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STATIONARY PROCESSES THAT
LOOK LIKE RANDOM WALKS—
THE BOUNDED RANDOM WALK
PROCESS IN DISCRETE AND
CONTINUOUS TIME

JoAo NicoLAu
Universidade Técnica de Lisboa

Several economic and financial time series are bounded by an upper and lower
finite limit (e.g., interest ratek It is not possible to say that these time series are
random walks because random walks are limitless with probability(agdime

goes to infinity. Yet, some of these time series behave just like random waiks

this paper we propose a new approach that takes into account theseWaeas
propose a discrete-time and a continuous-time progifgsion procesgthat gen-

erate bounded random walkBhese paths are almost indistinguishable from ran-
dom walks although they are stochastically bounded by an upper and lower finite
limit. We derive for both cases the ergodic conditicausd for the diffusion pro-

cess we present a closed expression for the stationary distrib@itisapproach
suggests that many time series with random walk behavior can in fact be station-
arity processes

1. INTRODUCTION

The study of stationary versus nonstationary time series has became a key
issue in both time series and econometrics analy$isir implications for eco-
nomic theory are extremely importarBome time series seems to be nonsta-
tionary such as industrial productipnonsumer pricesand stock pricesamong
others(see Kwiatkowski Phillips, Schmid; and Shin 1992. However there
are others where there seems to be no consefrsusexample Perron(1989
can not reject the unit root hypothesis for the nominal interest latehe
same directionChan Karolyi, Longstaff and Sander$1992 point out that
the mean reversion for the.8l interest rate is very weakvhich is a sign of
unit root possibility However Dahlquist(1996 finds some meaiflinear) re-
version effects for interest rates in Denma@Bermany Sweden and the UK

On the other handAit-Sahalia(1996 concluds that the mean linear reversion
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is not adequate for the 7-day Eurodollar deposit.réte finds that the drift
(infinitesimal coefficient of the diffusion processf the spot rate process is
essentially zero as long as the rate is between 4 and 17% but pulls it strongly
toward this middle region whenever it escapElsus in the interval from 4 to

17% the process behaves like a random w@\) process(as the drift is

zerg but is not a true RW as the process shows reversion effects whenever
some high or low value is reachefiit-Sahalia’s interpretation seems to solve
the puzzle the interest rate behaves like a RW—so the usual test of stationar-
ity is not able to reject the unit root—but the process is obviously bounded
with reversion effects at high and low levelghich eventually leads to sta-
tionarity and a mean reversion

Regarding the exchange ratinere is now a considerable amount of evi-
dence that real exchange rates do not have unit (@ets Rogoff 1996 Rose
1996 despite initial views(see Rol] 1979 Adler and Lehman1983. There-
fore it is expectedin general that real exchange rates are bounded in proba-
bility (i.e., do not diverge tatoco) and they have long-run values to converge
to. With regard to nominal exchange rates it can be argued from economic and
statistical considerations that some nominal exchange rates should be bounded
or be in some kind of implicit target zone reginmidicolau (1999 argues that
the DEM/USD exchange rate is not a Rt least in the last 15 yeardespite
the conclusions of the Dickey—Fuller testhat is the DEM/USD behaves like
a RW but cannot be a true RW as there is some evidence that this exchange rate
is bounded (we emphasize that the unit root process goes 4o or —co with
probability one as time goes toco so a bounded process can not have a unit
root).

These ideas suggest that some economic and financial time series can be-
have just like a RWwith some volatility patternbut because of some eco-
nomic reasons they are bounded processgs, in probability and even
stationary processe3o build a model with such features it is necessary to
allow RW behavior most of the time but force mean reversions whenever the
processes try to escape from some interVéere is some evidence that the
usual Dickey—Fuller test under general specification of alternative hypothesis
has low power to detect stationary processéigolau (1999 shows that the
power of the Dickey—Fuller test is extremely low when the alternative hypoth-
esis is a stationary bounded RW procéss present this model nexsee also
Kwiatkowski et al, 1992.

