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Several economic and financial time series are bounded by an upper and lower
finite limit ~e+g+, interest rates!+ It is not possible to say that these time series are
random walks because random walks are limitless with probability one~as time
goes to infinity!+ Yet, some of these time series behave just like random walks+ In
this paper we propose a new approach that takes into account these ideas+ We
propose a discrete-time and a continuous-time process~diffusion process! that gen-
erate bounded random walks+ These paths are almost indistinguishable from ran-
dom walks, although they are stochastically bounded by an upper and lower finite
limit + We derive for both cases the ergodic conditions, and for the diffusion pro-
cess we present a closed expression for the stationary distribution+ This approach
suggests that many time series with random walk behavior can in fact be station-
arity processes+

1. INTRODUCTION

The study of stationary versus nonstationary time series has became a key
issue in both time series and econometrics analysis+ Their implications for eco-
nomic theory are extremely important+ Some time series seems to be nonsta-
tionary, such as industrial production, consumer prices, and stock prices, among
others~see Kwiatkowski, Phillips, Schmidt, and Shin, 1992!+ However there
are others where there seems to be no consensus+ For example, Perron~1989!
can not reject the unit root hypothesis for the nominal interest rate+ In the
same direction, Chan, Karolyi, Longstaff, and Sanders~1992! point out that
the mean reversion for the U+S+ interest rate is very weak, which is a sign of
unit root possibility+ However, Dahlquist~1996! finds some mean~linear! re-
version effects for interest rates in Denmark, Germany, Sweden, and the UK+
On the other hand, Aït-Sahalia~1996! concluds, that the mean linear reversion
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is not adequate for the 7-day Eurodollar deposit rate+ He finds that the drift
~infinitesimal coefficient of the diffusion process! of the spot rate process is
essentially zero as long as the rate is between 4 and 17% but pulls it strongly
toward this middle region whenever it escapes+ Thus, in the interval from 4 to
17% the process behaves like a random walk~RW! process~as the drift is
zero! but is not a true RW as the process shows reversion effects whenever
some high or low value is reached+ Aït-Sahalia’s interpretation seems to solve
the puzzle: the interest rate behaves like a RW—so the usual test of stationar-
ity is not able to reject the unit root—but the process is obviously bounded
with reversion effects at high and low levels, which eventually leads to sta-
tionarity and a mean reversion+

Regarding the exchange rate, there is now a considerable amount of evi-
dence that real exchange rates do not have unit roots~see Rogoff, 1996; Rose,
1996! despite initial views~see Roll, 1979; Adler and Lehman, 1983!+ There-
fore it is expected, in general, that real exchange rates are bounded in proba-
bility ~i+e+, do not diverge to6`! and they have long-run values to converge
to+With regard to nominal exchange rates it can be argued from economic and
statistical considerations that some nominal exchange rates should be bounded
or be in some kind of implicit target zone regime+ Nicolau ~1999! argues that
the DEM0USD exchange rate is not a RW~at least in the last 15 years! despite
the conclusions of the Dickey–Fuller test+ That is, the DEM0USD behaves like
a RW but cannot be a true RW as there is some evidence that this exchange rate
is bounded1 ~we emphasize that the unit root process goes to1` or 2` with
probability one as time goes to1` so a bounded process can not have a unit
root!+

These ideas suggest that some economic and financial time series can be-
have just like a RW~with some volatility pattern! but because of some eco-
nomic reasons they are bounded processes~e+g+, in probability! and even
stationary processes+ To build a model with such features it is necessary to
allow RW behavior most of the time but force mean reversions whenever the
processes try to escape from some interval+ There is some evidence that the
usual Dickey–Fuller test under general specification of alternative hypothesis
has low power to detect stationary processes+ Nicolau ~1999! shows that the
power of the Dickey–Fuller test is extremely low when the alternative hypoth-
esis is a stationary bounded RW process~we present this model next; see also
Kwiatkowski et al+, 1992!+

In this paper our aim is to present a new model in discrete and in continuous
time that can generate paths with the following features: as long as the process
is in the interval of moderate values, the process basically looks like a RW, but
there are reversion effects toward the interval of moderate values whenever the
process reaches some high or low values+ As we will see, these processes can
admit—relying on the parameters—stationary~or ergodic! distributions, so we
will come to the following interesting conclusion: processes that are almost
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indistinguishable from the RW process can be, in effect, stationary with ergo-
dic distributions+

The paper consists of two main sections+ In Section 2 we introduce and dis-
cuss the main properties of the bounded random walk~BRW! process in dis-
crete time+ We do the same in Section 3 for a continuous-time version of the
BRW+ In the discrete-time version we admit a GARCH representation for the
volatility, whereas in the continuous-time case we discuss an exponential form
that could be appropriate for modeling a “smile” curve for volatility~Krugman
and Miller, 1992!+ In all cases we state the conditions under which the pro-
cesses are ergodic+2 We present examples to make these models clear+

2. THE BOUNDED RANDOM WALK IN DISCRETE TIME

The previous section shows that a BRW model can be appropriate for modeling
some economic and financial time series+ In this section we start to discuss
some proprieties that a BRW model should satisfy+

