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Abstract

We discuss the application of the proportional hazard premium calculation
principle in the parametric and non parametric framework.
In the parametric approach, we propose a method to calculate the premium

of a compound risk when the severity distribution is subexponential.
In the non parametric approach, the use of the empirical distribution to cal-

culate the premium using the proportional hazard principle leads to a system-
atic underestimation of the premium. After studying the bias of the premium
calculated using this non-parametric approach we use the bootstrap technique
with subsampling to reduce it.
Keywords: Proportional hazard premium principle; subexponential dis-

tributions; bootstrap; subsampling;

1 Introduction

As it is well known the proportional hazard premium principle (PH premium princi-
ple), introduced by Wang (1995), satisfies properties which make of it a very attrac-
tive premium from the theoretical point of view, see e.g. Wang (1996) and Andrade
e Silva and Centeno (1998). However its use depends on the complete knowledge of
the distribution of the aggregate claims amount. In practical terms this means that
one must fit a distribution to the data set or use the empirical distribution function.
When the aggregate claims amount follows a compound distribution the calculation
of the PH premium based on the parametric approach can raise some problems. This
will be discussed in the following section.
The non-parametric approach is more appealing, from the practical point of view,

but can lead to a significative underestimation of the premium. In subsection 3.1
we calculate the bias of the premium based on the empirical distribution for some
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distributions, namely the exponential, Pareto and uniform. We also study the rate
of convergency of the bias in the exponential case. In subsection 3.2 we show how
to use the bootstrap technique with subsampling to reduce the bias of the estimator
of the premium based on the empirical distribution. We also perform two simulation
studies to give some insight to this technique.

2 Applying the PH transform to compound distri-
butions in the parametric model

Let Y, the aggregate claims amount, be a nonnegative random variable, with distrib-
ution function F (y). Let S(y) = 1−F (y) be the survival function. The PH premium
principle assigns to the distribution F (y) the premium

πρ =

Z ∞

0

(S(y))1/ρdy, (1)

where ρ, with ρ ≥ 1, is the risk aversion index .
When using the collective risk model, Y is equal to X1 + ... + XN , where N is

the number of claims occurred in a given period and {Xi}i=1,2,... are the individual
claims amounts which are assumed to be nonnegative i.i.d. random variables and in-
dependent of N . In this case Y has a compound distribution and the company often
estimates claim frequency and claim severity separately. Various numerical tech-
niques are available to calculate the compound distribution, being Panjer’s recursion
formula the most well known. When using the recursion formula we will have to stop
somewhere the calculations. When the individual claims amount has distribution G
with unlimited support, i.e. G(x) < 1, for all x > 0, and it is very skewed, the choice
of the value where to stop the calculations to obtain a reasonable estimate of the
premium is a critical aspect of the parametric model. When X follows a heavy tail
distribution

R∞
t
(S(y))1/ρdy can be of a significative size even for large values of t. In

this case, when the probability generating function of N is analytic in the neighbour-
hood of 1 (which happens both for the Poisson and the negative binomial case) and
G is subexponential then (see Embrechts et al (1997), pp. 45-46)

1− F (x) ∼ E[N ](1−G(x)), x −→∞. (2)

Hence for heavy tail severity distributions we will estimate the premium by

π∗ρ =
Z t

0

(S∗(y))1/ρdy + (E[N ])1/ρ
Z ∞

t

(1−G(y))1/ρdy, (3)

where S∗(y) is the approximation to S(y) obtained by Panjer’s recursion formula, and
t is a suitable high value.

