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ABSTRACT

Title of Dissertation: OPTIMAL CONTROL OF LARGE
SPACE STRUCTURES

Mohamed El Baraka, Doctor of Philosophy, 1991

Dissertation directed by: Dr. John S. Baras, Professor
Electrical Engineering Department
Martin Marietta Chair -

Systems Research Center

We present a computational spectral factorization method to solve the op-
timal state feedback control problem for flexible structures with the following
features:

(1) Mathematically rigorous

(2) Wide range of applicability

(3) Flexibility of design

(4) Fast and Efficient

(5) Mini-computer (versus Super-computer) implementation. We apply

this method to the following systems:
(1) A membrane
(2) A string
(3) An Euler-Bernoulli/Timoshenko beam models

(4) A Beam with structural damping and boundary control.
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CHAPTER 1

INTRODUCTION AND REVIEW

Large space structures present new and challenging problems. The flexibility
of these systems can not be ignored and distributed models (i.e. Partial Differ-

ential Equations) have to be devised.

We present a computational methodology to design optimal linear state feed-
back controllers that can be successfully implemented for linear systems governed

by Partial Differential Equations. Efficient algorithms for infinite dimensional

systems are hard to find as they all suffer from convergence problems and lead

to poor performance in the high frequency range (spillover). First we consider
)

the optimal shape control of a square flexible wire mesh using distributed elec-

trostatic forces to minimize a quadratic criterion. This minimum norm problem

is solved using the Projection method (i.e. Wiener-Hopf techniques). We use

the Hilbert transform to express the projection of an L function onto LT, the

subspace of functions with anti-causal inverse Fourier Transforms. This gives a

closed form expression of the boundary values of analytic functions and leads to

the spectral factorization theorem for scalar functions.

One of the main advantages of our approach is that the dimension of the
problem is that of the control space and not that of the state space as in the Ric-

catti equation approach; which leads to a substantial reduction of computations.

We also consider different dissipation mechanisms. The presence of damping (in
physical systems) leads to a more difficult mathematical analysis, but on the other
hand insures that the problems at hand are well defined (for instance computa-

tion of integrals by residues is valid only if no singularities lie on the boundary).

Another desirable feature is the flexibility allowed the designer, since there are
no constraints (in our method) such as optimal location of sensors/actuators

(concatenation of sensors/ actuators). Furthermore, the method is robust with
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respect to:

- unmodelled dynamics (nonlinear effects—)

- Variation in parameters —
and can be generalized to nonlinear systems and stochastic systems as well.

We study:

t

the membrane problem

the string problem

beam problems (Euller-Bernoulli/Timoshenko)

We discuss briefly controllability and give a physical interpretation for wave

problems although we do not go into the details.

Finally we analyze the beam with structural damping and boundary control
where we achieve arbitrarily high performance with just one controller at the end,

where robustness with respect to unmodelled dynamics is tested with success.

In the next few sections we would like to review some of the work that
has been done in the area of control design for infinite dimensional systems. We

compare it to what we did, and give a more precise discussion of our contributions.

1.1 Control of Flexible Spacecraft

In their paper on “Mathematical Modeling of Spinning Elastic Bodies” [46].
P.W. Likins, F.J. Barbera, and V. Baddeley study a distributed mass-finite ele-

ment model of an elastic appendage attached to a rigid body. The model consists

of an arbitrary number of elastic elements. Each contact point between two

neighboring elements is called a node. The number of degrees of freedom, 6n, of

the system is determined by the number of nodes, n.

They state: “Such model, while a linear constant-coefficient ordinary dif-
ferential system... seems to be the most promising model for rotating elastic

structures.”



“Algebraic complexities of a distributed-mass finite element model are so

great that one obtains little useful insight into system behavior from these equa-
tions” [46].

(1)

(2)

(3)

We can also add that:

The problem becomes even more intractable when you consider the control of

this huge system (6n X 6n).

Even if you could get past all these difficulties and solve the control prob-

lem for this finite dimensional (6n x 6n) system, in general it will be a
poor approximation of the original problem (spillover, instabilities, high fre-

quency behdvior, etc.).

In our method, since it is an eigenfunction expansion (therefore physical in-

terpretation as a natural mode of the system), there is a considerable reduc-

ion in the dimension of the system.

(In reference [5, 6, and references therein] it is stated that a huge structure
(such as SCOLE) while having hundreds of beam elements has only a few

natural modes to be controlled).

In their paper on “Controllability and Observability for Flexible Spacecraft”

[36], Peter E. Hughes and R.E. Skelton state the following:

“Assuming this minimal number of devices is present, the theorems indicate

that for controllability or observability to be absent would be most exceptional.

One would have to place force actuators exactly at nodes, for example, or have

their direction exactly orthogonal to the model deflection at that point, in order

to nullify the required condition.”

In the same paper it is stated “the presence of small structural damping

does not materially change the conclusions [in this paper] ... . This qualitative

change is not of practical significance ...”

(1)

While “agreeing” on their first statement about Controllability /Observability,

we add that our method allows the designer to have complete freedom to

3



locate the actuators and sensors, so as not to loose Controllability/Observ-

ability, but also allow ease of practical implementation.

(2) The importance of damping was overlooked in the literature for the following

reasons.

(a) Its inclusion makes the mathematical analysis very involved (e.g. loss

of closed form formulae).

(b) Its presence does not seem to have any impact on the Controllabil-

ity /Observability properties of the system.

In our work we do include damping (viscous damping for the membrane,
string, Euler-Bernoulli, and structural damping for beam with boundary control).

The existence of damping will make the problems well-posed

(3) Let us also alert the reader to the following: Certain aspects of Controlla-
bility /Observability can only be understood in the context of PDE’s. For

instance: no matter how large the dimension N of the approximate system,

it will be instantaneously controllable (which is not true for the original

wave problem: waves take time to propagate).

Lattice structures offer additional complications. For instance in [51] we find the

statement:

«“Because of increasing interest in large lattice type structures for space ap-

plications, approximation of repetitive lattice grids with equivalent continuum

models has gained popularity in recent years ... Conventional finite-element anal-

yses of such grids with a very large number of nodes are expensive and {ime con-

sumin .

We agree with their conclusion. This is especially true because the overall
structure can have only a limited number (n < 3) of natural modes to be con-
trolled, while the structure-itself is made of hundreds (probably thousands) of

elements.



One of the major advantages of our method is its ability to control huge

discrete space structures by controlling an equivalent continuum model.

We can treat all one dimensional structures (such as strings, Euler-Bernoulli
Timoshenko beams ...) exactly by our scalar spectral factoring theorem; see

Theorem 2.13 in section 2.3.4.
In his paper “Irends in Large Space Structures” [6] Mark J. Balas states:

“Conditions on (A, B) for existence/uniqueness of gain operators G* have
been given, but these conditions are gquite stringent; in addition, solving the non-

linear PDE is not easy. Finally it may turn out that the on-board controller can-

not implement the optimal control law. Therefore some approximations and

simplifications of the DPS control problem will be required to produce a subopt-

imal but implementable controller ...”

However in our approach we give a powerful algorithm for computing the

optimal control without any simplification or approximation to the original con-

trol problem. Moreover, for the practical implementation, great flexibility is left

to the designer to choose the configuration of the system.

We also draw attention to two difficulties associated with Riccati differential

systems:

(1) Any algorithm must be able to handle very large scale nonlinear systems.

(2) They also turn out to be stiff problems.

Reduced order models try to alleviate the above difficulty but they make

spillover worse (i.e., unstable design).

It has also been “shown” and has been observed in experimental systems
that few actuators/sensors are needed for a space structure to achieve control-

lability and observability [6]. For instance all one dimensional structures need

only one actuator/sensor, which can be handled exactly by our algorithm; see

Theorem 2.13 in section 2.3.4. The reason, however, people try to put as
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many sensors/actuators is to alleviate spillover (not to increase Controllabil-

ity /Observability) which has been shown to fail to stabilize the system.

Any controller based on a finite dimensional approximation of a (distributed

parameter system) will suffer from interactions with three kinds of residuals:

¢ modelling error term (and its dual)
e control spillover

e observation spillover

These interaction terms cause instabilities. Such instabilities have been
demonstrated in flexible structures laboratory experiments at C.S. Draper Lab
and Jet Propulsion Lab, as well as in numerical simulation ([6] and references

therein)
In the literature people suggest the following:

In the very special case where a finite dimensional approximate model is
used and the actuators (or sensors) can be located so that the control (or obser-
vation) spillover term is zero one can limit spillover influence but then you lose

Controllability/Observability. In the same paper [6]. Balas states:

“The dimension of the system may be too large for successful on-line imple-

mentation”.
“There are no fully developed tools (for spillover compensation)”.
“There are no easy solutions or panaceas”.

Point devices could be located at or near as many zeros of residual modes as
possible, however this leads to loss of observability/controllability and large cont-
roller gains (therefore nonlinear controller behaviors) add the practical difficulty
of physical location for devices on actual structures. Balas continues on to
say, “The most promising method is the use of filtering to remove the residual

modes ... filters however introduce signal distortion and delay and while they

6



may remove some instabilities generated by spillover they will introduce other

instabilities due to filter delay. Also in the same reference it is stated:

“Locating actuators and sensors at (or very near) the zeros of the mode
shapes will make it impossible to retain Controllability/Observability. Also de-

pendence on exact locations can lead to highly sensitive designs”

In noisy systems these suggested remedies become even more doubtful.

Balas in his paper on“Model Control of a Simply Supported Beam” [7] has
the following set up: An Euler-Bernoulli beam is controlled by a single point
actuator (at 1/6 length of the beam) and a single point sensor (at 5/6) and the
feedback controller controls the first three modes of the beam. When given an
initial displacement so that t.he first three modes of the beam have an initial dis-
placement of one unit, the decay in the three controlled modes is equivalent to 1%
damping (they are trying to have small gains not to destabilize the system). The

main problem however is that they observe residual mode instability caused by

spillover.

We also mention direct Velocity Feedback [6] (termed active damping). It

does not lead to spillover instabilities, however it suffers from the following re-

strictions:
- an equal number of collocated force actuators and velocity sensors.
- the actuators must not excite zero frequency modes.

Moreover the conclusions arrived at need to be taken cautiously as the anal-
ysis assumes a distributed control, while any practical implementation will cer-
tainly have a finite number of actuators /sensors and this fact often leads to

unstable designs (see [24]), and this has been observed by structural engineers.

We need to stress the fact that high gains cannot be handled by usual numer-
ical methods as already borderline unstable algorithms will certainly go unstable

when one uses a high gain controller. This will also lead to nonlinear behavior of

7



the controller which can be handled only by a robust algorithm. However high

gains is what is needed for accurate pointing or attitude control.

1.2 Electrostatic Control of Electromagnetic Reflectors

The use of distributed electrostatic forces to control the shape of a flexible

membrane has allowed the construction (of a wide variety) of precise electromag-
netic reflectors [42, 43, 44] with fractional-meter to kilometer aperture diameters
and operate over the centimeter to optical wavelength range, for ground-based

and space based operation. However large curvature or diameter leads to a re-

flector equilibrium shape exhibiting Rayleigh- Taylor deflection instabilities [42,

43, 44]. Experimental stabilization studies on systems governed by hyperbolic

partial differential equations have been reported:

(1) a spring in tension which was excited then stabilized electrostatically using

2 sensors/actuators).
(2) fluids which were excited and then stabilized.

(3) A compressed beam which was excited mechanically and then stabilized

magnetostatically with 1 sensor/actuator.
None were successful in stabilizing more than 1 mode.

Later Lang et al. [42] did experiments on a two dimensional wire-mesh con-
tinuum which was excited and then stabilized electrostatically. The performance
criterion was such that when it approaches unity it was an indication of control

system inability to maintain mesh stability due to insufficient actuator influence.

An approximation to the model experimental system was used to design a near-

optimal control system (with a limited number of primary modes m,n < 4).

“The linear LQG control system just derived proved to be unsatisfactory at
high bias voltages due to physical reasons not modeled. .. state augmentation, to
include the imbalance, proved unsatisfactory due to a resulting 2.5 fold decrease

in feasible control system sampling rates.” [42]

8



«  when stabilization failed, failure was nearly always explained by the

destabilization of an unmodeled mode or from excessive membrane deflection

driven beyond the actuator capture range by actuator or sensor noise. Finally,

actuator and sensor spillover were experimentally found to be a predictable cause

of closed loop system destabilization ...

“The second difficulty experienced with the LQG control systems was their

online computational complexity necessitating slow sampling rates. The present

experimental system was restricted to the LQG control of three modes due to

sampling consideration alone”.

This work of Lang et al. [42] was the primary justification for our devel-
oping this algorithm to solve “the membrane problem” (Chapter 2) and linear
distributed parameter systems in general (String (Chapter 3), beam (Chapter
4), Boundary control (Chapter 5)). It is significant to point out that our algo-
rithm allows the incorporation of as many as 400 modes (m < 20,n < 20) for

the membrane (compared to 3 modes above), without any control or observation

spillover and excellent robustness to unmodelled dynamics (which was tested for

the more complicated problem of boundary control of a beam in Chapter 5).
Lang’s experiments have also shown what kind of control technology is necessary
for very precise electrostatic flexible membrane reflectors (e.g. tolerance 103

times the reflector diameter see [43]).

They also state: “The design of controllers for distributed parameter systems
from tuncated modal system descriptions is inherently conducted in ignorance of
the actuator and sensor coupling to the unmodelled modes. The real presence of
this coupling, referred to here as spillover, can cause significant changes in the
expected closed-loop system behavior. To examine the effect of spillover, this

coupling is treated as a perturbation” [45].

It is our view that this kind of perturbation analysis while giving insight
into the spillover problem, does not eliminate it. This complicated perturbation

analysis, shadows the original control problem, and does not lead itself into

9



inclusion in an automated algorithm to solve the control problem for distributed

parameter systems.

1.3 Spectral Factorization Versus Riccati Equation Approach

Various algorithms for spectral factor calculation have been proposed. Some
are based on algebraic methods and rely on rational approximations of the trans-
fer function and large scale linear systems. As such they are not suitable for

distributed parameter systems.

J.H. Davis and R.G. Dickinson in [23] propose to seek a recursive algorithm
for spectral factorization inspired by the Newton-Raphson algorithm for the so-
lution of the algebraic Riccati equation. To describe their algorithm define:

F(jw) = I + S(jw), the function to be spectral factored and let P; be the

causal projection operator on the convolution algebra I @ Ly (or L,) defined by:

P I+ / e F(t)e i“'dt) = I + / ~ F(t)e ¥ dt (1.1)

—00

Then the Davis-Dickinson iteration is given by:

Fug1 = Py[(Fy) T H(Fy) 7' |Fu (1.2)

Independently of any Riccati equation considerations they prove under some mild
conditions (satisfied for distributed systems of interest which include the mem-
brane, string, beams, etc.) and with a suitable choice of the initial condition, the

iterate converges to the desired spectral factor; and this is a major achievement.
We would like, however, to stress the following two facts:

e Of utmost importance is the suitable choice for Fy, the initial iterate for the
factor. As suggested by Davis-Dickinson a suitable choice that insures con-
vergence is to take for Fy the diagonal matrix of the spectral factors of

the diagonal elements of F(jw). Therefore one crucial component of the

10



algorithm is how to “achieve” scalar spectral factorization. Our contribution

was to give a closed form formula based on the Hilbert Transform.

e The other crucial element in the Davis-Dickinson iteration is the projec-
tion P, based on Stenger’s algorithm [64]. Our contribution is to give
a closed form

formula based on the Hilbert Transform.

e With these two major modifications we get a superior algorithm with the

following features:

(1) requires few points compared with the original Davis-Dickinson iteration

scheme. For instance:

their algorithm applied to a “relatively” smooth 3 x 1 transfer function
given by a closed form formulae needs about 4096 points to give a 1071
“trace” difference. (See [23]). By contrast our algorithm applied to the 4 x 4
transfer function of a membrane with singularities (more than 8 singularities
smoothed somehow by damping, see Figure [16]) needs 20 points to give a
precision higher than 1077,

Note: Our contention is that for a complicated real life system such as the

membrane one would actually need many more points than 4096 points,

i.e. you would have to solve tens (or hundreds) of thousands of systems of

complicated partial differential equations. (See Chapter 2 for example to

get an idea about the complexity of such systems).

9) Qur algorithm gives the actual maximum error on every entry of the spectral
g g

factor matrix, instead of just a trace measure of the error.
(3) Our algorithm converges very fast: For a comparison:

e Their algorithm needs 7 iterations (and 1024 points) to achieve a 104

trace tolerance for a rational 2 x 2 transfer function matrix.

e In comparison ours converges in 1 iteration (and 20points) to achieve a
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precision higher than 10™* for every entry of the 4 x 4 transfer function

of the membrane (irrational, not given by closed form formula ...).

(4) Our algorithm is completely automated:

(a) One of the main features of our program is its use of adaptive integration

[57).
(b) As input it needs:

e the frequency range

e the number of points in frequency range

e the absolute and relative errors allowed

e the number of iterations

e some machine dependent constants (with programs provided to compute
them).

¢ maximum number of function evaluations allowed (500 was enough for

all our programs)

It then gives the output with the desired precision (the number of function

evaluations if so desired) and possibly some flags alerting to possible troubles:

o If more than the number of function evaluations allowed is necessary, the
algorithm asks whether to use more iterations and continue to achieve

the desired precision.
e If unexpected singularities occur you will be alerted to their location.

For the membrane problem we asked for a precision of 10! (with 20 points
in the frequency range) the algorithm returns with a precision higher than
1074 in the first iteration. We stress again the fact that it is an automated
algorithm. All it needs is the values of the transfer function (it will tell
you if you need more points to achieve the desired precision). To state that
it is an automated algorithm it means that “no analysis” of the problem is

necessary; the algorithm does it all. In contrast:
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(c)

(d)

(5)

The Davis-Dickinson algorithm for instance needs a thorough prelimi-
nary analysis of the problem before it can be applied. For instance in
[23] they say “previous experience with the kind of functions involved
in H suggested a close analysis is needed.” They study a 3 x 1 irrational
transfer function (given in a closed form), they had to determine where
the peaks occur (for every entry) and their width then use different grid
scales accordingly. They go on to state “it is clear from table 1 that the
location of the peak played a key role in choosing the grids”. The fine
grid for instance was chosen so that more points (10 in their example)

were chosen near the peak.

They also separate the finite dimension, the “delay line” and the part
containing the peaks and do spectral factorization of these factors (with
different grid scales accordingly) to later recover the spectral factor of
the whole transfer function H. Even then (with as many grid points as
4096 in the fine grid) only a trace tolerance of 10~ was achieved in 3

iterations.

This shows why it will not be possible to use such an algorithm when we
have a complicated system. In the case of the membrane for instance
(Chapter 2) we have a 4 x4 matrix with more than 8 singularities in each
term. It would be close to impossible to do the kind of close analysis
required: How to get all the information when the transfer function is

nearly never given in a closed form, but only as a solution to a system

of PDE’s (at each point).

Let us try to explain one of the major difficulties present in the orig-
inal Davis-Dickinson algorithm. The algorithm relies on the Stenger’s
formula for the projection and uses the FFT to compute the required
transforms and convolution. This is to say that the algorithm is in a
fundamental way a 1°! order approximation and that is the source of

the problem. The FFT is just a fast way of computing the Discretized
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(6)

(7)

Fourier Transfer which is a first order approximation. Therefore all the
well-known difficulties associated with the discretized Fourier Trans-
form come to play here. Let us remember that the transfer function
for distributed systems will contain singularities (see the problems we
treated in the dissertation) and this is why one needs a huge number
of points (because of uniform sampling) to achieve a limited tolerance
when all we need is to concentrate the grid points near the singularities

otherwise the sampling rate will be that near the worst singularity.

We would like to mention one interesting feature of our scalar spectral

factorization formula. It allows the computation of the spectral factor at

a desired point. For the other iterative algorithms it is all or nothing, in
other words you have to compute the spectral factor at all points. This
makes them unsuitable for automatic integration, because an adaptive
integrator will try to achieve the desired precision with the given num-
ber of points. If it is unable to achieve the desired precision, it will ask

for more points.

These comments and comparisons (while are substantiated in the main
body of the thesis) indicate that we have developed superior spectral
factorization algorithm to solve the optimal regulator problem (and the
filtering problem for distributed parameter systems as well as for fi-
nite dimensional systems). We also intend to exploit the connections of
spectral factorization to a host of applied mathematics and engineering
problems to provide for the first time a powerful computational tool.
P.B. Molinari has investigated “Equivalence relations for the algebraic
Riccati equation” [53] where he showed that “stabilizing” solutions of
the finite dimensional (ARE) are in one to one correspondence with
certain “spectral factorizations” [40] of a real rational matrix. Also, T.
Kailath in his paper on “Fredholm Resolvent, Wiener Hopf-equation

and Riccati Differential Equations” studies the relationship between
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these mentioned problems (even though his thrust was to reduce the
spectral factorization to a Riccati equation). He does however state:
“despite its wide use in modern control theory there is no universally
accepted “best” way of solving Riccati equations ...”. Jan C. Willems
in his paper “Least Squares Stationary Optimal Control and the Alge-

braic Riccati Equation” [69] derived time-domain and frequency domain

conditions for the existence of solutions which are then classified.

It is already apparent in his classification of solutions that the problem is
very complicated. For instance: every real symmetric solution of (ARE)
will be given by: K = K+ P+ K~(I — P) (where P is a projection (and

you need to solve eigenvalue problems)

ez: K?=I=K'=I,K-=-Iand K =—-I+2P (1.3)
2 SN
P= cosczs- s?na Sms;‘nz(fzs ? (14)

He also gives an eigenvalue condition on the initial iterate to make the
Newton-Raphson algorithm converge. The linear quadratic regulator is
one of the best studied problems in Control theory, yet many aspects of
the problem are still unsolved; for instance the sensitivity of the solution
to (ARE) under perturbations and the compuational performance of the

algorithms have not been examined in sufficient extent.

The situation for infinite dimensional systems is even worse. Let us
give the example of the membrane (Chapter 2): to have convergence
we needed to take 400 (m < 20,n < 20) terms in the eigenfunction
expansion. This leads to a state space dimension N = 400 and there-
fore we need to solve a 400 x 400 Riccati equation (which would be
a poor approximation anyway because of spillover). By contrast, the
Wiener-Hopf approach using our computational algorithm requires just

one closed form exact scalar spectral factorization.
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J.H. Davis and M. Barry in their paper on “A Distributed Model for Stress

Control in Multiple Locomotive Trains” [20] show that the frequency domain cal-
culation was found computationally efficient (even with the shortcomings of their
alogirthm as we explained earlier) while a Riccati equation truncation proved

numerically difficult to handle.

There is also a huge literature on infinite dimensional Riccati equations and

we refer to [6] and the references therein.

Next we would like to point out a different direction for designing control sys-
tems. Design methods based on frequency domain techniques have also been ex-

tended to distributed systems. They use properties of analytic function matrices

(Coprime factorization - Bezout identity ...) in appropriate Banach algebras (See

Baras [10], Baras et al. [11, 12], Callier and Desoer [15]). We are unaware of

algorithms to solve their equations (Bezout identity for instance).

R.F. Curtain [19] studies the robust H* desing for some classes of infinite

dimensional systems. For such designs there is a trade-off between:

- the robustness margin
- the order of the controller

- the reduced order model.

These may lead to poor performance, in addition to computational difficulties.
Furthermore, there are no efficient algorithms except for reducing the H*° design
problem to a Riccati equation [23].

1.4 Numerical Simulation of Hyperbolic PDE’s

Galerkin methods (and in particular finite element methods) have had a
great success in solving elliptic (and parabolic) equations which made them
very popular in the engineering community. In contrast, these methods lead

to poor performance when applied to hyperbolic problems.
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Recently, they were modified to handle first order hyperbolic systems; the so

called discontinuous Galerkin [37, 38] methods but are not convenient to incor-

porate as part of a control design system. For second order hyperbolic systems

the problem is still open.

In our work (see section 2.1.2) we implemented the method of lines which

leads to large scale systems of ODE’s, and turned out to be unstable. This led

us to choose eigenfunction expansions as a tool of solving hyperbolic systems of

second order and we implemented it for the following problems:

the membrane

the string
the Euler-Bernoulli beam

the Timoshenko beam

the beam with boundary control

The numerical results are excellent. To compute the eigenfunctions when

no closed form exists we suggest a finite element approach (see C. Weeks [70])
as we mentioned earlier very few need to be computed which makes the method
very efficient. Another major advantage is that eigenfunctions correspond to the

natural modes of the physical system and fit perfectly in a control algorithm .

Let us mention that eigenfunctions have been used as a theoretical tool to inves-
tigate controllability (D. Russel [59], [60]). C. Weeks used them for static shape
determination and control for a large space structure. J.H. Davis used eigen-
function expansions to compute the filter gains for a train model [21]. Let us
mention also the work by H.T. Banks et al. [8, 9] who used finite elements for
parameter estimation for distributed system and implemented their algorithm on

vector computers (Cray 1-S).

In the algorithm developed in this thesis, eigenfunction expansions are inco-
prorated as part of an optimal control algorithm for infinite dimensional systems.
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1.5 Description of the Algorithm

Referring to Figure 14, we see that there are four major blocks:

“Hyperbolic system” block
“Elliptic system” block
“Spectral Factorization” block
“Optimal Gains” block
“Fourier Transform” block

Block 1 is responsible for the simulation of the forward system and contains

two main subblocks:

a - “Eigenstructure block” which computes the eigenvalues and eigenfunc-

tions of the system.

b - “Initial Value problem” block which computes the time varying coeff-

icients in the eigenfunction expansion.

This block gives the “full state” of the system; for example it will compute

the displacement and the velocity (no differentations involved).

Block 2 is responsible for the simulation of the system in the frequency

domain and is on a theoretical level equivalent to Block 1; in other words

we can recover one from the other in principle. It has two main subblocks:
a - The “Green’s Function block”
b - The subblock computing the solution to the elliptic system.

Block 3 is responsible for the spectral factorization of the “modified” transfer

function and has two main subblocks:

a - The scalar spectral factorization algorithm based on the Hilbert trans-

form.
b - Newton-Raphson iteration for the full matrix case [23]
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- Block 4 computes the Optimal gains using the J. Davis formulae [22].

- Block 5 allows the passing from the frequency domain to the time domain.

This is a brief description of the complete algorithm, but one cannot have a
full understanding unless one studies an example, therefore we suggest reading
Chapter 2 on the membrane because it was the first problem that led us to this
algorithm and therefore contains the full details. It would also be convenient
to skip section 2.3 on spectral factorization (thinking of Block 3 as a blackbox)
without any breai{, in the logic (understanding) of the Chapter. The next step
would be to apply the algorithm to a “simple” one dimensional structure (and

thus many interesting large space structures) to gain a full mastery.
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CHAPTER 2

THE LINEAR REGULATOR PROBLEM OF A
VIBRATING MEMBRANE: MATHEMATICAL
AND COMPUTATIONAL FRAMEWORK

In this chapter we consider the optimal shape control of a square flexible
wire mesh using distributed electrostatic forces so as to minimize a quadratic

criterion.

By using an appropriate Hilbert space set-up, it is possible to show that the
optimal control is the solution to a minimum norm problem that can be solved

using the projection method (i.e. Wiener Hopf technique here).

In section 2.1 we review the hyperbolic system associated with the vibrating
membrane. We show existence and uniqueness of solutions using the semi-group
approach in an appropriate cartesian product of Hilbert spaces. It is also shown
that the corresponding infinitesimal generator satisfies the hypotheses of the
Hille- Yosida-Phillips theorem and we deduce the exponential stability of the semi-
group (see Phillips [34] and also Yosida {71, 72]).

