THESIS REPORT

Master’s Degree

Code Excited Linear Prediction Speech Coding

with the TSP50C10

by F.C. Candler
Advisor: J.S. Baras

M.S. 90-11

INIR

INSTITUTE FOR SYSTEMS RESEARCH

Sponsored by

the National Science Foundation
Engineering Research Center Program,
the University of Maryland,

Harvard University,

and Industry

Code Excited Linear Prediction

Speech Coding with the TSP50C10

by
Frederick Christopher Candler

Thesis submitted to the Faculty of The Graduate School
of The University Of Maryland in partial fulfillment
of the requirements for the degree of
Master of Science
1990

Advisory Committee:

Professor John S. Baras, Advisor
Professor Steven A. Tretter
Professor Thomas E. Fuja

ABSTRACT

Title of Thesis: Code Excited Linear Prediction
Speech Coding with the TSP50C10

Name of Degree Candidate: Frederick Christopher Candler
Degree and Year: Master of Science, 1990

Thesis directed by: John S. Baras
Professor
Electrical Engineering Department

&

Systems Research Center

Code Excited Linear Predictive Speech Coding and the TSP50C10 single-
chip speech synthesizer are presented. An analysis and simulation are per-
formed to determine the speech quality possible with the TSP50C10 and

how the architecture can be modified to improve the speech quality.

Contents

1 Introduction
1.1 Introduction to Speech Codingo oo -
1.2 ObjectiVe . . v v v v i e e e

2 CELP-The Algorithm
9.1 CELP Analysis-The Ingredients« oo oo vv o v
91.1 LPCAnalysis v oo v iv e
9.1.2 Perceptual Weighting oo
9.1.3 Stochastic Code Book Search
92.1.4 Pitch Code Book Search
22 CELP Analysis . . « . v« v oo oo oo
9.3 LPC Filter Parameterization« .« oo oo
931 From LSPtoLPCo
9239 From LPCtoPARCOR
2.4 CELP Synthesis« oo v oo oo

3 The TSP50C10
3.1 The Hardware. o v v v o v v oo oo e oo m e s e

ii

13
14
17
18
20
22
23
25

27

3.2 Other Features« v v vt v v v v iv vt o 30
3.3 Program Executiono 31
3.4 The Next Generation« o o v o v v v i v oo 31
3.5 CELP Synthesis Using the TSP50C10 32
3.6 Log Area Ratios oo 32
TSP50C10 Speech Synthesis Program 35
4.1 Program Formato 35
4.1.1 Initialization« o v o v oo e 35
4.1.2 Interrupt Service Routine 36
4.1.3 Parameter Update oo oo 36
4.1.4 Pitch Code Book - A Circular Buffer 39
4.2 Program Flowo 45
4.3 Program Constraintso oo 46
4.3.1 The Time Constraint.« .« oo oo v oo v 46
4.3.2 Memory Constraint oo 46
Results 50
5.1 The Simulationo v v v v o 50
5.2 Using the New Generation Architecture 51
5.3 Tablesand Graphs o« v o vt v vt e 53
5.4 Hardware Suggestions oo v oo 57
54.1 The Filter Ordero v v oot v 57
5.4.2 LSP Parameterization« .o o oo 57
5.5 Conclusion . « v v v v v v i e 58

iii

List of Figures

1.1
1.2
1.3
14
1.5

2.1
2.2

2.3
2.4
2.5

3.1
3.2
3.3

4.1

CELP Encoding, Transmission, and Decoding.
A voiced speech waveform..
An unvoiced speech waveform.
Block diagram of a VOCODER.
Simplified block diagram of CELP synthesis.

Block diagram of the search procedure..
Block diagram of the search procedure. The detailed diagram

for the analysis is given in figure 2.3. -
The CELP analysis algorithm.
Sequence of operations to generate the excitation..

LPC synthesis filter using PARCOR coefficients.

Block diagram of the internal hardware of the TSP50C10. .
The internal RAM. v o o v o v oo i
Block diagram of CELP synthesis using 2 TSP50C10.

The ping-pong pointer technique to time-multiplex the access

to the subframe parameters. « o« o oo e

iv

17

4.2

4.3

4.4

4.5

4.6

4.7

4.8
4.9

5.1

Modified circular buffer to illustrate how the pitch code book
is updated. The modified buffer uses 60 locations for the
workspace and 148 locations for the pitch code book
Modified circular buffer to illustrate how the pitch code book
isupdated.
Circular buffer as it appears at the beginning of the subframe.
The workspace has no data at the beginning of the subframe.
The circular buffer uses just 148 locations.
Circular buffer as it appears during a subframe. As the ex-
citations are generated, they are written into the workspace
which grows as the pitch code book locations become free.
Circular buffer as it appears halfway through a subframe. The
workspace consists of the 30 most recent excitation values. . .
Circular buffer as it appears at the end of a subframe. The
workspace consists of the 60 most recent excitation values.
Just prior to the beginning of next subframe, the circular
buffer pointers are updated and the workspace is incorporated
into the pitch code book as shown in figure 4.4.
Flowchart of CELP synthesis update loop.
Flowchart of CELP synthesis Interrupt Service Routine(ISR).
The ISR retrieves data from the A or B subframe locations
depending upon the A/B flag which is checked at the begin-

ning of the routine.o

43

43

44

Bit allocation for NSA implementation vs. TSP50C10 version. 51

5.2

5.3
5.4

5.5

5.6

5.7

5.8

Log area ratios signifcantly improve the speech quality at low
bit TaEES. « . o e e e e e e e e e e e e e e
Simulations performed to learn bits-to-SNR trade-off.

The segmented SNR(dB) versus hardware parameters at 4.23

The segmented SNR as a function of the bit rate at various
RAM widths for a 14-bit ALU(from dam2.spd speech file.)
The segmented SNR as a function of the bit rate at various

RAM widths for a 16-bit ALU(from dam2.spd speech file.)

vi

56

56

Chapter 1

Introduction

Code Excited Linear Prediction (CELP) coding is a speech data compression
technique which, at 4.8 kbps, can achieve speech quality comparable to other
32 kbps speech coding techniques.

The CELP algorithm is composed of two steps. The first step, analysis,
is performed at the transmitter. The CELP parameters from the analysis
are then transmitted over a communications channel. At the receiver the
second step, synthesis, is performed to regenerate the speech. Figure 1.1

illustrates the CELP encoding, transmitting, and decoding.

Speech n CELP |, Ch 1. CELP | | Synthetic
=REEA/ Analysis anne Synthesis /A Speech

Figure 1.1: CELP Encoding, Transmission, and Decoding.

20000 T T T T T T T

15000 Voiced Speech —— |

10000 - -

|
5000 - .
Ampliz;(:)z II :P\}H q}!‘ "A l“” \ f\\ ! ! 'JM]WI\V‘-’AVAV“"' _
'

-10000

—
it
—. |

-15000 |- —

-20000 | | 1 | 1 { |
4400 4600 4800 5000 5200 5400 5600 5800
Time

Figure 1.2: A voiced speech waveform.
1.1 Introduction to Speech Coding

In this section, a brief description of voice waveforms is given. Figures 1.2
and 1.3 show voiced and unvoiced signals respectively.

We can see that the first speech waveform (voiced) is almost periodic
and is thus called quasi-periodic. Nasal and vowel sounds are voiced. An
example of a voiced sound is the “long e” in even. The unvoiced signals
come from sounds such as /f/ or /s/ in fiz and Sunday. By breaking sounds
into voiced and unvoiced categories, we arrive at an early model for speech
synthesis known as the VOice CODER (VOCODER). Figure 1.4 shows the
VOCODER speech synthesis technique.

