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Abstract: Background: Myocardial T2* mapping at 1.5T remains the gold standard, but the use of
3T scanners is increasing. We aimed to determine the conversion equations in different scanners
with clinically available, vendor-provided T2* mapping sequences using a phantom and evaluated
the feasibility of the phantom-based conversion method. Methods: T2* of a phantom with FeCl3
(five samples, 3.53–20.09 mM) were measured with 1.5T (MR-A1) and 3T scanners (MR-A2, A3, B),
and the site-specific equation was determined. T2* was measured in the interventricular septum
of three healthy volunteers at 1.5T (T2*1.5T, MR-A1) and 3T (T2*3.0T, MR-B). T2*3.0T was converted
based on the equation derived from the phantom (T2*eq). Results: R2* at 1.5T and 3T showed
linear association, but a different relationship was observed according to the scanners (MR-A2,
R2*1.5T = 0.76 × R2*3.0T − 2.23, R2 = 0.999; MR-A3, R2*1.5T = 0.95 × R2*3.0T − 34.28, R2 = 0.973; MR-
B, R2*1.5T = 0.76 × R2*3.0T − 3.02, R2 = 0.999). In the normal myocardium, T2*eq and T2*1.5T showed
no significant difference (35.5 ± 3.5 vs. 34.5 ± 1.2, p = 0.340). The mean squared error between T2*eq

and T2*1.5T was 16.33, and Bland–Altman plots revealed a small bias (−0.94, 95% limits of agreement:
−8.86–6.99). Conclusions: a phantom-based, site-specific equation can be utilized to estimate T2*
values at 1.5T in centers where only 3T scanners are available.

Keywords: magnetic resonance imaging; heart; iron overload; 3T; T2*

1. Introduction

Myocardial T2* mapping is a noninvasive and robust method that is used to identify
myocardial iron accumulation in iron storage diseases [1,2]. It is reproducible over time;
therefore, it can also be used to monitor chelation therapy [3]. Myocardial T2* mapping has
been widely used and validated at 1.5T [4], and currently, 1.5T remains the gold standard
for clinical practice [5].

Recently, the use of 3T scanners has been increasing, given their advantages of higher
signal-to-noise ratio and scan time, and the number of institutions with only 3T scanners is
increasing. Considering this, it is important to accurately calculate the iron burden at 3T.
Quantification of myocardial T2* at 3T is challenging because of substantially decreased T2*
values and vulnerable quantitation with higher susceptibility artifacts [6,7]. Despite these
limitations, the feasibility and reproducibility of T2* or its reciprocal R2* (the relaxation
rate, R2* (s−1) = 1000/T2* (ms)) quantifications at 3T have been previously demonstrated,
particularly for interventricular septum [8,9].

R2* is known to be approximately halved from 3T to 1.5T [10]. Several studies were
conducted to confirm this relationship in the myocardium but reported different conversion
equations for each research [7–11]. Furthermore, each study used a single cardiovascular
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magnetic resonance (CMR) scanner for each magnetic field strength. Therefore, it is impor-
tant to determine whether a theoretical conversion using different scanners with clinically
available, vendor-provided T2* mapping sequences can be applied in clinical practice.

In addition, a recent study suggested that myocardial T1 values can be standardized
among different scanners with a phantom-based correction method [12]. We hypothesized
that the relationships of T2* or R2* values between scanners with different field strengths
could also be determined using a phantom-based conversion method.

In this pilot study, we aimed (i) to determine the conversion equations in different
scanners using a phantom and (ii) to assess the feasibility of the site-specific equation for
estimation of T2* values at 1.5T from a 3T scanner in the myocardium.

2. Materials and Methods

This experimental study was performed in two tertiary care hospitals (Institutions A
and B) from June 2019 to December 2020. It was approved by the institutional review board
of both institutions, and informed consent was obtained from the participants.

2.1. Image Acquisition for T2* Mapping

A phantom with different concentrations of FeCl3 was created, and five samples with
increasing concentrations of 3.53, 4.32, 5.90, 10.63, and 20.09 mM were used (Figure 1A). The
phantom was scanned with four MR scanners (MR-A1, 1.5T, Achieva, Philips Healthcare,
Hospital A; MR-A2, 3T, Ingenia CX, Philips Healthcare, Hospital A; MR-A3, 3T, Prisma
Fit, Siemens Healthineers, Hospital A; MR-B, 3T, Verio, Siemens Healthineers, Hospital
B). In addition, three healthy volunteers with no cardiovascular disease were scanned
by MR-A1 (1.5T) and MR-B (3T). T2* maps of the mid-left ventricle were acquired with
clinically available, vendor-provided sequences in a short-axis view (Figure 1B). Multi-
echo black-blood turbo field echo (Philips) and multi-echo dark blood gradient echo
(Siemens) sequences were used. Scan parameters were as follows: in-plane pixel size
1.17–1.34 mm2, slice thickness 8–10 mm, repetition time (TR) 14–20 (minimum TR), and
number of echoes 6–8. Detailed scan parameters are described in Tables S1 and S2. A small
shimming box was used over the heart to correct local magnetic field irregularities.
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Figure 1. T2* maps in a phantom (A) and normal myocardium (B).