Subsequently, we solve this system numerically using the method of lines
which transforms the hyperbolic system into a set of linear differential equations.
Although the convergence of this method has been proved (see Teman [65]) the
numerical results are not satisfying and the method is time consuming. This leads
us to seek an eigenfunction expansion of the solution which gives satisfactory

numerical results by:
e avoiding numerical differentiation
e precision “independent” of the mesh size

e precision only limited by the capacity of the computer
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In section 2.4 we apply the Fourier transform to the wave equation to get an
elliptic 2™? order equation with a complex parameter that we propose to solve
by the Greens operator technique which is a special case of the Hilbert-Schmidt
theory of integral operators. To this end we expand the “Real” Green’s function
into an exponentially uniformly converging series. To alleviate the amount of
computations, in particular to avoid the implementation of double integrals nu-
merically, we devise a first order discretization of the integrated Green’s function.
Next we extend the above results to the case of a complex parameter (physically
presence of damping) by using the principle of analytic continuation for anlaytic

functions. We then solve the elliptic system and present the numerical results.

In section 2.5 we use the Hilbert transform technique to express the projec-
tion of an L? function onto L], the subspace of functions with anti-causal inverse
Fourier transform. Again we use the Hilbert transform to express the boundary
values of analytic functions. Combining these results we get the spectral fac-
torization theorem for scalar functions. The numerical results obtained are also

reported.

In the last section 2.4.4 we present to give the gain computations and also

report the numerical results.

First we compare the Riccati equation approach to the Wiener-Hopf tech-
nique for a scalar 1-dimensional control problem. Even in this very simple ex-
ample one gets some interesting insight: The estimation of the spectrum of the
transfer function is crucial in the computation of the gains. In section 2.6 we
compute the resolvent operator using the theory of the elliptic system developed

in section 2.4.

In section 2.6 we give formulae for computing double Fourier series coeffi-

cients of the control functions and give numerical results.

Then we present the control problem of the membrane when the control is a

scalar function located at a certain point of the membrane. We also describe the
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multidimensional version which is very complex and shows that the successful

numerical implementation will depend on:
e choosing a good notation
e all blocks of the system are working perfectly

We then study the control of the membrane along a mode of the system which
is a special case of the previous one and show how this assumption simplifies the

formulae greatly.

Subsequently, we provide a comparison between different approaches of con-
trolling the membrane and stress some “hidden” theoretical difficulties when
one tries to implement these approaches practically. It becomes also apparent
that when for practical computations (involving operators in infinite dimensional

spaces) we must satisfy the following requirement.

1. Need to devise stable numerical algorithms

9. Make sure that one can achieve a high accuracy in a reasonable time for all

building blocks.

3. Test the algorithms in the same condition as when all blocks are put together,

especially because of the memory storage problem on a minicomputer.

4. Select easily implementable notations and apply structured programming

principles (see multi control section 2.6 for illustrations).

As will be seen the numerical results obtained in this chapter are satisfactory.

Our main contributions in this chapter are as follows:
- The Numerical Implementation of the Method of lines (section 2.1.2). .

- The Numerical Implementation of the eigenfunction expansion for the “hy-

perbolic” system (section 2.1.3).

- The computation of the Green’s function for the “membrane” (section 2.2.1).
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- The Numerical Implementation of the solution to the elliptic system (section

2.2.7).
- The scalar spectral factorization theorem (section 2.3.3).
- Optimal Control of one dimensional structures theorem (section 2.3.4).

- Numerical Implementation of the scalar point control for the membrane

(section 2.3.5).

- Numerical Implementation of the multidimensional control problem for the

membrane (section 2.4.5).

- Numerical Implementation of the mode shape control problem (section 2.4.6).

2.1 Study of the Hyperbolic System
A large class of physical systems, such as:
o distributed systems described by linear partial differential equations
e delay differential systems
¢ lumped systems described by linear ordinary differential equations

can be given a unified treatment using semi-group theory. This is done by for-
mulating the above problems as abstract differential equations in an appropriate

Banach (or Hilbert) space:

i(t) = Az(t) + u(t) te(0,00)
{x(O) =-’Bo,( zoeé(A) ( (2.1)

z(t), u(t)eB Banach space.

A is generally a closed linear operator with dense domain in B and is called

the infinitesimal generator of the system:.

If we restrict our attention to the unforced system:

{ Z(g) - (2:2)

23



and assume that the problem is well-posed then the solution z(t) will define
a semi-group of bounded operators on B : z(t) = T(t)zo. {T(t)}t € [0,00) is
called the semi-group generated by A and satisfies:

(1) T(t,s) = T(¢)T(s)t, s > 0 (semi-group property)
(2) limeyo T(t)zo = zo (Co-property or strong continuity)

It is the norm defined on the Banach space B (most important ones are

Sobolev spaces) that determines the degree of smoothness of the solution (strong

versus weak solutions).

In Section 1 we shall attempt to put the wave equation governing the motion
of the membrane into this general framework, and apply the general theory of

semi-groups to get some interesting insight about the solution.

2.1.1 Semi-group Approach to the Wave Equation

The equation governing the motion of a vibrating membrane is given by:

( O%h &8h 0*h  Oh .2
3t2—a8x2+b6y2+c.5t—+dh+u in
hi(z,y,0) = vo(z,y) Initial Conditions (I.C.)

| A(z,y,t)|on =0 Boundary Conditions (B.C.)

where {2 is given by:

Py

Q =[0, x [0, 4] (2.4)

where h is the displacement of the point (z,y) on the membrane. cis the damping
coefficient. The term dh comes from linearizing an originally nonlinear equation.

u is the control applied to the membrance.

To investigate the existence and uniqueness of solutions to the above second

order equation we transform it into a two-dimensional hyperbolic system of first
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order.

(d[h]_[ ., O 11[r] . [0,
dt |he]  |aZs+b25+d ] |k 1

Y IcC. (25)
| B.C.
We define the following partial differential operators:
o? 8
L=- ("@“a—ﬁ*d)
0 1
as]o ] 26

with appropriate boundary conditions (B.C.)

(a) Sobolev Spaces:

We introduce some spaces that are going to be useful later. Hi(2)(k integer

> 1) consists of all functions u having partial derivatives of order < k in L?

Q), where the derivatives are understood in the sense of distributions. H(2)

is a Hilbert space when equipped with the inner product:

k
(u,v)Hk(Q) = (u,v)Lz(Q) + Z(D"U,D"’U)L2(Q) (27)

=1

‘where D7 = aizj and H(Q) is called the Sobolev space of order k. We also

introduce the space D() consisting of all C'* functions with support in

Q. H 1 () is the closure of D(2) in Hy(f2). For a thorough treatment of

Sobolev spaces see the monograph by Adams [1].
Next we give some important properties of L.

We consider L acting on L2(Q) (in the sense of distributions), with domain
D(L) = H:(2)N Iofl (), equipped with the usual inner product: (u,v)r2(g) =
[ Jowo
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L is self-adjoint [74]:

To make the computations easier we first make the change of variables:

(i 2% e

In these new coordinates L becomes:
Lu=—-Au—du (2.9)

If D is the transformed domain then: ulsp =0

By elementary computations we get:

//DU.LH//Dv.(vvu_uvv)

= / (vVu —uVv)-n (by the Divergence theorem)
éD

= v—a--ti - u@- =0 (because of the boundary
8D Bn on
conditions ulsp = v|sp = 0) (2.10)
which leads to:
(u,Lv) = (v,Lu)  Yu,veD(L) (2.11)

Hence L is self-adjoint.

We can also show by elementary arguments that the eigenvalues of L are real;

and that eigenfunctions corresponding to different eigenvalues are orthogonal:

(ivips) =0 (for i #4)) (212)

L is positive:

We use the completeness of the eigenfunctions of the self-adjoint operator L

(see [31, 37]) to write:
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o= orpr (Lpn = Anpn) (2.13)

Therefore (L, ) = (3 akdk@k, 3. ann) = 3 aj i (by orthogonality of eigen-

functions). In section [?] we will prove that the eigenvalues of L are given by:

2 2
Amn=a{ 25) 45 (25} —d; mn=1,2,--- (2.14)
‘s Z,

We summarize the previous discussion:

Theorem 2.1:

The self-adjoint operator L defined in 2.6 is positive i.e. (Ly,9) > 0 (and
equals 0 only for ¢ = 0), iff the following condition holds:

2 2
x? (“ + b—) —d>0 (2.15)

e
The domain D(L) is L is dense and the following estimate holds:

(o) (v (5 + %—) ~d) el veD@ (210

Now we want to quote some key results from semi-group theory (18, 34, 71, 72)

that will allow us to get the existence and uniqueness of solutions to the “mem-

brane” equation. The first major theorem we quote is the Hille-Yosida-Phillips

Theorem which characterizes generators of Cy_type (strongly continuous) semi-

groups.

Theorem 2.2 (Hille-Yosida-Phillips [18, 34, 71, 72]):

Let A be a closed linear operator with dense domain in a Banach space X.

The A generates a Cy semi-group iff:
(4)3M, wo; YA > wo : Aep(A) (resolvent set ofA).

()| R(X; A" < n=1,2,...(R()\; A) resolvent of A) (2.17)

(A —_ wo)"
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Under these conditions we have:
Vw > wg, IM such that: V¢ > 0, ||T|| £ Me“* (2.18)

where T; is the semi-group generated by A.

The second major theorem we quote is the Lumer-Phillips theorem which is a

consequence of the previous theorem and gives a different characterization of

semi-group generators.

Theorem 2.3 (Lumer-Phillips [18, 34, 72]):

Let A be a closed, densely defined, linear operator on a Banach space X.

Then A generates a semi-group T; on X satisfying:
|T:|l < e“f, V¢ >0 (2.19)
iff

VA > w i |(M = A)z|| > (A —w)|iz]l, zeD(A)
(AL — A)z™|| 2 (A —w)l|z*|l, ="eD(A7) (2.20)

where D(A) and D(A*) designate the domains of A and A* respectively.

Remarks:
1. Condition 2.20 will be satisfied if A is dissipative.

2. The condition 2.19 is not really a restriction as we can define a new equivalent

norm:

ll|z|]| = sup e™*||Tex| (2:21)

3. Actually we are going to specialize it to the case of a Hilbert Space (next

corollary) which will be the version we are going to use to prove existence and

uniqueness of solutions.
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Corollary 2.3:

Let A be a closed, densely defined, linear operator or a Hilbert space H.
Then A generates a semi-group T; on H satisfying || T: || < e“t for a suitable w
and Vt > 0:f f

3k :Re{(Af, )} Sk FI? VfeD(4)

Re{(Af, )} S kI FI7 VfeD(AT) (2.22)

Proof:

Condition [2.22] becomes [19]:
<A — Az Az — Az >> (A —w)? <z, > for A > w,zeD(A) (2.23)
which gives:
2) (wl||z||* — Re < Az,z > + < Az, > —2|z)|?) >0 (2.24)

this will hold if we can find a constant 4 such that:
B||z)|* > Re(< Az,z >), zeD(A)
Bl|z]|* > Re(< A*z,z >), zeD(AY) (2.25)

With these theorems from semi-group-theory available to us, we will show that

A= [—OL i] generates a Cp semi-group.

We have shown that the differential operator L is self-adjoint and therefore we

can define a square root L'/? by means of functional calculus of unbounded oper-

ators. In general L!/? cannot be identified in terms of L and may even fail to be

a differential operator, however it domain turms out to be:

D(LY?) =H, (Q) (2.26)

(For a proof see page 105 in Fattorini [25])
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Let us introduce the Hilbert space:

H = D(L?) x L*(9) (2.27)
!
For f = [Z] fl= [:,] eH we define the inner product as follows:
< f, f' >u= (L%U,L%UI)L2(Q) + (v,U,)L2(Q) (2.28)

- _ v
Now let f' = Af = [—Lu+cv]

< f,Af > = (L%U,L-;’U)Lz(g) + (v, —Lu+ C'U)Lz(g)
= (Lu,v)r2) — (v, Lu) 20y + ¢ | v [I12(q)

= c |l v IZ2q) (2:29)

for feD(L'/?) x D(L)C H.

0

I ‘cl] = D(4*) = D(A) and

By similar computations: A* = [

(fLA*f)g=c| v ”i’(ﬂ)' Applying this theorem and the above analysis we

conclude that:

Theorem 2.4:

The operator A is the infinitesimal generator of a strongly continuous semi-
group T;. Moreover if the condition:

2 b2 2
2 (Z_'z + F) - (d+ %) >0 (2.30)
z Yy

is satisfied T; will be exponentially stable.

Proof:

(a) by the previous analysis and corollary [2.3] A is the generator of a Cp semi-

group T;.
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(b)

2.1.2

0
—L

of A are related to the eigenvalues A of L by the second order equation:

Since A = [ 1] it is a simple matter to check that the eigenvalues A

AP—cA+X1=0 (2.31)
which admits the solution:
2 _
A= i%_‘*’\ (2.32)

If ¢? — 4\ < 0 then Re(A) = £ < 0.

Since the eigenvalues ) of the positive second order idfferential operator L

tend to infinity, it is enough to satisfy the condition
¢ —4hmin <0 (2.33)

where Amin is the smallest eigenvalue of L, and this condition is equivalent
to the one given in the hypothesis of the theorem. Now Let ¢(A) be the
spectrum of A. The condition Re(A) = 7 implies that:

Re(o(A)) = g <0 (2.34)

and by the spectrum determined growth assumption (see references [19, 68])

we can choose wy in Theorem [2.2] to satisfy:

% <wp <0 (2.35)

and hence the exponential stability of the semi-group.

Numerical Integration by the Method of Lines

There are various approaches to the numerical integration of partial differ-

ential equations. Some of the most important methods in this respect are:

(2)

Finite difference methods;
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(b) Finite element methods;
(c) Characteristics (for hyperbolic equations);
(d) “Exact” methods (mainly series expénsion of the solution).

It would take us too long to go into the main differences between all these

methods, the range of their applicability and their respective performance.

In this subsection we intend to apply the method of lines to get a numer-
ical solution of the PDE (2.3). This method consists of defining a grid on the
domain of interest and then transforming the PDE into a system of ODE’s.
Subsequently, one uses a good ODE integrator (one that handles discontinuities,

stiffness, etc, successfully).
Consider the equation of the vibrating membrane:

&b —aZh +05h + e +dh+f in
h = ht =0 at t= 0

Let us make the following change of variables:

{Z:Zt (2.37)

Then (2.22) is equivalent to the following 1°* order (in t) system:

E=yq
at
2 2
%%:ag—z%+bg—y§+cq+dp+f (2.38)
p=¢q=0 on 0Q

Next we devise a semidiscretization algorithm for (2.24). To do this we introduce

a grid of points (z;,yi) on the region (2
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Fig. 1: Subdivision of the Membrane

We discretize the space variables using the central difference schemes for the

second derivative (which is of order h?):

32? I _ DPi-1,j — 2pij + Piy1,j
6232 5] = h2
32? _ Pij—1 — 2pij + pij+1
i : - - 2.
ay l 1] k2 ( 39)
with the obvious notation:
pij = p(zi, ¥i,t) (2.40)
¢ ¢
h=— k=— 2.41
N’ N ( )

Thus we get:
Fori=2,N;j =2, N:

d
Pt — qtj

dq. —a- Pi—1,4— 2::; +pit1,j + bPu 1—2Pt1+1’- Il + cqu + dp'] + ftJ (242)
pu(O) =¢i;(0) =0

33



i=1

Forz=1,---N+1{01‘J.=]\/.~|~1

Mdj=1""N+1{miJ==]\}+1 We get:

pij =¢ij =0 ‘ (2.43)

The system (2.38) can be rewritten in the following form:

pi;(t) = i

¢4i(t) = f(pi1,j + Pit1,3) + B (Pi=1 + i) (2.44)
+[d — 2(5% + #&)lpij + caij + fij .

pi;(0) = ¢:;(0) =0

Let us convert P;;, gij into a single one dimensional array.

Case 1

i=1,---N+1 Letpij=y((t —1)}(N +1)+7)
j=1,---N+1 (2.45)

1=1,---N+1 Let q,'j=y{(N+1)2+(i—1)(N+1)+j}
j=1,---N+1 gij = y{(N +1)(N +4) +j} (2.46)

So we end up with the one dimensional array y, which relates to p;;, gi; as follows:

pij =y{G -1V +1)+j} 4j=1,---N+1

gij =y{(N+1)(N+d)+j} ¢45=1,---N+1 (2.47)

Thus the methéd of lines leads to the integration of 2(N — 1)? ordinary differential
equations, where N is the number of grid-points. The method is therefore
time-consuming for large N. An additional drawback of the method (as im-
plemented here) seems to be a stability problem: the solution diverges after a
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relatively small number of steps (~ 5) (for a study of convergence of this method

see [65].

Therefore we were led to look for a more satisfying method of solving the
hyperbolic system in question and the eigenfunction expansion method gives

superior numerical results and converges very fast. This latter approach will be

the subject of the next paragraph.

2.1.3 Eigenfunction Expansion of the Solution to the Hyperbolic System

Consider the equation of the vibrating membrane:

hlag =0 (2.48)

{ ‘?;;, = gﬂ-+baﬂ, +cat +dh+uin Q
h(0),h'(0) given

Let
g(t) = h(t)e % (2.49)

This change of dependent variable allows us to get rid-of the damping term

aﬁ however the d-coefficient will change, and the new control will become:
v(t) = u(t)e” ¥ (2.50)

We now get the new system:

28 =28 4522+ (d+S)g+v

g = 0
2(0) = h(0) (231
g'(0) = h'(0) — 5h(0)

Here we see that the coefficient of g has changed (d — d + °4—2) and also the
initial condition for the velocity has changed (h'(0) — &'(0) — £h(0)) the control

being v = e—%'u. These remarks are crucial for the simulation of the original
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system. However it is equivalent to study the following equation, while making

the necessary adjustments for the coefficients:

%i—f— =a%:—__§-+b%;§-+.dg+bu in (02

g=0 on 0N (2.52)
9(z,y,t0) = go(z,y)

gt(z, yatO) = ‘Uo(x, y)

Here we do not assume tq = 0. We also assume that we have the general initial
conditions go and vg, because we will use the solution of this system to simulate

the response of the membrane.

To solve the above we use the classical technique of eigenfunction expansion
to get:

(a) an eigenvalue problem of a partial differential operator.
(b) a system of ordinary differential equations.
Let g(z,y,t) = Zm,n Amn(t)@mn(T,y) where oma(z,y) are the eigenfunctions of

the associated partial differential operator.

u(z,y,t) = Zumn(t)‘Pmn(xay) (2.53)

where u(z,y,t) is the control acting on the membrane. We decompose the initial

conditions in the same way:

g(:l,‘, Yy, tO) = Z "mn‘Pmn(l‘, y)

m,n

gt(xs y’tO) = vanﬁomn(x, y) (254)

m,n

Plugging the formulas (2.53) and (2.54) into the system (2.52) and differentiating

the series term by term (“formally”) as required by the equations we get:

(a) Eigenvalue problem:

2- 2
{aaai?" + baa‘;?" +domn = AmnPmn (2.55)
Ymnlog =0
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(b) Ordinary initial value problem:
O‘Zm(t) = )‘mnamn(t) + bumn(t)
amn(o) =Tmn (256)

An(0) = Vmn

To solve the eigenvalue problem we use standard techniques to get:

Amn = d — {a (%)2 +b ('—"Ef)z}
(Tgﬁ> (2.57)

The original initial value problem can be transformed into the following first

Ymn(z,y) =sin (_n_:_z) - sin

order system of ODE’s:

‘r a[:%(]);[i 3] [2] ' m ’ (2.58)

L Z2(t0) given

0 1]
A 0]

If we define A = [ then, | sI — A |= s? — )\ is the characteristic polynomial.

There are three cases:
(1) A<0
(2) A=0
3) A>0

(3) can be deduced from (1) by using the complex notation (2) has a straight-

forward solution, and only the solution of (1) needs to be computed.
(1) A<0

The solution of (2.58) in terms of u = /|| is given by: which leads to the

solution:

b t
a(t) = rcos ut + 2 sin pt + — / u(7)sinp(t — 7)dr
H K Jo

: ‘ t
a'(t) = —prsinpt + v cos pt + b/ u(r)cos u(t — T)dr (2.59)
0
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We have dropped the dependence of ,r,v,u on the mode (m, n) for notational

convenience only.

It is also very important to keep the expression of o/(t) (which can be ob-

tained by direct differentiation of the formula for a(t)) to be able to compute
the velocity of the membrane directly. Hence all the problems associated with

numerical differentiation are avoided.
(2) A=0

A straightforward computation gives:

t
&mn(t) = Tmn + Vmat + / Umn(T)(t = T)dT
0

an.(t) = vmn +‘/(; Umn(T)TdT (2.60)
(3) A>0

Defining s = VA, we get the solution of (2.48) corresponding to this case:

Umn

shpmnt +

mn ,u'mn

t
amn(t) = TmaChlimnt + / Umn(T)Shpimn(t — 7)dT
0

t
aln(?) = rmnmnShfimat + VmnChpmnt + b/ Umn(T)Chpmn(t — T)dT
0
(2.61)

This case is completely symmetrical to case (1) and can be obtained by changing

i toip.

2.1.4 Numerical Simulation

Using eigenfunction expansions we have reduced the solution to the PDE

(2.3) to the computation of one dimensional integrals as given by equations (2.59,
2.60, 2.61).

Here we give five examples:
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Example I: a vibrating free membrane

Example II: a vibrating free membrane with damping.

Example III: a membrane with damping aﬁd subject to a forcing term.
Example IV: this example does not represent a “physical” membrane.

Example V: this example involves the full “generalized wave” equation
with a forcing term containing exponential, harmonic

and constant terms.

In all these examples the exact solution is compared to the computed solution as

given by equations (2.53, 2.54, 2.59, 2.60, 2.61), but for convenience only example
V results are reported.

Example I (Oscillating free membrane)

2 2 2 .
’h _ 2 (6h + ah) in 0

Btz 3z2 dy?

hlag = 0 (2.62)
h(0) = ho

R'(0) = 0

Let

ho (z,y) = k sin (Tloefx) sin (m%ﬂy)

e T\ 2 mo T 2]/
| ()]
go(:z:,.y,t) = ho(z,y) cos(Amgng vt)
P(t) = ho(z,y) sin(Amgng vt) (2.63)

Then the solution of problem (2.62) is:

h(z’ yat) = (,9(23,y,t)
{ h'(:L‘, y,t) = —A’U'(,b(x, y,t) (264)
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Example II:

(Free system with damping)
2 2 2 2
gtih = 02 (gzhi I gyhi) i h I Cah

h'(0) = She
hlaa =0
The solution is given by:
h(t) = e%tcos()\monovt) k- sin (E_%Ix) . (_n_zglr_y)

R(t) = €5 (£c05(Amono¥t) — Amono?- 51 Amonovt))
-k sin (I‘—glz) sin (ﬂgly

Example IT1

(Membrane with damping subject to a forcing term)

3%h

2o (e 5) - Shecd
h(0) = K'(0) = 0

hlag = 0

The solution of system (2.67) is:

{ h(z,y,t) = eft (cos(hvt) —1)- k- sin (%%z) - sin (Egly)

R'(z,y,t) = £ h(z,y,t) — e$t . dv - sin(Dwt)k sin (28%z) sin (

Example IV

2h . q4.h

at?

h(0) = k sin (™Zz) - sin (—"—‘—gly)
R'(0) = 0

hlag = 0

Define p = +/|d|
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Case1l: d>0

) = b an(op) o ()
R'(z,y,t) = k p shut szn —°—a:) sin ( ; y) )
Case 2: d <0
h(z,y,t) = k sinut - sin (_n_m) sin ( twy) ( |
2.71
h'(z,y,t) = k p cosut - sin —Q-—x) sin (mng_y)
Example V
Th = aZh + b3t +wP +dht+u
hlog = 0 (2.72)
MO) = (4 + B) omn + (C + D) pue
h'(0) = A ¢mn
Let
nm mT
Amn = — —)? —)?
LBy + 5 (500}
14
= = a0 8 (Fr) .13

Let the control be given by:

u(z,9,t) = {Ae'[l=(Amn + v + d)] = BAmn + d)} Pmn
+ {—Ccost(l+ Ake + d) + cwsint — D(Axe + d)} ore  (2.74)

Then the solution to the wave equation is given by:

h(t) = (Ae' + B) ¢mn + (C cost + D)pne (2.75)
= Ae' pmn — C sin t phe '

@mn and @i are the eigenfunctions corresponding to eigenvalues Apmn & Age.
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Next we report the results of our simulation and we would like to explain to the

reader what was done and how to read the tables.

The equations (2.59, 2.60, 2.61) have been implemented using an adaptive
integrator and we need to provide it with the absolute and relative errors

on the solution: 0.1,0.0.

The control as given by equation (2.74) is sampled every T seconds and we
need to provide the program with T and the total number of periods N:

T =0.1,N = 20.

We also need to provide the parameters of the membrane a,b,¢c,d: a =

1.2,b=2.3,c=—-1.7,d= 6.
The coefficients A, B,C,D are: A =.75,B=1.2,C = -2.4,D = .0L

The number of grid points (see Fig. 1) and the dimensions of the membrane

are: N =20,0=1.5,{=23.
Finally the index of the corresponding eigenfunction is: m =n = 1.

The output of the program (is the “image” of the membrane) is or anized
output g g g

as follows:

the time is printed

the left hand matrix gives the displacement as computed from equation
(2.54) at the desired mesh points (see Fig. 1) on the membrane.
the right hand matrix gives the exact displacement as given by equations
(2.75) at the desired mesh point (see Fig. 1) on the membrane.

similary for the velocity.

As we can see from the numerical results the eigenfunction expansion gives an

excellent method for computing the solution to the “Generalized” wave equation,

it also permits the computation of the velocity without numerical differentiation.

Another feature of the simulation algorithm is that it “preserves” the symmetry
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of the problem: neutral lines and symmetries with respect to these lines are

preserved, and this is very important for the control alogrithm.

