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Abstract. [n order to enhance the accuracy of dual polar-
ization radar in hydrometeor classification, a hydrometeor
classification algorithm based on multi-sample fusion Sup-
port Vector Machine (SVM) is proposed in this paper after
considering that traditional fuzzy logic algorithm has the
defect of over relying on expert experience to set parame-
ters. The data of four polarization parameters (horizontal
reflectivity factor, differential reflectivity, correlation coeffi-
cient and differential propagation phase constant) detected
by the KOHX radar were taken as the feature information of
hydrometeors. The dataset was collected, and the model was
trained. According to the classification results of SVM model
and combined with the distribution characteristics of target
particles in the rainfall area, a classification system that can
effectively identify four types of particles (dry snow, moderate
rain, big drops and hail possibly with rain) was established.
This model greatly reduced the misidentification of dry snow
(DS) and moderate rain (RA)) in the precipitation area, and
significantly improved the overall classification effect of hy-
drometeors in the area. The 0.5° elevation scanning data of
the radar at a certain time were tested, and the classification
accuracy of system model was up to 97.21%. The average
accuracy of other elevation scanning data was approximately
97%, which showed strong robustness.
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1. Introduction

Traditional Doppler weather radar sends electromag-
netic waves in a single direction. It only obtains such parame-
ters as reflectivity factor, Doppler velocity and spectral width.
However, dual polarization radar strengthens the function of
detection by emitting electromagnetic waves in the horizon-
tal and vertical directions. This makes it impossible to obtain
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more information inside the cloud cluster, including differen-
tial reflectivity, differential propagation phase constant and
correlation coefficient. These parameters help to obtain the
shape, size, orientation and other important information of
hydrometeors and greatly improve the capability of weather
radar in hydrometeor classification [1-3].

Fuzzy logic theory was an important means to solve
classification problems and achieved remarkable results in
the field of hydrometeor classification. Many researchers
concentrated on the optimization of the membership func-
tion and robustness of the algorithm. However, one of the
drawbacks of this algorithm was that the parameters of mem-
bership function and the weight of polarization parameters
depended on the experience of experts. Meanwhile, the shape
of membership function was predetermined, such as beta
function [4], asymmetric T function [5] and Gaussian func-
tion [6]. This would exert some influence on the classification
result.

It can be seen from the process of the fuzzy logic al-
gorithm that the selection of its membership function and
the determination of its parameters require expert experi-
ence to determine manually, which significantly affects the
algorithm’s objectivity and portability. Therefore many
scholars have researched hydrometeor classification meth-
ods based on data-driven models. Such models can learn
from a large number of data to obtain the best parame-
ters of the model without manual determination. In 2015,
Grazioli et al. created an unsupervised clustering algorithm
and partitioned the temperature. The clustering results were
obtained based on the similarities of polarization data in
each region, which effectively avoided the subjective choice
of hydrometeor types [7]. In 2020, Han et al. proposed
a deep learning method using Convolution Neural Network
(CNN) for prediction. A cross channel three-dimensional
convolution in the first layer of CNN was used to fuse the
original data, and it enhanced the ability of the detection
and real-time prediction of convective storms [8]. In 2017,
Wang et al. proposed a fuzzy clustering recognition algo-
rithm based on deep learning. CNN was used for initial
clustering to eliminate the influence caused by measurement
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errors of polarization parameters [9]. In 2019, Lu et al. pro-
posed a multi-classification model based on residual convolu-
tional neural network (ResNet). The polarization parameters
were superimposed through data channels and processed in
blocks to produce the dataset of the algorithm and improve
the classification accuracy of some hydrometeor [10].

As shown in references [7-10], it is proposed to use the
neural network model in the depth learning algorithm to clas-
sify hydrometeors, which solves the problem that the model
parameters need to be determined by human factors. How-
ever, the neural network model has a relatively high com-
puting cost for hardware and computing time. Therefore,
based on the characteristics of PPI scanning data of dual-
polarization weather radar and the distribution of hydrome-
teors in the precipitation area, a hydrometeor classification
method based on multi-sample fusion SVM is proposed in
this paper. This model is also a data-driven model. It not
only overcomes the objectivity and portability problems of
fuzzy logic algorithm, but also has much less computation
compared with neural network model, so it has a specific ap-
plication value. It is worth noting that this method solves the
problem of high false recognition rate of DS and RA particles
in the area. It dramatically improves the overall classification
accuracy of target hydrometeors.