2.2. Image Analysis

The region of interest (ROI) was drawn on T2* maps by two independent cardiotho-
racic radiologists (S.C. and K.S.B.). Readers were blinded to the results measured by the
other reader. All measurements were repeated three times at 1-week intervals. Readers
drew circular ROIs as large as possible in the phantom. In human hearts, iron deposition
preferentially occurs in the subepicardial area, but no systematic variation occurs between
myocardial regions, and the mid-ventricular septal iron is highly representative of global
myocardial iron from a previous autopsy study [13]. In addition, in terms of avoiding
susceptibility artifacts, ROI in the interventricular septum is recommended for T2* mea-
surement [5]. Therefore, ROIs were drawn at the center of the interventricular septum in
this study.
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2.3. Phantom-Based Equation and Statistical Analysis

R2* has a linear association with the field strength [14]. Therefore, an association
between R2* values given by different field strengths was assessed by linear regression
with scatter plots for each scanner from the phantom study. Then T2* values at 1.5T can be
computed as a function of 3T values from the equation. Intra-class correlation coefficient
(ICC) analyses with a 95% confidence interval (CI) were conducted to assess intra- and
inter-observer reliability [15]. Intra-observer reliability was assessed using a two-way
mixed model with single measures and an absolute agreement. Inter-observer reliability
was assessed using a two-way random mixed model with single measures and an absolute
agreement. T2* values at 3T (T2*3.0T) of healthy volunteers were converted to the equivalent
values at 1.5T (T2*eq) using the conversion equation obtained from the phantom study
using the MR-B scanner. T2*eq and the measured values at 1.5T (T2*1.5T) were compared
using paired t-test, mean squared error, and Bland–Altman plots. Statistical analyses were
performed with SAS version 9.4 (SAS Institute, Cary, CA, USA), SPSS version 24.0 (IBM
Corp., Armonk, NY, USA), and R version 4.0.2 (R Core Team, Vienna, Austria).

3. Results
3.1. Phantom-Based Equation between 1.5T and 3T

Table 1 shows the T2* values of a phantom measured by two independent radiologist
readers. T2* values of the phantom ranged from 4.2 to 63.4 msec at 1.5T scanners and from
3.1 to 44.6 msec at 3T scanners. Overall, MR scanners with 3T field strength revealed lower
T2* values than those of 1.5T scanners, but values varied according to the MR scanner used.

Table 1. T2* values in a phantom study measured by two radiologist readers.

Concentration
(mM) Institution Scanner Vendor

Field
Strength

T2* (Mean ± Standard Deviation)

Reader 1 + Reader 2 Reader 1 Reader 2

Overall
A

MR-A1 Philips 1.5T 29.6 ± 22.0 29.5 ± 22.2 29.7 ± 22.5
MR-A2 Philips 3.0T 21.3 ± 15.7 21.4 ± 16.0 21.3 ± 15.9
MR-A3 Siemens 3.0T 12.8 ± 7.7 12.8 ± 7.8 12.9 ± 7.9

B MR-B Siemens 3.0T 20.8 ± 15.7 20.8 ± 16.1 20.8 ± 15.9

3.53 A
MR-A1 Philips 1.5T 62.5 ± 0.7 62.0 ± 0.2 62.9 ± 0.7
MR-A2 Philips 3.0T 44.2 ± 0.3 44.4 ± 0.3 44.0 ± 0.3
MR-A3 Siemens 3.0T 24.4 ± 0.2 24.3 ± 0.3 24.5 ± 0.2

B MR-B Siemens 3.0T 45.5 ± 0.4 45.8 ± 0.1 45.2 ± 0.2

4.32 A
MR-A1 Philips 1.5T 44.5 ± 0.1 44.5 ± 0.1 44.5 ± 0.0
MR-A2 Philips 3.0T 32.6 ± 0.2 32.5 ± 0.2 32.8 ± 0.1
MR-A3 Siemens 3.0T 17.4 ± 0.2 17.3 ± 0.1 17.5 ± 0.2

