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BIAS REDUCTION IN
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In this paperwe quantify the asymptotic bias of the Florens-Zmif@993 Jour-

nal of Applied Probability30, 790—-804 and Jiang and Knightl997, Economet-

ric Theory 13, 615—-645 estimator for the diffusion coefficient when the step of
discretization is fixedand then we propose a bias adjustment that partially com-
pensates for the distortioAlso, we show that our estimators have all the asymp-
totic properties of the Florens-Zmirou and Jiang and Knight estimator when the
step of discretization goes to zeMye provide some examples

1. INTRODUCTION

Stochastic continuous-time processespecially diffusion processdsave been
widely used in physical and biological sciences amdre recentlyin financial
economics In mathematical finance the success of the diffusion continuous-
time approach can be attributed to its many attractive propefiess Merton
1990.

However all models involve unknown parameters or functiowsich need
to be estimated from observations of the proc@$ege estimation of diffusion
processes is therefore a crucial step in all applicationparticular in applied
finance Nonparametric estimation based on continuous sampling observations
has been considered in the literature for many yésee references in Rao
1999. However as has been stressed by various authibies continuous sam-
pling observations hypothesis is unreasonable becaugeactice it is obvi-
ously impossible to observe a process continuously over any given intasval
a resulf for instance of the limitations on the precision of the measuring in-
strument or of the unavailability of observations at every point in t{fiRaq
1999. It is therefore natural that the most recent research in diffusion pro-
cesses estimation has been concerned with discrete time obseryatimrs
some progress has been mageboth parametric and nonparametric estima-
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tion. In nonparametric estimation based on discrete-time observations Florens-
Zmirou (1993 proposes an estimator for the diffusion coefficient using a uniform
kernel without imposing any restrictions on the drift coefficieAiit-Sahalia
(1996 proposes a semiparametric estimation procedure for the diffusion term
based on a parametric drift coefficiel@tanton(1997) builds approximations
to the infinitesimal coefficientsJiang and Knight(1997) use the Florens-
Zmirou estimator with a Gaussian kernel for the diffusion coefficient and pro-
pose a drift estimator based on the diffusion coefficient estimator and the
stationary(or marginal density Hansen Scheinkmanand Touzi(1998 pro-
pose spectral methods to recover the infinitesimal coefficients from the station-
ary density and an eigenvalue-eigenfunction pair of the conditional expectation
operator More recently Bandi and Phillipg2003 have developed an asymp-
totic theory for nonparametric estimates of the drift and diffusion coefficjents
under broad assumptions on the data generating prolceparticular they do
not require the existence of a time-invariant marginal data deresity thus
stationarity is not needed

We consider the stochastic differential equatid» subsequently with un-
known coefficientsa and b. The X process is observed at instadts = A,
i =0,1,...,n}, whereA, is the step of discretizatioffo estimate the diffusion
coefficientb?(x) consistently it is well known thain principle, it is not nec-
essary that the time spango to infinity (see Bandi and Phillip2003. Never-
theless a crucial but to some extent unrealistic assumptianboth cases of
estimation(drift and diffusion coefficients is thatA, — 0 asn increasesin fact,
in most empirical applications the step of discretization is generally fixed
A, = A asnincreasesFor examplethe series could be dajlweekly or monthly

In this paperwe quantify the asymptotic bias of the Florens-Zmifd993
and Jiang and Knight1997) estimator for the diffusion coefficient when the
step of discretization is fixe(ast, = nA — +o0), and then we propose a bias
adjustment that partially compensates for the distorfidms is done by includ-
ing the drift coefficient or its nonparametric estimates in the diffusion estima-
tor, which, as we will seeenables a reduction of the asymptotic biasaddition
whenA, — 0 we will show that our estimators have all the asymptotic proper-
ties of the Florens-Zmirou and Jiang and Knight estimaftée conjecture that
other bias adjustments can be entertained

The rest of the paper is organized as folloBgection 2 defines the diffusion
process and the main assumptiofsction 3 presents our principal resuigc-
tion 4 illustrates the proposed nonparametric estimator with some examples
Section 5 outlines some other possible developments and concludes

