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COMPARING RISK ADJUSTED PREMIUMS FROM THE REINSURANCE
POINT OF VIEW

BY

JOAO MANUEL ANDRADE E SILVA AND MARIA DE LOURDES CENTENO '

ISEG, Technical University of Lisbon, Portugal

ABSTRACT

In this paper we compare, from the point of view of reinsurance, the several
risk adjusted premium calculation principles considered in Wang (1996b).
We conclude that, with the exception of the proportional hazard (PH)
premium calculation principle, all the others behave in a way similar to the
expected value principle. We prove that the stop loss reinsurance premium
when calculated using the PH premium principle gives a higher premium
than any of the other transforms, provided that the priority is big enough.
We observe a similar behaviour with respect to excess of loss reinsurance in
all the examples given.

We also study the behaviour of the adjustment coefficient, both from the
insurer's and the reinsurer's point of view as functions of the priority, when
the PH principle is used as opposed to the expected value principle.

KEYWORDS

PH-transform; risk adjusted premium; reinsurance; adjustment coefficient.

1 THE RISK ADJUSTED PREMIUM CALCULATION PRINCIPLES

A principle of premium calculation is a rule, say H, that assigns a
non-negative number to every risk defined by its probability distribution of
loss. It can be regarded as a functional from the class of distribution
functions into !ft+.

1 We wish to thank our colleague Gregorio Luis for all the collaboration given in the elaboration of
this paper.
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2 2 2 JOAO MANUEL ANDRADE E SILVA AND MARIA DE LOURDES CENTENO

We denote an insurance risk by a non-negative loss random variable Y.
Let Sy(t)=Pr{Y>t} be the survival function of Y. Given any survival
function Sy(t), the equation

defines another survival function Sz(t). The mapping np(Y):Sy(t)—>Sz{t)
is called the proportional hazard (PH) transform. Wang (1995) has proposed
a new premium calculation principle, based on PH-transforms, and defined
in the following way,

Definition: For a risk Y, with survival function Sy(t), the premium
calculated according to the PH-transform principle is defined as

7Tp(Y)= r
JO

(2)

where p is called the risk aversion index.
When p = 1 the pure premium is obtained, that is, n\(Y) = E(Y).
Wang (1996b) has proposed a more general class of premium calculation

principles, called risk adjusted premium principles by using other transforms
to distort the survival function, i.e.

SZ(t)=g[Sy(t)], (3)

where g is an increasing," continuous and concave function, with g(0) = 0
and g(\) = 1. The corresponding premium calculation principle is

H{Y)= T g[SY{t)}dt.
Jo

(4)

The PH-transform arises as a special case of (3) when g(x)=x^p.
The common point of risk adjusted premium calculation principles is that

they all consist of taking the expected value of a distorted distribution of the
original risk. They have many desirable properties, (see Wang (1996b)),
namely:
- E[Y]<H(Y)<max(Y) (positive loading and no ripoff);
- Pr{ Y = b} = \=>H(Y)=b {no unjustified risk loading);
- H(aY+b)=aH(Y)+b,a>0,b>0 (linearity);
- H(Y) preserves first stochastic dominance ': Y\ <\s, Y2=>H( Y\)<H(Y2);
- H(Y) preserves the order of dangerousness 2: Y\^DY2=$>H(Y\)<H(Y2):
- For any two non-negative random variable Y\ and Y2, regardless of

dependence, H(Yx + Y2)<H(Y\)+H{Y2) (sub-additivity);

1 Yi Xi.,, Yi if and only if SYl (t) < Sy2(t), Vt > 0.
2 Y\ is less dangerous than Yi (Yi -<o Yi) if E(Y\) < E(Y2) and there exists a unique crossing point

such that SY] (t) > Sy, (t), Vt < t.o and SYl (t) < SY, (t), Mt > t.n.
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COMPARING RISK ADJUSTED PREMIUMS FROM THE REINSURANCE POINT OF VIEW 2 2 3

- If y, and Y2 are comonotonic1 then H{YX + Y2)=H{YX)+H{Y2)
{additivity for comonotonic risks);

Definition: A layer h in excess of b of a risk Y, which we will denote
I{h,b+h\{Y)i ' s defined as the loss from the stop loss cover2

C 0 0<Y<b,
I{h,b+h](Y) = { Y-bb<Y<b+h, (5)

( h Y>b+h,

where b is called the retention or the priority and h is called the limit. We
shall use I(t,,b+h] instead of /(/,/,+/,](F) when only one risk is under
consideration.

