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In this paper, we quantify the asymptotic bias of the Florens-Zmirou~1993, Jour-
nal of Applied Probability30, 790–804! and Jiang and Knight~1997, Economet-
ric Theory13, 615–645! estimator for the diffusion coefficient when the step of
discretization is fixed, and then we propose a bias adjustment that partially com-
pensates for the distortion+ Also, we show that our estimators have all the asymp-
totic properties of the Florens-Zmirou and Jiang and Knight estimator when the
step of discretization goes to zero+ We provide some examples+

1. INTRODUCTION

Stochastic continuous-time processes, especially diffusion processes, have been
widely used in physical and biological sciences and, more recently, in financial
economics+ In mathematical finance the success of the diffusion continuous-
time approach can be attributed to its many attractive properties~see Merton,
1990!+

However, all models involve unknown parameters or functions, which need
to be estimated from observations of the process+ The estimation of diffusion
processes is therefore a crucial step in all applications, in particular, in applied
finance+ Nonparametric estimation based on continuous sampling observations
has been considered in the literature for many years~see references in Rao,
1999!+ However, as has been stressed by various authors, the continuous sam-
pling observations hypothesis is unreasonable because, in practice, it is obvi-
ously impossible to observe a process continuously over any given interval, as
a result, for instance, of the limitations on the precision of the measuring in-
strument or of the unavailability of observations at every point in time~Rao,
1999!+ It is therefore natural that the most recent research in diffusion pro-
cesses estimation has been concerned with discrete time observations, where
some progress has been made, in both parametric and nonparametric estima-

I thank the editor Peter C+B+ Phillips and the two referees for comments and suggestions that led to considerable
improvement of the paper+ I am also grateful to Carlos Braumann and Tom Kundert for helpful comments+ This
research was supported by the Fundação para a Ci[encia e a Tecnologia~FCT! and by POCTI+ Address correspon-
dence to: João Nicolau, Instituto Superior de Economia e Gestão, Rua do Quelhas 6, 1200-781 Lisboa, Portugal;
e-mail: nicolau@iseg+utl+pt+

Econometric Theory, 19, 2003, 754–777+ Printed in the United States of America+
DOI: 10+10170S0266466603195035

754 © 2003 Cambridge University Press 0266-4666003 $12+00

https://doi.org/10.1017/S0266466603195035 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466603195035


tion+ In nonparametric estimation based on discrete-time observations Florens-
Zmirou ~1993! proposes an estimator for the diffusion coefficient using a uniform
kernel, without imposing any restrictions on the drift coefficient+ Aït-Sahalia
~1996! proposes a semiparametric estimation procedure for the diffusion term
based on a parametric drift coefficient+ Stanton~1997! builds approximations
to the infinitesimal coefficients+ Jiang and Knight~1997! use the Florens-
Zmirou estimator with a Gaussian kernel for the diffusion coefficient and pro-
pose a drift estimator based on the diffusion coefficient estimator and the
stationary~or marginal! density+ Hansen, Scheinkman, and Touzi~1998! pro-
pose spectral methods to recover the infinitesimal coefficients from the station-
ary density and an eigenvalue-eigenfunction pair of the conditional expectation
operator+ More recently, Bandi and Phillips~2003! have developed an asymp-
totic theory for nonparametric estimates of the drift and diffusion coefficients,
under broad assumptions on the data generating process+ In particular, they do
not require the existence of a time-invariant marginal data density, and thus
stationarity is not needed+

We consider the stochastic differential equation~1! subsequently with un-
known coefficientsa and b+ The X process is observed at instants$ti 5 Dn,
i 5 0,1, + + + , n% , whereDn is the step of discretization+ To estimate the diffusion
coefficientb2~x! consistently it is well known that, in principle, it is not nec-
essary that the time spantn go to infinity ~see Bandi and Phillips, 2003!+ Never-
theless, a crucial but to some extent unrealistic assumption, in both cases of
estimation~drift and diffusion coefficients!, is thatDn r 0 asn increases+ In fact,
in most empirical applications the step of discretization is generally fixed, i+e+,
Dn 5 D asn increases+ For example, the series could be daily, weekly, or monthly+

In this paper, we quantify the asymptotic bias of the Florens-Zmirou~1993!
and Jiang and Knight~1997! estimator for the diffusion coefficient when the
step of discretization is fixed~as tn 5 nD r 1`!, and then we propose a bias
adjustment that partially compensates for the distortion+ This is done by includ-
ing the drift coefficient or its nonparametric estimates in the diffusion estima-
tor, which, as we will see, enables a reduction of the asymptotic bias+ In addition,
whenDn r 0 we will show that our estimators have all the asymptotic proper-
ties of the Florens-Zmirou and Jiang and Knight estimator+ We conjecture that
other bias adjustments can be entertained+

The rest of the paper is organized as follows+ Section 2 defines the diffusion
process and the main assumptions+ Section 3 presents our principal results+ Sec-
tion 4 illustrates the proposed nonparametric estimator with some examples+
Section 5 outlines some other possible developments and concludes+

2. THE DIFFUSION PROCESS

We assume thatX 5 $Xt , t $ 0% is a diffusion process, with state spaceI 5
~l, r !, governed by the stochastic differential equation

dXt 5 a~Xt ! dt 1 b~Xt ! dWt , X0 5 x, (1)
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where$Wt , t $ 0% is a ~standard! Wiener process, a andb are unknown coeffi-
cients or functions, and x is either a constant value or a random valueF0-
measurable independent ofWt + We assume thata and b have continuous
derivatives+

Let s~z! 5 exp$2*z0

z 2a~u!0b2~u! du% be the scale density function~z0 is an
arbitrary point insideI ! andm~u! 5 ~b2~u!s~u!!21 the speed density function+
Let S~l, x# 5 limx1rl *x1

x s~u! du and S@x, r ! 5 limx2rr *x
x2 s~u! du where

l , x1 , x , x2 , r+ We now present a set of five assumptions that are used
throughout the paper+

A1+ S~l, x# 5 S@x, r ! 5 1` for x [ I+

According to Arnold~1974, p+ 114!, if the infinitesimal coefficientsa andb
have continuous derivatives with respect tox, then there exists a unique con-
tinuous process that is defined up to a random explosion timeh in the interval
t0 , h # 1`+ The A1 condition assures thatP@h 5 1`6X0 5 x# 5 1 ~Ikeda
and Watanabe, 1981, pp+ 362–363!+ Furthermore, the boundariesl and r are
neither attracting nor attainable~see Karlin and Taylor, 1981, Ch+ 15!, and the
process is recurrent, i+e+, P@Ty , `6X0 5 x# 5 1 for every x, y [ I where
Ty 5 inf $t $ 0,Xt 5 y% ~Ikeda and Watanabe, 1981, Theorem 3+1, Ch+ VI !+
Roughly speaking, the boundariesl and r are never attained although every
finite point can be reached with probability one in finite time+ Global Lipschitz
and growth conditions, which fail to be satisfied for many interesting models
in economics in finance~Aït-Sahalia, 1996!, are not needed in the presence of
the previous assumptions+ The A1 condition is not very strong: e+g+, the stan-
dard Brownian motion satisfies the A1 condition~Karlin and Taylor, 1981,
p+ 228!+ Actually, every process with zero drifta~x! 5 0 ~andb~x! . 0! satis-
fies the A1 condition+