2. THE DIFFUSION PROCESS

We assume thaX = {X;,t = 0} is a diffusion processwith state spacé¢ =
(I,r), governed by the stochastic differential equation

dX; = a(X;) dt+ b(X;) dW, Xo =X, (1)
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where{W,,t = 0} is a(standard Wiener processa andb are unknown coeffi-
cients or functionsand x is either a constant value or a random valGg
measurable independent ®,. We assume thad and b have continuous
derivatives

Lets(z) = exp{—[; 2a(u)/b?(u) du} be the scale density functid, is an
arbitrary point insidd ) andm(u) = (b?(u)s(u))~* the speed density function
Let S(I,x] = lim, _, [ s(u)du and S[x,r) = lim,, , [ s(u)du where
| < x; < X< X, <r.We now present a set of five assumptions that are used
throughout the paper

Al. S(I,x] = 9[x,r) = +oo for x € I.

According to Arnold(1974 p. 114), if the infinitesimal coefficientsa andb
have continuous derivatives with respect¢adhen there exists a unique con-
tinuous process that is defined up to a random explosion jrimethe interval
to < m = +o00. The Al condition assures thB{n = +oo| X, = x] = 1 (Ikeda
and Watanahel981, pp. 362-363. Furthermore the boundarie$ andr are
neither attracting nor attainab(eee Karlin and Taylorl981 Ch. 15), and the
process is recurrent.e., P[T, < oo|X, = x] = 1 for everyx,y € | where
T, = inf{t = 0,X; = y} (Ikeda and Watanabe 981, Theorem 31, Ch. VI).
Roughly speakingthe boundaries andr are never attained although every
finite point can be reached with probability one in finite tinidobal Lipschitz
and growth conditionswhich fail to be satisfied for many interesting models
in economics in financ@Ait-Sahalia 1996, are not needed in the presence of
the previous assumption¥he Al condition is not very strong.g., the stan-
dard Brownian motion satisfies the Al conditigKarlin and Taylor 1981
p. 228). Actually, every process with zero drit(x) = 0 (andb(x) > 0) satis-
fies the Al condition

A2. [ m(x)dx < +oo.

The Al and A2 conditions assure théts ergodic and the invariant distribu-
tion P° has densityp(x) = m(x)/f," m(u) du with respect to the Lebesgue
measure(Skorokhod 1989 Theorem 16 The expressiomp(x) is usually de-
noted as stationary density

A3. X, = x has distributiorP°.

Assumption A3 together with A1 and A2 implies thAtis stationary(Ar-
nold, 1974. Assumption A3 canin some casede replaced by the following
assumptionX, is a random variable with megn and variancer? such that
Ixp(x)dx=u < +o0 andf(x — u)?p(x) dx = 02 < +co. In this caseX is a
covariance-stationary procegen if the A3 condition does not hqlid is known
that whent is sufficiently large the distribution of the ergodic process is
well approximated by the distribution with densjiyx). For simplicity in our
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nonparametric estimation framewonke assume stationarjtylthough more
broad assumptions can be considefsée Bandi and Phillip2003. As we

will see our estimators have important advantages over the Florens-Zmirou
(1993 and Jiang and KnightLl997) estimator when the process exhibits strong
reversion effectswhich occurs typically in a stationary framework

A4. lim,_,, sup([a(x)/b(x)] — [b'(x)/2]) < O, lim,_, sup([a(x)/b(x)] —
[b'(x)/2]) > 0.

These conditions are discussed in Chelansen and Carrasc@1998 and
are similar to ones proposed by Hansen and Scheinkih@85. Under As-
sumption A4 the process jsmixing (see Chen et gl1998. Technically for a
Markov processthe notion ofp-mixing requires the conditional expectations
operator for any interval of time to be a strong contraction for all functions
with zero mean and finite variancAs a consequencéhe jth autocovariance
of f(X;) tends to zero at exponential ratejas> +oo, for all functionsf such
that [ f(x)p(x) dx = 0 and [ f2(x)p(x) dx < +oo (see Hansen and Scheink-
man 1995 Proposition 8 Florens-Zmirou 1989. We notice that even if the
drift is zero or converges to zerAssumption A4 can holdprovided that vol-
atility grows at least linearly

The kernel functiorK that we will use to define our estimators satisfies the
following assumption

A5. K(.) is symmetric and continuously differentiable afidk (u) du = 1,
JruK(u)du=0, f[gK?(u)du= K, < co.