As a layer is always an increasing function of the original risk, the last
property implies that, for any division O=yo<y\ <...<yn<...

i.e., layer premiums are additive.
Based on the concavity of g, Wang (1996b) shows that the relative

loading for an infinitesimal small layer at (t,t+dt],

(t)}
E(I(tJ+dt]) Sy(t)dt Sy(t) '

is an increasing function of t. 3

The minimum rate on line is an empirical reinsurance phenomenon. The
rate on line is the premium divided by the limit h, and most reinsurers
establish a minimum for this ratio, whatever is the priority. Based on this
idea Wang (1996b) considers as desirable that ^(0) = oo, in such a way that
E(I,j+h\) converges to zero faster than //(/M+/,]) when t goes to infinity. This
will be clarified in the next section.

Wang (1996b) gives some examples of the risk adjusted premium
principles, by specifying different functions g, namely:

Y\ and Y2 are comonotonic if there exists a risk Y3 and weakly increasing functions f\ and /2 such
thatYi = / 1 ( K , ) a n d y 2 = /2(K!)-
As in this paper we are dealing with reinsurance, we follow the most common terminology for excess
of loss and stop loss reinsurance, i.e. stop loss is an aggregate type of cover while excess of loss
stands for individual claim amounts, see for instance Daykin, Pentikainen and Pesonen (1994) and
Gerathewohl (1980).
Let u = Sy(t) and let us choose two points t\ and t2 such that 0 < ij < t2. As Sy(t) is a decreasing
function of (then «, = Sy{ti) > SY{h) = u2- But «2 can be written as a convex linear combination
of the points 0 and u\ with weights equal to («i — «2)/«i and u^/ui respectively, from which it
follows from g((i) = 0 and the concavity of g that g(u2) > (u2/ui)g(ui), this is
g[Sy(t2)]/Sy(t2) > g[Sy(ti)]/Sy-(*i), which proves that <j>(t) is an increasing function of /.
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2 2 4 JOAO MANUEL ANDRADE E SILVA AND MARIA DE LOURDES CENTENO

PH-transform principle (PH) g(x) = x1/p, p > 1, (g'(O) = oo);
Dual power function principle (DP) g(x) = 1 - (1 -x)a, a > 1, (g'(0) = a
Denneberg's absolute deviation principle (AD)

.5

Gini principle (GP) g(x) = (l+a)x-ax2,0<a<\,(gl{0) =
Square-root function principle (SR)

Exponential function principle (E)

Logarithmic function principle (L)

As we have already mentioned, Wang (1996b) has considered as desirable
that g'(0) = oo, which, among the functions considered, is only true for the
PH transform.

2 APPLYING THE RISK ADJUSTED PREMIUM PRINCIPLES TO REINSURANCE

These premium calculation principles seem to have all the nice properties we
could think about. This is particularly important in relation to reinsurance.
In this section we shall compare these premium principles, for some
examples, as functions of the retention, for different forms of reinsurance.

2.1 Quota-share reinsurance

Consider a risk for which the aggregate claim amount in some fixed time
interval is denoted by a random variable Y with distribution function Fy(.)
and survival function SV(.).

Let a be, for quota-share reinsurance, the insurer retention level. As the
risk adjusted premiums are scale invariant, the reinsurance premium is in
this case (l-a)H(Y), where H(Y) is the premium that should be charged if
the whole risk was ceded. This is exactly what happens in practice for
proportional reinsurance.
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COMPARING RISK ADJUSTED PREMIUMS FROM THE REINSURANCE POINT OF VIEW 2 2 5