A2+ *l
r m~x! dx , 1`+

The A1 and A2 conditions assure thatX is ergodic and the invariant distribu-
tion P0 has density Tp~x! 5 m~x!0*l

r m~u! du with respect to the Lebesgue
measure~Skorokhod, 1989, Theorem 16!+ The expressionTp~x! is usually de-
noted as stationary density+

A3+ X0 5 x has distributionP0+

Assumption A3 together with A1 and A2 implies thatX is stationary~Ar-
nold, 1974!+ Assumption A3 can, in some cases, be replaced by the following
assumption: X0 is a random variable with meanm and variances2 such that
* x Tp~x! dx5 m , 1` and*~x 2 m!2 Tp~x! dx5 s2 , 1`+ In this case, X is a
covariance-stationary process+ Even if the A3 condition does not hold, it is known
that whent is sufficiently large, the distribution of the ergodic processXt is
well approximated by the distribution with densityTp~x!+ For simplicity, in our
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nonparametric estimation framework, we assume stationarity, although more
broad assumptions can be considered~see Bandi and Phillips, 2003!+ As we
will see, our estimators have important advantages over the Florens-Zmirou
~1993! and Jiang and Knight~1997! estimator when the process exhibits strong
reversion effects, which occurs typically in a stationary framework+

A4+ lim xrr sup~ @a~x!0b~x!# 2 @b'~x!02# ! , 0, lim xrl sup~ @a~x!0b~x!# 2
@b'~x!02# ! . 0+

These conditions are discussed in Chen, Hansen, and Carrasco~1998! and
are similar to ones proposed by Hansen and Scheinkman~1995!+ Under As-
sumption A4 the process isr-mixing ~see Chen et al+, 1998!+ Technically, for a
Markov process, the notion ofr-mixing requires the conditional expectations
operator for any interval of time to be a strong contraction for all functions
with zero mean and finite variance+ As a consequence, the j th autocovariance
of f ~Xt ! tends to zero at exponential rate asj r 1`, for all functionsf such
that * f ~x! Tp~x! dx 5 0 and* f 2~x! Tp~x! dx , 1` ~see Hansen and Scheink-
man, 1995, Proposition 8; Florens-Zmirou, 1989!+ We notice that even if the
drift is zero or converges to zero, Assumption A4 can hold, provided that vol-
atility grows at least linearly+

The kernel functionK that we will use to define our estimators satisfies the
following assumption+

A5+ K~+! is symmetric and continuously differentiable and*RK~u! du 5 1,
*RuK~u! du 5 0, *RK 2~u! du 5 K2 , `+

3. BIAS REDUCTION IN NONPARAMETRIC ESTIMATION

Florens-Zmirou~1993! proposes the estimator

Sn~x! 5

(
i50

n21

KS x 2 Xti

hn
D ~Xti11

2 Xti !
2

Dn

(
i50

n21

KS x 2 Xti

hn
D (2)

for b2~x! where K is the uniform kernel+ Under some conditions, including
Dn r 0, he proves thatSn~x! converges in mean square error~MSE! to b2~x!
and that the asymptotic distribution ofSn~x! ~suitably standardized! is normal+
Jiang and Knight~1997! extend these results for the Gaussian kernel, and Bandi
and Phillips~2003! consider a more general estimator under broad assumptions
on the data generating process+ Although Sn~x! requires only mild regularity
conditions to be consistent—in particular the time spantn can be fixed—it is
necessary that the step of discretization go to zero~see, e+g+, Bandi and Phil-
lips, 2003!+ However, in most applications the step of discretization is gener-
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ally fixed ~i+e+, Dn 5 D asn increases!+ For example, the series could be daily,
weekly, or monthly+ Even whenDn decreases asn increases~which is possible
if one passes, e+g+, from weekly to daily observations!, the conditionDn r 0 is
too strong as it requires continuous sampling observations at the limit+ When
high frequency data are available~i+e+, Dn is small!, the advantages of using all
the available information are not clear+ In fact, high frequency data are replete
with empirical anomalies, such as heteroskedasticity, heterokurtosis, non-
synchronous trading, and many other market microstructure “frictions,” which
can obviously contaminate the estimates~see Sawyer, 1993; Andersen,
Bollerslev, Diebold, and Labys, 2001!+

3.1. Behavior of the Nonparametric Estimators
When the Step of Discretization Is Fixed

In this section we quantify the bias of the Florens-Zmirou~1993! and Jiang and
Knight ~1997! estimator for the diffusion coefficient when the step of discret-
ization is fixed and then we propose a bias adjustment that partially compen-
sates for the distortion+ We assume the A1–A5 conditions in all theorems+

THEOREM 1+ If Dn 5 D (constant), tn r 1`, hn r 0, nhn r 1` as
n r 1`, and E@~XD 2 X0!4# , 1` then

Sn~x!
p
&& b2~x! 1 a2~x!D 1 f ~x!D 1 O~D2!, (3)

where f~x! 5 b2~x!a'~x! 1 a~x!b~x!b'~x! 1 1
2
_ b2~x!~b'~x!!2 1 1

2
_ b3~x!b''~x!.

It is clear that the consistency ofSn depends crucially on whetherDn goes to
zero or not+ WhenDn 5 D is constant the bias is of orderO~D!+ This bias can
vary considerably in the state spaceI+ In general, it is minimum at pointx0

such thata~x0! 5 0, because in this case several terms associated with the bias
in the stochastic limit~3! vanish+ On the contrary, the bias increases in those
pointsx such that6a~x!6 is high, which in stationary framework corresponds to
the interval where the process exhibits stronger reversion effects+

Based on these results we propose a bias correction with the following
estimator:

Vn~x! 5

(
i50

n21

KS x 2 Xti

hn
D ~Xti11

2 Xti 2 a~Xti !Dn!2

Dn

(
i50

n21

KS x 2 Xti

hn
D +

We have the following theorem+
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THEOREM 2+ If Dn 5 D (constant), tn r 1`, hn r 0, nhn r 1` as
n r 1`, and E@~XD 2 X0 2 a~X0!D!4# , 1` then

Vn~x!
p
&& b2~x! 1 f ~x!D 1 O~D2!, (4)

where f~x! is given in Theorem 1.