The main structure of this paper is as follows: Section 2
mainly describes the principle of SVM classification and
how to use dual-polarization radar data to construct an SVM
multi-classifier to classify hydrometeors. Section 3 testes the
specific training performance of the SVM model on the data,
including three steps. The first step discusses the single-
sample SVM model’s high false recognition rate of DS and
RA particles. In the second step, aiming at the problems in
the first step, a multi-sample fusion method is proposed to
improve the dimension of hydrometeor feature information
to solve the problem of false recognition. In the third step,
combined with the classification of the first two steps and
the distribution characteristics of hydrometeors in the pre-
cipitation area, a system model based on multi-sample fusion
SVM is establised. Section 4 verifies the system model built
in Sec. 3 by using the measured data of different elevations
collected by KOHX radar at 00:49 on February 24, 2019.
Section 5 is the overall analysis and comprehensive evalua-
tion of the model built in this article and included the future
work plans.

2. SVM C(lassification Model

SVM model can realize the binary classification of hy-
perplane classification. Binary classification problem is one
of the main forms of pattern recognition. Taking the mul-
tidimensional data of the model as the location variables of
the hyperplane, the samples in the model can be transformed
into several points in the hyperplane. The optimal division
is achieved by finding an optimal hyperplane [11-13].

(x;, y;) is alinear sample that needs to be dichotomized.
Specifically, i = 1,2, -, n are the different dimensions of
the feature information. X; is a feature vector, belonging to the
real number field in n-dimensional space. y; is the classifica-
tion mark, and its value can be +1 or —1. In the classification
of hydrometeors, feature vector x; refers to different polariza-
tion parameters. Their values are different from each other in
dimension and order of magnitude. If they are directly used
for classification, the data of some dimensions will amplify
or reduce their influence on classification results. This will
result in a non-objective classification result. Therefore, the
original data should be initially normalized, as shown in (1):

X; — min {x; }

A

" max {x;} — min {x;} M

The initialized feature dimension data is converted into

a value between 0 and 1. X; is the normalized result of po-

larization parameters of a hydrometeor samples. max {x;}

is the maximum value of all polarization parameter values.

min {x; } is the minimum value of all polarization parameter
values.

The hyperplane y (x) = w-x+b is defined. If the sample
(x;, y;) that makes y (x) = w-x + b > 0, then the sample is
classified as +1. Otherwise, it is classified as —1. The label
value +1 of y; is guaranteed to be output by scaling the values
of parameters w and b . The classification interval is 2/||w]|.
In order to make this hyperplane more robust, a maximum
interval hyperplane needs to be defined [14], [15]. The mini-
mum value dyy,j, is obtained by satisfying ||w||. The minimum
classification interval is as follows:

dmin = min ([|wl| /2) 2)

where the hyperplane with linear separability between sam-
ples should meet the following condition:

yvi-(w-x;+b)>0, i=12,---,n. 3)

The model in (2) can only process ideal linearly sepa-
rable data, and the actual hydrometeor samples are not com-
pletely linearly separable data. Therefore, slack variable &
and penalty coefficients C need to be introduced to process
these special samples. The overall classification robustness
of the model can be improved by weakening model con-
straints [16]. As shown in Fig. 1, it is a two-dimensional
linear non-separable SVM model for slack variables. The
multidimensional SVM model is obtained through (4):

dmin = mMin (“W/2” + CZfl , C>0 4

where the hyperplane with slack variable should meet the
following condition:

yi-(W-Xi+b)>1-&, & =0. (&)
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Fig. 1. Two-dimension SVM model with slack variables.

In this paper, the classification of hydrometeors is
a multi-classification model. Compared with binary clas-
sification SVM, we need to train every SVM model to build
a multi-classification model pool. If an unknown sample
needs to be classified, we will count the number of votes
obtained by each label in the output result from the pool.
The label corresponding to the highest number of votes is the
category of the input sample.