The VOCODER was one of the early speech coding techniques which

20000 — , ; , , I 1
15000 Unvoiced Speech —— |
10000 - i
5000 |- H

Amplitude H
-5000 -
-10000 - 4
-15000 - 4
-20000 ' L 1 L ! L L
13000 13200 13400 13600 13800 14000 14200 14400
Time
Figure 1.3: An unvoiced speech waveform.
If —
Voiced Periodic
pulses
LPC Synthetic Speech
Filter

If Random J

Unvoiced

Noise

Figure 1.4: Block diagram of a VOCODER.

performs surprisingly well because the LPC filter reproduces the spectral
envelope. The spectral envelope has power peaks at the formant frequen-
cies where the speech wave resonates in the vocal tract. The idea in the
VOCODER is to develop a linear predictive filter which models the vocal
tract. The filter is then excited by either periodic pulses or random noise
for voiced and unvoiced sounds respectively. The VOCODER works well
for bit rates from 2kbps to 5kbps; however, the speech quality does not im-
prove much at bit rates above 5kbps[Atal2]. The LPC filter reproduces the
spectral envelope but does not reproduce the spectral fine structure. The
spectral fine structure is the local peaks and valleys of the speech power
spectrum which are smoothed out in the spectral envelope[Flanagan].

CELP makes two improvements to the VOCODER model. The CELP
algorithm attempts to capture the spectral fine structure by extracting the
pitch information using a pitch predictor. Secondly, the CELP algorithm
excites the LPC filter with a noise-like vector derived from a residual created
from the actual speech waveform.

CELP speech coding can achieve high quality speech at 4.8 kbps. Also
by increasing the bit rate, we can achieve higher quality speech as opposed
to the VOCODER whose quality is limited by the model.

The basic block diagram for CELP speech synthesis is shown in figure 1.5.

Recall that the noise-like vector in figure 1.5 is a vector which approximates
a speech residual created from the original speech (as discussed in the section

on the stochastic code book search).

Noise-like LLPC Synthetic Speech
Vector ‘ attice
Filter
Pitch
Information

Figure 1.5: Simplified block diagram of CELP synthesis.

1.2 Objective

Very high quality CELP speech is possible using a high-end floating point
DSP chip [Campbeli2]. The objective herein is to analyze the speech quality
that can be generated by the TSP50C10. The TSP50C10 is an inexpensive
integer DSP chip produced by Texas Instruments.

The motivation for this research comes from inadequacies in the current
low bit rate techniques for speech synthesis. Using the LPC VOCODER
model, “speech editing” must be performed to optimize the VOCODER pa-
rameters, specifically whether the segment is voiced or unvoiced. Typically,
the voiced or unvoiced nature of speech must be determined by a listener.
Therefore, the analysis process within the VOCODER model is very time
consuming and thus very expensive. CELP, on the other hand, does not
rely on the voiced or unvoiced property which means that there is no need
to “speech edit” the parameters. Hence, CELP is a much more attractive
technique for speech data compression.

In this application, the CELP parameters will be stored in ROM (Read

Only Memory) and read sequentially to produce the speech. As a result,

real-time analysis is not an issue while real-time synthesis is.

Therefore, for our purposes, we will concentrate our discussion on CELP
synthesis; however, for completeness, the CELP analysis is also presented in
the next chapter. This thesis is an example of the interplay between hard-
ware architecture and algorithmic complexity and performance. We shall see
how our analysis indicates the necessary modifications for the TSP50C10 in

order to implement acceptable CELP synthesis.

Chapter 2

CELP-The Algorithm

As mentioned previously, the CELP algorithm consists of an analysis routine
and a synthesis routine. The analysis routine is broken into LPC analysis,
perceptual weighting, and code book searches. These are described below,
followed by a description of how they are used as blocks in the CELP algo-

rithm.

2.1 CELP Analysis-The Ingredients
2.1.1 LPC Analysis

Linear Predictive Coding is a technique used to model the human vocal tract

as a filter. The filter is an all-pole filter with a transfer function:

1

H(z) = W (2.1)

where p = 10 for LPC-10 analysis. LPC analysis is the process by which the
LPC coefficients {o;} are determined from the digitized speech.
As the name implies, linear prediction analysis uses the last p samples

of speech to make a linear estimate of the next speech value. Therefore we

can write our estimate §(n) as

3(n) = ays(n — 1) + azs(n — 2) + ... + ops(n - P) (2.2)

P
3(n) = Z ars(n — k) (2.3)
k=1
where p = 10 for LPC-10 analysis. To calculate {a;}, we choose to minimize
the mean-squared prediction error defined as
E,= Z e(n + m)? (2.4)

all m

where

e(n +m) = s(n+ m) — §(n + m). (2.5)
Note that §(n + m) is the prediction m units ahead of the current sample.
Ideally, we would like to minimize E, for all values of m. However, this
is obviously not possible. Therefore we minimize E,, for a specific number
m. Thus E, is called the short-time average prediction error. Equation 2.4

becomes

E,= E (s(n+m)—&(n+ m))?. (2.6)
finite m
By substituting equation (2.3) into (2.6) we get

p 2
E, = Z (s(n +m) - Z ags(n+m — k)) . (2.7)
k=1

m

To minimize (2.7), with respect to the coefficients {a;}, we set %Ea':- =0

fori=1,2,..p.

Z ([S(n-i—m) - zp:aks(n-i-m—k)] '23(n+m—i)) =0. (2.8)
k=1

m

8

= Zs(n+m)s(n+m—i) = Z <Z ars(n+m — k)s(n+m ~ z)) . (2.9)

k=1

= Zs(n—}-m)s(n—{—m—i) = Zast(n+m—k)s(n+m——i). (2.10)

k=1 m
By defining the short-time autocorrelation function

R.(i, k)= Zs(n+m—i)s(n+m—k) (2.11)

m

we can rewrite (2.10) as

P
R,(¢,0) = Z arRn(3,k) fori=1,2,..p. (2.12)
k=1

The short-time autocorrelation function R,(i,k) is summed over a finite
number m. Justification for equation (2.11) is given below.

As an approximation, we multiply s(m + n) by a Hamming window to
make the signal s(m + n) = 0 for m outside the window, i.e. for m not in
0 < m < N — 1. Thus after multiplying our digitized speech by a finite
length data window, we can write

N-1+4p
E, = Z e*(n +m). (2.13)

m=0
Due to the data window, we know that s(n + m) = 0 for m outside of

0<m<N-1,ie.

s(n+m—1i)=0 fori>m;m>N—-1+1 (2.14)

and

s(n+m-—-k)=0 fork>m;m>N-—-14+k (2.15)

We can rewrite equation (2.11) as

N-14p
R,.(i,k) = Z s(n+m=—1i)s(n+m-—k) (2.16)

m=0

form>i,m>k,i=1,2,..p,and k=0,1,...p. By letting v = m —1 we get

N-—-1+p—i
R.(i, k)= Z s(n+v)s(n+v+i-k) (2.17)
but
s(n+v)=0 forv< 0 (2.18)
and
s(n+v+i—k)=0 forv+t—k>N-1. (2.19)
Therefore, we can write
N-1-(i=k)
R.(i,k) = Z s(n+v)s(n+v+i-k). (2.20)
v=0

By setting 7 = ¢ — k we see that (2.20) is the short-time autocorrelation

function defined as

N-1-71
R.(T) = Z s(n+7)s(n+3j+7) (2.21)
3=0
This justifies our previous approximation.

By noting that R,(r) is an even function, we can rewrite (2.12) as
P
Rn(i,0) = > axRa(l T 1) (2.22)
k=1

10

where 7 = i — k, i = 1,2...p. Equation (2.22) can be solved efficiently for
the linear predictive coefficients, {a;}, by using Durbin’s algorithm.

In matrix form, equation (2.22) is written as:

RO) R() R® - Rp-D1][e R(1)
R(1) R(O) RQ) - Rp-2) || R(2)
R(2) R() R(0) - R(p—3)||as |=|EO)

Blp—1) R(p—-2) Rp-3) - RO ||e R(p)

By noting that the above matrix is symmetric and Toeplitz, we can apply
Durbin’s algorithm to solve for {e;} [Makhoul].

Durbin’s algorithm is a recursive procedure which solves for {a;} in p? +
O(p) operations [Makhoul]. Durbin’s algorithm is stated by the equations
given below [Rab&Sch].

