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Abstract Simulation platforms facilitate the development of emerging Cyber-
Physical Systems (CPS) like self-driving cars (SDC) because they are more
efficient and less dangerous than field operational test cases. Despite this,
thoroughly testing SDCs in simulated environments remains challenging be-
cause SDCs must be tested in a sheer amount of long-running test cases. Past
results on software testing optimization have shown that not all the test cases
contribute equally to establishing confidence in test subjects’ quality and relia-
bility, and the execution of “safe and uninformative” test cases can be skipped
to reduce testing effort. However, this problem is only partially addressed in
the context of SDC simulation platforms. In this paper, we investigate test se-
lection strategies to increase the cost-effectiveness of simulation-based testing
in the context of SDCs. We propose an approach called SDC-Scissor (SDC
coSt-effeCtIve teSt SelectOR) that leverages Machine Learning (ML) strate-
gies to identify and skip test cases that are unlikely to detect faults in SDCs
before executing them.
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Our evaluation shows that SDC-Scissor outperforms the baselines. With
the Logistic model, we achieve an accuracy of 70%, a precision of 65%, and a
recall of 80% in selecting tests leading to a fault and improved testing cost-
effectiveness. Specifically, SDC-Scissor avoided the execution of 50% of unnec-
essary tests as well as outperformed two baseline strategies. Complementary
to existing work, we also integrated SDC-Scissor into the context of an in-
dustrial organization in the automotive domain to demonstrate how it can be
used in industrial settings.

Keywords Self-driving cars, Software Simulation, Regression Testing, Test
Case Selection, Industrial Integration.

1 Introduction

Cyber-Physical Systems (CPSs) leverage physical capabilities from hardware
components as well as computational and artificial intelligence from software
components to operate in complex and dynamic environments, potentially
involving humans [14]. Specifically, CPSs continuously collect sensor data from
the surrounding environment and analyze them to control physical actuators
at run-time [4, 14].

CPSs find application in many domains ranging from Robotics and Trans-
portation to Healthcare and are expected to drastically improve the quality
of life of citizens and the economy [31]. For instance, self-driving cars (SDCs),
an emerging application of CPS in transportation, are expected to impact our
society profoundly by drastically reducing human errors that currently cause
more than 90% of driving accidents, improving passenger comfort, and limit-
ing pollution [50]. Currently, one of the main factors limiting the widespread
usage of SDCs is the lack of adequate testing. Releasing SDCs equipped with
defective software poses the risk that they might become erratic, which has
already led to some fatal crashes [14] [44].

Testing automation is crucial for ensuring the safety and reliability of soft-
ware, including the one controlling SDCs [50, 53]. However, most developers
rely on human-written test cases to assess SDCs’ behavior. This practice has
several limitations and drawbacks: (i) difficulty in testing SDCs in represen-
tative and safety-critical scenarios [44,48,79]; (ii) difficulty in assessing SDC’s
behavior in different environments and execution conditions [50]. As a conse-
quence, SDC practitioners in the field are facing a fundamental development
challenge: observability, testability, and predictability of the behavior of SDCs
are highly limited [44,48,79]. Thus, new testing practices and tools are needed
to find SDC faults earlier during development and, eventually, support the
widespread usage of autonomous driving.

Simulation environments can potentially address several of the challenges
mentioned above [15,22,36,60] since simulation-based testing is more efficient
than and can be as effective as traditional field operational testing [6, 36].
Additionally, simulation-based testing results are easier to replicate and can
support established model-in-the-loop (MiL), software-in-the-loop (SiL), and
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hardware-in-the-loop (HiL) development strategies. Consequently, an increas-
ingly large number of commercial and open-source simulation environments
have been delivered to the market to conduct testing in the autonomous driv-
ing domain [15, 36] as well as other CPS domains [75]. For such reasons, our
work focuses on simulation-based testing in the context of SDCs.

1.1 Problem Statement and Research Questions

Simulation environments enable automated test generation and execution [41].
However, the potential size of the testing space of simulation environments
is, in principle, infinite, which poses several challenges and questions (What
SDC test cases to select to identify faults efficiently? Is it possible to char-
acterize safety-critical SDC tests?) in exercising the SDC behaviors ade-
quately [3,20,21,41]. The time budget and computational resources devoted to
testing activities are usually limited, making the identification of faults partic-
ularly challenging in the SDC domain since the execution of simulation-based
tests is considerably slower compared to other forms of tests (e.g., unit and
system tests of traditional software systems).

For instance, testing how an ego-car handles a driving scenario can easily
take several minutes [20, 21, 63]; in contrast, running a unit or system test
of a traditional software system takes some (milli)seconds. It is important to
point out that simulation-based testing tests the subject on the system level,
which involves all components and not just a unit, and simulates the environ-
ment from which the test subject takes its inputs. Therefore, it is paramount
that developers test SDCs cost-effectively, for example, by using test suites
optimized to reduce testing effort or by improving existing automated test
generators’ efficiency without affecting their ability to identify faults [3,59,82].

In this paper, we investigate techniques to improve the cost-effectiveness
of simulation-based testing in the context of SDCs. Specifically, we focus on
techniques that employ Machine Learning (ML) models for supporting test
case selection (TCS), addressing the following main challenges: (i) to leverage
test case characteristics as well as ad-hoc SDC test case metrics to characterize
best unsafe (fault revealing) and safe (not fault revealing) SDC test cases;
(ii) to identify suitable ML models that can reliably predict the SDCs’ behavior
before executing those test cases; (iii) to experiment with the usage of such
ML strategies to effectively distinguish unsafe test cases from safe ones; (iv) to
integrate the proposed ML-based approach into the context of an industrial
organization in the automotive domain, thus demonstrating its applicability
in industrial settings.

We are interested in testing the safety of SDCs; therefore, we deem as rele-
vant those scenarios that expose a fault (e.g., an SDC drives out off the road).
We call those scenarios unsafe. Consequently, our TCS techniques exploit ML
models to classify SDC test cases that are unsafe (i.e., likely to expose a fault)
or safe.
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To address the aforementioned challenges, in this paper, we seek to answer
the following research questions:

– RQ1: To what extent is it possible to identify safe and unsafe SDC test
cases before executing them?
Answering RQ1 is important to understand whether, and to what extent, it
is possible to classify test cases for SDCs before executing them and by only
considering static input features (i.e., referred to as Road Characteristics).
We investigate the use of ML models for classifying test cases and study
their application in the context of Lane Keeping, the fundamental require-
ment in autonomous driving. Specifically, in testing lane-keeping systems,
unsafe scenarios cause self-driving cars to depart their lane [20, 21, 41],
and input features describe the geometry of a road as a whole (i.e., Road
Features).

– RQ2: Does SDC-Scissor improve the cost-effectiveness of simulation-based
testing of SDCs?
RQ2 investigates whether SDC-Scissor improves the cost-effectiveness of
simulation-based testing of SDCs, compared to baseline approaches. Hence,
in the context of RQ2, we investigated whether SDC-Scissor reduces the
time dedicated to executing irrelevant (safe) tests without affecting testing
effectiveness.

– RQ3: What is the actual upper bound on the precision and recall of ML
techniques in identifying SDC safe and unsafe test cases when using static
SDC features? In RQ1 and RQ2, we focused on investigating the feasibil-
ity and cost-effectiveness of using SDC Road Characteristics as features
for the problem of classifying SDC test cases before executing them. In
RQ3, we explore a complementary aspect, which is investigating whether
there is an actual upper bound on precision and recall of ML techniques
in identifying SDC safe and unsafe test cases when using static SDC fea-
tures (available before executing the tests). Hence, once we identified the
best ML models for classifying safe and unsafe test cases when compared
to baseline approaches (in RQ1 and RQ2), we focus on answering RQ3 by
(i) designing additional SDC test case features, called Diversity Metrics
(compared to the previous features used in RQ1 and RQ2 for training the
ML models, these metrics are more complex than just computing simple
road characteristics of SDC test cases); and (ii) leveraging hyperparameter
tuning strategies to find the optimal configurations of the most promising
ML models (as observed in RQ1 and RQ2).

We conducted our investigation using the freely available SDCs simula-
tor BeamNG.tech [15] (elaborated in Section 2). We selected BeamNG.tech
because it can execute procedurally generated driving scenarios, and it was
recently adopted as the reference simulator in the ninth and tenth editions of
the Search-Based Software Testing tool competition1 [63].

Complementary to the investigation of the aforementioned research ques-
tions, we investigate the extent to which SDC-Scissor can be integrated into

1 https://sbst21.github.io/tools/
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the context of industrial organizations in the automotive domain. Specifically,
to perform such an investigation, we generate SDC test cases and assess the
ability of SDC-Scissor to generate signals compatible with the CAN Bus pro-
tocol [23, 33, 45] used in the AICAS organization (details about the AICAS
company, their protocol, as well as the design and results of our integration
study, are provided in Section 6).

1.2 Summary of Results & Paper contributions

SDC-Scissor avoided the execution of 50% of unnecessary tests as well as
identified more failure triggering test cases compared to two baseline strategies.

SDC-Scissor outperformed the baseline across all test pools; with the Lo-
gistic model, we achieved an accuracy of 70%, a precision of 65%, and a recall
of 80% (Table 5.2.2) in selecting unsafe tests.

Our assessment of SDC-Scissor shows that SDC-Scissor successfully selects
test cases independently from the AI engine used or different driving styles,
with the Logistic model providing the more stable results. Our results also
show that the knowledge is not transferable from one AI engine to another
one, i.e., SDC-Scissor performed worse when training ML models on data from
a specific AI engine and testing on data from a different AI engine. However,
from the discussion of our results (in RQ3), we also observed that there is
an upper bound for the extent to which static SDC features can be used to
predict SDC testing outcomes. Finally, the integration of SDC-Scissor into the
AICAS use case allowed us to demonstrate that the proposed approach can
automate the testing process of such a large automotive company, coping with
the need to complement their hardware-based simulation (based on the Can
Bus protocol) with simulation-based testing automation.

The contributions of this paper can be summarized as follows:

– Selection of SDCs test cases (RQ1): We investigated new methods in
the area of SDCs for test case selection. We first compute SDC features
that can be used to characterize safe and unsafe test cases before execut-
ing them. Hence, we introduced SDC-Scissor that leverages ML models to
support test case selection for SDCs, to enhance testing cost-effectiveness.

– SDC-Scissor’s Cost-effectiveness (RQ2): We compared the proposed
approach against two distinct baseline approaches to demonstrate the test-
ing cost-effectiveness of SDC-Scissor. The first one is a random baseline ap-
proach that selects tests randomly. The second baseline selects tests based
on their road length, which means that test cases with long roads are pre-
ferred based on the intuitive assumption that long roads have a higher
probability of being unsafe.

– Offline v.s. Real-time Training (RQ2): We investigated two opposite
setups for SDC test case selection that leverage ML models trained on
offline data (i.e., trained on a large static dataset) and real-time data (i.e.,
dynamically generated tests).
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– Upper-bound of SDC static features (RQ3): We empirically investi-
gated whether there is an actual upper-bound on the precision and recall
of ML techniques in identifying SDC safe and unsafe test cases when using
static SDC features (available before executing the tests).

– Integration of SDC-Scissor in an Industrial Use Case (analysis de-
tailed Section 6): We integrated SDC-Scissor into the development context
of the AICAS use case, demonstrating that the proposed tool can automate
the testing process of such a large automotive company.

To foster the replicability of our study, we built a large dataset of labeled
test cases [52] that can be used for replicating our results and promoting
further research. Furthermore, SDC-Scissor is publicly available on GitHub 2,
which can be used with the data to replicate our results.

Paper structure. The paper proceeds as follows: Section 2 provides some
background about CPS simulation technologies, regression testing, a discus-
sion of the simulation-based testing (of Lane Keeping) systems used in the
context of our study, a discussion on automated test generation in the con-
text of SDCs, and a summary of the main terminology used in our study.
Section 3 presents the approach proposed in this paper. Section 4 describes
the empirical study design, while Section 5 presents its main results. Section 6
provides a brief background on AICAS, the industrial organization involved
in our study, details on the Can Bus (i.e., their signal-based protocol), and
elaborates on the design and results of SDC-Scissor’s integration within the
AICAS organization. Section 7 reflects on the results reported in Section 5
and Section 6, providing complementary insights and providing a discussion
on future work for researchers and SDC developers. Section 8 discusses related
work, while Section 9 discusses the threats that could affect the validity of our
results. Finally, Section 10 concludes the paper and outlines future research
directions.

2 Background

This section introduces background elements to make this paper self-contained.
It presents the main approaches to SDC simulation (2.1) and discusses auto-
mated testing of Lane Keeping systems (2.2). Finally, it concludes with a recap
of the terminology used in the rest of this paper (2.3).

