features from multiple

encoder outputs in the skip connection stage, and filter more

valuable features through the attention mechanism, which plays

an important role in processing multi-modal images. In the network

structure where HAFB is introduced, the skip connection stage does

not just pass the results output by the encoder into the ecoder, but

also needs to introduce an attention mechanism. The structure of

HAFB is shown in Figure 2. The bottleneck layer and each layer of

the encoder will output feature maps of multiple modalities. These

feature maps are input into the corresponding HAFB, and these

multi-modal feature maps are first fused into a single map, and then

the useful information is selected through the attention mechanism.

The fusion method used in this network is the fusion of the three

strategies, including element summation, element product and

element maximum value, and the channel-level splicing of the

three feature maps can thus be obtained by,
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F = ½o
n

i=1
mi;

Yn
i=1

mi; max m1,…,mnf g� (7)
where n is the number of modalities participating in the modal

fusion and F means the feature map. This operation is applicable to

any number of modalities. In this structure, the input multi-modal

features are first fused into a feature map through the above-

mentioned modal fusion strategy, and then the fused feature map

is passed through an attention module,

HAFB (F) = j3(F + F � s (j2j1F)) (8)

where the convolution j1 is used to reduce the dimension of the

feature map to RC�H�W , and then restored to R3C�H�W by the

second layer of convolution j2, thus to improve the expressive

ability. In the above structure, the size of the convolution kernel of

all convolutions used by the attention module is 3×3.
2.3 Self-supervised learning in
multi-modal network

This work introduces a self-supervised learning mechanism

based on the network structure, as shown in Figure 3. The

encoder stage of this network structure consists of two branches,

both of which use the multi-modal network structure described

above as the backbone, and the encoder parameters of the two parts

are the same, that is, the same encoder is used. In this work, in order

to make full use of the complementary information between

modalities, improve the robustness of the model, and make the

network focus on the tumor region, masking is selected as the

pretext task in the self-supervised learning, which can be seen as

artificially adding noise to the image. When the down-branch

encoder inputs an image, the image is first preprocessed, and an
FIGURE 2

The location of HAFB in the network and its internal structure. The HAFB structure is introduced into the skip connection part. The feature fusion
adopts the hybrid fusion method.
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independent mask is taken for each input modality image. The

method of masking the area preserves the connection between the

modalities, and can realize the mutual complementation of the

information between different modalities. It is worth noting that the

positions of the occlusion regions of different modalities are

different, otherwise the same occlusion position will not function

as complementary information. The occlusion regions are different

for different modalities to ensure that complementary information

can be provided between modalities.

These masked multi-modal images are passed into multiple

encoders of the lower branch as multiple inputs, and the same

operations as the upper branch are performed. The upper branch

has undergone the same operation, and it is only necessary to

compare the similarity of the output results of the upper and lower

branches to know whether the encoder in the network structure can

make full use of the multi-modal complementary information for

learning, and its robustness. The higher the similarity, the stronger

the anti-noise ability of the encoder, and the better the use of multi-

modal complementary information.

As shown in Algorithm 1, we present the training algorithm of

the SM-ResUNet, which calculates the self-supervised labels

required for network optimization, the prediction results of self-

supervised tasks, and the prediction results of ownstream tasks

during the training process.
3 Experiments

To verify the performance of the SM-ResUNet, we conduct

visual analysis, ablation, and comparative experiments. Compared

with the model without self-supervised learning and several classic

models, the SM-ResUNet is generally better than them.
Frontiers in Oncology 05
3.1 Dataset

