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Abstract

Purpose – The purpose of this paper is to further understanding of how new information impacts the
market value of financial assets.

Design/methodology/approach – The paper uses a Bayesian approach to asset valuation,
whereby investors use signals conveyed by new information to update their estimate of a structural
valuation parameter. The underlying distributions – i.e. the distribution of the information signal and
the prior distribution of the valuation parameter – are allowed to exhibit a degree of kurtosis greater
than that of the normal distribution.

Findings – The revision in asset value as a function of the realization of the information signal is an
S-shaped function (in the local region centred on the zero-surprise level of the signal), if the distribution
of the information signal features excess kurtosis; conversely, if the prior of the valuation parameter
features excess kurtosis, the revision in asset value is an inverted S-shaped function.

Research limitations/implications – The paper generates clear implications with respect to the
shape of the function relating the revision in asset value to the realization of the signal only in the local
region centred on the zero-surprise level of the signal.

Practical implications – The paper helps to shed light on the well-known empirical result that the
stock price reaction to earnings’ announcements is an S-shaped function, centred on the zero-surprise
level of reported earnings.

Originality/value – In the financial accounting literature, the paper helps one to understand the role
of the distributional assumptions underlying the stock price reaction to earnings’ announcements,
namely, the role of excess kurtosis both in reported earnings and in the prior of means earnings.

Keywords Stock prices, Case studies, Financial information, Assets valuation

Paper type Research paper

I. Introduction
In many applications in economics and finance researchers seek to estimate the impact
of new information on asset values. Using an event study methodology, this is
achieved by measuring the change in asset value around the time of occurrence of the
information event – i.e. during the so-called event window. When the information
event is the realization of a quantitative variable, the standard approach is to regress
the change in asset value during the “event window” against the unexpected
component of the information variable. The estimated regression coefficient is then
interpreted as a “signal response coefficient”, i.e. the impact on asset value “per unit” of
the information signal[1].

Underlying this approach is the ancillary hypothesis that the marginal response of
asset values to new information is constant. In a context of Bayesian learning,
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however, strong distributional assumptions are required for such hypothesis to hold.
To understand this, consider a setting in which the value of an asset is a multiple of a
market-based estimate of an unknown structural parameter, which is updated as new
information is publicly revealed (see, for example, Grossman (1976) or Stapleton and
Subrahmanyan (1978)). If the updating process takes place within the normal conjugate
family – i.e. if the prior distribution of the unknown structural parameter as well as the
distribution of the information signal are normal – then the revision is asset value
following the information event is a linear function of the information signal (see, for
example, Holthausen and Verrecchia (1988)). Any departure from normality in the
distributions surrounding the learning process, however, suffices to invalidate this
result.

The standard event-study methodology therefore rests on narrow foundations.
Given that such methodology is the primary tool to measure the impact of news on
asset prices, it is important to examine it under more general distributional
assumptions. In recent years, a number of authors have examined extensions of the
standard Gaussian model of Bayesian learning in different settings. Some have
explored the role of signal precision and the quality of new information in
accounting for the observed variability in the reaction of asset prices’ to news
across different market environments (Veronesi, 2000; Hautsch and Hess, 2004).
Others have considered settings in which either the prior distribution held by
investors over state variables is not normal or state variables do not follow
Gaussian diffusion processes, in an effort to explain time-shifting volatility of asset
returns and time-shifting risk premia (Detemple, 1991; David, 1997; Veronesi, 1999).
In the financial accounting field, an extensive body of evidence documenting a
non-linear response of stock values to earnings’ surprises (see, for example, Freeman
and Tse, 1992; Das and Lev, 1994; Lipe et al., 1998) has prompted some to explore
settings in which the precision of the signal conveye d by earnings is unknown
(Subramanyan, 1996).

Our concern in this paper is the shape of the function relating the price response to
the magnitude of the signal (i.e. the signal response function of SRF for short).
Specifically, we want to know the impact of prior and signal distributions with fat tails
on the shape of the SRF. The ideas are developed using an asset valuation model in
which the value of a share is a multiple of the current estimate of mean periodic
earnings. Share prices respond to the disclosure of an earnings reports as investors use
the earnings signal conveyed in the report to update their estimate of mean periodic
earnings.