2.1. Some Properties

If a process is a RW, the functionE @DXt 6Xt21 5 x# ~whereDXt 5 Xt 2 Xt21!
must be zero~for all x!+ On the other hand, if a process is bounded~in proba-
bility ! and mean-reverting tot ~say!, the functionE @DXt 6Xt21 5 x# must be
positive if x is belowt and negative ifx is abovet+

Now consider a process that is bounded but behaves like a RW+What kind of
function shouldE @DXt 6Xt21 5 x# be? As the process behaves like a RW, ~i! it
must be zero in some interval and, because the process is bounded, ~ii ! it must
be positive~negative! whenx is “low” ~“high” !+ Moreover we expect that~iii !
E @DXt 6Xt21 5 x# is a monotonic function, which, associated with~ii !, means
that the reversion effect should be strong ifx is far from the interval of rever-
sion and should be weak in the opposite case; ~iv! E @DXt 6Xt21 5 x# is differ-
entiable~on the state space ofX ! to assure a smooth effect of reversion+ This
kind of behavior, for instance, with regard to interest and exchange rates, is
implicit in Aït-Sahalia~1996!, Stanton~1997!, and Nicolau~1999! through the
nonparametric estimation ofE @DXt 6Xt21 5 x# + A possible representation for
E @DXt 6Xt21 5 x# will be provided in Section 2+3+

To satisfy~i!–~iv! we assumeE @DXt 6Xt21 5 x# 5 ek~e2a1~x2t! 2 ea2~x2t! !
with a1 $ 0, a2 $ 0, k , 0+ Let us fix a~x! 5 ek~e2a1~x2t! 2 ea2~x2t! !+ As we
will see, this function is sufficiently general and flexible in the sense that it can
generate a vast range of BRWs in a stationary~or nonstationary! framework
~because stationary processes are bounded in probability, it is quite natural to
expect that BRWs are stationary!+ In addition, this function has good proper-
ties, allowing the extension of our discrete-time model to a continuous-time
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framework+ There may be other functions similar toa~x! that can generate
BRWs, so thea~x! function is not unique+ As far as we know, the only alterna-
tive models, in the literature, are the SETAR~3,1,1! ~self-exciting threshold auto-
regressive; Tong, 1990! and the regime-switching model~Hamilton, 1994!, see
however equation~11!+ In Section 2+5, we show that our model has several
important advantages over these two alternative models+

With our assumption aboutE @DXt 6Xt21 5 x# we propose, therefore, the BRW
in discrete time:

Xt 5 Xt21 1 ek~e2a1~Xt212t! 2 ea2~Xt212t! ! 1 st «t (1)

~a1 $ 0, a2 $ 0, k , 0! where$«t % is a sequence of independent and identi-
cally distributed~i+i+d+! random variables withE @«t # 5 0 and Var@«t # 5 1 and
st ~volatility! belongs to the information setFt21 5 s~Xt : t # t 2 1!, for ex-
ample, st

2 can have a GARCH representation~Bollerslev, 1986!+

2.2. The Function a(x)

We now analyze the functiona~x! 5 ek~e2a1~x2t! 2 ea2~x2t! !+ It is evident that
the casea1 1 a2 5 0 leads to the unit root~because it impliesa~x! 5 0, ∀x!+ It
is still obvious~in more general cases, e+g+, a1 . 0 anda2 . 0! thata~t! 5 0,
so Xt must behave just like a RW wheneverXt21 5 t+

On the other hand, we can select the parametersk, a1, anda2 such thata~x! '
0 wheneverXt21 is in the neighborhood oft+ The range of the interval where
a~x! is approximately null depends on the parameters+ Typically, the casea1 .
0, a2 . 0, k , 0, and6k6 is high with regard toa1 anda2 entailsa~x! ' 0 over
a large interval centered ont+ Suppose thatXt21 moves significantly away from
t, for example, Xt21 . t+ Then, a~x! turns out to be negative, and the proba-
bility that Xt decreases will be high+ Thus, if Xt21 is “high” and far away from
t there will be reversion effects that pull it toward lower values+ However, near
t these reversion effects will be almost null+

Let us see, in more detail, the meaning of the parametersa1, a2, t, and k+
The parameterk controls the range of the interval under which the process be-
haves like a RW+ Whenk , 0 and6k6 is high ~low! the range tends to be high
~low!+ Thet parameter is a central measure of the process because, as we have
seen, a~t! 5 0+ We should expectt to be the mean of the process under the
hypothesisa1 5 a2 ~we will turn again to this issue in Section 3+3!+ However,
if a~x! is approximately zero over a large interval~centered int! we should
expect a reversion effect toward a neighborhood oft ~and not exactly tot!+
Finally, the a1 $ 0 anda2 $ 0 parameters measure the reversion effect of the
process whenever it escapes from the interval where the functiona~x! is ap-
proximately zero+ High values of these parameters imply a strong reversion ef-
fect+ It is easy to see that thea1 ~a2! parameter is linked to the reversion effect
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when the process is low~high!+We notice that the casea1 Þ a2 leads to asym-
metrical effects+ For instance, according to Gray~1996!, among others, the in-
terest rate process behaves typically like a RW when the process is moderate or
low, showing, however, a strong reversion effect when it is very high+ There-
fore, we expecta2 . a1 ~what prevents the process from reaching the zero
state is actually the very low volatility—see our discussion at the end of Sec-
tion 3+3!+ Another example of the casea1 Þ a2 is analyzed in Nicolau~1999! in
the study of the DEM0USD exchange rate+