As we mentioned time and again, very few terms are necessary in the eigen-
function expansion (few mode shapes for physical systems) even though the LSS
usually comprises thousands of elements, which makes our approach very attrac-

tive.
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Time = 0

Displacement Exact Displacement
-1.4671 | -1.5300 | -1.5511 | -1.5300 | -1.4671 | -1.4671 | -1.5300 | -1.5511 | -1.5300 | -1.4671
-1.5300 | -1.5956 | -1.6176 | -1.5956 | -1.5300 | -1.5300 | -1.5956 | -1.6176 | -1.5956 | -1.5300
-1.5511 | -1.6176 | -1.6400 | -1.6176 | -1.5511 | -1.5511 | -1.6176 | -1.6400 | -1.6176 | -1.5511
-1.5300 | -1.5956 | -1.6176 | -1.5956 | -1.5300 ] -1.5300 | -1.5956 | -1.6176 | -1.5956 | -1.5300
-1.4671 | -1.5300 | -1.5511 | -1.5300 | -1.4671 | -1.4671 | -1.5300 | -1.5511 | -1.5300 | -1.4671
Velocity Exact Velocity
1.0824 | 1.1288 | 1.1444 | 1.1288 | 1.0824 | 1.0824 | 1.1288 | 1.1444 | 1.1288 | 1.0824
1.1288 [ 1.1772 | 1.1935 | 1.1772 | 1.1288 | 1.1288 | 1.1772 | 1.1935 | 1.1772 | 1.1288
1.1444 | 1.1935 | 1.2100 | 1.1935 | 1.1444 | 1.1444 | 1.1935 | 1.2100 | 1.1935 | 1.1444
1.1288 | 1.1772 | 1.1935 | 1.1772 | 1.1288 | 1.1288 | 1.1772 | 1.1935 | 1.1772 | 1.1288
1.0824 | 1.1288 | 1.1444 | 1.1288 | 1.0824 ] 1.0824 | 1.1288 | 1.1444 | 1.1288 | 1.0824
Time = 0.02
Displacement Exact Displacement
-1.4450 | -1.5069 | -1.5278 | -1.5069 | -1.4450 | -1.4450 | -1.5070 | -1.5278 | -1.5070 | -1.4450
-1.5069 | -1.5715 | -1.5933 | -1.5715 | -1.5069 | -1.5070 | -1.5716 | -1.5933 | -1.5716 | -1.5070
-1.5278 | -1.5933 | -1.6153 | -1.5933 | -1.5278 | -1.5278 | -1.5933 | -1.6153 | -1.5933 | -1.5278
-1.5069 | -1.5715 | -1.5933 | -1.5715 | -1.5069 | -1.5070 | -1.5716 | -1.5933 | -1.5716 | -1.5070
-1.4450 | -1.5069 | -1.5278 | -1.5069 | -1.4450 | -1.4450 | -1.5070 | -1.5278 | -1.5070 | -1.4450
Velocity Exact Velocity
1.1264 | 1.1747 | 1.1910 | 1.1747 | 1.1264 | 1.1255 | 1.01738 | 1.1900 | 1.1738 | 1.1255
1.1747 | 1.2251 | 1.2420 | 1.2251 | 1.1747 | 1.738 1.2241 | 1.2410 | 1.2241 | 1.1738
1.1910 | 1.2420 | 1.2592 | 1.2420 | 1.1910 | 1.1900 | 1.2410 | 1.2582 | 1.2410 | 1.1900
1.1747 | 1.2251 | 1.2420 | 1.2251 | 1.1747 | 1.738 1.2241 | 1.2410 | 1.2241 | 1.1738
1.1264 | 1.1747 | 1.1910 | 1.1747 | 1.1264 ] 1.1255 | 1.01738 | 1.1900 | 1.1738 | 1.1255

Fig. 2: Exact Displacement/Velocity of the Membrane Compared

With the Computed Values by Our Algorithm (Example V)
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Time = 0.04

Displacement Exact Displacement
-1.4220 | -1.4830 | -1.5035 | -1.4830 | -1.4220 | -1.4221 | -1.4830 | -1.5035 | -1.4830 | -1.4221
-1.4830 | -1.5466 | -1.567 | -1.5466 | -1.4830 § -1.4830 | -1.5466 | -1.5680 | -1.5466 | -1.4830
-1.5035 | -1.5679 | -1.5896 | -1.5679 | -1.5035 | -1.5035 | -1.5680 | -1.5897 | -1.5680 | -1.5035
-1.4830 | -1.5466 | -1.567 | -1.5466 | -1.4830 | -1.4830 | -1.5466 | -1.5680 | -1.5466 | -1.4830
-1.4220 | -1.4830 | -1.5035 | -1.4830 | -1.4220 | -1.4221 | -1.4830 | -1.5035 | -1.4830 | -1.4221
Velocity Exact Velocity
1.1708 | 1.2210 | 1.2379 | 1.2210 | 1.1708 | 1.1687 | 1.2187 | 1.2356 | 1.2187 | 1.1687
1.2210 | 1.2733 | 1.2909 | 1.2733 | 1.2210 | 1.2187 | 1.2710 | 1.2886 | 1.2710 | 1.2187
1.2379 | 1.2909 | 1.3088 | 1.2909 | 1.2379 | 1.2356 | 1.2886 | 1.3064 | 1.2886 | 1.2356
1.2210 | 1.2733 | 1.2909 | 1.2733 | 1.2210 | 1.2187 | 1.2710 | 1.2886 | 1.2710 | 1.2187
1.1708 | 1.2210 | 1.2379 | 1.2210 | 1.1708 | 1.1687 | 1.2187 | 1.2356 | 1.2187 | 1.1687
Time = 0.05
Displacement Exact Displacement
-1.4102 | -1.4707 | -1.4910 | -1.4707 | -1.4102 | -1.4103 | -1.4707 | -1.4911 | -1.4707 | -1.4103
-1.4707 | -1.5337 | -1.5549 | -1.5337 | -1.4707 | -1.04707 | -1.5338 | -1.5550 | -1.5338 | -1.4707
-1.4910 | -1.5549 | -1.5764 | -1.5549 | -1.4940 | -1.4911 | -1.5550 | -1.5765 | -1.5550 | -1.4911
-1.4707 | -1.5337 | -1.5549 | -1.5337 | -1.4707 | -1.04707 | -1.5338 | -1.5550 | -1.5338 | -1.4707
-1.4102 | -1.4707 | -1.4910 | -1.4707 | -1.4102 | -1.4103 | -1.4707 | -1.4911 | -1.4707 | -1.4103
Velocity Exact Velocity
1.1930 | 1.2441 | 1.2613 | 1.2441 | 1.1930 | 1.1902 1.2412 | 1.2584 | 1.2412 | 1.1902
1.2441 | 1.2975 | 1.3154 | 1.2975 | 1.2441 | 1.2412 1.2944 | 1.3123 | 1.2944 | 1.2412
1.2631 | 1.3154 | 1.3336 | 1.3154 | 1.2613 | 1.2584 | 1.3123 | 1.3305 | 1.3123 | 1.2584
1.2441 | 1.2975 | 1.3154 | 1.2975 | 1.2441 | 1.2412 1.2944 | 1.3123 | 1.2944 | 1.2412
1.1930 | 1.2441 | 1.2613 | 1.2441 | 1.1930 } 1.1902 1.2412 | 1.2584 | 1.2412 | 1.1902

Fig. 2 (Cont’d): Exact Displacement/Velocity of the Membrane Compared
With the Computed Values by Our Algorithm (Example V)
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Time = 0.07

Displacement Exact Displacement
-1.3858 | -1.4452 | -1.4652 | -1.4452 | -1.3858 | -1.3860 | -1.4455 | -1.4654 | -1.4455 | -1.3860
-1.4452 | -1.5071 | -1.5280 | -1.5071 | -1.4452 | -1.4455 | -1.5074 | -1.5283 | -1.5074 | -1.4455
-1.4652 | -1.5280 | -1.5491 | -1.5280 | -1.4652 | -1.4654 | -1.5283 | -1.5494 | -1.5283 | -1.4654
-1.4452 | -1.5071 | -1.5280 | -1.5071 | -1.4452 | -1.4455 | -1.5074 | -1.5283 | -1.5074 | -1.4455
-1.3858 | -1.4452 | -1.4652 | -1.4452 | -1.3858 | -1.3860 | -1.4455 | -1.4654 | -1.4455 | -1.3860
Velocity Exact Velocity
1.2373 | 1.2904 | 1.3082 | 1.2904 | 1.2373 | 1.2332 | 1.2861 | 1.3039 | 1.2861 | 1.2332
1.2904 | 1.3457 | 1.3643 | 1.3457 | 1.2904 | 1.2861 | 1.3412 | 1.3598 | 1.3412 | 1.2861
1.3082 | 1.3643 | 1.3831 | 1.3643 | 1.3082 | 1.3039 | 1.3598 | 1.3786 | 1.3598 | 1.3039
1.2004 | 1.3457 | 1.3643 | 1.3457 | 1.2904 | 1.2861 | 1.3412 | 1.3598 | 1.3412 | 1.2861
1.2373 | 1.2904 | 1.3082 | 1.2904 | 1.2373 | 1.2332 | 1.2861 | 1.3039 | 1.2861 | 1.2332
Time = 0.09
Displacement ‘ Exact Displacement
-1.3607 | -1.4190 | -1.4387 | -1.4190 | -1.3607 | -1.3609 | -1.4193 | -1.4389 | -1.4193 | -1.3609
-1.4190 | -1.4799 | -1.5003 | -1.4799 | -1.4190 | -1.4193 | -1.4801 | -1.5006 | -1.4801 | -1.4193
1.4387 | -1.5003 | -1.5211 | -1.5003 | -1.4387 | -1.4389 | -1.5006 | -1.5213 | -1.5006 | -1.4389
-1.4190 | -1.4799 | -1.5003 | -1.4799 | -1.4190 | -1.4193 | -1.4801 | -1.5006 | -1.4801 | -1.4193
-1.3607 | -1.4190 | -1.4387 | -1.4190 | -1.3607 | -1.3609 | -1.4193 | -1.4389 | -1.4193 | -1.3609
Velocity Exact Velocity
1.2817 | 1.3366 | 1.3551 | 1.3366 | 1.2817 | 1.2762 | 1.3309 | 1.3494 | 1.3309 | 1.2762
1.3366 | 1.3939 | 1.4132 | 1.3939 | 1.3366 | 1.3309 | 1.3880 | 1.4072 | 1.3880 | 1.3309
1.3551 | 1.4132 | 1.4327 | 1.4132 | 1.3551 | 1.3494 | 1.4072 | 1.4267 | 1.4072 | 1.349%4
1.3366 | 1.3939 | 1.4132 | 1.3939 | 1.3366 | 1.3309 | 1.3880 | 1.4072 | 1.3880 | 1.3309
1.2817 | 1.3366 | 1.3551 | 1.3366 | 1.2817 | 1.2762 | 1.3309 | 1.3494 | 1.3309 | 1.2762

Fig. 2 (Cont’d): Exact Displacement/Velocity of the Membrane Compared
With the Computed Values by Our Algorithm (Example V)
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2.2 Study Of The Elliptic System

In this chapter we apply the Fourier transform, with respect to the time

variable, to the Wave equation. This leads us to an elliptic system we study

using the Green operator technique.

We then expand the real Green’s function into an exponentially converging se-

ries. A first order discretization of the analytic expression for the Green’s function

allows us to find an approximate solution to the elliptic system.

Next we consider the system with damping and use the analytic continuation
principle to compute the “complex” Green’s function. Several special cases are

given and the numerical implementation is discussed.

92.2.1 Fourier Transform of the Wave Equation

Consider the Wave equation:

{%%=a%i—’;+bg;’;+c‘g’;+dh+u (2.76)
hlag =0

Applying the Fourier transform with respect to ¢ gives:

{a ozz T b yI;I + (d+w2—jcw)H=—u (2_77)
Hlsq = 0
If we define z(w) = d + w? — jaw €C, the elliptic equation becomes:

{a %?;I + b %2!,};1 + z(w)H = u (2.78)

Hlsg = 0
Define the operator L, = agag-,- + bgyfy + z(w) to get the following Dirichlet
problem;
>{Lz u = f in Q (2.79)
ulag = 0



Using the same argument as in the previous section, we conclude that L. is
self-adjoint i.e. L% = L,. However, L, has complex coefficients and the
eigenvalues of L, are those of L shifted by 2. In other words, the presence of the

damping c shifts the poles of the Green’s function from the real axis making it

possible to use usual integration techniques.

Note: Although L* = L, we may use L} instead of L. to conform to the PDE

literature.

Consider C(£2) the space of test functions with compact support on  and

define the bilinear form:

Blu,v] = (u, L}v) Yve C° () (2.80)
This leads to the weak form of the Dirichlet problem:

For feL,(f?), find ueL%oc(Q) such that:
Blu,v] = (f,v) YveC®(R) (2.81)

u is a weak solution of the Dirichlet problem.

If we assume ueHl(Qo),Qo C Q and
Blu,v] = (f,v) (2.82)

then u is a strong solution.

If ue C2() then u is a classical solution. In fact, in this special case it is obvious

that ulae = O is the trace of the function u =0 e I}l ().

The Generalized Dirichlet problem becomes:

Find ue ;11 (2) such that:

Blu,v] = (f,v), Voe Hy () (2.83)
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Notice that the right hand side (f, v) is a continuous linear function F on H 1 (),

which leads to the new formulation of the Dirichlet problem:

Find ue Iofl (2) such that:

Blu, v] = F(v),Yoe H; (Q) (2.84)
where FeH_,(S2).

Casel: z = teR

We have an elliptic equation with real coefficients. To solve the General-
ized Dirichlet Problem one applies the Lax-Milgram lemma. However the Lax-
Milgram lemma requires the bilinear form B to be coercive, which can be shown

using the Garding inequality. The right condition for obtaining a unique solution

turns out to be: d 4+ t < 0. This condition insures that we are avoiding all the
eigenvalues. Therefore we can define the Green’s operator G; = L ! on the

space I?Il () H2(R2).

It can be shown that G is compact, and hence the _Hilbert Schmidt theory [72]

is available.

Case 2: zeC

8%u J%u
Lz(u)=aﬁ+b-a—?—ﬁ+du+zu=f (285)

Let t ¢ R be such that d + ¢ < 0 (i.e. the Real Dirichlet Problem has a

solution), then:

2 2
L, (u) = (a%+b%§+(d+t)u) + (z—t)u = f (2.86)

by operating the Green’s operator G; on both sides we get:

u + (z2—t)Giu = G.f (2.87)
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(and convesely this implies L.(u) = f).

Corollary 2.4:
L, (u) =
If I,(2) # O then the Dirichlet problem has a unique
ufong = 0
solution.
Remark:

We don’t go into Regularity theory here, which enables one to conclude that

a weak solution is a classical solution, and also investigate the_boundary behavior

of the solution. We refer to [31] for further details in this direction.

Relationship with the Green’s function:

We have defined a Green’s operator G; = L;! in an appropriate Hilbert
space. We now see how this concept relates to that of a Green’s function which

is defined as a solution to the following Direchlet Problem:

L. (G(z, €) = 8z - ©)
{Glan — 0 (2.88)

It is easy to see that [, G(z, €) f(e)de is a solution to the original Dirichlet

problem, and by uniqueness:

(Gf)(z) = /Q Gz, €) f(€)de (2.89)

Thus the Green’s function is the kernel of the Green operator.

Remark:

One can rigorously show that G is continuous but not differentiable (here
we have a second order operator and the solution G is 2-degrees smoother than
the the right hand side). This is another way to prove the campactness of the

operator G.
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2.2.2 Series Expansion of the Green’s Function:

In this section we compute the Green’s function for the following Boundary
Value Problem.

{aﬂ—a‘af +aadH +(y +wh)H = —agv in Q (2.90)
Hlsq =0

To do so, we fix the a variable and look for a solution in terms of the eigen-
functions of a Sturm-Liouville problem in the a-direction. This leads to another
one-dimensional Sturm-Liouville problem that we solve to get the final answer.
This idea has been exploited (See [74]) to give an expression of the Green’s func-
tion of the Laplace operator as an exponentially and uniformly convergent single

sum.

Consider the operator:

Lou = —ao L2 a, — (¥? + w?)u
{ u(0) = u(¥) = 0 (2.91)

Then our equation can be rewritten as follows:

{aﬁ og7 — Lol = —apv (2.92)
Hlse =0

Thus the Green’s function satisfies the following PDE:

Kup=0o0n the boundary of [0,6] x [0, £]

Let oi(c) be the eigenfunctions of the operator Ly : k = 1,2,... We seek the

Green’s function in the following form:

oo

(e 8,6, = Y ax(8) - ¢ale) (2.94)

k=1
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If we define the following weighted inner product:

(@, ) = / / agp¥ where Q= [0,£] x [0,] (2.95)
Q

Substituting the expression (2.94) into (2.93), using the orthogonality of the

eigenfunctions, and the property of the Dirac function we get:

{ af — Aar(8) = —pr(¢)6(B —n) (2.96)
2.96
ak(O) = —ak(£) =0
and this is a classic Sturm-Liouville problem.
The eigenvalue A, is given by:
2.2 2 2
A= e VT YW g, (2.97)
ag {2 ag

We therefore have to study three cases: A > 0,A=0,A<0

Remark:

For each fixed w there is only a finite number of negative eigenvalues. To

solve the above we need only solve for:

{“" ~Aa=-6(8-n) (2.98)

a(0) = a(€) =0

where we have dropped the indices for convenience, and also the term en(()
which will be accounted for by a multiplication of the resulting Green’s function

by the same factor.

Case 1: A=u%>>0

Then it is easy to show that the Green’s function of Problem (2.98) is given
by:

G(B,n) = (2.99)

sh(u(€—n))-shlp B] 0<B<n
psh(uf)

shlun] - shju(¢ - B)) n<B<?
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To get the desired Green'’s function of Problem (2.96) we just multiply the above
by:

on(() = \/% sin (5-€) (2.100)

to get:

sin (2F shlpn é— -shiuaB] O
GulBim) = \/% __(_l_g_)_ { [#n(€—n)] - shpaB] 0<B< n(2.101)
tnsh(pnl) | ship, n] - shipn(f—B)) n<B<?

where p, = \/:\:

Case 2: A= —u?2<0

In this case the Green’s function for (2.98) is:

Ga(B,n) =

3 sin(2E0) {sinmn(é—n))-sin(unﬂ) V<E<T

li Hn Sin#ne Sin(linrl) . Sin(,un(é - /6) n< 'B < é

Case 3: A =0

The Green'’s function for Problem (2.98) is in this case:

. (nx Bl-n) 0<B<
Gn(ﬂ,n)=\/%§1—n(—é‘-c—){ (. 7 ! (2.103)
n€—B) n<p<?

Remarks:

I. We notice that both (2.101) and (2.102) can be given by the same formula
where i, is taken to be a complex number (either i|un| or |ual). Also (2.103)
can be obtained as the limit of either (2.101) of (2.102) (or the complex form
of both ) when g, — 0. But it is much better to split the cases to have an

efficient algorithm on the computer.
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II. The procedure we have followed here presents two advantages over the classi-

cal expansion of a Green’s function in terms of the eigenfunctions of the

whole problem:

(1) It reduces the expression of the Green’s function to a single sum indexed by n

(instead of ; Zn:)

(2) The main advantage is the convergence property of this series:

(a) there are only a finite number of negative eigenvalues.

(b) Thus the main part of the series is given by (2.101) which can be
expressed in terms of exponentials and one can show easily that this

series is convergent (exponentially ). The Green’s function is given next.

Green’s Function

K(a’ ,B’ C’ 77) =
E Sin(ﬂn 77) . Siﬂ(#n(g - /B))

n=1 l‘tn Slnl‘tn

[ro] 2 sin( &F ) sin(*f ) { sin(,u,,(@ — 1)) - sin(pnB)
¢

sm 2F()sin ﬂ(é“‘ n)
(£ - B8)
sm"" smﬂ sh né— - sh nﬁ 0<ﬂ<
N Z 2 sin(2F c})z (e o) { (#n(€ =) A(# ) b0y
metmage1 & Bnsh(pad) sh(unn) - sh(pua(b—B)) n<B<E
whereby:

I. ng is defined by: ng = 1/-";{;"5’3 and [no] is the integer strictly less than no

. . . _ . _J 0 no not integer
(if no is integer then [ng] = ng — 1); e[no] = { 1 no integer

ag n2wx? 1 w2

aﬂ i n = 1,2,... Summing up, we have the

IL pn = v | An|

following.
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Theorem 2.5:

Under the assumptions of Section 2.2.2, the Green'’s function for the Boundary
Value Problem (2.90) with real coefficients exists and is given by the expression:

G(z,y,z',y' [t) = G_(z,y,2,y,t)+Go(z,y, 2", ¥, 1)+ G4(z,y, 2", ¥, 1) (2.105)

Where G+(z,y,z',y',t) corresponds to the negative (positive) eigenvalue of the
g g

Sturm-Liouville Problem, Go(z,y,z’,y’,t) corresponds to the zero eigenvalue.

They are given by the exponentially uniformly convergent series (2.104).

2.2.3 First Order Discretization of the Green’s Function

The solution to the elliptic equation, governing the “motion” of the mem-
brane in the frequency domain, is given by an integral operator whose kernel is

the Green’s function. Since it is difficult to compute multiple integrals on the

computer we assume that the control is constant over small squares in the space

domain and the solution to our PDE will be given by a double sum. Further-

more we can store these values of integrated Green’s function over small squares

to have a fast algorithm.

We have already shown that the Green’s function, for 0 < B < 7, is given

by:
Kb S 2ICEOIED) i 6 o)) cinuns)
Q,0,6,7,wW) = - - = -sin(pn(€ — 1)) sin(pn
n=1 e En sul(/“"-e) :
. RQE AN cinf mQT )
+elnal3 - LD )
14
i 2 sin(2%¢) - sin(&F .
+ Y 2 sin(50) S0 h(u(d)) - sh(nB)(2.106)
= £ /‘nSh(l‘ne)
n=[n¢]+1
and by symmetry:
K(a,8,¢,n,w) = K(¢,n,0,8,w) forn<f<? (2.107)
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The transfer function is thus given by:

H(aa ﬂaw) = // _aﬂKw(av ,B,C) ﬂ)V(C, an)dcdn =< Kvl/ >L2(Q) (2108)
Q

Now-let us consider the following subdivision of {:

A
g
')“'
75 /-f{-,;
T )
1
2
)
N
Z\‘ z\z fe z\;_‘ q‘_ Z‘N_‘ t‘N:Q t’

Fig. 3: Subdivision of the Membrane
Assume that the forcing term v is constant over Qi; = [(i, Cit1] X [17j, Mj+1), 2,7 =
1, N.
v(¢,n,w) = vij(w) for (¢,n) € ij (2.109)

Then:

N N |
H(aaﬂ’w) = Zz—aﬂvij(w) // Kw(a,ﬁ’C,n)dCdn (2110)

i=1 j=1 Q.
Thus we need to compute and store the integrals [[ K ¢,j =1, N for a discrete
Q;;
number of values of w; € (—0, ) and use interpolation techniques for other

values of the frequency w (o is the estimated spectrum). To find expressions of

the above integrals we need to distinguish three cases:

A: B < nj
B: B > nj+1
C:  BE€nj+l
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Case A: B <nj

/ / K(a, ,C,m)dCdn = / / 572 SREOSRER) (i ) sin(uaican

= pin Sin(pinf)
T
in( P2 . sin( B9 .
+// e'%sm(' 2‘“( £2) g - n)dcdy (2.111)
Q4
I3

°° 2sm( ¢)sn(’fe) 7 —n))-sh d¢d
// n=[no]—- ot pinsh(pinf) sh(pn(€— 1)) - sh(pnB)dCdn

o~

IIr

v

Computation of Integral I

- sin
n Sin(pnf)

[rol 5 sin(2Za i )
Z% (%Fa) . (un B) /Q/ sin(—Z—C)sin(un(e— n))d¢dn (2.112)

o

Ve

Jr

Ci41 n;+1 .
Jr= / s1n(——)dC / sin(pn(€ — n))dn (2.113)

j

Therefore by elementary computations we get:

T = —— [eos(5 i) = cos("5-Ger)] [cos(iun(@ = npen) = cos(pn(E = 7))

NTfhn
(2.114)

Hence:
[no]—e

2 ommo o o
= ?;1 nwyu? sin(pnf) sm(_e_a) -sin(pn B) - [COS(TQ) - COS(TGH)]

- [COS(un(f —nj41)) — cos(pn(f - nj))] (2.115)
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Computation of Integral I1

Similarly integral II is given by:

Il = nigﬂ' sm( a) 8- [cos(P%wC;) - cos(ﬁ—z—wc.-.*.l)]
2 2
n N3 -5
E(nje1 — ;) — —*—2—] (2.116)

Computation of integral III

Finally integral III is given by:

[o =]
2 . N nmw nmw
III = n=[§n;]+l W . sm(—e—a) - sh(punf) [cos(—e—(,) - COS("Z‘C:H)]

[ch(tn(@ = 715)) = ch(pn( = nj41)] (2.117)
The final result is that for § < 5;:

/ Kw(aa ,B,C, U)dCdﬂ é 51(01,,3,(,77,‘-0)

Q5
[no]—e 9 nT
= Z — . sin (—z—a) - sin(pn F)

n=1 nﬂﬂ% Sln(l‘l’ne)

- [eos (%6:) = cos (S onn)] [cos(in(E = np40)) = cos(uun(@ = )]

2e . noeT ngm nemT R ,72 “772'
+ —— -sin 7o) B [cos(%c.-)—cos(%c.-m] [e(n,-ﬂ—nj)——’f—‘——i]

2

Nom

sin(-n—%za) - sh(pn B) [cos( noe ¢) — cos(——C,+1)]

D>

n—[n ]+1 nw#nSh(p‘ e)

[eh(un(€ = 1)) = ch(un(€ = nj40))] (2.118)
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Case B: g > Nj+1

By similar arguments one can get the following expression:

/ Kol By ¢,m)dCdn £ Sa(a, B,¢m,w)

Q;;
3 2 nom
= nz=__1 B ) sm( a) sin(pa (£ — B)) [cos(—-—(,) cos(—e—-(H_l)]

[cos(pin 15) — cos(pn Mj+1)]

+

~ -sin(%zr-a) . [cos( noe ¢i) — cos(( C,.H)] l:——z—.—n]z-]

noml

>

n"‘[n ]+1 nﬂ-p‘n Sh(# )

-sin(2% a) - sh(pa(l — B)) [cos("GmC) cos(( Gia)

[ch(pn Mj41) — ch(pn 15)] (2.119)

Case C: n; £ B < 7541
/ / Ku(a, B,¢,n)dCdn & Ss(a, 8,¢,m,w)

Ci+r B G+1  fMi41
= [ [ Rt endcans [ [T Kula .6 mdcapa20)
i nj : y

— v

I II

To get the value of Intergral I it is enough to plug in 7;4+1 = B in Case B.
To get the value of Integral II it is enough to plug in 7; = 8 in Case A.

Therefore:

[no]—e
[ = Z 2 — . sin(-r-"ela) - sin(pa(Z — B))

2.
a1 nmpd -sin(pn

cos(ZX¢:) — cos(T-Cir1)
2 2
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nem

cos(in 1) = cos(n B)] + 3 -sin( )
; nom, nom B? —n;
(@~ B) - [eos(23T ¢i) — cos((H5F Gor) [ ]
- sin Ea - sh(un -

+,,_[§,.:]+1 — sh(u g5 sialgra) - sh(un( = B)

[cos("56:) = cos((% Giaa) | [eh(izn 8) = ch(un 7)) (2.121)
[nol e 2 nmw

Il = — . sin(—a) - sin(pn .

n; ey ) sinlkn £)

[cos(™7G3)  cos( 2 Gian)] [cos(in(Z = n541)) = cos(iun(Z ~ 6))]

2e ngw
+ - sin
nmrf ( 14

a)- B

ig R 2 A2
[COS(%C‘)—COS(gc"“)] |:£(77j+1 —5)—'17]“2 : }

+ Z Sin(n—gr—a) . Sh(ﬂn(é - :3))

n_[n ]+1 Tlﬂ"unSh(,U:n e)

[cos(26:) — cos((%Gia1)] [chlin(E = 8) = ehlun(E = n3+2))] (2122)

Using the expression (2.121) and (2.122) for integrals I and II we get:

/ / Ko(a,B,C,n)dCdn 2 Ss(a, B, Conyw) =T +1T  (2.123)
Q

Summing up the results of this section we have:

Theorem 2.6:

Since the Green’s function is continuous on the compact set §2, the three

series Sl(a7 ﬂstnaw)aS2(a, :BaC, 771"‘))3 53(aa/33Ca 77,"-’) given by the expressions
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(2.118), (2.119) & (2.23) are uniformly converging to G(e, B,(,7,w) in the inter-

vals 8 < nj,m; < B < nj+1, 8 > nj4+1 respectively.

Remarks

By studying the behavior of the Green’s function at the boundary 9§} one
can infer more about the rate of convergence of the three series as the mesh size

shrinks to 0.

2.2.4 Asymptotic Behavior of G

1. We have already shown that the rate of convergence of the series is expo-

nential with respect to the indices m,n.

2. The expression of the Green’s function does not seem to be symmetric in
terms of z,y,z',y’. However one can repeat the procedure while intergrat-
ing the Sturm-Liouville problem with respect to y first. The symmetric

expression for G would then be the average of the two expressions.

In terms of asymptotic behaviour this allows to approximate G on ) except

on a small square around the singularity z',y’ (See Fig. 4) -

14

N\

N
+ >
4 x

x

Fig. 4: Convergence in \Shaded Square

3. In the shaded square around (z',y') one needs to compute an asymptotic

expression for the terms of the series.

61



However these steps were not implemented because they introduce a huge
computation of the formulas which are already very complicated (especially
Step 2.). In fact the formulas given in the previous section are enough for
our purposes, and the numerical simulation shows one can achieve a very

high accuracy before there is an overflow (or underflow) on the computer.

2.2.5 Analvtic Continuation of the “Real” Green’s Function In the Case of

Complex Parameter
Definition:
Let f be an analytic function in the domain D C € and g be an analytic

function in the domain 2 C C Assume that f = g on D N Q. We say that f is

an analytic continuation of ¢ to the domain D (and similarly g is the a.c. of f

to Q).

