THESIS REPORT

Master’s Degree

Low Complexity CELP Speech Coding at 4.8

kbps

by Y-H. Kao
Advisor: J.S. Baras

M.S. 92-10

INIR

INSTITUTE FOR SYSTEMS RESEARCH

Sponsored by

the National Science Foundation
Engineering Research Center Program,
the University of Maryland,

Harvard University,

and Industry

ABSTRACT

Title of Thesis : Low Complexity CELP speech Coding at 4.8 kbps
Name of degree candidate : Yu-Hung Kao
Degree and year : Master of Science, 1990

Thesis directed by : Dr. John S. Baras
Professor
Electrical Engineering Department

Low bit rate, high quality speech coding is a vital part in
voice telecommunication systems. The introduction of CELP (1982)
(Codebook Excited Linear Prediction) speech coding provides a
feasible way to compress speech data to 4.8 kbps with high
quality, but the formidable computational complexity required for
real-time processing has prevented its wide application. In this
thesis, we reduce the computational complexity to 5 MIPS (million
instructions per second), which can be handled by even
inexpensive DSP chips, while maintaining the same high quality.
We hope our contribution can finally make CELP coding a widely
applicable technology.

Low Complexity CELP Speech Coding
at 4.8 Kkbps

by

Yu-Hung Kao

Thesis submitted to the Faculty of the Graduate School
of the University of Maryland in partal fulfillment
of the requirements for the degree of '

Master of Science
1990

Advisory Committee :

Professor John Baras, Advisor
Professor Thomas Fuja
Professor Steven Tretter

ACKNOWLEDGEMENT

First I would like to express my sincere gratitude to my
advisor Professor John S. Baras. He has created opportunities for
me and let me have access to both academia and industry. It has
been truly rewarding being one of his students.

I would like to thank Dr. Raja Rajasekaran for providing me
the opportunity to do research at Texas Instruments, I got to
know many good friends over there : George Doddington, Joseph
Picone, Charles Hemphill, Barbara Wheatley, Wallace Anderson,
and Abraham Ittycheriah. They have been very helpful and
supportive.

Also I would like to thank National Security Agency for
providing me with their CELP source code and documentation.
Without their outstanding contributions in CELP speech coding,

this work will not be possible.

Finally I am grateful to the financial support of SRC and NSF.

ii

Table of Contents

Chapter 1 Introduction 1
Chapter 2 Overview 2
2.1 Preliminaries 2
2.2 Objectives 5
2.3 An Overview of CELP Analysis and Synthesis 3
2.4 CELP Bit Allocation Format 8
2.5 Organization of The Thesis 8
Chapter 3 LPC Analysis 10
3.1 The Computation of LSP | 10
3.2 Combination of Root Searching
and Quantization 19
3.3 Interpolation of LSP 20
3.4 Complexity of The LPC Analysis 21
3.5 Conversion of LSP to Predictor Coefficients 22
Chapter 4 Pitch Prediction 23
4.1 Pitch Codebook Search 23
4.2 Complexity of Pitch Search 26
4.3 - Increased Pitch Prediction Resolution 26
4.4 Two Stage Pitch Search
to Reduce Computation 31
4.5 Delta Coding for Pitch Index :
to Reduce Both Computation and Bit Rate 32

4.6 Perceptual Weighting 32

iii

Chapter 5
5.1
5.2
5.3

Chapter 6

References

Final Speech Residual vQ

Complexity of Codebook Search

Structured Algebraic Codebook in CELP :
for Fast Codebook Search

Fast Algorithm to Compute Inner Products

Quality Results
and Suggestions for Future Research

iv

(OS]
BN

Fig.

L) W LW LW
P

el
W N —

e
N

.51
Fig.
Fig.
Fig.

5.2
53
5.4

5.5

List of Figures

Tllustrating the extraction of information

from the speech signal in CELP coding

CELP Analysis
CELP Synthesis

Direct form LPC filter (analysis)
Direct form LPC filter (synthesis)
Vocal Tract Model

Lattice Filter (synthesis)

Lattice Filter (analysis)
Interpolation of LSP

Pitch Codebook Search
Interpolation for pitch prediction
Waveforms and Spectra

of interpolated signals
Ripple Effect

Codebook Search

Searching for the optimal codeword
A typical codeword

Codebook sub-vector combinations
for inner product computations
Computation of Inner Products

3
6
7

12
12
14
14
14

20

24
28

29
31

35
37

40

42
472

CHAPTER 1: INTRODUCTION

The frame work of CELP (codebook excited linear predictive)
coding was suggested by Bishnu S. Atal in 1982. CELP can achieve
high speech quality (better than all 16 kbps coding and
comparable to 32 kbps CVSD) at very low bit rate (4.8 kbps). But
the formidable computational complexity (over 100 MIPS for real-
time processing) prevents its application 1in telecommunication
systems. Extensive efforts have been undertaken through the
years to reduce CELP complexity in order to make it fit into
current DSP technology. The bottleneck of complexity is the search
of the stochastic codebook. Several groups (1, 2,38 09, 11] have
published their results on reducing the codebook search
complexity, but the best result known tO date can only achieve
minor reduction, i.e. the codebook search still dominates in the
total computational complexity; and often at the price of non-
optimal search (of course, this will degrade speech quality). These
algorithms still require about 15 MIPS. We base our work on the
NSA version of CELP (proposed federal standard). We find an
algebraic codebook, which can be searched optimally for only 0.16
MIPS, and thus we achieve a 5 MIPS algorithm. This reduction in
complexity is far better than any other algorithm known to date;
and according to preliminary evaluations (by NSA and others), 1its
quality is also better than any other low complexity CELP. Formal
subjective evaluation tests are currently being prepared for the
evaluation of this algorithm. Because a 5 MIPS algorithm can be
easily implemented on 2 great variety of DSP chips, this
technology can be used in practical communication systems. We
hope the contribution of our work can finally make low bit rate,
high quality speech coding become widely applicable in speech
communication systems.

CHAPTER 2 : OVERVIEW

2.1 Preliminaries

As discussed in the introduction the primary attraction of
CELP speech coding is that it provides high quality (almost
equivalent to toll) speech coding at a low bit rate (4.8 kbps). An
important step towards the establishment of CELP as a widely
used coding technique 18 the development of standards. A group
at the National Security Agency (NSA) recently proposed a 4.8
kbps speech coding standard using Code Excited Linear Prediction
(CELP) for digital radio transmission, Federal Standard 1016, Sept.
1989 [7, 9, 13]. In addition to digital radio applications, CELP is
also very suitable for encrypted telephone communications and
other applications’\"wherein voice must be digitized prior 1O
encryption. More specifically in order to achieve privacy in
cellular techniques, low complexity CELP is required.

CELP is an analysis by synthesis type of technique. As in the
following diagram (Fig. 2.1), speech information is extracted in
three steps [8, 10, 12, 14[:

[\

\ 1st speech 2nd speech
speech residual residual
> LPC Analysis ;‘
(LSP's) y Pitch Search —> Codebook Search

!

v

10 LSP
Parameters
per 240

Fig. 2.1

a) Short term

samples

!

& Gain

per 60
samples

(envelope) information is extracted by the LSP

spectrum pair) - parameters.

Pitch Index

Codebook Index
& Gain

per 60
samples

Illustrating the extraction of information from
the speech signal in CELP coding.

(line

b) Long term (pitch) information is extracted by the pitch index

and gain.

¢) Finally Gaussian vectors with
to represent the speech Ttesi

"innovations process”).

independent components are used
dual (an approximation to the

We now proifide a brief overview of the CELP vocoder, so

that we can proceed with our pro

blem definition. In the following

chapters we will explain each stage and operation in detail.

