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Abstract. We explain how to optimize the image analysis of mixed
clusters of red and green droplets in solvents with various degrees of
sharpness, brightness, contrast and density. The circular Hough Trans-
form is highly efficient for separated circles with reasonable background
contrast, but not for large amounts of partially overlapping shapes, some
of them blurred, as in the images of our dense droplet suspensions. We ex-
plain why standard approaches for image improvement fail and present a
“shootout” approach, where already detected circles are masked, so that
the removal of sharp outlines improves the relative optical quality of the
remaining droplets. Nevertheless, for intrinsic reasons, there are limits
to the accuracy of data which can be obtained on very dense clusters.
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1 Introduction

It is relatively straightforward to obtain the full information about the geom-
etry of droplet clusters in simulations[10] to verify existing theories with re-
spect to connectivity and packing characteristics [6,9,8], e.g. with applications
to chemical reactors of micro-droplets[1,12]. In contrast, experimental verifica-
tion is difficult due to potentially lost information in the original image. Nev-
ertheless, experimental understanding of the clustering it is indispensable for
theoretical predictions concerning the use of DNA technology for DNA-directed
self-assembly of oil-in-water emulsion droplets [2]. While the final aim will be to
analyse three-dimensional data from confocal microscopy, in this paper, we will
restrict ourselves to the analysis of two-dimensional conventional images. We

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of 
Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/978-3-031-23929-8_5

https://doi.org/10.1007/978-3-031-23929-8_5
https://www.springernature.com/de/open-research/policies/accepted-manuscript-terms


2 Matuttis, Schneider et al.

Fig. 1. Image details of droplets with red (left), green (middle) and sum of both red
and green (right) color values.

will explore the possibilities of extracting as much as possible information about
droplet clusters (radii and positions) with the circular Hough transform. It is a
standard technique[7,4,5] for recognising shapes in computer vision and image
processing (for it’s checkered history, see Hart [3]). The circular Hough trans-
form works well for separate circles in two dimensions with good background
contrast. This is unfortunately not the case for our graphics: We have several
thousand droplets in red and green, partially hidden by each other, with radii
from five pixels to several hundred, some out of the focal plane, with varying
contrast and sharpness. The red and green droplets have been recorded as tif-
RGB-images, with color values either in the red or in the green channel, see
Fig. 1. Depending on the choice of color models, interactive programs like Ap-
ple’s “Digital Color Meter” may indicate mixed colors in the screen display even
if the droplets in the original tif image have values only in the red or the green
channel. Unfortunately, especially droplets which are larger and out of the focal
plain contain different levels of salt and pepper noise (random white, respec-
tively dark pixels). Together with blurred large droplets, there may be small
droplets with sharp surface reflections of much higher brightness and scattered

Fig. 2. Image details of “good” (left), “bad” (middle) and “ugly” (right) clusters of
droplets (sum of red and green color values); from left to right, the number and density
of droplets with too different image quality (light and dark, sharp and fuzzy, with
and without noise) increases, so that it becomes more difficult to separate individual
droplets and determine their radii and positions correctly.
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Fig. 3. Composition of 5×5 images (green channel), the original (left) with varying
brightness, and the homomorphic colouring (right), with homogeneous, but unfortu-
nately reduced brightness and resolution of details.

refections inside larger, blurred droplets. In general, very small droplets cannot
be discriminated from circular scattered reflections, in Fig. 1. From the experi-
ment we have to take the pictures as they are and cannot scan through various
focal planes, as is possible with computer tomography or magnetic resonance
imagining. All in all we have to deal with three kinds of image qualities as in
Fig. 2, which can be catchily expressed as “the Good” (left, reasonable contrast,
good separation), “the Bad” (middle, fuzzy contrast, no clear separation) and
“the Ugly” (right, deep stacking of droplets to dense clusters with bad contrast,
some large droplets only recognisable as “black holes” acting as spacers between
smaller droplets). In other words, we have far from perfect input data and when
we extract the size and (two-dimensional) position of the droplets, we cannot
expect a perfect geometrical representation, only a “best effort” is possible. In
this research, we explain how as much information as possible can be extracted
for such droplet clusters with methods originally developed for much better re-
solved circular objects, and which other methods of image processing may help,
which may not, and why.