2.1 CPS Simulation Technologies

Several simulation technologies have been developed to support developers
in various stages of the design and validation of CPSs. Those technologies
provide various levels of accuracy and realism at different execution costs, i.e.,
more accurate simulations generally require larger computational power. In the

2 https://github.com/ChristianBirchler/sdc-scissor

https://github.com/ChristianBirchler/sdc-scissor
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domain of self-driving cars, developers resort to abstract simulation models [7,
43,76], rigid-body simulations [57,84], and soft-body simulations [39,68] among
others.
Basic simulation models, like MATLAB and Simulink models as well as ab-
stract driving scenarios [7], have been mainly utilized for model-in-the-loop
simulations, benchmarking of trajectory planners, and Hardware/Software co-
design. They implement fundamental abstractions (e.g., signals, motion prim-
itives) but target mostly non-real-time executions and lack photo-realism,
which limits their applicability for testing SDC systems.
Rigid-body simulations approximate the physics of bodies by modeling entities
as undeformable bodies [3]. Rigid-body simulations implement a very coarse
approximation of reality and can simulate only basic object motions and rota-
tions. Consequently, rigid-body simulations cannot simulate realistic and crit-
ical scenarios (e.g., car crashes, inertia) accurately, even when they are com-
bined with rendering engines to achieve photo-realistic simulations [22,36,81].
Soft-body simulations improve over rigid-body simulations and can simulate
a wide range of simulation cases in addition to primitive body motions and
rotations. As stated by Dalboni and Soldati [35], soft-body simulations can
simulate body deformations, anisotropic mass distributions, and inertia, which
are essential in many CPS domains. For SDCs, soft-body simulations are a
better fit for simulating safety-critical driving scenarios [39] and, like rigid-
body simulations, they can be coupled with powerful rendering engines to
achieve photo-realism (e.g., [15]). Consequently, in our work, we leverage soft-
body simulations for simulation-based testing of SDCs.

2.2 Simulation-based Testing of Lane Keeping Systems

In this paper, we study how SDC-Scissor can optimize the testing of the soft-
ware that controls self-driving cars using physically accurate driving simu-
lations. Specifically, we focus on testing Lane Keeping systems (LKS) that
implement one of the fundamental features of autonomous driving.

Simulation-based testing requires creating relevant testing scenarios and
reifying them into concrete executions [55]. In accordance with current re-
search on automated testing of LKS [63] [40], we consider scenarios that take
place on a sunny day on single, flat roads surrounded by plain green grass.
Consequently, tests take the form of the following driving task: driving with-
out going off the lane from a given starting position, i.e., the beginning of a
road, to a target position, i.e., the end of that road.

The roads defining these driving tasks are obtained by interpolating road
points using cubic-splines to obtain a smooth road spine, i.e., the road’s center
line (see Figure 1). Driving simulators use the road spines to implement the
actual driving tasks to execute.

In this context, unsafe tests correspond to virtual roads that expose prob-
lems in the ego-vehicle while driving autonomously on them, for instance,
causing it to drive off-road or invade the opposite lane. As discussed in the
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Fig. 1 Virtual roads for testing Lane Keeping systems. The white dots represent the road
points, the (central) yellow lines represent the interpolated road spine, the triangles represent
the starting locations, and the squares represent the target locations

next Section, SDC-Scissor extracts a set of features from the road spine and
road points that enable it to predict whether the corresponding virtual road
will expose a problem in the ego-vehicle before the test execution.

SDC-Scissor relies on the open-source testing infrastructure developed for
the CPS testing competition of the SBST (Search-Based Software Testing)
workshop [63]. This infrastructure can automatically implement executable
simulations from the road spines, execute them, and collect their results (e.g.,
pass/fail). We opted for this infrastructure for two main reasons: (1) It uti-
lizes BeamNG.tech [15] simulator; hence, it can execute physically accurate
and photo-realistic driving simulations. (2) It has already been used to bench-
mark several automatic test generators (see [63] [40]); hence, it enables us
to study the generality of SDC-Scissor. SDC-Scissor uses Frenetic [29] as the
main test generator, which uses a genetic algorithm for defining road points
on a cartesian plane.

The open-source testing infrastructure developed for the CPS testing com-
petition [63] enables driving agents to drive simulated vehicles and get pro-
grammatic control over running simulations (e.g., pause/resume simulations,
move objects around). We consider two different driving agents as test sub-
jects for our evaluation: The first is the driving agent shipped with the
BeamNG.tech, which we refer to as BeamNG.AI, and the second, is an
open-source trajectory planner, which we refer to as Driver.AI3 [41]. As
explained by BeamNG.tech developers, a parameter called the “risk factor”
(RF) controls the driving style of BeamNG.AI: low RF values (e.g., 0.7) result
in smooth driving, whereas high RF values (e.g., 1.2 and above) result in an
edgy driving that may lead the ego-car to “cut corners”. Driver.AI instead
analyzes the road geometry and plans the car trajectory by computing for
each turn the maximum safe driving speed (v) using the standard formula for

3 https://github.com/alessiogambi/AsFault/blob/asfault-deap/src/asfault/

drivers.py

https://github.com/alessiogambi/AsFault/blob/asfault-deap/src/asfault/drivers.py
https://github.com/alessiogambi/AsFault/blob/asfault-deap/src/asfault/drivers.py
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centripetal force on flat roads with static friction (µ) [34]:

v =
√
µ× r × g (1)

where r is the turn radius and g is the free-fall acceleration.
Driver.AI relies on the user to provide the value of the friction coefficient,

as well as information about the maximum acceleration and deceleration of
the ego-car. In our evaluation, we estimated those values empirically following
a trial-and-error approach. It is important to mention that, at the moment,
both BeamNG.tech and Driver.AI do not have previous versions of their driv-
ing agents. This means that their behavior can only be altered or investigated
by experimenting with the parameters already discussed in the context of our
study. As a consequence, the target of our regression testing strategy is pri-
marily focused on enabling SDC test selection, with the main goal of reducing
the effort required to detect faults. For future work, assuming new versions of
both BeamNG.tech and Driver.AI are delivered, we plan to experiment with
consecutive versions of these AI agents so that it is possible to investigate the
potential fault-detection capability of both of them.

2.3 Article Terminology

To avoid any confusion in terminology, it is important to note that in the rest
of the paper, we will refer to simulation-based test cases generated by SDC-
Scissor as test cases. Test cases are composed of virtual roads composed of
a sequence of multiple road segments, as exemplified in Figure 1. Formally,
road segments refers to (parametric) portions of roads of test cases; hence,
they can be straight segments (no curvature), left turns (positive curvature),
or right turns (negative curvature).

We refer to test cases that have been executed and evaluated in simulation
as executed test cases. Then, if a test is passed successfully, we refer to it
as a passing test, and if it failed, potentially revealing some issues with the
system under test, we refer to it as a failing test.

On the other hand, as we elaborate more in the next sections, SDC-Scissor
automatically assigns labels to the test cases regarding them being likely to
fail or pass without executing them. In this context, we refer to the test cases
which are considered by SDC-Scissor to be likely to pass as safe test cases
and the ones that are considered likely to fail as unsafe test cases.

Regarding the features used in SDC-Scissor, static (road) features refer
to any test case features that can be calculated without running any simu-
lations, i.e., they are suitable for predicting test results (simulation results)
before running simulation. As discussed in detail in the next section, we pro-
pose to use two different sets of road features: road characteristics and
diversity metrics.

Regarding the experiments to answer RQ2, we will discuss offline exper-
iments that involves test selection from a previously generated (offline) pool
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of test cases in Section 4.2.2. We conducted the offline experiment in two ex-
perimental setups that mimic the issues of having a limited testing budget in
the context of SDCs: 1) FIX, in which the amount of total test cases that
can be executed in the simulation environment is fixed to a certain number.
2) REACH in which we continue executing the test cases until we reach a
certain number of failing tests.

As discussed later in Section 5.2.2, we complement RQ2 evaluations with
real-time experiments, in which we study the application of SDC-Scissor to
automated test generation, i.e., the test pool is being generated in real-time,
and only the unsafe tests are being kept and executed. There, we have two
experimental setups: 1) with a pre-trained ML model. 2) with an adaptive
ML model that could be retrained with the correct labels of the generated test
cases.

3 The SDC-Scissor Approach

In this section, we first overview SDC-Scissor’s software architecture and its
main usage scenarios (Section 3.1); next, we describe the selected features used
as inputs to SDC-Scissor (Section 3.2); finally, we explain how SDC-Scissor
uses these features to classify test cases before executing them (Section 3.3).

3.1 SDC-Scissor Architecture Overview

SDC-Scissor supports two main usage scenarios: Benchmarking and Predic-
tion. In the Benchmarking scenario, SDC developers (or testers) leverage SDC-
Scissor to determine the best ML model(s) to classify SDC simulation-based
tests as safe or unsafe. In the Prediction scenario, instead, SDC-Scissor uses
the most promising ML model(s) to classify newly generated test cases.

SDC-Scissor Software Architecture (Figure 2) implements these scenarios
by means of five main software components, which have the main following
responsibilities and relations:

(i) SDC-Test Generator generates SDC simulation-based test cases.
(ii) SDC-Test Executor executes the tests and stores the test results, i.e.,

safe or unsafe labels, to allow training of the ML models.
(iii) SDC-Features Extractor extracts the input features from the SDC

simulation-based test cases.
(iv) SDC-Benchmarker uses these features and collected labels to train the

selected ML models and determines which ML model best predicts the
tests that are more likely to detect faults.

(v) SDC-Predictor uses the trained ML models to classify newly generated
test cases, thus achieving cost-effective SDC simulation-based testing via
test selection.
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Fig. 2 Overview of SDC-Scissor’s Software Architecture

Table 1 Road Attributes extracted by the SDC-Features Extractor. In the table, we report
for each feature their name, description, and range (based on the tests in the generated
datasets)

.

Feature Description Range

Direct Distance Euclidean distance between start and finish (Meters) [0 – 489.9]
Length Total length of the driving path (Meters) [50.6–3317.9]
Num L Turns Number of left turns on the driving path [0 – 18]
Num R Turns Number of right turns on the driving path [0 – 17]
Num Straight Number of straight segments on the driving path [0 – 11]
Total Angle Cumulative turn angle on the driving path [105 – 6420]

3.2 SDC Test Case Features

SDC Test Case Road Characteristics - Features Set 1 (Used in RQ1,
RQ2, and RQ3). To predict whether test cases are likely to result in safe or
unsafe test cases before their execution, we use a set of simple static features
extracted from the global characteristics (we refer to Road Characteristics) of
the virtual roads used as test cases. We extract two types of Road Characteris-
tics describing the main road attributes (see Table 1) and descriptive statistics
about the road composition (see Table 2). Exemplary road attributes we con-
sider are the total length of the virtual road, its starting and target positions
on the map, and the count of left and right turns. To calculate road statistics,
instead, we adopt the following procedure: (1) We extract the driving path that
the ego-car must follow during the test execution; this path defines the test
case and contains the road segments that the ego-car must traverse to reach
the target position from the starting position. (2) We extract the metrics such
as segment length, road angle, and pivot radius from the road segments. (3)
We compute descriptive statistics by applying standard aggregation functions
(e.g., minimum, maximum, average) on the collected road segment metrics.

SDC Test Case: Diversity Metrics - Features Set 2 (Used in RQ3).
To predict whether test cases are likely to result in safe or unsafe test cases

before their execution, we also designed a new set of road features called Di-
versity Metrics. Specifically, we calculate per road segment the area that is
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Table 2 Road Statistics extracted by the SDC-Features Extractor. In the table, we report
for each feature their name, description, and range (based on the tests in the generated
datasets).

Feature Description Range

Median Angle Median turn angle on the driving path [30 – 330]
Std Angle Standard deviation of turn angles on the driving path [0 – 150]
Max Angle Maximum turn angle on the driving path [60 – 345]
Min Angle Minimum turn angle on the driving path [15 – 285]
Mean Angle Average turn angle on the driving path [52.5–307.5]

Median Radius Median turn radius on the driving path [7 – 47]
Std Radius Standard deviation of turn radius on the driving path [0 – 22.5]
Max Radius Maximum turn radius on the driving path [7 – 47]
Min Radius Minimum turn radius on the driving path [2 – 47]
Mean Radius Average turn radius on the driving path [5.3 – 47]

Table 3 Diversity features extracted by the SDC-Features Extractor. In the table, we report
for each feature their name, description, and range (based on the tests in the generated
datasets).

Feature Description Range

Full Road Diversity The cumulative diversity of the full road composed of
all segments.