In this paper our aim is to present a new model in discrete and in continuous
time that can generate paths with the following featuasslong as the process
is in the interval of moderate valughe process basically looks like a RWut
there are reversion effects toward the interval of moderate values whenever the
process reaches some high or low values we will seg these processes can
admit—relying on the parameters—stationéoy ergodig distributions so we
will come to the following interesting conclusioprocesses that are almost
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indistinguishable from the RW process can lreeffect stationary with ergo-
dic distributions

The paper consists of two main sectiotrs Section 2 we introduce and dis-
cuss the main properties of the bounded random WBRW) process in dis-
crete time We do the same in Section 3 for a continuous-time version of the
BRW. In the discrete-time version we admit a GARCH representation for the
volatility, whereas in the continuous-time case we discuss an exponential form
that could be appropriate for modeling a “smile” curve for volatiligrugman
and Miller, 1992. In all cases we state the conditions under which the pro-
cesses are ergodidNVe present examples to make these models .clear

2. THE BOUNDED RANDOM WALK IN DISCRETE TIME

The previous section shows that a BRW model can be appropriate for modeling
some economic and financial time seriés this section we start to discuss
some proprieties that a BRW model should satisfy

2.1. Some Properties

If a process is a RWhe functionE[AX| X;_1 = X] (WhereAX; = X; — X;_1)
must be zerdfor all x). On the other handf a process is bounde@n proba-
bility) and mean-reverting te (say), the functionE[AX;|X;_1 = X] must be
positive if x is belowr and negative ik is abover.

Now consider a process that is bounded but behaves like.aNR\&t kind of
function shouldE[AX;| X;_; = X] be? As the process behaves like a,RiVit
must be zero in some interval arisecause the process is bound@d it must
be positive(negative whenx is “low” (“high”). Moreover we expect thd(tii)
E[AX|X;_1 = x] is a monotonic functionwhich, associated witHii), means
that the reversion effect should be strong ik far from the interval of rever-
sion and should be weak in the opposite cdse E[AX;|X;_1 = X] is differ-
entiable(on the state space of) to assure a smooth effect of reversidinis
kind of behavioy for instance with regard to interest and exchange raties
implicit in Ait-Sahalia(1996), Stanton(1997), and Nicolau(1999 through the
nonparametric estimation d&&[AX;|X;_; = X]. A possible representation for
E[AX;| X;_; = x] will be provided in Section 3.

To satisfy(i)—(iv) we assumeé&E[AX| X, = x] = eX(e" "7 — ga(x77)
with a; = 0, a, = 0, k < 0. Let us fixa(x) = eX(e”n(x"7 — gx(x=7) As we
will seg this function is sufficiently general and flexible in the sense that it can
generate a vast range of BRWs in a station@my nonstationary framework
(because stationary processes are bounded in probalilgyquite natural to
expect that BRWs are stationaryn addition this function has good proper-
ties allowing the extension of our discrete-time model to a continuous-time
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framework There may be other functions similar &ix) that can generate
BRWs so thea(x) function is not uniqueAs far as we knowthe only alterna-
tive modelsin the literatureare the SETAR3,1,1) (self-exciting threshold auto-
regressiveTong 1990 and the regime-switching modéHamilton 1994), see
however equatior{11). In Section 25, we show that our model has several
important advantages over these two alternative models

With our assumption abol[ A X;| X;_; = X] we proposetherefore the BRW
in discrete time

Xi = X1 + ek(e*aﬂxt—l*ﬂ — eaz(xtﬂ*‘r)) + 0,8, (1)

(a1 = 0, ap, = 0, k < 0) where{g;} is a sequence of independent and identi-
cally distributed(i.i.d.) random variables witlE[e,] = 0 and Vafe;] = 1 and

oy (volatility) belongs to the information se%_; = o(X,:7 =t — 1), for ex-
ample o2 can have a GARCH representatitBollersley 1986.

2.2. The Function a(x)

We now analyze the functioa(x) = ek(e" =7 — ex(x=7) |t is evident that
the casex; + a, = 0 leads to the unit rodibecause it impliea(x) = 0, [0x). It
is still obvious(in more general casgs.g., a; > 0 anda, > 0) thata(r) = 0,
so X; must behave just like a RW whenevér ; = 7.

On the other handve can select the parametérsy,, anda, such that(x) ~
0 wheneverX;_, is in the neighborhood of. The range of the interval where
a(x) is approximately null depends on the paramet&ypically, the casex, >
0, @, > 0, k < 0, and| k| is high with regard tav; anda;, entailsa(x) ~ 0 over
a large interval centered an Suppose thaX;_; moves significantly away from
T, for example X,_; > 7. Then a(x) turns out to be negativeand the proba-
bility that X; decreases will be higiThus if X;_; is “high” and far away from
7 there will be reversion effects that pull it toward lower valudswever near
7 these reversion effects will be almost null

Let us segin more detail the meaning of the parameteds, a,, 7, andk.
The parametek controls the range of the interval under which the process be-
haves like a RWWhenk < 0 and|k| is high (low) the range tends to be high
(low). Ther parameter is a central measure of the process becasises have
seen a(r) = 0. We should expect to be the mean of the process under the
hypothesisx; = a, (we will turn again to this issue in Section33. However
if a(x) is approximately zero over a large intervaentered inr) we should
expect a reversion effect toward a neighborhood- gand not exactly tor).
Finally, the @; = 0 anda, = 0 parameters measure the reversion effect of the
process whenever it escapes from the interval where the funationis ap-
proximately zeroHigh values of these parameters imply a strong reversion ef-
fect It is easy to see that the, (a,) parameter is linked to the reversion effect

https://doi.org/10.1017/50266466602181060 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466602181060