Example 1 Suppose that an actuary has arrived to the following estimates for a risk:
the number of claims greater than a given observation point d = $100K is Poisson
distributed with mean λd = 6 and the size of each claim greater than d is Pareto with
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parameter α = 1.647. Let us consider an excess of loss reinsurance treaty. For a layer
l xsm, with m ≥ d and l ≤ +∞, the aggregate claims amount are compound Poisson
with expected number of claims λ =(d/m)αλd and severity distribution

G(x) =

½
1− ¡ m

m+x

¢α
if 0 ≤ x < l

1 if x ≥ l.
(4)

Using 1/ρ = 0.9025, Table 1 shows the PH transform premium, as percentage of
the subject earned premium, SEP = $10, 000K, associate to the following layers:

1. $400K xs $100K

2. $500K xs $500K

3. $900K xs $100K

4. the excess over $1, 000K

This example for the limited layers was considered by Wang (1998). For the
calculation of the premium of the unlimited layer we have used (3) with t = $105K,
for which the difference between the aggregate survival function S∗(t) and λ(1−G(t)),
is 2.3 × 10−7. The step used in the arithmetization of the severity distribution to
perform the recursion was h = $1K.

Table 1: PH- transform premiums

Layer l xs m Pure Premium π∗ρ
as percentage of SEP as percentage of SEP

$400K xs $100K 6.000% 6.384%
$500K xs $500K 1.183% 1.408%
$900K xs $100K 7.183% 7.742%
xs $1, 000K 2.090% 3.388%

The reason to chose such a high value for t in formula (3) is related to the very
small value of α. If instead of $105K we had used $104K for t, the result of applying
formula (3) with ρ = 1 would be 2.086% of SEP , compared to a theoretical value of
2.090%. Using t = $105K the two terms in the right hand side of (3) are 1.9848%
and 0.1055% for ρ = 1 and 3.0298% and 0.3580% for 1/ρ = 0.9025. Note that the
relative weight of the second term increases with ρ and is far from negligible in spite
of the high values of t.
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3 Applying the PH transform to the empirical dis-
tribution

3.1 The bias of the premium

Let Fn(y) be the empirical distribution function of Y based on a random sample of
size n, (Y1, ...Yn), let Sn(y) be the corresponding empirical survival function and

bπρ = Z ∞

0

(Sn(y))
1/ρdy, (5)

the premium estimator. Although Sn(y) is an unbiased estimator of S(y), bπρ given
by (5) is a biased estimator of πρ, since

E[bπρ] = Z ∞

0

E
h
(Sn(y))

1/ρ
i
dy ≤

Z ∞

0

[E (Sn(y))]
1/ρ dy = πρ

by Jensen inequality, with the inequality being strict unless ρ = 1.
Let Yk:n be the k-th order statistic in a sample of size n. Then

Sn(y) =

 1 y < Y1:n
(n− k)/n, Yk:n ≤ y < Yk+1:n,

0 y ≥ Yn:n,
k = 1, ..., n− 1

which implies that

bπρ = n−1X
k=0

µ
n− k

n

¶1/ρ
(Yk+1:n − Yk:n) , (6)

where Y0:n ≡ 0.
Let Fk:n(y) be the distribution function of the k-th order statistic, i.e. Fk:n(y) =

Pr{Yk:n ≤ y}. Given that

Fk:n(y) =
nX

r=k

³n
r

´
(F (y))r (1− F (y))n−r,

then
1− Fk:n(y) = 1− Fk+1:n(y)−

³n
k

´
(F (y))k (1− F (y))n−k

and integrating we obtain

E[Yk+1:n − Yk:n] =

Z ∞

0

³n
k

´
(F (y))k (1− F (y))n−kdy. (7)

Then, using (6) and (7) we get

E[bπρ] = n−1X
k=0

¡
n−k
n

¢1/ρ ¡n
k

¢ Z ∞

0

(F (y))k (S(y))n−kdy

=
nX

k=1

¡
n−k+1

n

¢1/ρ ¡ n
k−1
¢ Z ∞

0

(F (y))k−1 (S(y))n−k+1dy

(8)
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which is, when F is absolutely continuous for x > 0, equivalent to

E[bπρ] = nX
k=1

µ
n− k + 1

n

¶1/ρµ
n

k − 1
¶Z 1

0

(1− x)k−1 xn−k+1
1

f [S−1(x)]
dx, (9)

where f(x) = F 0(x).
Expressions (8) and (9) can be used to calculate the bias of bπρ

B(bπρ) = E[bπρ]− πρ.

For some distributions (not in the compound case) the bias is easily calculated, as it
is the case when Y is exponential, Pareto or uniform, as can be seen in the following
examples.