Speech coders can
waveform coders and vocoders.
ADPCM) encode the digitized speech signal

be classified into two major categories :
Waveform coders [16] (PCM,

“sample by sample”, soO

they can achieve good quality at the price of high bit rate (> 32

kbps). However,
speech signal or simply by 1
obvious that there are many redundancies

rather
Therefore it

is not

necessary

if we look into the mechanism of generating the
ooking at the speech waveform,

it is
in the signal.

to encode speech “sample by

sample”. Instead, we can encode a “block of samples” by exiracting
“features” from the signal, this is precisely the idea of the vocoder.

The difference between waveform coders and vocoders can
be stated as follows : waveform coders process “a sample” at a
time, but vocoders process “3 block of samples” at a time.
Waveform coders can be used to encode all kinds of sound signals,
because they do not explore the “nature” of the signals, for
instance they can be used equally well to encode both music and
speech. Vocoders, on the other hand, are “source dependent”; for
example, the CELP vocoder is for speech only, because it explores
the special mechanism of speech generation, which is not valid for
music.

As is well known [16] the mechanism generating speech
signals can be classified into two categories :

1) Voiced sound : the vocal chord generates a vibration, which is
subsequently modulated by the vocal tract.

2) Unvoiced sound : there is no vocal chord vibration. There is
only air flow, which is subsequently modulated by the vocal
tract.

Therefore we can see that two kinds of information are
involved in speech': 1) vocal chord vibration generating different
frequencies, which can be treated as FM information; 2) vocal
tract modulation shapes the envelope of the speech signal, which
can be treated as AM information. If we look at a real speech
waveform, it looks like an FM + AM signal.

The task of CELP vocoder is to extract these two types of
information from the speech signal in an efficient way. LPC
analysis models the yvocal tract, which captures AM information.
Pitch detection models the vocal chord 'vibration, which captures
EM information. If we only extract AM and FM information, the
reconstructed speech sounds rough. In CELP we use a third stage :

4

“yector quantization” (VQ) to encode the “speech residual” in order
to make the reconstructed speech sound more natural. Of course,
the quality of the reconstructed speech depends on the size of the
VQ codebook; the larger the better. As mentioned earlier the
critical problem is that the required codebook search 1s very
expensive computationally. For a 512 codebook size, if we use a
“random” codebook, CELP requires 100 MIPS for real time
processing [9]. If we use “overlapped” codebook, CELP still
requires 20 MIPS [9]. Ever since the beginning of CELP research in
1982 [10], “the reduction of computational complexity” has been
the major concern [1, 2, 8, 9, 11]. This reduction is precisely the
topic of this thesis.

2.2 Objectives

Due to the extensive codebook search involved, the CELP
algorithm requires about 20 MIPS processing power (for codebook
size of 512) to run in real time [9, 13]. Our research interest is to
find a new way to structure the codebook so that we can replace
the time consuming linear search with some efficient heuristics.
Together with other algorithmic approximations and heuristics
that we will introduce, our objective is to show that the
computational complexity can be reduced to under 10 MIPS;
which can be handled by a single TMS320C30 chip. Actually
further reduction can allow implementation in many inexpensive
single chips, giving the way for a variety of applications.

2.3 An Overview of CELP
Analysis and Synthesis

Figure 2.2 provides a schematic diagram of the analysis part
of CELP speech coding . Figure 2.3 provides a schematic diagram of
the synthesis part of CELP speech coding. The various blocks will
be described in detail in the subsequent chapters. The analysis
part determines the 10 LSP parameters, the pitch codebook index
and gain, and the codebook index and gain that have to be
transmitted to the decoder. The synthesis part is relatively

straight forward as Figure 2.3
traditional CELP synthesis uses the

illustrates. As shown in the figure,
Gaussian codebook vector and

the gain to scale it, the pitch codebook vector and the gain to scale
it, to produce a combined (additive excitation) for the LPC filter,

whose coefficients are updated on-line.

Analog
Speech >{A/D
Input
Pitch -
\} Predictor [
Y LPC
Speqtrum . Analysis
Predictor [(LSP) Spectrum _
Predictor
Perceptual Perceptual
Weighting [€— —>| Weighting
Filter Filter
Short Delay Short & Long Delay

Speech Residual

To pitch codebook search

Fig, 2.2 CELP Analysis
1) middle column
computation complexity is negligible.
2) left column
speech, then
complexity is about 3 MIPS.

perform pitch prediction. The

Speech Residual

To codebook search

LPC analysis (spectrum information). The

subtract spectrum information from original
computation

3) right column : subtract both spectrum information and pitch
information from original speech, then perform speech residual
VQ. The computation complexity is 90 MIPS for random codebook,
9 MIPS for overlapped codebook (NSA), and 0.16 MIPS for the
algebraically constructed codebook presented in this thesis.

Gaussian codebock Adaptive codebook
(pitch predictor)

gav‘.n galm

| 1 !

| Qrosil O >®> LPC >
| 0t0255 | 1 filter

* LSP

subframe
delay <

Fig. 2.3. CELP Synthesis

2.4 CELP Bit Allocation Format

Throughout this thesis we will use the following bit
allocation scheme {9, 13].

Spectrum Pitch Codebook
Update rate 30 ms 30 /4=75ms 30/4=75ms
240 samples 60 samples 60 samples
Order LPC 10 256 delays*60 512 vectors*60
& 1 gain & 1 gain
Analysis Open loop Closed loop Closed loop
Correlation MSPE VQ MSPE VQ
30 ms Delay range : 512 vectors
Hamming 20 to 147
Bit / Frame 34 bits for 10 index : index : 9*4
(240 / Frame) LSP 8+6+8+6 gain (1, 1330)
(3444433333] gain (-1, 2) : 1 5%4
- 5%4
Bit rate 1133.3 bps 1600 bps 1866.67 bps

Total bit rate = 4.6 K bps.

2.5 Organization of The Thesis

The difficult part of CELP is the analysis. It is very
computationally intensive. This thesis is focusing on reducing the
required computations. There are three steps in the analysis : LPC
analysis, pitch prediction, and final speech residual vector
quantization. They are discussed in detail in chapters 3, 4 and 5
respectively. We review the theory behind them, introduce the
basic algorithms, and describe some refinements of these
algorithms, (some of them to improve speech quality, some of
them to reduce computation). Computational complexity of these
algorithms is discussed throughout the thesis. Our contribution is
primarily in simplifying the codebook search algorithm, which is
described in chapter 5. After presenting the whole analysis
procedure in chapters 3, 4, and 5; in chapter 6, we use some

objective measures to evaluate the speech quality. Actually there
are no "good objective” measures for evaluating speech quality of
the coders; the only way to determine if the resulting speech
quality is "good" is by subjective listening tests. These objective
measures are used here for reference purposes only.

CHAPTER 3: LPC ANALYSIS

3.1 The Computation of LSP

The first step of CELP analysis is short term prediction, i.e. to
extract envelope (spectrum) information. The result of the LPC
analysis is an all-zero predictor filter, or a corresponding all-pole
synthesis filter. The parameters of this filter can be transmitted
directly (LPC coefficients); or we can use the equivalent, lattice
form reflection coefficients (PARCOR), to represent the filter.
Usually PARCOR, are preferred due to their low spectral
sensitivity.