E© = R(0) (2.23)
R(i) - ¥iZj of D R(—) .
ki = JEl’(i—fl) for1<:1<p (224)
o =k (2.25)
() _ (-1) _ g (-1 ..
oy’ = a; - kia;_; for1<j<it-1 (2.26)
EW =(1- k?)E(i—l) (2.27)
(2.28)

Note that the superscripts denote the iteration of the recursion. Also, the

values of {e;} are set to the values of {az(-i)} at the last iteration (i.e, when

i=p).

11

As an example of Durbin’s algorithm, a 2nd order predictor is considered.

The initialization is given by (2.29).
E©) = R(0) (2.29)

The recursion starts with i = 1. Hence we get equations (2.30 - 2.33).

_R(1)-0

k=g (2.30)
which reduces to
_ R(1)
b= 500) (2.31)
o - £ 2.32
Q= R(0) (2.32)
EM =1 -#k)EO (2.33)
which simplifies to
2(0) — R2
EM = M (2.34)

R(0)
The recursion, for an order 2 predictor, finishes withi=2and 7 =1,2.
E(2) - oi R(1)

ky = = (2.35)

which works out to

_ R(2)R(0) — R*(1)

= 2.36
2= TR(0) - R¥1) (2.36)
agz) = ky (2.37)

o? = oY) - koM (2:38)

12

which yields
o = BOOR(O) - R(2)R(1)
: B0 - B1)

(2.39)

The actual values of the linear predictive coefficients (LPC’s) are as-
signed during the last iteration. In the above example, the LPC’s are as-

signed as in equations (2.40) and (2.41).

ap = ag2) (2.40)
az = o). (2.41)

The quantity E(®) in equation (2.27) is the predictor error at stage i [Rab&Sch].
It can be shown that the error E() decreases or stays the same as 7 increases
[Makhoul]. Therefore, from equation (2.27) we are guaranteed stability if the
magnitude of each ; is bounded by 1. The parameters {k;} are called PAR-
tial CORrelation (PARCOR) coefficients. The name PARCOR is derived
from the fact that they represent the correlation between the forward and
backward prediction error in the LPC lattice filter [Tretter]. PARCOR co-
efficients are also known as reflection coefficients because they represent the
reflection coefficients in an acoustical tube. By denoting the cross-sectional
area of an acoustical tube by A,, we can define the PARCOR coefficients as
[Mar&Gra).
Ap-1— Anm

ki= ——. 2.42
Am—l + Am ()

2.1.2 Perceptual Weighting

Speech has certain frequencies, called formants, which have more power than

most frequencies. The idea behind perceptual weighting is to allow the error

13

vector to have more power at the formant frequencies. The added power of
the noise vector will not be noticed at the formant frequencies because it
will be masked by the power of the signal.

The transfer function of the perceptual weighting filter is given in equa-

tion (2.43)

1+ Zi_ akz"“

H(z)= =1 2.43
(Z) 1+ ZZ=1 7kakz"° ()
where {ay} are the linear predictive coefficients and 7 is a constant. If y =1
then H(z) is an all pass filter. For perceptual weighting, v is usually taken

between 0.7 and 0.9. A typical value is 0.73.
2.1.3 Stochastic Code Book Search

The purpose of the code book search is to find the optimum gain and cor-
responding vector from the stochastic code book. The stochastic code book
is a time-invariant list of 512 60-dimensional vectors. Note that the dimen-
sion of each code book vector is dependent upon the subframe length. Here
subframes are 60 consecutive speech samples (7.5 msec). The measure for
optimality is the total squared error between the code book vector and the
speech residual.

The stochastic code book search is illustrated in figure 2.1 where the fil-
ter, denoted by its impulse response fn is the combined response of the LPC
filter H(z) and the perceptual weighting filter W(z), i.e. F(z) = H(z)W(z).
Using superscript k to designate code book vector k, we can write the output

from the filter as

o0
W= gl (2.44)

j=—o0

14

Perceptually
weighted

error vector r

|

vector 0 : ain ¢(®)
vector 1 o(F) Ii;\lﬁf;r y(8) Minimization ,g g
: f Function
vector 511 n

Figure 2.1: Block diagram of the search procedure.

where g(k) = (y((,k),ygk), ...,ygk), ...,yég))T. By using causality of the filter,
fi—; = 0 for i < j and we can write
k : k
¥ =3 fiego', (2.45)
j==—c0

But %) = (vo,vl,...,vsg)T,

=y =3 finol. (2.46)
—
Hence, in matrix form,
y¥) = Fpl®) (2.47)

where F is an NxN (i.e., 60x60) lower triangular matrix. The matrix ele-
ments f;; are given by fi—;.

Next we derive a relation for determining the optimum code book vector.
Physically, we want the code bpok vector that, once scaled, LPC filtered

and perceptually weighted, most resembles the perceptually weighted error

15

Code book vector

k)

vector. Let g(®) be the gain associated with code book vector v*). From
figure 2.3, 1 is the perceptually weighted version of g which is the residual
created by subtracting the linear prediction generated by the sum of the
pitch and stochastic code book elements.

Then we can write E(F), the norm-squared of the error vector, as

E® = ||Ir — g®FL®)|2 (2.48)

E® = (r — gWFu®)(z — gOFNT (2.49)

E® = prT = 240 TFy® 4 (402 FopTFT (2.50)
BEX) _

To minimize the norm-squared error, we set Be(F

= —27TFp® + 2B F®)2 = 0 (2.51)

A

7O T EE

(2.52)

From (2.52) we know the optimum scaling for vector k. By substituting

(2.52) in equation (2.50), we get

B® = ||z - (¢¥ P (2:53)
or equivalently,
T, (k)2
*) — 1112 — (T FoM)” 2.54
E® = I — i (2.54)

We use (2.54) to determine if we have found the smallest error among all
codevectors £ = 0,1,...511. Equation (2.54) is minimized if the second

term on the right hand side is maximized. Thus we have a criterion for

16

Perceptually
weighted
error vector r

|

rT Fy(F))2

(7 Fu™) Code book vector v(¥)
vector 0 Li . 5
vector 1 Flirll::: gain g()

vector 511 fa

IF22

Figure 2.2: Block diagram of the search procedure. The detailed diagram
for the analysis is given in figure 2.3.
determining the optimum codevector and the corresponding gain. In block
diagram form we get the algorithm as shown in figure 2.2.

We see from figure 2.2 that the upper branch of the minimization function
can be written as (X N7%° r,-iip_(k))2, where [, is the ith row of F, which is

just the square of the correlation of r with Fu(®). Similarly, the lower branch

is E?ﬁeo(iig(k))z which is the energy.
2.1.4 Pitch Code Book Search

The pitch code book search algorithm is exactly the same as the stochastic
code book search except for two changes. The first is that the residual r
changes to the input speech vector minus the perceptually weighted predic-
tion from the LPC lattice filter (given by u in figure 2.3). Secondly, the
code book changes from a time-invariant stochastic code book to an adap-

tive pitch code book. The adaptive pitch code book is made up of 128

17

different pitch lags. By a pitch lag, we mean that, for instance if the lag I =
25, the pitch vector corresponding to I would be the speech vector that was
produced 25 samples ago. The pitch code book is very intuitive in that the
pitch information is the quasi-periodic part of the speech signal. Therefore,
if the pitch period is I = 25, then we would like to repeat the signal that was
generated 25 samples ago. Hence the pitch code book search would choose
1= 25.

As stated, the pitch code book consists of 128 different pitch lags. The
lags chosen in the NSA standard are I = 20 to 1 = 147. Also, when imple-
menting the full floating point CELP, the NSA standard specifies that there
should also exist another 128 fractional pitch lags, thus making 256 different
pitch lags. The fractional pitch lags of course give a finer selection of the
actual pitch period.

As a note, the original CELP algorithm suggested by M. Schroeder and
B. Atal used a long time pitch predictor as opposed to the NSA adaptive

code book. The pitch predictor was specified by
P(z) = byz™ ™t £ bpz™™ + byz~™1 (2.55)

where m is the pitch period. We can see that (2.55) gives an interpolated
value of the sample m lags ago. By increasing the order of the pitch predictor

we can improve the interpolation.
2.2 CELP Analysis

CELP analysis is the process by which the digitally sampled speech is com-
pressed to 4.8 kbps.