Example 2 Let Y be exponential distributed, i.e. S(y) = exp(−θy), y > 0 (θ > 0).
In this case f [S−1(x)] = θx, and using (9) we get, after some calculations,

E[bπρ] = n−1/ρθ−1
nX

k=1

k1/ρ−1

and

B(bπρ) = Ãn−1/ρ nX
k=1

k1/ρ−1 − ρ

!
θ−1. (10)

Example 3 Let Y be Pareto distributed, i.e. S(y) =
³

β
β+y

´α
, y > 0 (α, β > 0). In

this case f [S−1(x)] = αβ−1x1+1/α, and using (9) we get,

E[bπρ] = βα−1n−1/ρn!
nX

k=1

k1/ρ
Γ(k − 1/α)

k!Γ(n+ 1− 1/α)

and

B(bπρ) = β

"
n!

αn1/ρ

nX
k=1

k1/ρ
Γ(k − 1/α)

k!Γ(n+ 1− 1/α) −
ρ

α− ρ

#
. (11)

Example 4 When Y is uniformly distributed in (0,1) we get

E[bπρ] = 1

(n+ 1)n1/ρ

nX
k=1

k1/ρ

and

B(bπρ) = 1

(n+ 1)n1/ρ

nX
k=1

k1/ρ − ρ

ρ+ 1
.
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For the exponential distribution it is possible to relate the order of the bias with
the sample size, as stated in the result that follows. We were not able of developing
similar results for other distributions, but we are strongly convinced that the order
of the bias is smaller for the uniform and bigger for the Pareto.

Result. When Y follows an exponential distribution |B(bπρ)| converges to zero at the
same rate as n−1/ρ.

Proof. Noticing that

ρ = n−1/ρ
nX

k=1

Z 1

0

(k − x)1/ρ−1dx,

and using (10) we have

|B(bπρ)| = θ−1n−1/ρ
nX

k=1

Z 1

0

£
(k − x)1/ρ−1 − k1/ρ−1

¤
dx.

As (k − x)1/ρ−1 is an increasing function of x for k ≥ 1 and 0 < x < 1, we have
that

nX
k=1

Z 1

0

£
(k − x)1/ρ−1 − k1/ρ−1

¤
dx ≤

Z 1

0

£
(1− x)1/ρ−1 − 1¤ dx (12)

+
nX

k=2

£
(k − 1)1/ρ−1 − k1/ρ−1

¤
= ρ− n1/ρ−1 ≤ ρ.

On the other hand as
R 1
0

£
(k − x)1/ρ−1 − k1/ρ−1

¤
dx is strictly positive we can con-

clude that left hand side of (12) converges to a positive value A as n goes to infinity.
Consequently

lim
n−→∞

|B(bπρ)| = θ−1A lim
n−→∞

n−1/ρ.

3.2 Correcting the bias via bootstrapping

As we have seen the distortion of the empirical distribution leads to an underestima-
tion of the premiums. We use the bootstrap technique, see e.g. Efron and Tibshirani
(1993), to correct, at least partially, the bias of that estimator.
The bootstrap technique consists, as it is well known, on the resampling of the

original data set. The bootstrap estimator of the bias of bπρ, is
\B(bπρ) = bπ∗ρ − bπρ

with

bπ∗ρ = 1

M

MX
b=1

bπ∗bρ
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Figure 1: B
³bbπρ´ as function of ń/n

where M is the number of bootstrap samples and bπ∗bρ is calculated using the b-th
bootstrap sample. Hence the bootstrap estimator of the premium πρ is

bbπρ = bπρ −\B(bπρ). (13)

Usually the resampling is made with replacement and using bootstrap samples of size
n (i.e. the same size as the original sample). However in this case, as B(bπρ) is always
negative, we can improve, in principle, the results by using bootstrap samples of size
n0 < n. Figure 1 shows how the bias of the corrected estimator given by (13) varies
with the sample size ń (measured as a percentage of n). The figure is representative:
it starts, when n0 = n, with a negative value for the mean of the observed bias of

the bootstrap premiums, which we denote B
³bbπρ´, than there is an optimal value of

n0 where B
³bbπρ´, is almost zero, and becomes positive when n0 is very small. The

question is how to choose n0, independently of the distribution.
To give some insight to the problem we performed two simulation studies.