Recently, there has been a growing interest in the use of
Line Spectrum Pairs (LSP) to code the filter parameters for LPC
filtering [3, 4, 5]. The LSP representation - is equivalent to the LPC
and PARCOR. LSP can encode speech spectrum more efficiently
than other parameters. This can be attributed to the intimate
relationship between the LSP and the formant frequencies.
Accordingly, the LSP can be quantized taking into account spectral
features known to be important in perceiving speech signals. In
addition, the LSP are suitable for frame-to-frame interpolation

10

with smooth spectral changes because of their frequency domain
interpretation.

It is important to emphasize here that all these three kinds
of parameters (LPC, PARCOR, LSP) are mathematically equivalent.
They are all derived from LPC analysis. If we use double precision
numbers to represent these parameters, they will give the same
results. The point is that because we want to quantize them 10
reduce data rate, quantization will cause inaccuracy of parameter
values (quantization error), and same quantization €rror in
different parameters will cause different degree of distortion of
resulting speech quality. That is why we study the property of
these different parameters, and try to choose the best one; i.e. the
one which gives minimum distortion for a fixed data rate. (We'll
see that PARCOR is better than LPC, and LSP is better than
PARCOR).

Now we turn to efficient computation of LSP. This will
involve an iterative Tro0Otl finding algorithm for a series
representation in Chebyshev polynomials. Generally, it is not
trivial to find the roots of a polynomial. Fortunately, the LSP
polynomials have some nice properties that allow us to alleviate
the complicated root finding problem.

We begin witfl the basic LPC-10 prediction error filter [16]:
. 10
Az)=1- ak)z™
k=1

The {a(k)} are the direct form predictor coefficients (LPC
coefficients). The corresponding all-pole synthesis filter has
transfer function 1/A(z). The analysis and synthesis operations
using these filters are shown schematically in figures 3.1 and 3.2.

11

speech excitation

2

©

S
[]

a(10) -

Fig. 3.1 Direct Form LPC filter (analysis)

excitation speech
_____>

+

a(10)

0
< O L-.-__-._(_U(_Y

Fig. 3.2 Direct form LPC filter (synthesis)
A symmetric polynomial 4F1(z) and an antisymmetric

polynomial F(2), related to A(z), are formed by adding and
subtracting the time-reversed system function as follows:

12

F(z)=A(z)+ 2 A(ZT
F.(z2)= A(z)— z AT

The roots of these two polynomials determine the LSP. At
first glance, it seems WOTSE, because now we need 22 (possibly
complex (so it is 44 real) numbers) I00tS, instead of 10 real
coefficients (both LPC and PARCOR are 10 real numbers), 1O
represent the LPC filter, which is a 4.4 times increase in data.
However, because of the special property of Fi(x) and Fp(x), we
can actually encode the LPC filter more efficiently using LSP.

The physical meaning of the LSP is also important [5]. The
two polynomials F1(x) and F,(x) have the interpretation of being
the system polynomials for an 11 coefficient predictor derived
from a lattice structure. The first 10 stages of the lattice have the
same response as the original 10 stage predictor. An additional
stage is added with reflection coefficients equal to +1 or -1 to give
the response of Fi(z) or F,(z), respectively. If the vocal tract
characteristics can be expressed by 1/A(z), the vocal tract 1S
modeled as a non-uniform section acoustic tube consisting of 10
sections of eqtial length. The acoustic tube is open at the terminal
corresponding to the lips, and each section is numbered beginning
from the lips. Mismatch between the adjacent sections n and n+1
causes wave propagation reflection. The reflection coefficients are
equal to the PARCOR parameters k. Section 11, which
corresponds to the glottis, 18 terminated by mismatched
impedance. The excitation signal applied to the glottis drives the
acoustic tube.

13

The PARCOR latrice filter is regarded as a digital filter

equivalent to the following acoustical model in figures 3.3, 3.4,

and 3.5 :

mismatched sections glottis

p——

Fig. 3.3 Vocal Tract Model

speech excitation
<< t = — — — = — = ~<— e
+ ; ;: +
" k1) k10]
pE—>\"~ - - - - 7 > D .

Fig. 3.4 . Lattice Filter (synthesis)

speech
D +l - - - = = - > D
k1 k10
D -

excitation

Fig. 3.5 Lattice Filter (analysis)

14

In PARCOR analysis, the boundary condition at glottis is
impedance-matched. Now add the 1lth stage, where the tube is
completely closed or open at the glottis. These condition
correspond to ki; =1 and ky; = -1. A(z) should be changed to F{(z)
and F5(z). The acoustic tube is now of the loss-less type, and the

transfer function displays resonant frequencies.

The polynomials F;(z) and F;(z) being symmetric and
antisymmetric, respectively, have roots at z = 1 and z = -1, which
can be removed as follows : ‘

F(z) (Z)

Z

G()— and 2()"

The resulting Gi(z) and Gp(z) are symmetric polynomials of order

10. Since the roots occur in complex conjugate pairs, it is only

necessary to determine the roots located on the upper semicircle.
The roots of interest are of the form exp(jwi), i =1, 2, ..., 10. The

LSP are the angular positions of the roots 0 < wj <.

Since Gi(z) and G2(z) are both symmetric polynomials of

order 10, we can write them as
)

G,(z)= 1+g”z +=:122 oo +g 2 Teeeeenne +g8,2 +2Z

- , -2 - -5, -0
Gy(2) =1+ 85,27 + 8522 Fereenee +8y5Z Fereenunns +8,,2 +2

G 1(z) contributes 5 pairs of conjugate zeros and G2(z)

contributes 5 pairs of conjugate zerds; all on the unit circle. The
linear phase term can be removed to give two Zero phase series
expansions in cosine

G,(e®) = e °G(w)
G,(e*) = e7°G,(w)

15

where

G (@) =2cos(5w) +2g, , cos(4w)+...4+2g, ,cos(w) + g, 5

G,(@) =2¢0s(50) + 2, cos(4w)+...+2g, ,cos(®) + g,

Now we can see that we don't need 22 complex roots, as it
appeared initially; instead, we only need 10 real frequencies,
which 1is the same amount of data as in LPC or PARCOR
parameters. Since LPC, PARCOR, and LSP are all 10 real numbers (
same amount of data), it is important to compare their properties

1) LPC : these parameters have no bound, so it is difficult to define
the quantization region. In addition, they are very sensitive with
respect to spectrum; small quantization error may cause unstable
filter. So they are not preferred for quantization and transmission.

2) PARCOR : these parameters are bounded within [-1, 1], which is
good for quantization. They are less spectrum sensitive than LPC,
and as long as they are within [-1, 1], the filter is stable. So they
are better than LPC parameters.

3) LSP : since the LSP are resonant frequencies, they are bounded
by human physical features. And what is better than PARCOR is
that we don't need to specify the LSP order. In PARCOR, we not
only need to know the values of 10 real numbers, but also need to
know which one is the first one, which one is the second one, etc
However, in LSP, knowing the 10 real numbers is enough (due to
their ordering property). In addition, they are less spectrum
sensitive than PARCOR. If we use same number of bits to encode
PARCOR and LSP, the LSP will give less spectrum- distortion.

Consider the substitution x = cos(w), and cos(mw) = Ty (x).
Tm(x) is the mth-order Chebyshev polynomial in x. It satisfies the

following order recursion

16

Ti(x) = 2xTk-1(x) - T-2(x) :
(ie. cos(kx) = 2cos(x)cos[(k-1)x] - cos[(k-2)x])

with initial condition, Tg(x) = 1 and T1(x) = x. The series expansion

in cosines can be expressed in terms of Chebyshev polynomials

G,(x)=2Ty(x) + 28, T,(x)+...+2g, , TI(X) + g, 5

G,(x) = 2T,(x) +2g,, T,(x)+...+2g,, SOX) T+ 255

Once the roots {xj} of G'1(x) and G'2(x) are determined, the
corresponding LSP are given by wj = arccos(xij). The mapping x =
cos(w) maps the upper semicircle of the z-plane to the real
interval [-1, +1]. Therefore, all the roots {xi} lie between -1 and +1,

with the toot corresponding to the lowest frequency LSP being the
one nearest to +1.