18

The digital speech is broken into frames and subframes. The NSA stan-
dard specifies that a frame is composed of 240 speech samples (30 msec) and
a subframe is composed of 60 speech samples (7.5 msec).

The basic idea behind CELP analysis is to extract and code separately
the spectral envelope information, the pitch information, and the innovations
sequence. The spectral envelope is extracted by using LPC-10 analysis on
the incoming digitized speech. The LPC parameters are coded as PARtial
CORrelation(PARCOR) coefficients and then packed into the CELP bit-
stream. As a note, the LPC analysis is performed 1 a frame in advance of
the pitch and innovations code book analysis. Also, the physical interpre-
tation of the LPC-10 filter is that it models the human vocal tract. Due
to the slowly time varying nature of the vocal tract, the LPC-10 analysis is
performed only on a frame-by-frame basis as opposed to every subframe.

The pitch information is extracted from the incoming speech by simply
subtracting off the spectral envelope information. The spectral envelope in-
formation is contained in the previous LPC-10 parameters due to the fact
that the LPC-10 analysis is performed % a frame ahead of the pitch analysis.
The residual (i.e., the digitized speech minus the spectral envelope informa-
tion) is perceptually weighted and then compared to all the sequences in
the pitch code book (see the section on the pitch search). The pitch search
determines the optimum vector from the adaptive pitch code book. The
pitch search generates a pitch index into the pitch code book and a pitch
gain. These two parameters are the second and third CELP parameters.

To achieve higher quality speech, the pitch analysis is performed every sub-

19

frame.

After extracting the pitch information and the spectral envelope informa-
tion, there remains a noise-like sequence known as the innovations sequence.
It represents the information that could not be extracted using either the
pitch analysis or spectral envelope analysis. Physically, the innovations se-
quence is the residual created by subtracting the spectral envelope and the
pitch from the incoming digitized speech. The sequence is then perceptu-
ally weighted and the result is compared to a time invariant stochastic code
book (see the section on the stochastic code book search). The code book
search results in a code book index to the optimum codeword and a code
book gain. These form the last two CELP parameters.

Therefore the CELP bitstream is made up of:
1. 10 PARCOR coefficients per frame.

2. a pitch index per subframe.

3. a pitch gain per subframe.

4. a code book index per subframe.

5. a code book gain per subframe.

The CELP analysis algorithm is summarized in figure 2.3.

2.3 LPC Filter Parameterization

To achieve better data compression, Line Spectral Pairs (LSP’s) can be

used to parameterize the LPC lattice filter. The transfer function of the

20

v
/D
Y LPC Analysis _ PARCOR
on next frame Parameters
+ To stochastic
+ e Perce.ptual | L, code book
Weight search
Previous code book + . L
vector times gain LPC El?ili(ta;lrlctlon
+
Previous pitch
vector times gain
m p oual To pitch
2] erceptual 114 code book
? VVeight search

Previous code book LPC Prediction

- . i .
vector times gain Filter

Figure 2.3: The CELP analysis algorithm.

21

vocal tract filter stays the same whether you are using PARCOR or LSP’s.

However, LSP’s have better properties [Sug&Itak]:

1. The LSP’s are ordered and thus lend themselves to better quantization

with fewer bits.
2. The LSP’s perform well when interpolated between subframes of speech.

3. They have uniform spectral sensitivity and hence we can use uniform

bit allocation when quantizing.
2.3.1 From LSP to LPC

The CELP standard specifies that the lattice filter should be parameterized
using line spectral pairs. As mentioned previously, the TSP50C10 lattice
filter is controlled by PARCOR. coefficients. The conversion from LSP’s to
LPC’s is straightforward. LPC parameters are easily changed to PARCOR

as shown in the next section. The LPC filter is specified by equation (2.56).

o
Ay(z71)

H(z"Y = (2.56)

where p = 10 for LPC-10, o is the gain, and A, is given by equation (2.57).

p .
Ap =1+ a2 (2.57)

1=1
The a; in equation (2.57) are the LPC coeflicients for the filter. In LSP
parameterization, the filter again has the same form as in equation (2.56).

Now we introduce two new polynomials P(z7') and Q(z71) as in equation

(2.58).

22

A=) = 5P +QET) (2.59)
where
P(z7Y) = Ap(z7Y) — 2~ P 4,(2) (2.59)
and
Q(z"Y) = 4,271 + 2~ P4, (2). (2.60)

Since P(z~!) and Q(2~!) both have real coefficients, the roots are com-
plex conjugates and thus the polynomials can be written as in equations

(2.61) and (2.62).

1

P(zY)=(1-2z71) ﬁ(l — 2coswiz™t + 27%) (2.61)
=1
Qz"H=(1+z1 ﬁ(l — 2cosb;z™t + 27%) (2.62)

The parameters w; and §; are known as line spectral pairs. By expanding
equation (2.58) where P(z~') and Q(z~1) are given by equations (2.61) and
(2.62) the LPC parameters o; may be obtained as functions of the LSP
parameters §; and w;. These functions are very straightforward to derive

but are quite lengthy in form.

2.3.2 From LPC to PARCOR

The TSP50C10 uses PARCOR parameters to describe the lattice filter.

Therefore, we must convert the LPC parameters to PARCOR parameters.

23

The LPC and PARCOR parameters are derived from Durbin’s algorithm

from which the following equations arise:
ki = ol (2.63)

ol = o™ — giolY (2.64)

where i = 1,2...,pand j = 1,2,...,i — 1. By solving equation (2.64) for
(i-1)

a; we obtain:

oV = o 4 kol (2.65)

Equation 2.65 is in the correct form in that we can find agi_l) in terms of

agi) and k;. However, we also need to know agi_—jl) which we don’t know

because it is from the previous stage (i.e superscript is i — 1). Therefore,

(

we manipulate the above equations to elliminate the aii__jl) term. By using

equation 2.65 with subscript j replaced by i — j, we obtain:

oD = o + kol (2.66)

By substituting equation (2.66) into (2.65) we obtain:

agi—l) = agi) + ki[a@j + kiagi_l)] (2.67)

solving for agi_l) we get:

-1
o™ = Jl—kg (2.68)

where i =p,..,1,7 =1,2,3,..,i— 1. Thus by using the above equation and
(2.63) we are able to solve for successive k-parameters, i.e. starting with k1o

we are able to find kg...k1.

24

2.4 CELP Synthesis

CELP synthesizes speech by exciting a lattice filter which approximates the
vocal tract. The excitations to the filter are generated at the speech sample
rate. Therefore, the objective in CELP synthesis is to process packed speech
data to produce an excitation, at an 8KHz rate, and write it to alattice filter.

The TSP50C10 single-chip speech synthesizer is appropriate for the CELP
algorithm in that it incorporates the lattice filter in firmware. Thus CELP
synthesis is reduced to generating an excitation at an 8KHz rate(while up-
dating the lattice filter coefficients). To generate the excitation the program

executes the following steps:

1. Extract code book element.

2. Multiply element by code book gain.

3. Extract pitch value.

4. Multiply pitch value by pitch gain.

5. Add results 2 & 4.(code book element * gain + pitch * pitch gain)

6. Write result to filter.

These steps are shown in figure 2.4. The figure shows that the following

signals are necessary for each excitation:
e Code book index
¢ Code book gain

25

Code book Code book ~ Excitation
A X H—
Index ode boo T (To filter)

Code book Gain

Pitch
Index — ™ Pitch Code book ———@f————

Pitch Gain

Figure 2.4: Sequence of operations to generate the excitation.

e Pitch index
e Pitch gain

The LPC lattice filter, which is implemented in firmwarein the TSP50C10,

is shown in figure 2.5.

Excitation

(1) - o +) — s(n)
—k10 —kg —k1

-+

k1o kg k1

Figure 2.5: LPC synthesis filter using PARCOR coefficients.