2.2 Stop Loss

Let us consider a stop loss contract, such that the cedent retains min( Y, M)
of risk Y, and reinsures max(0, Y—M), which is the same as /(A/)OO)- The
distribution function of the ceded part is then F^(t)=FY(t+M) and the
corresponding survival function S^f(t) — SY(t+M), both for t>0. Denoting
by P(M) the reinsurer's premium with respect to this contract, we have that,
if a risk adjusted premium calculation principle is used,

g[SY{t+M)]dt= g[Sr(t)]dt (8)
JM

Let ip(M) = P{M)/E{I{Moo)) and let <f>(M) be denned as in (7), i.e.
<t>(M)=g[SY(M)]/SY(M). Note that as P'(M) = -g[SY(M)} and
E'(I(MOO)) = —SY{M) and using L'Hospital's rule we can say that

lim ip(M)= lim <j)(M)=g'(0). (9)
M—>oo M—>ac

Hence if the PH-transform is applied we can say that

lim j>{M) = lim f(M)
 = 0 0 . (10)

Condition (9) clearly shows why it is desirable g'(O) to be infinity. Although
both P(M) and E(I(Moc)) converge to zero as M goes to infinity, the later will
go faster when g/(0) = oo.

If the aggregate claim amount is limited, i.e. if there exists a finite t\ for
which Sy(ti)=O, then the limit in (10) should be substituted by the limit
when M—>t\ which is still infinity.

When the PH-transform is applied, the stop loss premium is particularly
easy to compute for some distributions as we will see in the next section.

2.2.1 The stop loss premium when the PH premium calculation principle is used

1. If Y is exponential distributed with mean 1/c, i.e. if ,SY(?)=e~c' for t>0,
then:

P(M)=^M. (11)

2. If Y is Pareto distributed with parameters (a,(3), i.e. if SY(t) = (-^\ , for
/>0, then V '

^ ( ^ (.2)
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2 2 6 JOAO MANUEL ANDRADE E SILVA AND MARIA DE LOURDES CENTENO

3. If Fhas a Weibull distribution with parameters (c,r), i.e. if Sy(?)
for ?>0, then

where J(a,y) denotes the incomplete gamma function, i.e.

4. If 7has a Burr distribution with parameters (a,/3,r), i.e. if SY(0
for t>0, then

where 5 (a, 6, j>) denotes the incomplete Beta function, i.e.

For these distributions it is easy to deduce P{M) because these distributions
are closed under the PH-transform. For some other distributions we have to
use numerical techniques to calculate P(M).

If instead of an unlimited cover, only a limited layer, h in excess of M, of
the aggregate claim amounts is covered by the stop loss treaty, then the
reinsurance premium is

W(M,M+h])= / g[Sr(t)]dt=P(M)-P(M+h).
JM

2.2.2 Comparing different risk adjusted premium principles

We are interested in comparing the stop loss premium when different
transforms are applied. Assuming that the total premium for an entire risk is
fixed, we will use various risk adjusted premium functionals to allocate the
total premiums to layers.

Let g\ and g2 be two continuous, increasing and concave functions
denned in [0,1], with gi(0)=g2(0)=0 and g\(\)=gi{\) = \. Let us assume
that

/ gl[SY(t)]dt= g2[SY(t)]dt, (15)
Jo Jo
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COMPARING RISK ADJUSTED PREMIUMS FROM THE REINSURANCE POINT OF VIEW 2 2 7

i.e. that the reinsurance premium for full coverage is the same for the two
principles. g\(x) has to cross gi{x) at least once for XG(0 ,1) , otherwise (15)
could not hold. Let U be a random variable with survival function g\ [SY{t)]
and Vanother random variable with survival function g^\Sy(t)\- If g\ (x) a n d
g2(x) cross exactly once in (0, 1) and if g/,(0)>g/

2(0) we can say that Fis less
dangerous than U. As in general the order in dangerousness implies stop loss
order ' (see e.g. Wang (1996a) or Kaas, Van Heerwaarden and Goovaerts
(1994)) we can conclude, under the above conditions, that the stop loss
premium is greater, for all the values of the retention limit, using transform
g\ than transform gi- This together with the fact that, among the transforms
considered in section 2, the PH-transform is the only one for which
g'(0) = oo, has the obvious implication: if g\ is the PH-transform and g2 any
of the other transforms, if condition (15) holds and if g\ and g2 only cross
once, then the PH principle gives a higher stop loss premium than the
premium based on transform gj, for all the values of the retention limit M.
When g\ and g2 cross more than once we can still say, attending to (9) that
there is an M>0 from where onwards the stop loss premium using gi is
greater than when g2 is used. This implies that, in general, the PH premium
calculation principle, gives a higher premium than when any of the other
transforms is used, provided that the retention is big enough.