BOUNDED RANDOM WALK PROCESSES 103

when the process is loghigh). We notice that the case, # a, leads to asym-
metrical effectsFor instanceaccording to Gray1996, among othersthe in-

terest rate process behaves typically like a RW when the process is moderate or
low, showing however a strong reversion effect when it is very higkhere-

fore, we expecta, > a4 (What prevents the process from reaching the zero
state is actually the very low volatility—see our discussion at the end of Sec-
tion 3.3). Another example of the cagg # «a» is analyzed in Nicola@1999 in

the study of the DEMUSD exchange rate

2.3. An Example

In Figure 1 we drava(x) = ek(e"«(x~7 — gx(x~7) for the following values
k= —15 a; = @, = 3, andr = 100 We see that in the interval= (95,105 the
functiona(x) is (approximately zerqg so in this intervalX behaves like a RW
Outside ofl there are reversions towaftd

In Figure 2 we simulated two path& = 1,2,...,1,000: a BRW path from
(1), using the values presented previously and= o = .4, and a RW path
from X; = X;_; + .4&.. In both processes we use the same values; d¢fve
assume thafe,} is a sequence ofiid. random variables witiN(0,1) distribu-
tion). We see that both trajectories are almost indistinguishable urtilL40
(approximately. Near the value 105 there are reversion effects only in the BRW
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FIGURE 1. Curvea(x).
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FIGURE 2. Bounded random walk vsandom walk

that is a(x) < 0 (see Figure ), which prevent the process from increasing
beyond 105After that the processes follow different trajectories

2.4, Stationarity

First, consider a homogeneous stochastic discrete processX ;t=0,1,2,...}
with initial value X = X (possibly random Let us assume thatis a Markov
process governed by the function

X = f(Xi-1, &), 2)
where
f(Xion &) = n(Xiop) + o (Xiq) &,

p(Xi—1) = X+ alXi-p),
a:R — R is a nonlinear function oK,_4, and{s;;t = 1} is a stochastic pro-
cess There are several approaches to check stationarity and ergocseity

Borovkoy 1998. For instanceconsider Proposition,which follows (adapted
from ChangAppendix 1 in Tong 199Q pp. 448—466.
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PROPOSITION 1 Assume that f is continuous everywhere and continuously
differentiable in a neighborhood of the origin. Suppose that conditions A1-A7
(see Appendix A) hold. Then=Xf(X;_4, &) is geometrically ergodic.

Proof See Tong199Q pp. 448—466.

For nonlinear time seriest is very difficult to check the(very important
A2 condition (see Appendix A This is also true in our modeBasically A2
indicates(in state spac®?) that | u(Xo)| = Ke |xo| whereK > 0, ¢ > 0,
and u(Xo) is thetth iterationu(xg) = m(u (... w(Xg))) given the initial value
Xo. The problem is that it is generally impossipfer nonlinear time seriego
get wi(Xo) = (... u(X%p))) as a function of the initial valueHowever in
the case under analysiwith ©(x) = x + a(x), we consider the following con-
ditions® which are easy to check

H1 a(x)>0 ifx<0 and a(x)<0 ifx>0.

H2 a(x)<—-2x ifx<0 and a(x)> —2x if x> 0.
PROPOSITION 2 The conditions H1 and H2 imply A2.
Proof See Appendix B

H1 indicates that when the process fier example above its equilibrium
valuer = 0, that is X;_, > 0, there will be adjustments forcing; to decrease
so we must observE[AX;|X;_1] = a(X;_;) < 0. The H2 condition indicates
that these adjustments must be moderate and progressive to preclude explosions
Consider now the BRW proceg$). Without any loss of generality we fix
7 = 0 (this can be achieved by the transformatidn= X; — 7). As we have
seen the BRW satisfies condition AlHowever there is a potential problem
some adjustments can be explosive in the sense that every attempt to correct
the path(when X,_; is too “low” or too “high,” beyond some levelcan be
excessive and turn out to be explosiviehe hypothesis H2if satisfied cer-
tainly avoids explosive behaviddnfortunately our functiora(x) does not sat-
isfy H2 for all x. In practice this is not a major problem—in practical applications
we never expect that the cals x)| = 2| x| will happen
Neverthelesswe force H2 by couplingl) with the additional regularity con-
dition (in the caser = 0)

Xy = ¢Xi_1 + o8y, 0<¢ <1 ifla(Xi )| =2[X_4] (3

(we note that this condition is not necessary in the continuous-time case to an-
alyze stationarity We assume that the spt: a(x) < —2xif x < 0 anda(x) >

—2x if x > 0} has a positive Lebesgue measufée now state the following
proposition
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PROPOSITION 3 Suppose that; > 0, a, > 0, oy > 0 ([t), &, satisfy A4
(in Appendix A) andu; = ge;t = 1,2,...} is covariance stationary. Then X
(see equation (1)) with the condition (3) is geometrically ergodic.