[0 – ∞]

Mean Road Diversity The mean diversity of the segments of a road. [0 – ∞]

spawned between the direct line of a segment (start and end of the segment)
and the actual road. The concept of the diversity feature is also explained in
Figure 3, where the green area represents the diversity of a single road segment.
The curly braces indicate the segments of the road. A segment consists of road
points marked as red diamonds. Furthermore, the yellow lines represent the
direct paths between the start and end points of each segment. Concretely,
we used for the calculation of the area Shapely [74], an open-source library
for Python to perform geometric calculations. For each identified segment, we
define a Shapely Polygon object that includes the road points and the line
representing the direct segment line. All classes of Shapely provide a similar
interface as well for calculating the area of a Shapely object. The previously
constructed Polygon has a property called area. With this approach, we re-
trieve the area (also known as diversity in our context) of the segments. On this
basis, we calculate two additional features; (i) Full Road Diversity, and (ii)
Mean Road Diversity. As described in Table 3, the Full Road Diversity

is computed by summing up all areas spawned by each segment of a road,
whereas the Mean Road Diversity feature is the mean value of all areas of
a single road. The main assumption for using these new features is that the
road is more diverse if the spawned area is greater and, therefore, unsafer.
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Fig. 3 Road diversity as area (green) between the road (black) and direct segment line
(yellow).

3.3 The SDC-Scissor’s Workflow

As described in Section 2, SDC-Scissor’s leverages an existing, open-source,
and extensible SDC testing infrastructure to execute the test cases (SDC-Test
Executor). Likewise, it relies on existing test generation algorithms integrated
with that infrastructure to automatically generate the test cases to optimize
(SDC-Test Generator). Hence, SDC-Scissor can already be used to improve
the cost-effectiveness of several test generators.

During Benchmarking, SDC-Scissor utilizes SDC-Test Generator and
SDC-Test Executor to collect the necessary data for training the ML Models,
i.e., labeled test cases; next, it relies on SDC-Benchmarker to determine the
ML models that best classify the SDC test cases as safe or unsafe as described
below. Given a set of labeled test cases and the corresponding input features
extracted by SDC-Features Extractor, SDC-Benchmarker trains and evalu-
ates an ensemble of standard ML models using the well-established sklearn4

library. Next, it assesses each ML model’s quality using K-fold cross-validation
and the whole dataset. Finally, it identifies the best-performing ML models
according to Precision, Recall, and F-score metrics [20] and outputs the best
(trained) models as well as the features needed to operate them.

SDC-Scissor can work with various ML models. In this study, we consider
ML models that have been successfully used for defect prediction or other
classification problems in Software Engineering [19,51,64–66,77]. Specifically,
we consider Naive Bayes (that applies Bayes’ theorem to train a probabilistic
classifier) [28], Logistic Regression (that uses a logistic function to model the

4 https://scikit-learn.org/
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probability of observing a certain class) [73], J48 (that creates a decision tree
following the well-known C4.5 algorithm) [38, 78], and Random Forests (that
uses an ensemble of decision trees) [46].

During Prediction, SDC-Scissor takes as input the (trained) ML Models
and the definition of the features needed to use them. Next, it generates new
test cases using SDC-Test Generator and utilizes SDC-Features Extractor

to extract the necessary features. Finally, it invokes SDC-Predictor for clas-
sifying safe or unsafe test cases before executing them.

In the next section, we describe the studies we conducted to evaluate the
benefits of using SDC-Scissor for test selection in the context of SDCs. After
that, we present and discuss the achieved results.

4 Study Design

In this paper, we investigate Machine Learning-based test selection techniques
for improving the cost-effectiveness of simulation-based testing of SDCs.

The first challenge (RQ1) we focus on is to investigate whether, and to what
extent, it is possible to classify test cases for SDCs as safe or unsafe before
executing them, i.e., only considering input features, such as the one discussed
in Section 3 by conducting offline and real-time experiments. Specifically, we
investigate the use of ML models for classifying test cases in the context of
Lane Keeping systems (see Section 2).

The second challenge we focus on is devising techniques that effectively
leverage features extracted from SDC test cases to reduce testing costs while
keeping testing effectiveness high. Hence, we investigate whether SDC-Scissor
improves the cost-effectiveness of simulation-based testing of SDCs, compared
to baseline approaches (RQ2).

A further aspect we investigate is whether there is an upper bound on the
precision and recall achieved by ML techniques in identifying SDC safe and
unsafe test cases when using static SDC features (available before executing
the tests). Hence, we focus on investigating whether fine-tuning the ML al-
gorithms (e.g., calculating derived features and performing hyper-parameter
tuning) improves SDC-Scissor’s ability to discern safe test cases from unsafe
ones (RQ3).

Finally, to investigate the practical usefulness of SDC-Scissor, we integrated
our tool into the context of an industrial organization in the automotive do-
main (details of such an investigation are reported in Section 6).

In the following sections, we describe the dataset used in our study and
the steps we followed to address these challenges.

4.1 SDC Test Cases Dataset Preparation

To enable the prediction of safe and unsafe SDC test cases, we used SDC-
Scissor for executing the generated test cases and collected labels (safe/unsafe)
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Table 4 Dataset Summary of SDC test cases on segment level and full road level (composed
by segments).

Test Subject Feature Set Data Points
Unsafe Safe Total

BeamNG.AI cautious Full Road 312 (26%) 866 (74%) 1’178
BeamNG.AI moderate Full Road 2’543 (45%) 3’095 (55%) 5’638
BeamNG.AI reckless Full Road 1’655 (96%) 74 (4%) 1’729
Driver.AI Full Road 1’045 (19%) 4’585 (81%) 5’630

14’175

BeamNG.AI moderate Road Segment 2’543 (3%) 72’433 (97%) 74’976
Driver.AI Road Segment 2’494 (3%) 71’145 (97%) 73’639

148’615

from the test results (pass/fail). As reported in Table 4, we generated a dataset
with 14, 175 data rows with full road features that are obtained from simula-
tions of 8,500 tests using two driving agents and four configurations. What
can be observed from the table is that SDC-Scissor takes AI engines’ inputs to
generate the test cases, this lead to test cases having different configurations of
roads and, as a consequence, different sets of road segments composing them.
The test cases, their labels, and the SDC features characterizing them are the
main data used for conducting our experiments. An overview of the data is
reported in Table 4.

4.2 Research Method

We designed a set of experiments to answer our research questions:

– Machine Learning-based Experiments (RQ1): The first set of experiments
investigates whether ML models trained with the selected SDC test case
features can identify safe and unsafe test cases before their execution.

– Offline Experiments (RQ2): The second set of experiments investigates
if and how much SDC-Scissor improves the cost-effectiveness of SDC
simulation-based testing compared to baseline approaches.

– Real-Time Experiments (RQ2): In these experiments, we train an adaptive
model based on data observed while executing the tests and compare it
with a pre-trained model.

– Optimization Experiments (RQ3): The third set of experiments investigates
how SDC-Scissor performance improves by adding new SDC features and
tuning ML Models hyperparameters. Specifically, in RQ3, we focus on in-
vestigating whether there is an actual upper bound on the precision and
recall achieved by the ML techniques in identifying SDC safe and unsafe
test cases when using static SDC features (available before executing the
tests).
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Table 5 Model Training Dimensions

Dimension Description Dimension Configurations

Dataset Using different datasets to train
the model

BeamNG.AI (RF 1,1.5,2), Driver.AI,
and Combined Datasets

Training Set Changing training set size by us-
ing different percentage split for
training and test sets

40% training set & 60% test set;
50% training set & 50% test set;
60% training set & 40% test set;
80% training set & 20% test set.

4.2.1 Machine Learning-based Experiments (RQ1)

In the context of RQ1, we study whether ML models can be used to predict
safe or unsafe test cases and which combinations of features allow us to achieve
more accurate predictions. As discussed in Section 3, we integrated into SDC-
Scissor several ML models, and in the context of our work, we experimented
with Logistic Regression [80], the J48 [38], the Random Forest [46], and the
Naive Bayes [28] as ML models.

We trained the ML models mentioned above using a training and test
sets split strategy for each of the configurations listed in Table 4 separately.
We evaluated the performance of each ML model by computing the standard
metrics of precision, recall, and F-score [13,19,26,30,51,65].

Rebalancing of training data. Since unsafe scenarios are an exception
–not the norm– when generating random tests, the raw data we collected with
SDC-Scissor is unbalanced toward safe cases. Therefore, we re-balanced the
training data (in the case of the training and test sets split strategy) to avoid
skewed distributions that would otherwise bias the ML models towards one
specific class. Specifically, we adopted random oversampling, a re-balancing
technique proven to be robust [56], to supplement the training data with mul-
tiple copies of some of the minority classes.

Size of the training dataset. To study how the training set size af-
fects the ML models’ performance, we created balanced training datasets of
increasing size (Table 5). However, we generated the test datasets to evalu-
ate the ML models by randomly sampling the data point not included in the
training datasets. Notably, we did not re-balance the test datasets to preserve
the underlying distribution classes in the data.

We also study the effects of different training strategies on each ML model’s
performance. To do so, we evaluated the ML models using standard K-fold
cross-validation [67]. In particular, we set K = 10 (i.e., 10-fold cross-validation)
and utilize all the available data in each configuration.

4.2.2 Offline Experiments (RQ2)

To answer RQ2, we investigate whether SDC-Scissor improves the cost-
effectiveness of simulation-based testing of SDCs, compared to baseline ap-
proaches. The quality focus is to understand whether SDC-Scissor reduces the



ML-based Test Selection for Simulation-based Testing of SDC Software 17

Table 6 Offline Experiment Dataset

Dataset Number of Safe Tests Number of Unsafe Tests

Complete Set 3095 2543
Training Set 2034 2034
Test Pool (95/5) 1061 55
Test Pool (80/20) 1061 265
Test Pool (60/40) 763 509
Test Pool (30/70) 218 509

time dedicated to executing safe (irrelevant) tests without affecting testing ef-
fectiveness (i.e., its ability to identify unsafe tests) compared to such baselines.

SDC-Scissor can use pre-trained models to classify safe and unsafe test
cases. Therefore, we designed experiments to analyze how using pre-trained
ML models for selecting (existing) test cases improves regression testing. For
those experiments, we consider the combinations of ML models and features
that achieve the best results in the context of RQ1 (see Section 5.1). In ad-
dition, we contextualize the results achieved by SDC-Scissor using a baseline
approach that performs a random selection of test cases. Notably, random se-
lection is considered one of the standard baselines for evaluating test selection
strategies [75,82]. Finally, we also compare SDC-Scissor against a slightly more
intelligent baseline approach that selects test cases by ordering the test to be
executed considering their road length (in decreasing order). The conjecture
of this second baseline is that the longer the road, the higher the probability
of observing a fault.

Studying the effectiveness of SDC-Scissor offline requires test cases and
executions; therefore, we used a dataset with known test execution times.
Due to the lack of backward compatibility of BeamNG.tech, we generated a
new dataset for complementing our evaluation (see Table 10) involving the
usage of the most recent version of BeamNG.tech. For all other evaluations,
we used the data as reported in Table 6. In summary, the separated new
dataset consists of 3′559 with 2′225 safe and 1′334 failing tests labeled with
the BeamNG.AI (RF 1.5). As reported in Table 6, we created a Training Set,
accounting for 80% of the whole data set, and we used the remaining 20%
of data for testing. We created a balanced Training Set, but we purposely
created four unbalanced Test Pools with different distributions of unsafe
cases, ranging from few (5% of the testing data) to many (70% of the testing
data). In creating our test pools, we under-sampled safe test cases (e.g., Test
Pool (30/70)) since the number of unsafe test cases was inferior to the total
amount of test cases in our complete dataset. Our conjecture is that using
different Test Pool compositions allows us to assess SDC-Scissor’s performance
in various settings.

Experimental setups of offline experiments. We conducted the offline
experiment in two experimental setups, referred to as FIX and REACH. Since
they mimic the issues of having a limited testing budget in the context of



18 C.Birchler, S.Khatiri,B.Bosshard, A.Gambi, S.Panichella

Fig. 4 FIX Experiment Overview.

SDCs, We believe they are representative. We repeated the experiments in
both setups 30 times to increase the confidence in the achieved results.

The FIX setup investigates the benefits of using SDC-Scissor when the
resources allocated for testing are limited, i.e., the amount of test cases that
can be executed in the simulation environment is fixed to a value S (e.g.,
S = 5, 6, etc.). The process we followed to experiment with the FIX setup is
illustrated in Figure 4 alongside the baseline processes. The baseline approach
draws tests from the test pool (randomly or by considering their road length)
and adds them to the test suite until the test suite reaches the target size S.
SDC-Scissor, instead, samples the tests from the test pool but adds them to
the test suite only if the ML model predicts that they are unsafe; as before,
the process ends when the test suite reaches the target size S. In this setup,
more effective techniques select larger portions of unsafe tests; therefore, we
evaluate the performance of SDC-Scissor using the ratio of unsafe to safe test
cases in the final test suites compared to the baseline approaches.