Therefore, with Dn 5 D constant, the Vn~x! estimator generally has smaller
bias than theSn estimator+ The bias reduction occurs because of the elimination
of thea2~x!D term in the stochastic limit in equation~3!+ Actually, whenDn is
constant, the evaluation of the errors~Xti11

2 Xti 2 a~Xti !Dn!20Dn enables a
more accurate estimation of the infinitesimal conditional variance than the er-
rors ~Xti11

2 Xti !
20Dn+ However, the Vn estimator is unfeasible because the

functiona~x! is unknown+ As in Aït-Sahalia~1996!, we can assumea~x! linear,
i+e+, of typea~x! 5 u1 2 u2x, u1,u2 . 0 whereu1 andu2 can easily be estimated
using semiparametric methods+ However, if we do not want to rely on the para-
metric specification of the drift, we should use a nonparametric estimator for
a~x!+ In this case, we propose

Vn
*~x! 5

(
i50

n21

KS x 2 Xti

hn
D ~Xti11

2 Xti 2 Tn~Xti !Dn!2

Dn

(
i50

n21

KS x 2 Xti

hn
D , (5)

whereTn~x! is a nonparametric estimator ofa~x!+ We consider

Tn~x! 5

(
i50

n21

KS x 2 Xti

hn
D ~Xti11

2 Xti !

Dn

(
i50

n21

KS x 2 Xti

hn
D +

This estimator is a simpler version of a more general estimator proposed in
Bandi and Phillips~2003!+ The Jiang and Knight~1997! estimator fora~x! can-
not, in principle, be used here because it depends on the diffusion coefficient
estimator~see however Section 5!+ The following theorem characterizes the bias
of the Tn estimator+

THEOREM 3+ If Dn 5 D (constant), tn r 1`, hn r 0, nhn r 1` as
n r 1`, and E@~XD 2 X0!2# , 1` then1

Tn~x!
p
&& a~x! 1 S1

2
a~x!a'~x! 1

1

4
b2~x!a''~x!DD 1 O~D2!+

Therefore, whenD is fixed, the drift estimatorTn has a bias of orderO~D!+
BecauseVn

* depends explicitly onTn, it is important to identify the impact that
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the bias of the drift estimator has on the bias of the diffusion coefficient esti-
mator+ The following theorem addresses this question+

THEOREM 4+ If Dn 5 D (constant), tn r 1`, hn r 0, nhn r 1` as
n r 1`, and E@~XD 2 X0 2 a~X0!D!4# , 1` then

Vn
*~x!

p
&& b2~x! 1 f ~x!D 1 O~D2!, (6)

where f~x! is given in Theorem 1.

Theorem 4 shows that the impact of the bias of theTn estimator on the bias
of the Vn

* estimator is negligible+ In fact, equation~6! is basically the same
expression obtained with theVn estimator~see expression~4!!+ With the Vn

*

estimator we obtain a bias adjustment gain that is similar to that of theVn~x!
estimator~ignoring the terms higher thanO~D2!!+ A simple justification for this
result is the following+ Although the bias of thea~x! estimation is of order
O~D! ~by Theorem 3!, the bias involving the estimation of thea2~x!D func-
tion, which is the term we correct and eliminate in equation~3!, is of order
O~D3! ~see the proof of Theorem 4 in Appendix B!+ Thus, the bias in estimat-
ing thea~x! coefficient only appears in the stochastic limit ofVn

* in the terms
of orderO~D3!+

The advantages of using theVn
*~x! ~and Vn~x!! estimator overSn~x! are

more evident whenx belongs to the interval where6a~x!6 is high, which in a
stationary framework~with a nonzero drift! corresponds to the interval where
the process exhibits stronger reversion effects+ This is clear from equations~3!
and~6!+ Obviously, if stationarity is volatility-induced with zero drift then there
are no advantages of using the proposed estimators+

3.2. Limiting Properties as the Frequency
of Observations Increases

We now address the limiting properties ofVn andVn
* estimators asDn r 0+

THEOREM 5+

(a) If Dn r 0, hn r 0, nhn r 1` as nr 1`, and E@~XDn
2 X0 2 a~X0!Dn!4# ,

1` then

Vn~x!
p
&& b2~x!+

Let Bn~x! 5 ~nh!21 (i50
n21 K~~x 2 Xti !0hn!+

(b) If, in addition to the previous conditions, nhn
3 r 0 and MnhnDn r 0 as

n r 1`2 then

! nhn

2K2

BnSVn~x!

b2~x!
2 1D d

&& N~0,1!,

where K2 5 *RK 2~u! du.
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Theorem 5 shows that our asymptotic results are essentially equal to those
of Florens-Zmirou~1993! and Jiang and Knight~1997!+ In fact, we get
Sn~x! 2 Vn~x!

p
&& 0, and, if we use the uniform kernel~K~u! 5 102 if 6u6 , 1

and K~u! 5 0 if 6u6 $ 1!, as in Florens-Zmirou~1993!, we conclude that,
by the asymptotic equivalence theorem, M ~nhn02!Bn~ @Sn~x!0b2~x!# 2 1! and
M ~nhn02!Bn~ @Vn~x!0b2~x!# 2 1! have the same asymptotic distribution+3 Thus,
in asymptotic framework withDn r 0, Vn and Sn are equivalent estimators+
Our claim, however, is that our estimator is preferable whenDn 5 D is con-
stant, as we have pointed out+

We observe that in Theorem 5 it is not necessary that the observation period
go to infinity, i+e+, tn can be constant4 asn r 1` ~in this case, the condition
MnhnDn r 0 is redundant!+ In fact, it is known that every finite interval of
continuous observations contains all the information needed about the diffu-
sion coefficientb2~x! to estimate it with probability one, provided thatx is
visited byX ~see Brown and Hewitt, 1975; Bandi and Phillips, 2003!+

The next theorem analyzes the asymptotic behavior of theVn
* estimator+

THEOREM 6+ Let the assumptions of the previous theorem hold. In addi-
tion suppose that tnhn r 1` (thereby tn r 1`).5 Then

(a)

Vn
*~x!

p
&& b2~x!

and
(b)

! nhn

2K2

BnSVn
*~x!

b2~x!
2 1D d

&& N~0,1!,

where K2 5 *RK 2~u! du.