The dataset used in this work is the multi-modal MRI brain

tumor dataset BraTS 2019 and BraTS, 2020 (26, 27) Each patient

has MRI images of four modalities, F1, F1CE, Flair, and T2. These

MRI images are stereoscopic, showing the patient’s brain structure

in each modality. Different values represent the lesion type at the

corresponding location, and there are four labels, 0, 1, 2, and 4,

respectively. Where 0 represents non-lesional area or background, 1

represents necrosis and non-enhancing tumor core, 2 represents

peritumoral edema, and 4 represents enhancing tumor. Each image

is of size 240×240×155 and needs to be sliced or trained using a 3D

network during training. To make the input image size in the

network structure suitable for the network, the middle 144 slices are

taken and the image is cropped to 224×224×1.
Input: image of size 4� 224� 224

Initialization: modality 4, layer, ih½modality�½layer�
x tensor of image

x
0
 tensor of image with mask

//The process of Encoder

for t refers to x, x
0
do

for m 0 to modality − 1 do
for l 0 to layer − 1 do

t½m� ResConvE½m�½l�(t½m�)
ih½m�½l� t½m�
t½m� MP(t½m�)
end for

t½m� ASPP(t½m�)
end for

end for
FIGURE 3

The overall structure of the model with the introduction of self-supervised learning. Self-supervised learning is introduced into the network, which
divides the encoder stage into upper and lower branches, where the encoder shares parameters, and each modality of the multi-modal image input
in the lower branch is randomly masked at different positions, and then trained according to the parameters of the shared encoder from the upper
branch.
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Fron
y ResConvN (x)

//The process of Decoder

for l layer − 1 to 0 do
y TransConv½l�(y)
y ½y;HAFB(ih½l�)�
y ResConvD½l�(y)
end for
y EndConv(y)

Output: x, x
0
, y
ALGORITHM 1
Calculation of the Sm-Resunet during training.
3.2 Implementation details

The CUDA version of the experimental platform is 11.4, and

the graphics card model is NVIDIA GeForce RTX 3090. In this

work, the initial number of convolution kernels is set to 32, and the

batch size is set to 8. We use Adam as the optimizer and set the

initial learning rate to 0.00001. The learning rate decays every 5

epochs with a decay rate of 0.9. A total of 15 epochs are set in this

work, which can achieve the effect of loss value convergence.

The loss function used in this work is a mixture of dice loss and

cross entropy loss. The overall loss function for the segmentation

task is as follows,

Lseg =
o(aLDice + bLCE)

M
(9)

where a and b are set to 1 and 0.5. The advantage of using

mixed loss is to prevent dice loss in some extreme cases, such as a

very small proportion of a certain category of an image. The

similarity loss is used to measure the similarity of the output

results of the upper and lower branches in the self-supervised

structure,

LSimilarity = 1 − o(q(x)� q(x 0 )) + ϵffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o(q(x))2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o(q(x 0 ))2 + ϵ

qr (10)

where the smoothing coefficient ϵ=0.00001, q(x) is the upper

branch feature map and q(x 0 ) is the lower branch feature map. The

total loss function includes the loss from the self-supervised pretext

task and the loss from the segmentation itself.
3.3 Evaluation metrics

On the official website that provides the BraTS dataset, the

prediction results of the validation set can be evaluated. The

evaluation indicators are derived from actual clinical applications

and are divided into three categories: all tumor regions (WT),

including all tumor structure regions; tumor core region (TC),

including all tumor structures except edema regions; enhanced

tumor regions (ET), which contains only one structure that

enhances the tumor. For each category, there are several

evaluation indicators used to calculate the score of the
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segmentation effect on the category, such as dice score, sensitivity,

specificity and Hausdorff distance. Here, the distance in the 95th

percentile of the length is used.
3.4 Experiment results

In these prediction results, in order to better observe the

performance, we randomly select several slices from the test set

whose tumor area is not less than 5% of the entire image area, to

prevent the tumor area from being too small to see the effect. From

these visualization results, we can clearly feel the effectiveness of the

network proposed in this paper for the brain tumor segmentation

task. As shown in Figure 4, in regions with smaller brain tumors, the

network is still able to accurately predict these regions.