The REACH experiment, instead, investigates the ability of SDC-Scissor
to reduce the time to identify at least N unsafe test scenarios. In our exper-
iment, we set N = 10 since the time to identify that many unsafe test cases
potentially requires the execution of many more (safe) test cases. The process
we followed to experiment with the REACH setup is illustrated in Figure
5 alongside the random baseline approach. As before, the baseline randomly
samples tests from the test pool and executes them until N unsafe tests have
been identified. REACH, instead, executes only those tests that are predicted
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Fig. 5 REACH Experiment Overview.

to be unsafe by the ML models. In this setup, more effective techniques iden-
tify N unsafe tests sooner; therefore, we consider the number of true positives
(TP),5 true negatives (TN), false positives (FP), and false negatives (FN) pre-
dicted by the ML models. Having information about TP, TN, FP, and FN
enables us to count how many tests were needed to reach the goal, how long
it took to do so, and how much time was wasted in evaluating safe test cases.

4.2.3 Real-Time Experiments (RQ2)

We complement the previous Offline Experiments to answer RQ2, which fo-
cuses on applying SDC-Scissor to regression test case selection, with Real-Time
Experiments in which we study the application of SDC-Scissor to automated
test generation.

We conducted the Real-Time Experiments according to the following pro-
cedure: (i) SDC-Scissor to generate random test cases; (ii) for each newly
generated test case, SDC-Scissor classifies it as safe/unsafe; and, (iii) we filter
out test cases classified as safe before generating the next test case, whereas
we executed the test cases classified as unsafe. As the test subject, we used
BeamNG.AI in the moderate configuration (RF equal to 1.5) as this configura-

5 True positives are tests predicted as unsafe and verified to be so; conversely, true nega-
tives are tests predicted and verified to be safe.
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tion is a compromise between overly conservative and overly aggressive driving
styles.

A cost-effective test generator devotes more time to executing (likely) un-
safe tests that can expose defects rather than executing safe test cases, which
might not contribute any additional insight into the behavior of the SDC un-
der test. Correctly identifying unsafe test cases, therefore, is paramount and
depends on the quality of the ML model used as a classifier which, in turn,
depends on the technique employed by the ML models and the data used to
train them. Particularly relevant in this context is whether the ML model is
predefined and fixed or allowed to be updated online as new data become
available. The trade-off between these two configurations is that ML models
have little operational costs once trained but may miss relevant behaviors; on
the contrary, dynamically retrained ML models can cope with missing training
data but at the cost of additional time spent in retraining them. Therefore,
we compare the following two approaches:

– Pre-trained Model in which we used the best performing model iden-
tified during the Machine Learning-based Experiments (Section 5.1). We
trained this model using the re-balanced dataset for the case of BeamNG.AI
RF 1.5, as this is the configuration of the test subject used for this exper-
iment.

– Adaptive Model in which we also used the best performing model iden-
tified during the Machine Learning-based Experiments (Section 5.1 but
trained with only 60 randomly generated test cases. After this initial train-
ing, we retrain the ML model after executing the predicted unsafe test cases
using the newly collected ground truth labels for those test cases. Figure
6 illustrates this process. Notably, since the ML model may be inaccurate,
this process collects both positive and negative labels.

As before, we contextualize the results achieved by SDC-Scissor using a
baseline approach that implements plain vanilla random generation, i.e., it
does not filter the test cases.

We ran each configuration on a dedicated machine equipped with an Intel
Core i5-6600K (3.5 GHz), 16 GB RAM, and an NVIDIA GeForce GTX 1070
GPU and set the test generation time budget to six hours.

During each execution of the experiment, we stored all the tests generated
by SDC-Scissor so we could execute the test cases filtered out by SDC-Scissor
post-mortem to calculate metrics such as accuracy, precision, and recall.

Table 4 provides an overview of the metrics used for the evaluation of SDC-
Scissor across the various configurations. Those metrics include the count of
unsafe tests found during each experiment (true positives), true negatives,
false positives, and false negatives. Additionally, we consider how SDC-Scissor
allocated the time budget to run safe and unsafe test cases, generate test cases,
and rebuild the ML models.

In the second study, SDC-Scissor leverages real-time data (i.e., dynam-
ically generated tests) and continuously (re-)trained ML models; this setup
lets us evaluate the application of the proposed technique for automated test
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Fig. 6 Overview of the Adaptive Model configuration for the Real-Time Experiments.

Table 7 Evaluation metrics for the Real-Time Experiments.

Metric Description Range

Number of Unsafe Test Execution The number of unsafe tests the approach
simulated during the experiment

0-N

Number of Safe Tests Execution The number of safe tests the approach sim-
ulated during the experiment

0-N

Time Allocation How much time relative to the total time
was spent with an action

0-1

True Positives/Negatives Number of correct predictions for cate-
gories safe and unsafe

0-Number of
Predictions

False Positives/Negatives Number of incorrect predictions for cate-
gories safe and unsafe

0-Number of
Predictions

generation. As described before, in both setups, we compared the time-saving
ability of SDC-Scissor with respect to the random selection strategy as well as
its ability to detect more faults while allocating lower test execution costs.

4.2.4 Optimization Experiments (RQ3)

RQ3 investigates whether there is an upper bound on the precision and re-
call of ML techniques in identifying SDC safe and unsafe test cases when using
SDC test case features available before executing the tests. A range of different
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optimization algorithms can be used to achieve potentially better results with
respect to the default configuration of parameters of the ML models. Two of
the most common hyperparameter tuning methods are Random Search and
Grid Search [5, 16, 17]. Grid search performs better for spot-checking combi-
nations that are known to perform well. Therefore, we experiment with Grid
search as a hyperparameter optimization approach and investigate how SDC-
Scissor’s performance improves when it employs fine-tuned ML models. Specif-
ically, with Grid Search, we experimented with several parameter combinations
for the best ML models using a 10-fold validation setting, as summarized be-
low.

For the Decision Tree (J48) we covered all possible combinations of the
following parameters:
– C (confidenceFactor): Is the confidence factor, and we experimented

with values [0.001, 0.01, 0.05, 0.1, 0.5]
– M (minNumObj): Is the minimum number of instances in a leaf, and we

experimented with values [1, 10, 20, 50, 100]
– R (reducedErrorPruning): Reduced error pruning is an alternative al-

gorithm for pruning that focuses on minimizing the statistical error of the
tree. We experimented with the following values [yes, no]

– S (subtreeRaising): This is a specific method of pruning whereby a whole
set of branches further down the tree are moved up to replace branches
that were grown above it. We experimented with the following values of it
[yes, no]

For the Random Forest, we covered all possible combinations of the
following parameters:

– I (numIterations): Is the number of trees in the forest, and we experi-
mented with values [5, 10, 100, 1000, 2000]

– K (numFeatures): Is the max number of features considered for splitting
a node, and we experimented with values [0, 10, 100, 500, 1000]

– depth: Is the maximum depth of the tree (0 unlimited), and we experi-
mented with values [0, 5, 10, 20]

– M (minNumObj): Is the minimum number of instances in a leaf , and
we experimented with values [1, 10, 20, 50, 100]

For the Gradient Boosting, we covered all possible combinations of the
following parameters:

– ’loss’ = [’log loss’, ’deviance’, ’exponential’]
– ’learning rate’ = [0.01, 0.1, 0.2, 0.4]
– n estimators’ = [10, 100, 1000]
– ’criterion’ = [’friedman mse’, ’squared error’, ’mse’]

For the Logistic Regression, we covered all possible combinations of the
following parameters:

– ’penalty’ = [’l1’, ’l2’, ’elasticnet’, ’none’]
– ’dual’ = [True, False]
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– ’max iter’ = [10, 100, 1000]
– ’solver’ = [’newton-cg’, ’lbfgs’, ’liblinear’, ’sag’, ’saga’]

For the Support Vector Machine, we covered all possible combinations
of the following parameters:

– ’penalty’ = [’l1’, ’l2’]
– ’loss’ = [’hinge’, ’squared hinge’]
– ’dual’ = [True, False]

It is important to note that we perform Grid Search (with a 10-fold cross-
validation strategy) over all experiments (for a total of over 700 experimented
combinations of parameters) and use the best combination of features and ML
model from Section 4.2.1.

Section 5 elaborates on the achieved experimental results for all research
questions, while Section 7 reflects on the results reported in such section,
providing complementary insights, findings, and implications.

5 Results

This section presents the achieved results organized by research questions,
while Section 7 discusses them in depth.

5.1 Machine Learning-based Experiments (RQ1)

In this section, we discuss the results of RQ1. Specifically, we describe the
results achieved using the Road Characteristics listed in Section 3.2 as input
features to build the ML models.

5.1.1 Machine Learning-based Experiments with Road Characteristics

We evaluated the ML models trained using Road Characteristics as the main
SDC features with four splits of training and test data, as summarized in Ta-
ble 5. However, for the sake of readability, we report here only the results
achieved by the best-performing configuration, i.e., 80% training and 20% for
testing. The full results can be found in our replication package [52]. Table 8
reports Precision, Recall, and F-score for both unsafe and safe labels separately
to study how the ML models can classify each case (i.e., the experiments sum-
marized in Table 5). It is important to note that in all experiments reported
in Table 5, we rebalanced the training data (as discussed in Section 4.2.1).

Regarding the BeamNG.AI dataset, with Risk Factor 1.5, the ML model
performing the best in terms of F-score is Logistic (with 71% for both labels),
followed by Random Forest (between 68%-69% for both labels). The other
models, instead, achieved lower F-score values.
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Table 8 Performance of the ML models trained using road features. The results refer to
the split of 80/20 between training and test data. The best results are shown in boldface.

Model Unsafe Test Cases Safe Test Cases

Prec. Recall F1 Prec. Recall F1

BeamNG RF 1.5
J48 69.2% 67.4% 68.2% 61.5% 63.5% 62.5%
Näıve Bayes 79.3% 53.2% 63.6% 59.3% 83.1% 69.2%
Logistic 78.1% 65.3% 71.1% 64.8% 77.8% 70.7%
Random Forest 75.8% 62.7% 68.6% 62.5% 75.6% 68.4%

Driver.AI
J48 19.5% 64.1% 29.9% 82.9% 39.6% 53.6%
Näıve Bayes 20.3% 78.5% 32.3% 85.8% 29.8% 44.2%
Logistic 22.7% 56.5% 32.4% 85.0% 56.3% 67.7%
Random Forest 22.3% 52.6% 31.3% 84.4% 58.2% 68.9%

Regarding the Driving.AI dataset, we observe that the ML models achieved
lower accuracy (49.1%) than the BeamNG.AI dataset. This result can be ex-
plained by looking at how unbalanced the Driver.AI dataset is since Driver.AI
drives carefully, its dataset comprises mainly safe scenarios, and the predic-
tions of the ML models tested on it are biased toward safe predictions.

Comparing the F-score achieved by the ML models against the Driver.AI
and BeamNG.AI datasets shows this problem more evidently: the ML models
performed comparably well for safe and unsafe classes against the BeamNG.AI
dataset, whereas they performed well only for the safe test class in the case of
Driver.AI. However, we can observe some similarities between all ML models
in terms of F-score values when trained on the Driving.AI dataset and the
BeamNG.AI dataset. For instance, for both datasets, Logistic and Random
Forest tend to achieve better results. In both cases, and especially in the
case of Driver.AI, most ML models struggle to classify safe test cases when
compared to unsafe test cases.

Finding 1. SDC-Scissor is able to classify safe and unsafe test cases
in both the BeamNG.AI and the Driving.AI datasets, with the Logistic
and Random Forest models achieving the most reliable results in terms
of F-score. However, all ML models achieved very poor results on the
Driving.AI dataset (49.1%) when compared to the BeamNG.AI dataset.
A result that we can justify by looking at the unbalance set of test cases
in the Driver.AI dataset.

5.1.2 Analysis of Relevant Features.

Although the ML models trained using the road features can effectively classify
the test cases as safe or unsafe, it is crucial to know the level of contribution of
each of these features. We analyzed the road features for the BeamNG dataset
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discussed in Table 8 using two popular feature evaluation methods: informa-
tion gain and correlation. While the detailed analysis results are reported in
Appendix A, we summarise the main findings here.

Finding 2. The Road Characteristics extracted by SDC-Scissor con-
tribute differently to identifying the safe and unsafe test cases. The Road
Characteristics concerning the pivot radius (min, mean, std, median), the
sum of the turn angles, the number of left and right turns, and the total
length of the road are among the most important features, which are all
belonging to the set of road features.

5.1.3 Impact of Risk Factor (RF)

To make it more clear how SDC-Scissor’s performance is affected by varying
RF values, we compared its performance on BeamNG datasets with RF 1,
1.5, and 2 separately. While we report the details in Appendix B, here we
summarise the main findings.