B MR-B Siemens 3.0T 29.9 ± 0.1 29.9 ± 0.1 29.9 ± 0.1

5.90 A
MR-A1 Philips 1.5T 26.8 ± 0.1 26.8 ± 0.2 26.8 ± 0.2
MR-A2 Philips 3.0T 19.5 ± 0.1 19.5 ± 0.1 19.5 ± 0.1
MR-A3 Siemens 3.0T 12.7 ± 0.1 12.7 ± 0.1 12.7 ± 0.1

B MR-B Siemens 3.0T 18.2 ± 0.1 18.2 ± 0.1 18.3 ± 0.1

10.63 A
MR-A1 Philips 1.5T 10.0 ± 0.0 10.0 ± 0.0 10.0 ± 0.0
MR-A2 Philips 3.0T 7.2 ± 0.1 7.2 ± 0.1 7.1 ± 0.1
MR-A3 Siemens 3.0T 6.0 ± 0.1 6.0 ± 0.1 6.0 ± 0.0

B MR-B Siemens 3.0T 7.2 ± 0.0 7.2 ± 0.1 7.2 ± 0.0

20.09 A
MR-A1 Philips 1.5T 4.2 ± 0.0 4.2 ± 0.0 4.2 ± 0.1
MR-A2 Philips 3.0T 3.2 ± 0.0 3.2 ± 0.0 3.2 ± 0.0
MR-A3 Siemens 3.0T 3.7 ± 0.1 3.7 ± 0.1 3.7 ± 0.0

B MR-B Siemens 3.0T 3.2 ± 0.1 3.2 ± 0.0 3.2 ± 0.1

The linear association between R2* values at 1.5T and 3T was found with good
fit, but a different relationship was observed according to the MR scanners (MR-A2,
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R2*1.5T = 0.76 × R2*3.0T − 2.23, R2 = 0.999; MR-A3, R2*1.5T = 0.95 × R2*3.0T − 34.28, R2 = 0.973;
MR-B, R2*1.5T = 0.76 × R2*3.0T − 3.02, R2 = 0.999; Table 2, Figure 2).

Table 2. Linear regression model of 1.5T on 3.0T.

Institution Scanner Vendor
Field

Strength
Reader 1 + Reader 2 Reader 1 Reader 2
Model R-Square Model R-Square Model R-Square

1st + 2nd + 3rd

A
MR-A2 Philips 3.0T −2.23 + 0.76 × 3.0T 0.999 −2.23 + 0.76 × 3.0T 0.999 −2.23 + 0.76 × 3.0T 0.999
MR-A3 Siemens 3.0T −34.28 + 0.95 × 3.0T 0.973 −34.23 + 0.95 × 3.0T 0.975 −34.33 + 0.95 × 3.0T 0.972

B MR-B Siemens 3.0T −3.02 + 0.76 × 3.0T 0.999 −2.75 + 0.75 × 3.0T 1 −3.30 + 0.76 × 3.0T 0.999
1st

A
MR-A2 Philips 3.0T −2.45 + 0.77 × 3.0T 0.999 −2.18 + 0.76 × 3.0T 0.999 −2.73 + 0.77 × 3.0T 0.999
MR-A3 Siemens 3.0T −35.28 + 0.96 × 3.0T 0.972 −35.59 + 0.97 × 3.0T 0.973 −34.99 + 0.96 × 3.0T 0.972

B MR-B Siemens 3.0T −2.37 + 0.75 × 3.0T 1 −2.52 + 0.75 × 3.0T 1 −2.23 + 0.74 × 3.0T 1
2nd

A
MR-A2 Philips 3.0T −2.42 + 0.77 × 3.0T 0.999 −2.60 + 0.77 × 3.0T 0.999 −2.24 + 0.76 × 3.0T 0.999
MR-A3 Siemens 3.0T −33.89 + 0.95 × 3.0T 0.975 −33.66 + 0.94 × 3.0T 0.98 −34.17 + 0.95 × 3.0T 0.971

B MR-B Siemens 3.0T −3.28 + 0.76 × 3.0T 0.999 −3.16 + 0.76 × 3.0T 0.999 −3.42 + 0.77 × 3.0T 0.999
3rd

A
MR-A2 Philips 3.0T −1.84 + 0.75 × 3.0T 0.999 −1.94 + 0.75 × 3.0T 0.999 −1.73 + 0.75 × 3.0T 1
MR-A3 Siemens 3.0T −33.72 + 0.94 × 3.0T 0.973 −33.65 + 0.93 × 3.0T 0.973 −33.84 + 0.95 × 3.0T 0.974

B MR-B Siemens 3.0T −3.47 + 0.77 × 3.0T 0.999 −2.58 + 0.75 × 3.0T 1 −4.54 + 0.79 × 3.0T 0.999
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When comparing both readers, these results were consistently shown in repeated mea-
sures. Intra-observer and inter-observer reliability assessment of T2* values demonstrated
excellent agreement (ICC range, 0.9997–1.0000 and 0.9993–1.0000, respectively; Table 3).