Proof It is easy to see that the conditions H1 and H2 and also A1GA7
Appendix A) are satisfied u

What kind of stationary distributions can we expect from the BRW model?
BecauseX behaves like a RW most of the timsgay in the intervall, we must
expect a flat distribution in the centédn the other handutside ofl there are
strong reversionsso the tails of distribution must not be heawhis is what
we have observed in some financial time series in le\dtdice that in the first
difference sequence we observe a completely different patieavy tails peak
distribution at the centehigh kurtosis.

Therefore under some conditionsncluding «; > 0 anda, > 0, the BRW
process is geometrically ergodis bounded in probabilityand is not persis-
tent in the sense that shocks do not have permanent effects on the pidwess
implications for economic theory and policy actions are extremely important
and are well described in the literatufeor instancgpolicy actions are not so
important in stationary models because shocks only have a transitory. effect
Nicolau (1999 found some evidence that the DEMSD is a BRW(using daily
observations from the last 14 yearshus there must be an implicit but effec-
tive target zone regime that limits the size of exchange rate fluctuaftidns
conclusion applicable to the EUR@QUSD, is relevant for financial markets and
central banks

2.5. Alternative Models

We now address the issue of alternative modtsfar as we knowonly the
SETAR(3,1,1) (Tong 1990 and regime-switching modélith two regimes$
(Hamilton, 1994 can generate similgbut not identical behavior to the BRW

In the SETAR model th&[AX,| X, ; = X] function is not differentiable at the
threshold parameters and implies sudden transition of regimes as soon as some
threshold parameter is crossed by the procksshe regime-switching model

the Markov chain must depend on the past informatioiX ¢in the sense that

if the process is in the RW regime and if it crosses some high or low yHiee
probability of entering in the stationary regime must be highte think that

our model has some advantages over the two previously mentioned alternative
models in modeling bounded processes that behave like altRgva simpler
model based on a single reginiwithout suddenly switching regimgand is
easier to estimatdor instance through pseudotor quasiy maximum likeli-

hood Furthermore under some weak condition# converges weakly to a
continuous-time procegsnore precisely to a diffusion procesas the interval

of time between observations goes to zero
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We notice that the pseudo maximum likeliho@d even the maximum like-
lihood if we want to assume a distribution for the innovatioissimmediately
applicable to the BRWwith white noise or GARCH innovationsn a station-
ary framework However we should point out that the model is not identifiable
in the casax; + a, = 0 (it can be shown that the Fisher information matrix is
singulay. Actually, the casex; + a, = 0 leads to the RW modeThereforein
the estimation procedure it is suitable to restrict the parametesgda, to the
stationarity regionthat is imposinga; > 0 anda, > 0.

3. THE BOUNDED RANDOM WALK DIFFUSION MODEL
3.1. A Convergence Result

In the previous section we assumed that the interval between observations was
fixed and equal to onésay A = 1). Now we consider the case whexeis a
continuous-time proces$here are some advantages to assuming this hypoth-
esis For instance continuous-time processes are frequently preferred in fi-
nance theoryMoreover in a continuous-time framework it,ign general easier
to find limit properties such as stationary moments and distributions and in
general laws of probability governing the process than in the discrete-time ver-
sion On the other handcontinuous-time processes are more difficult to esti-
mate when the observations are discrétet even in this situatiofand this is
always the cagdt can be argued that continuous-time formulation is closer to
the way that the data are actually generattlle economy does not move in
regular discrete jumps corresponding to the observations—it is adjusting in be-
tween observations and it can change at any point of tiBetgstrom 1993.