General Principle:

Suppose we are given a function f(z) which is analytic in the domain .
Given a € Q we consider the largest disc centered at a where f is analytic
(obviously the radius of this disc is the distance from a to the nearest singularity
of f). We repeat this process for every point of £, in this way we get a new domain

D D . This process can be repeated until one reaches a natural boundary.

In general the analytic function obtained this way will be multivalued, we can

however introduce a multi-sheeted Riemann surface where the function is single

valued.

Riemann’s Principle:

Fig. 5: Domain of Analyticity for Riemann’s Principle
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f is analytic in  and continuous on I'. g is analytic in D and continuous

onI.

Moreover f =gon T

f in
Thenh={f=g onI' is analyticon QUDUT.
g in D

Corollary 2.6: Schwarz Reflection Principle

Referring to Fig. 6 let f(A) be analytic on D real and continuous on the
real axis. Then f*()\*) is analytic on D*. This allows us to define an extension

analytic on the whole domain D U D* as follows:

f on D
F = {f =f* onDUD* (2.124)
f* on D*

5 0\ s

!
>

Fm

A

\4

2

Fig. 6: Domain of Analyticity for Schwarz Reflection Principle

Remark:
We are going to use a refinement of the Schwarz Reflection principle:

Assume f is real analytic on a interval I of the real axis, then f can be

analytically continued to the complex plane. To see this use the fact that the
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Taylor coefficients of an analytic function determine that function uniquely. The

values of f on the real axis allow us to compute its Tyalor coefficients. In the
Schwarz reflection principle we merely ask for the function to be continuous on

the real axis.
Using the previous refinement of the Schwarz reflection principle and regu-
larity theory for elliptic PDE’s [31] we get the following theorem:

Theorem 2.7:

The Real Green’s function is analytic on the half-line not containing any
eigenvalues of the Dirichlet problem, and the analytic continuation of the three
series Sy, 53,53 as given by (2.118), (2.119) (2.23) uniformly convergent to the

Green’s function with complex parameters.

9.9.6 Solution of the Elliptic System Using the Discretized Green’s Function

Consider the following complex elliptic (PDE):

oZH + b2 H + pH = —bU in Q

Hlsq =0 ) (2.125)
Q=10,4] x [0,2]

and a,b are as in equation (2.78). p is a complex parameter (depending on the

frequency w). Define the following quantities:

9\ 1/2
no = (f-e—> (2.126)

an?

1 ng integer '
e(ng) = (2.127)

0 otherwise

an?t® p 1/2
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Assume that Q = [0, £] x [0, 4] is subdivided into small rectangles:

Q= [m,,a:.+1] X [yJ’nyH] j=1,.. M+1

/4 f
Defi h=— k=— 2.12
efine ¥ i (2.129)

Assume that the control is constant in space over the rectangle €2;; and defined

by its value at the center

Ti + T; i+ Yj
w(z,y,p) = uij(p) = U(=—5 Yi zy’“ ,p) (2.130)
(z,y) € j

Now, let Gij(z,y,p) be the average Green function over {;;

Gij(xaysp) =// K(x,y,C,ﬂaP)dCdU (2131)

Qi

The solution to the complex PDE will be given by:

N M
H(z,y,p) = »_ > buij(p)Gij(=,y,p) (2.132)

1=1 j=1

Let us make a slight change of notation which will prove useful in the program-

ming of the algorithm:
Gij((l?, yvp) = G($,$i,$i+1,y, yj,yj+1,P) (2133)
uij(p) = w(Zi, Tit1,Yj Yj+1,P) (2.134)

The function G;;(z,y,p) will be given by the following:

1. y <y
G{](x7y7p) = {Gl(xaxivzi-*-l,é_ y’é— yjaé_ yj+1ap)
+ G2(z7mivmi+l3g_yaé—ijé—yj-i'l’p)} (2135)
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2. ¥y > yjar:

GII(:B yap) GI(I’xiaxi-'l'-l’y?yj?yj-%-lap) +G2(27,:E,',...) (2136)

3.y <y<y;gr:
G{II(::: Y, p) G”(:C Zi, Ti+1, Y, Y5 Y» P)

+GI(:E,$,',:2:i+1,é—y,é—yj+1,é—y,p) (2137)

[o <]

2 . nw n
Gi(...) = 2;1 m—py sin( ) - sh(n(€ ~ y))

n¥ng

x {co's(ﬂxe) — cos(ZTais1)} X {ch(pnpse1 = ch(ny;)} (2138)

nomw

sm(—x) (£ — y) - (cos( eﬂ' z;) — cos(—mz+1))

Gal...) = e(no) - ~

2 .2
x (glilé-—gi) (2.139)

Theorem 2.8:

Consider the complex elliptic PDE:

o

az2+b H 4 yH =—bU in Q
Hloa =0 (2.140)
Q=10,4 x [0,f]PeC

" Then

HMN($,y7p) Zzbuu(p)G:J(way p) (2141)

i=1 j=1
Converges uniformly to the solution H(z,y,p) as M,N — oo, where G;;(z,y,p)
is given by:
Gij(z,y,p) = G{j(x,y,p) for y <y; (asin(2.135)
= Gil(z,y,p) for y>yj41 (asin(2.136))
(2.142)

and u;;(z,y,p) are as in (2.134).
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Ll\la [~

cqo = A(ni(!,:.}_“_’f}.(i-j\. im(C_';}_'l} xc\-m(@_’?} ac‘-")} . 4la -yl

Cl‘lo] Ll
-
g Cgolso
-3: '\j + |
¥
A o rxz nj
’ I

cmn (8057 )

[
r{:'!ﬁ;‘z'.r
. ]

cgns csol +¢90

rpz crp= 2.5\"\&“.1{_" x}. {u:('_‘ll_'x‘) - ‘; ('ﬁif..'xc..) }/nj.'n.yﬁ;

1
cp= (C«‘\(r’na ‘jj,\\ - Ck (Vna'jﬂ\ . sh (T"‘J (;°33) / sh (V“QI)
*®

Cyn = erp o <p + ool

-
J»ﬂ 1= \93" "30\\

C5°\= Cav\

RETURN

Fig. 7: Organingramme for the Computation of Green’s Function
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2.2.7 Numerical Implementation and Applications

The reason why we need the theorem on the analytic continuation of the
Green’s function is that the elliptic PDE with complex parameter does not de-
couple into a system of two independent elliptic PDE’s. The following example

will clarify this point.

Consider the elliptic BVP:

{%‘F%J“U:f (2.143)
Ulsg =0

We take z = ja, a pure-imaginary number. Now let U = v+ jw. Then the above

BVP becomes:

8%y 8%y
== + 53 —aw =
{ oz 1 oy ! (2.144)

2 2
a”’+a£,!,,';’+oa/=0

8z?

Obviously this system cannot be decoupled. To obtain a closed form solution we

take f to be an eigenfunction of the system:

f(z,y) = Comalz,y) (2.145)

We look for solutions of the form:

{ Z,((?,Z)) _ %fo":n( (I:;,yy)) (2:140)

provided the compability conditions hold:

C=M_,+a°
A= Amn (2.147)
B = -«

This example serves two purposes:

(1) it shows that the elliptic system cannot be decoupled in general, and we

. have to use theorem [2.8] on the analytic continuation of the solution to the

elliptic PDE with real coefficients.
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(2) We can compute the solution using the complexified Green’s function and

compare to the exact solution.

The numerical results are satisfactory, however, we report the numerical
results only for the next example which is much more involved than the present

one.

Consider the elliptic system, or equivalently, the complex elliptic partial

differential equation:

2 2 . in O
{a%é + 3L +[(d+w?) +5 - cwlf =u(s,y,w) inQ (2.148)
flag =0

Let

CQ=O<C1<...<<",+1=L

m=0<m<...<fpg41 = L be a subdivision of §2 (2.149)

If ¥(z,y, 2) is any function of (z,y) € Q with parameter z we adopt the notation:
¥ mn(z) = ¥(z,y, 2) for (z,Yy) € Qmpn = (CmsCms1) X (Tny Nnt1)-

Then

N N
f@,y,w) =3 (@, yn,w) - Gmn(2,y,w) (2.150)

n=1n=1
where (Zm,yn) in the center of Qman.

The above solution is an immediate application of the results of Theorem
2.8 where we take:
p=(d+w?)+jew (2.151)

As an example we take:

COS W
"
wt+1

u(z,y,w) = [(Amn +d+w?) + jew] - | + Be™ - sinw + 6]@mn(z,y)

(2.152)
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where ¢ma(z,y) is the eigenfunction cooresponding to the eigenvalue Apmyn. The

solution is therefore given by:

o - Ww mw . nw

i1 + fe“ sinw + §) sin —[ ¢ sin —i—y (2.153)

f(z,y,w) =

Next we report the results of the numerical simulation of this example: We

compare the exact solution given by equation (2.153) and compare it to the

computed solution generated by the algorithm using equations (2.150).

The parameters of the simulation are as follows:

e L = I, =1 are the length and width of the membrance.

e m = n = 1 defines the eigenfunction and corresponding eignevalue.

e a=b=1,c=—-1,d =1 are the coefficients of the PDE.

a = 8 = § = 1 are the parameters in equations (2.152) and (2.153).
e The precision on the Green’s function is: 107
e The desired frequency is: w = 0.0

o We also need to specify which point (z,y) on the membrance to take: z =
y=0.5

Finally we need to provide the number of grid points N (as in Fig. 1). In

the next table we report the results for two different values of N:

(1) N =4: in this case there are 16 points on the membrance and the results

are satisfactory.

(2) N = 100: there are 10* points on the membrance and this is an almost
i)erfect case. We do these experiments to see what minimal number
of grid points will still lead to a satisfactory precision. Later when we
implement the transfer function, the optimal gains — we will have a

huge memory requirement and we therefore need to have an idea about
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the number of grid points to take in order to be able to implement the

algorithm with the capacity requirements for a mini-computer.

Number of mesh points 4 100
Exact solution 2.0000 2.0000
Computed solution 1.8934 1.9998

Fig. 8: Comparison of the Exact Solution and the
Computed Solution of the Elliptic System

2.3 Spectral Factorization

In this section we consider the space L? of square integrable functions over R
and its subspace L% which consists of L? functions that have anti-casual inverse

Fourier transform.

Given f € L? we give a formula for computing its projection f* onto L2
gits p 2

using Hilbert transform, section 2.3.1.

In section 2.3.2 we give the expressions of the boundary values of an analytic
function in terms of the Hilbert transform of this function. Finally we combine

the previous results to get a scalar spectral factorization theorem for functions

in L2.

In section 2.3.4 we present related numerical results.

2.3.1 Hilbert Transform and Projection onto L+3

Given f € L? we define its Hilbert transform by:

Hf@t) = % / e %dr(ll&l)

—00

* indicates the integral should be understood in the Cauchy principal value

sense.
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Let us also recall the definition of the Fourier transform of f:

+ oo

F(s) = \/_

e f(z)dz (2.155)

Now consider

T € L? : T(s) = R(s) +1J(s) (2.156)

decomposed into real and imaginary parts. Then we have:
HT(w) = HR(w) + tHJ (w) (2.157)

Let us compute the inverse Fourier Transform of HT:
+ o0

\/_

/+°° —iwt /+°° T(S) d dw
Var o W— S

1 Foo —fwt R(S)
by e ”[-oo w—sddw

N ON (2.158)

FYHT(w)} = e W HT(w)dw

If we interchange the order of integration (using Tonnelli theorem) and use the

fact that:

1 +oco e—:wt .
—/ dw = —ie" " sgn(t) (2.159)

T -8

-0

we get the following important equation relating the inverse Fourier Transform

of an L2-function with the inverse Fourier Transform of its Hilbert Transform:

FYHT} = —i.sgn(t) - FY(T) (2.160)
Now let us define:
T, = %(T _iHT) (2.161)
1 .
T = §(T +:HT) (2.162)
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By using equation (59) we get immediately:

FTy) = {2@_1 - e (2.163)
and
-1 _JFYT) t>0
FNT) = {0 t>0 (2.164)

i.e. Ty (resp. T-) is the projection of T onto the space L2 (resp. L%), with
the obvious definitions for L2 and L?. The above (60) and (61) give explicit
formulas for the projections Tt and T~ of the complex function T onto the

spaces LT and L resp., in terms of its Hilbert transform.

2.3.2 Boundary Values of Analytic Functions and Hilbert Transform

Now we quote the following theorem which will play a key role in determining
the relationship between the boundary behavior of an analytic function with its

Hilbert Transform:

Theorem 2.9:

Let ¢ € LT, a(z)(z = z + iy) is continuous for y > 0 and analytic for y > 0
except possibly for a pole of order n at z = (. Moreover a(z) is bounded, except
possibly at z = ¢ (i.e. a(z) is bounded in the upper half-plane outside of every

neighborhood of z = (). Then for suitable a;,as,...an:

a(z) —p(z) = 3 (x - o © L} (2.165)
k=1

(If a(z) has no poles then a(z)p(z) € LT). (For a proof see [35]).

The next theorem gives explicit formulas for the boundary values of an

analytic function using Hilbert transform:
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Theorem 2.10:

Let (1) € La(—o00,+00) and consider

q(r) = %/_ (T)dTy =In(z)#0 (2.166)

Then ¢(z) is a bounded analytic function for y > 0 and y < 0. Its boundary

values are given by:

Jima(2) = ¢*(z) = £(e) + iHy(2) (2.167)

The next Theorem 2.11 is really the one that give us the spectral factor we

need:

Theorem 2.11:

Let p(z) be such that:
lim p(z) =1 (2.168)

|z|—o0
Define log such that: lim; 4o logp(z) =0

Assume logp(z) € L?(—o00,+00). Then there exists a bounded function ¢(z)
analytic for Im(z) # 0 such that:

gt (z)

p(z) = @) (2.169)

where g% (z) = limy— 40 ¢(2)
Proof:
Let o(z) = %10517(33) € L?(—o0,40) define logg(z) = * f+°° _1121°sp(fld,r

q is bounded analytic for y # 0
oo 3 logp(r) |

y]in:tlo q(z) = q = exp{ - ].ng(l')k + — /;oo r—z }
N 1.
g~ = exp §(zH log p &+ log p)
gt 1
Or F = exp(§2log p)=p. (2.170)
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2.3.3 Applications to Spectral Factorization

Now consider a function f(z) satisfying the following constraints:

Jim flz) =1 (2.171)
If U(z) = logf(z)) then WeL? (2.172)

Then applying the previous results to the function

¥(z) = log(f(x)) (2.173)

(one has to be careful when defining which branch of log is using) We can show

that f(z) decomposes into

f(z) = f¥ () f () (2.174)

where ft and f~ are called the spectral factors (anti causal and causal factors

respectively). For instance:

£~(@) = V/7(&) exp{~ 5 H log £(2)} (2175)

We can therefore announce the scalar spectral factorization theorem:

Theorem 2.12:

Let f(z) be such that:

dim f(e) =1 © (2.176)

and assume that log f(x)eL%(—o00,+00). The f(z) admits a spectral factorization:

flz) = fH(2)- f(2) (2.177)

f~(z) (respectively f*(z)) is the anti-casual (respectively casual) factor of the
factorization and belongs to L2 (respectively L3). It is given in terms of the

Hilbert Transform as:

f(z)= \/f(x)ezp{—%H log f(:c)} (2.178)
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Remarks:

1. When solving the linear regulator problem for the membrane problem, one
shows that it is nothing but a minimum norm problem in an appropriate
Hilbert space. The application of the Wiener-Hopf technique (which is just
the projection method in this case) requires computing the anti-causal spec-

tral factor (for stability purposes), and that’s why we need f~(z).

9. For the multidimensional case we use Davis algorithm, [23] and compute the
projection and the initial condition by the Hilbert transform technique (see

Chapter [1]).

3. The numerical results are very satisfying and one can assign any desired

precision (that can be achieved on a computer).

4. Here we have given the most direct mathematical approach to get the spec-

tral factorization theorem which is enough for our purposes.

5. If we take a more modern (and more general as well) approach we can deduce

our Theorem 2.12 as a corollary of the Abstract theory of Singular Operators

(see [47, 49]) and the General Wiener-Hopf Factorization in Banach spaces

(see [63]). For instance the projection formular in section 2.3.1 and the prop-

erties of the Hilbert Transform can be obtained by considering the symbol

of H:
S(w)=FHF™! = —isgn(w) (2.179)

Thus:
| S(w) |=1=|| Hf l2=|| fl2 (norm preserving)

S2(wy=—=1= H*=-I (2.180)
6. The condition log f(z)eL?(—o0, +0c0) in our theorem is not a restriction since

it already contains all cases of interest. However, its only reason of existence

is to be able to apply the Hilbert Transform:
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Y. V. Sokhotski investigated the behavior of the Cauchy type integral and de-
rived similar formulae in 1873 (see [26]) for functions satisfying a Holder con-
dition. I. Plemelj (1908) and later N.I Privalov (1918) gave a rigorous treat-
ment (see [26]). Later on F. Riesz proved the Hilbert transform to be a

continuous operator on L, (see [47]) and this is in sharp contrast to the

Fourier Transform.

7. In the references cited in remark 6 one can find the application of these

theories to problems of Mathematical Physics (Elasticity, Hydrodynamics,

Gas dynamics - - -). Further investigation is needed to show how to apply our
algorithm to give a powerful method for computing the solution of Riemann

BVP, Hilbert BVP - - -

2.3.4 Spectral Factorization and Control of One Dimensional Systems

We consider one-dimensional structures admitting one space variable such

as strings, beams, etc. We also assume that we have one actuator (e.g. point
control, boundary control, shape control, - - -) and N_sensors (the arbitrary lo-

cation of which is left to the designer). Actually it has been shown ([6] and refer-

ences therein) that all one dimensional structures need only one actuator/sensor

to achieve controllability /observability.

Let
G(jw) = CR(jw; A)B (2.181)

be the N x 1 transfer function of the structure (see section 2.4 and reference

[22]). We can now state the following:

Theorem 2.13:

Consider a one-dimensional structure with transfer function G(jw) as in

(2.181).

Then
F(jw)=1+4+G"G(jw) (2.182)
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is a scalar function and let F~(jw) be its anti-casual spectral factor given in

terms of the Hilbert Transform as in (2.178). Then the optimal state feedback

gain (see section 2.4) is given by:
1 [t
B'K)z = o / (F~(jw)| " G"(jw)CR(jw)CR(jw; A)zdw  (2.183)

Remarks:

1. This theorem settles the question of quadratic optimal control for one dimen-

sional structures.

2. No restrictive assumptions concerning A,B,C are made and the theorem cov-

ers for instance boundary control, such as the one we successfully implement-

ed for a beam with structural damping in Chapter 5.

5. This theorem covers many interesting flexible space structures such as NASA’s

SCOLE truss structure [5]

2.3.5 Application and Numerical Results

Next we present some examples to test our spectral factorization algorithm.

Example 1 (Hilbert transform of a window)

_ {1 lz] < 1 9184
v() {0 otherwise (2.184)

1 (Y dy 1, |z+1
H = — = — 2.
o) =2 [ B = Liog |2 (2185)
Example 2 (spectral factorization of an exponential)
Let  f(t) = e~ & F(jw) = ——
a? + w?
(@) = e *u(t) = FT(jw) = (2.186)

a+jw
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Example 3:

s?+2 .
=557 (aotie Jim £ =1)
fHs) = S:rz/ﬁ (2.187)

The reason we do not report the results for these “simple”examples is because we

later present the numerical spectral factorization for the membrance, and also

because we present next the numerical results showing the performance of the

algorithm under the much severe conditions of singular perturbations. The algo-

rithm performs well when the perturbation of the transfer function of the form

£
8—8

- where ¢ is a small parameter. In the next table we present the numerical

results obtained when we decrease the perturbation parameter and we compare

the computed spectral factor with the limit spectral factor. It shows beyond any

doubt that we have convergence, we get a precision of 10~* that can be improved

if we increase the number of points.

Computed Limit
Perturbation Spectral Spectral
Parameter Factor Factor
0.10 1.1301888227 | 1.0000000000
1.3011419773 | 1.4142135382
0.05 1.0681126118 | 1.0000000000
1.3607549667 | 1.4142135382
0.025 1.0347822905 | 1.0000000000
1.3882908821 | 1.4142135382
0.0125 1.0175929070 | 1.0000000000
1.4014406204 | 1.4142135382
0.00625 1.0088740587 | 1.0000000000
1.4078550339 | 1.4142135382
0.003125 1.0044845343 | 1.0000000000
1.4110213518 | 1.4142135382

Fig. 9: Performance of the Spectral Factorization Algorithm

Near a Singularity in Terms of a Small Parameter.
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Perturbation
Parameter

Computed
Spectral

Factor

Limit
Spectral
Factor

0.0007812500

1.0011790991
1.4133784771

1.0000000000
1.4142135382

0.0000000954

1.0000748634
1.4141606092

1.0000000000
1.4142135382

0.0000000477

1.0000749826
1.4141603708

1.0000000000
1.4142135382

0.0000000238

1.0000748634
1.4141604900

1.0000000000
1.4142135382

0.0000000109

1.0000748634
1.4141604900

1.0000000000
1.4142135382

0.0000000060

1.0000748634
1.4141604900

1.0000000000
1.4142135382

0.0000000030

1.0000748634
1.4141604900

1.0000000000
1.4142135382

0.0000000015

1.0000748634
1.4141604900

1.0000000000
1.4142135382

0.0000000007

1.0000748634
1.4141604900

1.0000000000
1.4142135382

0.0000000004

1.0000748634
1.4141604900

1.0000000000
1.4142135382

0.0000000002

1.0000748634
1.4141604900

1.0000000000
1.4142135382

Fig. 9: (Cont’d): Performance of the Spectral Factorization Algo-

rithm Near a Singularity in Terms of a Small Parameter.

80



2.4 Gain Computations

We first describe briefly the Wiener-Hopf approach to computing the optimal
gains, following Davis [22].

Given a linear evolution equation:

% = Az + Bu
z(0) = zo (2.188)
y=Cz

where A is an infinitesimal generator of a Co-semi-group in a Hilbert space H

We want to solve the variational problem:
min / (el + lfull?)dt (2.189)
v Jo
Define the transfer function of the system:

G(jw) = CR(jw;A)B (2.190)

where R(jw; A) is the resolvent operator of A

If we compute the following spectral factorization:
(I+G*G)w) = F(jw)- FT(jw) (2.191)

Then the optimal gain is given by:
1 [t
[B*KJzo = 5- / (F~ (i)~ G* (iw)C R(iw; A)zodw (2.192)
)

In our case

0 1
. [ | } 2159

See 15t Chapter for more details.
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In the next few sections:

1. We apply this approach to a 1-dimensional scalar problem and compare with
the Riccati gain. ‘

2. We compute the optimal gains for the membrane problem assuming a scalar

control.

3. We treat the multivariable case.

2.4.1 Comparison Between the Riccati Approach and the Wiener-Hopf Technique

for 1-Dimensional Scalar Problem

a) Wiener-Hopf Approach

Consider the system:

z=az + bu
{ z(0) = zo (2.194)

y=cz
Where all quantities belong to IR. We assume that a < 0 for stability.

Then the gain formula gives:

+o0
bk = 5 / (G e a)ds (2.195)

where g(jw) = cr(jw; a)b

) . . b2c2
hence  f(jw)=1+g¢"9(jw)=1+ T ra (2.196)
This leads to the expression of the spectral factor:
—. jw — Va? + b2c?
f(jw) =2 (2.197)

jw—a

Define: a = vV a? + b2¢c?
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The expression of the gain becomes:

bk

L
T or J_o (w4 aa)? +wia-—a)

b) Riccati Approach:
z =az + bu
y=cz

Performance: ;™ [lull® + |yl

The Riccati equation is:

2
2 a c
Fo2ph-p =0

the unique positive solution is:

a+ Va? + b%c?

k= 7
and therefore:
bk = a+Va? + b2

b

For the numerical implementation of (2.198) and (2.202) we take:

ea=-1b=1c=1

e precision (absolute and relative) on the computations: 10-3

(2.198)

(2.199)

(2.200)

(2.201)

(2.202)

e Obviously the integral in (2.198) has to be truncated and we need to give

an estimate of the spectrum of the transfer function.

The next table gives a comparison between the Riccati equation approach

and the Wiener-Hopf approach. The results are excellent if we estimate correctly

the spectrum of the transfer function.
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Estimate of Spectrum 10 50,000

Riccati Equation solution -0.41421 -0.41421
Wiener-Hopf solution ‘ -0.38255 -0.41421

Fig. 10: Comparison Between the Riccati Equation
Approach and the Wiener-Hopf Solution for a Scaler Problem

2.4.2 Resolvent Operator Computations:

a) The Resolvent Operator as the Laplace Transform of the Semi-Group:

We quote the following theorem from semi-group theory [72]:

Theorem 2.14:

Let T(t) be a semi-group of class Cy satisfying: ||T(t)|| < Me**,0 <t < oo
(as in Theorem 2.2), then the resolvent operator R(\; A)z = (AI—A)™!z is given

as the Laplace transform of the semi-group T'(t) by:
R(\A) -z = / e MT(t) -z (2.203)
0

where A is the infinitesimal generator of T'(t).

The reason why we quote this theorem is to show that one can give a
consistent formula for the optimal gains where only the time variable (or the
frequency) appears. This way one uses a minimal number of times the Fourier

(and inverse Fourier) transform. However we will keep the formula as it is.

b) Associated Elliptic System:

We have R(s; A) = (sI — A)™!
= menfi]-[]

(sI — A) B ] = [\‘g] (2.204)
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where A[ a,—,2+b 2+d

We therefore get:

sf—g=¢
{—a—I-ba O —df+(s—c)g=1V

Or in an equivalent form:

ag—i{:+b%;£+(d+cs—52)f=(c—s)cp—-\ll in 0
floaa =0
g=sf—eo

Finally if we take s = jw we get:

[ ][

log =0
¥ =jwp—h

{a%§+b%‘§+{(d+w2)+jcw}tp (c—jw)h =R
—

(2.205)

(2.206)

(2.207)

(2.208)

(2.209)

If we define u(z,y,w) = (¢ — jw)h — k' then the solution of the above PDE is

given by:

o(z,y,w) = Z Z w(Tm, Yn,w)Gmn(z,y,w)

m=1n=1

(2.210)

2.4.3 First Order Approximation to the Fourier Coefficients of the Control

Function

The closed loop control system can be represented by the diagram:
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Hypecbalic Cstale [ W]

;7 System 7 i kg-
Fourter Transform
' Ellighve
. u® | Gacas S‘nckm\ | y: |
S M Fodkoria, [T St ‘
Controller

Fig. 11: Controller Block Diagram

The controller computes the control u(t) = u(z,y,t) and we need to compute the
Fourier coefficients umn(t) to feed into the simulator of the membrane equation.

Again we are led to the computation of a double integral with oscillatory kernel

that can be implemented as a double sum by first order discretization. We know
from the theory of double Fourier series that a function u(z,y) and its Fourier

coefficients are related by the following formula:

{ u(2,y) = Lnry L=t Gmn sin(fr2) sin(57y) (2.211)

. L (L . .
fmn = f_i,fo Jy u(z,y)sin(*Fz)sin( 5 y)dzdy

We avoid giving the hypothesis for these formulae to hold and refer the reader to
[66]. One needs to do some manipulations to get the above formulae from those
in this book. Another word of caution is that only terms of the form sin -z sin -y

are present in the expansion of u((z.y)) whichisa solution to the PDE and must
therefore be given in terms of the eigenfunctions only. N

Let us use the usual subdivision of the membrane:
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"
L
Nhy 1
o,
////
>
o Nk =L x
Fig. 12: Grid Points on the Membrane
With h. — and hy = —II(—,

Where L, L are the respective lengths in z,y directions. N the number of
subdivisions. hz,hy are spatial mesh sizes in z,y directions respectively. The
middle point of the rectangle ke = ((k = V)hg, khg) x ((£ - 1)hy, Lhy) will be
referred to as (k,£) and: |

$k=(k—1)h:+}—12—z-

h
= —1hy+ —2’1 (2.212)

Obviously, we assume that u(z,y) is constant over Qe and is given by its value

at the point (k,£): u(z,y) = Hke (z,y) € ke thus the integral giving Gmn

becomes:
N N kh th
4 1 1 z mn v
n= Tz u(k——-k,,lf——k sin———:zd:c/
LL;; (k= ke 3k (k—1)hs T (¢=1)h,
sin(gziy)dy (2.213)
L
which gives:
4 N N
Umn = Nz Z Z Uke sm(——xk) s1n(———y¢) (2.214)
k=1 £=1
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The obvious advantage of this formula is its complete symmetry with one giving

Uge In terms of Upmp-

In the next page we report the numerical implementation of these formulae

and their application to a specific example.