26

Chapter 3

The TSP50C10

The TSP50C10 is a first generation Texas Instruments speech synthesizer.
The chip incorporates an internal microprocessor as well as a lattice filter

for speech synthesis.

3.1 The Hardware

Figure 3.1 shows a block diagram of the hardware internal to the TSP50C10.

The function of each block is :

ALU (Arithmetic and Logical Unit). Arithmetic and logical operations,
specifically:
1. Add
2. Subtract
3. Multiply
4. Shift left and right

5. Logical AND

27

Speech

T

Digital
to
Analog
Speech
Synthesizer
‘ 112
pon | eyt
A Reg (19) ST Internal
Locations LolzaAtli\gns
ALU Parallel
to Serial
B Reg (14) X Reg (8)

3 3 ‘
Program S h 8I Ii-Bytle Port B @]For & ©
Counter peec ROM.

Address ROM
Register (Program :
& Data)
External
RAM/ROM

(Speech Data)

Figure 3.1: Block diagram of the internal hardware of the TSP50C10.

28

6. Logical OR

A register - the most important storage register for intermediate calcu-
lations. Almost all data movement must go through the 14-bit A

register.
B register - A 14-bit wide intermediate storage location.

X register - An 8-bit wide register used to index internal RAM or as tem-

porary storage.
Bus - 14-bit wide data bus used to transfer data within the TSP50C10.

Internal RAM - The internal RAM is made up of two blocks as shown in
figure 3.2:

1. 16 12-bit locations which are used to store the K-parameters and

two constants for a postfilter.
2. 112 byte-wide locations which are available to the user .
Speech Address register - 13-bit register which indexes the 8-Kbyte in-

ternal ROM for speech data. Initially, the SAR is loaded with the

address of the beginning of the packed speech data.

Internal ROM - 8 Kilobytes of ROM which is used to store the program
and the speech data. The speech data is accessed by the GET instruc-

tion.

Port A - An 8-bit wide port which is available to the user to access external

RAM or ROM.

29

loc 0 — unused

loc 1 — Energy parameter for Speech Synthesizer
loc 2 - k-12 for LPC filter

loc 3 — k-11 for LPC filter

loc 13 — k-1 for LPC filter
Toc 14 — Constant 1 for low pass filter
loc 15 — Constant 2 for lowpass filter

loc 16 — first byte available to the programmer

Toc 127 — last byte available to the programmer

Figure 3.2: The internal RAM.

Speech Synthesizer - A lattice filter which is implemented in firmware.
The coefficients are taken from the 12-bit wide internal RAM locations

and is thus user programmable.

3.2 Other Features

The TSP50C10 was not designed explicitly with CELP synthesis in mind.
As a result, the chip has capabilities which are not needed by the CELP al-
gorithm. The TSP50C10 has a mode register which controls how it operates.

By changing the bits in the mode register, the chip can be used as:
1. a microprocessor with no instruction cycles lost to the synthesizer.

9. an LPC vocoder with a digital-to-analog converter. 53% of the instruc-

tion cycles are used by the speech synthesizer. The program writes the

30

LPC values to the RAM and unpacks the speech data from the ROM.
Depending on the voiced or unvoiced nature of the speech, a white

noise value or a pitch controlled value is written to the filter.

3. a microprocessor and a digital-to-analog converter. The program gen-

erates the speech value and then writes it to the DAC.

4. as a microprocessor with a filter and a DAC (CELP mode). 50% of

the instruction cycles are used by the speech synthesizer.

When in mode 2, the program uses an internal timer to interpolate the

LPC values as it advances through the frame.

3.3 Program Execution

The program instructions are addressed from the internal ROM by the pro-
gram counter. The current version of the TSP50C10 runs at 7.68 MHz (for
an 8KHz sampling rate). An instruction cycle is executed at sz the oscil-
lator frequency (480,000 instruction cycles per second). However, when the
speech synthesizer is running, it uses 50% of the instruction cycles. There-
fore only 240,000 instruction cycles per second are available to the CELP
program. Furthermore, some instructions, such as moving a constant into

the A register, require 2 instruction cycles.

3.4 The Next Generation

Texas Instruments plans to upgrade the current TSP50C10 to obtain better

speech quality. The next generation TSP50C10 will have a couple of very

31

important improvements. First, it will run at twice the current oscillator
frequency but allow 90 instruction cycles per sample. Secondly, it will have
240 bytes of internal RAM instead of the current 128 locations. As will be
discussed later, these improvements make CELP speech synthesis feasible

on a TSP50C10.
3.5 CELP Synthesis Using the TSP350C10

Conceptually, CELP speech synthesis is very straight forward using a TSP50C10.
The TSP50C10 runs the CELP synthesis program, taking the CELP param-
eters from a data bank stored in external or internal ROM. The TSP50C10
hardware generates an interrupt at the speech sampling rate (i.e. every 125

uSec). The interrupt:
1. pushes (i.e. stores) the program counter onto the stack,
2. stores the A, B and X registers in dedicated storage locations,
3. stores the register of flags (mode register).

In the interrupt, the program generates an excitation and writes it to
the lattice filter. The filter output goes through a D/A converter to produce
speech. As a note, once the excitation is generated, the program lets the

hardware take care of the speech generation.

3.6 Log Area Ratios

Markel and Gray showed that the spectrum of the vocal tract filter is more

sensitive to PARCOR coefficients near +1 [Mar&Gra]. To optimize the

32

TSP50C10

CELP Lattice
Program Filter D/A Speech

CELP Speech
Parameters

Figure 3.3: Block diagram of CELP synthesis using a TSP50C10.

quantization of the PARCOR coefficients, log area ratios were used. Log
area ratios are a transformation of the PARCOR coefficients. We define
A, as the cross-sectional area of the mth stage of the acoustic-tube model
of the vocal tract. The ratio of the area of two adjacent sections of the
tube Z%.E_‘.T can be written as ﬁ%’: [Mar&Gra]. By taking the log we get
LAR,, = logi—;—%—g.

The transformed K-parameters are then linearly quantized. The result-
ing table is then inversely transformed back to a table of K-parameters
using;:

LARm
K = %Em; (3.1)
Of course, the analyzer must also have a table of log area ratios with which
it determines the K-parameter that is closest to the unquantized K-value.

It is important to note that, from experimentation, log area ratios are

the best known quantization scheme for PARCOR coefficients [Mar&Gra).

33

However, as mentioned in chapter 2, LSP’s have uniform spectral sensitivity
and interpolate better than PARCOR coefficients. Thus, LSP’s are preferred
over PARCOR for the filter parameterization. However, since the TSP50C10
has a firmware filter where the coefficients are PARCOR, we are forced to

use PARCOR coefficients.

34

Chapter 4

TSP50C10 Speech Synthesis

Program

4.1 Program Format

The TSP50C10 CELP synthesis program can be analyzed in three sections:
e Initialization
e Interrupt Service Routine (ISR)
¢ Parameter Update

4.1.1 Initialization

The initialization performs all the tasks necessary to prepare the processor
for synthesis. The first task is to clear the internal RAM which stores all
the variables and values necessary for the program. Secondly, the first frame
data is read from the packed data which is stored in external ROM. At this
point, the program is ready to start synthesis so the interrupt is enabled.

The interrupt causes the program to branch to the ISR at the sampling

35

frequency. For 8 KHz sampling, the ISR is executed every Tsample seconds

(Tsample = §Ol()3 sec = 125 ,uSec).
4.1.2 Interrupt Service Routine

The ISR is responsible for generating an input to the lattice filter at the 8
KHz rate. It uses the values written in the update loop (as shown in figure
2.4) and generates the excitation.

After generating the excitation, the ISR writes the excitation into an
area of memory called the workspace where it is stored until the pitch code
book is updated. The pitch code book update is discussed in section 4.1.4.

Before exiting the ISR, the program updates a counter, samp_done, which
keeps track of the number of samples executed during the current subframe.

The counter, samp_done, is checked in the update loop.

4.1.3 Parameter Update

The update loop performs subframe and frame updates. The subframe up-

dates include:
e read in pitch gain.
o read in pitch index.
e read in code book gain.
e read in code book index.

e interpolate the K-parameters.