3. Training of Models

In this paper, there are two steps to build the system
model. The first step is the single-sample step. The SVM
model is optimized and saved in the dataset composed of four-
dimensional polarization parameters. The second step is the
multi-sample fusion step. Due to the existence of the melting
layer, the distribution of some particles in the actual precipi-
tation region has obvious boundaries. The one-dimensional
fusion method of multiple samples can be used to improve
the dimension of feature information. The best multi-sample
fusion SVM model can be obtained in the second step. Then
the final system model is established by combining with the
classification model in the first step.

The hardware platform of this model training is the
CPU Intel Core i7-10700K. The model uses the SVC
structure in the Sklearn (Scikit-Learn) framework to carry
out the essential development of the binary classifiers
of SVM. Sklearn is a machine learning tool based on
the Python language. @ We use the One Versus One
(OVO) method to establish the multi-classification model
of SVM. The data and source code are available on github:
https://github.com/Izehu/Hydrometeor-classification

3.1 Training of Single-Sample SVM

We firstly collected the 0.5° elevation scanning data of
the KOHX radar in 2018 and then selected four types of
target particle samples including horizontal reflectivity, dif-
ferential reflectivity, correlation coefficient and differential
propagation phase constant. The label values of DS, RA,
BD and HA were 0, 1,2, 3 respectively. These label val-
ues were taken as the fifth dimension of the vector. In this
way, the dataset for the single-sample SVM model training
was prepared. As shown in Fig. 2, the training models with

different sizes of train sets were used to establish the rela-
tionship between the accuracy of validation and the size of
train set. The minimum size for each binary classification
model was determined when the accuracy tended to be stable.
Within the first 2,000 samples, the accuracy fluctuated and
rose when sample size was increased. When the sample size
was greater than 2,000 or so, it gradually became stable. Fi-
nally, the minimum training data size of single-sample SVM
model was determined to be 2,000 samples of every type of
hydrometeors. In the experiment, we adjusted the optimal
parameters of the model by the grid search method.

As shown in Tab. 1, they were the optimal model param-
eters of each binary classifier, and the column model name
such as DS_RA was a binary single-sample SVM model.
Among them, the Kernel function was selected as nonlin-
ear radial basis function (RBF), Gamma was mainly used
to determine the mapping dimension of the Kernel function,
and C was used to determine the penalty coefficient of error
item [17], [18].

SVM is a binary classifier. There are six optimal bi-
nary classification SVM models established through the op-
timal parameters in Tab. 1. When dealing with multiple
classification problems, it is necessary to construct appropri-
ate multiple classifiers. In this paper, OVO is used to build
amulti-classification training pool. For a test sample, the out-
put labels of each binary model are counted. The label with
the highest number of votes is the category of the hydrom-
eteor. Based on a such voting mechanism, this OVO-SVM
multi-classification model is established.

Model name | Kernel C Gamma | Accuracy
DS_RA RBF 910 0.7 0.7031
DS_BD RBF 150 0.1 0.9552
DS_HA RBF 95 0.4 0.9933
RA_BD RBF 90 0.3 0.9625
RA_HA RBF 120 0.4 0.9999
BD_HA RBF 105 0.2 0.9980

Tab. 1. The best parameters of every single-sample SVM.
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Fig. 2. Variation curve of accuracy with training amount on val-
idation set in the first step.
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Fig. 3. Confusion matrix of classification results on the test set
in the first step.

As shown in Fig. 3, it is the confusion matrix of test
set. For the single-sample SVM model, the recognition ac-
curacy of HA and BD is above 95%. The mutual misjudg-
ment between RA and DS reduces the overall recognition
rate. Therefore, the classification of DS and RA based on the
SVM model needs to be further processed.

3.2 Training of Multi-Sample SVM

As only four-dimensional feature information is used to
obtain classification results, DS and RA have the problem of
mutual misidentification. Considering the characteristics of
PPI scanning data of dual-polarization radar and the distribu-
tion of hydrometeors in the precipitation area, a hydrometeor
classification method based on multi-sample fusion SVM is
proposed, which improves the classification ability of DS
and RA.