3. BIAS REDUCTION IN NONPARAMETRIC ESTIMATION

Florens-Zmirou(1993 proposes the estimator

S K < X— xti > (Xti+1 — Xti)z
i=0 hn An
S(x) = —

Se(5)

for b2(x) whereK is the uniform kernelUnder some conditiopsncluding

A, — 0, he proves thaB,(x) converges in mean square erfdiSE) to b?(x)

and that the asymptotic distribution 8f(x) (suitably standardizeds normal
Jiang and Knight1997) extend these results for the Gaussian keramedl Bandi

and Phillips(2003 consider a more general estimator under broad assumptions
on the data generating procegdthough S,(x) requires only mild regularity
conditions to be consistent—in particular the time spacan be fixed—it is
necessary that the step of discretization go to Zee® e.g., Bandi and Phil-

lips, 2003. However in most applications the step of discretization is gener-

)
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ally fixed (i.e,, A, = A asn increasep For examplethe series could be dajly
weekly or monthly Even whenmA,, decreases asincreasegwhich is possible
if one passes.g., from weekly to daily observationsthe conditionA, — 0 is
too strong as it requires continuous sampling observations at the Whi¢n
high frequency data are availakiee., A, is smal), the advantages of using all
the available information are not cledn fact, high frequency data are replete
with empirical anomaligssuch as heteroskedastigitlyeterokurtosis non-
synchronous tradingand many other market microstructure “frictighg/hich
can obviously contaminate the estimatesee Sawyer1993 Andersen
Bollersley Diebold and Labys2002J).

3.1. Behavior of the Nonparametric Estimators
When the Step of Discretization Is Fixed

In this section we quantify the bias of the Florens-Zmit@@93 and Jiang and
Knight (1997 estimator for the diffusion coefficient when the step of discret-
ization is fixed and then we propose a bias adjustment that partially compen-
sates for the distortionVe assume the A1-A5 conditions in all theorems

THEOREM 1 If A, = A (constant), t - +oo, h, —» 0, nh, —» +oco as
n — +oo, and E(X, — Xg)*] < +oo then

S,(X) 5 b2(x) + a2(x)A + f(X)A + O(A2), (3)
where f(x) = b2(x)a’(x) + a(x)b(x)b’(x) + 2b2(x)(b'(x))? + b3(x)b"(x).

It is clear that the consistency &, depends crucially on whether, goes to
zero or notWhenA,, = A is constant the bias is of ord€¥(A). This bias can
vary considerably in the state spakeln general it is minimum at pointxg
such thata(xg) = 0, because in this case several terms associated with the bias
in the stochastic limi{3) vanish On the contrarythe bias increases in those
pointsx such thata(x)| is high which in stationary framework corresponds to
the interval where the process exhibits stronger reversion effects

Based on these results we propose a bias correction with the following
estimator

! K < X=X ) (Xq,, — Xy, — a(xt,)An)Z

We have the following theorem
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THEOREM 2 If A, = A (constant), t - +oo, h, —» 0, nh, —» +oco as
n — +oo, and E(X, — Xo — a(Xy)A)*] < +oo then

V,(X) = b2(x) + f(X)A + O(A2), (4)
where f(x) is given in Theorem 1.