After training the SM-ResUNet, in order to better evaluate the

model, this work conducts comparative experiments with several

state-of-the-art models, including the traditional single-modal U-

Net, and the multi-modal models, namely, multi-modal Res-UNet,

and multi-modal Res-UNet that introduces an attention

mechanism module named Convolutional Block Block Attention

Module (28). Since the single-modal U-Net itself does not have an

advantage over other multi-modal models, it is set to 64 in the initial

convolution kernel setting, which is twice as many as other models,

and is trained for 10 more epochs. The comparison results are

shown in Table 1. Through comparison, it is found that the effect of

the SM-ResUNet is better than that of the compared models, which

verifies that the model has better performance in medical

segmentation tasks. On the BraTS 2019 dataset, although our

model does not score better than some other innovative state-of-

the-art methods in comparison (16, 18), our proposed approach

that appropriately combines a multi-modal task with a self-

supervised mechanism is of research value because such a self-

supervised mechanism can assist the encoder in the complementary

information between modalities fully exploit the complementary

information between the modalities and further improve the anti-

interference capability of the model as well as the ability to fill in the

missing modalities. This approach may provide a new design idea

for future self-supervised multi-modal medical image segmentation,

making full use of multi-modal-specific information for self-

supervised training, rather than simply superimposing the two

training methods.

We compare our model with the state-of-the-art models on the

BraTS 2020 validation set, with experimental data from Li et al. (32).

The experimental data shows that our model obtains the best results

on ET andWT (Table 2). Although the networks are able to achieve

better scores on the BraTS 2020 dataset both before and after the

addition of self-supervision, the self-supervised network is still able

to outperform. We analyze that this may be due to the fact that the

network is able to extract more information in the encoder with

self-supervision, which allows the encoder to handle the detail part

better, as shown in Figure 5, and thus achieve a higher score.

In addition, to validate the effectiveness of this self-supervised

strategy on a small amount of data, we conduct separate

comparison experiments on the BraTS 2020 dataset with and

without self-supervised learning approach. Both experiments use
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only 20% of the training data. The dice coefficients of the model

with self-supervised learning are 65.074%, 78.352% and 61.858% on

ET, WT and TC, compared to 58.629%, 65.535% and 55.966% for

the model without self-supervised learning. Although there is a

significant decrease in model accuracy after using a small amount of

data, all evaluation metrics are significantly higher on the model

with the addition of self-supervised learning than on the model

without self-supervised learning, and still achieve more accurate

segmentation. This indicates that this self-supervised strategy can

still be beneficial for training on a small amount of data.
3.5 Visualization of the HAFB

To show the performance of the attention mechanism in our

HAFB module and its effectiveness, we visualize and analyze the

attention feature maps computed in it. In this structure, the

attention feature map is computed after the modal fusion and the

attention is paid to the feature map after the modal fusion. We

demonstrate here the effect of the attention mechanism in the

HAFB module using the Flair modality as an example, as shown in

Figure 6. The red region is the high scoring region, which indicates

the network has higher interest in this part of the region. From the

visualization results, the HAFB module can generate higher interest
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to the tumor region in the feature map after modal fusion, providing

segmentation focus for the later network structure, and improving

the accuracy of the whole network. Since the network model

without the HAFB module does not have the calculation of

attention at the skip connection, we use the activation map (33)

corresponding to the feature map there to show the region of

interest in the network. Although the model without the addition of

HAFB also pays more or less attention to the tumor region, the

effect is not significant compared to the model with the addition

of HAFB.
3.6 Ablation study

The self-supervised learning mechanism is used in the process

of training the SM-ResUNet. In the ablation experiment, the

segmentation results of Res-UNet with a self-supervised learning

mechanism and Res-UNet without a self-supervised learning

mechanism are compared to prove the necessity of introducing a

self-supervised learning mechanism into the network structure. As

can be seen from Table 3, after the introduction of self-supervised

learning, most of the indicators have been improved by different

degrees. In order to facilitate the comparison, the scores of different

indicators of the three types of tumor regions are averaged for
TABLE 1 Comparative experimental results on BraTS 2019.