36

o update the adaptive pitch code book.

One approach to subframe updates is to wait until the end of the sub-
frame (i.e., when Samp_done = 60) and then perform all the updates. This
approach is fine when time is not a constraint. However, when time is a

constraint, this approach is inefficient because:
1. reading in new data from ROM is very slow.
9. there exist unused instruction cycles between interrupts.

A more efficient technique is to create a second set of memory locations
to store the new parameters. The free cycles between interrupts are used
to read in the new data and store the values in the second set of memory
locations. The new parameters are not used until the next subframe.

To distinguish between the new parameters and the parameters being
used by the program, an A/B subframe flag was created. While an ‘A’
subframe is being executed in the ISR, the program reads new data into the
‘B’ subframe locations. Then at the end of the subframe, the flag is flipped
so that the ISR goes to the ‘B’ locations to get the data and the program
reads in the new data into the ‘A’ subframe locations. The ping-pong pointer
movement is shown in figure 4.1.

Similarly, the K-parameter interpolation for the next subframe is per-
formed during the extra cycles that are not used in the ISR. The interpolated
values are written into user-defined RAM locations and then are transferred

to the dedicated RAM locations at the beginning of the subframe.

37

During
A Subframe

During
B Subframe

Program

A Subframe
Parameters

F————

writes new B Subframe

parameters

Program

Parameters

writes new JA. Subframe

parameters

Parameters

B Subframe
Parameters

S]

ISR reads
parameters

ISR reads

parameters

Figure 4.1: The ping-pong pointer technique to time-multiplex the access
to the subframe parameters.

38

4.1.4 Pitch Code Book - A Circular Buffer

The pitch code book is stored as a circular buffer. Therefore it has pointers
which indicate the beginning and the end of the code book. The circular
buffer resides in memory locations 92 through 239. The pitch code book
has 148 locations. 60 locations(called the workspace), store the most recent
excitation values. Note that the circular buffer is made up of the pitch code
book and the workspace. Also, for the purpose of discussion, the workspace
is not part of the pitch code book (see figure 4.2). By careful pointer move-
ment, the workspace is included within the same memory used to store the
pitch code book. The program variables and constants used for the pitch

code book are:

1. P.base is a constant equal to 5C Hex. It designates the absolute
address of the beginning of the circular buffer. Note that the beginning
of the circular buffer is not necessarily the beginning of pitch code

book.

9. P_start is a variable which stores the address of the beginning of the
code book itself. It is the only parameter which is updated when the

pitch code book is updated.

3. delay is a variable which at the beginning of the subframe, is equal
to the pitch index. However, it is used as the index into the pitch
code book. The address of the pitch element is generated by adding
the delay variable to the P_start variable. The delay variable is

decremented after each excitation. Thus a different pitch value is used

39

b Circular Buffer »
Workspace Pitch Code Book
Newest OldNew Oldest
Memory
Merpory location
location 32 P_Start 239

Figure 4.2: Modified circular buffer to illustrate how the pitch code book is
updated. The modified buffer uses 60 locations for the workspace and 148
locations for the pitch code book

every sample.

4. P_index is the actual lag value as written by the CELP analysis routine

(i.e., one of the CELP parameters).

It is illustrative to consider a modified circular buffer where 60 locations
are used for the workspace and 148 locations are used for the pitch code book.
Figure 4.2 shows the modified circular buffer which uses 208 locations.

To generate the address into the pitch code book, we add the delay vari-
able to the P_Start variable. The address is used to indirectly address the
actual pitch value in internal RAM. The pitch value is then used to generate
the excitation value which is written to the filter and then the workspace.

The location used to store the excitation in the workspace is created by

40

garbage
(not yet

Work:
apdated) orkspace
Y
N 7
ve;r 0 Pitch Code Book d
e N e
)]. e S
t d|w t
Memory
Mer}lory location
location 32 P_Start 239

Figure 4.3: Modified circular buffer to illustrate how the pitch code book is
updated.

subtracting the number of samples completed from P_Start (i.e. PStart -
Samp_done). The new excitations are stored in decreasing addresses within
the internal RAM. In other words, the workspace ”grows” from right to left
within the internal RAM.

From figure 4.2 and figure 4.3, we see that, within the pitch code book,
the oldest value has an address 147 locations “to the right” of P_Start. The
newest value within the pitch code book is at the address pointed to by
P Start. The values within the workspace are, of course, even newer than
any of those in the pitch code book. The address of the newest value within
the workspace is P_Start - Samp.done (i.e. the last excitation written to

internal RAM).

The order in which samples are stored is shown in figure 4.3. Using the

41

b Circular Buffer |
N 7
'?v Pitch Code Book d
: s
t t
M Lmory
Memory location
location 92 239

Figure 4.4: Circular buffer as it appears at the beginning of the subframe.
The workspace has no data at the beginning of the subframe. The circular
buffer uses just 148 locations.

modified pitch code book as described above requires 148 memory locations
for the pitch code book and 60 locations for the workspace. The 208 locations
needed makes the algorithm infeasible on even the new TSP50C10. However,
by making a slight modification to the above buffer, the number of locations
needed can be reduced to 148. By studying figure 4.3 it is seen that when
the oldest location is accessed by the program, it becomes free to store the
new excitation. Hence, the workspace can grow into the pitch code book as
shown in figures 4.4-4.7.

For simplicity, the above figures have shown the pitch code book with
a fixed P_Start. Since the pitch code book is actually stored in a circular
buffer, the address of P_Start changes. The P_start index is decremented

by 60 every subframe to keep up with the new values which are written to

42

The new

excitations
are written
into the
workspace.
- Circular Buffer |
¥
N ?
e .
w Pitch Code Book d
e
s s
t t
Memory
Memory location
location 92 239

Figure 4.5: Circular buffer as it appears during a subframe. As the excita-
tions are generated, they are written into the workspace which grows as the
pitch code book locations become free.

The workspace
consists of

the 30 most
recent
excitation
values.
e Circular Buffer —
o Y
N I
% Pitch Code Book d
e e
s s
t t
Memory
Memory location
location 92 239

Figure 4.6: Circular buffer as it appears halfway through a subframe. The
workspace consists of the 30 most recent excitation values.

43

The workspace
consists of the
60 most recent
excitation values.

b Circular Buffer —
N 9
\?v Pitch Code Book d
e e
s s
t t
M Lmory
Memory location
location 92 239

Figure 4.7: Circular buffer as it appears at the end of a subframe. The
workspace consists of the 60 most recent excitation values. Just prior to the
beginning of next subframe, the circular buffer pointers are updated and the
workspace is incorporated into the pitch code book as shown in figure 4.4.

44

the pitch code book.

The P_Start index and the index to store the new excitation are gen-
erated by adding and subtracting and can thus underflow and overflow the
memory allotted to the circular buffer. The underflow and overflow condi-
tions cause the addresses to wrap around to the upper and lower addresses

respectively of the pitch code book. The wrap around cases are:

1. At the end of the subframe, P_Start is updated during the pitch code
book update by subtracting 60 (the subframe size). If P_Start is less
than the beginning address of the circular buffer, then the length of
the circular buffer (148) is added to PStart and stored as the new

P_Start.

2. The second wrap around occurs when the index delay is added to
p_start and the result (the address of the pitch code book element)
is greater than the address of the circular buffer. In this case, 148 is

subtracted to produce the correct address within the circular buffer.

3. The third wrap around occurs due to when the pitch index is less than
60. As delay is decremented, it becomes negative. As specified by the
NSA algorithm, the negative delay is added to the pitch index to get

a valid pitch index.

4.2 Program Flow

The program flow can be viewed as illustrated in figure 4.8. The program

starts by clearing the internal RAM and reading in the first subframe data.

45

Then, the ISR is enabled. The ISR generates an excitation for the filter.
During a subframe, the update loop uses the extra instruction cycles between
samples to read in the subframe parameters and interpolate the PARCOR
coefficients for the next subframe. During the fourth subframe, the ISR
reads in the subframe parameters and the new PARCOR coefficients. After
getting the new PARCOR. values, the ISR again interpolates them. The

flowcharts for the update and ISR are given in figures 4.8 and 4.9.