We take u(z,y) = Apma(z,y) to be the (m,n) eigenfunction
le. Cmnl(Z,y) = sin(-mfwx) . sin(%y) (2.215)

N = 8 is the number of squivisions
L=L=1
A = 5 is the amplitude of u

m = n = 1 define the desired eignefunction

and we take an expansion with 8 terms (mods). The first matrix is just (4mn). the
second matrix is F~ (fimn) = (uke). The third matrix is FF~(dmn) = (mn)
which should coincide with the first matrix. For convenience we have printed

only 16 elements of the matrix. The results are satisfying.

5.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
A 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
1.94 2.81 2.81 1.94
2.81 4.06 4.06 2.81
F~1A | 2.81 4.06 4.06 2.81
1.94 2.81 2.81 1.94
4.92 0.00 0.00 0.00
0.00 0.00 0.00 0.00
FF~1A | 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00

Fig. 13: Comparison Between the Exact Fourier Coeflicients (Matrix A)
and the First Order Approximation (Matrix FF~!A Approximating A)
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9.4.4 Wiener Hopf Technique for the Scalar Control Problem of the Membrane

We want to compute the optimal control when we take as B operator a scalar
multiple of a fixed function (which will be taken to approximate a é-function).

We also observe the membrane at a certain point (z,ye). Thus:

& = Az + u(t) [b,.j(g,y)]

20 = 2(0) (2.216)
y = Cz = kh(zk, ys,1)
h 2 2
where z = B eL*dL
1 (z,y) € Qj
ij(z,y) = (2.217)
0 elsewhere

V u(t)

“*'// %/// //% /

e— T 7

4 Ik xkﬂ

Fig. 15: Membrane With One Controller and One Sensor

a) Transfer Function Computations

G(jw) = CR(jw; A)B (2.218)
R(jw; A)bi;(2,y) = [ﬁjﬁiiﬂ (2.219)
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Note that: {f‘i(‘”’y"*’) = +Gij(z,y,w)
9ij(z,y,w) = jwfij(z,y,w)

Gw)=C [;:;E;:zg] = +KGij(zk, ye,w)

G(jw) = +KGij(zk,ye,w)

Thus: {G'(]w) = +Kéij(zk,ybw)

F(jw) =TI+ G*G(jw)
— F(jw) =1+ K?|Gij(zx, ye,w)?

b) Resolvent Computation:

L RGes )| 1] = 4]
Then  CR(w;A) [ :] = Ko(ze,ye,w)

where

{a%f;‘? +522 + (w2 + jew)p = (c — jw)h — B’
vlaa =0

With the obvious notation: Amn = A(Tm,Yn)s Ain = A'(Tm, Yn)
k N
Therefore: CR(jw; A) [h’] = Z

Gmn(mkv ylaw)

¢) Gain Computations:

5 [h] = [ F GG GICRGw 4) | ] dv

+ 00
= / (F~(jw))™ - K - Gij(ar, yes )
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(2.220)

(2.221)

(2.222)

(2.223)

(2.224)

(2.225)

K((c = jw)hmn = hmyp)
1

(2.226)



Zf\,((c - ]w)hm"- - hlm,anmn(xka ylaw)d“)

m,n .
K({(chmn—h' ) —jwhmy)

*
K? +oo ~
) (Chmn - h'mn.)
K2 + oo . L
_]2_{2/ (F~(jw)) " Gij(zk, ye,w)
Grmn(2k, Yty )wdes - (2.227)
Define:

Imn= 3= [T2(F~(jw)) 2 Gij(zk, ye,w)Gmn Tk, Yo, w)dw
(2.228)

Tmn = —3 [22(F~(jw)) 7 Gij(zk, v, 0)Grmn 2k, ye, w)wdw
Therefore we have the following

Theorem 2.15:

The optimal state feedback control for the membrane problem (2.216) is
given by:

N
—u = [B*K] [:,] = K? Z Inn(chmn — bipn) + Tmnhmn

m,n=1

N
= K2 Z (CImn + jmn)hmn - Imnh,mn (2229)

m,n=1

where I;nn and Jp,, are as in (2.228).

The next figures give different graphs of the transfer function for the mem-

brane as follows:

e We choose a point (z,y) on the membrane.
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e We assign values to the parameters a, b, L, L of the membrane.

The graphs show clearly the influence of the viscous damping ¢ having a
smoothing effect on the profile of the transfer function. we can also see the poles
at the location of the eigenvalues. These graphs serve only to clarify the above '
points and make it possible to compare our algorithm to other algorithms by

noting the approximate number of dominant poles for instance (see Chapter 1).
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The next table shows the performance of the spectral factorization algorithm for
the membrane. We take the following values for the parameters (for a description

see example of section 2.2.7):
e L=L=1
em=n=1
ea=b=1,c=-5d=0
e absolute and relative errors: 10~1,107!
e Number of iterations: 3
e Number of subdivisions: N = 4 (16 grid points)
e Estimated frequency range: 2y = 20.0
e Output gain: K =10
e Number of points in the frequency domain: NP = 20

e Desired point (z,y) on the membrane where the transfer function is

computed: z =y = 0.3.

The results are excellent as can be attested from consulting the tables and

convergence occurs on the first iteration (see Chapter 1)
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Iteration: 1

Frequency: -18

Transfer Function Computed

1.0004633665 | -0.0001383304 | 0.0004447196 | -0.0001383304
0.0000000014 | -0.0000653719 | 0.0000000550 | -0.0000653719
-0.0001383288 | 1.0000543594 | -0.0001383290 | 0.0000539988
0.0000653789 | 0.00000000001 | 0.00000653786 | 0.0000000040
0.0004447196 | -0.0001383304 | 1.0004632473 | -0.0001383301
0.0000000550 | -0.0000653717 | 0.0000000014 | -0.0000653721
-0.0001383287 | 0.0000539988 | -0.0001383285 | 1.0000543594
0.00000000040 | 0.0000653790 | 0.0000000001

0.0000653788

Exact Transfer Function

1.0004445314

-0.0001399861

0.0004444980

-0.0001399861

0. -0.0000655506 | 0.0000000000 | -0.0000655506
-0.0001399861 | 1.0000537634 | -0.0001399861 | 0.0000537528
0.0000655506 | 0. 0.0000655506 | -0.0000000000
0.0004444980 | -0.0001399861 | 1.0004445314 | -0.0001399861
-0.0000000000 | -0.0000655506 | O. -0.0000655506
-0.0001399861 | 0.0000537528 | -0.0001399861 | 1.0000537634
0.0000655506 | 0.0000000000 | 0.00006555501 | 0.0000000000

act Transfer Function of the Membrane is Compared with the

Fig. 17: Performance of the Spectral Factorization Algorithm: The Ex-

Transfer Function Based on the Spectral Factor
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Iteration: 2

Frequency: -18

Transfer Function Computed
1.0004446507 | -0.0001399860 | 0.0004445012 | -0.0001399859
0.0000000039 | -0.0000655508 | -0.0000000015 | -0.0000655507
-0.0001399858 | 1.0000538826 | -0.001399858 | 0.0000537527
0.0000655501 | 0.0000000020 | 0.0000655500 | -0.0000000002
0.0004445012 | -0.0001399859 | 1.0004444122 | -0.0001399859
-0.0000000010 | -0.0000655507 | 0.0000000091 | -0.0000655507
-0.0001399858 | 0.0000537527 | -0.0001399858 | 1.0000537634
0.0000655500 | 0.0000000001 | 0.0000655500 | -0.0000000007
Exact Transfer Function

1.0004445314 | -0.0001399861 | 0.0004444980 | -0.0001399861
0. -0.0000655506 | 0.0000000000 | -0.0000655506
-0.0001399861 | 1.0000537634 | -0.0001399861 | 0.0000537528
0.0000655506 | O. 0.0000655506 | -0.0000000000
0.0004444980 | -0.0001399861 | 1.0004445314 | -0.0001399861
-0.0000000000 | -0.0000655506 | O. -0.0000655506
-0.0001399861 | 0.0000537528 | -0.0001399861 | 1.0000537634
0.0000655506 | 0.0000000000 | 0.0000655506 | O.

Fig. 17 : (Cont’d) Performance of the Spectral Factorization Algorithm:

The Exact Transfer Function of the Membrane is Compared
with the Transfer Function Based on the Spectral Factor
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Iteration: 3

Frequency: -18

Transfer Function Computed
1.0004446507 | -0.0001399861 | 0.0004444977 | -0.0001399861
0.0000000028 | -0.0000655510 | -0.0000000006 | -0.0000655506
-0.0001399862 | 1.0000537634 | -0.001399862 | 0.0000537528
0.0000655506 | 0.00000000002 | 0.0000655506 | -0.0000000000
0.0004444978 | -0.0001399861 | 1.0004444122 | -0.0001399860
0.0000000004 | -0.0000655506 | -0.0000000093 | -0.0000655505
-0.0001399861 | 0.0000537528 | -0.0001399861 | 1.0000536442
0.0000655506 | 0.0000000001 | 0.0000655506 | -0.0000000067
Exact Transfer Function

1.0004445314 | -0.0001399861 | 0.0004444980 | -0.0001399861
0. -0.0000655506 | 0.0000000000 | -0.0000655506
-0.0001399861 | 1.0000537634 | -0.0001399861 | 0.0000537528
0.0000655506 | O. 0.0000655506 | -0.0000000000
0.0004444980 | -0.0001399861 | 1.0004445314 | -0.0001399861
-0.0000000000 | -0.0000655506 | O. -0.0000655506
-0.0001399861 | 0.0000537528 | -0.0001399861 | 1.0000537634
0.0000655506 | 0.0000000000 | 0.0000655506 | O.

Fig. 17: (Cont’d) Performance of the Spectral Factorization Algorithm:
The Exact Transfer Function of the Membrane is Compared
with the Transfer Function Based on the Spectral Factor
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9. 4.5 Simulation of the Scalar Optimal State Feedback Control of the Membrane

We refer to the description of Figure 2, section 2.1.4, we give the values of

the parameters:

- Absolute and relative errors: 0.01,0.01

- Time step size: T = 0.05

- Parameters of the membrane: a =1,b=1,c = —10

- Number of grid points and dimensions of the membrane: N = 5,¢ = 1,/=1

- Index of initial perturbation (eigenfunction) and its amplitude: m = n =
1,A=0.1

- Frequency range estimate: 30.00

- Qutput gain: k¥ = 5.0 The tables compares the displacement and velocity
of the membrane under the influence of the control, and the displacement
and velocity of the free membrane at different time instants. As we have
only one controller (gain k¥ = 5.0) on the membrane we see that it takes
some time (26 steps at T = 0.05 for this example) to bring the membrane
to rest, this should be contrasted to the results of Fig. 16 where the action
of the control (gains k = 10 and k = 100) is much faster.
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Time = 0

Displacement Free Displacement

0.0146 | 0.0354 | 0.0354 | 0.0146 | 0.0146 | 0.0354 | 0.0354 | 0.0146
0.0354 | 0.0854 | 0.0854 | 0.0354 | 0.0354 | 0.0854 | 0.0854 | 0.0354
0.0354 | 0.0854 | 0.0854 | 0.0354 | 0.0354 | 0.0854 | 0.0854 | 0.0354
0.0146 | 0.0354 | 0.0354 | 0.0146 | 0.0146 | 0.0354 | 0.0354 | 0.0146

Velocity Free Velocity
0 0 0. 0. 0. 0. 0. 0.
0 0 0. 0. 0. 0. 0. 0.
0 0 0. 0. 0. 0. 0. 0.
0 0 0 0. 0. 0. 0 0.
Time = 0.1
Displacement Free Displacement

0.0136 | 0.0328 | 0.0328 | 0.0136 | 0.0136 | 0.0328 | 0.0328 | 0.0136
0.0328 | 0.0792 | 0.0792 | 0.0328 | 0.0328 | 0.0793 | 0.0793 | 0.0328
0.0328 | 0.0792 | 0.0792 | 0.0328 | 0.0328 | 0.0793 | 0.0793 | 0.0328
0.0136 | 0.0328 | 0.0328 | 0.0136 | 0.0136 | 0.0328 | 0.0328 | 0.0136
Velocity Free Velocity
0.0180 | -0.0434 | -0.0434 | -0.0180 | -0.0177 | -0.0427 | -0.0427 | -0.0177
-0.0434 | -0.1048 | -0.1048 | -0.0434 | -0.0427 | -0.1031 | -0.1031 | -0.0427
-0.0434 | -0.1048 | -0.1048 | -0.0434 | -0.0427 | -0.1031 | -0.1031 | -0.0427
-0.0180 | -0.0434 | -0.0434 | -0.0180 | -0.0177 | -0.0427 | -0.0427 | -0.0177

Fig. 18: Results of the Simulation on the Scalar Optimal State Feed-
back Control of the Membrane



Time = 35

Displacement Free Displacement

0.0082 | 0.0198 | 0.0198 | 0.0082 | 0.0084 | 0.0202 | 0.0202 | 0.0084
0.0198 | 0.0478 | 0.0478 | 0.0198 | 0.0202 | 0.0487 | 0.0487 | 0.0202
0.0198 | 0.0478 | 0.0478 | 0.0198 | 0.0202 | 0.0487 | 0.0487 | 0.0202
0.0082 | 0.0198 | 0.0198 | 0.0082 | 0.0084 | 0.0202 | 0.0202 | 0.0084
Velocity Free Velocity
-0.0202 | -0.0489 | -0.0489 | -0.0202 | -0.0195 | -0.0472 | -0.0472 | -0.0195
-0.0489 | -0.1179 | -0.1179 | -0.0489 | -0.0472 | -0.1138 | -0.1138 | -0.0472
-0.0489 | -0.1179 | -0.1179 | -0.0489 | -0.0472 | -0.1138 | -0.1138 | -0.0472
-0.0202 | -0.0489 | -0.0489 | -0.0202 | -0.0195 | -0.0472 | -0.0472 | -0.0195

Time = 0.45

Displacement Free Displacement
0.0063 | 0.0153 | 0.0153 | 0.0063 | 0.0066 | 0.0158 | 0.0158 | 0.0066
0.0153 | 0.0369 | 0.0369 | 0.0153 |} 0.0158 | 0.0383 [ 0.0383 | 0.0158
0.0153 | 0.0369 | 0.0369 | 0.0153 | 0.0158 | 0.0383 | 0.0383 | 0.0158
0.0063 | 0.0153 | 0.0153 | 0.0063 | 0.0066 | 0.0158 | 0.0158 | 0.0066
Velocity Free Velocity
-0.0171 | -0.0413 | -0.0413 | -0.0171 | -0.0163 | -0.0393 | -0.0393 | -0.0163
-0.0413 | -0.0997 | -0.0997 | -0.0413 | -0.0393 | -0.0949 | -0.0949 | -0.0393
-0.0413 | -0.0997 | -0.0997 | -0.0413 | -0.0393 | -0.0949 | -0.0949 | -0.0393
-0.0171 | -0.0413 | -0.0413 | -0.0171 | -0.0163 | -0.0393 | -0.0393 | -0.0163

Fig. 18: (Cont’d) Results of the Simulation on the Scalar Optimal State
Feedback Control of the Membrane
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Time = 0.6

Displacement Free Displacement

0.0041 | 0.0099 | 0.0099 | 0.0041 | 0.0045 | 0.0108 | 0.0108 | 0.0045
0.0099 | 0.0239 | 0.0239 | 0.0099 | 0.0108 | 0.0261 | 0.0261 ([ 0.0108
0.0099 | 0.0239 | 0.0239 | 0.0099 | 0.0108 | 0.0261 | 0.0261 | 0.0108
0.0041 | 0.0099 | 0.0099 | 0.0041 | 0.0045 | 0.0108 | 0.0108 | 0.0045
Velocity Free Velocity
-0.0126 | -0.0305 | -0.0305 | -0.0126 | -0.0116 | -0.0281 | -0.0281 | -0.0116
-0.0305 | -0.0736 | -0.0736 | -0.0305 | -0.0281 | -0.0678 | -0.0678 | -0.0281
-0.0305 | -0.0736 | -0.0736 | -0.0305 | -0.0281 | -0.0678 | -0.0678 | -0.0281
-0.0126 | -0.0305 | -0.0305 | -0.0126 | -0.0116 | -0.0281 | -0.0281 | -0.0116

Time = 0.85

Displacement Free Displacement

0.0016 | 0.0039 | 0.0039 | 0.0016 | 0.0023 | 0.0056 | 0.0056 | 0.0023
0.0039 | 0.0095 | 0.0095 | 0.0039 | 0.0056 | 0.0135 | 0.0135 | 0.0056
0.0039 | 0.0095 | 0.0095 | 0.0039 } 0.0056 | 0.0135 | 0.0135 | 0.0056
0.0016 | 0.0039 | 0.0039 | 0.0016 | 0.0023 | 0.0056 | 0.0056 | 0.0023
Velocity Free Velocity
-0.0073 | -0.0177 | -0.0177 | -0.0073 | -0.0062 | -0.0149 | -0.0149 | -0.0062
-0.0177 | -0.0426 | -0.0426 | -0.0177 | -0.0149 | -0.0361 | -0.0361 | -0.0149
-0.0177 | -0.0426 | -0.0426 | -0.0177 | -0.0149 | -0.0361 | -0.0361 | -0.0149
-0.0073 | -0.0177 | -0.0177 | -0.0073 | -0.0062 | -0.0149 | -0.0149 | -0.0062

Fig. 18: (Cont’d) Results of the Simulation on the Scalar Optimal State
Feedback Control of the Membrane
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Time = 95

Displacement Free Displacement

0.0010 | 0.0023 | 0.0023 | 0.0010 § 0.0018 | 0.0043 | 0.0043 | 0.0018
0.0023 | 0.0056 | 0.0056 | 0.0023 | 0.0043 | 0.0103 | 0.0103 | 0.0043
0.0023 | 0.0056 | 0.0056 | 0.0023 | 0.0043 | 0.0103 | 0.0103 | 0.0043
0.0010 | 0.0023 | 0.0023 | 0.0010 | 0.0018 | 0.0043 | 0.0043 | 0.0018
Velocity Free Velocity
-0.0056 | -0.0136 | -0.0136 | -0.0056 | -0.0048 | -0.0115 | -0.0115 | -0.0048
-0.0136 | -0.0328 | -0.0328 | -0.0136 { -0.0115 | -0.0277 | -0.0277 | -0.0115
-0.0136 | -0.0328 | -0.0328 | -0.0136 | -0.0115 | -0.0277 | -0.0277 | -0.0115
-0.0056 | -0.0136 | -0.0136 | -0.0056 | -0.0048 | -0.0115 | -0.0115 | -0.0048

Time = 1.25

Displacement Free Displacement

0.0000 | 0.0001 | 0.0001 | 0.0000 | 0.0008 | 0.0019 | 0.0019 | 0.0008
0.0019 | 0.0046 | 0.0046 | 0.0019 | 0.0019 | 0.0047 | 0.0047 | 0.0019
0.0019 | 0.0046 | 0.0046 | 0.0019 | 0.0019 | 0.0047 | 0.0047 | 0.0019
0.0000 | 0.0001 | 0.0001 | 0.0000 | 0.0008 | 0.0019 | 0.0019 | 0.0008
Velocity Free Velocity

-0.0008 | -0.0019 | -0.0019 | -0.0008 | -0.0021 | -0.0051 | -0.0051 | -0.0021
-0.0019 | -0.0047 | -0.0047 | -0.0019 | -0.0051 | -0.0124 | -0.0124 | -0.0051
-0.0019 | -0.0047 | -0.0047 | -0.0019 | -0.0051 | -0.0124 | -0.0124 | -0.0051
-0.0008 | -0.0019 | -0.0019 | -0.0008 | -0.0021 | -0.0051 | -0.0051 | -0.0021

Fig. 18: (Cont’d) Results of the Simulation on the Scalar Optimal State
Feedback Control of the Membrane
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Time = 1.3

Displacement Free Displacement
0.0000 | 0.0000 | 0.0000 | 0.0000 ] 0.0007 | 0.0017 { 0.0017 | 0.0007
0.0000 | 0.0000 | 0.0000 | 0.0000 { 0.0017 | 0.0040 | 0.0040 | 0.0017
0.0000 | 0.0000 | 0.0000 { 0.0000 | 0.0017 | 0.0040 | 0.0040 | 0.0017
0.0000 | 0.0000 | 0.0000 | 0.0000 § 0.0007 | 0.0017 | 0.0017 | 0.0007
Velocity Free Velocity
-0.0003 | -0.0007 | -0.0007 | -0.0003 | -0.0019 | -0.0045 | -0.0045 | -0.0019
-0.0007 | -0.0018 | -0.0018 | -0.0007 | -0.0045 | -0.0109 | -0.0109 | -0.0045
-0.0007 | -0.0018 | -0.0018 | -0.0007 | -0.0045 | -0.0109 | -0.0109 | -0.0045
-0.0003 | -0.0007 | -0.0007 | -0.0003 | -0.0019 | -0.0045 | -0.0045 | -0.0019

Fig. 18: (Cont’d) Results of the Simulation on the Scalar Optimal State
Feedback Control of the Membrane
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9 4.6 Multidimensional Control-Multidimensional Observation of the Vibrating

Membrane

In this paragraph we assume that the membrane can be controlled at discrete

points evenly distributed for convenience, and that we observe the displacement

of the whole membrane. From a computational point of view it is enough to

assume that the membrane is obseved at a discrete number of points.

Thus we have the following system:

(% = AX + TV, uis() [b,-,-(?c,y)]
h(z1, 1) (2.230)
ﬁyzc‘X—:C[}’:,]:K
k h(:BN’ yﬂ)
1 (z,y) € Qj

We note that b;j(z,y) = {
0 otherwise

with Z1,Z2,...IN a subdivision of [0, L] on z — axis,
Y1,Y2,---3 YN a subdivision of [0, f,] on y — axis.

K is a scalar gain that gives the weight of the observation relative to the control

in the performance criterion:

/ ” u®I? + K@)t (2.231)

a) Transfer Function:
G(jw) = CR(jw; A)B
(GGw)uij), i) gz = ([uis] G (Gw)vis)) g
x 0
G(jw)[ui;] = CR(jw; A)Bluij] = CR(jw; A) Z Ui [b;j(a:,y)]
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oY wrgen][, O]

i,j=1

Gij(z1,y1,w)
=>G(jw) [u,-,-] =K (2.232)
Gij(xNa yn,w)

where G;j(zk,ye,w) is the integrated discrete Green'’s function on ;; eval-
uated at (zk,ye)-
The final formula for G is:

Gij(z1,y1,w)

N
Gljw)ui) = K Y uij : ec™’ (2.233)
b=l Gij(zn,YN,w)

Using the duality relation between G and G* one can prove in a similar fashion

that if:
G*(jw)[vke] = [wij] (2.234)
and w;; are given by
N N
Wij = KZ Z Gij(Tk,ye,w)vke (2.235)
k=1 £=1

where the @,'j(a:k,yg,w) is the complex conjugate of G;j(zk,ys,w). Hence it is

possible to compute:

F(jw) = I+ G*G(jw) (2.236)
Let
F(jw)luis] = [wij] = I + G*Gluij] (2.237)
We have that:
N
G*Gluij] = G~ {K ;1 u,-,-[G,-j(zk,y,,w)]k,} (2.238)
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Gij(z1,91,w)
where [G;j(zk, y¢,w)] ke means the vector and we are using the
Gij(zn,yN,w)

canonical isomorphism between ¢™* and £(C N ¢V ) the vector space of linear

maps from CV to € N_ @M is the linear space of vectors of N2 complex entries.

Therefore:

N
G*Gluij] = K Y uiiG*(Gij(ze, ye,w)lke

1,)=1

i,j=1 k,t=1

N N
=K > u {K > G,-J-(a:k,yt,w)[émn(xk,yg,w)]mn}(2.239)
(by (37))

Or in a more convenient notation:

[ Gn(ﬂ?k,yt,w) ]

N N .
G*G(jw)luij] = K? Z Z Z ui;Gij(zk, Yo, w) Gmn(Tk,ye,w) | (2.240)
i=1 j=1 k=1 £=1 .
| GNN(zk, Y2, w) |
If we set:
[wu] = G*G[u,'j] (2.241)
Then
N N _
Wre = K? Z Z u,-jG,-j(a:m,yn,w)Gu(zm,yn,w) (2.242)

i,=1m,n=1

It is obvious at this stage that a successful implementation of these formulae will
depend in an essential way on how to handle this multitude of indices, and how

to represent the vector [Gij(zk,ye,w)|ke i.e. how to order the elements of this

N x N vector (which in fact represents an operator from ¢V - ¢)
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The problem of ordering the indices is the same problem as counting the
rational numbers, which could be achieved using the diagonalization algorithm:

i=1,2,...N j=12...N

a=(4j)=1,2,3,... N? (2.243)

From now on we use greek letters to designate pairs of indices. We do not use the
diagonalization algorithm which is of theoretical value only, the following simpler
counting process turned out to be more useful (in easiness of implementation).

It consists by starting in the first row (and exhausting all elements of the matrix)
then the 20d row, etc.
To get ¢ and j from a = (7,j) you apply the Euclidean division algorithm
(modified):
a=(4,j) ma-1=0G(-1)N+(j—-1)0<i—-1<N-1

0<j—1<N-1 (2.244)

Hence
{g___%:(’z"f ;;’;;,LN) (2.245)
and
Conversely a = (: = 1)N + 7 (2.246)
With this notation in mind let us define:
a=(,5)
B = (k,0) (2.247)
7= (m,n)
and Py =(Tm,Yn)
Then the expression (108) becomes:
N? N?
wg =) (K?Y  Gg(Py,w) - Ga(Py,w))ta (2.248)
a=1 v=1
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or  ws=Y Apala (2.249)
a=1
N2
where  Aga = K? Y Gp(Py,w)- Ga(Py,w) (2.250)
¥=1

In other words A,z is the matrix representation of the operator G*G:

[G*G(w)] = [Aga] (2.251)
Now  F(jw)=I+ G*G(jw) = [Fga] (2.252)
therefore
N2
Fpa =685+ K* Y Gp(Py,w) - Ga( Py,w) (2.253)
=1

Expression of the resolvent operator:

To see where the following expression comes from refer to section 2:
Gpe(z1,91,w)

N N
. h ' . ! .
CR(jw; A) [h’] = E E K {(C = jw)hpq — hpy } : (2.254)
p=1g=1 GP‘I(:L'NayN’w)

Gain Formulae:

h

+co
B*K [;:,] = 2%/;00 [F~(jw)]™! - G*(jw)CR(jw; A) l: :| dw (2.255)

hl

h N N
G*(jw) - CR(jw; A) [ } = G"(jw) {Z Z K((c— jw)hpq — h;’q)} -

k' p=14q=1

qu(zl y U1, LU)
: (2.256)

qu(xNa yNaw)
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Using the linearity of G*, (118) becomes:

_ N . ) ,
Ep:l Efyv:l I\((C - ]w)hl’q - hp

q)qu(xl y Y1 ,Ld) ]

G*(jw)- | Loy oty K((c = jw)hpg — hpg)Grg(ak, ye, ) (2.257)
N N . : '
L Zp:l Eq:l K((c — jw)hpg — hpq)GPQ(xN’ yn,w)
By using (103) expression (120) becomes:
[ K ZZ(:] éll(xkv ye,w) - E;I)V=1 E(IIV=1 K((c—jw)hpq — h;aq) ]
G q(mka Ye, w
— K Zﬁ:[:] éij($k7 ylaw) Ep_l Eq—- K((C - ]w)hpq pq)
: qu(.’llk, Ye,w
K ZkN=1£—_-1 E?I:l C_;'NN(W/'k, Ye,w) E,I,V=1 EN=1 K((c— jw)hpq = h;q)
L 'qu(mln ylng _
(2.258)
Let us define the new quantities:
N N
Rie(w) = z Z {(c = jw)hpg — hpy} Gpe(Tk,ye,w) (2.259)
p=1g¢=1
to get:
3 N N _
G GO )| 1] = K >3 RG220
Hence:
* h K2 -1
B'K || =5 [F Gw)™ Z E Rie(w)[Gij(zr, ye, w)ijdw (2. 261)

k=1 ¢=1
By linearity we have:

2 N N 4o
B*K[h]—

ZZZRM(W) {F~(jw)™ (Gij(zk, ye,w))ij } dw (2.262)

k=1 p=1 —oco
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Define the vector V kf(w) by:
[ Gll(xlhyl’w) ]

Vie @) = [F-G)] ™ | Gislzr yeow) (2.263)

| GNN(TE, Y2, w) |

To get the following

Theorem 2.16:

The optimal state feedback control for the multivariable problem of the

membrane is given by:

+00 N N

[B*K] { :,] = % / >3 Rig(w)- Ve (@)dw (2.264)

=P k=1t=1

where Ri¢(w) and Vie(w) are given by (2.2.59) and (2.263).