T;(k) is a cosine function, which is difficult to evaluate, and
G'1(x) and G'2(x) each needs to evaluate five Tj(k)'s. The search
for roots needs to evaluate G'i{(x) and G'p(x) at every grid point

and look for sign changes. The evaluation of the cosine function is
simply intolerable. Fortunately, using the recursion relationship,
we can compute G'i(x) and G'2(x) with only one cosine evaluation
instead of five.

To see this, suppose the polynomial to be evaluated is [3]
5
Y(x)=Y ¢, T,(x)
k=0

and consider the backward recursive relationship
by (x) =2xby (%) = by o(X) + ¢,

with initial condition by(x) = 0, for i > 3.

17

Then Y(x) can be represented in terms of bp(x) and bs(x),

follows :

S
Y(x)= > ¢, T,(x)
k=0

5 .
= 3 [b, (%) = 2%, (x) + by (T (%)

k=0

= [by(x) —2xb(x) + b, ()] To(x)
+{b,(x) = 2xb,(x) + b, ()T (%)
+{b,(x) = 2xb,(x) + b, ()T, (x)
+{b,y(x) - 2xb,(x) + bs(x)]T5(x)
+[b,(x) = 2xb(x) + b(x)IT,(x)
+[by(x) = 2xby(x) + b, (x)]T(x)

using T, (x) = 2xT,_,(x) + T,_,(x)=0
fork = 2,3,4,5

and b(x)=b,(x)=0

= [by(x) = 2xb, ()] To(x)
+b,(x)Ti(x)

using T,(x)=1and T(x)=x

= bo(x) —2xby(x) + xb,(x)
= by(x) —‘xbl(x)

using by(x)=2xb,(x)— b,(x) + ¢,

= xb,(x) = by(x) + ¢,
_ by(Xx) + by(x)—Cy
2

—b,(x)+¢q

- by(x) = by (X)+Cy
2

18

as

Using b (x) = 2xb, ()= bey()+C | we see that we only need to

evaluate one cosine, L.e. X, then by the recursive relationship we
can calculate bg(x) and by(x) by 5 MUL and 10 ADD.

Since now we¢ can calculate G'1(x) and G'o(x) by only
evaluating one cosine, 5 MUL, and 10 ADD, the search for roots
proceeds backwards from evaluating G'1(1), G'1(1-9), G’1(1-26),v
G'1(1-38), ..o , to G'1(0).

We need to decide d to avoid causing two or more roots o
fall into one interval. Experiments indicate that, & = 0.02 is small
enough. Because the roots of G'1(x) and G'p(x) are interleaved one
by one, we also have to make sure each pair of roots (one from
G'1(x) and one from G'7(x)) keep their correct order. Again
experimentally, the root uncertainty € must be smaller than

0.0015.

Now we can solve for 10 roots {Xg < X1 < X2« < xg}, where
{x;, 1 even} are ro0ts of G'1(x), {xi 1 odd} are roots of G'2(x).
Following the last paragraph they have to satisfy the following
precision min(x; - Xj-2) > 9 and min(x; - Xij-1) > €. The LSP are
given by arccos(Xi)-

3.2 Cpmbination of Root Searching
and Quantization

Since we need to quantize the LSP, it doesn't make sense [0
solve for the roots to a high precision and then lose it because of
quantization. According to the above analysis, to keep the correct
order of roots, we need € = 0.0015 precision. Since the Toots are in
[-1, 1], this means that we have to evaluate 2 / 0.0015 = 1333
grid points in the search. Since we use only 3 or 4 bits to quantize
each root, such a precision-is not necessary. we can combine the
root search with quantization, making the whole process faster.
For example, if we use 4 bits to quantize a particular root, we only
need to locate this root within 16 possible intervals, which means

19

N

only 16 grid point evaluations instead of 1333. And because we
only need to evaluate very few grid points, we can use 2 cosine.
table to get rid of the cosine evaluation by table lookup. Thus the
search for one root can be done with only a few hundreds of
operations.

There is a problem with this scheme : the correct order of
roots' values may be switched due to low precision. However,
since we know the correct order, if x; > Xj, where 1 < j, we can
th 1tS
next higher quantization value to switch them back to the right

simply assign x;to its next lower quantization value or x

order.
3.3 Interpolation of LSP

Because the LSP corresponds to resonant frequencies of the
vocal tract, they will not change radically. We can interpolate
them without causing too much distortion. That is why we can use
one set of LSP per 240 samples (frame) instead of 60 samples
(sub-frame). In the sub-frame processing, we need LSP to
calculate the speech residual; these LSP are the results of
interpolating. This is illustrated in figure 3.6 below.

sub-frame

| '/ N A I A

- —P— —
f1...f10 gtgl10

Fig. 3.6 Interpolation of LSP

Let f] ... f10 be the LSP calculated from the LPC analysis of the
first 4 sub-frames, and g1 ... g10 from the following 4 sub-frames.

The LSP for sub-frame 1 are interpolated by (7/8)f + (1/8)g,

20

(5/8)f + (3/8)g for sub-frame 2, (3/8)f + (5/8)g for sub-frame 3,
and (1/8)f + (7/8)g for sub-frame 4.

This interpolation scheme will cause two sub-frame (13 ms)
encoding delay.

3.4 Complexity of The LPC Analysis

Using the combined root-search & quantization schemes
described in this chapter, let us suppose that we use 4 bits to
encode each of the 10 LSP (actually, for some we use 3 bits (see
section 2.4), we calculate an upper bound of the computational
complexity). For each root, we have to evaluate 16 grid points,
each grid point evaluation needs 1 cosine table lookup, 5 MUL,
and 10 ADD. That's (1+5+10) * 16 = 256 operations for each root,
2560 operations for 10 LSP. This LPC analysis is done per 240
samples (30ms). So the computational complexity is 2560 / 30 ms
= 85333 = 0.0853 MIPS, which is negligible compared to the pitch
codebook search or codebook search.

21

3.5 Conversion of LSP
_to Predictor Coefficients

There exists a filter structure which can use the LSP directly
in its series of second-order sections. However, this kind of
structure requires more arithmetic operations than a direct form
filter using predictor coefficients. The trade-off is between this
extra computation and the (LSP => predictor coefficients)
conversion. For reasonable frame lengths, the (LSP => predictor
coefficients) conversion and direct form filter result in lower
operations. So we decide to convert the LSP to LPC and then use
the LPC filter instead of using the LSP filter directly.

The conversion is very straightforward. Each oj gives rise to
a second order polynomial (1 - 2cos(coi)2'1 + z-2). These
polynomials can then be multiplied to form the predictor
polynomial utilized in LPC.

22

CHAPTER 4 : PITCH PREDICTION

4.1 Pitch Codebook Search

The second step in CELP analysis is to exiract pitch
information, which is also called long term prediction. It is simply
using one of previous frames (20 to 147 delays) to represent the
current frame. The search scheme is illustrated in the following
diagram of figure 4.1.