Therefore with A, = A constantthe V,(x) estimator generally has smaller
bias than thes, estimator The bias reduction occurs because of the elimination
of thea?(x)A term in the stochastic limit in equatiaB). Actually, whenA,, is
constant the evaluation of the erroréX, | — X, — a(X;)A,)%A, enables a
more accurate estimation of the infinitesimal conditional variance than the er-
rors (X, — Xti)Z/An. However the V, estimator is unfeasible because the
functiona(x) is unknown As in Ait-Sahalia(1996), we can assuma(x) linear,

i.e, of typea(x) = 6, — 65X, 61,6, > 0 wheref, andf, can easily be estimated
using semiparametric methad$owever if we do not want to rely on the para-
metric specification of the driftwe should use a nonparametric estimator for
a(x). In this casewe propose

nt K X—= Xti (Xtiﬂ - Xti - Tn(xti)An)2
" i=0 hn An
Vi (%) = 1 X=X, ; ()
K 1
se(5)
whereT,(x) is a nonparametric estimator afx). We consider
n-1 X=X\ (Xe ., —X¢)
2 K t vl Tt
i=0 hn An
Ta(x) = n-1 X=X
» K( '
i=0 hn

This estimator is a simpler version of a more general estimator proposed in
Bandi and Phillipg2003. The Jiang and KnightL997) estimator fora(x) can-

not, in principle be used here because it depends on the diffusion coefficient
estimator(see however Section 5The following theorem characterizes the bias
of the T, estimator

THEOREM 3 If A, = A (constant), t - +oo, h, — 0, nh, —» +o0 as
n — +oo, and E[(X, — Xo)?] < +oo thent

1 1
T, (x) 2 a(x) + (5 a(x)a’(x) + 2 bz(x)a”(x)>A +0(A?).
Therefore whenA is fixed, the drift estimatorT, has a bias of orde®(A).

BecauseV, depends explicitly oM, it is important to identify the impact that
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the bias of the drift estimator has on the bias of the diffusion coefficient esti-
mator The following theorem addresses this question

THEOREM 4 If A, = A (constant), t - +o0, h, —» 0, nh, —» +oc0 as
n — +oo, and E[(X, — Xo — a(Xp)A)*] < +co then

Vi (x) B b2(x) + f(X)A + O(A2), (6)
where f(x) is given in Theorem 1.

Theorem 4 shows that the impact of the bias of Thestimator on the bias
of the V estimator is negligibleln fact, equation(6) is basically the same
expression obtained with thé, estimator(see expressio)). With the V.
estimator we obtain a bias adjustment gain that is similar to that o¥/ttve
estimator(ignoring the terms higher tha@(A?)). A simple justification for this
result is the following Although the bias of thea(x) estimation is of order
O(A) (by Theorem 3 the bias involving the estimation of the(x)A func-
tion, which is the term we correct and eliminate in equati8h is of order
O(A®) (see the proof of Theorem 4 in Appendiy.B'hus the bias in estimat-
ing thea(x) coefficient only appears in the stochastic limit\4f in the terms
of orderO(A3).

The advantages of using thé"(x) (and V,(x)) estimator overS,(x) are
more evident wherx belongs to the interval wher@(x)| is high which in a
stationary frameworkwith a nonzero drift corresponds to the interval where
the process exhibits stronger reversion effettas is clear from equations)
and(6). Obviously if stationarity is volatility-induced with zero drift then there
are no advantages of using the proposed estimators

3.2. Limiting Properties as the Frequency
of Observations Increases

We now address the limiting properties \df andV,” estimators aa, — 0.
THEOREM &
(@) If Ap— 0, hy > 0, nhy = +00 as n— +oo, and E[(X,, — Xo — a(Xo)An)*] <
+oo then
Vi (X) -2 b2(x).
Let By(x) = (nh) " =5 K((x = X,)/hy).

(b) If, in addition to the previous conditions, ih—» 0 and A/nh,A, — 0 as
n — +co? then

nh o <Vn(X) B
2K, "\ b?(x)

1) 45 N(0,1),

where K = [rK?(u) du.
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Theorem 5 shows that our asymptotic results are essentially equal to those
of Florens-Zmirou(1993 and Jiang and Knight1997). In fact, we get
S\(X) = Va(X) -5 0, and if we use the uniform kerndlK(u) = 1/2if |u] < 1
and K(u) = 0 if |u] = 1), as in Florens-Zmiroy1993, we conclude that
by the asymptotic equivalence theor,exﬁ(nhn/Z)Bn([&(x)/bz(x)] — 1) and
\/(nh,/2) Bn([vn(x)/bz(x)] — 1) have the same asymptotic distributibfhus
in asymptotic framework with\,, — 0, V, and S, are equivalent estimatars
Our claim however is that our estimator is preferable whan = A is con-
stant as we have pointed out