2.3. An Example

In Figure 1 we drawa~x! 5 ek~e2a1~x2t! 2 ea2~x2t! ! for the following values:
k 5 215, a1 5 a2 5 3, andt 5 100+We see that in the intervalI 5 ~95,105! the
function a~x! is ~approximately! zero, so in this intervalX behaves like a RW+
Outside ofI there are reversions towardI+

In Figure 2, we simulated two paths~t 5 1,2, + + + ,1,000!: a BRW path from
~1!, using the values presented previously andst 5 s 5 +4, and a RW path
from Xt 5 Xt21 1 +4«t + In both processes we use the same values of«t ~we
assume that$«t % is a sequence of i+i+d+ random variables withN~0,1! distribu-
tion!+ We see that both trajectories are almost indistinguishable untilt 5 140
~approximately!+ Near the value 105 there are reversion effects only in the BRW,

Figure 1. Curvea~x!+
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that is, a~x! , 0 ~see Figure 1!, which prevent the process from increasing
beyond 105+ After that the processes follow different trajectories+

2.4. Stationarity

First, consider a homogeneous stochastic discrete processX5 $Xt ; t 5 0,1,2, + + + %
with initial valueX0 5 x0 ~possibly random!+ Let us assume thatX is a Markov
process governed by the function

Xt 5 f ~Xt21,«t !, (2)

where

f ~Xt21,«t ! 5 m~Xt21! 1 s~Xt21!«t ,

m~Xt21! 5 Xt21 1 a~Xt21!,

a :R r R is a nonlinear function ofXt21, and $«t ; t $ 1% is a stochastic pro-
cess+ There are several approaches to check stationarity and ergodicity~see
Borovkov, 1998!+ For instance, consider Proposition 1, which follows ~adapted
from Chang, Appendix 1, in Tong, 1990, pp+ 448–466!+

Figure 2. Bounded random walk vs+ random walk+
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PROPOSITION 1+ Assume that f is continuous everywhere and continuously
differentiable in a neighborhood of the origin. Suppose that conditions A1–A7
(see Appendix A) hold. Then X5 f ~Xt21,«t ! is geometrically ergodic.

Proof+ See Tong~1990, pp+ 448–466!+

For nonlinear time series, it is very difficult to check the~very important!
A2 condition ~see Appendix A!+ This is also true in our model+ Basically, A2
indicates~in state spaceR1! that 6m t~x0!6 # Ke2ct6x06 whereK . 0, c . 0,
andm t~x0! is thetth iterationm t~x0! 5 m~m~ + + +m~x0!!! given the initial value
x0+ The problem is that it is generally impossible, for nonlinear time series, to
get m t~x0! 5 m~m~ + + +m~x0!!! as a function of the initial value+ However, in
the case under analysis, with m~x! 5 x 1 a~x!, we consider the following con-
ditions,3 which are easy to check+

H1 a~x! . 0 if x , 0 and a~x! , 0 if x . 0+

H2 a~x! , 22x if x , 0 and a~x! . 22x if x . 0+

PROPOSITION 2+ The conditions H1 and H2 imply A2.

Proof+ See Appendix B+

H1 indicates that when the process is, for example, above its equilibrium
valuet 5 0, that is, Xt21 . 0, there will be adjustments forcingXt to decrease,
so we must observeE @DXt 6Xt21# 5 a~Xt21! , 0+ The H2 condition indicates
that these adjustments must be moderate and progressive to preclude explosions+

Consider now the BRW process~1!+ Without any loss of generality we fix
t 5 0 ~this can be achieved by the transformationYt 5 Xt 2 t!+ As we have
seen, the BRW satisfies condition A1+ However, there is a potential problem:
some adjustments can be explosive in the sense that every attempt to correct
the path~when Xt21 is too “low” or too “high,” beyond some level! can be
excessive and turn out to be explosive+ The hypothesis H2, if satisfied, cer-
tainly avoids explosive behavior+ Unfortunately our functiona~x! does not sat-
isfy H2 for all x+ In practice this is not a major problem—in practical applications
we never expect that the case6a~x!6 $ 26x6 will happen+

Nevertheless, we force H2 by coupling~1! with the additional regularity con-
dition ~in the caset 5 0!

Xt 5 fXt21 1 st «t , 0 , f , 1 if 6a~Xt21!6$ 26Xt216 (3)

~we note that this condition is not necessary in the continuous-time case to an-
alyze stationarity!+We assume that the set$x : a~x! , 22x if x , 0 anda~x! .
22x if x . 0% has a positive Lebesgue measure+ We now state the following
proposition+
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PROPOSITION 3+ Suppose thata1 . 0, a2 . 0, st . 0 ~∀t ! , «t satisfy A4
(in Appendix A) and$ut 5 st «t ; t 5 1,2, + + + % is covariance stationary. Then X
(see equation (1)) with the condition (3) is geometrically ergodic.