We have calculated the stop loss premiums for the different principles
considered in section 2, for two loss distributions: the Pareto (2,1) truncated
at 1000 and the exponential with parameter 1 truncated at the point 8.33.
The last value was chosen in such a way that both have the same expected
value, p was chosen equal to 1.15.

Truncated Pareto loss distribution

Table 1 shows the values of a (see the premium calculation principles in
section 1) for the different risk adjusted premium principles, as well as for the
expected value principle, calculated in such a way that the premium for full
coverage is the same and equal to J^\SY{t))X^pdt, with p=\.\5.

Figure 1 shows P{M), as function of the retention limit M, when the
several risk adjusted premium calculation principles are used, as well as for
the expected value principle. The curves between the expected value principle
and the PH principle curves are ordered by increasing order of the premiums
for every M greater than 0,4, what is to say according to the order of
magnitude of g'(0) (1 +a for the expected value principle).

As we have already seen, if two functions g\ and g2, with g\(0)>g'2(0)
cross exactly once then, P\(M)>P2{M), for all M. This is the case, in the
example, for the PH, the square root, the exponential and the logarithmic

V is smaller than V in stop loss order (V •<„, U) if and only if /a°° Sv(t)dt < / " Sv(t)dt, Vz > 0.
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228 JOAO MANUEL ANDRADE E SILVA AND MARIA DE LOURDES CENTENO

LOADING COEFFICIENTS FOR p -1.15; STOP LOSS REINSURANCE; TRUNC. PARETO DISTRIBUTION.
(ff'(O) = 00 for the PH principle)

Principle g'W

EV

AD

DP

Gini

E

L

SR

0.343105

0.414264

1.480544

0.515115

0.949823

1.371120

4.157265

a = ) 1.343105

1.414264

1.480544

1.515115

1.548985

1.588116

1.635481

FIGURE 1: Stop loss reinsurance - truncated Pareto distribution

transforms, which cross all the others exactly once. The conclusion is simple:
they are all very similar, with one singularity: the PH-transforms gives much
higher premiums for not very small values of the retention.

Truncated exponential loss distribution

Table 2 and Figure 2 are in all similar to Table 1 and Figure 1, respectively,
but using the truncated exponential distribution function. The ordering of
the premiums, between the expected value principle and the PH principle, for
M> 0.9125 is the same as for the Pareto distribution, because the order of
g'(O) was the same.
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COMPARING RISK ADJUSTED PREMIUMS FROM THE REINSURANCE POINT OF VIEW 2 2 9

TABLE 2

LOADING COEF. FOR p = I.IS: STOP LOSS REINSURANCE; TRUNC. EXPONENTIAL DISTRIBUTION

Principle

EV

AD

DP

Gini

E

L

SR

0.148521

0.214432

1.248052

0.297496

0.579275

0.751445

2.020900

(1 + a = ) 1.148521

1.214432

1.248052

1.297496

1.317446

1.340810

1.369037

FIGURE 2: Stop loss reinsurance - truncated exponential distribution

Figure 3 shows P(M) when the PH-transform principle and the expected
value principle are used, for the truncated exponential and Pareto loss
functions. As it is natural the Pareto loss distribution implies a higher
premium than the exponential distribution, for the same priority. The same
happens for the other transforms, but the difference is higher when the PH
premium principle is applied.

available at https://www.cambridge.org/core/terms. https://doi.org/10.2143/AST.28.2.519067
Downloaded from https://www.cambridge.org/core. IP address: 79.168.251.84, on 01 Oct 2017 at 10:09:32, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.2143/AST.28.2.519067
https://www.cambridge.org/core


230 JOAO MANUEL ANDRADE E SILVA AND MARIA DE LOURDES CENTENO

-Pareto-PH Pareto-EV Expon-PH Expon-EV7]