The method of integrating multiple samples to expand
the dimension of feature information was proposed to en-
hance the discriminability of different categories. Its essence
was to use the mapping principle of the SVM kernel function,
which mapped linearly inseparable low-dimensional feature
vectors to high-dimensional features. Then, they were lin-
early separable and trained in SVM [19], [20]. The La-
grangian multiplier method was used to transform the so-
lution process of the maximum classification interval with
constraints into a function without constraints to find the
extremum [21]:

max (L(w,b,a)) =

I+ Y (13w @) ) )

where the Lagrange multiplier was a; > 0. We took the
derivatives of w and b respectively to obtain the extreme
value of L, as shown in (7):

AL -
a;y;® (x;),

%:O:>W=Fl
(7
oL

n
%=0=>0=;(Ziy[.

Then, we brought the two conditions obtained into (6) and
obtained its minimum value by the derivation of @ by L in (8):

mcin (L(w,b,a)) =

% an i @i yiy ;@ (xi) @ (x;) - an a. (8)
i=1

i=1 j=1

As shown in (9), we obtained the w and b of the hyperplane
satisfying the condition:

w = Z a;y;i P (x;),
= )

n
b=y;- Z @iy @ (x;) @ (x;).
i1

Theoretically, a suitable mapping can be found for any
hydrometeor samples, and these samples that cannot be di-
vided in the low dimensional space can be divided linearly
after being fused into the high dimensional space. As shown
in (8), ®T (x;) @ (x;) is the two inner products mapped to
high dimensions that need to be solved. If there is such
a function K (x;,x;) = ®T (x;) ® (x;) = (@ (x;), D (x;)),
the inner products of x; and Xx; in the corresponding high-
dimensional space are equal to the results of their calculation
in the original space through the K function. Such K func-
tion is a corresponding kernel function. The commonly used
kernel functions include linear kernel, Gaussian kernel, poly-
nomial kernel, etc.

In order to get the influence of sample fusion number
on classification accuracy, we have only made data sets in
the number of 2—15, the fusion number of the multi-sample
fusion SVM model and corresponding accuracy are shown in
Fig. 4. When the fusion number starts from 10, the accuracy
of the test set is basically maintained at about 91%. In order to
ensure that the classification accuracy met the requirements,
other noise particles were mixed into the fusion samples as
few as possible. In this paper, 10 samples in the same type
were randomly fused in the azimuth direction. Compared
with two-dimensional fusion performed in range direction
and azimuth direction, this fusion method could effectively
avoid such a defect that the fusion samples were mixed with
other one-dimensional feature information. This made the
fusion samples purer. As shown in Fig. 5, the PPI scanning
mode of dual polarization radar and the comparison of the
two fusion methods in this scanning mode of the radar.
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Fig. 5. PPI scanning mode of dual polarization radar and the
different fusion methods in this scanning mode.

After fusing, the dimension of feature vector was in-
creased from the original four dimensions to forty dimen-
sions. The label value of every type of sample was still
added to the last dimension of the vector. The dataset
was built for the multi-sample fusion SVM model in this
way. As shown in Fig. 6, the relationship between size of
train set and accuracy of validation set was established. It
could be concluded that the classification accuracy of hy-
drometeors was improved by the multi-sample SVM model.
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Fig. 6. Variation curve of accuracy with training amount on val-
idation set in the second step.
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Fig. 7. The structure of ResNet18 in [10].

When the size of train set reached about 1,250, the accu-
racy of each SVM model tended to be stable. Therefore, the
minimum size of train set was recommended to be 1,250.
In order to conduct horizontal comparison experiment with
the classification effect of the single-sample SVM model, the
same size was adopted in this step like the first step. That
was, 2,000 samples per category.