2.4.7 Control of the Membrane Along a Mode of the System

In this section we investigate the control problem when the input is a time
varying function multiple of a mode of the system, while we observe the displace-

ment of the whole membrane. Thus:

{a’v = Az + {ui;(¢) pij(z,y) }
y=Cz

B:C—L?>qL?

uij(t) — uij(t) [ 0 ]
<Pij($,y)

C:L*@L?* — L?

[g ] —~ Kf (2.265)
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where ¢;;(z,y) is the eigenfunction corresponding to the eigenvalue

N2 N
T JjT
K is the weight of the output relative to the control in the performance criterion:

7= [ I + Kl (2.267)

Resolvent Computations

We know that:

R(jw; A) [:,] = [g] if and only if: (2.268)

flaa =0 (2.269)

{ag};+bg—;§+(d+w2+jcw)f=(c—jw)h—h'
g=jwf-h

" Let us assume that:
h(l‘, Y, t) = a(t)‘tpij(x’ y)

and  R'(z,y,t) = B(t)pi(z,y) (2.270)

where ¢;;(z,y) is the (¢,j) eigenfunction. Then the solution to the above PDE

a(t)(c — jw) — B(t)
(Aij + (d+w?)) +jew

f(.’L',y,t) = Saij(xvy) (2271)

Transfer Function:

G(jw) =CR(jw; A)B (2.272)

B e i ]

= K fij(z,y,w) (2.273)

114



The function fi;(z,y,w) is the solution to the PDE:

{ a%%j- + b%‘@- + (d +w? +ch)f!] = _uij(t)‘lpij(za y) (2274)
fijloaa =0

Let us look for a solution of the form

fij(za ysw) = X(w)soij(zay) (2275)

Then plugging into the PDE and using the fact that ¢;;(z,y) is an eigenfunction

gives:

G(jw)uij(t) = o fj_ﬁ(jz;“’ )Jrjwu,-j(t) (2.276)

Similarly if ¥ € L2, then:

* y —_— K ..
G*(jw)¥ = Ou; Fd+o?) —jow /ﬂ/%(é,n)‘l’(c,n)dédy (2.277)

Therefore the expression of the modified transfer function is:

K2

Fljw) = I+GGlw) = 1+(/\ij +d+w?)? + 2wt

/ /Q (¢, mPdcdy (2.278)

Gain computation:

The expression of the gain is:

pr[h] = [ F o) e Gaerud) )| a0 @219)

Plugging (133), (138) into (140) gives:

rx[h] -2 [ wicaracan- [ G

' (Aojft}r( Zli“éiz‘ffflzw (2.280)
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Theorem 2.17:

Define:
+o0 ‘ :
7= e N1 c—Jjw
/_c,o PO ayvdvorr o
+o0 dw
= F(iw) ! 2
d /_oo U)o T 2 + (2.281)

Then the optimal state feedback control for the membrane problem (2.265) is
given by:

utty = 2 [[ 1o mPdcan- (1a(o) - 75) (2.282)
Q

where (¢, n) is the desired mode shape.

Next we report the simulation of this type of controller. We choose a point

(z,y) on the membrane and we consider its motion in the following conditions:

- the membrane is subject to free vibrations.

- the membrane is under influence of the control.

starting from the same initial conditions we see clearly that the membrane

goes much faster to rest when under the influence of the controller. We also see

that as the gain gest higher (from k = 10 to k = 100) the membrane is brought

to rest much faster.
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9.4.8 Comparison Between Different Formulations of the Control Problem

(1) Multidimensional Control-Distributed Observation

Let us solve the following problem: ‘

2. [ }’:t] —4 [ i};] + L= ueelt) [bu((:)r,y)]

yzc{:]z[{{{ll}:] (2.283)

IA
V)‘;ﬂ '//-Q. %
1. o
é
X X ,f).',

Fig. 20: Area of Application of Controller

1 (a:,y) € Qy;
and b,‘j =

0 elsewhere
Thus in this setting G(jw) is an operator from ¢V S L?@L? and G*(jw) is
the dual operator from L? @ 12 — CN’. Therefore G*G(jw) is a linear operator
from €V — €V . Using the canonical isomorphism between finite dimensional

vector spaces of the same dimension, G*G can be regarded as a 4th order tensor
in an N dimensional complex space (CV). Let (vijee) be the components of
the tensor associated to G*G. We have shown (although not reported here for

convenience) that:

vijee = (K7 +w2K§)// Gij(z,y,w)Gre(z,y,w)dzdy (2.284)
Q

where G;;(z,y,w) is the integrated Green’s function as usual.
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(2) Point Controls:

In this case we assume that the input map is given by:

un(t)
uq2(t 2 N N

:( ek Z:l ;uu(t) [5(1_ _ Cz?,y ) (2.285)
uNN(t) o

i.e. we assume that we have point controllers located at the points ((x,n¢). We

can show that the tensor v;ji¢ representing G*G(jw) is given by:
vijke = (K2 + K22w2)// G(z,y, Ck,ne,w)G (2, Y, Ciynj,w)dzdy (2.286)
Q

(The proof is omitted for convenience).

Hence we get the same result as in the case of piecewise constant control.
This should not come as a surprise since the Green’s function itself is approx-
imated by piecewise constant function over small rectangle §2;;; therefore the
system cannot “distinguish” between a point control located in the middle of ;;

and a piecewise constant control over 2;;.

(3) Point Control - Point Observation

Now instead of observing the whole membrane (distributed observation) we

observe only a discrete number of points located on the membrane, i.e.

h h(xlaylat)

c:[h]eL2@L2—> : (2.287)
. :

h(mN’yNat)

Note that h(zi,y;,t) = [[ h(z,y,t)8(z—z:,y—y;)dzdy and that C is an unbounded
Q
output operator.

Again we report only the end result:

N N
vike = D > G(Zm,Yn, Gk, ¥6:0)G(Zm, Y, Giy s w) (2.288)
m=1n=1
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In other words assuming point observations amounts to approximating the double

integral [ GG by a 15 order approximation »_ > GG. Since the double sum
Q

converges to the double integral as the mesh sizes go to 0 we conclude that the

point observation approach is legitimate.

Theorem 2.18:

Consider the distributed observation problem (2.283) for the membrane and

let
G(jw) =CR(jw; A)B (2.289)

be the transfer function of the system and (v;;ks) be the tensor corresponding to

the operator G*G as given by expression (2.284).

Consider also the point-observation problem (2.287) and let Gn(jw) be its

transfer function, and (vﬁk[) be the tensor corresponding to the operator GG N

as given by expression (2.288). Then (vﬁ-’k,) converges uniformly to (vijke) as

N — oo.
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CHAPTER 3

THE STRING PROBLEM

In this chapter we solve the optimal state feedback control problem for the
string. This model is very useful since it is the simplest hyperbolic system that
is a good representation of the vibrations of the physical string when the effect
of bending rigidity is small. Furthermore this relatively simple model brings out
many interesting problems encountered in controlling distributed systems. It can

also be helpful in giving insight into more complicated problems such as:
e the membrane problem.
e the beam problem. . .etc.

We begin our study by using an eigenfunction expansion technique for the
simulation of the forward system and use a change of variables to handle the

viscous damping, we present some examples.

The existence of uniform damping v is imposed by physical considerations as
any physical system dissipates energy. We will see later how to introduce better

models for damping. From the mathematical point of view:

e it shifts the poles of the system away from the imaginary axis; the gain
formulae involving contour integrals along the imaginary axis are well defined

only if the singularities are shifted.

e the damping also guarantees the stabilizability of the system to insure the
existence of optimal control (along with other conditions). One advantage is
that it allows sidestepping the controllability question which involves solving

moment problems in Hilbert space.

On the other hand the existence of damping makes it more difficult to devise
exact formulae in the form of series expansion, and introduces exponential terms

e~ to be handled with care not to destabilize the solution.
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We then proceed to the computation of the Green’s function by standard

techniques and give an example.

In section 3.3 we quote some results from Russell’s work [60] on the study

of the controllability question for the string and give a physical interpretation.

We then go on to study the problem of localized optimal control of the
string and give different alternatives, while trying to relate this case to the more
general control problems treated in the following sections. The flexibility of these

different approaches for the designer is discussed.

Next we study the convergence of step controls to point control which stems
from physical considerations. We relate it to the approximation of identity in
Harmonic Analysis. Although we do not proceed to test this convergence analysis
numerically we give all the relevant formulae. The reason we stop at this level of
the analysis is because we have already implemented the optimal point control

with success.

The next section is the natural extension of the previous one and deals with
the problems of multidimensional discrete control-discrete observation. We then
proceed to solve the distributed control problem and show the multidimensional
discrete problem studied earlier is a first order approximation. We also see that it
leads to “approximating” the operator spectral factorization by a matrix spectral

factorization.

The next step is to compute the control along a mode of the string (shape
function) introducing a great simplicification in the computations. This is no
surprise since the eigenfunction constitute a computational tool tailored to the
particular system of interest. The scalar case serves as a preparation to the

multidimensional case.

The next section deals with the problem of computing the optimal control
in a basis of N eigenfunctions which leads to N decoupled scalar control prob-

lems and constitutes a very important improvement over the methods presented
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earlier.

We then study the question of finding approximations to the transfer func-

tion when the Green’s function is not known (or difficult to get).

The last section deals with the point control by using numerical inverse
Laplace transform which deals with the “é-function” in integrated form and

avoids the difficulty of dealing with a distribution directly.

3.1 Eigenfunction Expansion of the String Equation

Consider the string equation:

%h"-aazz+7h+ﬂ +u z¢0,0)

h(0)=h(£)=0 B.C.
h(0,z) = ho(z) (3-1)
R'(0,z) = hy(z) I.C.

First of all we introduce a change of dependent variable to eliminate the damping

term:
g(t) = h(t)e 7

w(t) = u(t)e™ (3.2)
which leads after reductions to:

2
SE=aft+(r+5)gtw

(0)=g(£) =0 B.C.
2(0) = H(0) (33)
g'(0) = h'(0) — £4(0) I.C.

The associated eigenvalue problem is:

% pn _ )
{ O‘Ta';.-wT + &Pn = An‘Pn (34)
wn(0) = wn(€) =0
where
2
b=~v+ % (3.5)

124



which is easily seen to admit the solution:
en(z) = sin(5-2)
with the corresponding eigenvalues
B? nmw.,
Ap = —) - a(—
(v + ) =)

The associated initial value problem is

i) =[5, o [fo] = ] =0
o= %]
Let pin = /] An | then the solution will be:

An < 0:

an(t) = Tncospnt+ 2>sinpat+ - f wp(0o)sin pa(t — o)do
an(t) = —pnrasin p,,t + Up COS unt + fo €os pin(t — 0)wp(o)do

an(t) = rpchunt+ Z=shpnt + fot wp(o)shpa(t — o)do
an(t) = rppnshpint + vachpat + fot wp(o)chpn(t — o)do

S
o3

I
(=)

- {a,,(t) = o+ Vat + [ (t — O)wa(0)do
an(t) = v+ [, wa(o)do

This leads to the solution of the BVP in the form:

o0

9(z,t) = ) an(t)pn(2)

n=1
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Finally the displacement and velocity of the string are given by:

hz,t) = 8 Y an(t)pn(e)

he(e,t) = 3 (@n(t) + Dan(t))ed pu(a) (3.13)

EXAMPLE:

}%i O;,% +0%’;~ +h+u

= = 3.14
ho(s) = apn(c) (3.14)
ho(z) = (b+ d)pn(z)

where the control is given by:
u(t)=a(l+ 0 —7)cost+bl+o+B—7)e +d(1+0—7)—Pfc+afsint
and 0 = a(%F)?, pa(z) being the i** eigenfunction.
The displacement and velocity are then given by:

h(t,z) = (a + bt + ccost + de*)pn(z)
he(z,t) = (b — csint + de')pn(z) (3.15)

This example serves as a test for the simulation of the system, combining con-
stant; harmonic and exponential terms.
3.2 Green’s Function in the Frequency Domain

Using Laplace transform, the string equation:

B.C. (3.16)

{%;—,’l=a%+ 8k 4 yhtu
I.C.

becomes in the frequency domain:

o*H

527 p2(s)H = V(s,z) (3.17)

126



where p?(s) is a polynomial of degree 2:
p2(s) = po + p1s + pas’ (3.18)

To get the Green’s function we need to solve:

{ 23 (s,3lz") — *(s)G(s,3/a") = §(z — &)
(3.19)
Glan =0
It can be checked that the solution is:
2 = — 1 sh(u(s)(€ — z")shu(s)z 0<z<L42a
605, #1%) = =G oo b e a)) o et B2

The solution of the general system will be given in terms of the Green’s function

as follows:

4
H(z,s) =/0 G(s,z | ')V (s,z')dz' (3.21)

EXAMPLE:

To test our integration scheme we consider the following forcing term:
s
V(e,w) = {(#%(@) = ()} e+ Bw+ycosw + Ae“Jpn(z)  (3.22)
which generates the response:

H(z,w) = (a+ fw + vcosw + cosw + Ae“)pn(z) (3.23)
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3.3 The Controllability Question

As a preparation for the study of the optimal control of the string equation
one needs to investigate the controllability question of the system. In his paper

[60] Russell Shows that:
e the problem reduces to a moment problem in a Hilbert space.

e physically the control time has to be greater than a certain fixed value
determined by the finite speed of the wave. This is in contrast with the

finite dimensional case where instantaneous control is possible.

Let us summarize Russell’s results. Consider the equation:

B.C. (3.24)

{ p(z) 22 — L (p(z)% = g(2)f(t)
1.C.

A separation of variables:
u(z,t) = at)e(z) (3.25)
leads to a Sturm-Liouville problem:

2 (2) + T()o(z) + Mp(e) = 0 (3.26)

To every 1(z)eL2[0,¢] corresponds the eigenfunctions expansion:

¥(z) =Y brpr() (3.27)
k=0

Now the solution is:

u(z,t) = 3 Be(ten(a) (3.28)
k=0 ’
One is naturally led to the moment problem:

fot sinwgt - h(t)dt = cx (3.29)
fot coswit « h(t)dt = di '
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In the general case the {wx} are not multiples of a fixed constant, and it is

necessary to use nonharmonic Fourier series {e***!,e™*:* k = 0,1,2,---} to

_ e
T_‘/o p(z)d (3.30)

then the system is controllable in time 7 when the condition T' > 27 holds.

solve the above problem.

Define:

The study of the controllability question is a nice preparation for our work
(existence of control and physical insight). However it is not essential because
our system contains damping (always present in physical systems) which guar-
antees the weaker condition of stabilizability. This condition (along with other

hypotheses) is sufficient for the existence of optimal control.

3.4 Localized Control Problem

We are interested in computing the 6ptima.1 control when the controller is
locazlied at a point ( of the string, with the observation at some other point n
of the string (there is no difficulty in having n = { i.e. control and observation
localized at same point). However we take i # { in general to give the designer

more flexibility in localizing controls and sensors.

We first transform the string equation into a first order system

f =[ ’z'h](:_[,f;%{) | AR A (331)
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The resolvent operator is defined by:
R(jw; A) = (jw - 4)™

for jwep(A) resolvent set of A.

Given (h,h')eL? & L? we seek (p,%)eL? @ L? such that:

wn[$]- 1

Using the formal expression for R(jw; A):

h{ _ Jw -1 )
B | —a zz~" jw - IB ¢
which leads us to the following BVP:

ag%ﬂwz+7+J'w/3)so=(jw—ﬂ)h—h' in ©

S
Y =jwp—h
Q=104

The functions h and A’ appear in the forcing term as expected.

In operator notation the transfer function is given by:

G(jw) = CR(jw;A) B

(3.33)

(3.34)

(3.35)

(3.36)

The PDE characterizing the resolvent operator can be put in the simpler form:

2
{a%’%’- — i (w)p =v
wlog =0

then use the Green kernel to give an expression of the solution:

£
o(z,w) =/0 Gw,z |z') v(z',w) do’
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In our special case

therefore
v=—ué(z — &)

o(z,w) = —jwuG(w,z | §)
Using the Observation equation for C gives:
G(jw) = —KG(w,n/¢)
the adjoint is given by the conjugate expression
G*(jw) = —KG(w,n/¢)

The spectral factorization algorithm will apply to:

F(ju)=1+G*G(jw) =1+ K? | G(w,n/€) |?

The general expression of the gains gives:
K2 +oo
rt]

-0

=-5 dw (F~(jw))™! G(w,n/€)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

£
/0 G(w,n/=")((jw — B)h(=") — K(="))dz'  (3.44)

Theorem 3.1:

Consider the point control-point observation problem (3.31) for the string.

Define:

{ 91(w) = G(w,n/¢) JE G(w,n/z")R! (2" )da'
g2(w) = G(w,n/¢) [} G(w,n/z")'(z")da’

(3.45)

where g;(w) is a function of the displacement alone whereas go(w) depends on

the velocity only.
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Let the gain kernel be:

kW) = (o — £)51(#) = 92(w) (3.46)

Then the optimal state feedback control is given by:

w=—B"K [,’:,] - 12{—7: /_ :o k(W) (F~(jw) ™ dw (3.47)

Remark:

There is a slightly more general situation to be considered, but more com-
plicated from the programming point of view. It considers the case of a string

controlled at one point only but observed at different points along the string.

One can proceed from this configuration allowing for discrete observation
points which amounts to first order approximations of the integrals involving the

Green kernel and different functions of displacement and velocity.

The other alternative would be to reconstruct the state of the system from
the discrete observation and have more flexibility for the approximation of the
integrals. This latter approach has the advantage of allowing arbitrary accuracy
to be achieved using adaptive integration schemes based on spline polynomials
of arbitrary degree. However one has to estimate the state in this case which is

by no means a trivial problem.

Putting these considerations aside for the time being, we give the relevant
formulae that can be derived by the usual techniques. The observation equation

is changed to yield:
cl i, =k h(- 3.48
] =m0 (3.48)
The “transfer function” operator becomes:

G(jw) u = -KuG(w, /) (3.49)
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Similarly the adjoint operator becomes:

[4
GGl =K [ Gl [epls) d (3.50)

The function to be spectral-factorized is:
¢
Fw)y=1+ K2/ | G(w,z'/€) |* da' (3.51)
0

The optimal gains become:

pr(p] =5 [T w @)

27 J_ oo
I4
/0 dz'G(w,z'/€)

¢
/0 G(u,z'/z")((jw — B)R(z") — B'(z"))dz"  (3.52)

If we were to allow for multidimensional control and scalar observation instead,
the situation will be the exact dual of the present case, but this does not seem

to have any practical application.

We will say more when we cover the much more general case (but surprisingly
the easiest for computations) when we control the whole string while observing
the displacement of the string. The numerical implementation of this approach is
within the framework of our method of computing optimal control of distributed
systems which was successfully implemented for the membrane equation. In fact
the string equation treated here is the analog of the membrane equation with

one less dimension.

This is why it is interesting to test different approaches for optimal control
of the string equation and infer the same conclusions for the membrane for which

the technical mathematics are more complex. This is very helpful:

o from the theoretical point of view one can gain better insight by considering
different approaches and how they relate. It can also serve as a tool for

proving convergence of discrete methods to the case of full information.

133



e from the practical point of view this is really a precious tool for design by be-
ing free of practical restrictions like having to have concatenated controllers

and sensors, or a large number of sensors to fit a fixed rigid theoretical form-

ulation.

3.5 Approximation of the Identity and Convergence to a Point Control

In this section we consider the convergence question when we are approxi-

mating the Dirac “6-function” by L2-functions. This serves two purposes:

e in practice the physical realization will certainly involve a control distributed

on a finite area

e it is also related to the eigenfunction expansion of the control.

The problem of approximation of the identity has been studied by Harmonic
Analysts: approximations to the “§-functions” serve as an approximate unity in

the Banach Algebra L'(R) with convolution as multiplication.

Let us return to the point control of the previous section:

; lﬂ(;[)agg v )]0 st (3.53)

The solution of this problem will be defined in a weak sense only because the

forcing term is a distribution.

To define the convergence question more precisely let us consider the follow-

ing sequence of simple functions:

fh(w)={§ §-5<e<i+3 (3.54)

otherwise

The sequence fi(z) converges in distributional sense to é(z — £):

fu(e) "= 8z —¢) (3.55)

134



Does it hold that the sequence of controls (corresponding to forcing terms up(t) fi

(z) converges to the solution u(t) (when the forcing term is u(t)é(z — £)?

From Harmonic Analysis we know that given a kernel k(z)eL'(§2) and given

ko(z) = %k(-i-). (3.56)

if feLP(2) 1< p < oo then:
f*xke— f ase—0 in LP(Q) (3.57)

If we take a smooth kernel keC*>°(Q2) and consider the sequence f * k. the con-

vergence is going to be pointwise under appropriate conditions on k.

However the sequence we have chosen f,(z) makes the computations easier

and would be more meaningful physically too.

Next we consider distributions defined as linear functionals on function
spaces. The inner product serves to define the derivative of a distribution by
“transposing” the differential operator to the C'*°-test function:

< Oip,p >=— < u,0;p > (integration by parts)

or

[o-tu=[u-oi (0= 50) (3.58)

We can give the following examples:

W B ={y 22,

OH =6
(2) (fH) = f'H + f(0)é
Now we study the response of the string to a point control, and we consider the

following discontinuous displacement function and compute the control giving

rise to such a response:
h(t,z) = h(t)y(x) (3.59)
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with

z 0<z<¢
) &
'/’(z)“{zzf £<o<t
The derivative of 1 is:
1 0<z<¢
! —J ¢
t»b (.’L‘) - { f;—[ 6 <z < ¢
The derivative of ¢'(z) is:
¥'(2) = sr—p 8z = &)
)

From the assumed expression (3.59) and the string equation we get:

a,t) = (B(0) + B O)() - g

For convenience let us choose h(t) = —%e"’” so that:

ha,) = = ¢~ (@)

and

We have that as ¢ — O:

ae Bt
ue(z,t) = BE(E = e)fe(m) — u(z,t)

we would like to check that:
he(z,t) — h(z,t) = —B-e Y(z)
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(3.60)

(3.61)

(3.62)

(3.63)

(3.64)

(3.65)

(3.66)



Now we need to compute the Fourier Series of the impulse control and we consider

the asymptotic expansion of f.(z):
fe(z) = Z fn(e) - sin —:z:

Using the identities:

fy sinmy-sinny dy=0 m#n
foﬂ sin®ny dy = 3

Wegetfn—- fe smtz: dz
After integration we get:

22 nme

fo = — sin("F&)sin("F)

This leads to

nrwx

fe(z) = Z — sm(--g) sin(~5—) sin( =T

Therefore

ue(e,t) = Z ﬂf{ €7rne

(—{) sm(-—-—-m) sm( o

(3.67)

(3.68)

(3.69)

(3.70)

(3.71)

In this section we have given all relevant formulae for the investigation of numer-

ical convergence when the point control is approximated by L?-function f.(z)

which is imposed by:

e theoretical considerations: the Davis [22] formulation of the optimal feed-

back control allows for bounded input maps only.

e physical considerations: a controller is always distributed over a finite area.
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3.6 Multi-Dimensional Point Control-Point Observation

Here we investigate the multi-dimensional problem allowing for controls to
be applied over discrete points along the string while observing the displacement
of the string at discrete points. As before we allow the control points and the

observation points to be distinct for a greater latitude in design.

The problem studied here will approximate a distributed control problem as
the number of points gets larger and larger. In fact it turns out that it is a first

order approximation to the distributed problems.

Consider the following:

# (8] = [ogea ] R0 [l

h(nlvt)
h 1727t
h(ﬂN’ t)
Let the Resolvent operator be:
R(jw;a) hl_ ¥ (3.73)
b) hl ’(,[) o
we have seen before that the resolvent characterizing BV P is:
a2 4 (d+w? + jew)p = (jw — )b — I’
Solan = 0 (3.74)
Y =jwp—h
The transfer function of the system is given in operator notation:
G(jw) = C R(jw; A)B (3.75)
Applying it to a vector control we get:
¥ 0
Gjw)u = Z ui(t) - C R(jw; A) {6(2: _ 51)] (3.76)

i=1
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Keeping the notation of the resolvent equation we get:

£
plew)== [ Gz | - E)s' = ~Gloz ] &)

The transfer function will be given by

" N g(w,m|§,~)
o) | | =k Swin | T
uy a G, | &)

Let G*(jw) be the adjoint operator G*(jw) with:
G* = [Gih<iicn

Then the equation

G'v=w

is equivalent to

N
wi = —K Y G(w,n; | &)v;

j=1

or

GYj = —KG(w,n; | &)
The spectral factorization algorithm will be applied to:
Flw)=1+G"G(jw)

If we let G*G = [G*Gij] then

N

G*Gij = K*Y_ G(w,m | &) - Glw,mk | &)

k=1

Henceforth

- N
Fij=6;+K*Y Glw,m | &) Glw.me | €5)

k=1
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(3.80)

(3.81)

(3.82)

(3.83)
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To compute the gains let us recall the general formula:

(B*K] [ ,’1’] _ 1 / +°°(F-(w))f1G*CR(jw;A) [,’;] du (3.85)

27 J_ o

From the resolvent equation we get:

£
P = [ Gzl @)= Dh) - KN (356)

and 1,[)(.’11,0)) = jwcp(a:,w) - h(:t)

therefore

£
CR(jw; A) [;:,] = K/o G(w,z | £')((jw — B)k(z") — k'(z")) dz (3.87)

We see that the formulae for ¢(z,w) and CR(jw; A) [ ;:,] involve the displace-

ment and velocity functions h(z) and h'(z').

However we observe only at discrete points, thus the best approach is to
devise an approximation scheme for these integrals involving only the observed
discrete values. This is much more efficient than estimating the state first then

plug in the estimate in the relevant formulae. Thus for a given subdivision of the
interval (0, £):
0=$1<$2<"'<$N+1=€ (388)

We can take for example the 1st order Euler approximation:

N

£
/0 f(z) do =) (zi+1 —z)f(&) Eielzi, zisa] (3.89)

=1

Applying this to ¢(z,w) at the observation points gives

4
o) = [ Glon; | 2)H @, &

N
N Gl |G~ HME) — K(E) (390
k=1
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Define the following gain functions:

ng N N _
gilw) = === 2. Y, Glw,nj | €)G(w,m; | €)((Gw — B)h(Ex) — K'(&)) (3.91)
=1 k=1

=1
If we define the auxiliary functions
N ——
xik(w) =Y G(w,n;j | £)G(w,n; | &) (3.92)
j=1

Then the gain functions become

tK? Y
gi(w) = ~- Z xik(w)((Gw — B)R(€x) — h'(&x)) (3.93)
k=1
In matrix notation

9(@) =~ @)l — B)h 1) (3.04)

where [z, (w)] is the matrix of general element z;x(w).