How can we define a BRW in continuous time? One way consists of analyz-
ing the limit process of the stochastic difference equatibnas the length of
the discrete-time intervals between observations goes ta 3erdet us con-
sider (1) in a more convenient notatipmssuming for simplicity that o; is
constant

X, = X, +el(e ) —eeam) +gig,  Xy=C (4)

ti-1
Heret; are the instances at which the process is obser{gds to = t; =

- =T), A is the interval between observatigns=t; — t;_,;, ky, ando, are
parameters depending an(if A = 1, we consideik, = k ando, = o), and
ey, i =12,...} is a sequence ofiid. random variables witlE[ e, ] = 0 and
Var[e, ] = 1. We notice that whem is changing some parameters(#) must
change accordinglyWe are concerned with the following problemhich pro-
cess mus{4) converge to whem | 0? We are actually concerned with the
convergence of the sequen§*} formed as a step function froi, that is
X = X, if tf =t <t It can be provedunder the conditionk, = k +
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logA ando, = oVA, that the sequenciX} converges weaklyi.e, in dis-
tribution) asA | 0 to theX, process defined by the stochastic integral equation

t t
X;=c¢ +f ek(e ) — gaalXsmm) ds+f odW,, (5)
0 0

whereW is a standard Brownian motipmdependent o€.*

3.2. Two Diffusion Models

First, we suppose thaX is governed by the following stochastic differential
equationgSDE):

dX = e(e" ) — Xy dt+ odW, X, =¢, (6)

wherec is a constant antV is a standard Wiener procefs= t,).°

As in the discrete versigiit is evident that the cas®(x) = 0 (for all x) leads
to the Wiener processvhich can be understood as the RW process in continu-
ous time but having some special features—see Arri@d@4 Ch. 3). It is still
obvious thata(7) = 0, so X; must behave just like a Wiener process when
X; crossesr. However it is possible by selecting adequate values fara,,
anday,, to have a Wiener process behavior over a large interval centered on
(i.e.,, such that(x) ~ 0 over a large interval centered en Neverthelessvhen-
everX; escapes from some levels there will always be reversion effects toward
ther.

A possible drawback of moddb) is that the diffusion coefficient is con-
stant In the exchange rate framework and under a target zone regienghould
observe a volatility of shapé& with respect tox (maximum volatility at the
central rat¢ (see Krugman and Millerl992. On the other handunder a free
floating regimeit is common to observe a “smile” volatilitgsee Krugman and
Miller, 1992. For both possibilitieswe allow the volatility to be of shap@ or
U by assuming a specification such as éxpt+ 8(x — u)?}. Depending on the
B we will have volatility of N or U form. Naturally 8 = 0 leads to constant
volatility. This specificationwith 8 > 0, can also be appropriate for interest
rates(see Nicolay1998 Gray 1996. We proposetherefore
dX, = ek(e %) — gea(X—7)) gt 4 go/2+B/2%-m W\ X, = C. (7

0

3.3. Properties of the Models

Let us first consider the constant volatility modé). The first question to ask

is whether this process has exactly one continuous global solution over the en-
tire interval[ty,00). According to Arnold(1974 Theorem &7, p. 114), if the
infinitesimal coefficientsa (drift) andb (diffusion) are continuously differen-
tiable thenX has a unique local solution that is defined up to a random explo-
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sion timen in the intervalty < n < co. Thereforethe main question is iP[n =
oo] = 1. We now state the following proposition

PROPOSITION 4 The solution of the SDE (6) witts, = 0, an > 0 or a1 >
0,a,=00ra; >0, a, > 0 verifies Ay = oo] = 1.

Proof See Appendix B

Sq (6) has exactly one continuous global solution over the entire interval
[to,OO).

PROPOSITION 5 The solution of the SDE (6) wiits, = 0, o > 0 Or a1 >
0,a,=00ra; >0, a, > 0is ergodic and has a stationary density of the form

., 2ek e*al(X*T) eaz(X*T)
P(X) oc o= exp .z + . (8)

a; Ay

Proof See Appendix B

The boundarie$ = —co andr = oo are natural so they are not attracting and
cannot be attainetsee Karlin and Taylorl981) starting the process &, = x
wherel < x < r. This is an important difference from the discrete version of
model(1). In effect whereas the discrete-time version recursiorflgfcannot
start from an arbitrary value iR, the continuous-time version does not have
such a restrictioitwe only avoid having the initial points He= —co or r = o).
Intuitively, if X is continuousan oscillation explosive behavior in the bounded
RW is precludedFor exampleif the initial value X, = x is far from the equi-
librium point, there will be strong reversion effects towardAs soon asX;
starts to approximate the reversion effect will decrease and eventually will
stop whenr is reachedIn discrete timeif X, = x is far from the equilibrium
and if the condition(3) is not usedany tendency to return to equilibrium is
made by explosive oscillations that are further and further from

To exemplify this model we consider the cdses —2, a1 = a, = 2, 7 =
100, ando = 4. In the neighborhood of = 100 the functiora(x) is (approx-
imately) zerq so X behaves as a Wiener procdss a RW in continuous time
In effect if a(x) = 0, we havedX; = odW (or X; = Xy + oW,). In Figure 3 we
simulate two trajectories in the periad= [0,20], with X, = 100. We compare
the Wiener procesg'unbounded RWjJ with the BRW solution of (6), which
was simulated by the Platen and Wagner discretization mehodcheme of
order 15; see Kloeden and Plateh992. We draw two arbitrary lines to show
that the BRW almost never crosses these lii@&s the other handwithin the
bands the BRW behaves like a pure RW