23.

perceptual 1st
weighting _ residual

impulse | * error
respanse h(i)

| correlation - L
\ l Y A
. : divide
convolution .
20 to 147 _} gain
| & 128 l L energy
| fractional |
delays ¥
pitch ontimum find
codebook pum . index |
pitch index | .
& gain peak
error

Fig. 4.1 Pitch Codebook Search

Because the -pitch codebook is overlapped (i.e. each vector
(frame, 60 samples) is just a shift of the previous vector, and
contains only 1 new element), we can use the end point correction
technique [9, 13] to reduce the operations needed in computing
the perceptual weighted vectors.

Suppose the first codebook vector is {v(0), v(1),.... v(59)},
‘the perceptual weighting impulse response is {h(0), h(1l),...., h(9},
and the vector after perceptual weighting is {yo(0), yo(1l),....,
y0(59)}. Then '

24

vo (0) = 01234vV's
vo (1) 012345 v's
vo(2) = 012345¢6 v's
vo(59) = ceiiiiiaann 55 56 57 28 59 v's

The next codebook vector, {v(1), v(2),..... v(60)}, {y10} will be
given by, A
93876543210 h's

vi(0) = 12345....V's
yvi(d) 123456....V's
v1(2) = 1234567 v's
v1(59) = cieeaiinnn 56 57 58 59 60 v's

Therefore, more precisely

(0) = h(0)*v(0)
(1) = y1(0) + h(1)*v(0)
vo(2) = y1(1) + h(2)*v(0)
(3) = y1(2) + h(3)*v(0)
v (9) = y1(8) + h(9)*v(0)
L y0(10) = v1(9)

By the above end point correction, we can start from computing

{y1270}, then {y1260}, {¥1250},- to {y00}. (Until now, we only
considered integer delays)

25

4.2 Complexity of Pitch Search

~

The computation can be attributed to 3 major parts
convolution, correlation, and energy.

Convolution :

For the first vector, it needs 1+2+...+10+10+....+10 (60 terms) = 3555
MUL, and 14+2+..+9+9+..+9 (59 terms) = 495 ADD. For all the
following vectors, it only needs 9 MUL and 9 ADD for end point
correction. Thus totally we need 555 + 495 + 18*127 = 3336
operations for 128 vectors.

Correlation :
For each correlation, we need 60 MUL and 59 ADD. So totally we
need (60+59)*128 = 15230 for 128 correlations.

Energy .
Same as correlation: 15230 operations.

These operations have to be done per 60 samples (7.5 ms),
therefore we need (3336+15230+15230) / 75 ms = 4.5 MIPS. This
is not final, as we shall see we have some other ways to cut the
complexity further. '

~. 4.3 Increased Pitch Prediction Resolution

We find that pitch resolution is very important, especially
for high pitched speakers. However, the resolution of pitch
prediction is bounded by> the sampling rate, 8 kHz. In order not to
increase the original speech data sampling rate, Wwe need to
interpolate our speech samples, which means increasing the
sampling rate "internally"”.

Suppose we want to increase the sampling rate by 2 factor L.
This process implies that we have to interpolate L - 1 new

26

samples between each pair of original samples of x(n). This
process is similar to digital-to-analog conversion, in which all
continuous-time, values of a signal x(t) must be interpolated from
the sequence x(n) [15].

Suppose L = 3, and the input signal x(n) is "filled in" with L -
| = 2 zeros between each pair of samples of x(n), giving

2y m=0,%£L,#2L,#3L,.......
w(m) = L

0 ,otherwise

The resulting Z-transform becomes

W(z)= i‘w(m)z'm

m=—oe

i x(m)z™™*

m==—oca

= X(z")

where X() is the Z-transform of x().

Evaluating W(z) on the unit circle, z = exp(jo’), gives the
result ’

W(e™) =X (e"")

which means the spectrum of w(m) contains not only the
baseband frequencies of interest (-x/L to =/L) but also images of
the baseband centered at harmonics of the original sampling
frequency 2=n/L, 4m/L, To recover the baseband signal and
eliminate the unwanted image components, it is necessary to filter
the signal w(m) with a digital low pass filter (anti-imaging) which
approximates the ideal characteristic

27

T
» G Wi —
H(ejm) — ’l 1 L
0 otherwise

The signal after anti-imaging filtering is
Y () = H(e™)X (™)

The interpolation system should look like the following diagram in

figure 4.2 :
Sampling rate Anti-imaging
expander filter
x{n w(m (m

Fig. 4.2 Interpolation for pitch prediction

e

Typical waveforms and spectra for interpolation by an integer

factor L are shown in figure 4.3 below :

28

x(n)
\- L i | 2n
L_ ON
w(m) W)
\‘J\‘ /L T 2r
y(m) i ()|
F10 43 Wéveforms and Spectra of interpolated signals

According to the above analysis, to eliminate the images
completely, we need an ideal low-pass filter (rectangular
spectrum, sinc impulse response). This leads to the well known
reconstruction equation. We can Te€cover the continuous-time
signal, x(t), from its discrete-time samples, x(n), as follow,

sm[n(t nT)/T] _
x(t)—nz- x(n) /T ZX(n)smc[(t nT)/T]

n=—e

29

and then get the interpolated values in between,

Y(n + d) =x(t)‘t=(n+d)'f

where n is integer, d 1s fractional delay.

In the above reconstruction equation, the summation 1S Over
infinite terms. Because the sinc function diminishes toward
infinity, in the actual implementation we only use 7 terms, n = -3
to 3. And we use a 7-tap Hamming window 10 smooth the
spectrum ripple.

Experimental evidence indicates that including fractional
delays can reduce the roughness of high-pitched speakers. It can
also reduce noise, because increased pitch prediction resolution
can reduce the noisy speech residual and therefore improve the
similarity between speech residual and codebook excitation
vector.

The integer delay is from 20 to 147 (8K / 20 = 400 Hz to gK
/ 147 = 54.4 Hz); that is 128 integer delays. We add another 123
fractional delays, nonuniform, which are designed to gain the
greatest improvement in speech quality by providing highest
resolution for typical female speakers and lower resolution for
typical male and child speakers.

Actually we can use simple linear interpolation instead of
sinc impulse response. Linear interpolation is equal to triangle
‘impulse response, and its spectrum is sinc2, which means there
are ripples outside the baseband; the images are not eliminated
completely. Even if we use windowed sinc function, the images are
not eliminated completely. To eliminate images completely, we
need infinite sinc impulse response, which is impossible. We can
only use a window 1o make the impulse response finite and
reduce the ripples outside the baseband. See figure 4.4 below.

30

[NI

4

\l\J\ _ /L T

y(m) ¥e®)
Fig. 4.4 Ripple Effect

We can pre-compute the sinc values. For example, suppose
we want to increase the sampling rate three times “internally”. In
the reconstruction equation :

RN sin[Tt(t—nT)/T]= - . 3
X(t)_n;..X(n) i)/ T zx(n)smc[(t nT)/T)

n=-—aa

we need to evaluate x(t) at t = 0, T/3, 2T/3, T, 4T/3, 5T/3, 2T,
So we only need to pre-compute sinc(1/3), sinc (2/3), sinc(l) = 0,
sinc(4/3), , take finite number of them, weigh them by the
window, and then we can find the necessary sinc values by table
lookup. Thus linear interpolation and sinc interpolation have the
same computational costs. So we choose sinc interpolation for
better results.

"~ 4.4 Two Stage Pitch Search
to Reduce Computation

In the actual implementation, we do not search the whole
256 (both integer and fractional) delays at once. That is inefficient
and unnecessary. We use a two stage search instead. First, we
search integer delays only and find the best integer delay. Then
we fine tune this integer delay by searching its neighboring
fractional delays (6 neighbors). The computation needed for the

31

second stage fractional delay search is negligible compared to
integer delay (128 delays) search.