The optimal state feedback control is given by:

] o0
u=—18"K1[ ] =g [ (PG @G A~ 1) (3.95)

This approach was taken to show:

e the consistency of the formulation when passing from scalar to multidimen-
sional control and the possibility of implementing it within our framework

of matrix spectral factorization.

e to relate to the result of the next section dealing with distributed control
and show that what we have here is just a first order approximation. This

can be used to prove the convergence to the distributed control problem
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because the formulation in the present section is the one corresponding to a

physical realization.

In the next sections we are going to take a much more powerful method using

the eigenfunctions of the system as basis for the state space which introduces a

huge saving in computations.

3.7 Distributed Control

Let us consider the string problem with no constraints on the control and

with full information on the state.

[2"] = [——0+v 3] [2’] - [u(f,ﬂ]
Kh

y:
B.C.
I.C.

4
dt

For the resolvent equation we keep the same notations as before.

The transfer function “operator” is in this case:
¢
G(jw) - u(z,t) = —K/ G(w,z | z")u(z',t) do’
0

Similar computation give the adjoint operator

[—
G*(jw) - p(a) = K / Glw,z | «')p(z) da

(3.96)

(3.97)

(3.98)

Notice that in this case the formulae for G and G* are symmetrical and defined

by integral operators with conjugate kernels. This leads to

¢ e .
G*G(jw) - u(z,t) = —K2A dy u(y,t)/0 G(w,z | y)G(w,z | §) dz (3.99)

Define the “transfer” kernel:

14
k(w,z |y) = /(; G(w,z | y)G(w,z | y) dz
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Then

¢
G*Glu] = —K2A k(w,z | y)u(y,t) dy (3.101)

Theorem 3.2:
Consider the distributed control/distributed observation (3.96) for the string.

The “modified” transfer function is given by
L
F(w)[u] = v + G*Glu] = u(z,t) + K? / k(w,z | y)u(y,t) dy (3.102)
0

where k(w, z|y) is given by expression (3.100).

In the distributed control problem we have an operator spectral factorization

problem. This is the main advantage of the Wiener-Hopf technique compared
with the Ricealti operator approach is that the dimension of the spectral fac-

torization problem is the dimension of the control space. When we considered

finite dimensional controls we arrived to matrix spectral factorizations. As the

dimension N of the controls goes to oo, the matrix transfer function will approach
the operator transfer function. Let us try to recover the multidimensional dis-

crete case from the present one by postulating a control of the form:

N
u(z,t) = Z wi(t)é(z — &) (3.103)

Then
£
G*Glu] = K* / kw, = | )6y — €)dy
= K%k(w,z | &) (3.104)

By using the expression for the kernel k we finally get:

N ¢ _
G*G[u] = K? Zu;(t)/; G(w,z | &)G(w,z | 2) dz (3.105)
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Now since the control u(z, t) is this particular form can be identified with [u;(t) =

u(€,t),- -, un(t) = u(én,t)] the above expression becomes:
N t ‘ :
G*G[u] = K? Z ui(t) / G(w,z | &)G(w, & | z) dz (3.106)
i=1 0

And we get a matrix approximation of G*G:
‘ ——
GGy = / G(w,z | 68w, & | 2) dz (3.107)
0

The final step consists in taking this matrix approximation to the operator G*G
and use a discrete sum as an approximation for the integral. This is possible
because we now make the assumption that the obervation is made at discrete

points z = 71,72 - - - nn. Hence

N
G*Gij =Y G(w,&j | m) - Glwme | &) (3.108)
k=1

Let us note however that the scalar point control cannot be obtained as a special

case of the present one.

In the next sections we are going to use eigenfunction expansions to approx-

imate a given shape instead of using simple functions ) ;6(z — &) (or more

exactly Y uife(z — &)).

3.8 Control Along a Mode of the System

Let ¢(z,y) be an eigenfunction of the system. We consider the following

optimal control problem:

{53 = Az +u(t) LD(‘L)]

y=Cz

B:C—L*¢L? Buz[ 0 ]
u-

C:I*@®IL*—L* Cz=h, x=[g] (3.109)
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We seek the optimal control that minimizes the quadratic criterion:

[Taue sy a (3110)

Since the problem has been treated in detail for the membrane we just give the
relevant formulae and refer to the previous chapter for details. In fact this is

one advantage of our metholodogy which permits great flexibility by allowing

the handling of this new problem by:

o replacing the old eigenfunctions by the new ones.

o feeding the new eigenvalues to the system.

In this particular case it really amounts to discarding one space dimension

to get the string equation from the membrane equation.

The solution to the resolvent equation is:

alc—jw)—p
= — - 3.111
Ll O ) e (3.111)
with A = —a(2F)? (we had a different formulae for the membrane, and still
another formulae for the beam) and
h=ap h'=PBp (3.112)
The transfer function is:
. Ku
G(]w)u——)\+(d+w2)+jcw - (3.113)
And therefore we have:
K? 9
= 114
F(w) 1+(/\+d+w2)+c2w2/;;¢ (3.114)
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Theorem 3.3:

The optimal state feedback gain for the mode shape control (3.108) of the

string is given by:

h K? 2 [T -1 e—jw) =B
. = do (3.
BK[h,] - /Qcp /_w (F ) g s & (G119)
where F(w) is given by expression (3.114), and o = a(t) B = B(t) are given by
expression (3.112); the optimal control is:

uw'(t) = —B'K [ ,’:,] (3.116)

We have given the formulae just to make the point clear that the method is
valid without major change for different models and one needs only to plug
the eigenvalues and eigenfunctions in the “algorithm” to generate the optimal
control. In fact the “algorithm” accepts as much information as it is given to it,
and the more information available the more efficient. We shall say more about

this later.

3.9 Multidimensional Control Along Modes of the System

In this section we will see the distributed control problem from a different
angle by using N eigenfunctions of the system as basis of the control space (and
the state space it turns out, since eigenspaces are A-invariant). We are to derive
the exact formulae in the form of series expansion for this hyperbolic system with
finite dimensional control set. When we remove physical considerations and let
N — oo the solution converges to the distributed optimal control. Furthermore,
in this case, the matrix to be spectral-factorized diagonalizes and we are reduced
to N decoupled scalar control problems. This section serves to prove another
point: that the knowledge of the Green’s function is not absolutely necessary
and we can deal with the situation by devising approximations to the transfer

function.
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So let us consider the following problem:

52=[ ;;:él = [agf+7 ;] [”:'] # i ) [v‘(()m?} (3.117)
rc.

1,92 - - @n are the first eigenfunctions of the system.

In the final paragraph we will talk about the physical realization and the

relationship to discrete controls.
The resolvent equation stays the same and we keep the same notation.

The transfer function is:

G(jw)u = CR(jw; A) g uj [cpi(()x)] | (3.118)
Let
wnl )5 e

The solution to the resolvent equation is:
¢
xi(z,w) = — / Glw,z | 2')pi(z')da’ (3.120)
0

To get a solution independent of the knowledge of G(w,z | z') we use the

bilinear expansion of G:

Gw,z | 2') ~ ; &;%1)’2 (3.121)

An being the eigenvalue corresponding to the eigenfunction ¢n.
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Note:

We use the full bilinear approximation and do not truncate to the first N

terms.

Using this bilinear expansion into the expression of xi(z,w) and using the

orthogonality of the eigenfunctions we get:

xi(z,w) = :\—% (3.122)

We see that xi(z,w) depends only on ¢;, A;.

Going back to the expression of the transfer function:

GGjw)u = K Z 0 ‘P'(/‘\”()w) (3.123)

We see that G depends only on ¢ - -+ ¢n (so far we did not introduce any trun-
cation).

To compute G* we consider a function v(z) and its Fourier coefficients:

14
v,-=/0 v(z)pi(z) dz (3.124)

If we assume that

G*(jw) v=uw (3.125)

Then

v;
= K——— 3.126
A VIS VO (3.126)

For G*G we get:

G*G(]LU) G*{Kz ‘10](27)

’,\ - Mw )
N A .
= A;E—_-_—fim .G*pj(z) (3.127)



Let w! = G*pj(z)

Then
. K t K
J — _— i . - d — 6'.
Therefore
0
Ai—=A(w) =J

The expression for G*G becomes:

N
* . vy = K2 uj -
GGG u =1 @

where

e;j |1 — j* position

The expression of F(w) can be deduced from
Fw)=I+G*'G
and the above expression for G*G

- k2 -
L+ sor

Flw)= \
14—k

L AN —A(w)|2

(3.128)

(3.129)

(3.130)

(3.131)

(3.132)

(3.133)

Therefore the problem is reduced to a spectral factorization of the scalar function:

K2

fi(w)=1+——'—'—| /\i—mlz
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Let  R(jw;A) [:,] - [i]
with
x(z,w) = /: G(w,z | z')((jw — B)h(z") — h'(z')))dz’

K(z,w) = jwp(z,w) — h(z)

Then

OR(ie )| ] = bxter) = & 3 U PR o)

where h, and A, are the Fourier coefficients of h(z) and h'(z).

Let
w=6C Riwi4) | |
e B,
T = AMw)
Then
o Ui _ 2wt Bhith
v N P v YO N
Define
silw) = [(1+ k? ,\i_lx(w))—]_l |
Then
s1(w)
0
[F= (@)™ = s2(w)
0
sn(w)

Using the formula for the optimal gains

mxi[f] =2 [ @reente | ]

—0o0
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(3.136)

(3.137)

(3.138)

(3.139)

(3.140)

(3.141)

(3.142)

(3.143)



we get

~ r+oo s {w .
—oo ,\1_,((.,),)| ((Jw + B)h1 + h})dw W
K? ‘ :

[B*K] [”:,] =-5- f (3.144)

+ o0 sy (w)

e 35w + B)hy + hiy)dw

Theorem 3.4:
consider the multidimensional mode shape control (3.117) for the string.

Define

(o= _ [T G+ B)si(w)
A=~ | )P

—0oQ

(o) = +oo s,-(w)
B = [ e (3:149)

where s;(w) is given by the expression (3.141). Then the component of the
optimal state feedback control is given by:

u; = g;;(Ai(w)hi + B,‘(w)hg) (3.146)

where

14
B = /0 h(2)pi(z)dz
¢
h2=‘/0 R'(z)pi(z)dz (3.147)

We therefore see that we have a decoupled control algorithm, u;(t) dependes
on A;i(w), Bi(w) which depend on s;(w) obtained by performing a scalar spectral

factorization. -

The real advantage of the approach of this section is the decoupling property
In fact we have seen that we have a rational approximation to the transfer func-

tion, but this however plays no essential role since we have to deal with scalar
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spectral factorization only due to the decoupling property and we have already
developed a very efficient spectral factorization algorithm based on the Hilbert

transform.

To close this section we need to mention the fact that in a physical situation
where the controls act on discrete points of the system we need to compute the

Fourier coefficients along the eigenbasis. This problem will have a unique solution

if the number of controls equals the number of modes we want to control, and

a polynomial interpolation will allow the passage from one representation to

another.

3.10 Approximations to the Transfer Function

In this section we study the question of “approximations” to the transfer
function when the control cannot be decoupled as in the previous section and
the Green’s function of the system is not available. Of course it is always possible
to use numerical integration to approximate the Green’s function but this is time
consuming and does not yield an efficient algorithm. To prove our point we take
somehow the “worst case” i.e. a scalar one point control. In such a situation
there is no way of approximating a given shape by a one point except by an

averaging process which will not satisfy all boundary conditions.

We prefer not to go into the details of the computations but instead give a

summary of the relevant formulae and make some comments.

The problem is:

. 0
h=Ah+u(t) [ 5z g)] (3.148)
y=Kh

As we have seen earlier the transfer function is
G(jw) = —KG(w,z | £) (3.149)

and using the bilinaer expression of G we get:

Gjw)=-K Y "’A"T(”’_)-‘i—'(‘g)—) (3.150)
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The adjoint operator is:

l—.
G*(jw)- f = -K / Glw,= | €)f(a)da (3.151)

which has the following expansion

G*(jw)-f=-K Z 3 “oj(f()w)fn (3.152)

n=1

The expression for G*G is:

. - ) 2 | on(8) I2
G*G(jw) =K / | G(w,z | §)|"dz=K Z(,\ “ @) (An — Mw))

(3.153)

from which the expression of F(jw) is deduced.

Again let us mention that the approach given here does not depend on the
particular problem of the string, but depends only on the eigenfunctions and

eigenvalues of the system.

However a word of caution here; although the series expansion for F(jw),
G*(jw)--- are used in an integrated form in the gain formulae (which improves
the convergence) there is still a convergence problem to be studied since the

bilinear expansion of the Green’s function converges in a weak sense only.

3.11 Point Control and Numerical Laplace Transforms

We would like to go back to the problem of point control

B.C. (3.154)

{% = aZh 4 BZE 4 yh + u(t)b(z — £)
1.C.

As the Dirac é-function is the distributional derivative of a function one

way to deal with it would be in an integrated form. This way one avoids the
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convergence problems associated with eigenfunction expansions. Therefore we
are going to transform the string equation using Laplace transform and get the
solution in the frequency domain by integrating the forcing term against the

Green kernel.

Using Laplace transform the equation becomes
0’H
Oz?
Hlaa =0 (3.155)

o (s> = Bs —7)H = (s = B)Ho + Hy — U(s)é(z — §)

The solution is given in terms of the Green’s function as
¢
H(s,z) =(s— B)/ Ho(z')G(s,z | 2')dz'+
0
¢
/ G(s, | ") Hy(s')dz' — U(s)G(s,z | €)  (3.156)
0

The displacement is obtained using the inverse Laplace transform:

¥+ioo
h(t,z) = % H(s,z)e'ds Re(s) >~ (3.157)

y—t00
where Re(s) > v is the region of convergence.

Therefore

1 y-+i00 £
h(t,z) = 5—7;{ —[r . dse**(s — ﬂ)/o Ho(z)G(s,z | 2')dz’

—100

Yy+to0 4
+/ dse’t/ G(s,z | ") Hy(z')dz'
0

y—ioco

~Y—to0

4100
—/ U(s)G(s,z | E)e’tds} (3.158)

Let
~+i00

g(t,z | z') = —2%/ G(s,z | z')e’"ds (3.159)

y—100
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to get

1 [rHie | 2
—/ (s — B)G(s,z | 2')e’ds = —Bg(t,z | z') — 5t—g(t,z [z') (3.160)
Y .

27 Jyioo
Since

+300
—}—. /1 U(s)G(s,z | £)e*tds = u(t, ) (3.161)

—io0
We get the expresssion of h(t,z) in terms of g(t,z | z') and u(¢, z):

¢
ht,z) = / o(t,z | ') (H)(2') — BHo(z'))dz'

t 9
‘/o S9(t,2 | ') Ho(z')ds' - u(t,2) (3.162)

The first two terms correspond to the initial conditions and the term u(t,z)

corresponds to the forcing term.

Now it remains to show how to compute inverse Laplace transforms nu-
merically, although there are algoirthms that do the job directly we prefer to
reduce the problem to computation of oscillatory integrals. After some minor

modifications the inverse Laplace transform can be written:

‘e‘yt +o0 )
f®) = o F(y +ia)e’ da (3.163)
Let F(y +ia) = R(y,a) + tJ (7, a) (3.164)

Notice that v is chosen to insure the convergence of the integral. Plugging

the decomposition of F(y + ta) into real and imaginary parts in the expression

for f(t) gives:

e'yt +o0
f(t) = 5 / [R(v,a)cos at — J(v, a)sin at]lda (3.165)

-0

We have therefore reduced our problem to computations of integrals of the form:

j°°f t)sin at da and j°°gt cos at da
o« mr

which can be achieved using existing software.
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CHAPTER 4

BEAM EQUATION

In this chapter we move to a more complicated model. Whereas the standard
string equation (with no damping) yields simple propagating waves, the theory

of beam motion leads to a dispersive system.

In section 4.1 we derive the Euler-Bernoulli equation {4.5] which neglects ro-
tary inertia and shear deflection. We review the propagation of harmonic waves
and give the dispersion relation and show the difference with the string equa-

tion. From a study of the reflection of waves we get the transmission coefficients.

We remark that the end resonance is what is new in the case of the beam and

this the mathematical dual of the tunnel effect in Quantum Mechanics (This is

similar to the duality of the harmonic oscillator in Quantum Mechanics and the

wave guide problem in Electromagnetics). We then study the eigenfunction exp-

ansion and give condition for open loop stability for our “beam” (We add to the

standard Euler-Bernoulli equation damping and elastic reaciton terms).

In section 4.2 we derive the optimal state feecback control then along a mode

shape of the beam.

In section 4.3 we study the question of energy dissipation and show that
the presence of damping changes the configuration of the poles of the system
with respect to the contour of integration. This study shows the importance
of introducing damping to make the residue computations well defined, espe-
cially when dealing with operators in an infinite dimensional space. As far as
we know there is no infnite dimensional analogue to the Plemelj formulae [26]

when some singularities happen to lie on the contour of integration. The in-

troduction of damping also insures the stabilizability of the system (by using

semi-group theory as in Chapter 2) and thus avoids the study of the difficult
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problem of controllability (see [59, 60]). This section is very brief as the lit-

erature on this subject is huge and we refer to the references. We do however
mention the Chen-Russel [16] model as we use the beam with structural damping

in Chapter 5.

In section 4.4 we study the Timoshenko beam model which takes into account

rotary inertia and shear deformation and leads to finite phase velocities. This

model is excellent agreement with the exact theory based on Elasicity Theory eq-

uations, the only way to improve on this model is to introduce nonlinear effects.

We give the seires expansion of the solution. We also study the eigenstructure of
the associated matrix but we do not try to get an exact formulae for the 4 x 4

transition matrix (as was done for the previous models with 2 x 2 matrices) as

this leads to cumbersome computations better left out for a symbolic Language

algorithm. This gives us, however, a chance to demonstrate the flexibility of

our algorithm by incorporating an ODE software to integrate the differential
equations numerically. The results are satisfying (see Fig. [23]). We also give

the resolvent equation but stop at this level, just to show the same methods

apply and how easily we can handle a variety of models.

4.1 The Euler-Bernoulli Beam

Consider a beam undergoing transverse vibrations with bending moment
M and shear force F, satisfying the Euler-Bernoulli assumption: plane cross
sections perpendicular to the axis of the beam remain plane and perpendicular

to the neutral axis after bending.

The bending moment and the curvature are related as follows:

&%y M
52 = " EI (4-1)
The bending moment and the shear force are related via
oM
= — 4.2
F=— (42)
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The equation of motion is then

0 (oM &y
a(“a?)“‘—”aﬁ (+3)
by substitution we get:
o? 8%y 8%y
322 (EI 5}—5) + pS 5z f(z,t) (4.4)
define a = % (constant in the uniform case) to get
dty 1 &%y
322 + Pl f(z,t) (4.5)

Besides the fact that we get 'a%:'i' a partial differential operator of fourth order, the
main difference with the string equation is that a does not have the dimension
of a velocity

Remark:

In this case, the translational kinetic energy is

dT, = —% dm xy* (4.6)
and the rotational kinetic energy is:
1 2
dTy, = 3 dJ x 6 (4.7)

To neglect rotary inertia is to omit the contribution of dTy to the total energy.
This will hold for low frequencies only and will lead to a physical impossibility
at high frequencies.

Next we study the propagation of harmonic waves by considering a solution

of the form:

y(z, t) = ae'zw? (4.8)
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leading to the equation relating frequency and wavenumber:

-5 =0 (4.9)

In PDE terminology this is the characteristic equation.

There are four roots:

+. /92 i
(4

RIE

(4.10)

The dispersion relation is linear:

c = *avy (4.11)

and give rise to infinite velocities which can be avoided either by considering
rotary inertia or by introducing damping. The real roots :i:\/%_ correspond to
simple wave propagation as in the case of the string. The imaginary roots :ti\/?:-
do not have an equivalent in the case of the string, they are responsible for the
dispersion phenomenon and play an important role in the control problem (forced

motion).

To get some insight on how waves reflect at boundaries of a beam we consider

a pinned end boundary condition:

%y
y0,8) = 55 (0,1) = 0 (4.12)
and consider the general solution.
y(z,t) = ASTTD 4 Beivatw) | CgrTe~t 4 De™® &t (4.13)

with the above boundary condition we get the following transmission coefficients:.

B _ -1+i C _ 2

A 141 A 1 +1

(4.14)

Here the C term is what is new in the case of a beam and is referred to as

end resonance.. It is suprising to note the duality of this result to that obtained
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for a particle encountering a potential well. In an analoguous way the appearance

of the C term is a quantum effect called the “tunnel effect”.

Next we consider the defining equation for the Green’s function:

d*G " 1
- B G = 57 -9 (4.15)
where ¢ = ‘;‘;—;— (or more generally: —3* = g,-)

which leads to two different expressions:
<€ Gi(z) = A sin fz + Ay cos Br + Cy sh fz + Ca ch Bz
z>¢ Goz) = A} sin Bz + Ay cos fz + Cy sh Bz + C; ch B £4.16)

We have 8 unknowns (A;, A%, A2, A} ...c5) and only four boundary conditions:

2
W0) = g4 (0) =0
W0 = 2 = 0 (417)

We also get three continuity relations:
G1(E—€)= G2(¢ + ¢ (deflection continuity)
Gl (E—€)= Gyo(f + ¢) (slope continuity)

G ((—¢)= G3(€ + ¢ (curvature continuity) (4.18)

The fourth condition expresses the jump of the shear at z = ¢:

E+e @ . E+e 1 {te 1
/6 y'Ydr — / ydz = Ej/ é(z — e)dz = i (4.19)

—€ —e€ E—e

which leads to y® ()5S = #;

The final expréssion for the Green’s function (See [28]) is:

{Gl(z/§)=A-shsz\/§ 0<z<<7
‘ (4.20)

G2(z/€) = B - sh(1 — z)y/s otherwise
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Ao —sh(1 —2')\/s
T s3/25hy/s

where

—shy/sz'
A 4.
B Fshi (4.21)

Next we handle the eigenfunction expansion of the beam equation:

Zh— a2k +c2 +dh+u(z,t) a>0 c<0

f;gg) = h(f) =0 (4.22)
f—;CIr.(O) =528 =0

The above boundary conditions correspond to pinned ends, the term c% is

a viscous damping term having the effect of shifting the poles and leading to

finite group velocities (in contrast with Euler-Bernoulli beam). The term dh can

be interpreted as the effect induced by an elastic foundation on the beam. Al-
ready in the case of a string such term leads to a dispersive system. This term
may also lead to mathematical difficulties (non-ellipticity, non-positive definite-

ness of operators).

As before we introduce a change of dependant variable to “eliminate” the
damping term:

g(t) = h(t)e™ %" (4.23)

The same transformation holds for the forcing term. We arrive at the following

system

2

4
(S =aft+@+Shg+w

ot2
9(0)=g(£)=0
| 230 =540 =0 (4.24)

go(z) = ho(z)
[ 90(z) = ho(z) = 5ho(2)
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The associated eigenvalue problem is:

aga:zfll + 6‘Pn = /\nSOn
#n(0) = n(£) =0 (4.25)
5 (0) =S80 =0

which admits the solution:

¢a(z) =sin n—;:c (4.26)
*with eigenvalue
2
An = (d+ %) + a(fei)‘* (4.27)

In the beam case the eigenvalue grow as n* which is no surprise since the differ-

ential operator is of order 4.

The system will be open loop stable if:

(d+ %) +a (%)4 >0 (4.28)

The associated initial value problem is:
&1(2) = Antn(t) + wa(?)
an(0) =rn (4.29)
a,(0) = vn

We refer to chapter [2] for more details.

4.2 Optimal State Feedback Control

In this section we consider the control problem of the system:
# i) Logdea 2 [R] )
) h(0)=h(£)=0

(4.30)
R"(0) = h"(z) =0

\ ho(z), hy(z) given
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which is in the abstract form:

&= Az + [g]u (4-31)

as a differential equation in a Hilbert space.

We are going to consider optimal state feedback control along modes of the

system:
u(t) = un(pn(s) (4.32)
where pn(z) is an eigenfunction of the system.

The output operator is:

Cz=Kh (4.33)

We seek to minimize the energy like criterion:
o0
J= / (lull? + lICz|?)dt (4.34)
0

The resolvent equation is:

aS—l%&f[(d +w?) + jewlf = (c— jw)p — ¥

g=jwf—¢

F(0) = £(0) = 0 (4.35)
F7(0) = £7(€) = 0

The “modified” transfer function is given by:

) K? £ )
FGjw)y=1+ T (AT + Pt -/0 lon(z)|“dz (4.36)

Theorem 4.1:
Consider the mode shape control (4.30) for the “Euler-Bernoulli” beam.
Let h(z,t) = a(t)pa(z)
h(z,t) = B(t)pn() (4.37)
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Define the integrals.

+o0 N
. _ . -1 Cc —Jjw
I= 4/;00 [F (]w)] (A+d+w2)2 +c2w2

+o0
1= [ (4.38)

Then the optimal state feedback control is given by:

u(t) = 5~ /n (on(@)Pda(a(t)] — B(£)T) (4.39)

4.3 Dissipation of Energy

In the previous sections we considered a simple damping mechanism namely
viscous damping which is of the form c (1 e. uniform damping rates). To see

how the damping affects the shifting of poles [28] let us consider:

o*h B8R 1 3*h 1

- bt i _ ~twt
5 Tt e EI&(x £)e (4.40)
Trying a solution of the form, h(z,t) = h(z) - e ™%, we get:
d*h w2

We drop the B.C. for seek of simplicity to be able to solve by Fourier Transform:

tf‘y 2

s W
= — 4.42
H(y)= \/—E” e S (s (4.42)
The inverse Fourier transform gives:
. 1 eiv(z— f)d ’
@ =55 T (4.43)

The integral can be evaluated by residues. However one must take care in choos-

ing a contour of integration. There are four poles: v = 7o, 17
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reals roots: +vo (propagating waves as in string case).
imaginary roots: +iyo (dispersion effect).

For the infinite beam the contour will be as follows:

Fig. 21: Pole Configuration for a Beam With No Damping
The pole at v is being excluded by the radiation condition (i.e. no source at co).

In the case of the finite beam the B.C. will determine which poles to consider.
What will be the effect of damping?

Consider now the equation with damping:

d*h w? . 1
E’;"{ - (; - ww) h = E&(x - f) (4.44)
As before we get
" 1 +oo —iv(z—§) J 5
@=zm [ Tt (849
However 72 is now given by:
_4 w? . :
Yo =5 —ew (4.46)
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The pole configuration becomes:

Fig. 22: Pole Configuration for A Beam With Damping

Now the contour of integration includes the desired poles and we need not worry

about identations. [28]

With a similar argument one can show that:
1 [t :
B'K = / [F~ ()]~} 6" (jw)C R(jw, A)dw (4.47)
-—00

is well defined when we introduce the damping, all the eigenvalues are shifted

away from the imaginary axis.

The introduction of damping stems from physical considerations, however it
makes the mathematics more complicated but well defined and leads to results
in accordance with observation and physical intuition (such as finite responses,

finite propagation speeds ...).

In the context of control theory there is another crucial advantage: the
damping mechanism acts on the higher order modes, since the controller by its
nature acts on a finite number of modes only. However this is not the end of the
story, the controller may well exert positive action on higher frequencies which
lead to the instability phenomenon called “spillover”. As we have explained time
and again our control algorithm does not suffer from this drawback. It would
be nice however if the damping mechansim (instead of being uniform) were to

be stronger as the frequency increases. As a matter of fact experimental studies
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for the beam have shown that damping is proportional to the frequency (linear
relationship). This phenomenon is called structural damping. We will use such
model in the sequel when we consider boundary control of beams. Consider a

general linear oscillator in a Hilbert space H:

d’h
7Y +Ah =0 (4.48)
where A is a positive self-adjoint operator on H.