Proof+ It is easy to see that the conditions H1 and H2 and also A1–A7~in
Appendix A! are satisfied+ n

What kind of stationary distributions can we expect from the BRW model?
BecauseX behaves like a RW most of the time, say, in the intervalI, we must
expect a flat distribution in the center+ On the other hand, outside ofI there are
strong reversions, so the tails of distribution must not be heavy+ This is what
we have observed in some financial time series in levels+ Notice that in the first
difference sequence we observe a completely different pattern~heavy tails, peak
distribution at the center, high kurtosis!+

Therefore, under some conditions, including a1 . 0 anda2 . 0, the BRW
process is geometrically ergodic, is bounded in probability, and is not persis-
tent in the sense that shocks do not have permanent effects on the process+ The
implications for economic theory and policy actions are extremely important
and are well described in the literature+ For instance, policy actions are not so
important in stationary models because shocks only have a transitory effect+
Nicolau~1999! found some evidence that the DEM0USD is a BRW~using daily
observations from the last 14 years!+ Thus, there must be an implicit but effec-
tive target zone regime that limits the size of exchange rate fluctuations+ This
conclusion, applicable to the EURO0USD, is relevant for financial markets and
central banks+

2.5. Alternative Models

We now address the issue of alternative models+ As far as we know, only the
SETAR~3,1,1! ~Tong, 1990! and regime-switching model~with two regimes!
~Hamilton, 1994! can generate similar~but not identical! behavior to the BRW+
In the SETAR model theE @DXt 6Xt21 5 x# function is not differentiable at the
threshold parameters and implies sudden transition of regimes as soon as some
threshold parameter is crossed by the process+ In the regime-switching model
the Markov chain must depend on the past information ofX ~in the sense that,
if the process is in the RW regime and if it crosses some high or low value, the
probability of entering in the stationary regime must be high!+ We think that
our model has some advantages over the two previously mentioned alternative
models in modeling bounded processes that behave like a RW+ It is a simpler
model based on a single regime~without suddenly switching regimes! and is
easier to estimate, for instance, through pseudo-~or quasi-! maximum likeli-
hood+ Furthermore, under some weak conditions, it converges weakly to a
continuous-time process~more precisely to a diffusion process! as the interval
of time between observations goes to zero+
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We notice that the pseudo maximum likelihood~or even the maximum like-
lihood if we want to assume a distribution for the innovations! is immediately
applicable to the BRW~with white noise or GARCH innovations! in a station-
ary framework+ However, we should point out that the model is not identifiable
in the casea1 1 a2 5 0 ~it can be shown that the Fisher information matrix is
singular!+ Actually, the casea1 1 a2 5 0 leads to the RW model+ Therefore, in
the estimation procedure it is suitable to restrict the parametersa1 anda2 to the
stationarity region, that is, imposinga1 . 0 anda2 . 0+

3. THE BOUNDED RANDOM WALK DIFFUSION MODEL

3.1. A Convergence Result

In the previous section we assumed that the interval between observations was
fixed and equal to one~say, D 5 1!+ Now we consider the case whereX is a
continuous-time process+ There are some advantages to assuming this hypoth-
esis+ For instance, continuous-time processes are frequently preferred in fi-
nance theory+ Moreover, in a continuous-time framework it is, in general, easier
to find limit properties such as stationary moments and distributions and in
general laws of probability governing the process than in the discrete-time ver-
sion+ On the other hand, continuous-time processes are more difficult to esti-
mate when the observations are discrete, but even in this situation~and this is
always the case! it can be argued that continuous-time formulation is closer to
the way that the data are actually generated: “the economy does not move in
regular discrete jumps corresponding to the observations—it is adjusting in be-
tween observations and it can change at any point of time”~Bergstrom, 1993!+

How can we define a BRW in continuous time? One way consists of analyz-
ing the limit process of the stochastic difference equation~1! as the length of
the discrete-time intervals between observations goes to zero+ So, let us con-
sider ~1! in a more convenient notation, assuming, for simplicity that st is
constant:

Xti 5 Xti21
1 ekD~e2a1~Xti21

2t! 2 ea2~Xti21
2t! ! 1 sD «ti , X0 5 c+ (4)

Here ti are the instances at which the process is observed, ~0 # t0 # t1 #
{{{ # T !, D is the interval between observations, D 5 ti 2 ti21, kD andsD are
parameters depending onD ~if D [ 1, we considerkD 5 k and sD 5 s!, and
$«ti , i 5 1,2, + + + % is a sequence of i+i+d+ random variables withE @«ti # 5 0 and
Var@«ti # 5 1+ We notice that whenD is changing some parameters in~4! must
change accordingly+ We are concerned with the following problem: which pro-
cess must~4! converge to whenD f 0? We are actually concerned with the
convergence of the sequence$Xt