This reflects the advantages of SVM classification
model in training with a small size of dataset. Ac-
cording to the algorithm complexity calculation equation
Tsym = O (N?m?), N is sample number, and M is the di-
mension of feature vector. It can be concluded that the al-
gorithm complexity with one sample of the multi-sample
fusion SVM model is m> = 10%. Convolutional neural net-
work algorithms are based on data-driven models such as [9]
and [10]. However, its complexity is determined by the com-
plexity of each convolution layer. It can be calculated by
Tcony = O (M*K?CinCou). M is the size of the input fea-
ture graph, K is the size of the convolution kernel, Cj, is
the number of input channels, and Cyy is the number of out-
put channels. Taking ResNet18 network structure in [10] as
an example, its network structure is shown in Fig. 7, and the
algorithm complexity of a sample can be calculated. Its order
of magnitude is 10.
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Fig. 8. Confusion matrix of classification results on the test set
in the second step.

Model name | Kernel C Gamma | Accuracy
DS_RA_x10 POLY | 500 3 0.9142
DS_BD_x10 POLY 100 5 0.9996
DS_HA_x10 POLY 300 4 0.9999
RA_BD_x10 | POLY 100 2 0.9993
RA_HA_x10 | POLY 100 6 0.9989
BD_HA_x10 POLY 100 5 0.9999

Tab. 2. The best parameters of every multi-sample SVM.

The optimal parameter selection problem was studied
through the grid search method. As shown in Tab. 2, they
were the optimal parameters of each binary classifier, and
the column model name such as DS_RA_x10 was a binary
multi-sample fusion SVM model. The kernel function was
Polynomial kernel (POLY).

The model pool in the second step was established in
the same way as the first step. The classification result of test
data was obtained through the voting mechanism. As shown
in Fig. 8 it was the confusion matrix of test set.

3.3 Construction of System Model

Considering the distribution characteristics of parti-
cles in the precipitation region, the multi-classification SVM
model was adopted.

As shown in Fig. 9, a classification system model of
four types of target particles was established. Firstly, the ini-
tial prediction of the four types of target particles came from
single-sample SVM. The BD and HA samples in the predic-
tion results were directly outputted. The RA and DS samples
with high misidentification rate were further predicted by the
multi-sample fusion SVM model after feature information
fusion processing. Finally, the classification results of the
two steps were integrated to obtain the final classification of
all samples.

| Radar raw data |

v

Data processing: normalization and invalid
Dataset production value replacement

Single-sample Multi-sample
SVM model SVM model

Model training training training

N\
Real Data Stepl: RA Step2:
DS/RA/BD/HA Best model Best model
v \

S S S T i

HA BD RA DS

Model testing

Fig. 9. The structure of four kinds of target hydrometeor classi-
fication system model.

4. Real Data Verification

As the mainstream algorithm of hydrometeor recog-
nition, fuzzy logic hydrometer classification (FHC) had
the advantages of easy implementation and high effi-
ciency [22], [23]. The analytical solution of the problem
was not discussed in this paper. In order to compare the
classification accuracy of the FHC model with the T-type
membership function, the single sample SVM model and the
system model were established in this paper. We verified the
0.5° elevation scanning data of the KOHX radar at 00:49 on
February 24, 2019. We also obtained the classification accu-
racy of the target particles in the elevation scanning data by
using the methods in [9] and [10]. In addition, we collected
and processed the radar scanning data of 0.9°, 1.5°,1.8°,2.4°
elevation and then verified each model in turn.

4.1 Result of 0.5° Elevation

In the 0.5° elevation PPI scanning data from the KOHX
radar at 00:49 on February 24, 2019, the visualization results
of the four polarization parameters were shown in Fig. 10.