4.5 Delta Coding for Pitch Index :
- to Reduce Both Computation and Bit Rate

Pitch index will not change radically. Especially in steady
vowel sound, pitch index will stay around a particularly value for
several sub-frames (60 samples). So we do not have to search for
the whole delay range (20 to 147) every sub-frame. There are 4
sub-frames in each frame, 0, 1, 2, and 3. For sub-frame 0, we
search the whole delay range, find the best delay (need 8 bits to
encode); for sub-frame 1, we search the neighboring 64 delays
only (need only 6 bits to encode). Same for sub-frame 2 and 3.
Using this delta coding scheme, we can save encoding bits and

reduce the computation from 4.5 MIPS to about 3 MIPS.
4.6 Perceptual Weighting

Perceptual weighting is very important in CELP coding, we
use it in pitch search and codebook search. It is used for
frequency domain weighting. In the spectrum where signal levels
are high, the noise is somewhat masked by signal and has a
smaller contribution to audible distortion than where signals
levels are low. This' suggests we can weigh the noise according to
speech “spectrum to get best perceptual results. Here is the
transfer function of the perceptual weighting filter (first we
generate impulse response and use convolution instead of using
this IIR filter directly) :

10
C1-Yaz™

W(z) = A(z) _ p—
Rl Yy R
1- > a oz

Z: .

where 0 < @ < 1, and A(z) is the predictor error polynomial.

32

For o = 1, W(z) is an all-pass filter : no weighting. For « =0,
W(z) is the inverse of the spectrum, which means the noise is
weighted more at a spectrum valley and less at a spectrum peak.

For any value between 0 and 1, the weighting filter is between
these two extremes. By listening tests, we use o = 0.3 [9, 13].

33

CHAPTER 5: FINAL SPEECH RESIDUAL VQ

5.1 Complexity of Codebook Search

After short and long term predictions, we have already
extracted the spectrum (envelope) information and pitch
information. The speech residual is a noise like sequence. This
residual should not retain much of the original speech
information. Can we throw it away? No! Aunaough this residual
retains little information, we still need it. The key idea in CELP
coding is to use a noise-like codebook to encode this residual. We
use a 512-size codeoook. Of course, the larger the codebook size,
better the result. The speech residual is an approximation to
the ;o called "innovation" sequence associated with the sampled
speech data. If y(n‘) represents the speech samples and F(y, n-1)
the information contained in the past samples, before n, the
innovations sequence is defined by w(n) = y(n) - E{y(n) | F(y,n-1)}.
The extraction of short and long term predictions approximates
the term E{y(n) | F(y, n-1)}. It is because of this approximation
and the fact that real speech signals are not Gaussian that we still
need the residual. In theory, w(n) is a white-noise, Gaussian
sequence.

ot
o pg
w

Most of the CELP computational complexity is attributed to
codebook search for the residual. As in the following diagram of
figure 5.1 :

34

perceptual 2nd
weighting residual
impulse
response h(i) *

error

- correlation

| A

divide

j | gain

convolution 4

0 to 511 | L, energy

codebook p—— find
index
codebook index j Itg X1
& galn peak
error

Fig. 5.1 Codebook Search

In the above diagram, the computation can be attributed to
3 major parts convolution, correlation (inner product), and
energy. Let us assume that the length of the perceptual weighting
impulse response h(i) is 10, and estimate the cost of computation.

Convolution :

For each vector, we need 1+243+....+10+10+....+10 (60 terms) = 555
MUL, and 1+2+3+...49+9+....0.+9 (59 terms) = 495 ADD to generate
the perceptual weighted vector. There are 512 vectors, that is
(555+495)*512 = 537600 operations are needed.

Correlation _
For each correlation, we need 60 MUL and 59 ADD. For 512
correlations, we need (60+59)*512 = 60930 operations.

35

Energy :
Same as correlation, 60930 operations.

These operations have to be done per 60 samples (7.5 ms), which
results in a complexity of (537600+60930+60930) / 7.5 ms = 88
MIPS. |

~ The speed of current DSP chips is about 10 MIPS, 88 MIPS is
far beyond this limit. The NSA proposed standard [13] suggests an
overlapped codebook, which can reduce the convolution
compufation by the end point correction technigue (just like in the
pitch search). This can reduce the total computation to about 3
 MIPS. Together with the 3 MIPS needed by the pitch search and
other overhead, we still need about 20 MIPS for real time
processing.

5.2 Structured Algebraic Codebook in CELP
for Fast Codebook Search

We know that the speech residuals (after short and long
term predictions) are Gaussian distributed, so we use stochastic
codebooks (generated by a Gaussian process) in CELP speech
coding. But as stochastic codebooks are generated randomly, there
are no special structures to organize them, so we need to use
exhaustive search to find an optimum Vvector.

Although some people (NSA [13]) propose overlapped
codebook to reduce the complexity of convolution (in doing
perceptual weighting) by end-point correction, the computational
complexity is still very ‘high (8 MIPS). Furthermore the use of
overlapped codebook here is an approximation which degrades
quality. It is not exact as in the pitch codebook case.

The fundamental question we ask is : Is it necessary to use
an un-structured stochastic codebook? Is it possible to construct

36

an_oreanized codebook and bv its recular structure to find some

efficient wavs to search instead of exhaustive search?

To arrive at the answer let us discuss the physical meaning
of finding an optimum excitation vector in the codebook

In CELP, for a given "speech residual” vector, we want to
find a vector in the codebook, which, after scaling, will produce
minimum square error from the speech residual vector. Because
of the scaling factor, the criterion is NOT the same as "nearest
neighbor” in the Euclidean distance sense. To see this suppose that
we have a speech residual vector T and a codebook vector X. The
criterion is equivalent to maximizing ‘

[5o%” _ |7%%|" cos?®

= B =7’ cos?6 , vV X € codeboo.
%] %]

=1) .. 2
Because It is fixed in the comparison, we are maximizing cos 6,
Referring to the following diagram of figure 5.2 :

r
_)
™ _ gain *X
3 -
X gain * X
Fig. 5.2y Searching for the optimal codeword

to maximize c0s’® is equivalent to minimize sin’, thus minimizing
the difference between these two vectors, |'r°—gain*5£|. Therefore
the criterion is to maximize cos’®, since scaling can do the rest. To
simplify the problem, suppose we want to maximize cosf. To
maximize cos® means to find a codebook vector which is most
parallel to the speech residual.

By the above discussion, we know the criterion for a "good”
codebook : it must span the n-dimensional sphere as uniformly as
possible [I]. For a fixed number of vectors, they will have the best

37

direction representation abiliry if they are uniformly distributed
over the n-dimensional space. We now see very clearly that it is
NOT necessary to use an un-structured stochastic codebook;
rather, we can construct a codebook which can span the n-
dimensional sphere "more uniformly” than a randomly generated
stochastic codebook. This means we can even construct a codebook
which is actually better than a stochastic codebook. We call such a
codebook "algebraic codebook”. Such codebooks have been
proposed for CELP coding in earlier works [1, 2]. Our codebook is
substantially different however.

The reason people use randomly generated stochastic
codebooks is that when we plot the histogram of the speech
residuals, we can see that they are approximately Gaussian
distributed. So people use an i.i.d. Gaussian process to generate the
codebook, and fortunately, the result comes out not bad. When we
construct our algebraic codebook, we must take this "Gaussian
distribution” property into consideration. We shall see later that
this step is also necessary in order to bring down the codebook
size from terribly large to somewhat manageable.