D% formed as a step function fromXti , that is,
Xt

D 5 Xti if ti # t , ti11+ It can be proved, under the conditionskD 5 k 1
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log D and sD 5 sMD, that the sequence$Xt
D% converges weakly~i+e+, in dis-

tribution! asD f 0 to theXt process defined by the stochastic integral equation

Xt 5 c 1E
0

t

ek~e2a1~Xs2t! 2 ea2~Xs2t! ! ds1E
0

t

sdWs, (5)

whereW is a standard Brownian motion, independent ofc+4

3.2. Two Diffusion Models

First, we suppose thatX is governed by the following stochastic differential
equations~SDE!:

dXt 5 ek~e2a1~Xt2t! 2 ea2~Xt2t! ! dt 1 sdWt , Xt0 5 c, (6)

wherec is a constant andW is a standard Wiener process~t $ t0!+5

As in the discrete version, it is evident that the casea~x! 5 0 ~for all x! leads
to the Wiener process~which can be understood as the RW process in continu-
ous time but having some special features—see Arnold, 1974, Ch+ 3!+ It is still
obvious thata~t! 5 0, so Xt must behave just like a Wiener process when
Xt crossest+ However, it is possible, by selecting adequate values fork, a1,
anda2, to have a Wiener process behavior over a large interval centered ont
~i+e+, such thata~x! ' 0 over a large interval centered ont!+ Nevertheless, when-
everXt escapes from some levels there will always be reversion effects toward
the t+

A possible drawback of model~6! is that the diffusion coefficient is con-
stant+ In the exchange rate framework and under a target zone regime, we should
observe a volatility of shapeù with respect tox ~maximum volatility at the
central rate! ~see Krugman and Miller, 1992!+ On the other hand, under a free
floating regime, it is common to observe a “smile” volatility~see Krugman and
Miller , 1992!+ For both possibilities, we allow the volatility to be of shapeù or
ø by assuming a specification such as exp$s 1 b~x 2 m!2%+ Depending on the
b we will have volatility of ù or ø form+ Naturally, b 5 0 leads to constant
volatility+ This specification, with b . 0, can also be appropriate for interest
rates~see Nicolau, 1998; Gray, 1996!+ We propose, therefore,

dXt 5 ek~e2a1~Xt2t! 2 ea2~Xt2t! ! dt 1 es021b02~Xt2m!2
dWt , Xt0 5 c+ (7)

3.3. Properties of the Models

Let us first consider the constant volatility model~6!+ The first question to ask
is whether this process has exactly one continuous global solution over the en-
tire interval @t0,`!+ According to Arnold~1974, Theorem 6+37, p+ 114!, if the
infinitesimal coefficientsa ~drift! andb ~diffusion! are continuously differen-
tiable thenX has a unique local solution that is defined up to a random explo-
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sion timeh in the intervalt0 , h #`+ Therefore, the main question is ifP@h 5
`# 5 1+ We now state the following proposition+

PROPOSITION 4+ The solution of the SDE (6) witha1 5 0, a2 . 0 or a1 .
0, a2 5 0 or a1 . 0, a2 . 0 verifies P@h 5 `# 5 1.

Proof+ See Appendix B+

So, ~6! has exactly one continuous global solution over the entire interval
@t0,`!+

PROPOSITION 5+ The solution of the SDE (6) witha1 5 0, a2 . 0 or a1 .
0, a2 5 0 or a1 . 0, a2 . 0 is ergodic and has a stationary density of the form

Sp~x! @ s22 expH2
2ek

s2 Se2a1~x2t!

a1

1
ea2~x2t!

a2
DJ + (8)

Proof+ See Appendix B+

The boundariesl 5 2` andr 5` are natural so they are not attracting and
cannot be attained~see Karlin and Taylor, 1981! starting the process atX0 5 x
wherel , x , r+ This is an important difference from the discrete version of
model ~1!+ In effect, whereas the discrete-time version recursion of~1! cannot
start from an arbitrary value inR, the continuous-time version does not have
such a restriction~we only avoid having the initial points bel 5 2` or r 5`!+
Intuitively, if X is continuous, an oscillation explosive behavior in the bounded
RW is precluded+ For example, if the initial valueX0 5 x is far from the equi-
librium point, there will be strong reversion effects towardt+ As soon asXt

starts to approximatet the reversion effect will decrease and eventually will
stop whent is reached+ In discrete time, if X0 5 x is far from the equilibrium
and if the condition~3! is not used, any tendency to return to equilibrium is
made by explosive oscillations that are further and further fromt+

To exemplify this model we consider the casek 5 22, a1 5 a2 5 2, t 5
100, ands 5 4+ In the neighborhood oft 5 100 the functiona~x! is ~approx-
imately! zero, soX behaves as a Wiener process~or a RW in continuous time!+
In effect, if a~x! 5 0, we havedXt 5 sdWt ~or Xt 5 X0 1 sWt !+ In Figure 3 we
simulate two trajectories in the periodt [ @0,20# , with X0 5 100+ We compare
the Wiener process~“unbounded RW”! with the BRW, solution of ~6!, which
was simulated by the Platen and Wagner discretization method~or scheme of
order 1+5; see Kloeden and Platen, 1992!+We draw two arbitrary lines to show
that the BRW almost never crosses these lines+ On the other hand, within the
bands the BRW behaves like a pure RW+