Methods Dice (%)

ET WT TC

U-Net (6) 69.679 85.733 73.364

Multi-modal Res-UNet 67.596 80.666 71.561

Multi-modal Res-UNet + CBAM (28) 69.975 85.237 69.573

Ours 70.689 86.268 73.998
The bold values are the best result.
FIGURE 4

The result of the comparative experiment on BraTS 2019. As can be seen from the visualization of the segmentation results, after the comparative
experiments, the SM-ResUNet is significantly better than other models, such as UNet and Res-UNet. The segmentation types in the figure are: non-
tumor area or background (purple); necrotic and non-enhancing tumor core (blue); peritumoral edema (green); enhancing tumor (yellow).
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comparison. We have bolded the data with better results in the two

groups of comparisons. It is not difficult to see that after the

introduction of the self-supervised training mechanism, the

network can basically achieve meaningful tumor region

segmentation accuracy in practical clinical applications.

We perform the analysis of the ablation experiments for the

ASPP and HAFB modules, as shown in Table 4, which are

performed using the self-supervised strategy. The experiments

show that with the ASPP module, although there is no significant

improvement in the dice coefficient, there is a more significant

improvement on Hausdorff 95. We speculate that this is because the

ASPP module performs feature extraction from multiple scales on

the feature map at the end of the encoder, which makes it more

accurate for edge information extraction. The improvement of the

multi-modal model with the addition of the HAFB module is more

significant, in terms of the dice coefficient and Hausdorff 95. To

verify its effect on single-modal model, we conduct ablation

experiments on the HAFB module with the single-modal model

and find that its effect does not work as well as the multi-modal
Frontiers in Oncology 08
model. This may be due to the fact that the module loses some

information in the feature maps during the computation, and thus

is not as good as using the original feature maps directly on the

single-modal model. However, it is beneficial to extract valuable

information on each modality feature map on multi-modal models,

thus avoiding redundancy and improving the model’s ability to

extract multi-modal features.

To investigate the effect of the HAFB module on the network

scale, we test it in single-modal without HAFB, single-modal with

HAFB, multi-modal without HAFB, and multi-modal with HAFB

networks using data with 1 to 6 modalities, and record the results as

shown in Table 5. It can be seen that the HAFB module in singe-

modal networks cannot play a role in reducing the network scale,

which is as expected, because in the single-modal networks there is

no need to fuse the feature maps of multiple modalities, but to

calculate them as a whole in the network, and the HAFB module

will expand its channel count up to three times. In a multi-modal

network, the more the number of modalities of the data, the more

the number of parameters the HAFB module can reduce. At three
TABLE 2 Comparative experimental results on BraTS 2020.

Methods Dice (%) Hausdorff 95 FLOPs(G)

ET WT TC ET WT TC

3D U-Net (29) 68.76 84.11 79.06 50.983 13.366 13.607 1,669.53

Basic V-Net (30) 61.79 84.63 75.26 47.702 20.407 12.175 749.29

Deeper V-Net (30) 68.97 86.11 77.9 43.518 14.499 16.153 –

3D Residual U-Net (31) 71.63 82.46 76.47 37.422 12.337 13.105 407.37

Ours 73.49 86.84 74.12 25.537 6.416 23.439 344.08
fr
The bold values are the best result.
FIGURE 5

Results on the BraTS 2020 dataset using the self-supervised network compared to the network without self-supervision. Where (1) represents the
network where the self-supervised training is introduced and (2) represents the network without self-supervised training.
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FIGURE 6

Visualization of attention mechanisms. The Flair modality is used as the original image, GT is the ground truth of the segmentation result, and the
red area is the region of interest to the network, where (1) is the network model without HAFB and (2) is the network model with HAFB introduced.
TABLE 3 Ablation experiment results on BraTS 2019.

Methods Supervision Dice (%) Sensitivity (%) Hausdorff 95

Multi-modal UNet+ASPP+HAFB Fully supervised 76.604 77.081 9.29248

Self-supervised 77.185 78.375 12.0272

Multi-modal Res-UNet+ASPP+HAFB Fully supervised 76.070 76.536 8.69363

Self-supervised 76.985 79.308 8.19243
F
rontiers in Oncology
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The bold values are the best result.
TABLE 4 Ablation experiment results on BraTS 2020.