Finding 3. The accuracy of SDC-Scissor is influenced by their driv-
ing style and the diversity of datasets. For example, for more aggressive
driving agents, the accuracy achieved by the ML models was higher than
for cautious driving agents. Hence, predicting unsafe test cases is harder
for cautious drivers than for reckless ones. Consequently, improving the
testing of SDCs is more challenging for less aggressive driving agents.

5.1.4 Knowledge Transfer Between Different Driving Agents

We also studied the ability of the ML models to transfer knowledge from a
driving agent to another one by training ML models with one AI’s dataset
(BeamNG RF 1.5) and testing it with another AI’s dataset (Driver.AI) and
vice versa. While we report the details in Appendix C, here we summarise the
main findings.

Finding 4. Our results show that the knowledge is not transferable
from one driving agent to another, i.e., SDC-Scissor performed worse when
training ML models on data from a specific driving agent and testing them
on data from a different one. However, ML models trained on the BeamNG
data performed only slightly worse when evaluated on the Driver.AI data.
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5.2 Offline Experiments (RQ2)

In this section, we discuss the results of RQ2. Specifically, we focus on devising
techniques that effectively leverage features extracted from SDC test cases
to minimize testing costs while keeping testing effectiveness high. For this
reason, we investigate whether SDC-Scissor improves the cost-effectiveness of
simulation-based testing of SDCs, compared to baseline approaches (RQ2 ).
Hence, we report the results of the FIX and REACH experiments (detailed
in Section 4.2.2). Additionally, we report the results of the comparison between
various ML models against the baseline approaches (described in Section 4.2.2)
by considering different test pool compositions.

5.2.1 FIX Experiment results

The goal of this experiment is to optimize the usage of the available resource in
terms of testing execution time and effectiveness. Figure 7 compares the ratio
of unsafe tests selected for execution using different ML models against the
first baseline approach (random selection) across different test pool composi-
tions. As can be observed from the figure, the Logistic model outperformed
the baseline in all different test pool compositions (described in Section 4).
Figure 8 illustrates that with fewer unsafe test cases in the pool, we observe
improvements in the number of selected unsafe tests using ML models over the
baseline. In the pool with the least unsafe tests, the Logistic model finds 133%
more unsafe tests compared to the baseline approach. In the more balanced
testing pool, Logistic finds 50% more unsafe tests, while with the pool with
more unsafe than safe tests, it identifies 30% more unsafe tests. The Logis-
tic model performs slightly better than the other models in all compositions
except one (0.3/0.7), where Random Forest performed the best.

The confusion matrices in Table 9 further illustrate the concrete results in
terms of effectiveness with the various pool compositions. In the pool with only
0.05 unsafe tests (Table 9-a), the Logistic model achieved 10 false negatives
and 260 true negatives; this means that the model avoided the execution of 549
safe tests (considering that safe test cases take around 24 seconds in average
to be executed), thus potentially reducing cost by more than 200 minutes in
total on the less critical scenarios. However, the false-positive number is still
high, with a cumulative 263 false-positives identified. As can be observed in
Table 9)-b, for the Test Pool 0.7/0.3, the Logistic model achieved over 260 true
positives and only 37 false positives. We observe that the precision correlates
with the dataset composition; indeed, for datasets having more unsafe tests,
the precision for unsafe tests is higher. For datasets having fewer unsafe tests,
we obtain the opposite effect in the results. Figure 7 shows that the ML model
performance and the baseline depend on the test compositions. The baseline
and ML models perform better in test pools with more unsafe tests. Thus,
according to our results, designing an appropriate test pool composition is of
critical importance to achieving accurate prediction results.
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Fig. 7 Comparison Logistic Model and Baseline across different Test Pool Compositions.

Fig. 8 Number of executed unsafe scenarios during the experiments on a)Test
Pool(0.05/0.95) b) Test Pool(0.3/0.7) c)Test Pool(0.7/0.3)

a b

c
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Table 9 Confusion Matrix for Logistic Model, cumulative over 30 rounds for a) Test Pool
(0.05/0.95), b) Test Pool (0.7/0.3)

a
Predicted class
Unsafe Safe

Actual Class
Unsafe 40 10
Safe 260 549

b
Predicted class
Unsafe Safe

Actual Class
Unsafe 263 48
Safe 37 81

Table 10 Cost-effectiveness ( #failing
#passing

) of SDC-Scissor against a random baseline and a

road length-dependent baseline.

Model
Cost-effectiveness (Percentage of failing tests)

SDC-Scissor Random Base-
line

RL Baseline

Random Forest 4.0 (80%) 0.7419 (42.6%) 1.5 (60%)
Gradient Boosting 1.5 (60%) 0.7419 (42.6%) 1.5 (60%)

SVM 0.6667 (40%) 0.7419 (42.6%) 1.5 (60%)
Naive Bayes 0.6667 (40%) 0.7419 (42.6%) 1.5 (60%)

Logistic Regression 4.0 (80%) 0.7419 (42.6%) 1.5 (60%)
Decision Tree 0.4286 (30%) 0.7419 (42.6%) 1.5 (60%)

Finding 5. SDC-Scissor outperforms the random baseline approach
in selecting unsafe tests across all test pool compositions, which is critical
for more effective testing practices. In the test pool composition 0.3/0.7
(safe to unsafe), SDC-Scissor found 30% more unsafe tests; in the test
pool composition 0.95/0.05 (safe to unsafe), instead, it found 133% more
unsafe tests.

We assessed the cost-effectiveness of SDC-Scissor also against a second
baseline whose selection strategy is based on the road length. The assumption
is that the longer the road is the more likely it will be unsafe. In contrast to
the random baseline, which selects the tests randomly from the test set, the
second baseline orders the tests according to the road length and selects the
longest ones. In Table 10, the cost-effectiveness of SDC-Scissor is compared to
both baselines. The Random Forest and Logistic models have the best cost-
effectiveness compared to both baselines with a selection of 80% unsafe tests.
On the other hand, the SVM and Naive Bayes have a worse selection than
both baselines selecting only 40% unsafe tests each, whereas the random and
RL baselines select an average 42.6% and 60% unsafe tests, respectively.

Finding 6. SDC-Scissor outperforms a baseline approach that selects
test cases based on their road length. The baseline has a cost-effetiveness
of 1.5 whereas the Random Forest and Logistic provide a cost-effectiveness
of 4.0 each.
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5.2.2 REACH Experiment

The goal of this experiment is to investigate whether the usage of ML models
allows for reducing the total test execution time. By reducing the total test
execution costs, a testing pipeline would be able to spend more testing time
on more safety-critical test cases. The task in this experiment was to identify,
as early as possible, ten unsafe tests while minimizing the number of total
executed test cases. To perform the various comparisons, for each experimented
strategy, we collected information about the number of test cases required to
reach ten unsafe cases as well as the cumulative cost (i.e., the execution time)
to run all the test cases (i.e., till the final unsafe scenario was identified).
Further, we collected information concerning the execution time for both safe
and unsafe test cases. The conjecture behind this analysis is that the testing
cost concerning safe cases should as limited much as possible, whereas the test
cost dedicated to unsafe cases is beneficial to identify flaws of SDC in virtual
environments.

Figure 9 and Figure 10 provide an overview of the performance of the base-
line compared to the Logistic model (the best-performing model in previous
experiments) across different test pool compositions. Table 11 summarizes the
results of the REACH experiment. We observed that the Logistic model per-
formed better across all test pool compositions. The test costs strictly depend
on the required numbered of tests to be executed before identifying the mini-
mum set of 10 unsafe tests. Although the difference in the number of required
tests tends to be higher in the pool with fewer unsafe tests (in the 0.05/0.95
pool between 171 to 98.5 tests, in the 0.7/0.3 between 14 to 11 tests), SDC-
Scissor allows for reducing test execution time dedicated to less critical tests
when the test pool presents more unsafe tests. Figures 11 show that in the
smaller unsafe pool it is higher the test execution time dedicated to less crit-
ical tests. The test execution time for these less critical tests is 85% higher
in the baseline than in the Logistic model. In the larger pool, the Logistic
model selects 80% unsafe tests, whereas the baselines only have 42.6% and
60%, respectively.

Finding 7. We investigate whether SDC-Scissor can reduce the num-
ber of executed tests required to find at least N unsafe tests. Our results
show that SDC-Scissor outperformed the baselines across all test pools,
with the Logistic model reducing the unnecessary execution time dedi-
cated to safe tests by selecting 80% unsafe tests, whereas the baselines
select 42.6% and 60% unsafe tests, respectively. SDC-Scissor performed
better compared to the baseline when test pools are characterized by fewer
unsafe tests.

In Section 7, we discuss further results of RQ2, providing additional insights
on this research question.
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Fig. 9 Comparing the Logistic model with the baseline across the different test pools.

Table 11 Results of the REACH experiments comparing the Logistic model and the base-
line in various test pool compositions (safe/unsafe test ratio). Execution time is reported in
seconds, and the values are averaged across the experiment repetitions.

Model/Pool Tests #
Execution Time
Safe Unsafe

Smart Selector
Test Pool (0.05/0.95) 98.5 4664 375
Test Pool (0.3/0.7) 19 475 376
Test Pool (0.5/0.5) 14 214 389
Test Pool (0.7/0.3) 11 54 379

Baseline
Test Pool (0.05/0.95) 171 8079 382
Test Pool (0.3/0.7) 35 1243 383
Test Pool (0.5/0.5) 18.5 439 391
Test Pool (0.7/0.3) 14 193 387

5.3 Real-Time Experiments (RQ2)

In this section, we present the results of the real-time experiments, where
we compare the results of a pre-trained model and a real-time model with the
baseline approach.

Baseline vs. Pre-trained and Adaptive Models. Figure 12 gives an overview
of the results achieved by the experimented models. We observe that the base-
line executed a higher number of test cases (472). The pre-trained model runs
more test cases (405) than the real-time approach (378). Figure 12 summarizes
our main observations, as elaborated in the next paragraphs.

The pre-trained and real-time models apply a machine learning-based test
selection, which leads to numerous rejected (i.e., non-executed) test cases:
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Fig. 10 Time spent for the execution of safe tests, Logistics vs. Baseline across different
test pools

a b

Fig. 11 Time spent on executing each safe and unsafe test case for different models in a)
test pool (0.7/0.3) b) test pool (0.05/0.95)

real-time and pre-trained experienced 588 and 309 rejected tests, respectively.
The baseline uses 98% of the time to execute test cases; only 2% is dedicated
to generating test cases. The pre-trained and real-time approaches use more
time for test generation (6% pre-trained, 11% real-time approach). In addition
to the longer test generation process, these two approaches allocate time for
predictions and evaluation of tests (pre-trained 4%, real-time 5%), which the
baseline does not need to perform. Compared to the pre-trained approach, the
real-time approach continuously trains the machine learning model with new
tests.

Interestingly, although the baseline executes more test cases, both pre-
trained and real-time approaches found more unsafe test cases (baseline 195,
pre-trained 265, real-time 256). The pre-trained model was able to find 35%
more unsafe test cases, executing only 49% of safe tests. In Figure 12, we can
observe that the baseline only spends 34% of the time running unsafe tests,
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a

b

Fig. 12 Comparison of the metrics for different real-time approaches in a 6-hour run a)
generated test cases distribution. b) spent time distribution across different tasks.

while 64% of the test time was spent on executing safe test tests. In contrast,
our proposed approaches dedicated more than 50% of the time to unsafe tests,
which is positive since, in a testing environment, the goal is to find more errors
in less time (in our case, it corresponds to exposing more weakness in SDC).

Finding 8. Our results show that even though the baseline approach
executes more test cases, both the real-time and the pre-trained (i.e.,
offline) models integrated into SDC-Scissor are able to find more unsafe
tests than the baseline. The time investment of predicting the outcome
of test cases and generating more tests is beneficial for testing purposes.
The pre-trained model was able to find 35% more unsafe tests than the
baseline, with the baseline only dedicating 34% of the time budget to
assessing unsafe tests. The offline model spends 52% running unsafe and
only 38% on safe test cases.
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Table 12 Comparison between pre-trained and real-time models.

Model Acc.
Unsafe Safe

Prec. Recall Prec. Recall

Pre-trained Model 72.1% 65.2% 82% 81.2% 64%
Real-time Model 69% 67.7% 59.3% 69.9% 77%

Adaptive vs. Pre-trained Model. Figure 12 shows that the testing time al-
location for the pre-trained and real-time models is similar, but the real-time
model spends more time on test generation (11%) than the pre-trained one
(6%). The pre-trained model is based on the previously generated dataset with
5,643 (consisting of 3,559 valid test descriptions as described in Section 4) test
cases, whereas the real-time model started with generating an initial dataset of
60 test cases as described in Section 4. Table 5.2.2 shows that the pre-trained
model achieved a higher accuracy (72.1%) than the real-time model (69%).
The lower accuracy explains the higher number of test cases generated by the
pre-trained model (tests generated; real-time 962, pre-trained 714). Although
the pre-trained model has higher accuracy in general and higher unsafe recall,
it only found 3.13% more unsafe tests than the real-time model.