2 Basic image processing approach

2.1 Attempts at preprocessing to balance exposure

Initially, our ambition had been to process the whole of the various sets of 5 × 5
tif-frames, each with resolution of 2048× 2048. As can be seen in Fig. 3 (left), it
turned out that the camera automatically had selected very different individual
exposure of each frame, with sufficient time lag between each frame so that
lines appeared where the individual tifs were joined together. It is possible to



4 Matuttis, Schneider et al.

Fig. 4. For an image (left) with a circular ring, a full circle with full (255) and half color
saturation (125) - all with the same radius - the corresponding 3D-Graph (middle) as
well as the peaks of the circular Hough transform (right).

Fig. 5. For an image (left) with a circular ring (above), a circular ring with Gaussian
intensity distribution (middle) and the same with 20% salt and pepper noise, the 3D-
Graph (middle) as well as the peaks of the circular Hough transform (right).

remove the differences in brightness in different regions of images with so-called
homomorphic filters[7] with a suitable combination of Fourier transforms and
Gaussian filters. We applied such a filter in Fig. 3 (right), successfully inasmuch
as the difference in light and dark regions disappeared. Nevertheless, not only the
exposure differences, but also resolution and brightness as a whole were reduced,
up to a point where the the shape of circles was destroyed. The original aim of
analysing whole sets of 5×5 frames had to be abandoned, so we decided to focus
on the analysis of individual tifs with 2048 × 2048 pixels resolution.

2.2 The circular Hough transform

While the standard Hough transform is a method to extract the information
about lines (their location and orientation) from an image, the circular Hough
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transform extracts information about circles (their centers and radii). Simply
speaking, the circular Hough transform histograms the possible three-point least-
squares fits of a circle for a given center (x, y) and radius r and stores the
information in the resulting transform matrix. The range of the radii to be
investigated is supplied as input parameter. Because there are more possibilities
to fit large than to fit small radii, Hough transforms with larger radii take longer
than runs with small radii due to the larger set of the input data. A maximum
search on the elements of the transform matrix can then be used to determine
the centers and radii of the circles in the original image. Because we will have to
deal with droplets which may be imaged as rings or circles with varying shading
intensity on the boundary, we will compare in the following the Hough transforms
of some circular shapes. In Fig. 4, the circular Hough transform is performed on
a monochrome image of 750 × 250 pixels with (from back to front) a circular
ring and a full circle with saturation value 255, and in the foreground there is
a circle with saturation value 125. All things being equal, circular rings give
Hough transforms with higher peak intensity than full circles, and, as expected,
the intensity of the Hough transforms decreases with the color intensity of the
circles. In Fig. 5, we have shown the Hough transform (right) for an image of three
circular rings (left), with constant intensity (above), with an outline of Gaussian
intensity (middle) and with additional 20% salt and pepper noise (front). The
peak height for the ring of constant intensity is lower, but wider, while the height
of the peaks for the Gaussian outlines is comparable, but the noise reduces the
width of the peak.

2.3 The MATLAB implementation of the Hough transform

We use the function imfindcircle [11] from MATLAB’s image processing tool-
box (versions 2017b, respectively 2018b), which adapts the circular Hough trans-
form with additional controls. As input parameters, the preferred range of radii
[rmin, rmax], the polarity (“bright” or “dark” circle to be detected), as well as the
sensitivity (between 0 and 1) can be selected. Because most droplet reflections,
as in Fig. 1,2, are not filled circles, but light circular rims with a darker core,
the “bright” option for the circle detection must be used: The relative width
of the inner “dark” core varies too much to give meaningful radii for the cor-
responding droplet. MATLAB’s imfindcircle is parallelized, and for graphics
with 2048×2048 pixels resolution runs in parallel on 2 to 3 cores on a MAC-
Book Pro. For our data, another necessary input is the sensitivity. Here, bigger
is not always better, and a sensitivity of 0.9 is reasonable for our images. Beyond
a sensitivity of 0.92, imfindcircle starts “seeing things”, in particular circles
which are not there, and misidentifies irregularities on the outline of droplets,
i.e. deviations from an ideal circle, as circular droplets on its own, as can be
seen in Fig. 6. Apart from radius and position, imfindcircle outputs also the
metric (as it is called in the MATLAB’s function description), i.e. the “quality”
of the circles. In the case where spurious circles with smaller radii have been
inscribed into larger droplets (like droplet 1 and 3 in Fig. 6), these small circles
can be eliminated when imfindcircle is run with larger radii and it turns out
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Fig. 6. From left to right: Original picture (left) as well as circles found with
imfindcircle with sensitivity of 0.90 (middle) and 0.96 (right) with radii between
6 and 12 pixels. While the droplets 1 and 3 (left) are spuriously resolved with two
circles at sensitivity of 0.90 (the outline is not circular) for a sensitivity of 0.96 also
droplet 2 gets split into three circles.

that several small circles with low metic (quality) are situated inside a larger
one with higher metric: In that case, it is clear that the smaller circles were only
spurious and can be eliminated.