Simulation 1 This case is based on two families of distributions, the Pareto and the
Gamma. In the Pareto case we have considered that the parameter α takes the value
2, 3 or 4, originating what we call Pareto2, Pareto3 and Pareto4 respectively. The
other parameter was chosen such that the distribution has mean equal to 1, i.e. we
have assumed that the survival function for the Paretoα is

Sα(x) =

µ
α− 1

x+ α− 1
¶α

, x > 0.
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For the gamma distribution we have kept the same mean and assumed that the
variance was equal to 1 (exponential) or 2. We have considered that the original
sample size is either 100, 500 or 1000. Tables 2 and 3 give the bootstrap results for
ρ = 1.2 and ρ = 1.15 respectively, with M = 2000 and using 2000 replicas.
As we have mentioned, the bias of the premium based on the empirical distribution

(column labelled B(bπρ), and calculated using expressions (8), (10) and (11), for the
gamma, exponential and Pareto distributions) can be of a considerable size, namely
for heavy tail distributions when n is small and ρ is high. For instance for the Pareto2,
with n = 100 and ρ = 1.2, the absolute value of the bias is 8.4% of the theoretical
premium. The average bias of the premiums based on the 2000 replicas (before the
bootstrap is performed), labelled B(bπρ), is in those cases still a bit far from B(bπρ),
but it was out of our computing facilities to consider more replicas in the simulation
study. The following 10 columns show the average bias for the bootstrap premiums.
The bootstrap with n0 = n, only corrects the bias partially, since after that correction
we still observe a negative bias in all the situations of our example. As we can see
from Tables 2 and 3, the pattern shown in Figure 1 is characteristic of the behaviour
of the bias as function of n0/n. The optimal proportion n0/n depends, of course, on
the distribution, on n and on ρ. As a rule n0/n should increase with n and decrease
with ρ. For instance, for ρ = 1.2, a bootstrap with a resampling of n0/n = 40%
performs, in average, better than the bootstrap with full resampling (and certainly
better than with no bootstrap), at least for the sample sizes considered in the study.
The last column of the tables, provides the average of the premiums if we have

used the maximum likelihood estimators of the parameters. For the Pareto2, the
figures are not presented because for a significative number of samples (20 for ρ = 1.2
and 11 for ρ = 1.15) we got a maximum likelihood estimate bα smaller than ρ. In some
other situations the estimate was very close to ρ, what would imply an extremely high
premium. For the Pareto3 and Pareto4 we didn’t get any sample with a maximum
likelihood estimate smaller than ρ, but we got values not very far from ρ, which explain
the positive values of the bias on those cases. The maximum likelihood performs well
(in association with the PH premium calculation principle) if the distribution does
not have a very heavy tail, or if the sample size is very big.
As a conclusion, and for values of ρ around 1.15 -1.2 we can say that use of the

bootstrap technique with a resampling proportion size of 40% of the original sample
size provides good results in general, but when we know that we are dealing with
heavy tail loss distributions, we could use a smaller resampling size.

Simulation 2 The goal of the second simulation study is to analyse the behaviour
of our procedures when the aggregate claims amount are generated according to a
compound Poisson distribution. For the individual claims amount we have considered
the three Pareto’s and the exponential distributions of the former example. The
expected number of claims was set at 1. As in the previous simulation study ρ = 1.2
and ρ = 1.15, M = 2000, we use 2000 replicas and n is equal to 100, 500 or 1000.
Tables 4 and 5 are similar to tables 2 and 3, with the exceptions of B(bπρ) and