Going into the specifics, we present two different departures from the linear model,
each of them introducing fat tail behavior in a particular fashion. The first approach
considers a fat tail distribution for the earnings signal while assuming normality for
the prior uncertainty about mean earnings. Conversely, the second approach assumes a
fat tail for the prior distribution and normality for the earnings signal. In either case,
fat tails are generated by mixing normal distributions with the same mean but with
different variances[2]. We find that fat-tail behavior imparts a particular pattern of
non-linearity to the SRF, in the local region centered around the zero-surprise level of
earnings[3]. When only the earnings signal is fat-tailed, the SRF exhibits an S-shape; in
contrast, when only the prior distribution is fat-tailed, the SRF has an inverted
S-shape[4].
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What may cause fat-tailed behavior or excess kurtosis? One obtains a signal with a
fat-tailed distribution if the precision of the signal is unknown. In the context of our
illustrative setting, we consider a set up in which firms generate transitory earnings
sporadically and unexpectedly over time – in addition to permanent earnings –
causing investors to bear uncertainty about the presence of transitory earnings in
current reported earnings. This is achieved by assuming that earnings are sampled
from an unknown mixture of two normal distributions with different variances,
yielding an earnings signal with fat tails. Since the presence of transitory earnings in
current earnings tends to amplify deviations from expected earnings, big surprises in
the earnings’ signal yield a smaller impact on the share price – per unit of surprise –
than small surprises.

A prior distribution will display fat tails, on the other hand, if there is uncertainty
vis-à-vis the degree of homogeneity of the population from which the unknown
structural parameter is drawn from. In our particular setting, we generate a prior with
fat tails by adopting a framework in which there exist two types of firms, each
associated with a different degree of uncertainty surrounding mean earnings. When
reacting to an earnings announcement, investors bear uncertainty about which firm
type they are dealing with, and use the earnings signal disclosed by the firm to help
resolve such uncertainty. We capture this set up by assuming that the prior
distribution of mean earnings is a mixture of two normal distributions with different
variances. Such an assumption yields a prior with fat tails[5].

The paper that is closer to ours is Subramanyan (1996). He shows that when
investors are uncertain about the precision of earnings signals, they view large
earnings surprises as less accurate signals of firm value. This entails a non-linear SRF
with a symmetric S-shape. The model of Subramanyan (1996) can be viewed as a
particular case of our setting since it assumes a specific distribution for the precision of
the signal whereas we allow for a wide range of distributions. Furthermore, the scope
of our analysis is broader since it also encompasses fat-tail behavior for the prior
distribution.

II. General set-up
Let V F denote the fundamental value of the firm’s equity. Assume that V F can be
written as:

V F ¼ lEðeÞ ð1Þ

where l is a constant, e is a random variable representing the firm’s periodic economic
earnings and E is the expectation operator. Periodic earnings, e, are iid with a
probability density function f (e). The market is uncertain about the parameters of the
pdf f(e) and uses the earnings information disclosed by management to develop more
precise estimates. One parameter of special interest is the mean of the distribution of
earnings – which we represent as m – since the market value of the equity is a multiple
of the current estimate of such parameter.

The linear model is obtained by assuming that earnings are sampled from a normal
distribution with an unknown mean (but known variance), whose prior is described by
a normal distribution (see, for example, Holthausen and Verrecchia, 1988). As it is well
known, these assumptions guarantee that the posterior distribution of the mean will

JM2
4,3

204



also be normal, so that the updating process of model parameters takes place within
the normal conjugate family.

Specifically, assume that e , N (m,se
2) and that the market’s prior distribution of m

is a normal with mean m0 and variance s0
2 (the variance se

2 is known by the market). If
we let V0 represent the market value of the equity before the earnings information is
publicly disclosed, then V0 is equal to:

V 0 ¼ E V F
� �

¼ lm0: ð2Þ

The manager observes the earnings signal, e, and then discloses it to the market.
Denote by V1(e) the market value of the equity immediately after the earnings signal is
publicly disclosed – referred to as the Signal Response Function or SRF for short –
and denote by m(e) the mean of the posterior distribution of m. Under the stated
assumptions, V1(e) is the product of l by the weighted average of the pre-signal
expected value of the earnings, m0, and the new earnings information, e, where the
weights are determined by the relative precisions of the two information components:

V 1ðeÞ ¼ EðV F jeÞ ¼ lmðeÞ ¼ l m0 s2
e= s2

0 þ s2
e

� �� �
þ e s2

e s2
0 þ s2

e

� �� �� �
¼ l m0 1 2 b

� �
þ eb

� �
¼ V 0 þ lb e2 m0

� � ð3Þ

where:

b ¼ s2
0= s2

0 þ s2
e

� �
ð4Þ

is the earnings response coefficient.
We can see that the SRF – i.e. V1(e) – is linear in e. Although the linear model is

simple and appealing, it makes strong assumptions vis-à-vis the underlying
distributions. In the rest of this paper, we examine how non-linear patterns arise
from distributions with fat-tails for the earnings signal and the prior of mean earnings.