The data of the KOHX radar at a time contained
360 x 1,200 samples. At that time, we collected 37,243 DS
samples, 126,307 RA samples, 20,261 BD samples and 544
HA samples. Figure 11(a)—(d) showed the NOAA reference
results and the classification results of each model. Accord-
ing to the results in the black box in Fig. 11(b), FHC model
mistakenly recognized DS particles as HA particles, which
affected the classification accuracy. The overall accuracy
was only 85.47%. As shown in the black box in Fig. 11(c),
the single-sample SVM model was poor in distinguishing
DS and RA. According to the PPI scanning characteristics of
the KOHX radar, the DS particles only appeared above the
melting layer. There was an obvious distribution boundary
between them. However, many RA particles in the central
area of Fig. 11(c) were mistakenly classified as DS parti-
cles, and RA particles that should not appear were seen in
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the periphery. The accuracy of single-sample SVM model
was only 72.22%. 21.25% of DS samples were wrongly
identified as RA samples, and 35.47% of RA samples were
wrongly identified as DS samples. This dramatically affected
the overall recognition effect of hydrometeors in the precipi-
tation area. Through the multi-sample fusion of DS and RA
samples, the feature information dimension was improved
and the distinguishability was enhanced. The false recogni-
tion rates decreased to 5.27% and 10.12% respectively. As
shown in Fig. 11(d), the identification of DS and RA parti-
cles was significantly improved. The accuracy of the system
model was greatly improved, and it was 97.21%.

The algorithms proposed in [9] and [10] are also impor-
tant research on the classification of hydrometeors. Table 3
shows the classification accuracy of the models in each refer-
ence for 0.5° elevation scanning data of the KOHX radar. It
indicates that the system model has the highest accuracy for
target particles.
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Fig. 10. Polarization parameter PPI image of the KOHX radar.
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Fig. 11. Classification results of different model.

4.2 Result of Other Elevation

The training and verification data in the experiment
were all from 0.5° elevation scanning data of the KOHX
radar. In order to verify the robustness of the system model
in this paper, we tested the model by KOHX radar data of
different scanning elevations at the same time. As shown
in Fig. 12, they were the classification performance of the
system model at 0.9°, 1.5°, 1.8° and 2.4° elevation.

As shown in Fig. 12, as radar scanning elevation in-
creased, central rainfall area and overall meteorological echo
data would decrease. This was consistent with the actual
situation. Meanwhile, the system model was compared with
the fuzzy logic and single-sample SVM model. As shown in
Tab. 4, the performance of the system model based on multi-
sample fusion SVM was better than other models at different
elevation angles.

Model All samples DS RA BD HA
Model [9] 0.88 0.86 | 0.92 | 0.89 | 0.94
Model [10] 0.93 094 | 090 | 092 | 0.99

System model 0.97 096 | 098 | 093 1.0

Tab. 3. Test accuracy of different models for the measured data
by the KOHX radar.

Elevation FHC Single-sample SVM | System model
0.5° 85.47% 72.22% 97.21%
0.9° 88.38% 73.16% 97.47%
1.5° 98.29% 73.65% 97.51%
1.8° 89.51% 70.41% 97.49%
2.4° 90.12% 72.84% 96.93%

Tab. 4. Classification accuracy of different elevation angles of
each model.
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Fig. 12. Classification performance of the system model on
different elevation.
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5. Conclusion

In this paper, the hydrometeor classification algorithm
based on multi-sample fusion SVM is proposed, and it clas-
sifies four types of target particles in the precipitation region.
Aiming at such a disadvantage that fuzzy logic relies on ex-
pert experience to determine parameters, the SVM algorithm
was used to prepare the dataset and train model through the
four polarization parameters data of the KOHX radar. This
data-driven model obtained parameters from samples. Com-
pared with fuzzy logic algorithm, it has higher portability.
According to the characteristics of particle distribution in
the precipitation region, the dimension of feature informa-
tion is improved by multi-sample fusion. The classification
capability of the single-sample SVM model for DS and RA
particles is improved. We tested the KOHX radar data of five
different scanning elevations. The results showed that the
average accuracy of system model based on the multi-sample
fusion SVM was 97.32%, which was significantly higher than
the single-sample SVM model 72.46% and the fuzzy logic
algorithm model 88.55% and showed strong robustness.

The multi-sample fusion method in the azimuth direc-
tion was used to solve the problem of low classification accu-
racy of DS and RA particles in the precipitation region. The
interference from a few of other noise hydrometeors on the
fused samples was not considered during multi-sample fu-
sion. In the future research, we will focus on how to solve the
interference of noise hydrometeors in the fused samples to
improve further the classification accuracy of hydrometeors
in the precipitation area.
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