Density can be very flat neart as Figure 4 shows+As we have already pointed
out, it is necessary to distinguish the distribution in levels from the distribution
in the first differences sequence+ This latter is usually leptokurtic+ Financial
time in levels is usually integrated or near integrated; therefore, over a large
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interval of the state space, we do not expect to find values more likely than
others, so actually the distribution in levels~if existing!6 must be flat at the
center+

In the preceding example, we haved Sp~t!0dx 5 0, so t is a central measure+
In the casea1 5 a2 it seems clear thatt must be the stationary mean~notice
that the stationary density is symmetrical aroundt and the tails of distributions
fall abruptly on thex axis, which must assure the existence of several moments—
actually, this can be proved!+

Let us now consider the exponential RW model+We now state the following
proposition about~7!+

PROPOSITION 6+ If b . 0 then P@h 5`# 5 1. If b , 0 anda1 1 a2 . 0
then P@h 5 `# 5 1.

Proof+ See Appendix B+

So, under the conditions of the previous proposition, ~7! has exactly one con-
tinuous global solution on the entire@t0,`!+

PROPOSITION 7+ If b . 0 the process (7) is ergodic and has a stationary
density of the form

Sp~x! @ expH2b~x 2 m!2 2 s 1
A1 @A2 f1~x! 2 A3 f2~x!#

Mb
J , (9)

Figure 3. Bounded random walk vs+ Wiener process+
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where

A1 5 Mpek2s2ma12ta2,

A2 5 et~a11a2!1~a1
204b!,

A3 5 em~a11a2!1~a2
204b!,

f1~x! 5 erfS2b~x 2 m! 1 a1

2Mb
D,

f2~x! 5 erfS2b~x 2 m! 2 a2

2Mb
D,

erf~x! 5
2

Mp
E

0

x

e2u2
du+

Let b1 5 6b 6 . If b , 0 and a1 1 a2 . 0 the process (7) is ergodic and has a
stationary density of the form

Sp~x! @ expH b1~x 2 m!2 2 s 2
A4 @2A5 f3~x! 1 A6 f4~x!#

Mb1 J , (10)

Figure 4. Stationary density+
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where

A4 5 Mpek2s,

A5 5 e2~a1~4b1~2t1m!1a1!04b1!,

A6 5 e2~a2~4b1~t2m!1a2!04b1!,

f3~x! 5 erfiS2b1~x 2 m! 2 a1

2Mb1 D,
f4~x! 5 erfiS2b1~x 2 m! 1 a2

2Mb1 D,
erfi~x! 5

2

Mp
E

0

x

eu2
du+

Proof+ See Appendix B+

Finally, we point out a new form of RW behavior in a stationary framework+
From Proposition 7 we see that the solution of the particular case

dXt 5 es021b02~Xt2m!2
dWt , b . 0 (11)

turns out to be stationary, despite the drift’s nullity+ At first sight, as the drift is
null, the process should not have any attraction toward a stable point+ How-
ever, the process drifts tom ast r ` ~it can be proved thatm is the stationary
mean!+ Moreover, E @Xt 6Xs# 5 Xs ~t $ s!, but the process is not integrated in
the usual econometric sense because integrated processes diverge~almost surely!+
Intuitively we can explain it as follows: when the process is nearm the instan-
taneous volatility, b~x! 5 exp$s02 1 b02~x 2 m!2% , is low, and the process
tends to remain nearm+ If X drifts away fromm, volatility increases+ Now X is
much more irregular, so there is a positive probability that the process crossesm
again+ It is the volatility that pushes the process toward a steady point+7 On the
other hand, in this model, “large changes tend to be followed by large changes,
of either sign, and small changes tend to be followed by small changes+” In
effect, whenX is nearm small changes tend to be followed by small changes as
volatility is low; when X is far from m large changes tend to be followed by
large changes as volatility is high+

Therefore, roughly speaking, it is also possible to have RW behavior~with a
null drift! in a stationary framework as long as the volatility pushes the process
toward a steady point as described in the last paragraph+ This, ultimately, makes
the process bounded~see an application for interest rates in Nicolau, 1998!;
also, in this paper, we address the estimation issue in a continuous-time model!+
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NOTES

1+ There are two major reasons why the DEM0USD exchange rate should not reach any arbi-
trary large value+ First, the inflation rate and the gross national product~GNP! growth of the two
economies have not shown strong and persistent differences for, at least, the last 15 years+ Second,
the G-7 council of economic ministers agreed on a set of policies with regard to exchange rates+ In
effect, by the end of 1986, the G-7 council considered that the USD had depreciated “too much+”
The Plaza and Louvre Accord~1985 and 1987! agreed to stabilize exchange rates+ This meant
limiting the size of exchange rate fluctuations with the use of coordinated central bank interven-
tion+ So in practice it is possible that the DEM0USD has been in an implicit target zone regime+

2+ If X is geometrically ergodic thenX is asymptotically stationary exponentially fast~despite
the initial value!+ Furthermore, if X0 ~initial value! has stationary distributionp, X is strictly sta-
tionary and covariance stationary if*x2p~dx! , `+