FIGURE 3: Stop loss reinsurance - PH-principle; Pareto versus exponential

2.2.3 Excess of Loss

We assume that Y has a compound distribution, so that

/=0

where Xo=O,{Xj}j=l2 N is a sequence of i.i.d. non-negative random
variables, denoting the individual claim sizes, with common distribution G
independent of the number of claims TV which is a counting random variable.
Let Fbe the distribution function of Y. We shall consider the case where TV is
either a Poisson, or a negative binomial random variable. Let us consider an
excess of loss arrangement, such that the aggregate ceded claims are
^^0max(0,X;—M), a n d the aggregate retained claims are ^^0min(X,,M).

To obtain in this case P(M) we have to calculate first, using numerical
techniques, the survival compound function, in second place to distort it and
finally to calculate the mean with respect to the distorted distribution. This
procedure is very time consuming, specially for very skewed claim amounts,
as for the Pareto (2,1), even when truncated (in a big value).
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COMPARING RISK ADJUSTED PREMIUMS FROM THE REINSURANCE POINT OF VIEW 2 3 1

For the calculations we have used Panjer's algorithm, after discretising the
individual claim amount distribution, by matching the first moment, in steps
of 1/30, for the truncated Pareto, and 0.0025 for the exponential case. The
survival functions were calculated until they reached the value 10~9.

Table 3 gives the coefficient a for each premium calculated in such a way
that the premiums are equal to the PH premium for the retention limit M =
0, with p=\.\5, for a compound Poisson distribution with A=l and
individual claim amounts Pareto distributed with parameters (2,1) truncated
at 1000. Figure 4 shows the reinsurance risk adjusted premiums, as well as
the reinsurance premium calculated according to the expected value
principle.

TABLE 3

LOADING COEFFICIENTS FOR P = i.ir,: XL-RF:INSURANCF.; POISSON-TRUNCATED PARETO

Principle a #' (0)

EV 0.380533 (1 + a = ) 1.380533

AD 0.391033 1.391033

DP 1.465864 1.465864

Q 0.494443 1.494443

E 0.910526 1.523415

L 1.293763 1.558387

SR 3.856743 1.601901

M
Figure 4: XL reinsurance: Poisson claim numbers and trunc. Pareto claim amounts.
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Although we are not able to take any conclusions in theoretical terms, we
can say from all the cases that we have considered that the behaviour is very
similar to the stop loss case. The order of magnitude of the risk adjusted
premiums for big enough values of the retention is the same as the order of
the ^(0)'s.

When the individual claims are truncated exponential instead of
truncated Pareto, with the same expected value, the relative behaviour of
the risk adjusted premiums is similar, but the figures are lower in the
exponential case, as they should be.

When we use a different Poisson parameter the conclusions are all
similar.

Table 4 gives the reinsurance premiums calculated according to the PH
transform principle and the ratio rp(M), both for the truncated Pareto and
truncated exponential individual claim amounts.

The relative behaviour of the risk adjusted premiums is similar when a
compound negative binomial distribution is used for the aggregate claim
amounts.

Figure 5 shows the PH premium as function of the retention for the
compound Poisson with A = l and for the compound negative binomial with
mean equal to 1 and variance equal to 10, in the Pareto case. An interesting
feature is that for not small values of the retention the premiums are almost
identical for both the compound Poisson and the compound negative
binomial.

TABLE 4

XL-REINSURANCE; COMPOUND POISSON DISTRIBUTION

M

0
1

2
3
4
5
6
7
8
9
10
15
20
25
30

Trunc.
PH

1.377767
0.804207
0.590210
0.474030
0.399763
0.347647
0.308790
0.278550
0.254257
0.234253
0.217457
0.161810
0.130073
0.109260
0.094427

Pareto claim amounts

V-(M)

1.380524
1.614856
1.781285
1.911361
2.018928
2.111116
2.192076

2.264447
2.330012
2.390040
2.445466
2.673750
2.849837
2.994291
3.117334

Trunc. exponential claim amounts

PH

1.208096
0.489168
0.200338
0.081743
0.032626
0.012341
0.004122

0.000993
0.000053

4,(M)

1.210526
1.336667
1.499517
1.693323
1.915186
2.166502
2.457970
2.833274
3.600732
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E NegBin -Poisson

FIGURE 5: XL reinsurance; Poisson versus negative binomial claim numbers; trunc. Pareto

Figure 6 shows the ratio V (PH premium divided by the expected value)
as a function of the Poisson parameter A and truncated Pareto claim
amounts, for three retention levels: 0, 20 and 100. The calculations were
performed using a precision of 10~6 in Panjer's algorithm.