2.4 Loop over several radius-ranges

For our images, the best performance of imfindcircle is obtained if the input
radii are in a range less than a factor of two (all lengths in pixels, input-data
in angular brackets in typewrite-font to discriminate them from references): For
[rmin, rmax], [8,12] will give reasonable result when [8,16] may not. There-
fore, we run imfindcircle with a sequence of increasing radius ranges and
start with the smallest radii, because the smaller droplets are usually the clearer
ones. Typical sequences are [5,8], [8,16], [15,26], [27,35], [36,56]. For
smaller radii of about 16 pixels, different circles may be recognized for a setting
of [8,16] than for a setting of [15,26], for larger radii, the algorithm is more
tolerant. With different input radii, the same droplet may be found twice with
different radius ranges, e.g. with a radius of 12 for input range [8,16] and with
a radius of 16 for an input range of [15,26]: For the smaller input radius, the
brightest radius will be detected, for larger radius the largest outer radius may
be detected. Therefore, when new sets of positions and radii are obtained with
imfindcircle, a loop over all old and new radii must be run to eliminate dou-
blets, concentric circles with different radii but the same center (with an error
margin of 1/10 of the larger radius).

3 From good to bad clusters

3.1 Failure of standard techniques for image improvement

The Hough transform works for the “good” droplet images with reasonable
sharpness, brightness, contrast and separation distance from other droplets. The



The Good, the Bad and the Ugly (droplet clusters) 7

Fig. 7. Original input (left) and result with Laplace filtering using ALap2 (right).

optical quality of the droplets with small radius and center of mass in the fo-
cal plane will always be superior, their signals in the Hough transform always
be sharper than for larger droplets or small droplets more distant from this
plane. Droplets with less contrast, separation, brightness or sharpness will not
be detected with the Hough transform directly, because the corresponding peaks
(see sec. 2.2) are too low. When this happens, everybody who has worked with
graphics programs will then try some of the standard methods to improve the
image, in particular: brightening, increasing contrast and sharpening contours.
All of these methods are implemented in MATLAB, and for interesting reasons
turn out to be useless for preprocessing images for use with the Hough trans-
form. Brightening of the input-data will brighten all droplets: The peaks for
the sharpest and brightest droplets in the Hough transform will be increased
too, and relatively speaking, nothing changes, the droplets with less contrast,
brightness etc. will still be outshone. The same is true with increased contrast:
In brightened images, the originally brighter droplets will always exhibit the
better contrast compared to darker ones. In short, global or unified approaches
to improve the picture quality will not help. Sharpening will be discussed in the
following section.

3.2 Sharpening contours with Laplacian filtering

It is instructive to have a look at what sharpening with Laplacian filtering really
accomplishes with a concrete example. Using filters (in digital image processing,
i.e. a suitable convolution of an image with a filtering matrix) is a conven-
tional technique to improve image quality. In MATLAB, it is implemented via
imfilter[11], and the original image and the convolution matrix are input ar-
guments. One of the standard procedures for image sharpening is the Laplace
filter. It is derived from the three-point approximation of the Laplacian operator
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∆ = ∂2/∂x2 + ∂2/∂y2 for a discrete function f(x, y) on a grid with unit spacing
(which takes care of the denominator) so that ∆f(xn, yn) becomes

f(xn+1, yn) + f(xn−1, yn) + f(xn, yn+1) + f(xn, yn−1, y) − 4f(xn, yn). (1)

The details of the approximation of the Laplacian have much less effect for image
filtering than for numerical analysis. We used implementations as convolution
masks with the matrices

ALap =

 0 −1 0
−1 4 −1

0 −1 0

 , ALap1 =

−1 −1 −1
−1 8 −1
−1 −1 −1

 , ALap2 =

 0 −1 0
−1 8 −1

0 −1 0

 , (2)

where ALap is the faithful implementation of the Laplace operator eq.(1), while
ALap1[5] and ALap2 and are crude approximations which nevertheless give a
brighter image. We processed Fig. 7 (left) with ALap2, so that in the result Fig. 7
(right) the outlines were homogenised and brightened. Unfortunately, this erased
other image details, and already bright droplets became brighter, so the relative
intensity of the peaks in the Hough transform did not change.