In Theorem 6 one has the additional conditiontnhn r 1`+ Becausehn r 0
must hold, we have to imposetn r 1`+ This is an obvious consequence of the
fact that we use theTn drift estimator in the expression ofVn

* and direct iden-
tification of the drift coefficient based on this kernel estimator is impossible
over a fixed sampling period+ Several authors~e+g+, Bandi and Phillips, 2003;
Phillips and Yu, 2000; Jiang and Knight, 1997! have stressed that the estima-
tion of the drift is usually empirically and theoretically more difficult than the
estimation of the diffusion coefficient+ Therefore, there is no benefit in using
theVn

* estimator~or even theVn estimator! when the step of discretization tend
to zero+ In fact, Sn and Vn

* are asymptotically equivalent estimators+ Further-
more, unlike theSn estimator, Vn

* requires that the time span tend to infinity+
Nevertheless, whenDn 5 D is fixed, the estimatorVn

* is preferable because it
reduces the bias of theSn estimator, as we have stressed+
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4. EVALUATION OF THE BIAS USING
A PARAMETRIC INTEREST RATE MODEL

In this section, we compare the bias of theSn and Vn
* estimators from some

specified ~parametric! models in the frameworkn r 1`+ Given a~x! and
b2~x! it is easy, from equations~3! and ~6!, to evaluate the bias of theSn and
Vn
* estimators asn r 1` for a fixed step of discretizationD ~thereby

tn 5 nD r 1`!+ In fact, assuming thatO~D2! is negligible, the biases are
given by the expressions

Bias1~x! 5 S~x! 2 b2~x! 5 a2~x!D 1 f ~x!D,

Bias2~x! 5 V *~x! 2 b2~x! 5 f ~x!D,

where f ~x! 5 b2~x!a'~x! 1 a~x!b~x!b'~x! 1 1
2
_ b2~x!~b'~x!!2 1 1

2
_ b3~x!b''~x!

~note that we suppress the subscriptn associated with the estimators because
we are dealing with the casen r 1`!+ It follows thatS~x! 5 b2~x! 1 a2~x!D 1
f ~x!D andV *~x! 5 b2~x! 1 f ~x!D ~assumingn r 1`!+ We start by selecting
the coefficientsa~x! andb2~x! based on some estimated models by Aït-Sahalia
~1999! using monthly Fed funds data from January 1963 through December
1998+ From Table VI of Aït-Sahalia~1999! we select two models:

dXt 5 0+261
~0+12!

~0+0717
~0+014!

2 Xt !dt 1 0+02237
~0+00078!

dWt ,

dXt 5 0+219
~0+10!

~0+0721
~0+016!

2 Xt !dt 1 0+06665
~0+0023!

MXtdWt ,

where the parameters~expressed in annualized form! were estimated by the
maximum likelihood method and the asymptotic standard errors are shown be-
low the parameters+ From these models we evaluate the functionsBias1~x!,
Bias2~x!, S~x! 5 b2~x! 1 a2~x!D 1 f ~x!D, andV *~x! 5 b2~x! 1 f ~x!D run-
ning x ~interest rate expressed in annualized form! in the interval#0,0+22# ~the
maximum value observed in the period was 0+2236!+ The constantD is equal to
1
12
_+ Before we present the results, it is worth mentioning that this simulation
seemingly does not best serve our purposes because, in the interest rate estima-
tion framework, the drift coefficient is numerically close to zero+ As we have
pointed out, this is the case whereVn

* andSn present similar results+ However,
we will see, even in this situation, that theVn

* estimator seems to be better+
Then to appreciate howVn

* can improve theSn estimates, we slightly increase
the parameters associated with the reversion effects+

From Figures 1 and 2 one can conclude that in low0moderate values of in-
terest rate both nonparametric estimators produce similar and good estimates
whereas in high0very high values, theSn estimates are generally worse than the
Vn
* estimates+ We give a short explanation for these results+ Coherently with

most empirical studies of interest rate series, we observe the following pattern+
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Figure 1. Behavior of theS and V * estimators~as n r 1`! when D 5 1
12
_ and the

model isdXt 5 0+261~0+07172 Xt ! dt 1 0+02237dWt +

Figure 2. Behavior of theS and V * estimators~as n r 1`! when D 5 1
12
_ and the

model isdXt 5 0+219~0+07212 Xt ! dt 1 0+06665MXtdWt+
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In the interval of moderate0low values not only is the volatility very low but
also the process displays martingale behavior, in the sense thata~x! ' 0 for x
belonging to the interval of moderate0low values+ In this interval, the asymp-
totic bias of Sn ~and also ofVn

*! is in general very low+ By contrast, in the
interval of high0very high values of interest rates, the volatility increases sig-
nificantly and the process exhibits stronger reversion effects+ It is in this inter-
val, where6a~x!6 is higher, that Sn produces greater bias and, simultaneously,
that Vn

* shows significant improvement overSn+
It is now interesting to compare theSn and Vn

* estimates for the diffusion
coefficient using the Fed fund data referred to previously+

From Figure 3 it seems that the volatility at high values of interest rate, al-
though considerable, is not as great as theSn estimator suggests+ However, no
definitive conclusions can be made because in the areas where the drift coeffi-
cient is substantially negative~high in absolute value! there are not sufficient
observations to draw precise statistical inference~for a discussion on this topic,
see Bandi, 2002!+

Let us consider a slight increase in the parameters of the preceding models
associated with the reversion effects~everything else remains unchanged!:

dXt 5 0+9~0+07172 Xt !dt 1 0+02237dWt ,

dXt 5 0+9~0+07212 Xt !dt 1 0+06665MXtdWt

~in both cases, the parameterb defined in the drift functiona~x! 5 b~m 2 x!
has changed to 0+9!+ Although these models certainly no longer reflect the be-

Figure 3. Nonparametric diffusion estimation—Fed fund data+
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havior of the interest rate process, they allow us to appreciate the advantages
of the proposed estimator when stronger reversion effects characterize the dy-
namics of the conditional mean+ In fact, as can be seen from Figures 4 and 5,
greater improvement is achieved by theVn

* estimates over theSn estimates+

Figure 4. Behavior of theS and V * estimators~as n r 1`! when D 5 1
12
_ and the

model isdXt 5 0+9~0+07172 Xt !dt 1 0+02237dWt +

Figure 5. Behavior of theS and V * estimators~as n r 1`! when D 5 1
12
_ and the

model isdXt 5 0+9~0+07212 Xt ! dt 1 0+06665MXtdWt+
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5. CONCLUSIONS AND OTHER EXTENSIONS

In this paper, we quantified the asymptotic bias of the Florens-Zmirou~1993!
and Jiang and Knight~1997! estimator for the diffusion coefficient when the
step of discretization is fixed, and subsequently we proposed a bias adjustment
that partially compensates for the distortion+ Also, we showed that our estima-
tors have all the asymptotic properties of the Florens-Zmirou and Jiang and
Knight estimator when the step of discretization goes to zero+ There are some
improvements that can be considered+ First, more general assumptions on the
data generator process as in Bandi and Phillips~2003! can in principle be ap-
plied+ Second, other drift estimators can be considered, instead ofTn+ For in-
stance, the Jiang and Knight~1997! drift estimator can be used once one has a
preliminary estimate of the diffusion estimator+ Subsequently, an iterative pro-
cedure can be applied+ I conjecture that the asymptotic properties of the Jiang
and Knight drift estimator, with D fixed, can be improved if one uses theVn