We observe that in Theorem 5 it is not necessary that the observation period
go to infinity, i.e., t, can be constafitasn — +oo (in this casethe condition
\/nh,A, — 0 is redundant In fact it is known that every finite interval of
continuous observations contains all the information needed about the diffu-
sion coefficientb?(x) to estimate it with probability oneprovided thatx is
visited by X (see Brown and Hewittl975 Bandi and Phillips2003.

The next theorem analyzes the asymptotic behavior ofthestimator

THEOREM 6 Let the assumptions of the previous theorem hold. In addi-
tion suppose that,h, — +oo (thereby  — +c0).5 Then

@)
Vir (x) = b2(x)

and

(b)

N (V”*(X)—1> 4 N(0,1
2K, B\ b2y ~ 1) T NOD,

where K = [ K2(u) du.

In Theorem 6 one has the additional conditigh, — +coc. Becauséh, — 0
must hold we have to imposg, — +oo. This is an obvious consequence of the
fact that we use th&, drift estimator in the expression &f" and direct iden-
tification of the drift coefficient based on this kernel estimator is impossible
over a fixed sampling periodseveral authorge.g., Bandi and Phillips2003
Phillips and Yy 2000 Jiang and Knight1997) have stressed that the estima-
tion of the drift is usually empirically and theoretically more difficult than the
estimation of the diffusion coefficienTherefore there is no benefit in using
the V. estimator(or even theV, estimatoy when the step of discretization tend
to zera In fact S, andV; are asymptotically equivalent estimatoRurther-
more unlike the S, estimatoy V' requires that the time span tend to infinity
Neverthelesswhen A, = A is fixed, the estimatoV,’ is preferable because it
reduces the bias of th®, estimatoy as we have stressed
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4. EVALUATION OF THE BIAS USING
A PARAMETRIC INTEREST RATE MODEL

In this section we compare the bias of th&, andV," estimators from some
specified (parametri¢ models in the framework — +co. Given a(x) and
b2(x) it is easy from equationg3) and (6), to evaluate the bias of thg, and
V. estimators asn — +oo for a fixed step of discretizatiom (thereby
t, = NA = +00). In fact, assuming thatD(A?) is negligible the biases are
given by the expressions

Bias,(X) = S(x) — b2(x) = a?(x)A + f(X)A,
Bias,(x) = V*(x) — b?(x) = f(x)A,

wheref(x) = b2(x)a’(x) + a(x)b(x)b'(x) + 2b2(x)(b’(x))? + 2b3(x)b"(X)
(note that we suppress the subscriphssociated with the estimators because
we are dealing with the case— +o). It follows thatS(x) = b2(x) + a?(x)A +
f(x)A andV*(x) = b2(x) + f(X)A (assumingh — +oo). We start by selecting

the coefficientsa(x) andb?(x) based on some estimated models by Ait-Sahalia
(1999 using monthly Fed funds data from January 1963 through December
1998 From Table VI of Ait-Sahalid1999 we select two modeis

dX, = 0.261(0.0717— X,)dt + 0.0223HW,
(0.12 (0.019 (0.00078

dX, = 0.219(0.0721— X,)dt + 0.06665\X,dW,
(0.100 (0.016) (0.0023

where the parameter@xpressed in annualized foyrwere estimated by the
maximum likelihood method and the asymptotic standard errors are shown be-
low the parametersFrom these models we evaluate the functidias,(x),
Bias,(x), S(X) = b2(x) + a?(x)A + f(x)A, andV*(x) = b?(x) + f(X)A run-
ning x (interest rate expressed in annualized fpimthe interval]0,0.22] (the
maximum value observed in the period wa®2B6. The constani is equal to
4. Before we present the resuli$ is worth mentioning that this simulation
seemingly does not best serve our purposes becaue interest rate estima-
tion framework the drift coefficient is numerically close to zerAs we have
pointed ouf this is the case wheré;” and S, present similar resultdHowever
we will see even in this situationthat theV, estimator seems to be better
Then to appreciate how," can improve the5, estimateswe slightly increase
the parameters associated with the reversion effects