Finding 9. The offline model achieved an accuracy of 72.1%, which is
higher than the real-time model (69%). A real-time approach can achieve
similar results compared to an offline model, with the real-time model
finding only 3.13% fewer unsafe tests than the offline model. In achieving
such results, the real-time model only used an initial set of 60 test cases,
whereas the offline model leveraged 5,643 tests.

Training costs: Pre-trained and Adaptive Models v.s. Random
Baseline. From a qualitative point of view, the cost of the training dataset is
about 0 for the random baseline, while it is > 0 for the pre-trained and adaptive
Models. It is important to mention that, for all results discussed in Section
5.2.2 and for the adaptive and pre-trained models, we did not include the cost
required for training the ML models on the training data. This choice was
made since the cost of training the best ML model can be considered negligible
compared to the cumulative cost of generating all tests and executing them.
Indeed, the average cost to train the Logistic Regression model (i.e., the best
ML model) on 60 test cases is of about 0.139 seconds, whereas the cost to train
the same ML model on 5,643 tests (for the offline model) is of about 0.685
seconds. However, since for other ML models or particular settings of the same
ML model (e.g., different from its standard configuration), we could achieve
rather higher training costs, we discuss this topic in the threat to validity.

Training dataset preparation: Pre-trained and Adaptive Models
v.s. Random Baseline. It is important to report that the comparison of
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Table 15 Best ML models with recall, precision, and F-score.

ML Technique
Precision Recall F1

Safe Unsafe Safe Unsafe Safe Unsafe

J48 49.8% 65.4% 76.0% 37.1% 42.6% 70.3%
Naive Bayes 66.0% 47.0% 75.0% 37.0% 71.0% 41.0%

SDC-Scissor and the random baseline does not take into account the time
(i.e., the cost) required for the training dataset preparation in the real-time
experiments. From a qualitative point of view, the cost of the preparation
of the training data is about 0 for the random baseline (since no training
is needed), while for the pre-trained and adaptive models, this has a non-
negligible cost. The preparation of the training data includes: (i) the time
required for the design, implementation, and testing of the road characteristics
(i.e., one week of full-time work) into SDC-Scissor; (ii) and the cost for the
automated extraction of such features from all test cases (158 seconds). In
total, this required us (i.e., to the first author of this work around one week of
work). Hence, while both the pre-trained and adaptive models are more cost-
effective than a random baseline when selecting test cases, the training data
preparation cost represents a very high cost to be sustained upfront, which
becomes beneficial only over a long period of test execution time.
5.4 Optimization Experiments (RQ3)

In RQ3, we focus on investigating whether there is an actual upper bound
of ML techniques in identifying SDC safe and unsafe test cases when using
static SDC features (available before executing the tests). We performed Grid
Search for the Random Forest, J48, Gradient Boosting, Logistic, Naive-Bayes,
and Support Vector Classifier to identify the best hyper-parameters for each
model. Table 16 summarizes the results of Grid Search by showing the F-score
(F1) for safe and unsafe test cases as well as the averaged F-score.

The best two models regarding the averaged F-score are the Gaussian Naive
Bayes (F1 = 60.0%) and the J48 Decision Tree classifiers (F1 = 59.5%). Al-
though these two models have similar averaged F-scores, they are distinct
among the classes. Among the unsafe tests, the J48 Decision Tree achieved an
F-score of 70.3%, but for the safe tests, it achieved 42.6%. In the case of the
Naive Bayes model, we have among the unsafe tests an F-score of 41.0% and
71.0% for the safe tests.

For the best two models according to their averaged F-score, we show their
corresponding confusion matrices in Figure 13 and Figure 14. Furthermore, a
detailed overview of their precision, recall, and F-scores among the classes are
reported in Table 15.

Both confusion matrices show a similar distribution. The models identify
most of the true unsafe test scenarios with 1’677 and 1’650 cases, but in pre-
dicting the safe tests, the models have a low true positive rate with 409 and
516 correct predicted safe tests.
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Table 16 Best ML model configurations after a Grid search

ML Technique Param. Config.
F1 Weighted avg. F1Safe Unsafe

Random Forest

I=5,

35.1% 72.4% 57.8%
K=10,
depth=10,
M=50

J48
C=0.5,

42.6% 70.3% 59.5%
M=20

Gradient Boosting

criterion=friedman mse,

77.0% 0.0% 48.0%
learning rate=0.01,
loss=log loss,
n estimators=10

Logistic

dual=False,

76.0% 12.0% 52.0%
max iter=10,
penalty=none,
solver=saga

Naive-Bayes No parameters 71.0% 41.0% 60.0%

SVC
dual=False,

76.0% 28.0% 58.0%loss=squared hinge,
penalty=l2

Fig. 13 Confusion matrix for the Gaussian
Naive Bayes model.

Fig. 14 Confusion matrix for the J48 Deci-
sion Tree model.

Finding 10. The Naive Bayes and J48 models reach a weighted
average F1 of 60%. Their confusion matrices show that they are able to
predict unsafe tests, whereas their performance on detecting safe tests is
less accurate.
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Fig. 15 AICAS’s Jamaica EDP validation setup.

Fig. 16 Can Bus in the context of an SDC.

6 Integration of SDC-Scissor in the Industrial Use Case

6.1 Experiments involving an Industrial use Case (AICAS)

We investigate the extent to which SDC-Scissor can be integrated into the
context of industrial organizations in the automotive domain, addressing one
of the open questions in simulation-based testing [3, 20, 21, 41] for SDCs. We
identified the AICAS company6 as an ideal use case for this investigation.
AICAS develops JamaicaCAR, an OSGi-based technology for the automotive
sector, currently running in more than five million cars worldwide. A press-
ing challenge for AICAS concerns the need to combine simulations and HiL
testing protocols to optimize the testing costs. Specifically, AICAS aims to
reduce testing costs by automatically generating inputs, i.e., signals, compat-
ible with the Controller Area Network (CAN) Bus protocol [33] in simulated
environments.

6 https://www.aicas.com/wp/
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Fig. 17 CAN Bus code pipeline integrated into SDC-Scissor

Based on the trajectories planned by the planning module of SDC, the
control module of SDC typically takes charge of the longitudinal and lateral
control of the vehicle and generates appropriate control commands (e.g., steer-
ing, acceleration, brake) that it sends to the related hardware component of
the SDC via the CAN Bus (see Figure 16).

To allow validation of the described scenarios, AICAS provided us with
devices under test (DuT) equipped to communicate via the CAN Bus. We
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Fig. 18 SDC-Scissor’s CAN Bus code pipeline: SDC Test Case Generation and Storage.

connected the devices to the CAN bus and the CAN bus to a driving simulator
that allowed us to generate the appropriate signals (see Figure 15). The devices
act as a validation context for the described automotive scenarios.

There are several main advantages of integrating test cases generated by
SDC-Scissor in the testing workflow of AICAS:

– Increased level of test automation : Currently, AICAS inputs are manually
generated or designed by testers and developers in its organization. The
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Fig. 19 SDC-Scissor’s CAN Bus code pipeline: SDC Test Data Conversion & Generation
of CAN Playback Data.

usage of an integrated framework such as SDC-Scissor can enable the gen-
eration of test cases automatically, increasing automation and diversity of
generated SDC scenarios.

– Increased level of realism : Most of the manually entered signals inserted
in the Can Bus protocol by the testers and developers of the AICAS or-
ganization do not reflect a real driving set of signals (e.g., the provided
acceleration and steering angle of the vehicle are not reflecting a real driv-
ing test scenario, which makes the used inputs in most cases too random
or unrealistic).

Integration steps. To investigate the extent to which SDC-Scissor can
be integrated into the context of AICAS, we extended SDC-Scissor with a
CAN Bus code pipeline (see the full pipeline in Figure 6), which automates
the following steps:

– SDC Test Case Generation and Storage (Steps 1-2): As visualized in Fig-
ure 18, we first use SDC-Scissor to generate 3,559 SDC test cases (with
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BeamNG, with RF 1.5 - moderate driving), execute them, and store the cor-
responding execution log in a JSON file (i.e., the actual simulation.full.json
containing all information concerning the generated and executed tests by
SDC-Scissor, see Figure 18), which constitutes the dataset of our experi-
ments.

– SDC Test Data Conversion & Generation of CAN Playback Data (Steps
3-5): In this stage, we convert (and visualized in Figure 19) the execution
log from the JSON file (i.e., simulation.full.json generated by SDC-Scissor
to CAN Playback Data (i.e., the file simulation.canplayback.* ).

– Transmission of CAN-based Signals (Steps 6): The messages (i.e., the CAN
Playback Data) generated in the previous step are then transmitted to
the CAN Device according to defined timestamps, consistent with the one
generated by SDC-Scissor while executing SDC test cases. Specifically, re-
ferring to the specified used CAN database (i.e., ¡.dbc¿), we converted
SDC-Scissor test case data (i.e., ¡simulation.file.json¿) to CAN messages
(i.e., ¡simulation.canplayback.csv¿). Using a specified CAN interface device,
logged CAN frames are played back to external CAN bus devices. These
final steps allow us to finally send realistic SDC signals concerning the
driving scenarios to the CAN Device (i.e., SDC test cases generated by
SDC-Scissor) in an automated fashion).

From a technological point of view, the definition and implementation of
the pipeline in Figure 6 required us to leverage the following libraries: (i)
Python-CAN 7, which allows controlling various CAN interface devices in the
Python environment; (ii) the cantools8, which support CAN database encoding
and decoding actions (from the device to the Simulator, and vice versa).

6.2 Industrial Use Case (AICAS): Integration results

To investigate the extent to which SDC-Scissor can be integrated into the
context of AICAS, we extended SDC-Scissor with a CAN Bus code pipeline
described in Section 6.1 and shown in Figure 6. The development and integra-
tion of this pipeline in the AICAS context required around five months of work:
considering the time to design the pipeline till its implementation and inte-
gration, including the time for running all the required experiments reported
in this article (this includes the generations of test cases by SDC-Scissor, their
execution, the analysis of the data, etc.).

Table 17 reports the details of the test cases generated by SDC-Scissor.
Specifically, we generated around 3,600 test cases, which required a total ex-
ecution time of 12h, 17m, and 11s, with an average simulation time of 12.428
seconds for each test case and a max. observed simulation time of 21.4 seconds.

The most challenging steps of the integration of SDC-Scissor into the con-
text of AICAS are represented by the SDC Test Data Conversion & Genera-

7 https://python-can.readthedocs.io/en/master/
8 https://cantools.readthedocs.io/en/latest/
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Table 17 Dataset Summary

Property Value

Nr. SDC test cases Generated by SDC-
Scissor (BeamNG RF 1.5)

3,559

Total Simulation Time 12h 17m and 11s

Average Simulation Time 12.428 s

Max. Simulation Time 21.4 s

tion of CAN Playback Data (Steps 3-5, shown in Figure 6) and the Transmis-
sion of CAN-based Signals (Steps 6, shown in Figure 6). The main aspect that
made this task challenging was the need for signal conversions and mapping
between SDC-Scissor’s signals and CAN Playback Data. As shown in Figure 6,
for each signal generated by SDC-Scissor, we had to generate a corresponding
value mapped with the CAN Playback module.

Based on the simulation-based signals generated by the implemented SDC-
Scissor pipeline, we were able to generate appropriate control commands (e.g.,
steering, acceleration, brake), and send them to the related hardware com-
ponent of the SDC via the CAN Bus. Table 18 reports the details of SDC-
Scissor’s integration process. Specifically, for all 3,600 generated test cases,
which required a total execution time of 12h, 17m, and 11s, it required a total
of 52.391 seconds to SDC-Scissor for enabling the automated signal conver-
sions, mapping, and transmission of CAN messages.

As visualized in Figure 6, it requires 14.721 ms on average to SDC-Scissor to
translate simulation-based signals into CAN-compatible signals. In comparison
with the current manual signal generation process, it requires on average 1-2
days for AICAS developers and testers to design and then generate a sequence
of CAN signals corresponding to 10-15 test cases generated by SDC-Scissor
(according to the qualitative assessment of our main contact people within
AICAS). In addition to the test automation enabled by SDC-Scissor in the
context of AICAS, the generation of a more realistic sequence of SDC signals
(corresponding to signals of a realistic SDC car driving in a virtual test case) is
vital for the identification of safety-critical scenarios to be executed and tested
via the CAN Bus protocol.