*

estimates instead of theSn estimates+ Third, a more accurate estimator forb2~x!
can, in principle, be designed through the identification of thef ~x! function
using standard methods for derivative estimation, albeit at a natural cost of a
reduction in the rates of convergence+ Fourth, as in the case of the diffusion
estimator, similar bias adjustments can be designed for the usual drift estimator
Tn+ Fifth, an evaluation of the bias produced by other nonparametric estimators
~in the caseDn 5 D constant! such as the local linear or local quadratic regres-
sion can be analyzed~see Fan and Yao, 1998!+

NOTES

1+ I thank a referee for pointing this out+
2+ Let us assumetn 5 O~ng!, hn 5 O~nb!, and consequentlyDn 5 tn0n 5 O~ng21!+ To assure

the conditionsDn r 0, hn r 0, nhn r 1`, nhn
3 r 0, andMnhnDn r 0 asn r 1` it is necessary

and sufficient thatb andg be such that21 , b , 2 1
3
_ and 0# g , 1

2
_ 2 b02+

3+ With uniform kernel, we have K2 5 1
2
_ and ~nhn02K2!Bn 5 (i50

n21 K~~x 2 Xti !0hn! 5

(i50
n21 1

2
_I$6x2Xti 6,hn% 5 Nx02; thus, M~nhn02!Bn~ @Sn~x!0b2~x!# 21!5MNx 02~ @Sn~x!0b2~x!#21! d

&&

N~0,1!, as in Florens-Zmirou~1993!, Theorem 1+
4+ From note 2 we can conclude thatg can be zero whereg is defined intn 5 O~ng!+ That is,

consistency can be obtained withtn constant+ In this case, the conditionMnhnDn r 0 is redundant+
5+ To assure the conditionsDn r 0, hn r 0, nhn r 1`, nhn

3 r 0, MnhnDn r 0, and tnhn r

1` as n r 1` it is necessary and sufficient that21 , b , 2 1
3
_ , 2b , g , 1

2
_ 2 b02 ~see

notations in note 2!, which defines a nonempty convex open set inR2+ Obviously, the condition
g . 2b means that the time span cannot be fixed, i+e+, we must haveg . 0+
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APPENDIX A: PRELIMINARY RESULTS

LEMMA 7 ~Florens-Zmirou, 1989!+ Assume that f[ C2~s11! and a,b2 [ C2s ~Ck is
the space of k times continuously differentiable functions). Then,

E @ f ~Xti !6Xti21
# 5 (

j50

s

L j f ~Xti21
!

D j

j!
1 R,

NONPARAMETRIC ESTIMATION 767

https://doi.org/10.1017/S0266466603195035 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466603195035


where L5 a~d0dx! 1 1
2
_b2~d20dx2! and

R 5E
0

DE
0

u1

+ + +E
0

us

E @Ls11f ~Xti211us11
!6Xti21

# du1 + + +dus11+

See Hansen and Scheinkman~1995! for additional discussion+ We assume in all ap-
plications involving Lemma 7 that

E @6Ls11f ~Xti211us11
!66Xti21

# , 1`+

For example, if 6Ls11f ~x!6 # k1~1 1 x2r ! holds for k1 . 0 and if, for some
integer r . 0, we have E @Xt

2r 6Xs# # ~1 1 6Xs
2r 6!eA~t2s! for A . 0, then

E @6Ls11f ~Xti211us11
!66Xti21

# , 1` ~these conditions are generally easy to satisfy!+ It
is worth mentioning thatR depends onXti21

andDs11+ We denoteR by R 5 O~Ds11!+
The next lemmas deal with a central limit theorem version for discrete time pro-

cesses$Xti , i $ 0% extracted from the diffusion process$Xt ; t $ 0% +

LEMMA 8 ~Florens-Zmirou, 1989!+ Let A1–A4 hold. Let f:E , R r R such that
E @ f ~X !# 5 0 and E@ f 2~X !# , 1` where the expected values are evaluated with re-
spect to the invariant distribution P0. Then~10Mn!(i51

n f ~Xti !
d
&& N~0,V1~ f !! where

V1~ f ! 5 E @ f 2~X !# 1 2(j51
1` E @ f ~X0! f ~Xtj !# .

~We note that our A4 condition implies theH * condition defined in Florens-Zmirou,
1989+!

LEMMA 9 ~Florens-Zmirou, 1989!+ Let A1–A4 hold. Let g:E2 , R2 r R such that
E @g~Xti21

,Xti !# 5 0 and E@g2~Xti21
,Xti !# , 1` where the expected values are evalu-

ated with respect to the invariant distribution P0. Then~10Mn!(i51
n g~Xti21

,Xti !
d
&&

N~0,V2~g!! where V2~g! 5 E @g2~Xti21
,Xti !# 1 2(j51

1` E @g~X0,Xt1!g~Xtj ,Xtj11
!# .

Note that

E @g2~Xti21
,Xti !# 5 E @E @g2~Xti21

,Xti !6Xti21
##

5ESEg2~x, y!p~D, x, y! dyD Tp~x! dx,

wherey ° p~D, x, y! is the transition~or conditional! density ofXt1D givenXt 5 x and
Tp is the stationary density+ The following result is well known~see, e+g+, Rao, 1983!+

LEMMA 10+ Let A1–A5 hold and hn r 0 and nhn r 1` as n r 1`. Then

Bn~x!
L2

&& Tp~x! where Bn~x! 5 ~10nhn!(i50
n21 K~~x 2 Xti !0hn! ~

L2

&& denotes conver-
gence inMSE).

We discuss subsequently two distinct cases involving the estimatorBn+ They are as
follows: Dn r 0 andDn 5 D constant asn r 1`+ In both cases, Bn~x! is consistent in
quadratic mean forTp~x! provided that the other conditions in Lemma 10 are satisfied+
We stress that the convergence of the density estimator in the presence of a constantD
requires an increasing spantn+
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APPENDIX B: PROOFS

The arguments we use to prove theorems in this Appendix differ from those of Florens-
Zmirou ~1993! and Jiang and Knight~1997! in that we do not consider an expansion of
transition density+

Proof of Theorem 1. Let Sn~x! 5 An~x!0Bn~x! where

An~x! 5
1

nhn
(
i50

n21

KS x 2 Xti

hn
D ~Xti11

2 Xti !
2

Dn

+

Given Lemma 10, it is enough to prove thatAn~x!
L2

&& ~b2~x! 1 a2~x!D 1 f ~x!D 1
O~D2!! Tp~x!+ To simplify we writeAn instead ofAn~x!+ We have~with Dn 5 D!

E @An# 5
1

hn
E
R
E
R

KS x 2 z

hn
D ~ y 2 z!2

D
p~D, z, y! Tp~z! dydz

5
1

hn
E
R

KS x 2 z

hn
DEF ~XD 2 X0!2

D *X0 5 zG Tp~z! dz

5EK~u!EF ~XD 2 X0!2

D *X0 5 x 2 hnuG Tp~x 2 hnu! du (B.1)

~with the change of variablez 5 x 2 hnu!+ Using Lemma 7~with Dn 5 D!