Methods Dice (%) Hausdorff 95

ET WT TC ET WT TC

Res-UNet+ASPP 69.911 85.987 74.176 35.823 6.501 19.871

Res-UNet+ASPP+HAFB 71.728 85.125 66.699 31.912 9.521 38.239

Multi-modal Res-UNet+ASPP 70.745 85.432 69.815 32.317 9.015 30.47

Multi-modal Res-UNet+HAFB 72.652 87.012 76.084 32.214 7.819 22.282

Multi-modal Res-UNet+ASPP+HAFB 73.487 86.838 74.124 25.537 6.416 23.439
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modalities the two are similar, with each additional modality not

using the HAFBmodule increasing the number of parameters much

more than the network with the HAFB module. This is because the

HAFB module is able to stabilize the number of channels after

modal fusion at three times the previous number (because of the

fusion of each modality feature from three aspects), while the

number of channels of the decoder without the HAFB module

will be several times the number of modalities of the encoder.

In addition, we conduct an ablation study on the masking

strategies, shown in Table 6. In each experiment, the control

variables method is used to study the mask area and dispersion

degree respectively. Specifically, the original mask form is a square

of size 20×20, and we design three masking strategies separately:

changing it to 50×50 size with the same form; the form is changed to

a grid-like distribution with 4×4 = 16 square masks of size 5×5

uniformly distributed within the range of 35×35 pixels, each mask

spaces by 5 pixel points, whose total area is the same as that of the

20×20 size mask; the form is changed to a random distribution with

400 pixel points randomly masked off within 35×35 pixels (keeping

the same as the second masking strategy), and its total area is the
Frontiers in Oncology 10
same as that of the 20×20 size mask. These three masking strategies

are shown in Figure 7. The experiments show that all these masking

strategies are able to make the self-supervised strategy effective and

make the model accuracy improve. Overall, the best performer is

the 20×20 square mask, which achieves the highest segmentation

accuracy on ET in terms of dice coefficient and Hausdorff 95, while

the grid-like as well as random masks has a slightly higher dice

coefficient on WT and TC than the other strategies, which may be

due to its large range and ability to cover more information,

improving the training effect of the self-supervised strategy.
4 Conclusion

In this paper, we propose the SM-ResUNet, which can learn the

independent features from different modalities. We enable the

network to learn multi-modal features by introducing multiple

encoders, and employ a self-supervised learning approach to fully

utilize the dataset for training. Moreover, a pretext task in self-

supervised learning is explored to assist the SM-ResUNet in training
TABLE 5 Comparison of the number of model parameters (M).

Number of Modalities Single-modal Single-modal+HAFB Multi-modal Multi-modal+HAFB

1 16.95 45.255 16.95 45.255

2 16.951 45.255 40.167 59.067

3 16.951 45.256 69.651 72.879

4 16.951 45.256 105.402 86.69

5 16.952 45.256 147.42 100.502

6 16.952 45.257 195.705 114.314
FIGURE 7

The effect of masking strategies that we design.
TABLE 6 Ablation experiment results on the masking strategies on BraTS 2020.

Methods Dice (%) Hausdorff 95

ET WT TC ET WT TC

Block 20×20 73.487 86.838 74.124 25.537 6.416 23.439

Block 50×50 72.334 86.585 73.786 28.225 6.463 15.603

Grid 72.755 87.36 74.478 28.593 8.122 22.061

Random 72.954 85.49 75.228 30.75 6.474 18.757
frontie
The bold values are the best result.
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and improve the robustness of the network. Thus, it can not only

retain the information corresponding to the original multi-modal

image, but also enabling the network to learn the complementary

information between the modalities. In addition, the HAFB module

is integrated to the network to extract the features of multiple

modalities, and fix the number of channels of the feature map

favorably, so that the network can be fixed to a stable structure.

Experiments on BraTS show that the SM-ResUNet is superior to the

compared methods. This is because the SM-ResUNet can learn

complementary information from multiple modalities, and alleviate

the problem of high noise in medical images to a certain extent.
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