ML, which are not considered now. Column labelled π∗ρ was obtained using (3), with
t equal to 10000, 926 and 297 for α equal to 2, 3 and 4 respectively, values for which
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the Pr{X > t} = 10−8. For the exponential case we only considered the first term of
(3), with t = 9000.
As expected with λ = 1 the premiums associated to the compound distribution

are greater than for the corresponding Pareto’s.
The results are very similar to the former case. We obtained the same behaviour

for the bias as a function of n0/n, and again we would recommend a resampling of
n0/n = 40%, but if we knew that we were dealing with heavy tail loss distributions,
we could use a smaller resampling size.
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Table 2: Bootstrap Results, ρ = 1.2

n Distribution πρ B(bπρ) B(bπρ) B
³bbπρ´ for ń/n equal to ML

100% 90% 80% 70% 60% 50% 40% 30% 20% 10%
Pareto2 1.5000 -0.1261 -0.1388 -0.1134 -0.1108 -0.1075 -0.1033 -0.0980 -0.0913 -0.0822 -0.0685 -0.0463 0.0004 –
Pareto3 1.3333 -0.0458 -0.0508 -0.0361 -0.0345 -0.0325 -0.0300 -0.0268 -0.0227 -0.0168 -0.0080 0.0069 0.0403 0.0492

100 Pareto4 1.2857 -0.0296 -0.0330 -0.0217 -0.0204 -0.0188 -0.0169 -0.0143 -0.0110 -0.0063 0.0008 0.0132 0.0418 0.0161
Gamma 1.2865 -0.0170 -0.0166 -0.0073 -0.0063 -0.0050 -0.0033 -0.0012 0.0018 0.0060 0.0126 0.0244 0.0529 -0.0012
Exponential 1.2000 -0.0098 -0.0112 -0.0056 -0.0049 -0.0041 -0.0031 -0.0018 0.0000 0.0025 0.0066 0.0139 0.0324 -0.0013
Pareto2 1.5000 -0.0743 -0.0838 -0.0687 -0.0670 -0.0650 -0.0625 -0.0593 -0.0552 -0.0497 -0.0416 -0.0279 0.0011 0.0452
Pareto3 1.3333 -0.0209 -0.0238 -0.0168 -0.0160 -0.0151 -0.0139 -0.0124 -0.0103 -0.0075 -0.0034 0.0040 0.0208 0.0069

500 Pareto4 1.2857 -0.0120 -0.0139 -0.0091 -0.0086 -0.0079 -0.0070 -0.0060 -0.0045 -0.0025 0.0006 0.0060 0.0190 0.0021
Gamma 1.2865 -0.0051 -0.0059 -0.0029 -0.0025 -0.0021 -0.0015 -0.0008 0.0002 0.0016 0.0039 0.0080 0.0188 -0.0014
Exponencial 1.2000 -0.0029 -0.0039 -0.0021 -0.0019 -0.0017 -0.0013 -0.0009 -0.0003 0.0005 0.0018 0.0042 0.0105 -0.0010
Pareto2 1.5000 -0.0590 -0.0602 -0.0482 -0.0468 -0.0452 -0.0432 -0.0406 -0.0372 -0.0327 -0.0259 -0.0150 0.0089 0.0224
Pareto3 1.3333 -0.0149 -0.0148 -0.0099 -0.0093 -0.0086 -0.0077 -0.0066 -0.0051 -0.0031 0.0000 0.0053 0.0177 0.0041

1000 Pareto4 1.2857 -0.0081 -0.0081 -0.0049 -0.0045 -0.0041 -0.0035 -0.0028 -0.0018 -0.0004 0.0018 0.0055 0.0146 0.0015
Gamma 1.2865 -0.0030 -0.0039 -0.0021 -0.0019 -0.0016 -0.0013 -0.0009 -0.0003 0.0006 0.0020 0.0046 0.0111 -0.0015
Exponential 1.2000 -0.0017 -0.0021 -0.0011 -0.0010 -0.0008 -0.0006 -0.0004 0.0000 0.0005 0.0013 0.0027 0.0066 -0.0006



Table 3: Bootstrap Results, ρ = 1.15

n Distribution πρ B(bπρ) B(bπρ) B
³bbπρ´ for ń/n equal to ML

100% 90% 80% 70% 60% 50% 40% 30% 20% 10%
Pareto2 1.3529 -0.0771 -0.0881 -0.0705 -0.0687 -0.0664 -0.0635 -0.0598 -0.0551 -0.0487 -0.0391 -0.0232 0.0106 –-
Pareto3 1.2432 -0.0293 -0.0337 -0.0235 -0.0223 -0.0209 -0.0192 -0.0169 -0.0140 -0.0099 -0.0036 0.0071 0.0314 0.0337