We know that a good codebook needs to span the n-
dimensional sphere uniformly. To simplify things, we restrict the
elements of our codebook vectors to be ternary, i.e. -1, O, and 1.
Note that all the simplifications made here can always be justified
by experimental results; and if this is not considered satisfactory,
we may argue that in the search process stated above, the
"direction” of a vector is used as the matching criterion rather
than its "exact location" : so the ternary restriction should be able
to retain the "directional” representativity of each vector.

In the NSA CELP standard [13], n = 60. This means that even
with the ternary restriction, there are 360 - 1 (zero vector)
possible vectors in the 60-dimensional space. That is of course too
large! To achieve 4.8 kbps encoding (the original speech is 12
bits/sample, sampling rate 8K, so it is 96 kbps), we only have 9

38

bits reserved for the codebook index, which means that our
codebook size can only be 29. To bring down the size, first we
consider the Gaussian distribution property of speech residuals.
We know that most of the residuals are fairly small, so we can let
a fair amount of our vector's components be zero and thus reduce
the size of the codebook. But how many? There is no way to
derive the cutoff threshold theoretically. Based on experiments,
the NSA team uses a 77% zero codebook and have reported a
fairly good performance. So we follow this idea (make it 80% zero,
because 77% of 60 is not an integer) and let our vectors have 43
zeros out of the total 60 components, and the remaining 12 are 1's
or -1's. After these simplifications, the size becomes

n W ! 512 !
sn=2Wx()= 2"xnl _2%x60!

* w,) (a—w)lxw! 48Ix12!

where n is dimension, w is weight. As we can see, this size is still
too large, much bigger than the desired 29.

How can we further reduce the size of the codebook?

We know that the residuals are time sequences, we also
know that human ears are insensitive to phase shifts in the
speech waveform [16]. So, the positions of those 12 l's and -1's
may not be that important. Why not choose 12 fixed positions to
put those non-zero . spikes, and only play with the signs of them!
After doing so, the size is reduced to 212, quite close to the ideal
29 We still need some more restrictions to reduce the codebook

size!

By now, it seems we have run out of intelligent ways to
come up with other restrictions. So, let us make a guess : put some
restrictions about all possible combinations of these 1's and -1's.

Now we have two decisions to make : to choose 12 non-zero
positions out of the total 60, and set some restrictions on the
combinations of those 1's and -1's.

39

‘First let us choose 12 non-zero positions out of the 60 vector
length. Intuitively, it seems reasonable to place them uniformly
over the 60 positions : only elements with index 5n are non-zero ,
i.e. X0000X0000X0000....... , each X can be either 1 or -1. This
configuration has a wonderful property when we consider the
calculation of "perceptual weighting”. We shall see this a little
later.

Now we have a 60-dimensional vector which has 12 spikes
uniformly distributed. It looks like this

L““LWHL“

Fig. 5.3 A typical codeword

The spikes can flip up and down to form the 29 vectors needed.
We may see this vector this way : since we want to use it to
represent the noise like speech residual, by flipping up and down
those spikes we will have the best shaping abili: 1t least better
than randomly generated vectors.

Now we have 212 vectors in our codebook. We further need
to put some restrictions on the combinations of 1's and -1's. Let us
first partition the vector into 2 equal length sub-vectors. The
length of each sub-vector is 20 and there are 4 non-zero elements
in each of them. We pose the restriction that we allow only even
numbers of -1's out of these 4 non-zero elements. So, now we can
have 4 1's (1 combination), 4 -1's (1 combination), and 2 1's & 2 -
I's (6 combinations) for each sub-vector. Each sub-vector has 8
combinations, that means each vector has 83 = 29 combinations.
Finally, we get a codebook size of 29, that takes 9 bits for the

codebecuk index ; exactly what we need!

It is important to note that because this is an algebraic
codebook, we don’t even need to store the codebook, the codebook

index, alone, already specifies each vector exactly.

40

The arguments above are not easy to provide a theoretical
justification. The problem is that we are trying to span a 60-
dimensional sphere with only 29 vectors; and this number is
definitely not enough to do a good job. We've already taken the
Gaussian distribution into consideration, which is the only thing a
randomly generated stochastic codebook is meant for. Besides
that, we have just tried to make these vectors spread more
uniformly. The good behavior of our codebook 1is heuristically
suggested by extensive experiments [17], indicating that the "size"
of the excitation signal sphere is of secondary importance
compared with the long term predictor.

5.3 Fast Algorithm to Compute Inner Products

To calculate the 29 inner products of the speech residual
vector with respect to each of our codebook vectors, we note that
there are only 1's and -1's in the codebook vectors, so there is
actually no need for multiplications. We only need to pick the
right components in the speech residual vector, and then add or
subtract them. We will come back to perceptual weighting later.

Using combination of different terms, we can calculate all
the 29 inner products with an extremely small amount of
operations. Here is how we do it :

Starting from the length-20 sub-vector, since in our
codebook “vectors, only elements with index 5n are non-zero, and
they are all 1's and -1's, we only need elements with index 5n of
the speech residual vector to calculate all the inner products. For
each of the 3 sub-vectors, we calculate 8 sums corresponding to &
combinations of codebook sub-vectors

41

r0
0. +
1. +
2.+
3. +
4. -
5. -
6. -
7. -
Fig. 5.4

Now, for each sub-vector we have 8 sums, pick one from
each of them and we have 3 sums, add these 3 sums and we have
one inner product. There are 83 ways to pick up 3 sums from
sub-vectors, and that is exactly the 29 inner products we need!

rl0 rl13
+ ——
+ -
- +
. .

Codebook sub-vector combinations for inner

product

This is illustrated in figure 5.5 below.

computations.

[r0+r5+r1 0+r15
rO+r5-r10-r15
rQ-r5+r10-r15
r0-r5-r10+r15
-rQ+r5+r10-r15
-r0+r5-r10+r15
-rO-r5+r10+r15
\-r0-r5-r10-r15

N

r20+r25+r30+r35
r20+r25-r30-r35

r20-r25+r30-r35

r20-r25-r30+r35

-120+r25+r30-r35
-r20+r25-r30+r35
-r20-r25+r30+r35

) _-20-r25-r30-r35

(r40+r45+r50+r55

r40+r45-r50-r55
r40-r45+r50-r55
r40-r45-r50+r55
-r40+r45+r50-r55
-r40+r45-r50+r55
-r40-r45+r50+r55

_-T40-r45-r50-r55

Fig. 5.5

ADD

Computation of inner products.

42

As shown we just pick one from each of the above columns and
add them to get the 29 inner products we need!

Now we consider perceptual weighting. We use impulse
response hq, hi, ha, e to characterize the filter, i.e. FIR filter.
That means we need to do convolutions of the impulse response h
with each of our codebook vectors. Since all of our codebook
vectors have 4 zeros between twO nON-zero elements, if we cut
the impulse response length to 5, keep only hg, hi, h2, h3, and hg,
(because the lower order coefficients are more important than
higher order omes, this should not cause too much distortion). We
can now keep the above tree structure, as follows.

The codebook vector after perceptual weighting should look
like :

‘hoh1h2h3k3‘hoh1n2h3hj‘hoh1h2h31'3 (60 n. s)

+or — + or — + or —

with some sign changes, but each group of (hg hy hp h3 hg)
should be of the same sign.

Keeping the same structure as in figure 5.5, we can replace
the above

r0 . with r0*h0+r1*hl1+r2*h2+r3*h3+r4*h4
TS5 with 5*h0+r6*h1+r7*h2+r8*h3+r9*h4

...................................

r55 with r55*h0+r56*h1+r57*h2+r58*h3+r59*h4

We see that we can still get all 29 inner products using an
extremely small amount of operations.