EF ~XD 2 X0!2

D *X0G
5 b2~X0! 1 @a2~X0! 1 b2~X0!a'~X0! 1 a~X0!b~X0!b'~X0!

1 1
2
_ b2~X0!~b'~X0!!2 1 1

2
_ b3~X0!b''~X0!#D 1 O~D2!

5 b2~X0! 1 a2~X0!D 1 f ~X0!D 1 O~D2!

equation~B+1! can be written as

E @An# 5EK~u!~b2~x 2 hnu! 1 a2~x 2 hnu!D

1 f ~x 2 hnu!D 1 O~D2!! Tp~x 2 hnu! du+

Consideringhn r 0, *K~u! du5 1, and the fact thata, b, f, and Tp are continuous func-
tions ~these sort of arguments will be used throughout the proofs!, one has

lim E @An# 5 ~b2~x! 1 a2~x!D 1 f ~x!D 1 O~D2!! Tp~x!EK~u! du

5 ~b2~x! 1 a2~x!D 1 f ~x!D 1 O~D2!! Tp~x!+
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It is now necessary to prove Var@An# r 0+ We have

Var@An# 5 VarF 1

nhn
(
i50

n21

KS x 2 Xti

hn
D ~Xti11

2 Xti !
2

D G
5

1

nhn

VarF 1

Mn (
i50

n21 1

Mhn

KS x 2 Xti

hn
D ~Xti11

2 Xti !
2

D G
5

1

nhn

VarF 1

Mn (
i50

n21

f ~Xti ,Xti11
!G

5
1

nhn

VarF 1

Mn (
i50

n21

f *~Xti ,Xti11
!G ,

wheref *~Xti ,Xti11
! 5 f ~Xti ,Xti11

! 2 E @ f ~Xti ,Xti11
!# and

f ~Xti ,Xti11
! 5

1

Mhn

KS x 2 Xti

hn
D ~Xti11

2 Xti !
2

D
+

Note thatE @~ f *~Xti ,Xti11
!!2# 5 E @ f 2~Xti ,Xti11

!# 2 ~E @ f ~Xti ,Xti11
!# !2 and

E @ f 2~Xti ,Xti11
!# 5

1

hn

EFK 2S x 2 Xti

hn
D ~Xti11

2 Xti !
4

D2 G
5

1

hn

EFK 2S x 2 Xti

hn
DEF ~Xti11

2 Xti !
4

D2 6XtiGG +
By Lemma 7 it is possible to check that

EF ~Xti11
2 Xti !

4

D2 *XtiG 5 3b4~Xti ! 1 O~D!+

In this way,

E @ f 2~Xti ,Xti11
!# 5

1

hn
EK 2S x 2 z

hn
D~3b4~z! 1 O~D!! Tp~z! dz

5EK 2~u!~3b4~x 2 hnu! 1 O~D!! Tp~x 2 hnu! du

5 ~3b4~x! 1 O~D!! Tp~x!EK 2~u! du+

This expression is clearly finite+ On the other hand,

E @ f ~Xti ,Xti11
!# 5 EF 1

Mhn

KS x 2 Xti

hn
D ~Xti11

2 Xti !
2

D G
5 MhnE @An#

is finite and tends to zero+
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In conclusion, E @~ f *~Xti ,Xti11
!!2# is finite becauseE @ f 2~Xti ,Xti11

!# is finite and
E @ f ~Xti ,Xti11

!# tends to zero+ Then, by Lemma 9, Var@10Mn (i50
n21 f *~Xti ,Xti11

!# r

V2~ f * ! , 1`, and so Var@An# 5 ~10nhn!~V2~ f * ! 1 o~1!! r 0+ Therefore, An
p
&&

~b2~x! 1 a2~x!D 1 f ~x!D 1 O~D2!! Tp~x! and An0Bn
p
&& ~b2~x! 1 a2~x!D 1 f ~x!D 1

O~D2!! becauseBn
p
&& Tp~x! . 0 by Lemma 10+ n

The proofs of Theorems 2 and 3 are similar to the proof of Theorem 1 and thus are
omitted+

Proof of Theorem 4. Let Vn
*~x! 5 An

* ~x!0Bn~x! where

An
* ~x! 5

1

nhn
(
i50

n21

KS x 2 Xti

hn
D ~Xti11

2 Xti 2 T~Xti !Dn!2

Dn

+

To simplify we writeAn
* instead ofAn

* ~x!+ We first note that~with Dn 5 D!

An
* 5

1

nhn
(
i50

n21

KS x 2 Xti

hn
D ~Xti11

2 Xti 2 Tn~Xti !D!2

D

5
1

nhn
(
i50

n21

KS x 2 Xti

hn
D ~~Xti11

2 Xti 2 a~Xti !D! 2 ~Tn~Xti ! 2 a~Xti !!D!2

D

5
1

nhn
(
i50

n21

KS x 2 Xti

hn
D ~Xti11

2 Xti 2 a~Xti !D!2

D

2
2

nhn
(
i50

n21

KS x 2 Xti

hn
D ~Xti11

2 Xti 2 a~Xti !D!~Tn~Xti ! 2 a~Xti !!D

D

1
1

nhn
(
i50

n21

KS x 2 Xti

hn
D~Tn~Xti ! 2 a~Xti !!

2D

5 An
# 1 D1,n 1 D2,n+

To simplify we write D1, n and D2, n instead ofD1, n~x! and D2, n~x!, respectively+ We
now need the following result: Tn~Xt !

p
&& a~Xt ! 1 O~D!+ Pointwise convergence,

Tn~x!
p
&& a~x! 1 O~D! ~Theorem 3!, does not implyTn~Xt !

p
&& a~Xt ! 1 O~D! ~see

Davidson, 1994, Ch+ 21!+ From Theorem 21+6 of Davidson~1994!, suitably adapted to
our problem, if Tn~x! converges in probability toa~x! 1 O~D! uniformly on an open set
containing all the possible values ofXt , then it follows thatTn~Xt !

p
&& a~Xt ! 1 O~D!+ In

principle, the uniform convergence must hold inR although, in practice, becauseX is
stationary, it is enough to take an open setV contained in some compact setPV such that
P~X [ V ! 5 1+ Following Davidson~1994!, Theorem 21+9, Tn~x! converges in proba-
bility to a~x! uniformly on a setV if and only if Tn~x!

p
&& a~x! for eachx [ V andTn~x!

is stochastically equicontinuous+ To guarantee this last condition, it is sufficient that
supx[V 6dTn~x!0dx6 be bounded in probability~Davidson, 1994, Theorem 21+10!+
Under the conditions established~note that we imposed that the kernel function and
the infinitesimal coefficients are continuously differentiable! it follows that Tn~Xt !

p
&&

a~Xt ! 1 O~D!, i+e+, Tn~Xt ! 5 a~Xt ! 1 O~D! 1 «n, where«n 5 op~1!+ Thus,
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D1,n 5 2
2

nhn
(
i50

n21

KS x 2 Xti

hn
D ~Xti11

2 Xti 2 a~Xti !D!~Tn~Xti ! 2 a~Xti !!D

D

5 2
2

nhn
(
i50

n21

KS x 2 Xti

hn
D~Xti11

2 Xti 2 a~Xti !D!~O~D! 1 «n!+ (B.2)

We have~with Dn 5 D!