3+ It would be possible to replaceH1 by the following condition: there exist aK . 0 and a
M . 0 such thata~x! . K if x , 2M anda~x! , 2K if x . M+

4+ We apply Theorem 2+2 in Nelson~1990!+
5+ Obviously, ~6! is equivalent to~5!+
6+ We are talking about stationary distributions, so these distributions only make sense when

the process is stationary+
7+ Technically, when the process is in its natural scale~see the following notation in Appendix

B!, that is, s~x! 5 1, the quantitym~x!«2 is of the order of the expected time the process spends in
the interval~x 2 «, x 1 «! given X0 5 x before departure thereof~see Karlin and Taylor, 1981,
pp+ 197–198; in effect E @Tx2«, x1«6X0 5 x# 5 m~x!«2 whereTa,b 5 min$Ta,Tb% and Ta is hitting
time of a, so Ta,b is the first time the process reaches eithera or b!+ It can be proved thatm~x! 5
exp$2b~x 2 m!2% , som~x! is maximum whenx 5 m+ That is, the process spends more time in the
interval ~m 2 «,m 1 «! than in any other interval~with fixed «!+
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APPENDIX A: THE CONDITIONS A1–A7
A1. 0 [ R is an equilibrium state in the sense thatm~0! 5 0+

A2. 0 [ R is exponentially asymptotic stable; that is, ∃K,c . 0 such that∀t $ 0,
andx0 [ R 7m t~x0!7 # Ke2ct7x07, where7x7 is the Euclidean norm ofx andm t~x0! is
the tth iteration m t ~x0! 5 m~ m~ + + +m~x0!!! given the initial valuex0 ~observe that
m t~x0! 5 mk~ms~xt2s2k!!, t . k . s!+

A3. ∀x [ R, and for all neighborhoodsV of 0 [ R there is a nonnull conditional
probability of s~Xt21!«t being inV given Xt21 5 x+

A4. The distribution of«t has an absolutely continuous component~with respect to
the Lebesgue measure! with positive probability density function over some open inter-
val ~2d,d!+

A5. ]f ~0,0!0]x Þ 0+

A6. m is Lipschitz continuous overR; that is, ∃M . 0 such that∀x, y [ R
7m~x! 2 m~ y!7 # M7x 2 y7+

A7. ∀x [ R, 0 , E @7s~Xt21!«t76Xt21 5 x# , `+
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APPENDIX B: PROOFS

Proof of Proposition 2. The joint condition of H1 and H2 is 0, a~x! , 22x if x ,
0 and22x , a~x! , 0 if x . 0+ Therefore, we have, in both cases,

22x , a~x! , 0 m 6x 1 a~x!6 , 6x6,

0 , a~x! , 22x m 6x 1 a~x!6 , 6x6,

so we can write6m~x!6 5 6x 1 a~x!6 , 6x6 or 6m~x!6 # f6x6 where 0, f , 1+ Now

6m~x0!6 # f6x06,

6m2~x0!6 5 6m~m~x0!!6# f6m~x0!6# f2 6x06,

+ + +

6m t ~x0!6 # f t 6x06,

so A2 holds withc 5 2log f . 0+ n

The remaining proofs are based on the following concepts+
Let dXt 5 a~Xt ! dt 1 b~Xt ! dWt , t . t0, be a diffusion process, I 5 ~l, r ! the state of

space ofX process, s~z! 5 exp$2*z0

z 2a~u!0b2~u! du% the scale density function, where
z0 is an arbitrary point insideI, andm~u! 5 ~b2~u!s~u!!21 the speed density~see Kar-
lin and Taylor, 1981!+ Let S~l, x# 5 limx1rl *x1

x s~u! du andS@x, r ! 5 limx2rr *x
x2 s~u! du

where l , x1 , x , x2 , r+ According to Arnold~1974, p+ 114!, if the infinitesimal
coefficientsa and b have continuous derivatives with respect tox, then there exists a
unique continuous process defined until the random moment explosionh in the inter-
val t0 , h # `+ Ikeda and Watanabe~1981, pp+ 362–363! have proved that ifS~l, x# 5
S@x, r ! 5 ` thenP@h 5 `6X0 5 x# 5 1+

Now, it is known that ifS~l, x# 5 S@x, r ! 5 ` and*l
r m~x! dx , ` thenX is ergodic

and the invariant distributionP0 has density Sp~x! 5 m~x!0*l
r m~u! du with respect to

the Lebesgue measure~see Skorokhod, 1989, Theorem 16!+

Proof of Proposition 4. We must proveS~l, x# 5 S@x, r ! 5` wherel 5 2` andr 5
` anda~x! 5 ek~e2a1~x2t! 2 ea2~x2t! !, b~x! 5 s+ First, consider the casea1 . 0, a2 .
0+ We have

s~x! 5 expH 2ek

s2 Se2a1~x2t!

a1

1
ea2~x2t!

a2
DJ +

Now, if a1 . 0, a2 . 0 thens~x! r ` asx r ` or x r 2 `+ Then, S~l, x# 5 S@x, r ! 5
`+ In the casea1 . 0, a2 5 0 ~the analysis ofa1 5 0, a2 . 0 is similar! we have

s~x! 5 expH 2ek

s2 Se2a1~x2t!