III. Non-linear signal response functions
III.1 Distribution of earnings with fat tails
In this section, we consider a set-up in which the signal has an unknown precision, as a
way to generate excess kurtosis. Suppose that firms generate two earnings streams:
one stream – labeled permanent earnings – is generated by ongoing and recurring
business activities; a second stream –labeled transitory earnings – is generated by
one-off activities. Permanent earnings are distributed normally with an unknown mean
m and a known variance s2

eP ; the prior distribution of m is normal with mean m0 and
variances2

0. Transitory earnings are distributed normally with mean zero and a known
variance equal to s2

eT . The two processes are uncorrelated. At the end of each reporting
period, firms disclose a global earnings figure corresponding to the joint amount of
permanent and transitory earnings generated over the period.

Additionally, suppose that firms generate permanent earnings every single period
but generate transitory earnings only sporadically. Reported earnings are then equal to
either the sum of a draw from the permanent earnings process plus a draw from the
transitory earnings process or just a draw from the permanent earnings process. When
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reacting to an earnings announcement, investors do not know the generating process
behind the earnings figure being reported, i.e. they do not know whether reported
earnings consist exclusively of permanent earnings or it includes transitory earnings
as well. They use the level of reported earnings plus what they know about the
properties of the two processes, to infer the generating process behind current reported
earnings. For instances, an extreme earnings surprise supports the belief that the
earnings process behind reported earnings encompasses a draw from transitory
earnings. Since transitory earnings increase the noise of the earnings signal, such belief
leads investors to downplay the information conveyed by extreme reports.

To formalize the intuition, assume that the firm’s periodic reported earnings are
generated by the process:

e ¼ IeHV þ ð1 2 I ÞeLV ð5Þ

where I is a Bernoulli random variable that takes a value equal to 1 with probability
p and 0 with probability 1 2 p, eHV is a normally distributed random variable with
mean m and variance s2

eH ¼ s2
eP þ s2

eT and eLV is a normally distributed random
variable with mean m and variance s2

eL ¼ s2
eP . The three random variables are

mutually independent. The random variable eLV represents the permanent earnings
process, whereas variable eHV represents the sum of permanent and transitory
earnings. Henceforth, we refer to eHV and eLV as, respectively, the high-variance and
the low-variance earnings process. Hence, we have a set up in which the earnings
signal conveyed by the firm is a mixture of two normal earnings processes, with
identical means but with different variances.

Under the stated assumptions, the pdf of the earnings’ signal is equal to:

f ðeÞ ¼ p s2
0 ¼ s2

eH

� �21=2
f

e2 m

s2
0 þ s2

eH

� �1=2

 !
þ ð1 2 pÞ

� s2
0 þ s2

eL

� �21=2
f

e2 m

s2
0 þ s2

eL

� �1=2

 !
ð6Þ

where f stands for the normal standardized pdf. The pdf (6) is a distribution with fat
tails vis-à-vis the normal distribution; indeed, while the kurtosis of the normal
distribution is equal to 3, the kurtosis of the pdf (6) is equal to:

3 p s2
0 þ s2

eH

� �2
þ 1 2 pð Þ s2

0 þ s2
eH

� �2
� �
p s2

0 þ s2
eH

� �
þ 1 2 pð Þ s2

0 þ s2
eH

� �� �2
. 3: ð7Þ

We may now proceed to characterize the SRF. Conditional on process type (i.e. on
whether reported earnings have been sampled from the low-variance process or from
the high-variance process), the mean of the posterior distribution of m is equal to the
weighted average of the prior mean and the earnings signal, i.e.:

V 1ðejI ¼ i Þ ¼ E V F ej ; I ¼ i
� �

¼ l m0 s2
ei= s2

0 þ s2
ei

� �� �
þ e s2

0= s2
0 þ s2

ei

� �� �� �
ð8Þ
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where I is the Bernoulli random variable which takes value i ¼ 1 for the high variance
process and value i ¼ 0 for the low variance process.