4.3 Program Constraints

4.3.1 The Time Constraint

The current version of the TSP50C10 runs at 7.68 MHz, and as discussed
earlier, this means that 240,000 instruction cycles/sec are available to the
CELP synthesis program. Since the lattice filter excitation update must
occur at 8KHz, only 30 instruction cycles per sample are available to the
TSP50C10. Therefore, the ISR, the paramater updates, and the pitch code
book are limited to 30 instruction cycles. Using the NSA standard for CELP,
the CELP.asm program is able to do the tasks in 69 instruction cycles.
Thus, CELP synthesis will not run on the current version of the TSP50C10.
However, the program will run on the next generation TSP50C10 which will

allow 90 instruction cycles per sample.
4.3.2 Memory Constraint

The current version of the TSP50C10 has 112 byte-wide memory locations

available to the programmer. The pitch code book as specified by the NSA

46

Initialization

Read in
next subframe
parameters

&
wait until
end of subframe

If at end of subframe

Update
subframe param’s

Read in
next subframe
parameters

&
wait until
end of subframe

If at end of subframe

Update
subframe param’s

Do 2 more
subframes

Update
ARCOR param’s

I

Figure 4.8: Flowchart of CELP synthesis update loop.

47

A Subframe AorB B Subframe

subframe?
code book gain * code book gain *
code book element code book element
Store in B reg. Store in B reg.
Pitch * Pitch *
Pitch gain Pitch gain
Add result(A reg) Add result(A reg)
plus B reg. plus B reg.
Send to Send to
Filter Filter
Update Update
Pitch code book Pitch code book
Return Return

Figure 4.9: Flowchart of CELP synthesis Interrupt Service Routine(ISR).
The ISR retrieves data from the A or B subframe locations depending upon
the A/B flag which is checked at the beginning of the routine.

48

algorithm has 148 memory locations. As a result, even without needing to
store any other parameters, the CELP synthesis program does not fit into a
TSP50C10. The new TSP50C10 will have 240 RAM locations of which 226

are used by the CELP synthesis program.

49

Chapter 5

Results

Due to the time and memory constraints, the CELP algorithm does not run
on the current TSP50C10. Therefore, a simulation of the TSP50C10 was

performed. The following three questions were posed.

1. What quality speech will be possible on the new TSP50C10.

2. How can we improve the TSP50C10 results while still using the integer

arithmetic?

3. How can we reduce the bit rate of the TSP50C10 and maintain the

speech quality.

To gain insight into how to improve speech synthesis using the architecture
of the TSP50C10, an analysis was performed whereby the RAM width and

the size of the multiplier were varied.
5.1 The Simulation

The simulation was performed on the SUN workstations in C. The filter

simulation is the same as that used at Texas Instruments. The simulation of

50

Parameter I Bits Allocated J

[Algorithm |

NSA 4.8 kbps 10 LSP’s per frame 34 bits
Pitch Index 7 per subframe
Pitch Gain 5 per subframe
Stoch. Code Book Index 9 per subframe
Stoch. Code Book Gain 5 per subframe

TSDP50010 7.47 kbps | 10 PARCOR coeff. per frame | 100 bits
Pitch Index 7 per subframe
Pitch Gain 5 per subframe
Stoch. Code Book Index 9 per subframe
Stoch. Code Book Gain 5 per subframe

Figure 5.1: Bit allocation for NSA implementation vs. TSP50C10 version.

the assembly language instructions mimicked the TSP50C10 ALU operation.
In other words, since the ALU is 14-bits wide, the numbers were stored
in 14-bit format and thus the precision of the numbers in the simulation
realistically reflected the precision in the TSP50C10. Similarly the pitch
code book values were scaled down to the width of the RAM and the K-

parameters were stored as 12-bit integers.
5.2 Using the New Generation Architecture

The major difference between the TSP50C10 implementation and the NSA
version is the integer arithmetic and the associated precision. The TSP50C10
synthesized speech is slightly degraded as compared to the floating point syn-
thesized speech. Using the floating point NSA algorithm on the dam2.spd
speech file, the segmented SNR is 7.05 dB, whereas the integer version has
a segmented SNR of 2.96 dB. The NSA algorithm uses 4.8 kbps while the
TSP50C10 uses 7.47 kbps. The bit allocation for the two techniques is given

in figure 5.1.

51

8 I I T 1 I I

Using Log Area Ratios —
Linear quantization —

SNR |
(dB) B

20— .

1 -

0 | | | | ! I

4000 4500 5000 5500 6000 6500 7000 7500
Bit Rate

Figure 5.2: Log area ratios signifcantly improve the speech quality at low
bit rates.

The simulation analyzes the trade-off between bit rate and hardare pre-
cision. At lower bit rates, log area ratios (LAR’s) were used to obtain better
quantization of the PARCOR coefficients. The log area ratios make a sig-
nificant difference in the speech quality at low bit rates as shown in 5.2.

The segmented SNR’s for various runs of the ‘simulation are tabulated

and graphed in the next section.

52

Sim. No. | Description Bit Rate | SNR(dB)
- Full 32-bit floating point using LSP’s 4.8 kbps | 7.05
Sim. 1 Full 32-bit floating point using PARCOR | 7.47 kbps | 7.37
Sim. 2 Standard TSP50C10 Simulation 7.47kbps | 2.96

148 byte-wide pitch code book
14-bit intermediate calculations
14-bit excitation

12-bit uniform bit allocation

Figure 5.3: Simulations performed to learn bits-to-SNR trade-off.

5.3 Tables and Graphs

Figure 5.4:
kbps.

ALU RAM width | dam2 | f002 | animals
14-bit ALU | 8 bits 2.80 3.64 | 3.45
14-bit ALU | 10 bits 4.39 |6.23 | 6.52
14-bit ALU | 12 bits 5.16 |5.85 | 7.09
16-bit ALU | 8 bits 2.74 | 2.26 | 4.63
16-bit ALU | 10 bits 427 1640 | 4.66
16-bit ALU | 12 bits 492 | 5.70 | 6.46
16-bit ALU | 14 bits 5.05 | 6.19 | 6.27

The segmented SNR(dB) versus hardware parameters at 4.23

From figure 5.7 the segmented SNR is very flat over bit rates between

4.93 and 7.47 kbps for a given RAM width. However, by increasing the

RAM width, the segmented SNR jumps significantly. By comparing figures

5.7 and 5.8 the segmented SNR remains essentially unchanged by increasing

the ALU by two bits.

Since the speech quality improves with the RAM width, the best config-

uration is the 16-bit ALU and 14-bit RAM.

The 14-bit ALU and 14-bit RAM configuration is not shown in the graphs

53

because the SNR for each was extremely low. The hardware performs better
with a 14-bit ALU and 8-bit RAM than with a 14-bit ALU and 14-bit RAM!
With the 14-bit ALU and 8-bit RAM, products are scaled down to 7-bits to
have a magnitude of +213. Using a 14-bit ALU and 14-bit RAM, numbers

would be scaled by 13 bits to have a magnitude of $213.

54

ALU RAM width | dam2 | f002 | animals

14-bit ALU | 8 bits 2.69 3.67 | 3.37

14-bit ALU | 10 bits 4.55 5.98 | 6.80

14-bit ALU | 12 bits 5.46 | 5.95 | 7.68

16-bit ALU | 8 bits 2.99 |2.31|4.83

16-bit ALU | 10 bits 4.41 5.84 | 7.07

16-bit ALU | 12 bits 5.07 | 5.93]6.88

16-bit ALU | 14 bits 5.22 | 6.36 | 6.26
Figure 5.5: The segmented SNR(dB) versus hardware parameters at 5.23
kbps.