Table 3. Results of intra-observer and inter-observer reproducibility analyses for the phantom study.

Scanner
Intra-Observer Reliability Inter-Observer Reliability

Reader 1 Reader 2 1st + 2nd + 3rd 1st 2nd 3rd

MR-A1
1 0.9998 0.9997 0.9996 1 0.9996

(0.9998–1.0000) (0.9991–1.0000) (0.9991–0.9999) (0.9971–1.0000) (0.9998–1.0000) (0.9971–1.0000)

MR-A2
0.9999 0.9999 0.9998 0.9997 0.9999 0.9999

(0.9994–1.0000) (0.9997–1.0000) (0.9995–0.9999) (0.9978–1.0000) (0.9995–1.0000) (0.9992–1.0000)

MR-A3
0.9997 0.9999 0.9995 0.9999 0.9996 0.9993

(0.9986–1.0000) (0.9994–1.0000) (0.9986–0.9998) (0.9993–1.0000) (0.9967–1.0000) (0.9946–0.9999)

MR-B
1 1 0.9998 0.9999 0.9998 0.9999

(1.0000–1.0000) (0.9998–1.0000) (0.9995–0.9999) (0.9995–1.0000) (0.9983–1.0000) (0.9991–1.0000)

Data are intra-class correlation coefficient (95% confidence interval).

3.2. Normal Myocardium Study

From the in vivo study with the normal myocardium, no significant susceptibility
artifacts were found in the interventricular septum. T2* values ranged from 32.26 to 36.26
at 1.5T scanners and from 20.87 to 27.26 at 3T scanners. The mean and standard deviation
of T2*1.5T and T2*eq were 34.5 ± 1.2 (range, 32.3–36.3) and 35.5 ± 3.5 (range, 29.9–40.2),
respectively, without any significant statistical difference (p = 0.340, Table 4, Figure 3). In
addition, there were no significant differences for each reader or each measurement.

Table 4. Comparison of T2* measured in 1.5T (T2*1.5T) and equivalent T2* values from 3.0T (T2*eq) in
normal myocardium.

Values
Reader 1 + Reader 2 Reader 1 Reader 2

T2* Difference p-Value T2* Difference p-Value T2* Difference p-Value
(Mean ± SD) (95% CI) (Mean ± SD) (95% CI) (Mean ± SD) (95% CI)

1st + 2nd + 3rd
T2*1.5T 34.5 ± 1.2 −0.94

0.34
34.6 ± 1.4 −0.82

0.625
34.5 ± 1.0 −1.05

0.373T2*eq 35.5 ± 3.5 (−2.95–1.08) 35.4 ± 3.8 (−4.56–2.91) 35.5 ± 3.4 (−3.61–1.51)
1st

T2 *1.5T 34.7 ± 1.2 −1.19
0.484

34.8 ± 1.8 −1.22
0.721

34.6 ± 0.6 −1.16
0.605T2*eq 35.9 ± 3.3 (−5.23–2.85) 36.0 ± 4.1 (−13.9–11.50) 35.8 ± 3.2 (−9.34–7.03)

2nd
T2*1.5T 34.5 ± 0.9 −0.93

0.626
34.6 ± 1.3 −0.29

0.937
34.4 ± 0.4 −1.58

0.566T2*eq 35.4 ± 3.9 (−5.55–3.69) 34.9 ± 4.3 (−14.2–13.58) 36.0 ± 4.4 (−11.5–8.38)
3rd

T2*1.5T 34.4 ± 1.6 −0.69
0.73

34.4 ± 1.6 −0.96
0.809

34.4 ± 1.9 −0.42
0.876T2*eq 35.1 ± 3.8 (−5.53–4.15) 35.4 ± 4.5 (−16.0–14.04) 34.8 ± 4.0 (−10.522129.67)

CI: confidence interval; SD: standard deviation.