To find the unconditional value of the firm following the earnings disclosure, one
simply needs to integrate (8) over process types, using the updated probabilities of
process type. If we denote p(e) ¼ Pr(I ¼ 1j e) as the probability of earnings having been
drawn from the high-variance process given the earnings signal, e, then the
unconditional value of the firm following the earnings disclosure is equal to:

V 1ðeÞ ¼ E V F ej
� �

¼ lpðeÞ m0 s2
eH= s2

0 þ s2
eH

� �� �
þ e s2

0= s2
0 þ s2

eH

� �� �� �
þ l I 2 pðeð Þ m0 s2

eL= s2
0 þ s2

eL

� �� �
þ e s2

0= s2
0 þ s2

eL

� �� �� �
:

ð9Þ

Since the ex-ante probability of the high-variance process is p, then:

pðeÞ ¼

p s2
0 þ s2

eH

� �21=2
f e2m0

s2
0
þs2

eH

� �1=2

 !

p s2
0 þ s2

eH

� �21=2
f e2m0

s2
0
þs2

eH

� �1=2

 !
þ ð1 2 pÞ s2

0 þ s2
eL

� �21=2
f e2m0

s2
0
þs2

eL

� �1=2

 ! :

ð10Þ

Substituting (10) into (9) yields an SRF exhibiting an S-shape in the local region around
the zero earnings -surprise level. This result is generalized in the following proposition.

P1
Suppose that the sampling distribution of the earnings signal observed by investors, e,
is a fat-tailed distribution generated by a mixture of N normal distributions with
identical means but with different variances. Investors know the variances of the N
distributions but do not know their common mean. Moreover, the prior distribution of
the mean is normal with known parameters. Then, locally around the zero-surprise
level of earnings the SRF is monotonically increasing, symmetric and with an S-shape.

Proof in Appendix 1.
We conclude that a signal with a fat-tail distribution arising from uncertainty about

signal precision, yields an SRF with an S-shape. Subramanyan (1996) examines the case
where reported earnings are drawn from a normal distribution with an unknown mean
and an unknown variance, with priors equal to, respectively, a normal distribution and a
gamma distribution. Since our proposition is valid for mixtures of arbitrarily large
number of normal distributions – each with its own variance – we can approximate to
any desired degree of accuracy the gamma distribution assumed by Subramanyan, or
any other distribution for that matter. Thus our results are a generalization of
Subramanyan (1996) to any distribution of the prior of the variance of the signal.

Regarding the empirical support for non-linear SRFs, Freeman and Tse (1992), Das
and Lev (1994) and Lipe et al. (1998) have found that the marginal response of stock
price to unexpected earnings depends on the level of the earnings surprise. A widely
documented feature of the data is the observed S-shape departure from linearity when
one plots unexpected earnings against the corresponding abnormal stock price
reaction. According to P1, an earnings’ signal with excess kurtosis is a possible
explanation for such empirical feature.
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III.2 Distribution of the prior of mean earnings with fat tails
This section examines the impact of fat-tail behavior in the prior distribution of the
unknown structural parameter. As in the previous section, we create fat tails by mixing
normal distributions with different variances.

Let reported earnings be sampled from a normal distribution with an unknown
mean, m, and known variance, s2

e as in the linear model. Now suppose that the prior
uncertainty about mean earnings, m, is characterized, with a probability equal to p, by
a Normal distribution with mean m0 and variance s2

0H and, with probability equal to
1 2 p, by a Normal distribution with mean m0 and variance s2

0L(where s2
0L , s2

0H ).
The prior of m can then be written as:

gðmÞ ¼ ps21
0Hf m2 m0

� �
=s0H

� �
þ 1 2 pð Þs21

0L f m2 m0

� �
=s0L

� �
ð11Þ

where f, as in the previous section, represents the pdf of the standard Normal
distribution. The kurtosis of the prior distribution is equal to:

3 ps4
0H þ 1 2 pð Þs4

0L

� �
ps2

0H þ 1 2 pð Þs2
0L

� �2
. 3 ð12Þ

thus greater than that of the normal distribution[6].
We can motivate the assumption of a prior as a mixture of two normal distributions by

arguing that there exist two types of firms, H and L, each sampled from a population with
its own distribution of a structural valuation parameter – in this case, mean earnings.
Type L would correspond to firms with homogeneous characteristics. Firms within this
group would sell similar products, supply similar markets, use similar business models
and employ similar technologies. Since there would be little differentiation among firms,
the variation in mean earnings across firms would tend to be small s2