3 THE ADJUSTMENT COEFFICIENT AS FUNCTION OF THE RETENTION

Let 9 be the retention level ', taking values in the interval from 0 to L, with L
= 1 for quota-share reinsurance and L=oo for stop loss or excess of loss
reinsurance. Let Y(9) be the aggregate net (of reinsurance) claims and P(9)
the reinsurance premium. Y and P denote the aggregate gross claims and the
gross (but net of expenses) premium, respectively.

Let C{9) = P{6) - E[Y - Y{9)} be the loading of the reinsurance premium.
The adjustment coefficient of the retained risk is, for each 9, as it is well

known, the unique positive root R=R(9), when it exists, of

E[exp[R[Y(6)-(P-P(6))]]\ = (16)

The adjustment coefficient of the reinsurer is, for each 9, the unique positive
root R=R(9) of

E[exp[R[Y-Y(O)-P(0)]]] = (17)
1 We shall denote by a the quota-share retention level, and by M the excess of loss or stop loss

retention limit.
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10 80 90 100

-M=100 - M=20 -M=0]

FIGURE 6: tji as function of A

Waters (1983) studied the behaviour of the adjustment coefficient of the
retained risk, for quota-share, excess of loss and stop loss reinsurance.

In all the examples considered we have chosen P in such a way that
P=0.95P(0). In this way the insurer will not make a profit with full
coverage.

3.1 Quota-share

Under very weak assumptions Waters (1983) proved that the adjustment
coefficient of the retained risk R(a) is a unimodal function of a attaining its
maximum value at a = 1 if and only if

' :0. (18)

As we have already mentioned P(a) — (l—a)P(O) = (\—a)H(Y) when a risk
adjusted premium is applied, which implies that

As it is easy to verify the risk adjusted premiums satisfy all the assumptions
made by Waters (1983) if we consider that

H(Y)>P, (20)

(i.e. that the ceding insurer does not make an expected profit by means of
reinsurance) in which case we can say that his result applies.
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When we consider the adjustment coefficient from the reinsurers point of
view, i.e. the unique positive root R=R(a) of

E[exp[R(l-a)(Y-P(O))]]=l, (21)

the adjustment coefficient is such that R(a) — R(0)/(l—a), which is an
increasing function of a, going to infinity when a goes to 1.

Although a bit puzzling this is a good point in favour of both the
adjustment coefficient and of the risk adjusted premiums: let tp{u) be the
probability of ultimate ruin associated to (Y, P(0)), which is equal to the
probability of ultimate ruin associated to {(\-a)Y,P(a)), and an initial
reserve of (1— a)u (note that for risk adjusted premium principles
P(a) — (\ — a)P(0)). This is exactly what happens with the upper bound
provided by Lundberg's inequality so far as the reinsurance premium
calculation principle used is scale invariant, which is the case for the risk
adjusted premiums (this is also the case for the expected value and the
standard deviation principles). This implies that it does not make sense to
maximize the reinsurer's adjustment coefficient, by itself, when quota-share
reinsurance is considered. Note that if the insurer's adjustment coefficient
goes to zero as the expected profit goes to zero, the reinsurer's adjustment
coefficient goes to infinity as the expected profit goes to zero. The reinsurer
share should only depend on the size of the company (through the reserve)
and on the risk aversion index (through P(0)).

3.2 Stop loss

When the expected value principle is applied, it is not possible to prove, in
general, that the insurer's adjustment coefficient is unimodal with the
retention. The same happens when the risk adjusted premiums are applied.
We were not able, however, of finding a counterexample.