A model for structural damping studied extensively by Chen and Russell
[16] is

d*h dh

- /227 —
o+ 2A T AR =0 (4.49)
In our case A = 5@;—4 and hence AY/? = —%2;%’- (with paried B.C.). The structural

damping term takes the form —275‘?%%.

When the damping is very high it becomes the dominating term and the
equation becomes of diffusion type. This is a singular perturbation changing the
type of the system (in addition to the order). This is in complete agreement
with numerical experiments we did. We did not pursue the matter further but a
computation of the previous integral by residues would show that as ¢ increases

the solution tends to a Gaussian function which is the diffusion kernel.

4.4 Timoshenko Beam Model

In the case of the Euler-Bernoulli model infinite phase velocities are pre-
dicted as well as infinite responses. We mentioned earlier this can be corrected
by considering rotary inertia. The Rayleigh theory which takes this effect into
account leads to finite phase velocities. Only the Timoshenko model which con-

siders shear effects as well is in excellent agreement with the exact theory. .

The Timoshenko beam can be modelled by the coupled system of PDE’s:

(4.50)

1:2 = ot2

KGS (az a_zl) 8t7 f(:z: t)
KGS (% -v)+E pIZL
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We can also get the above equations using the variational approach. The poten-

tial energy of the beam is:
1 oY , e OV 2
v=3 / (EI|| Y+ kGSISL ) do (4.51)
The kinetic energy is given by:
1 Oy
-3/ (PS ‘?a?

By using Hamilton’s principle the Timoshenko equations are found to be the

2

3
ot

+pI‘

2) dz (4.52)

Euler-Lagrange equations of the variational problem corresponding to the beam.
The above system represents two coupled modes of deformation:
(i) transverse deflection: y(z,t)
(ii) transverse shearing deformation: %'zi(a:, t) — ¥(z,t)

It can be shown that the system has two families of characteristics, each pair
corresponding to two waves of same speed propagating in opposite direction.
The above system of coupled wave equations can be transformed into a single
equation (under suitable assumptions of differentiability). However it is more

convenient to work with the coupled system for the following reasons:

- the expression of the shear force and the bending moment are easier to

obtain.
- the boundary conditions can be formulated correctly.

- There are no extra assumptions on differentiability.

The reduced fourth order Timoshenko PDE is:

2
Py _; &y | pr

_ &y  p (9% &y
Porr ~ "B120c2 | 0zt G

= — Bl W) = f(z,t)  (4.53)

168



In this form it becomes clear that the Timoshenko model is a singular pertur-
bation of the Rayleigh model when & is small. The only way to improve on the

Timoshenko model is to introduce a nonlinear system.

To apply our standard techniques. We need to transform the Timoshenko

equation into a first order system. Let the equation be:

aa:* + 55 ﬂaziati + 73:4 %5 = u(z,t)
1.C. (4.54)
B.C.

Define the new variables:

p(z,t) = {(, 1)

g(z,t) = &(z,1)

r(z,t) = &(z,1)

s(z,t) =€ (z,1) (4.55)
corresponding to the beam displacement and its first 3 time derivatives. We

therefore get the 4th order system:

( p(z,t) 0 1 0 O} rp 0
d q(x,t) _ 0 0 1 0 q + 0
i | r(z,t) | 064 0 0 \ 1 r ol
a v 3
S s(z,t) —3%7% Ty —:l; + %‘a? 0 s 1 (4.56)
y(z,t) = Kp(z,1)
I.C.
\B.C
As orthogonal basis for the purpose of computation we take:
. nw
pn(z) =sin—-z
14
An = i,
nm\ 2
fn = — (7) (4.57)
Assuming a series solution of the form:
£(z,t) = Y an(t)pa(2) (4.58)
n=1
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We arrive at the initial value problem:

{ apdan(t) + ali(t) — Ball(t) +val) () = un(?) (4.59)
1C. ~
In matrix form:
& 0 1 0 071z 0
| |0 01 0]z 0
i =0 00 1] |as|t]o|¥® (4.60)
T4 -8 0 a 0 T4 1
1C.

there is a slight change of notation when passing from the equation to the system.

Let us define

0 1 0 O
0 0 1 0
A= 0 0 0 1 (4.61)
-8 1 a O
The characteristics equation is:
M—aX+4=0 (4.62)

which is nothing more than an implicit dispersion relation for the Timoshenko

wave equation.

Defining:
p=A (4.63)

We get
pt—ap+p=0 (4.64)

The discriminant of this second order equation is:

A=o®—-4p (4.65)

which leads to:
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a® —48>0:

+./a?—4
w=12 > oo

A= :i:\/; £ v gz — 48 (4.66)

o’ —48<0
_atiyif—a?
B= 2
C AR — 2
A::t\/aiz ;B = (4.67)
If we let:

AR ;‘2 — 45 (4.68)

then A = £/, /v

An eigenbasis is given by the 4 vectors.

1 1 1 1
Vo —ve ' -V (4.69)

? ? ?

o o v v
a\/o —o\/o vV —vy/v

We discard the viscous damping in this discussion. The resolvent equation is

then given by:

( %%14 - ‘%52%2;%’“ - %Szfl =G4 %(91 +92) — C‘g_z(gl +92)
fa=sh—a

fr=shi-o (4.70)
_f4 =sf3 — g3

\B.C.
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If we assume the control to be of the form:

u(z,t) = u(t)pa(z) (4.71)

scalar control distributed along a shape function of the system. Then we can

postulate a solution in the following form:

fi(z,w) = xj(w)pn(c) (4.72)

Theorem 4.2:

Consider the shape control problem (4.56) for the “Timoshenko”-beam

model. Let A be the 4 x 4 matrix of the associated initial value problem given

by (4.61), with implicit dispersion relation:

M_—ad4+8=0 (4.73)

Under the assumption a? — 483 > 0 and defining o, as in (4.68), A admits the
eigenbasis given in (64). The resolvent equation (4.70) will have the solution
(4.72) where:

_s(8) = (p(1) + a())(5 + £ )

fl(.‘L',UJ) - 1 P)
(2 +2x)+222

®n(z) (4.74)

and similar expressions for f;(z,w) j=2,3,4

Remarks:

1. The “Timoshenko” beam we consider here is more general than that consid-

ered in the literature because we add a viscous damping term.

2. We did not get beyond the eigenbasis to commpute the 4 x4 transition matrix

for two reasons:

e It is very cumbersome and it is more appropriate for a symbolic language
computation (The computations we did in previous chapters involve

2 x 2 transition matrices which was already a difficult problem).
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e As we mentioned before our algorithm is flexible and we wanted to

demonstrate it in this example by incorporating an ODE software to

solve the beam equations.

3. In the theorem we stop at the resolvent equation, just to show that our

algorithm can handle a variety of models (in this case the Timoshenko beam).

As a numerical example to test the software we take a forcing term of the

form:

u(z,t) = ae” (a2 + 1= B+ —v)pon(z) (4.75)

generating a displacement function:

y(z,t) = ae " pn(z) (4.76)

where ¢, (z) is given by expression (4.57).
As input to the program we need to provide the following information:
e length of the beam: £ =1.5

e beam parameters: o = 1.2, =0.75,y=13,v = —-1.7

absolute and relative errors on computations: 10~%,0.0

time step size and number of periods: 5 x 1073,15

assumed shape (eigenfunction): n =3

desired point z on the beam where the displacement is displayed: z = 0.95

The program will then display the exact displacement at  computed from (4.74)
and the computed displacement by using (4.58) and integrating (4.59) with the

ODE software. The results are reported on the next table and are excellent.

173



Computed Exact
Displacement | Displacement
-0.3074757159 -0.3074757159
-0.3059424162 | -0.3059421778
-0.3044174910 | -0.3044162691
-0.3029017746 | -0.30289779897

-0.3013964891

-0.3013872802

-0.2999031842

-0.2998841107

-0.2984237373 | -0.2983884513
-0.2969603837 | -0.2969002128
-0.2955156863 | -0.2954194248
-0.2940925360 | -0.2939460278
-0.2926941514 | -0.2924799621
-0.2913241386 | -0.2910211980

-0.2899864018

-0.2895697057

-0.2886851132

-0.2881254852

-0.2874248028

-0.2866884470

Fig. 23: Simulation of the Timoshenko Beam
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CHAPTER 5

BOUNDARY CONTROL OF BEAM

In this chapter we consider a beam with structural damping, subject to a moment

acting on its end (See Fig. 24])

(&)
2
7
7
P
-z
2
A
z
7
Fig. 24: Beam With Boundary Control
Such beam will satisfy the BVP:

3? at 3%y

a0 = —054 + 5%

y(0) =y(¢) =0 (5.1)

y"(0) = 0,y"(£)a = m(t) B.C.
yo and Yo given I.C.

where y(z,t) is the displacement at z, and m(t) is the moment acting at the end.
We want to compute the optial state feedback control M(t) that will minimize

the quadratic criterion:

/0 " (m () + Ky, OlP) dt (5.2)

where ||y(-,1)|| designates the norm of y as a function of z.
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In section 5.1 we show the futility of trying to reduce (5.1) to a bounded input

map by adding a term of the form:

f(z,) = (2)u(t) (5.3)

to the right hand side of (5.1) for an appropriate function ¢. This leads to
a different criterion and more importantly because the expression of u(t) in-

volves the derivatives of m(t) and leads to unstable algorithms. Agina the

flexibility of our algorithm is clearly demonstrated in this example where we treat

this infinite dimensional system with unbounded operators directly and show

how “easy” the implementation is.

In section 5.2 we present the method of lines for this problem, just to prove our

point of how complicated its implementation is (for instance how to handle the

B.C.) with no guarantee of convergence.

In section 5.3 we reduce the PDE (5.1) to a first order symmetric hyperbolic

system because these systems have an extensive theory both in the PDE literature
(see Courant [17]) and in the Control literature (especially the controllability
results by Russel [59]). We again see the inadequacy of yet another method

(characteristics) as we arrive at an order 10 system (when actually we have a

PDE of order 4) especially when we get in this case only two independent direct-

ions.

In section 5.4 we apply our usual technique of transforming the PDE into an

infinite system of initial value problems wihtout giving all the details. Next we
transform the initial value problem into an equivalent one where the unbounded-
ness of the input operator is moved to the output operator while keeping the

same transfer function.

We compute the “modified” transfer function (whose spectral factor enter
in the optimal gains fomrulae). Then we compute the optimal gains and give
the exact formulae using Theorem 2.13 and we see the huge advantages of this
approach:
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- No theoretical difficulties such as those encountered with the Riccati Oper-

ator equation with unbounded system operators.

- No comparison is even possible from-a computational point of view where we

have a scalar problem with a closed form formulae when the Riccati equation

will lead to huge, stiff systems and no efficient algorithm to solve them (See
Chapter 1).

We then implement the system on a minicomputer with the following features:

1.

o

We use a very high gain to demonstrate beyond any doubt the superior per-

formance of our algorithm, our gain was 10,000 which will destabilize most

existing algorithms. The free beam does not even have time to react when

the controlled beam has been brought to rest (we need to put constraints

on the size of the gain though but for physical considerations only not to

damage the structure).

Again to show the flexibility of the method we use an ODE software to solve
the initial value problem (just as with the Timoshenko beam in Chapter 4)

even though we are able to solve it exactly.

. The numerical results demonstrate clearly the robustness of the algorithm.

We already know it is robust with respect to parameter variations. Here we

test instead its robustness with respect to unmodelled dynamics by taking

only 10 modes for the control while keeping 20 modes for the displacement.

Finally we give some insight on the difficulty of boundary control of systems.

5.1 Reduction of the Boundary Control Problem of the Beam Problem

to a Bounded Input Operator Control

Let us consider the problem:

o — —aZ2 + 2% + f(z,t)

v(0) = v(£) =0 (5-4)
2 2

220)=0 23 =0
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Note that this problem has homogeneous boundary conditions. If we can write
f(z,t) = ¢(z)u(t) where ¢ is an L?-function such that (5.1) and (5.4) are
equivalent, then we have succeeded in reducing our original problem to one that

we can handle by the usual approach.

Let us take ¢(z) such that:

©(0) =(£) =0
¢"(0)=0 ") =1
(For instance ¢(z) = 632(:::2 - 02),¢"(z) = %) (5.5)

Then ¢ satisfies the required conditions.
The computation of the control however suffers from two setbacks:

1. There is no way one can minimize the original quadratic criterion (which
involves the square of the moment |m(¢)|?), 2 new criterion is minimized

and the relationship between the two is not obvious.

2. The recovery of m(t) from u(t) cannot be done in a stable way since the

expression of u(t) involves derivatives m(t) and m(t) of m(t).

(to be convinced of these two claims just assume that u(z,t) = v(z,t) +

m(t)¢(z) and do computations).

5.2 Method of Lines

If we define v = % in (5.1) we get the following system:

S=v

t

B =—aft+ 05} (5.6)
w(8) = m(t)

B.C.

Defining h = Az = z;41 — z; we get:

8%y _ va+1(t)—2ve£t)+v.'-1(t)
az? — h

oty _ wiga(t)=duipi(+6ui()—duioi (OFuioa(t) (5.7)
BC. N
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The original problem becomes equivalent to:

n; = v;
v = — 55 (Vi1 — 2v; + vi-1)
+5 (wiva — uipr +6ui — duiy + uig) (5.8)
i=1,2...N+1
B.C.

However we are faced with the following probleﬁ:

For i = 1(z = 0) we need also u(—h,t),u(—2h,t) to compute %; and
v(—h,t) to compute g—z—‘%. For i = N +1(z = £) we need u(€+ h,t) and u(£+2h,t)
and v(€ + h,t). One can extend the beam beyond [0, £] along the tangents as a

scheme to get the necessary boundary conditions.

The implementation is complicated and the convergence of the method is not

guaranteed.

5.3 Reduction of the PDE to a 15t Order System

In studying hyperbolic PDE’s of order higher than 2 one reduces them to a

system of first order PDE’s in an attempt to use the method of characteristics

to solve the equation.

Following Courant and Hilbert Mathematical Methods for Physics, we de-

fine:
"0 =u;p% = %;poﬂ = %;po,s - %’pl’l _ ;:az;
or more generally
P = a?:;:j (5.10)

The order of the PDE is k = 4, therefore we have 5(—':"—1) = 10 new variables.

And the original PDE is replaced by the new system:
For i+5=012,...k -2

%pu _ piHL (5.11)
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For i+j=k—1 1#F k-1

py’ =P T(5.12)
Finally the original equation becomes:

B 1
p* = =prt +=p" =0 (5.13)
[0 04

If we introduce the vector notation we get:

v(z,t) = (p"(z,1)) (5.14)
and the system can be written:

U 8U
= tAS-+BU+C=0 (5.15)

which is a symmetric hyperbolic system

aj an oo Q-1 Qg
-1 0
where A=]0 -1 0 (5.16)
-1 0
0 0 0 0

The system in 10 x 10, but one can show that an equation of order 4 may be

transformed into a 4 x 4 system with a judicious choice of the variables.

The method of characterstics is based on the fact that there are k indepen-

dent characteristic directions, and one solves the equations:

dz
i Ai(z,t) (5.17)

where ); are the eigenvalues of A.

Restricted to the characteristics the PDE becomes a system of ODE’s. Un-
fortunately in our case we have only 2 independent directions because we have

one multiple zero eigenvalue:
AM=d=A3=2=0 (5.18)
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5.4 Expansion of the Boundary Optimal Control of a Beam with Struc-

tural Damping

( 2 4 3
24 = ot
y(0)=y(£) =0

y"(0)=0  y"(&) =wu()

\ with Ky as output

where a, 3 are positive constants.

Let us expand the displacement function into its Fourier series:
= nw
o) = 3t sn

Let the initial conditions have the expansion:

Yo(2) =D rapa(®)  G0(2) = ) snpn()
n=1 n=1
where
_nr
/‘I"n - e

Thus we arrive at the initial value problem:

Jn(t) = —apiyn(t) — Bulyn(t) + (-1)"apnu(t)
Yn(0) = 7n
¥n(0) = sn

An equivalent formulation is:

a[20]=[ o —aal (28] rora[i]wo

2]o= %]
( yn(t) = Kpdza(t)

—

181

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)



We write (5.24) as an infinite dimensional system:

o -

21
22 _ 0 . I <[ 21 ] -
22
J —apt 0 -84l 0
_ — +
dt 2y —Ot/l% —5#% b4
2','2 é2
A 0 0 N 11
oz
22
3
n(t) & 13 0
v2(t) | = K 2
0 N
21
[ 21 ] 0 ]
22 :
Tm//i:r;n
0=
21 0
2:'2
B U

The transfer function is given by:

G(jw) = CR(jw; A)b = C(jwI — A)"'b
Thus:
G*(jw)G(jw) = b (~jw] — A% CC(jwI — A) b
F(jw) = 1+ b*(—jwl — A%)1C*C(jwl - A)~'b
The gains are given as follows:

1 [t . lf—,,—.i——\ .
B Klao = 5= [ PGl G Gw)CR(Gw; Azod
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(5.26)

(5.27)

(5.28)
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If we define:

K(jw) = b*(—jwl — A*)1C*C(jwl — A)™!

P(jw) =Cjw— A"t (5.30)
We get:
K(jw) = b*P*P (5.31)
Then
F(jw) =1+ K(jw)b
[B*Klzy = & [12(F~(jw)) K (jw)dw - 2o (5.32)

u(t) = —[B*K]z(t)

Next we compute the resolvent operator.

Define:
A=jwl
B=-I
[ aut cee
C= s
0 0
[ jw + Bu? cee 0
D= Jw+Buz ... (5.33)
i 0 0
to get:
A B
Jjwl— A= [C D] (5.34)
] —W2+j:JﬂI‘2; 0
ACTID = e (5.35)
- O A
Hence:
[ -1 + W2‘j“:ﬁ#2] 0
B—-AC™'D = T (5.36)
0
L




We shall use the inversion lemma in the following:

4 Bl —C!D(B-AC™'D)"! —A"1B(D-CA'B)!
[C’ D] = ‘ (5.37)
(B-AC'D)™!? (D-CA™'B)™!
Next we compute the elements of the inverse matrix
" . 0
C'=(B-AC™'D)! = Ty S B (5.38)
0 .
. . 0
- jwtBul
A'=-C7'DC' = CTR R (5.39)
0
apt
T 4 0
CA™'B = -5 (5.40)
0
.. , \ 0
D—-CA'B= jw+ Bui + S (5.41)
0
. ' 0
D'=(D-CA™'B)™! = R TioBnt (5.42)
0
1 ' 0
B, - —A_IBDI = +_]_le = (aﬂi"w'})"'jwﬂﬂ?. (543)
0

Therefore:

jw+Bul ) D ( 1 )
. . -1 (apd—w?)+jwBpl (api—w?)+jwhp?
R(jw; A) = (jwl - A)™ =

ap? jw
D ((w’—au;‘,)—jwﬂ#i) D ((au:—w2)+juﬂu3.)
(5.44)
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where D(),) designates the diagonal operator with A, as the element of the

diagonal.

The operator P(jw) being defined in (5.31) we have:

po(wi+8%ud) py (Bpi—jw)
(apd—w?)2+w?p?pu] (api—w?)2+w?f?ul

P*(w)P(w) = K? 5.45
(@)P(w) [ B3 (jwtBu}) } D [ By ] (5:45)
(apf —w?)i+w?f2u] (api—w?)2+w?8%u]
Since:
K = P*P (5.46)
And the “modified” transfer function is given by:
2 - 0‘2#2
F(jw)= K = 47
(Jw)=1+ nz=:1 T T (5.47)
And if we define:
a(®)]
Zz(t)
z(t) = (5.48)

z1(t)
Z2(t)

Then we have:

K(jw)z(t) = K* 3 _(;12);"‘;‘22 g [0+ Bun)en(t) + 2a(8)] (5:49)

which we plug in the expression for the gains to get:

= K2 [ N (=1)"apy
u(t) == 2_71_ . [F (]w)] r; (a/f}z _wz)z +w252u;11
[Gw + Bpl)za(t) + .én(t)] duw (5.50)
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Define:
[Fo(w)]™' = R(w) +jT(w) to get:

vl e )

/ = R(w)dw (5.51)

o (s =+ P

Similarly we get:

Re { /+°° jw + Bud)[F~(w)] ! dw} g2 /+°° R(w)dw

oo (an — w7+ Ut coo (ol — W) BPHES

_ / T wI(wde (5.52)

o (s — VP

Define the auxiliary gains functions by:

B = [ e

o (o — @) + frute?

+oo wT(w
) = [ T (o)de (5.53)

oo (api —w?)2p2udw?

we therefore get the expression of the optimal boundary control:

U(t)—”-—;; > (D) apn(za(t)(BpkCR(w) — G3(w)) + 2n(t)GR(wW)) (5.54)
Theorem 5.1:

Consider the boundary control problem [5.1] for the beam with structural

damping. Let R(jw) and J(jw) be the real and imaginary parts of the spectral

factor:
[F~(w)™! = R(jw) + T (jw) (5.55)

and Define the auxiliary gain functions as in (5.52). Then the optimal state

feedback boundary control is given by:

K?a &

5 2 AGR)En() + fuhza(®)] = GH@)za(D)} (-1)kn  (5:56)

u(t) = —
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5.5 Numerical Simulation

We do not give the detailed formulae for the simulation of the forward system

and the control bloc as this has been explained extensively for the previous models

we treated, the methodology stays the same. This shows the “ease” with which we

can handle a variety of systems (membrane, string, Euler-Bernoulli beam, Timo-

shenko beam, beam with structural damping,. . .) and a variety of control schemes

(Distributed control, Point Control, Multidimensional Point Control, mode shape

control, boundary control ...).

Next we describe the numerical results contained in Figure [25]. We need to

provide the rpgoram with the following:
e the length of the beam: £ = 1.0
o the parameters of the beam: a = 1,5 = 100
e the time step size T: T = 102
e amplitude of the initial perturbation: A = 0.1
e index of the desired eigenfunction: n =1
e transfer function estimated spectrum: €2 = 10,000
e control gain desired: K = 10,000
e absolute and relative errors on computations: 0.1,0.1
e desired point on beam: z = 0.5

Figure [25] gives the time, the displacement of the free system without control,

and the displacement of the beam under the influence of the control. Figure [25]
gives the graphic representation of the previous table. As we can see clearly

the results are excellent, the free system has not had a chance to react (stay-

ing at about 0.09 on the graph during the first hundred time steps) when the
controlled system has already been brought to rest (staying at about 0.0 dur-

ing the same time period). This result ws achieved because of the high gain

(K = 10,000 and most likely this will not be possible for other algorithms).
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Free Controlled
Time | System System

0.01000 | 0.09951 | 0.08005
0.02000 | 0.09805- | 0.05393
0.03000 | 0.09076 | 0.05031
0.04000 ] 0.09495 | 0.03824
0.05000 | 0.08892 | 0.02880
0.06000 | 0.09968 | 0.01456
0.07000 | 0.10002 | -0.00158
0.08000 } 0.10579 | 0.01595
0.09000 | 0.09903 |} 0.02085
0.10000 | 0.10122 § -0.01034
0.11000 | 0.11433 | 0.01229
0.12000 | 0.08196 | 0.00366
0.13000 | 0.09347 | 0.00469
0.14000 | 0.13148 | 0.00129
0.15000 | 0.10448 | -0.00604
0.16000 | 0.09458 | 0.00370
0.17000 | 0.11242 | 0.00100
0.18000 | 0.10823 | -0.00448
0.19000 { 0.10633 | -0.00431
0.20000 | 0.09612 | 0.01102
0.21000 { 0.09671 ] 0.02212
0.22000 { 0.06436 | 0.00210
0.23000 | 0.10643 | 0.00192
0.24000 | 0.10787 { 0.00064
0.25000 | 0.09521 ] 0.00060

Fig. 25a: Simulation of the Beam With Boundary Control
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Fig. 25b: Simulation of the Beam With Boundary Control
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5.6 Remarks on the Difficulty of the Boundary Control Problem Com-
pared to a é-Function Control

As we said earlier the difficulty stems from the fact that the input map B is

unbounded:

1. in the case of é-function control, we can write formally
Bu(t) = 6(z — ()u(t) (5.57)
and we can approximate § by L2-functions, as € — 0 : fc(z) — é(z) in the

weak sense.

Since the fourier coefficients are of the form n cos &F ¢, we have to deal with a
divergent seires of the form }__n (see previous report) in this case however
by using the Green’s function one can avoid this problem by working in the

frequency domain via Laplace transf. For the string we can write:
N e
h(t,z) = Go(t) + Go(t) — Z/ G(s,z(¢:)Ui(s)e™*ds (5.58)
i=10

assuming a control of the forms: Bu = Ef\; ui()6(z — (i)

2. In the case of boundary control of the beam we see that we have divergent

series of the form Y n? (see this report). (It would be as if we were dealing

with the derivative of the é function.)

3. There are serious limitations if we want to study those problems while hold-
ing on to the original formulation especially in the case of boundary con-
trol of the beam. For instance we will still be faced with the following
problem: When B is unbounded what happens to B*K? Remember-that
u(t) = —B*Kz(t). If B*K is unbounded then there is a problem since even
a perfect simulator will not do the job (Any small error on z(t) — large

error on u(t)).
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CONCLUSIONS

The methodology developed for the computation of optimal state feedback
control problem for distributed parameter systems is very powerful and does not
suffer any of the drawbacks of heuristic methods (such as spillover, - - -) since it is

based on a sound mathematical basis. The main advantages of the method are:
(1) Concise and clear; the steps involved in solving the problem are summarized
by the diagram:
(a) Computation of the Green’s function
(b) Computation of the transfer function

(c) Solution of the Resolvent equation

l
(d) Spectral factorization
(e) Optimal Gains

Any of these 5 blocs has subblocs such as supply of eigenvalues, eigen-

funcations, - - -.

(2) Very efficient:

(a) The computations of the Gain formulae in the frequency domain by the
Wiener-Hopf technique depends only on the number of controllers. By
constrast the Riccatti approach depends on the number of modes nec-
essary to approximate the state which is huge in the case of distributed

system.

(b) the improvement we introduced by computing the control in a basis of
eigenfunctions allowing the decoupling of the control problem (and the

forward system as well).
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(3)

(4)

(b)

(c)

Universality: If we go (1) and investigate the different blocs involved we
find that none of the steps depends on the particular system but only on
the linearity of the system. The method gives exact formulae in the form
of series expansion and allows for numerical computations with arbitrary

degree of accuracy. The method has been applied successfully for:
(a) string equation (numerical results)

(b) membrane equation (numerical results)

(c) Euler-Bernoulli beam (numerical results)

(d) Timoshenko-Beam (only necessary formulae)

(e) Beam with structural damping and boundary control. The results were
amazingly accurate with the control more and more effective as more

and more energy is supplied to the controller.
Another attractive feature of the method is:

Flexibility: it can be applied to more general cases and allows for different
approaches to the control problem releiving the designer from the burden
of rigid theoretical formulations that can be very hard to realize in practice
(such as concatenation of sensors and actuators) which may introduce some

potential instabilities in the system.
Futhermore:

When the Green’s function of the system cannot be computed (or it is very
expensive to do so) the method allows for a scheme that leads to rational

approximations to the transfer function.

when the eigenfunctions and eigenvalues are not known the method can
allow for the introduction of a finite element scheme to approximate the

eigenfunctions of the system without major changes in the methodology.

one can even drop the eigenfunction basis altogether and use finite elements

(but decoupling property is lost).
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The author also thinks (from his experience with geometric control theory
and simulation for nonlinear systems that the method can be generalized to

encompass Hybrid Systems (containing both distributed and nonlinear elements).

Finally, we mention that the spectral factorization algorithm we devised
could have interesting applications in a variety of Mathematical Physics and

Engineering Problems:

(1) Riemann Problem (Hydrodynamics - Elasticity-Fluid dynamics. . 2

(2) H> design of control systems (minimizing sensitivity functions to get robust

controllers).

(3) Singular Integral Equations (Astrophysics. . .)

(4) Filtering of Distributed Systems

Although a sound theoretical background exists for the above mentioned prob-

lems (and many others), efficient numerical algorithms seem to be lacking.
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