0L

� �
. Type H, in

turn, would correspond to firms with heterogeneous characteristics. Firms operating
under a large degree of uncertainty surrounding environmental constraints such as
customer preferences and technology would fall into this group. Within this group, firms
would undergo intense innovation and experimentation vis-à-vis their business models,
their products, their markets, their technologies and so on. This group should, therefore,
exhibit a lot of variation in mean earnings s2

0H

� �
, as the strategies adopted by its

members would tend to generate extreme outcomes.
Over time firms might shift between the two types. That may happen because the

competitive environment surrounding the firm changes, because the firm enters new
markets (or it abandons existing ones) or yet because the firm changes its business
strategy. The key point is that the underlying uncertainty about the structural
parameter driving firm value is dynamic. Investors try to keep track of these shifts by
constantly revising the probabilities of the firm falling into each type, as they observe,
scrutinize and interpret the ongoing activities of the firm.

Let I represent a Bernoulli random variable, assuming value i ¼ 1 when earnings
are being reported by a firm of type H and i ¼ 0 otherwise; the ex-ante probability of a
type-H firm is p. Conditional on firm type (i.e. on whether earnings are being reported
by a firm of type H or type L), the mean of the posterior distribution of m is equal to the
weighted average of the prior mean and the earnings signal:

V 1 ejI ¼ i
� �

¼ E V F ej ; I ¼ i
� �

¼ l m0 s2
e= s2

0i þ s2
e

� �� �
þ e s2

0i= s2
0i þ s2

e

� �� �� �
ð13Þ
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To find the unconditional value of the firm following the earnings disclosure, one needs
to integrate (13) over firm types, using the updated probabilities of firm type. Let
p(e) ¼ Pr(I ¼ 1j e) denote the probability of earnings being reported by a firm of type H
given the earnings signal, e. Then, the unconditional value of the firm following the
earnings disclosure is equal to:

V 1ðeÞ ¼ E V F ej
� �

¼ lpðeÞ m0 s2
e= s2

0H þ s2
e

� �� �
þ e s2

0H= s2
0H þ s2

e

� �� �� �
þl 1 2 pðeÞð Þ m0 s2

e= s2
0H þ s2

e

� �� �
þ e s2

0H= s2
0H þ s2

e

� �� �� � ð14Þ

Since the ex-ante probability of a type-H firm is p then:

pðeÞ ¼

p s2
0H þ s2

e

� �21=2
f e2m0

s2
0H
þs2

e

� �1=2

 !

p s2
0H þ s2

e

� �21=2
f e2m0

s2
0H
þs2

e

� �1=2

 !
þ 1 2 pð Þ s2

0L þ s2
e

� �21=2
f e2m0

s2
0L
þs2

e

� �1=2

 ! :

ð15Þ

Substituting (15) into (13) yields an SRF exhibiting an inverted S-shape in the local
region around the zero earnings-surprise level. This result is generalized in the
following proposition.

P2
Suppose that the sampling distribution of the earnings signal observed by investors, e,
is a normal distribution with an unknown mean and a known variance. Moreover,
suppose that the prior of mean earnings is a fat-tailed distribution generated by a
mixture of N normal distributions with the same mean but with different variances.
Investors know the variances and the common mean of the N distributions. Then,
locally around the zero-surprise level of earnings the SRF is monotonically increasing,
symmetric and with an inverted S-shape.

Proof in Appendix 2.
When the prior of mean earnings is a normal distribution with an unknown

variance we obtain a result that is the symmetric of that obtained when the signal is
assumed to be normal with an unknown variance. We thus find that fat-tailed behavior
in the prior distribution of the structural valuation parameter and fat-tailed behavior in
the distribution of the signal impart opposite patterns of non-linearity to the SRF.

In which circumstances is an inverted S-shape expected to hold empirically? As
mentioned in the previous section, in financial accounting there is evidence of S-shaped
SRFs but none, to our knowledge, of inverted S-shaped SRFs. Is an inverted S-shape
just a theoretical curiosity?

Our earlier discussion for the motivation for a prior with fat tails suggests that firms
caught in transition between business strategies or business models with distinct risk
profiles are those most likely to feature inverted S-shape SRFs. An extreme earnings
realization tells investors that such a firm is likely to have adopted the high-risk
business model. The adjustment of traditional businesses to the threats and
opportunities created by new technologies offers examples of this idea: in the book
business, the attempt of traditional bookstore chains to incorporate new technologies to
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stand up against on-line booksellers such as Amazon; in telecommunications, the effort
made by incumbents to deal with the new competition brought by the internet, mobile
telephony and VoIP. In the airline business, the response of traditional carriers to
low-cost operators. In all these cases, firms further along in the transition process are
more prone to experience extreme economic outcomes. Hence, a small earnings surprise
tells investors that the firm is hanging on to its traditional low-risk business model
whereas a big surprise is evidence of a shift toward the new high-risk model. In sum,
an inverted S-shaped SRF, if it exists at all, should be found among firms in the process
of shifting between business strategies with different levels of risk.