Figure 7 shows the insurer's adjustment coefficient, assuming that the
aggregate claim amounts are either truncated exponential or truncated
Pareto as in section 2.2.2, and the reinsurer premium is calculated according
to the expected value or the PH principle. In the exponential case the
adjustment coefficient attaints its maximum value at 0.805 and 5.27, when
the reinsurance premium is calculated according to the expected value and
the PH principle respectively. In the Pareto case the respective values are 0.5
and 4.0.

The most interesting feature is that when the expected value principle is
applied the adjustment coefficient for the Pareto case is greater than for the
exponential case, but the order is reversed if the PH principle is applied. This
is quite a point in favour of the PH principle and is due to the fact that the
PH principle differentiates much better the most dangerous risks than the
expected value principle.
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M

Pareto;EV Expon;EV -Expon;PH -Pareto;PH

FIGURE 7: Stop loss reinsurance: the insurer's adjustment coefficient

Figure 8 shows the reinsurer's adjustment coefficient for the same
examples. This function does not obey to a specific pattern. When the
premium used is calculated according to the PH principle it is a decreasing
function of M for very skewed distributions, unless p takes extremely high
values, where it increases.

FIGURE 8: Stop loss reinsurance: the reinsurer's adjustment coefficient
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In the exponential case it increases with M, going to infinity as M goes to
the truncation point, both for the expected value and PH principle. Note
that when the random variable is a non truncated exponential and the
expected value principle is applied, the reinsurer's adjustment coefficient is
independent of M.

3.3 Excess of Loss

When the expected value principle is applied to calculate the reinsurer's
premium and the aggregate claims are compound Poisson, the insurer's
adjustment coefficient is, as it is well known, a unimodal function of the
retention. We were not able of proving a similar result when the PH principle
applies, but we could not find a counterexample either.

The insurer's and the reinsurer's adjustment coefficients, behave in a very
similar way to the stop loss case, when A is 1. Figure 9 is equivalent to Figure
7, but for excess of loss reinsurance.
In the truncated exponential case, when the premium principle is the
expected value the maximiser of the adjustment coefficient is 0.69 and 3.73
when the principle used is the PH premium principle. For the Pareto case the
corresponding values are 0.63 and 3.37 respectively.

Figure 10 shows the insurer's adjustment coefficient when the aggregate
claims are compound negative binomial, as opposed to the compound
Poisson, with individual claim amounts truncated Pareto (2,1) when the
premium used is calculated according to the PH principle. The expected

0.2

0.1

Pareto;EV Expon;EV - Expon;PH -Pareto;PH

FIGURE 9: XL reinsurance: the insurer's adjustment coefficient
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-Poisson Neg Bin; var=2 Neg Bin; var=1O

FIGURE 10: XL reinsurance: the insurer's adjustment coefficient; compound negative binomia

value of the claim numbers is 1, and the variance is in one case 2 and in the
other 10. The conclusion is expected, i.e. for the same priority the retained
adjustment coefficient increases as the variance decreases.

4 CONCLUSIONS

The main conclusion to be taken when applying risk adjustment premium
principles to non-proportional reinsurance is that with the exception of the
proportional hazard (PH) premium calculation principle, all the other
behave in a way similar to the expected value principle. Hence although all
of the risk adjusted premium principles considered in the paper share
common and very interesting properties, just the PH premium principle
provides, from the practical point of view, significant differences when
compared to the classical expected value principle. This is due to the fact
that it is the only principle, among the principles studied, for which
g-'(0) = oo. Using this property we have also proved that the stop loss
reinsurance premium when calculated using the PH premium principle gives
a higher premium than any of the other transforms, provided that the
priority is big enough.

Also, we have mentioned in section 3, when using the Pareto distribution
versus the exponential distribution for modelling the claim size, the PH
principle discriminates much better the most dangerous risks than the
expected value principle. We obtain a higher value for the insurer's
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adjustment coefficient for the Pareto case when the reinsurance premium is
calculated according to the expected value principle, but the order is reversed
if the PH principle is applied.

Although the examples presented in the paper assumed that p=1.15, the
main conclusions are independent of this particular value. The difference
between the PH principle and the expected value principle increase with the
value of the risk aversion index p.
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