Density can be very flat nearas Figure 4 show#\s we have already pointed
out, it is necessary to distinguish the distribution in levels from the distribution
in the first differences sequence€his latter is usually leptokurticFinancial
time in levels is usually integrated or near integratdebrefore over a large
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130

BRW (Continuous Time)

Ficure 3. Bounded random walk v&Viener process

interval of the state spac&e do not expect to find values more likely than
others so actually the distribution in levelgf existing)® must be flat at the
center

In the preceding exampleve havedp(7)/dx = 0, sor is a central measure
In the casex; = a, it seems clear that must be the stationary mednotice
that the stationary density is symmetrical arounahd the tails of distributions
fall abruptly on thex axis which must assure the existence of several moments—
actually this can be proved

Let us now consider the exponential RW mad&k now state the following
proposition about7).

PROPOSITION 6 If 8 > 0then inp =] =1. f B < 0anda; + a, > 0
then A7y = oo] = 1.

Proof See Appendix B

Sa under the conditions of the previous propositiéf) has exactly one con-
tinuous global solution on the entif&,, o).

PROPOSITION 7 If B8 > 0 the process (7) is ergodic and has a stationary
density of the form

n A[ALT(X) — Agfo(X)] } ’ )

D(X)ocexp{—ﬁ(x—u)z—tf T
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FIGURE 4. Stationary density

>
s
|

— \/Fek—a—p,al—’raz’
A2 — er(a1+zx2)+(a12/4ﬁ)’

A3 = eM(H1+“2)+(Q§/4ﬂ)’

2 —u)+
fi(x) = erf('B(XT'L;)al)

2 — _
fo(x) = erf(WT'L;)(xz),

2 (.,
erf(x) = ﬁf e "du.
0]

Letg* = |B|. If B < 0anda; + a, > 0 the process (7) is ergodic and has a
stationary density of the form

(10)

p(X) oc exp{3+(x WP As[—Asf3(X) + Ag f4(x)]}’

VB*
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where

A4 = \/?Gki (7',

Ag = e (@B (“r+u)+an)/ap")

A = g (@B’ (1w +ax)/4B")
. 2,3+(X_,U«)_a1>
fa(x) = erfi )
0 = enn 212
i 2,3+(X_,U«)+a2>
f,(x) = erfi )
4(%) ( T

2 (™,
erfi(x) = FJ e’ du.
™ Jo

Proof See Appendix B

Finally, we point out a new form of RW behavior in a stationary framework
From Proposition 7 we see that the solution of the particular case

dX, = e”/2H B2 m B>0 (11)

turns out to be stationargespite the drift's nullityAt first sight, as the drift is
null, the process should not have any attraction toward a stable. pddut-
ever the process drifts tg ast — oo (it can be proved that is the stationary
mean. Moreover E[X;|Xs] = Xs (t = s), but the process is not integrated in
the usual econometric sense because integrated processes (hlrarg surely.
Intuitively we can explain it as followswvhen the process is neparthe instan-
taneous volatilityb(x) = exp{c/2 + B/2(x — w)?}, is low, and the process
tends to remain neat. If X drifts away fromu, volatility increasesNow X is
much more irregulaiso there is a positive probability that the process crogses
again It is the volatility that pushes the process toward a steady pdnt the
other handin this mode] “large changes tend to be followed by large changes
of either sign and small changes tend to be followed by small charides
effect whenXis nearp small changes tend to be followed by small changes as
volatility is low; when X is far from p large changes tend to be followed by
large changes as volatility is high

Therefore roughly speakingit is also possible to have RW behavigvith a
null drift) in a stationary framework as long as the volatility pushes the process
toward a steady point as described in the last paragiph ultimately makes
the process bounde@ee an application for interest rates in Nicqld998;
alsq in this paperwe address the estimation issue in a continuous-time model
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NOTES

1. There are two major reasons why the DEWED exchange rate should not reach any arbi-
trary large valueFirst, the inflation rate and the gross national prod(@NP) growth of the two
economies have not shown strong and persistent differencest fleast the last 15 yearsSecond
the G-7 council of economic ministers agreed on a set of policies with regard to exchangérates
effect by the end of 1986the G-7 council considered that the USD had depreciated “too rhuch
The Plaza and Louvre Accor985 and 198y agreed to stabilize exchange rat@his meant
limiting the size of exchange rate fluctuations with the use of coordinated central bank interven-
tion. So in practice it is possible that the DEMSD has been in an implicit target zone regime

2. If Xis geometrically ergodic theX is asymptotically stationary exponentially fasespite
the initial valug. Furthermoreif X, (initial value) has stationary distributiotr, X is strictly sta-
tionary and covariance stationaryfik?z (dx) < co.