We also need to calculate the energy for each vector after
perceptual weighting, and fortunately, as the vectors after
perceptual weighting look like :

43

1 < y‘ " ,)) h 1 'r‘ I’:
51‘11n2n3h4fﬁ.on1n2n3n4"noh1-.2n3h4: (60 nls

+or — + or — + oxr —

and their energies are all the same :

12 i h?
i=0

The spirit of this algorithm is : Because all the codebook
vectors are just different combinations of signs, so the
"components" in all inner products are the same : it is nor
necessary to re-compute these components, just play with the
combinations of signs and we can get all the inner products.

To compute the exact number of operations needed, first, we
need 5*12 = 60 MUL and 4*12 = 48 ADD to compute the above 10,
15, ..., 155; and then need 4*8*3 = 96 ADD or SUB to compute
8(combinations)*3(sub-vectors) terms: finally we need 2*312 =
1024 ADD to compute the 512 inner products. That's only 1228
operations to get 512 inner products! And only 60 of them
are MUL, others are ADD or SUB. 1228 / 7.5 ms = 0.16 MIPS.
Compared with the brute force search requiring 80 MIPS (512 *
60 codebook), this represents an improvement of 500,
Compared with overlapped codebook's § MIPS, - _ represents an
improvement of 50. Originally the codebock search dominated
the complexity of CELP analysis, now the computations needed for
codebook search is negligible :Zmpared to pitch search.

Actually the codehook doesn't have to be so restrictive (as
stated above) to ben=cit from the above algorithm. As long as the
non-zero positions in all codebook vectors are fixed, and their
absolute valtcs are the same, which means the only difference
among al! vectors is different sign combination, then we can use
the ~oove algorithm.

44

CHAPTER 6 : QUALITY RESULTS AND
SUGGESTIONS FOR FUTURE RESEARCH

We have tested the proposed codebook, and compared the
result with the standard NSA CELP code. The resulting speech
qualities are basically indistinguishable. As stated earlier there
are no good objective measures for speech quality. We calculate
the S/N ratio for comparison. For the structured codebook, SNR =
6.5, v.s. SNR = 7.5 for NSA overlapped codebook. (This SNR is
averaged over 6 sentences, 3 male and 3 female speakers) And
the speed is about tripled, because the codebook search
computation (2/3 of all computations) is nearly totally removed.
Using this codebook, the CELP algorithm needs less than 5 MIPS,
can easily fit into any single one DSP chip for real time processing.

Future directions include further reduction of complexity by
focusing on pitch prediction, actual implementation in various DSP
chips and the analysis and performance evaluation in noisy
environments (telephone lines, offices, etc).

45

*q_.______|____|_W___q_____—______

H

e T ey I

8000 10000- 12000 14000 16000 18000

ginal speech waveform

20000

2000 4000 6000

ori

.0

46

—10000

—-30000

‘J_L.IVLI_I _JAI#IVIVIJAl_-lﬁl_,.lg R U N O o I_I_J_I_I_I_L | - L.

‘ f,ill . .{lj
y |
| | o [[i[! ot ! [SRR [[[ao, |

2000 4000 6000 8000 10000- 12000 14000 16000 18000 20000
NSA speech waveiorm

|
n
(@]
o
O
o
© 'I_]'T-I’—l_l'_l"l—r_l—' I‘“I—I_r—[—'l_’ B

llillIll‘llilllllllli‘llllllllli

30000

20000

1000Q

llllllllllll—l-'r_l—T

‘llllllllllllll.l,l

—-100Q0

—20000

llllll‘lllllllll
lllllllllllllll

-30000

rl«l[;;t!lly«

2000 4000 6000 8000 10000- 12000 14000 16000 18000 20000
algebraic codebook reconstructed speech waveform

o

47

SNR

60 —

S S A R] i i 1—‘!
5]
B 1
50 — _%
40 — _’:
Z | 1
- ;
30 — —
~ —5
= -
- J
20 — —
- -
B " 7
- ; R
B [! | 3
10 — } iRl]
- . wa"wﬁ | —
O i 1 ! K | T s . 1
0 100 200 300 - 400
frame (60 samples per frame)
Solid line : NSA

Dashed line : Algebraic codebook

48

References

1. M. A. Ireton and C. S. Xydeas, "On improving vector excitation
coders through the use of spherical lattice codebooks (SLC's)"
ICASSP 1989, 57 - 60.

2. C. Lamblin, J. P. Adoul, and S. Morissette, "Fast CELP coding
based on the Barnes-Wall lattice in 16 dimensions” ICASSP 1989,
61 - 64.

3. Peter Kabal and Ravi Prakash Ramachandran, "The Computation
of Line Spectral Frequencies Using Chebyshev Polynomials” IEEE
Transaction on ASSP Vol. ASSP-34, NO. 6, Dec.1986, 1419 - 1426.
4. Frank K. Soong and Biing-Hwang Juang, "Line Spectrum Pair
(LSP) and Speech Data Compression” ICASSP 1984, 1.10.1 - 1.10.4.
5. Noboru Sugamura and Fumitada Itakura, "Speech Analysis and
Synthesis Methods Developed at ECL in NTT - from LPC to LSP-"
Speech Communication 5 (1986) North-Holland, 199 - 215.

6. Augustine H. Gray, JR and John D. Markel, "Distance Measures
for Speech Processing” IEEE Transaction on ASSP Vol. ASSP-24,
NO. 5, Oct. 1976, 380 - 390.

7. David P. Kemp, Retha A. Sueda, and Thomas E. Tremain, "An
Evaluation of 4300 bps Voice Coders" U.S. Government, DoD.

8. Bishnu S. Atal and Manfred R. Schroeder, "Code Excited Linear
Prediction (CELP) : High quality speech at very low bit rates”
ICASSP 1985. ‘

9. Thomas.E. Tremain, Joseph P. Campbell, JR, and Vanoy C. Welch,
"A 4.8 K bps Code Excited Linear Predictive Coder” U.S. DoD.

10. Bishnu S. Atal, "predictive Coding of Speech at Low Bit Rates”
IEEE Transaction on Communications Vol. COM-30, NO. 4, Apr.
1982, 600 - 614. ‘

11. I. M. Trancoso and B. S. Atal, "Efficient Procedures for Finding
the Optimum Innovation in Stochastic Coders” ICASSP Apr. 8-11
1986.

49

12. B. S. Atal, "High Quality Speech at Low Bit Rates : Multi-Pulse
and Stochastically Excited Linear Predictive Coders” ICASSP 1986.
13. Joseph P. Campbell, JR, Vanoy C. Welch, and Thomas E.
Tremain, "An Expandable Error Protected 4800 bps CELP Coder
(U.S. Federal Standard 4800 bps Voice Coder)" , U.S. DoD.

14. Manfred R. Schroeder and B. S. Atal, "Stochastic Coding of
Speech Signals at Very Low Bit Rates : The Importance of Speech
Perception” , Speech Communication 4, North-Holland.

15. Ronald E. Crochiere and Lawrence R. Rabiner, "Multirate Digital
Signal Processing” by Prentice-Hall.

16. L. R. Rabiner and R. W. Schafer, "Digital Processing of Speech
Signals" by Prentice-Hall.

17. R. C. Rose and T. P. Barnwell, II, "Design and Performance of
an Analysis-by-Synthesis class of predictive speech coders" IEEE
Trans. on ASSP, Vol. ASSP-38, NO. 9, Sept. 1990, 1489 - 1503,