Finding 11. The main challenging aspect of integrating SDC-Scissor
into the context of AICAS was the need to systematically automate the
mapping between SDC-Scissor’s signals and CAN Playback Data. Consid-
ering 3,600 generated test cases as input, it required a total of 52.391 sec-
onds to SDC-Scissor for enabling the automated signal conversions, con-
sisting of about 14.7 ms on average to SDC-Scissor to translate simulation-
based signals in CAN-compatible signals of a single test case. The corre-
sponding process of manually designing and generating the sequence of
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Fig. 20 Mapping between SDC-Scissor’s signals and CAN Playback Data

Table 18 Results of the Integration Process

Property Value

Nr. SDC test cases Generated by SDC-Scissor
(BeamNG RF 1.5)

3,559

Total Conversion of Messages + Transmission of
CAN signals

52.391 s

Mean Time for Conversion of Messages + Transmis-
sion of CAN signals (per each SDC test case)

14.721 ms

Min Time for Conversion of Messages + Transmis-
sion of CAN signals (per each SDC test case)

7.892 ms

Min Time for Conversion of Messages + Transmis-
sion of CAN signals (per each SDC test case)

30.006 ms

CAN signals corresponding to 10-15 test cases generated by SDC-Scissor
takes between 1-2 days for AICAS developers and testers.

7 Discussion

This section discusses additional factors that can influence the results of the
various research questions, providing more insights and findings about them.
Moreover, it also provides a concrete discussion on directions for future re-
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Fig. 21 Performance of Conversion and Transmission time.

search in the field.

7.1 Discussion of Experiments Using Road Characteristics as Input Features
to the ML Models

As we have observed from the conducted experiments in RQ1, SDC-Scissor
is able to classify safe and unsafe test cases in both the Driving.AI dataset
and the BeamNG.AI dataset, with the Logistic and Random Forest models
achieving the most reliable results in terms of F-score values for labels. More-
over, we also observed that the Road Characteristics extracted by SDC-Scissor
contribute differently to identifying the safe and unsafe test cases. The Road
Characteristics concerning the pivot radius (min, mean, std, median), the sum
of the turn angles, the number of left and right turns, and the total length of
the road are among the most important features, which are all belonging to
the set of road features.

In the context of RQ1, there are other factors that can impact the results
of SDC-Scissor, such as (i) the risk factor (RF) of the SDCs; (ii) the ability of
the ML models to transfer knowledge from a driving agent to another one (i.e.,
between BeamNG RF 1.5 dataset and the Driver.AI dataset); finally, (iii) we
complement the previous Offline Experiments, which focus on applying SDC-
Scissor to regression test case selection, with Real-Time Experiments in which



44 C.Birchler, S.Khatiri,B.Bosshard, A.Gambi, S.Panichella

we study the application of SDC-Scissor to automated test generation.

7.2 Further Remarks and Future Directions

This work can have relevant implications for developers and researchers. Hence,
this final discussion reflects further remarks on the results of all questions,
with a specific focus on future directions of RQ3 and RQ4 for developers and
researchers.

For what concerns developers, the designed tool allows identifying specific
problems that need to be carefully monitored in simulation environments at
the time of testing. These include, for instance, the need for coping with testing
multiple hardware versions and diversified test inputs to verify correctness with
realistic test inputs. Also, it is of paramount importance to be able to generate
inputs that lead to a different safety-critical situation in a safe manner (i.e.,
without harming humans). SDC-Scissor allows to generate and identify test
cases that can cause the SDC to fail by using different safety criteria (in the
context of this work, we focus on the line-keeping feature as the main safety
criterion, but further criteria can be easily integrated and tested).

The integration of SDC-Scissor into the AICAS use case allows us to
demonstrate that the proposed approach can automate the testing process of
such a large automotive company, coping with the need to complement their
hardware-based simulation (based on the Can Bus protocol) with simulation-
based testing automation. Specifically, SDC-Scissor allows addressing two
pressing challenges of AICAS such as the need for (i) an Increased level of
test automation (e.g., AICAS inputs are manually generated or designed by
testers and developers in its organization) with test cases automatically gen-
erated to increase the diversity of generated SDC scenarios; (ii) and the need
of Increase level of realism, since most of the manually entered signals inserted
in the Can Bus protocol by the testers and developers of the AICAS organiza-
tion do not reflect a real driving set of signals (e.g., the provided acceleration
and steering angle of the vehicle are not reflecting a real driving test scenario,
which makes the used inputs in most cases too random or unrealistic).

To enable the detection and fixing of SDC bugs during the evolution of
SDCs, developers can focus on configuring SDC-Scissor to test different com-
binations of simulators, and AI agents in diversified testing cases, to identify
faults in the AI engine and the connected hardware of the system. Of course,
we expect that test cases for assessing and detecting SDC bugs can vary be-
tween different organizations. To perform such new experiments, SDC-Scissor
can be used to generate new test cases by increasing the level of realism of
the generated simulation by including obstacles in the generated tests. This
is to observe the behavior of the SDCs as well as the ability of SDC-Scissor
to identify safe and unsafe test cases in the context of more articulated test
cases.
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From the discussion of the results of RQ3, we identified that there is an
upper bound of the extent to which static SDC features (i.e., features available
before executing the tests) can be used to predict SDC testing outcomes. This
represents a relevant topic for both developers and researchers for future
investigation. From one side, we may argue that novel static SDC features
need to be designed to achieve better results (in terms of precision, recall, and
F-score). On the other side, we also observed in RQ3 how the usage of different
SDC features and hyperparameter optimization strategies do not lead to dras-
tically better results. Given the complexity of the simulation environment and
its simulated physics, we argue that to cope with the upper bound of static
SDC features, better results can be achieved by combining static metrics and
runtime SDC metrics (i.e., metrics available during the execution of SDC test).
The rationale of such implication is that there is limited information that can
be used to derive if SDC test cases will fail or not before their execution, and
achieving better results requires designing metrics that are available during
the execution of test cases. For instance, one could consider using the average
distance, speed, and steering angle in the proximity of an SDC failure (namely,
a crash or a violation of the safety criterion, such as the lane-keeping feature).

For what concerns researchers, this work triggers activities towards better
testing and analysis of SDCs. First and foremost, given the identified safe
and unsafe test cases, it can be used to derive higher-order [49] SDC-specific
mutation operators. For example, the integration of obstacles and different
fault detection strategies related to other safety criteria (different from the
lane-keeping feature) during the execution of test cases could lead to mutants
that change the test case outcome towards more faulty SDC behaviors. More
complicated would be dealing with runtime adjustments of SDC test cases,
which may require to be instantiated by perturbing the SDC behavior during
the testing process.

Also, the work could foster the development of specific static analysis tools
for SDC, looking for SDC-specific recurring problems observed in failing test
cases. Complementary empirical research could be directed to investigate the
difficulty (e.g., duration) of fixing SDC-specific bugs and developing tools
guiding developers in allocating the appropriate development effort to vari-
ous types of SDC bugs. In the context of SDCs, the usage of SDC-Scissor can
help researchers (and developers) have a deep knowledge of SDC bugs and
their root causes, which is potentially facilitated by their high reproducibility.
Specifically, being able to reproduce a bug is crucial during bug triaging and
debugging tasks but not always possible in field testing [18,47,62,86].

Fixing or addressing SDC-specific bugs and automatically assessing the
correctness of the SDC behavior represent a critical challenge for developers
and researchers. Hence, future studies should look at further safety-related
bugs due to the uncertainty of SDC behavior, concerning, for instance, the
effect of different SDC initializations in the SDC test case outcomes. During
our experiments, we also noticed a non-deterministic behavior of the test out-
comes, also known as flaky tests. Concretely, depending on the definition of
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a failing test for SDC-Scissor, we observed 1% to 5% flaky test cases, which
we discarded when creating our dataset. Future research should address the
concern of having flaky tests in virtual environments since they lower the re-
liability of simulation-based tests of safety-critical systems such as SDCs.

Finally, SDC developers heavily rely on different experts (they need to have
both software and hardware knowledge) to assess the correctness of SDC test
outcomes. As the judgment of the experts highly depends on their experience
and domain knowledge, such human oracles may not be reliable or can be
considered subjective. This human-based assessment can be supported by re-
producible SDC test regression frameworks, such as SDC-Scissor, to mitigate
the effect of subjective assessments of the correctness of SDC test outcomes.

8 Related Work

SDC-Scissor improves CPS testing cost-effectiveness by identifying and dis-
carding likely irrelevant (i.e., safe) tests. Therefore, SDC-Scissor’s main ap-
plication areas are (automated) test generation and test regression selection.
Specifically, SDC-Scissor employs Machine Learning models to classify tests as
safe or unsafe before their execution. Research has yielded many approaches
to reduce testing efforts [37, 85]. These approaches can be classified into the
following categories: test case selection [32], test suite reduction, test case min-
imization [70], and test case prioritization [71]. Test case selection identifies
subsets of available tests relevant (or necessary) for testing a given change
in the code; test suite reduction removes redundant test cases from existing
test suites, thus leading to smaller test suites that can execute faster; test case
minimization removes irrelevant statements from the tests, reducing their size;
finally, test case prioritization approaches rank test cases by the likelihood of
detecting faults such that their execution can lead to finding faults soon.

Most of the available approaches focus on regression testing and do not
employ Machine Learning [83]. Only recently [61], we observed a positive in-
crement in the number of proposed approaches that rely on ML to select and
prioritize test cases; however, those approaches focus mostly on traditional
software systems (e.g., [69]), and the problem of reducing testing effort for
Cyber-Physical Systems remains open [72]. In particular, compared to tradi-
tional software systems, CPS face additional challenges due to their contin-
uous interactions with the environment and the tight coupling between the
hardware and software components comprising them. Hence, standard testing
approaches are ineffective, inefficient, or inapplicable [24].

Testing of CPSs typically follows the X-in-the-loop paradigms [58] which
involves a great deal of simulation and takes the form of the model in the loop
(MiL), software in the loop (SiL), and hardware in the loop (HiL), depend-
ing on the level of abstraction adopted to represent the CPS’s software and
hardware components and the relevant environmental elements. Considering
the specific requirements of X-in-the-loop testing, researchers proposed vari-



ML-based Test Selection for Simulation-based Testing of SDC Software 47

ous optimization techniques tailored for CPSs. We discuss the most relevant
examples in the following and point interested readers to Sadri-Moshkenan’s
survey for a more detailed discussion [72].

Effective CPS testing requires the generation of test cases that effectively
stress the system under tests to systematically find critical and challenging test
cases [41]. However, many of the proposed approaches (e.g., [40,41,54,63]) rely
on randomization to generate tests and require the execution of all the gen-
erated tests. As we showed in our evaluation, without proper support (e.g.,
SDC-Scissor), those approaches struggle to efficiently identify relevant scenar-
ios. Abdessalem and co-authors, instead, augmented traditional evolutionary
search algorithms commonly used for automated test generation with Machine
Learning models to improve the cost-effectiveness of CPS testing. They evalu-
ated their approaches on SDC collision avoidance. Specifically, Abdessalem et
al. [1] used Artificial Neural Networks to predict test cases’ fitness without exe-
cuting them. By doing so, They could avoid the lengthy execution of test cases
that might not contribute much towards achieving testing goals (i.e., finding
problems in the system under test). More recently, Abdessalem et al. [2] em-
ployed a Decision Tree to guide the test generation. In particular, during the
test generation, Abdessalem et al. train a Decision Tree that can identify re-
gions of the test input space that likely lead to generating critical test cases.
Compared to Abdessalem et al.’s work, we adopt a similar approach but inves-
tigate the use of different Machine Learning models to classify tests as safe or
unsafe. Additionally, we apply SDC-Scissor to a different problem, i.e., testing
the SDC Lane Keeping system.

In traditional settings, test selection and prioritization are performed by
computing test similarity or test adequacy (i.e., code coverage). However, given
the complexity of test inputs for CPSs (e.g., simulated environments), com-
puting those metrics is technically challenging. Consequently, new similarity
metrics and procedures to compute them have been proposed. For instance,
Arrieta et al. [9,11] proposed to measure the similarity between the test cases
based on the so-called signal values of all the states for the simulation-based
test cases. Traditional test adequacy metrics may not be adequate for CPSs
that are based on Artificial Intelligence and Deep Learning. Because of this,
current research efforts focus on identifying domain-specific heuristics to select
test cases. For instance, Arrieta et al. [10] and Shin et al. [75] proposed to se-
lect the test cases based on high-level objectives such as requirement coverage,
the risks of damaging CPS Hardware components, and test execution times.

Compared to those studies, we investigate a different CPS domain and
different test selection objectives.

Regarding test selection objectives, we focus on improving the cost-
effectiveness of simulation-based tests to assess safety requirements. In con-
trast, previous studies prioritized the execution of tests based on their fault-
detection capability [12], or selected tests based on signals diversity [9–11],
that require test execution. Since, in the SDC domain, executing simulation-
based tests is prohibitive, we face the challenge of selecting test cases before
their execution. Consequently, our techniques consider only the initial state of
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the car and the road features (e.g., geometry, lane markings), as those features
are available without executing the tests in the simulator.