3. It would be possible to repladdl by the following condition there exist &K > 0 and a
M > 0 such thata(x) > K if x < —M anda(x) < —K if x > M.

4. We apply Theorem .2 in Nelson(1990.

5. Obviously (6) is equivalent ta5).

6. We are talking about stationary distributiors® these distributions only make sense when
the process is stationary

7. Technically when the process is in its natural scédee the following notation in Appendix
B), that is s(x) = 1, the quantitym(x)&? is of the order of the expected time the process spends in
the interval(x — &,x + &) given Xy = x before departure thered$ee Karlin and Taylor1981
pp. 197-198 in effect E[Ty_s x+¢| Xo = X] = m(x)e? where T, = min{T,, Ty} and T, is hitting
time of a, so T, p is the first time the process reaches eithar b). It can be proved thain(x) =
exp{—B(x — w)?}, som(x) is maximum wherx = u. That is the process spends more time in the
interval (u — &, u + €) than in any other intervalwith fixed ).
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APPENDIX A: THE CONDITIONS A1-A7

Al. 0 € R is an equilibrium state in the sense tha(0) = 0.

A2. 0 € R is exponentially asymptotic stabléhat is [K,c > 0 such thatdt = 0,
andxy € R | ui(Xo)|| = Ke | %o, where]| x|| is the Euclidean norm of and u(Xo) is
the tth iteration w(Xo) = m(w(...n(X0))) given the initial valuex, (observe that
mi(Xo) = pi ps(X—s—k)), t > k> s).

A3. Ox € R, and for all neighborhood¥ of 0 € R there is a nonnull conditional
probability of o (X;—1) &; being inV given X;_; = x.

A4. The distribution ofe; has an absolutely continuous componenith respect to
the Lebesgue measyreith positive probability density function over some open inter-
val (—é,6).

A5. 9f(0,0)/9x # 0.

A6. u is Lipschitz continuous oveR; that is M > 0 such thatOx,y € R
() = w(Yl = Mlx—yl.
A7. DX E R, 0 < E[]o(Xi—1) &) [ Xi—1 = X] < co.
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APPENDIX B: PROOFS

Proof of Proposition 2. The joint condition of H1 and H2 is & a(x) < —2xif x <
0 and—2x < a(x) < 0 if x > 0. Therefore we have in both cases

—-2x<a(x) <0 |x+ax)| <|x|,

0<a(x) < —2xe |x+ax)| <|x|,
so we can writd w(X)| = |x + a(x)| < [x] or |w(X)| = ¢|x| where 0< ¢ < 1. Now
|1 (Xo)| = b,

[2(X)| = [ (1 (X)) = @l (Xo)| = d?[ o],

[ (Xo)| = @[ Xol,
so A2 holds withc = —log ¢ > 0. [ |

The remaining proofs are based on the following concepts

LetdX; = a(X;) dt + b(X;) dW, t > to, be a diffusion process = (l,r) the state of
space ofX processs(z) = exp{—fzz0 2a(u)/b?(u) du} the scale density functignvhere
Zo is an arbitrary point insidé, andm(u) = (b?(u)s(u))~* the speed densitisee Kar-
lin and Tayloy 1981). Let S(I, x] = lim,_,; [ s(u) duandS[x,r) = lim,__,, [;?s(u) du
wherel < x; < x < X, < r. According to Arnold(1974 p. 114), if the infinitesimal
coefficientsa and b have continuous derivatives with respectdahen there exists a
unigue continuous process defined until the random moment explaesinrthe inter-
val tg < 1 = co. Ikeda and Watanab@ 981, pp. 362—363 have proved that i§(1, x] =
S[x,r) = co thenP[n = wo|Xg = x] = L.