ALU RAM width | dam2 | f002 | animals

14-bit ALU | 8 bits 2.96 |3.09 | 3.48

14-bit ALU | 10 bits 4,66 |6.29 | 6.69

14-bit ALU | 12 bits 5.64 |5.3117.70

16-bit ALU | 8 bits 2.92 | 4.66 | 4.84

16-bit ALU | 10 bits 4.50 6.13 | 6.79

16-bit ALU | 12 bits 5.27 6.05 | 6.52

16-bit ALU | 14 bits 5.29 5.72 | 6.21
Figure 5.6: The segmented SNR(dB) versus hardware parameters at 7.47
kbps.

55

8 T T T T T T

8 bit RAM — |
10 bit RAM —
12 bit RAM =—— |

SNR ——
@By 4 .

1 1 | 1 1 1

0
4000 4500 5000 5500 6000 6500 7000 7500
Bit Rate

Figure 5.7: The segmented SNR as a function of the bit rate at various
RAM widths for a 14-bit ALU(from dam2.spd speech file.)

8 T T T T T T
L 8 bit RAM — |
10 bit RAM ——
il 12 bit RAM =— _
14 bit RAM - -
L —— -
SNR 4 L |
(dB)
3 _
2+]
1 _
! 1 1 { | !

0
4000 4500 5000 5500 6000 6500 7000 7500
Bit Rate

Figure 5.8: The segmented SNR as a function of the bit rate at various
RAM widths for a 16-bit ALU(from dam2.spd speech file.)

56

5.4 Hardware Suggestions

5.4.1 The Filter Order

When the graphs from the previous section were presented at Texas In-
struments, it was suggested that the RAM width should be increased for
the next generation TSP50C10. They agreed; however, there is not enough
circuit area on the chip to include a wider RAM.

From the previous section, it is seen that the segmented SNR is flat down
to 4.23 kbps. To achieve lower bit rates, the high order LPC-10 coefficients
were set to zero which had negligible effect on the speech quality. Hence
higher quality speech would be possible with the new TSP50C10 if the LPC-
10 filter were changed to a lower order filter (e.g., LPC-7) while increasing
the RAM width.

Apart from producing higher quality speech, lowering the order of the
filter would have three beneficial effects on the program. Firstly, fewer
instruction cycles would be stolen from the microprocessor portion of the
chip by the synthesizer. Secondly, the bit rate would go down because fewer
filter parameters would be needed. Thirdly, the program execution time

would speed up in a critical area,(i.e., the K-parameter update).
5.4.2 LSP Parameterization

The TSP50C10 uses a PARCOR lattice filter for the vocal tract model. Due
to the better properties of the LSP parameters, it is suggested that LSP

filter parameterization is used instead of PARCOR coefficients.

57

5.5 Conclusion

CELP synthesis is not feasible on the current TSP50C10 but will be on
the next generation TSP50C10. If log area ratios are used to quantize the
PARCOR coeffients, remarkably good speech quality is obtainable using the
integer arithmetic at bit rates down to 4.23 kbps. The speech quality im-
proves only slightly as the bit rate is increased above 7.47 kbps. To improve
the speech the width of the internal RAM must be increased. Interestingly,
changing from a 14-bit ALU to a 16-bit ALU makes very little difference to
the speech quality. In terms of trading circuit area on the VLSI chip, CELP
would be better served by reducing the LPC-10 filter to LPC-6 or LPC-7
and increasing the RAM width.

By recognizing that CELP does not need any “speech editing” to opti-
mize the speech parameters depending upon the speaker, CELP is a viable

speech synthesis technique for the next generation TSP50C10.

58

Bibliography

[Atall]

[Atal2]

[Campbell]

Atal, Bishnu S., ‘Predictive Coding of Speech at Low Bit Rates’,
[EEE Transactions on Communications, Vol. Com-30, No.4,
April 1982.

Atal, B.S., ‘High Quality Speech at Low Bit Rates: Multi-pulse
and Stochastically Excited Linear Predictive Coders’, Interna-
tional Conference on Acoustics, Speech, and Signal Processing,
pp-1-4, April 1986.

Campbell, Joseph P. Jr., Vanoy C. Welch and Thomas E.
Tremain, ‘The New 4800 bps Voice Coding Standard’, Military
& Government Speech Tech 1989, Arlington, Virginia, Novem-
ber 14, 1989.

[Campbell2] Campbell, Joseph P. Jr., Thomas E. Tremain, Vanoy C. Welch,

[Fenichel]

[Flanagan]

‘The DOD 4.8 KBPS Standard’, Kluwer Academic Publishers,
1990.

Fenichel, Robert M., ‘Proposed Federal Standard 1016 Telecom-
munications: Analog to Digital Conversion of Radio Voice
by 4,800 bit/second Code Excited Linear Prediction(CELP).’
November 13, 1989.

Flanagan, James L., Manfred R. Schroeder, Bishnu S. Atal,
Ronald E. Crochiere, Nuggegally S. Jayant, and Jose M. Tribo-
let, ‘Speech Coding’, IEEE Transactions on Communications,
Vol. Com-27, No.4, April 1979.

[Kab&Ram] Kabal, Peter, and Ravi Prakash Ramachandran, ‘The Com-

putation of Line Spectral Frequencies Using Chebyshev Poly-
nomials’, IEEE Transactions on Acoustics, Speech, and Signal
Processing, Vol. Assp-34, No. 6, pp. 1419-1425, Dec. 1986.

59

[Makhoul]

[Mar&Gra)

[Papamic]

[Rab&Sch)

[Rose&Bar]

[Schroeder]

[Schroeder]

Makhoul, J., ‘Linear Prediction: A Tutorial Review’, Proc.
IEEFE, Vol. 63, pp. 561-580, 1975.

Markel, J.D. and A. H. Gray Jr., ‘Linear Prediction of Speech’,
Springer-Verlag, New York, 1976.

Papamichalis, Panos E.,'Practical Approaches to Speech Cod-
ing’, Prentice-Hall, Englewood Cliffs, New Jersey, 1987.

Rabiner, L.R., and R.W. Schafer, ‘Digital Processing of Speech
Signals’, Prentice Hall, Englewood Cliffs, New Jersey, 1978.

Rose, R.C., and T. P. Barnwell III, ‘Quality Comparison of
low Complexity 4800 bps Self Excited Vocoders’, IEEE Trans-
actions on Acoustics, Speech, and Signal Processing, pp. 1637-
1640, 1987.

Schroeder, Manfred R., and Bishnu S. Atal, ‘Stochastic Coding
of Speech at Very Low Bit Rates: The Importance of Speech

Perception’, Speech Communication 4(1985), Elsevier Science
Publishers B.V., North-Holland.

Schroeder, Manfred R., and Bishnu S. Atal, ‘Code Excited Lin-
ear Prediction(CELP) High Quality Speech at Very Low Bit
Rates.’ JEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 3, pp. 937-940, March 1985.

[Soo&Juang] Soong, F. K., and B. W. Juang, ‘Line Spectrum Pair (LSP)

[Sug&Ttak]

[T.I]

[Trad& Ata)

and Speech Data Compression’, IEEE Transactions on Acous-
tics, Speech, and Signal Processing, San Diego, CA, Mar. 1984.
pp- 1.10.1-1.10.4.

Sugamura, Noboru, and Fumitada Itakura, ‘From LPC to LSP’,
Speech Communication, Vol. 5, No. 2, June 1986, pp. 199-215.

Texas Instruments, ‘TSP50C10 Speech Synthesizer Design
Manual’, Texas Instruments, Linear Products, March 1989.

Trancoso, Isabel M., and Bishnu S. Atal, ‘Efficient Search Pro-
cedures for Selecting the Optimum Innovation in Stochastic
Coders’, IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 38, No.3, pp. 385-396, March 1990.

60

[Tremain]

[Tretter]

Tremain, Thomas E., Joseph P. Campbell Jr., and Vanoy C.
Welch, ‘A 4.8 kbps Code Excited Linear Predictive Coder’, U.S.
Department of Defense, R5 Fort Meade, Maryland, U.S.A.

Tretter, Steven A., ‘Introduction to Discrete-Time Signal Pro-
cessing’, John Wiley & Sons, New York, 1976.

61