100 Pareto4 1.2105 -0.0193 -0.0223 -0.0143 -0.0134 -0.0123 -0.0110 -0.0092 -0.0068 -0.0035 0.0016 0.0105 0.0314 0.0121
Gamma 1.2137 -0.0115 -0.0112 -0.0046 -0.0038 -0.0029 -0.0018 -0.0002 0.0019 0.0049 0.0097 0.0182 0.0390 -0.0009
Exponential 1.1500 -0.0067 -0.0080 -0.0039 -0.0035 -0.0029 -0.0022 -0.0012 0.0000 0.0019 0.0048 0.0102 0.0238 -0.0012
Pareto2 1.3529 -0.0429 -0.0507 -0.0408 -0.0398 -0.0384 -0.0368 -0.0347 -0.0319 -0.0283 -0.0229 -0.0137 0.0062 0.0302
Pareto3 1.2432 -0.0127 -0.0152 -0.0105 -0.0100 -0.0094 -0.0086 -0.0076 -0.0062 -0.0043 -0.0015 0.0035 0.0151 0.0050

500 Pareto4 1.2105 -0.0074 -0.0091 -0.0059 -0.0055 -0.0051 -0.0045 -0.0038 -0.0028 -0.0015 0.0006 0.0043 0.0134 0.0014
Gamma 1.2137 -0.0033 -0.0042 -0.0022 -0.0019 -0.0016 -0.0012 -0.0007 -0.0001 0.0009 0.0025 0.0054 0.0130 -0.0013
Exponential 1.1500 -0.0019 -0.0028 -0.0016 -0.0015 -0.0013 -0.0011 -0.0008 -0.0004 0.0002 0.0011 0.0027 0.0072 -0.0010
Pareto2 1.3529 -0.0333 -0.0342 -0.0266 -0.0257 -0.0247 -0.0234 -0.0217 -0.0195 -0.0166 -0.0122 -0.0050 0.0110 0.0155
Pareto3 1.2432 -0.0088 -0.0088 -0.0056 -0.0053 -0.0048 -0.0043 -0.0035 -0.0026 -0.0012 0.0009 0.0044 0.0127 0.0031

1000 Pareto4 1.2105 -0.0049 -0.0050 -0.0029 -0.0027 -0.0024 -0.0020 -0.0015 -0.0009 0.0001 0.0015 0.0040 0.0102 0.0011
Gamma 1.2137 -0.0019 -0.0030 -0.0017 -0.0016 -0.0014 -0.0012 -0.0009 -0.0005 0.0001 0.0010 0.0028 0.0074 -0.0014
Exponential 1.1500 -0.0011 -0.0015 -0.0009 -0.0008 -0.0007 -0.0006 -0.0004 -0.0001 0.0002 0.0007 0.0017 0.0044 -0.0006



Table 4: Bootstrap Results for Compound Distributions, ρ = 1.2

n Severity π∗ρ B(bπρ) B
³bbπρ´ for ń/n equal to

Distribution 100% 90% 80% 70% 60% 50% 40% 30% 20% 10%
Pareto2 1.5498 -0.1493 -0.1236 -0.1207 -0.1172 -0.1129 -0.1076 -0.1006 -0.0910 -0.0763 -0.0527 -0.0021
Pareto3 1.3939 -0.0589 -0.0433 -0.0414 -0.0393 -0.0366 -0.0332 -0.0286 -0.0222 -0.0122 0.0047 0.0438