3.3 Failure of more sophisticated image processing methods

One of the results of Laplace filtering in Fig. 7 (right) was that - while some spe-
cific droplets became lighter - in dense clusters, the separation between droplets
vanished. To segment pixels between clusters, the watershed[11] transform could
be used: Unfortunately, for out amount of data, together with the large size dis-
tribution in our images, we were not able to find a suitable separation rule. Also
the clearboarder[11] algorithm could not be used, which can remove frayed
out borders around separate objects, but not for partially overlapping objects.
The temptation to run edge detection algorithms[7,4,5,11] on filtered images
like Fig. 7 (right) is overwhelming. However, the results in Fig. 8, where the
standard edge detection algorithms have been used, are rather underwhelming:
The Sobel[7,4,5]- Roberts- and Prewitt[5] algorithm do not only produce circu-
lar shapes, but also any kind of outlines for connected clusters. The contours
obtained from the Prewitt algorithm seem to be the most complete, with the

(a) (b) (c) (d)

Fig. 8. Edge detection with Sobel (a), Roberts (b), Prewitt (c) and Canny (d) for the
filtered data of Fig. 7; shown are the left upper 512 × 512 of the 2048 × 2048 pixels.
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least amount of gaps. As usual, the Canny[7,5] algorithm produces the highest
detail and most subtle contours. Unfortunately, in case of our ambiguous data
that means: There are multiple outlines for the same shape, so the usefulness
is rather marginal, compared to the rather more robust Sobel method, which
usually produces a single outline. When running imfindcircle on the graphics
with edge detection in Fig. 8 (a) to (d), the accuracy and resolution was actually
reduced compared to the result for the original image.

3.4 The shootout method

The recognition of images of mixed optical quality is rather due to the “good”
(bright, sharp, well-formed) droplets, because their distinct Hough peaks hide
the less-distinct peaks of bad droplets, as in Fig. 9 (a). Consequently, it makes
sense to mask already recognized droplets. To “shoot out” such detected circles
from the image, we have to overwrite them with a suitable color hue. Choosing
the wrong color creates spurious contours, i.e. new problems, so we also have to
discuss the most practical choice of colors for overwriting droplets. A self-evident
choice would be the average or median color of the whole image, as it should -
on average - hide a droplet in the average background color. Nevertheless, the
medium color of a whole picture with a lot of bright clusters or dark background
to overwrite a droplet will create conspicuously bright or dark circles as in Fig. 9
(b). So it is not advisable to use color hues which are globally computed for the
picture. Each “shoot out” should use a color which is inconspicuous relative to
the vicinity of the droplet. That leaves a choice of using either all the data inside
a droplet or the values on the circumference. We processed only the values on
the circumference, as pixels inside a droplet were sometimes influenced by color
deviations. As the diameter found with the Hough transform is very often that
of the color maximum at the border and does not include the whole “halo”,
we used an additional “safety distance” (between 1.1 and 1.2 times the Hough
transform-radius) for the shootout. Choosing the darkest pixels on the circum-
ference resulted in spuriously too dark colors as in Fig. 9 (c) with artificially
sharp contrasts. The best choice was the average color on the circumference, see

(a) (b) (c) (d)

Fig. 9. Original picture (a), shootout of bright dots with average color of the whole
frame (b), with darkest color on the circumference (c) and (best choice, to minimize
sharp contrasts) with average color of the circumference (d).
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Fig. 10. Droplet recognition for the same image of 2522 green droplets recognized
without the shootout procedure (left) and 2719 green droplets recognized with the
shootout method (right), with the recognized droplets drawn over the original image.

Fig. 9 (d). The replaced circles were most of the time equivalent to the back-
ground color and did not induce spurious new circles. As can be seen in Fig. 10,
with the shootout method the number of recognized droplets rises for the green
droplets from 2522 to 2719, for the red ones from 1859 to 1999. This may not
seem much, but in Fig. 10 (right), one sees that in particular large droplets which
got unnoticed without shootout in Fig. 10 (left) can now be recognized. These
large droplets with radii between 30 to 60 pixels are practically not detectable
with the application of imfindcircle alone due to the lack of exposure and
contrast.