IV. Conclusions
This paper seeks to illuminate the role of fat-tail distributions in the process through
which information signals are capitalized in asset values. Specifically, it examines how
fat-tail distributions associated either with a signal or the prior of a structural
valuation parameter influence the response of asset prices to information disclosures.
The analysis shows that the price adjustment is driven by the relative kurtosis of the
distributions of the signal and the prior, when one of the distributions has fat tails. The
price adjustment as a function of the magnitude of the signal displays either an S-shape
or an inverted S-shape depending on which distribution features excess kurtosis.

As mentioned in the introduction, the typical approach in event studies is to regress
the price adjustment occurring immediately after the release of an information signal
on the unexpected component of signal. The slope of the regression is interpreted as the
information impulse per unit of the signal (in financial accounting, the slope coefficient
is known as the “earnings response coeffient” or ERC for short). Our analysis suggests
that an ERC estimated in the traditional fashion will be biased if the underlying
distributions feature excess kurtosis. Furthermore, the bias will follow a particular
pattern: If investors are uncertain in about the precision of the earnings signal then the
ERC underestimates the price impact of small information events whereas it
overestimates the price impact of big information events; the converse holds if
investors are uncertain about the risk type of the firm disclosing earnings.

Notes

1. In the macro-finance literature, examples are McQueen and Roley (1993) and Hakkio and
Pearce (1985). The former study the impact of fundamental macro news on aggregate stock
prices and market interest rates whereas the latter examine the impact of the same sort of
news on exchange rates. In agricultural economics, Rucker et al. (2005) study how the release
of new data on monthly housing starts effects lumber future prices and Collins and Irwin
(1990) study the reaction of live hog future prices to USDA Hogs and Pigs reports. In
environmental economics, Bui and Mayer (2003) analyse how disclosures of toxic emissions
under the Toxic Release Inventory regulation impact house prices whereas Konar and Cohen
(1997) investigate the impact of such disclosures on the stock prices of polluting firms.
Perhaps the field where this approach has been most extensively used, however, is financial
accounting. Authors such as Beaver et al. (1979), Beaver et al. (1980), Kormendi and Lipe
(1987), Collins and Khotari (1989), Easton and Zmijewsky (1989) and Lipe (1990) evaluate the
information content of earnings reports by regressing the unexpected stock return around
the time of the disclosure of the report on t he earnings’ surprise. The slope coefficient of this
regression is typically referred to as the “earnings response coefficient” (see, for example,
Freeman and Tse (1992)).
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2. Mixtures of normal distributions has been used extensively in finance as a general and
flexible approach to generate random variables with excess kurtosis, such as the returns on
financial assets. See, for example, Kon (1984) and Hull and White (1998).

3. Regarding the behavior of SRFs at the tails, Das and Lev (1994) find that non-linearities persist
in the data even after fitting various parametric S-shaped functions (e.g. the arctan function
and a modified quadratic function), albeit the evidence is weak. At any rate, the authors argue
that due to paucity of data at the extremes of the distribution of unexpected earnings, tests
aimed at detecting different types of non-linearities in this range of the data have low power.

4. Our analysis emphasizes the role of kurtosis in generating non-linear SRFs. Under the
standard normality assumptions underlying the Gaussian model, the kurtosis of the prior
distribution is identical to the kurtosis of the distribution of the signal. When we depart from
the standard case by assuming that the signal is sampled from a mixture of normal
distributions, the kurtosis of the signal becomes higher than that of the prior; the converse is
true when the departure from the standard case consists in assuming a mixture of normals
for the prior distribution.

5. Financial analysts know that companies are more hard to value in industries with a greater
degree of heterogeneity. The degree of dispersion in market multiples such as price-earnings
ratios or book-to-market ratios within an industry gives a measure of the degree of
heterogeneity in the population of firms from that industry.