The mean squared error between the predicted T2* values and measured T2* values at
1.5T was 16.33 when considering the two readers. Specifically, this parameter was 21.68
and 10.98 for reader 1 and reader 2, respectively.

Figure 4 shows the results of Bland–Altman analyses for T2*1.5T and T2*eq for two
readers. When considering both readers, Bland–Altman plots revealed a small bias (−0.94,
95% limits of agreement: −8.86, 6.99) between the predicted T2* values and measured T2*
values at 1.5T. Moreover, bias remained small when considering each independent reader
(bias −0.82, 95% limits of agreement −10.35, 8.71 for reader 1; bias −1.05, 95% limits of
agreement −7.58, 5.48 for reader 2).
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4. Discussion

Our study reveals that different conversion equations are required for different scan-
ners with clinically available, vendor-provided T2* mapping sequences. The phantom-
based, site-specific equation enables the estimation of equivalent T2* values at 1.5T from 3T
scanners with acceptable mean squared error and small bias, suggesting the feasibility of
the phantom-based T2* estimation method in clinical practice.

T2* mapping has been utilized for iron quantifications in the heart and liver. While
calibration of hepatic T2* against liver biopsy has been made for estimation of liver iron
concentration [16,17], tissue validation and calibration of myocardial iron measurements
remain challenging due to the risks of heart biopsy and inhomogeneous myocardial de-
position [18,19]. While one study using a single heart specimen reported a linear associ-
ation of myocardial R2* and myocardial iron concentration [20], a different study using
12 human heart tissues suggested curvilinear relations between R2* and cardiac iron
concentration [13].

Theoretically, R2* has a linear association with the field strength [14]. In the past, there
have been multiple attempts to study the relationship of myocardial R2* or T2* at 1.5T and
3T scanners [7–11]. A linear association between R2* and the field strength was suggested
in the human myocardium [8–10], while others have reported a linear association between
the myocardial T2* and the field strength [11]. However, these studies showed different
conversion equations or relationships between two field strengths. In addition, a single
CMR scanner for each magnetic field strength was used for each study. This suggests that
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measured values can be different from theoretical calculations in clinical practice. Although
it is unclear, one can assume that some acquisition parameters or other scan considerations
such as the position in the iso-center or shim volume may affect the measured values.
Therefore, it is necessary to evaluate the applicability and feasibility of the theoretical
conversion equation in clinically available, vendor-provided T2* mapping sequences.

In addition, a prior study reported that myocardial T1 values can be standardized
among different scanners with a phantom-derived equation [12]. We hypothesized that
the relationships of T2* or R2* values between scanners with different field strengths could
be determined using a dedicated phantom. We assessed conversion equations using a
phantom in different scanners and applied them in the normal myocardium. In our results,
the conversion equation differed from the theoretical value (i.e., halving R2* values), while
the measured value at 1.5T (T2*1.5T) and the calculated value using a site-specific equation
(T2*eq) in normal myocardium revealed no significant difference. Therefore, we suggest
that caution is needed when interpreting T2* values at 3T and that phantom validation is
necessary for each scanner in clinical practice.

Our study has some limitations that are important to pinpoint. First, we included
only healthy volunteers in the validation experiments. It would have been important
to also include patients with iron overload (T2* < 20 msec at 1.5T), given their clinical
relevance. Therefore, further investigation of a large number of patients with iron overload
is necessary. Second, only a small number of healthy volunteers were included in our study.
This has to do with the fact that the normal myocardium study was used only for validation
rather than derivation of the equation and that consistent results through the repeated
measurements were obtained. Third, the difference between the two high-concentration
samples in the phantom (10.63 and 20.09 mM) was high. The relationship could have been
derived more accurately with intermediate concentration samples. Fourth, phantom results
may not reflect the susceptibility of the tissue. Yet, in our study, there was no evidence
of any significant susceptibility artifacts in the interventricular septum. Moreover, the
predicted T2* value derived from the site-specific equation did not show a significant
difference from the measured value at 1.5T in repeated measures. Hence, we suggest the
usage of the site-specific equation only in cases where significant errors are not detected,
which can be prevented by proper acquisition and analysis.

5. Conclusions

Our study demonstrates that different conversion equations can be required for differ-
ent scanners with clinically available, vendor-provided T2* mapping sequences. Therefore,
caution is needed when interpreting T2* values at 3T, and that phantom validation is
necessary for each scanner in clinical practice. A phantom-based, site-specific equation
may be utilized to estimate T2* values at 1.5T in centers where only 3T scanners are avail-
able. However, further studies involving larger populations and different myocardial iron
burdens are needed before its clinical application.
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