E @D1,n# 5
1

hn
E
R
E
R

KS x 2 z

hn
D~ y 2 z2 a~z!D!~O~D! 1 «n!p~D, z, y! Tp~z! dydz

5
1

hn
E
R

KS x 2 z

hn
DE @~XD 2 X0 2 a~X0!D!~O~D! 1 «n!6X0 5 z# Tp~z! dz

5E
R

K~u!E @~XD 2 X0 2 a~X0!D!~O~D! 1 «n!6X0 5 x 2 hnu# Tp~x 2 hnu! du+

Using Lemma 7~with Dn 5 D!,

E @~XD 2 X0 2 a~X0!D!~O~D! 1 «n!6X0# 5 O~D3!,

and the hypothesishn r 0, one has limE @D1, n# 5 O~D3!+ To prove Var@D1, n# r 0
we follow the same arguments we used in previous proofs; i+e+, we define

Var@D1,n# 5
4

nhn

VarF 1

Mn (
i50

n21

f *~Xti ,Xti11
!G ,

wheref *~Xti ,Xti11
! 5 f ~Xti ,Xti11

! 2 E @ f ~Xti ,Xti11
!# and

f ~Xti ,Xti11
! 5

1

Mhn

KS x 2 Xti

hn
D~Xti11

2 Xti 2 a~Xti !D!~O~D! 1 «n!+

Using Lemma 7 one concludes

E @ f 2~Xti ,Xti11
!# 5 O~D3! Tp~x!EK 2~u! du,

E @ f ~Xti ,Xti11
!# 5 MhnE @D1,n# ,

and using Lemma 9 and Assumption A5 we have lim Var@D1, n# 5 0 and thus
D1, n~x!

p
&& O~D3!+

Also, it is easy to see that

D2,n 5
1

nhn
(
i50

n21

KS x 2 Xti

hn
D~Tn~Xti ! 2 a~Xti !!

2D

5
1

nhn
(
i50

n21

KS x 2 Xti

hn
D~«n 1 O~D!!2D
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converges in probability toO~D3! ~note that by Slutsky’s theorem~«n!2 p
&& 0!+ It fol-

lows from D1, n~x!
p
&& O~D3!, D2, n~x!

p
&& O~D3!, Theorem 2, and Lemma 10 that

An
* ~x!0B~x!

p
&& b2~x! 1 f ~x!D 1 O~D2!+ n

Proof of Theorem 5.
~a! Let Vn~x! 5 An

#~x!0Bn~x! where

An
#~x! 5

1

nhn
(
i50

n21

KS x 2 Xti

hn
D ~Xti11

2 Xti 2 a~Xti !Dn!2

Dn

+

Given Lemma 10, it is enough to prove thatAn
#~x!

L2

&& b2~x! Tp~x!+ From the proof of
Theorem 1 it is straightforward to verify that

E@An
#~x!# r b2~x! Tp~x!, Var@An

#~x!# r 0

asDn r 0, hn r 0, andnhn r 1`+ Therefore, An
#~x!0Bn~x!

p
&& b2~x!+ Let us see the

second part of the theorem+
~b! To simplify we use the notationEi @{# 5 E @{6Xti # , and we write( instead of

(i50
n21+ We note that

! nhn

2K2

Bn~x!SVn~x!

b2~x!
2 1D 5

1

Mn ( g~Xti ,Xti11
!

b2~x!MBn K2

,

where

g~Xti ,Xti11
! 5

1

M2hn

KS x 2 Xti

hn
Dhi11,

hi11 5 Dn
21~Xti11

2 Xti 2 a~Xti !Dn!2 2 b2~x!+

First, we show the following:

~b1! lim E @~10Mn!(g~Xti ,Xti11
!# 5 0;

~b2! lim E @g2~Xt0,Xt1!# 5 b4~x! Tp~x!K2, ~K2 5 *K 2~u! du!;
~b3! lim E @g~Xt0,Xt1!g~Xtj ,Xtj11

!# 5 0, for j $ 1+

In effect,
~b1! applying Lemma 7 we have

Ei @hi11# 5 Ei @Dn
21~Xti11

2 Xti 2 a~Xti !Dn!2 2 b2~x!#

5 b2~Xti ! 2 b2~x! 1 O~Dn!+

Thus,

Ei @g~Xti ,Xti11
!# 5

1

M2hn

KS x 2 Xti

hn
D~b2~Xti ! 2 b2~x! 1 O~Dn!!
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and

E @g~Xti ,Xti11
!# 5 E @Ei @g~Xti ,Xti11

!##

5
1

M2hn

EKS x 2 z

hn
D~b2~z! 2 b2~x! 1 O~Dn!! Tp~z! dz

5
hn

M2hn

EK~u!~b2~x 2 hnu! 2 b2~x! 1 O~Dn!! Tp~x 2 hnu! du

5
Mhn

M2
~hnO~1! 1 O~Dn!!

~using the change of variable, z5 x 2 hnu, and Taylor’s formula, b2~x 2 hnu! 2 b2~x! 5
O~hn!~b2~x 2 uhnu!!' , with 0 , u , 1!+ Therefore,

lim EF 1

Mn ( g~Xti ,Xti11
!G 5 limMnSMhn

M2
~hnO~1! 1 O~Dn!!D

5 lim ~Mnhn
3 1MnhnDn!O~1!