Now, it is known that ifS(l, x] = S[x,r) = oo and f" m(x) dx < oo thenX is ergodic
and the invariant distributio® has densityp(x) = m(x)/f;" m(u) du with respect to
the Lebesgue measufsee Skorokhodl989 Theorem 16

Proof of Proposition 4. We must proveS(l, x] = S[x,r) = co wherel = —co andr =
co anda(x) = e¥(e~ (=7 — gx2(x=1) p(x) = ¢. First consider the case; > 0, a, >
0. We have

2ek e—al(X—T) eaz(x—r)
S(x) = expi — + .
o ay ay

Now, if a; > 0, @, > 0 thens(x) — oo asx — oo or x — — co. Then S(I, x] = S[x,r) =
co. In the casex; > 0, a, = 0 (the analysis ofr; = 0, @, > 0 is simila) we have

2ek e*al(X*T)
s(x) = exp{—2 <— + x)},
o ay

and sos(X) — o asx — oo or X = — oco. Then S(I, x] = §[x,r) = co. n
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Proof of Proposition 5. We must provef,r m(x) dx < oco. First, consider the case
ai > 0, ar, > 0. We have

5 2ek e—dl(X_T) edz(x_T)
m(x) = o ?expy —— + .
ag

g £%)

It is easy to conclude that there are some positive conskasits such that
m(x) = f(x) = exp{k, — k,x?}, Ox€E I.

Now [r f(X) < oo = [rm(X) dx < oo. In the casey; > 0, a, = 0 (the analysis ofy; =
0, a, > 0 is similap we have

Zek e*al(X*T)
m(x) = a‘zexp{——2 (— + x>}
ag

g

As

JRm(x)dx: J:; m(x)derfOOO m(x) dx

0] o
= J exp{k, — kzxz}dx+f exp{—ksx}dx < oo
oo 0o

then /" m(x) dx < oo (for ky, k, ks > 0). u

Proof of Proposition 6. We must proveS(l, x] = §[x,r) = co wherel = —oo0 and
r = oo anda(x) = ek(e-axm — g1 p(x) = g7/2+8/20-w” Consider the case
B > 0. We have

—A[AT1(X) + Az fa(X)] }
VE b

s(Xx) = exp{

where
Al — \/;ekfo'*/.wzlffaz,
A2 = eT(l’é1+l¥2)+(a12/4,3),

'A\3 — elb(ﬂ1+ﬂ2)+(0622/45),

2B(X— ) +
f0x) = erf<ﬁ(XTf;>a1>7

2 — -«
fo(x) = erf('B(XT'L;)Z)

2 x »
erf(x) = ﬁf e “du.
0
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It is not possible to determin8(x) = [*s(u) du, but it can be proved tha(x) is not
integrable The functions(x) is of type
exp{c, erf(c, + c3x) + c,erf(cg + cgx)},

wherec; are parameterd\s —1 = erf(x) = 1 it follows thats(x) does not tend to zero
as |x| — oo. Therefore S(I, x] = S[x,r) = co. Now consider the casp < 0 and let
B =|B|. We have

_ As[—AsT3(x) + Ag fh(X)]
s(x) = exp{— Nrsi },
where

A, = Nmeko,

Ag = e (@B Crrwtan/ap’)

Ay = e (@2B" (Tmw)+a2)/4p")

[(2BT(X— ) —ay
fa(x) = erﬂ(T),

: 2,8+(x—,u)+a2)
f,(x) = erfi| —————|,
(x) =er |< ZVF

erfi(x) = i JX e’ du
N7 Jo )

The functions(x) is of type

. aq . oy
exp{—clerf|<cqx+ C3— F) + c4erf|<c2x+ Cy+ —)}
B* NB*

wherecy, c,, ¢, > 0 andcz € R. As erfi(x) is not boundegdthis case needs to be ana-
lyzed carefully Let us study the function

d(x) = —cyerfi(x+ ky) + cerfi(x + k,),

C1,C2 > 0. The derivative ofp is
2 +kq)? +ky)?
¢ (x) = = (- e e 4 ggelrie,

If ko > ky then
>0 X>Xp

¢'(x) = {

<0 x<Xp

for somex,, and under these conditiong(x) increases agx| increasegto any arbi-
trary large valug Without any loss of generalityet us takes(x) = e?® wherek, = a,
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andk; = —ay. Therefore the conditiom, + a», > 0 ensures thas(x) — oo, and so
S(I, x] = S[X,r) = co. [ |

Proof of Proposition 7. We must provef,; m(x) dx < co. First consider the case
B > 0. We have

m(X) o eXp{B(X —wW2—a+ AL[A f1(X) — Asfa(X)] }’

VB

whereAy, Ay, Ag, f1, andf, are those given in the proof of PropositionThe function
m(x) is of type

explc, + CyX — Cx2 + f(X)},

wherec,, ¢z > 0, andf(x) satisfies| f(x)| < L < oo (notice thatf (x) depends on con-
stants and on the erf functiniTherefore it is possible to finéy, ky, ks > 0 such that
m(x) = exp{k; + kox — ksx?2}, so [’ m(x) dx = co. In the case3 < 0 and using the
ideas of the proof of Proposition 6 it can be shown thatridg) tends quickly to—oo
as|x| — oo. Som(x) is integrable n
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