3.5 Selecting “ugly” clusters according to color value

As the original purpose of our data evaluation had been the determination
of neighbourhoods between red and green droplets, the recognition of larger
droplets is essential for a meaningful analysis. Up to here, Fig. 10 looks like a
“bad” image which can mostly be dealt with by our shootout method. In reality,
the approach has failed, as superpositions hide particularly large droplets with
very pale hue, sometimes surrounded by rings of other droplets. These clusters
are visible in a certain color range (where 255 corresponds to full saturation):
For the green channel between 25 and 80 and for the red channel between 15
and 70, “mega-droplets” appear in white in Fig. 11 which are hardly visible in
Fig. 10. Clusters with circles inside could be (more often than not) detected by
the circular Hough transform. Some clusters are much larger than the circles in-
side, or so deformed, as in the left upper corner of Fig. 11 (a), that no detection
with the Hough transform is possible. Other huge clusters have their boundary
and insides decorated with cutouts of other droplets.
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(a) (b) (c)

Fig. 11. Very huge droplets for the original image of Fig. 10 for the green channel with
color values between 25 and 80 in (a), for the red channel with values between 15 and
70 (b) and semiautomatic recognition of the clusters in (b) shown in (c).

3.6 The final shootout

As in every good Western-themed undertaking, we will finish with a final shootout.
The huge droplets could only be recognised by the color hue set by hand, so for
green and red droplets, and for different pictures - depending on exposure and
density - various values must be selected. This is not practicable for the auto-
matic image analysis we aimed for. Nevertheless, we will now try other meth-
ods for cluster recognition, which do not use the Hough transform. For the red
channel of the underlying image in Fig. 10, we removed all circular areas with
recognized droplets with a shootout of both red and green circles, and binarised
the image: All pixels were set to black except red color values between 25 and
48, which were set to white. Over this black-white image, we ran a sequence
of MATLAB algorithms for irregular clusters. With bwareaopen[11], connected
pixel clusters with a total number of 250 pixels or larger are determined, all
smaller clusters are removed to erase the pixelated noise. Next, with imfill[11],
holes inside connected pixel clusters are occluded. At the end, bwboundaries[11]
is used to label connected pixel clusters. The result is shown in Fig. 11 (c) with
numbers added for the largest droplets to simplify the discussion. The recon-
struction of the droplets 1,2,4,6,11 and 13 looks mostly intact: The determina-
tion of the center and the maximal pixel diameter could give a somehow realistic
location of the droplet. Issues exists with droplets 3,5,7 and 8 (also droplets 9
and 10, though they are only partially in the image), which appear in several
unconnected parts. However, an automatic determination of the connection is
not possible: An algorithm which would connect the central pixels of droplets
3,5,7 and 8 with their outer rim would also connect areas near droplet 16 and 15,
which belong to separate droplets. Finally, the total size of droplets 12,13,14,17
and 18 are unclear, because one cannot determine where the fragments near
13,14,17 and 18 belong to. In the case of droplet 12, it is unclear how large the
area is which is hidden or cut off by other droplets. Even with all this effort, and
selecting the color range by hand, ambiguities about the largest droplets remain.
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4 Conclusions and outlook

Our original aim in processing two-dimensional images of clusters was to obtain
automatically an overview over the possible three dimensional contact geome-
tries between droplets from two-dimensional images. Our investigations have
clearly shown the limits of this approach: Our shootout-method worked well for
droplets with a radius of up to 50 or 60 pixels. It was only possible to extend
the recognition to droplets beyond that size by selecting color ranges by hand,
and such an approach is futile for the amount of actual data which have to be
processed. Information which was absent in the original image with respect to
exposure and sharpness cannot be recovered even with the most refined analysis
technique. In the future, we will strive for the evaluation of images with higher
data content and less noise, from more sophisticated image acquisition methods,
in particular from high-resolution fluorescence confocal microscopy.
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berger Hotz, P., Füchslin, R.M.: Influence of the geometry on the agglomeration
of a polydisperse binary system of spherical particles. Artificial Life Conference
Proceedings, 71 (2021). https://doi.org/10.1162/isal_a_00392

11. The Mathworks: MATLAB helppage. https://uk.mathworks.com/help/index.

html (link last followed on July 16, 2021)
12. Weyland, M.S., Flumini, D., Schneider, J.J., Füchslin, R.M.: A compiler framework
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