5 0

under the conditions of the theorem+
~b2! By Lemma 7,

Ei @hi11
2 # 5 Ei @~Dn

21~Xti11
2 Xti 2 a~Xti !Dn!2 2 b2~x!!2#

5 b4~x! 2 2b2~x!b2~Xti ! 1 3b4~Xti ! 1 O~Dn!+

Thus

Ei @g2~Xti ,Xti11
!# 5

1

2hn

K 2S x 2 Xti

hn
D~b4~x! 2 2b2~x!b2~Xti ! 1 3b4~Xti ! 1 O~Dn!!

and

E @g2~Xti ,Xti11
!#

5 E @Ei @g2~Xti ,Xti11
!##

5
1

2hn
ESK 2S x 2 z

hn
D~b4~x! 2 2b2~x!b2~z! 1 3b4~z! 1 O~Dn!!D Tp~z! dz

5
1

2
E~K 2~u!~b4~x! 2 2b2~x!b2~x 2 hnu!

1 3b4~x 2 hnu! 1 O~Dn!!! Tp~x 2 hnu! du+
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With n r 1`, hn r 0, andDn r 0 we have

lim E @g2~Xti ,Xti11
!#

5
1

2
E lim K 2~u!@b4~x! 2 2b2~x!b2~x 2 hnu! 1 3b4~x 2 hnu! 1 O~Dn!#

3 Tp~x 2 hnu! du

5 b4~x! Tp~x!EK 2~u! du

5 b4~x! Tp~x!K2, SK2 5EK 2~u! du , 1`D+
~b3! We first show limE @g~Xt0,Xt1!g~Xt1,Xt2!# 5 0+ Given

E @g~Xt0,Xt1!g~Xt1,Xt2!# 5 E @E0 @E1 @g~Xt0,Xt1!g~Xt1,Xt2!###

we have by Lemma 7

E1 @g~Xt0,Xt1!g~Xt1,Xt2!#

5
1

2hn

KS x 2 Xt0

hn
DKS x 2 Xt1

hn
Dh1 E1 @h2#

5
1

2hn

KS x 2 Xt0

hn
DKS x 2 Xt1

hn
Dh1~b

2~Xt1! 2 b2~x! 1 O~Dn!!,

E0 @E1 @g~Xt0,Xt1!g~Xt1,Xt2!##

5
1

2hn

KS x 2 Xt0

hn
DE0FKS x 2 Xt1

hn
Dh1~b

2~Xt1! 2 b2~x! 1 O~Dn!!G
5

1

2hn

K 2S x 2 Xt0

hn
D$~b2~Xt0! 2 b2~x!!2 1 O~Dn!%,

and, finally,

E @g~Xt0,Xt1!g~Xt1,Xt2!#

5E 1

2hn

K 2S x 2 z

hn
D$~b2~z! 2 b2~x!!2 1 O~Dn!% Tp~z! dz

5
1

2
EK 2~u!$~b2~x 2 hnu! 2 b2~x!!2 1 O~Dn!% Tp~x 2 hnu! dz

5 ~hn
2 1 Dn!O~1!+

Hence, with hn r 0 andDn r 0 ~asn r 1`!, we get

lim E @g~Xt0,Xt1!g~Xt1,Xt2!# 5 0+ (B.3)
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We now show limE @g~Xt0,Xt1!g~Xtj ,Xtj11
!# 5 0 for j $ 1+ By Assumption A4, the

j th autocovariance of any function~squareP0-integrable! tends to zero at exponential
rate asj r 1`; thus, for j $ 1,

6E @g~Xt0,Xt1!g~Xtj ,Xtj11
!#6 # 6E @g~Xt0,Xt1!g~Xt1,Xt2!#6+ (B.4)

Given ~B+3! and~B+4! we get~b3!+
According to Lemma 9~also see Florens-Zmirou, 1989, Theorem 3! we have

1

Mn ( g~Xti ,Xti11
! d

&& N~0,b4~x! Tp~x!K2!,

and thus ~after standardization! ~10Mn!( g~Xti ,Xti11
!0~b2~x!M Tp~x!K2! d

&& N~0,1!+
Using the asymptotic equivalence theorem, ~10Mn!( g~Xti ,Xti11

!0~b2~x!MBn K2! and
~10Mn!( g~Xti ,Xti11

!0~b2~x!M Tp~x!K2! have the same asymptotic distribution, and
thus the result is proved+ n

Proof of Theorem 6.
~a! Let Vn

*~x! 5 An
* ~x!0Bn~x! where

An
* ~x! 5

1

nhn
(
i50

n21

KS x 2 Xti

hn
D ~Xti11

2 Xti 2 Tn~Xti !Dn!2

Dn

+

In the proof of Theorem 4 we saw thatAn
* ~x! can be written asAn

* 5 An
# 1 D1, n 1 D2, n+

A crucial step in this proof is thatTn~x!
p
&& a~x! asDn r 0 andn r 1`+ The estimator

Tn~x! does not converge toa~x! as Dn r 0 unless we assumetnhn r 1`, thereby
tn r 1` ~see also Bandi and Phillips, 2003!+ With the conditions stated one has
Tn~x!

p
&& a~x! and evenTn~Xt !

p
&& a~Xt !, i+e+, Tn~Xt ! 5 a~Xt ! 1 «Dn,n, where

plimDnr0,nr1` «Dn,n 5 0 ~see the proof of Theorem 4!+ Hence,

D1,n 5 2
2

nhn
(
i50

n21

KS x 2 Xti

hn
D ~Xti11

2 Xti 2 a~Xti !Dn!~Tn~Xti ! 2 a~Xti !!Dn

Dn

5 2
2

nhn
(
i50

n21

KS x 2 Xti

hn
D~Xti11

2 Xti 2 a~Xti !Dn!«Dn,n+ (B.5)

It is straightforward to conclude thatD1, n
p
&& 0 because~20nhn!(i50

n21 K~~x 2 Xti !0hn! 3
~Xti11

2 Xti 2 a~Xti !Dn!
p
&& 0 and«Dn,n

p
&& 0 under the assumptions stated~in fact,

each term of the summation in~B+5! is of orderop~1!!+ Using the same arguments, it is
easy to verify that

D2,n 5
1

nhn
(
i50

n21

KS x 2 Xti

hn
D~Tn~Xti ! 2 a~Xti !!

2Dn

5
1

nhn
(
i50

n21

KS x 2 Xti

hn
D~«Dn,n!2Dn

converges in probability to zero~note that by Slutsky’s theorem~«Dn,n!2 p
&& 0!+
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~b! First, note that

! nhn

2K2

Bn~x!SVn
*~x!

b2~x!
2 1D 5 ! nhn

2K2

Bn~x!SVn~x! 1
D1,n

Bn~x!
1

D2,n

Bn~x!

b2~x!
2 1D

5 ! nhn

2K2

Bn~x!SVn~x!

b2~x!
2 1D

1
1

b2~x!M2K2 Bn~x!
~MnhnD1,n 1MnhnD2,n!+

Now MnhDi,n 5 MnhDn~Di,n0Dn!
p
&& 0 ~i 5 1,2! becauseMnhDn r 0 ~by hypoth-

esis! and

D1,n

Dn

5 2
2

nhn
(
i50

n21

KS x 2 Xti

hn
D ~Xti11

2 Xti 2 a~Xti !Dn!

Dn

«Dn,n
p
&& 0,

D2,n

Dn

5
1

nhn
(
i50

n21

KS x 2 Xti

hn
D~«Dn,n!2 p

&& 0+

These results are obvious and their proofs are omitted+ It remains to observe that
b22~x!~2K2Bn~x!!2102 converge in probability tob22~x!~2K2 Tp~x!!2102+ Therefore, the
result~b! follows from Theorem 5+ n
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