6. Recall that the kurtosis of the Normal is equal to 3.
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Appendix 1. Proof of P1
Let us generalize the model to consider N normal distributions for the signal. Given m and the
earnings process given by Y ¼ i (i =1,2,· · ·, N), e follows a normal distribution with mean m and
known variance s2

ei . The prior for m is normal with known mean m0 and known variance s2
0. The

distribution of Y is given by Pr(Y ¼ i ) ¼ pi with
PN

i¼1pi ¼ 1. Note that the variable Y
generalizes the Bernoulli variable I to accommodate more than two situations.

Let us define bi ¼ s2
0= s2

0 þ s2
ei

� �
and pi (e) ¼ Pr(Y ¼ i j e) and let us remember that, given

the earnings process, i.e. given Y ¼ i, and the observation of the earnings value e, the posterior
expected value of m will be given by:

E mje;Y ¼ i
� �

¼ bieþ 1 2 bi

� �
m0: ðA1Þ

Using the law of iterated expectations and expression (A1), we obtain:

mðeÞ ¼ E mje
� �

¼ E E mje;Y
� � ��e� �

¼
XN

i¼1
bieþ 1 2 bi

� �
m0

� �
Pr Y ¼ ije
� �

¼ m0 þ e2 m0

� �XN

i¼1
biPiðeÞ

¼ m0 þ e2 m0

� �
rðeÞ

ðA2Þ

where:

rðeÞ ¼
XN

i¼1
bipiðeÞ: ðA3Þ

Note that we can define a random variable W assuming the value bi with probability (given e)
pi(e) (i ¼ 1,2,. . ., N) and, in this framework, r(e) ¼ E(W j e).

To obtain the shape of the SRF curve we need to differentiate m(e) twice in order to e. The first
derivative will be given by:

m0ðeÞ ¼ rðeÞ þ ðe2 m0Þr
0ðeÞ ¼ rðeÞ þ ðe2 m0Þ

XN

i¼1
bip

0
iðeÞ: ðA4Þ

But, noting that:

piðeÞ ¼ aiðeÞ=
XN

j¼1
ajðeÞ with aiðeÞ ¼ pib

1=2
i exp 2

bi e2 m0

� �2

2s2
0

" #

we obtain, after some calculus, p0iðeÞ ¼ 2ðe2 m0Þs
22
0 piðeÞ bi 2 rðeÞ

� �
and consequently:

r0ðeÞ ¼ 2ðe2 m0Þs
22
0 sðeÞ2 rðeÞ2
� �

ðA5Þ

and

m0ðeÞ ¼ rðeÞ2 ðe2 m0Þ
2s22

0 sðeÞ2 rðeÞ2
� �

ðA6Þ

where sðeÞ ¼
PN

i¼1b
2
i piðeÞ

Note that s(e) 2 r 2 (e) ¼ var(Wj e).
Now, we must calculate the second derivative of m(e):

m00ðeÞ ¼ r0ðeÞ2
2ðe2 m0Þ

s2
0

sðeÞ2 r 2ðeÞ
� �

2
ðe2 m0Þ

2

s2
0

s0ðeÞ2 2rðeÞr0ðeÞ
� �

:
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But we can see that s0(e) ¼ 2 (e 2 m0)s22
0 [t(e) 2s(e) r(e)], where tðeÞ ¼

PN
i¼1b

3
i piðeÞ; that is

tðeÞ ¼ EðW 3 eÞj , and we can use (A5).
We can then rewrite m00ðeÞ as:

m00ðeÞ ¼ 2
3ðe2m0Þ

s2
0

sðeÞ2 rðeÞ2
� �

þ
ðe2m

0
Þ3

s4
0

tðeÞ2 3rðeÞsðeÞ þ 2rðeÞ3
� �

¼ 2
3ðe2m0Þ

s2
0

varðW eÞ þ ðe2m0Þ
3

s4
0

EðW 2 EðW eÞ eÞ3:
������� ðA7Þ

As is obvious, m00ðm0Þ ¼ 0. It is straightforward to see that the third central moment of W always
exists and consequently, when e is in a close enough neighborhood of m0, the signal of m00(e) will
be given by the first part of the expression, that is to say that, when e . m0;m

00ðeÞ is negative as
varðW eÞ . 0j . Of course, when e , m0;m

00ðeÞ is positive.
Using a similar argument we can prove that, in the neighborhood of m0, m0(e) is positive, since

r(e) is the expected value of a positive valued random variable and consequently is positive.
As V1 ¼ lm(e), (with l . 0) we will obtain an S-shape curve when in the neighborhood of m0.