a1

1 xDJ ,
and sos~x! r ` asx r ` or x r 2 `+ Then, S~l, x# 5 S@x, r ! 5 `+ n
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Proof of Proposition 5. We must prove*l
r m~x! dx , `+ First, consider the case

a1 . 0, a2 . 0+ We have

m~x! 5 s22 expH2
2ek

s2 Se2a1~x2t!

a1

1
ea2~x2t!

a2
DJ +

It is easy to conclude that there are some positive constantsk1, k2 such that

m~x! # f ~x! 5 exp$k1 2 k2 x2%, ∀x [ I+

Now *R f ~x! , `n *R m~x! dx , `+ In the casea1 . 0, a2 5 0 ~the analysis ofa1 5
0, a2 . 0 is similar! we have

m~x! 5 s22 expH2
2ek

s2 Se2a1~x2t!

a1

1 xDJ +
As

E
R

m~x! dx 5E
2`

0

m~x! dx1E
0

`

m~x! dx

# E
2`

0

exp$k1 2 k2 x2%dx1E
0

`

exp$2k3 x%dx , `

then*l
r m~x! dx , ` ~for k1, k2, k3 . 0!+ n

Proof of Proposition 6. We must proveS~l, x# 5 S@x, r ! 5 ` where l 5 2` and
r 5 ` anda~x! 5 ek~e2a1~x2t! 2 ea2~x2t! !, b~x! 5 es021b02~x2m!2

+ Consider the case
b . 0+ We have

s~x! 5 expH2A1 @A2 f1~x! 1 A3 f2~x!#

Mb
J ,

where

A1 5 Mpek2s2ma12ta2,

A2 5 et~a11a2!1~a1
204b!,

A3 5 em~a11a2!1~a2
204b!,

f1~x! 5 erfS2b~x 2 m! 1 a1

2Mb
D,

f2~x! 5 erfS2b~x 2 m! 2 a2

2Mb
D,

erf~x! 5
2

Mp
E

0

x

e2u2
du+
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It is not possible to determineS~x! 5 * xs~u! du, but it can be proved thatS~x! is not
integrable+ The functions~x! is of type

exp$c1 erf~c2 1 c3 x! 1 c4 erf~c5 1 c6 x!%,

whereci are parameters+ As 21 # erf~x! # 1 it follows thats~x! does not tend to zero
as 6x6 r `+ Therefore, S~l, x# 5 S@x, r ! 5 `+ Now consider the caseb , 0 and let
b1 5 6b 6+ We have

s~x! 5 expH2
A4 @2A5 f3~x! 1 A6 f4~x!#

Mb1 J ,
where

A4 5 Mpek2s,

A5 5 e2~a1~4b1~2t1m!1a1!04b1!,

A6 5 e2~a2~4b1~t2m!1a2!04b1!,

f3~x! 5 erfiS2b1~x 2 m! 2 a1

2Mb1 D,
f4~x! 5 erfiS2b1~x 2 m! 1 a2

2Mb1 D,
erfi~x! 5

2

Mp
E

0

x

eu2
du+

The functions~x! is of type

expH2c1 erfiSc2 x 1 c3 2
a1

Mb1D1 c4 erfiSc2 x 1 c3 1
a2

Mb1DJ
wherec1,c2,c4 . 0 andc3 [ R+ As erfi~x! is not bounded, this case needs to be ana-
lyzed carefully+ Let us study the function

f~x! 5 2c1 erfi~x 1 k1! 1 c4 erfi~x 1 k2!,

c1,c2 . 0+ The derivative off is

f '~x! 5
2

Mp
~2c1e~x1k1!2

1 c4e~x1k2!2
!+

If k2 . k1 then

f '~x! 5 H.0 x . x0

,0 x , x0

for somex0, and, under these conditions, f~x! increases as6x6 increases~to any arbi-
trary large value!+Without any loss of generality, let us takes~x! 5 ef~x! wherek2 5 a2
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and k1 5 2a1+ Therefore the conditiona2 1 a2 . 0 ensures thats~x! r `, and so
S~l, x# 5 S@x, r ! 5 `+ n

Proof of Proposition 7. We must prove*l
r m~x! dx , `+ First, consider the case

b . 0+ We have

m~x! @ expH2b~x 2 m!2 2 s 1
A1 @A2 f1~x! 2 A3 f2~x!#

Mb
J ,

whereA1,A2,A3, f1, and f2 are those given in the proof of Proposition 6+ The function
m~x! is of type

exp$c1 1 c2 x 2 c3 x2 1 f ~x!%,

wherec2,c3 . 0, and f ~x! satisfies6 f ~x!6 , L , ` ~notice thatf ~x! depends on con-
stants and on the erf function!+ Therefore it is possible to findk1, k2, k3 . 0 such that
m~x! # exp$k1 1 k2x 2 k3x2%, so *l

r m~x! dx # `+ In the caseb , 0 and using the
ideas of the proof of Proposition 6 it can be shown that logm~x! tends quickly to2`
as 6x6 r `+ So m~x! is integrable+ n
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