100 Pareto4 1.3515 -0.0401 -0.0276 -0.0261 -0.0244 -0.0222 -0.0194 -0.0156 -0.0103 -0.0018 0.0128 0.0477
Exponential 1.2822 -0.0180 -0.0103 -0.0093 -0.0082 -0.0068 -0.0051 -0.0026 0.0010 0.0068 0.0171 0.0436
Pareto2 1.5498 -0.0817 -0.0661 -0.0644 -0.0622 -0.0597 -0.0564 -0.0522 -0.0465 -0.0381 -0.0238 0.0065
Pareto3 1.3939 -0.0243 -0.0171 -0.0163 -0.0153 -0.0140 -0.0125 -0.0103 -0.0074 -0.0029 0.0051 0.0235

500 Pareto4 1.3515 -0.0145 -0.0094 -0.0088 -0.0081 -0.0072 -0.0061 -0.0045 -0.0023 0.0011 0.0072 0.0220
Exponencial 1.2822 -0.0049 -0.0025 -0.0022 -0.0019 -0.0014 -0.0009 -0.0001 0.0011 0.0029 0.0064 0.0153
Pareto2 1.5498 -0.0643 -0.0517 -0.0503 -0.0486 -0.0466 -0.0438 -0.0405 -0.0356 -0.0287 -0.0174 0.0070
Pareto3 1.3939 -0.0180 -0.0128 -0.0122 -0.0115 -0.0106 -0.0094 -0.0079 -0.0057 -0.0025 0.0031 0.0161

1000 Pareto4 1.3515 -0.0106 -0.0071 -0.0067 -0.0062 -0.0056 -0.0048 -0.0037 -0.0022 0.0001 0.0041 0.0140
Exponential 1.2822 -0.0034 -0.0019 -0.0018 -0.0016 -0.0013 -0.0010 -0.0005 0.0002 0.0012 0.0033 0.0086



Table 5: Bootstrap Results for Compound Distributions, ρ = 1.15

n Severity π∗ρ B(bπρ) B
³bbπρ´ for ń/n equal to

Distribution 100% 90% 80% 70% 60% 50% 40% 30% 20% 10%
Pareto2 1.3903 -0.0969 -0.0791 -0.0771 -0.0747 -0.0717 -0.0680 -0.0631 -0.0564 -0.0459 -0.0291 0.0074
Pareto3 1.2887 -0.0405 -0.0296 -0.0283 -0.0268 -0.0249 -0.0225 -0.0193 -0.0148 -0.0076 0.0045 0.0329

100 Pareto4 1.2599 -0.0283 -0.0194 -0.0184 -0.0171 -0.0156 -0.0136 -0.0110 -0.0072 -0.0010 0.0094 0.0349
Exponential 1.2115 -0.0133 -0.0077 -0.0071 -0.0063 -0.0053 -0.0040 -0.0022 0.0003 0.0045 0.0120 0.0315
Pareto2 1.3903 -0.0491 -0.0389 -0.0378 -0.0364 -0.0347 -0.0326 -0.0298 -0.0260 -0.0203 -0.0107 0.0101
Pareto3 1.2887 -0.0156 -0.0108 -0.0103 -0.0097 -0.0088 -0.0078 -0.0063 -0.0043 -0.0013 0.0042 0.0170

500 Pareto4 1.2599 -0.0097 -0.0062 -0.0059 -0.0054 -0.0048 -0.0040 -0.0029 -0.0014 0.0009 0.0052 0.0154
Exponencial 1.2115 -0.0036 -0.0019 -0.0017 -0.0015 -0.0012 -0.0008 -0.0003 0.0005 0.0018 0.0043 0.0106
Pareto2 1.3903 -0.0379 -0.0298 -0.0290 -0.0279 -0.0266 -0.0248 -0.0226 -0.0195 -0.0149 -0.0075 0.0089
Pareto3 1.2887 -0.0116 -0.0082 -0.0078 -0.0074 -0.0067 -0.0060 -0.0050 -0.0036 -0.0014 0.0023 0.0112

1000 Pareto4 1.2599 -0.0071 -0.0048 -0.0046 -0.0042 -0.0038 -0.0033 -0.0026 -0.0016 -0.0001 0.0027 0.0094
Exponential 1.2115 -0.0025 -0.0015 -0.0014 -0.0012 -0.0010 -0.0008 -0.0005 -0.0001 0.0007 0.0021 0.0058