Appendix 2. Proof of P2
The proof of P2 is quite similar to the proof of P1. Given m, e follows a normal distribution with
mean m and known variance s2

e . Let us now assume that there are N types of firms and,
consequently, given Y ¼ i (i ¼ 1,2,. . ., N), the prior for m is normal with known mean m0 and
known variance s2

0i . The distribution of Y is given by Pr(Y ¼ i ) ¼ pi with
PN

i¼1pi ¼ 1.
Let us define di ¼ s2

e=ðs
2
e þ s2

0iÞ and piðeÞ2 PrðY ¼ ijeÞand let us remember that, given the
observation of the earnings value e and the type of firm, i.e. given Y ¼ i, the posterior expected
value of m will be given by:

Eðm e;j Y ¼ i Þ ¼ dim0 þ ð1 2 diÞe: ðB1Þ

Using the law of iterated expectations, we obtain:

mðeÞ ¼ Eðm=eÞ ¼ E Eðmje;Y Þje
� �

¼
XN

i¼1
dim0 þ 1 2 dið Þe
� �

Pr Y ¼ ije
� �

¼ e2 ðe2 m0Þ
XN

i¼1
dipiðeÞ

¼ e2 ðe2 m0ÞrðeÞ

ðB2Þ

where

rðeÞ ¼
XN

i¼1
dipiðeÞ: ðB3Þ

As in Appendix 1, we can define a random variable W assuming the value di with probability
(given e) pi(e) (i ¼ 1,2,. . ., N) and r(e) ¼ E(W. . .j e).

To obtain the shape of the SRF curve we need to differentiate m(e) twice in order to e. The first
derivative will be given by:

m0ðeÞ ¼ 1 2 rðeÞ2 ðe2 m0Þr
0ðeÞ ¼ 1 2 rðeÞ2 ðe2 m0Þ

XN

i¼1
dip

0
iðeÞ: ðB4Þ
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But, noting that piðeÞ ¼ aiðeÞ=
PN

j¼1ajðeÞ with aiðxÞ ¼ pid
1=2
i exp diðe2m0Þ

2

2s2
e

h i
, we obtain, after

some calculus, p0iðeÞ ¼ 2ðe2 m0Þs
22
e piðeÞ di 2 rðeÞ

� �
and consequently:

r0ðeÞ ¼ 2ðe2 m0Þs
22
e sðeÞ2 rðeÞ2
� �

ðB5Þ

and

m0ðeÞ ¼ 1 2 rðeÞ2 ðe2 m0Þ
2s22

e sðeÞ2 rðeÞ2
� �

ðB6Þ

where sðeÞ ¼
P

id
2
i piðeÞ. Note that s(e) 2 r 2 (e) ¼ var(Wj e).

The second derivative of m(e) will be given by:

m00ðeÞ ¼ 2r0ðeÞ þ 2ðe2 m0Þs
22
e sðeÞ2 rðeÞ2
� �

þ ðe2 m0Þ
2s22

e s0ðeÞ2 2rðeÞr0ðeÞ
� �

: ðB7Þ

But we can see that s0ðeÞ ¼ 2ðe2 m0Þs
22
e tðeÞ2 sðeÞrðeÞ½ � where tðeÞ ¼

P
id

3
i piðeÞ, that is

t(e) ¼ E(W 3j e). We can then rewrite m00(e) as:

m00ðeÞ ¼ 3ðe2m0Þ

s2
e

sðeÞ2 rðeÞ2
� �

2
ðe2m0Þ

3

s4
e

tðeÞ2 3rðeÞsðeÞ þ 2rðeÞ3
� �

¼ 3ðe2m0Þ

s2
e

varðW jeÞ2
ðe2m0Þ

3

s4
e

EðW 2 EðW jeÞjeÞ3:
ðB8Þ

As is obvious, m00ðm0Þ ¼ 0. It is straightforward to see that the third central moment of W always
exists and consequently, when e is in a close enough neighborhood of m0, the signal of m00(e) will
be given by the first part of the expression, that is to say that, when e . m0; m

00ðeÞ is positive as
var(Wj e) . 0. Of course, when e , m0, m00(e) is negative. As V1 ¼ lm(e), we will obtain an
inverse S-shape curve when in the neighborhood of m0, that is for small surprises.

Using a similar argument we can prove that, in the neighborhood of m0, m0(e) is positive, since
r(e) is the expected value of a random variable assuming values between 0 and 1, and
consequently 0 , r(e) ,1.

As V1 ¼ lm(e), (with l . 0) we will obtain an inverted S-shape curve when in the
neighborhood of m0.
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