9 Threats to Validity

Threats to internal validity may concern, as for previous work [20,21,42], the
cause-effect relationships between the technologies used to generate the scenar-
ios and their elements and the corresponding results, which strictly depends
on the realism of our scenarios. Indeed, we did not recreate all the elements
that can be found on real roads (e.g., weather conditions, etc.). However, to
increase our internal validity, we used both BeamNG.AI and Driver.AI as test
subjects. They both leverage a good knowledge of the roads, which means that
they do not suffer from the limitations of vision-based lane-keeping systems.
For future work, we plan to leverage the new BeamNG features, which allow
experimenting with test cases composed of traffic lights as well as other cars
and static objects. Moreover, we plan to experiment with consecutive versions
of BeamNG.AI and Driver.AI (when they are available), so that it is possi-
ble to investigate the potential fault-detection capability of both of them.
Currently, this is not possible since both BeamNG.AI and Driver.AI do not
have previous versions of their driving agents. Furthermore, since testing in-
volves an underlying assumption that there will be no malicious attack on the
system, future work should be conducted on more cautious driving AIs. The
goal should also be to detect unsafe scenarios with a lower risk factor. A reck-
less driving style can be considered malicious behavior, which is, to a certain
extent, provoked by the configuration RF2.

The current implementation of the diversity feature does not take into
account the actual length of the road. Theoretically, it is possible that a short
road can have a higher diversity than a longer one, which also contradicts an
assumption that a long road is generally unsafer since there is more space to
encounter an unsafe state of the vehicle.

Given the performances of the ML techniques used in our experiments
may depend on the setting of their hyper-parameters. We initially leveraged
their default settings, knowing that the obtained results could represent a
lower bound for the classification performances. Then, we experimented with
Grid search as a hyperparameter optimization approach (RQ3) to investigate
potential optimal combinations of parameters for the selected ML models.

Finally, threats to external validity concern the generalization of our find-
ings. Although the (i) number of experimented test cases in our study is rel-
atively larger [42]; and (ii) we experimented with different AI engines (i.e.,
BeamNG.AI and Driver.AI) and integrated SDC-Scissor into the development
context of the AICAS use case (demonstrating that the proposed tool can
automate the testing process of such a large automotive company) compared
to previous studies; we cannot claim that our results can be generalized to
the universe of general open-source CPS simulation environments in other do-
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mains. Therefore, further replications are desirable, and so are further studies
considering more data as well as other CPS domains.

As discussed in Section 7, for all results in Section 5.2.2, for both the
Adaptive and Pre-trained Models, we did not include the cost required for
training the ML models on the training data. This choice was made since the
cost of training the best ML model can be considered negligible compared to
the cumulative cost of generating all tests and executing them. However, this
could be a threat to the external validity of our results, since for other ML
models or particular settings of the same ML model (e.g., different from its
standard configuration), we could achieve rather higher training costs. Another
threat could be related to the evaluation metrics used in our study, which
could provide biased performance measures such as precision, recall, and F-
score. Hence, for future work, we plan to leverage additional metrics such as
the MCC (Matthews Correlation Coefficient), being reported as a well-known
measure for unbiased performance measurements.

To minimize potential external validity, in conducting our experimental
evaluation, we followed the guidelines by Arcuri et al. [8] that suggest com-
paring results with randomized test generation algorithms (our baseline ap-
proach in RQ2) and repeated the experiments several times. In addition, we
considered an additional baseline approach that selects test cases by ordering
the test to be executed considering their road length (in decreasing order).

10 Conclusions and Future Work

Regression testing for SDCs is particularly challenging due to the cost of run-
ning many driving scenarios in simulation. To improve the cost-effectiveness of
regression testing, we introduced a test case selection approach, called SDC-
Scissor, that relies on a set of SDC road features extracted from driving scenar-
ios prior to running the tests in the context of the BeamNG SDC simulation
environment. Then, SDC-Scissor uses ML approaches to select the test cases
having a higher likelihood of experiencing unsafe situations.

We empirically investigated the performance of SDC-Scissor and compared
it with baseline approaches (RQ1). Our assessment of SDC-Scissor shows that
SDC-Scissor successfully selects test cases independently from the AI engine
used or different risk levels (i.e., different driving styles), with the Logistic
model providing the most stable results. Interestingly, our results also show
that the knowledge is not transferable from one AI engine to another one,
i.e., SDC-Scissor performed worse when training ML models on data from a
specific AI engine and testing on data from a different AI engine.

Our findings also suggest that SDC-Scissor can reduce the number of exe-
cuted tests required to find at least 10 unsafe tests (RQ2). Specifically, SDC-
Scissor outperformed the baseline across all test pools. It selected unsafe cases
using the Logistic model with an accuracy of 70%, a precision of 65%, and
a recall of 80%. In terms of running time, we observed that SDC-Scissor is
able to select test scenarios in a cost-effective manner compared to two ran-
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dom baseline approaches (RQ2). We experimented with Grid search as a hy-
perparameter optimization approach (RQ3) to investigate potential optimal
combinations of parameters for the selected ML models (RQ3). Our results
show that there is an upper bound of an average F-score of 60% with the J48
and Naive Bayes classifiers. Complementary, compared to previous studies, we
integrated SDC-Scissor into the development context of the AICAS use case,
demonstrating that the proposed tool can automate the testing process of such
a large automotive company.

As future work, we plan to replicate our study on further SDC datasets, AI
engines, and SDC features. Moreover, we plan to perform new empirical studies
on further CPS domains to investigate how SDC-Scissor performs when safety
criteria concern new types of safety-critical faults different from those inves-
tigated in this study. Finally, we want to investigate different meta-heuristics
and multi-objective approaches [25, 27] to enable test case generation based
on the designed feature sets.
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Appendix A Analysis of Relevant Features (RQ1)

Although the ML models trained using the road features can effectively classify
the test cases as safe or unsafe, it is crucial to know the contribution of each

9 https://github.com/ChristianBirchler/sdc-scissor

https://github.com/ChristianBirchler/sdc-scissor
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Table 19 Feature Selection Rankings according to A) Information Gain Analysis, B) Cor-
relation Analysis

A

Rank Feature Inf. Gain

1 min pivot off 0.140
2 mean pivot off 0.087
3 total angle 0.085
4 num l turns 0.084
5 num r turns 0.077
6 std pivot off 0.067
7 median pivot off 0.050
8 length 0.039

9 num straights 0.013
10 std angle 0.011
11 max angle 0.011
12 min angle 0.010

13 max pivot off 0.003
14 direct distance 0.003
15 median angle 0.002
16 mean angle 0.000

B

Rank Feature Correlation

1 min pivot off 0.342
2 total angle 0.332
3 num l turns 0.330
4 mean pivot off 0.326
5 num r turns 0.316
6 std pivot off 0.270
7 median pivot off 0.257
8 length 0.222

9 num straights 0.138
10 max angle 0.109
11 min angle 0.104

12 max pivot off 0.063
13 direct distance 0.053
14 std angle 0.048
15 median angle 0.025
16 mean angle 0.017

of these features. For instance, more profound knowledge of the features may
help to define better-suited feature sets. Hence, we analyzed in detail the road
features for the BeamNG dataset discussed in Table 8. Table 19 reports the
results of using two popular feature evaluation methods: information gain and
correlation. We order the features based on their evaluation scores and set a
threshold (0.01 for information gain and 0.1 for correlation) for each evaluation
method to select only the features with the highest contribution. It can be seen
from Table 19-A and Table 19-B that the ordering and the relative score of
the features are similar in most of the top cases among the two methods.
Specifically, the top eight features are precisely the same in both methods,
with a slight change in the order between ranks 2 to 4. Additionally, we note
that the remaining features above the thresholds differ in just one feature, i.e.,
”std angle”, which ranked in correlation score lower than the information gain
(rank 14 vs. 10).

Overall, we observe that almost all road features contributed to distin-
guishing safe versus unsafe test cases. Also, among the statistical features that
we reported in Table 2, features concerning the pivot radius tend to be more
critical and relevant for the distinction of the classes. The minimum and av-
erage radius of the pivots are among the most contributing features, while the
statistics concerning the turn angles start appearing only from rank 10.
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Appendix B Impact of risk factor (RF) on Classification
Performance (RQ1)

In Table 20, we report the precision, recall, and F-score for unsafe and safe
labels regarding the BeamNG.AI datasets (with different risk factors), to make
it more clear how SDC-Scissor ability to classify tests is accurate on both
labels, with varying RF. With different risk factors, we can observe that the
ML models’ accuracy improved for increasing RF levels. For instance, with
RF 2 SDC-Scissor reached a precision of 99.7% for unsafe predicated tests.
The dataset composition seems to be the key factor explaining this result

since setting the risk factor to higher values resulted in significantly more
unsafe cases. Conversely, a small number of safe cases improved accuracy and
precision for unsafe cases, counterbalanced by a decrease in the precision of safe
predictions. Finally, we can observe a similarity between the ML models’ F-
scores for safe and unsafe classes for the BeamNG.AI RF 1.5 case. This result
can be explained by looking at how evenly distributed the safe and unsafe
classes are, which illustrates the importance of having unbiased datasets for
training and testing the models.

This result supports the observation that the more the SDC under test
drives safely, the harder it becomes to predict unsafe test cases.

Table 20 Performance of the ML models trained using road features. The results refer to
the split of 80/20 between training and test data. The best results are shown in boldface.

Model Unsafe Test Cases Safe Test Cases

Prec. Recall F1 Prec. Recall F1

BeamNG RF 1
J48 37.6% 69.8% 48.9% 84.2% 58.0% 68.7%
Näıve Bayes 36.7% 92.1% 52.5% 93.7% 42.5% 58.5%
Logistic 43.3% 87.3% 57.9% 92.7% 58.6% 71.8%
Random Forest 40.7% 79.4% 53.8% 88.6% 58.0% 70.1%

BeamNG RF 1.5
J48 69.2% 67.4% 68.2% 61.5% 63.5% 62.5%
Näıve Bayes 79.3% 53.2% 63.6% 59.3% 83.1% 69.2%
Logistic 78.1% 65.3% 71.1% 64.8% 77.8% 70.7%
Random Forest 75.8% 62.7% 68.6% 62.5% 75.6% 68.4%

BeamNG RF 2
J48 98.7% 91.5% 95.0% 28.2% 73.3% 40.7%
Näıve Bayes 98.7% 94.3% 96.4% 36.7% 73.3% 48.9%
Logistic 99.6% 82.8% 90.4% 19.7% 93.3% 32.6%
Random Forest 99.7% 92.7% 96.1% 36.8% 93.3% 52.8%
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Table 21 ML Models’ accuracy on mixed datasets.

Model Training Acc. Test Acc.

BeamNG (Training)/Driver.AI (Test)
J48 87% 46%
Naive Bayes 67% 56%
Logistic 72% 45%
Random Forest 100% 44%

Driver.AI (Training)/BeamNG (Test)
J48 84% 44%
Naive Bayes 66% 35%
Logistic 81% 45%
Random Forest 100% 43%

Driver.AI & BeamNG Combined
J48 71% 53%
Naive Bayes 61% 49%
Logistic 64% 60%
Random Forest 87% 56%

Appendix C Transfer Knowledge of ML models when using
different Driving Agents (RQ1)

We also studied the ability of the ML models to transfer knowledge from a
driving agent to another by training ML models with one AI’s dataset and
testing it with another AI’s dataset. Specifically, we used BeamNG RF 1.5
dataset to train the ML models and used the Driver.AI test set, generated
from the same set of virtual roads, to evaluate them, and vice versa.

We considered three RF values ranging from cautious (RF 1.0) to moderate
(RF 1.5) to reckless (RF 2.0). Using different values for the risk factor enables
us to study the effectiveness of SDC-Scissor concerning various SDCs’ driving
styles. To study the generality of our techniques, instead, we consider a second
test subject, Driver.AI. Specifically, we tested Driver.AI with the same test
cases used for testing BeamNG.AI in the moderate configuration. This way,
we can directly compare the results achieved by both test subjects.

As is possible to observe in Table 21 the knowledge from one driving agent
is not transferable to another one. Table 21 shows that the ML models trained
on Driver.AI and evaluated on BeamNG performed significantly worse than
the same models trained on BeamNG exclusively (from 67.9% to 41% on aver-
age). However, when training the ML models on the BeamNG.AI dataset and
evaluating them using the Driver.AI datasets, the ML models performed only
slightly worse (between 49.1% and 47.8% on average). Interestingly, when us-
ing both datasets together, the results show a compromised solution between
the accuracy achieved when training on the different AI engines separately:
BeamNG 67.9%, Driver.AI 49.1%, and Combined datasets 55.5%.
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