From Figures 1 and 2 one can conclude that in/loederate values of in-
terest rate both nonparametric estimators produce similar and good estimates
whereas in higfivery high valuesthe S, estimates are generally worse than the
Vi estimatesWe give a short explanation for these resu@®herently with
most empirical studies of interest rate seriwe observe the following pattern
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Ficure 1. Behavior of theS andV* estimators(asn — +c0) whenA = 5 and the
model isdX; = 0.261(0.0717 — X;) dt + 0.0223MW,.
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FiGURE 2. Behavior of theS andV* estimators(asn — +c0) whenA = & and the
model isdX, = 0.219(0.0721— X,) dt + 0.06665X,dW,.
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Ficure 3. Nonparametric diffusion estimation—Fed fund data

In the interval of moderafdow values not only is the volatility very low but
also the process displays martingale behaviothe sense thad(x) ~ 0 for x
belonging to the interval of moderatew values In this interval the asymp-
totic bias ofS, (and also ofV;") is in general very lowBy contrast in the
interval of highyvery high values of interest ratethe volatility increases sig-
nificantly and the process exhibits stronger reversion effécts in this inter-
val, where|a(x)| is higher that S, produces greater bias ansimultaneously
thatV,’ shows significant improvement ové&,.

It is now interesting to compare thg, andV,’ estimates for the diffusion
coefficient using the Fed fund data referred to previously

From Figure 3 it seems that the volatility at high values of interest edte
though considerabjés not as great as th®, estimator suggestélowever no
definitive conclusions can be made because in the areas where the drift coeffi-
cient is substantially negativénigh in absolute valuethere are not sufficient
observations to draw precise statistical inferetfoe a discussion on this topic
see Bandi2002.

Let us consider a slight increase in the parameters of the preceding models
associated with the reversion effe¢everything else remains unchanged

dX, = 0.9(0.0717— X,)dt + 0.02237dW,
dX, = 0.9(0.0721— X,)dt + 0.06665,X,dW

(in both casesthe parameteg defined in the drift functioma(x) = B(u — X)
has changed t0.9). Although these models certainly no longer reflect the be-
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FicuRE 4. Behavior of theS andV* estimators(asn — +c0) whenA = 5 and the
model isdX; = 0.9(0.0717— X,)dt + 0.0223W,.

havior of the interest rate proceghey allow us to appreciate the advantages

of the proposed estimator when stronger reversion effects characterize the dy-
namics of the conditional meain fact, as can be seen from Figures 4 and 5
greater improvement is achieved by ¢ estimates over th§, estimates
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FiGURE 5. Behavior of theS andV* estimators(asn — +co0) whenA = & and the
model isdX, = 0.9(0.0721— X,) dt + 0.06665X,dW,.
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5. CONCLUSIONS AND OTHER EXTENSIONS

In this paperwe quantified the asymptotic bias of the Florens-Zmit©093

and Jiang and Knight1997 estimator for the diffusion coefficient when the
step of discretization is fixedand subsequently we proposed a bias adjustment
that partially compensates for the distortiéiso, we showed that our estima-
tors have all the asymptotic properties of the Florens-Zmirou and Jiang and
Knight estimator when the step of discretization goes to.ZEnere are some
improvements that can be consider&itst, more general assumptions on the
data generator process as in Bandi and Philig303 can in principle be ap-
plied. Second other drift estimators can be consideréutstead ofT,. For in-
stancethe Jiang and Knight1997) drift estimator can be used once one has a
preliminary estimate of the diffusion estimat&ubsequentlyan iterative pro-
cedure can be applieticonjecture that the asymptotic properties of the Jiang
and Knight drift estimatqgrwith A fixed, can be improved if one uses th&
estimates instead of tig estimatesThird, a more accurate estimator fof(x)

can in principle be designed through the identification of thex) function
using standard methods for derivative estimatialbeit at a natural cost of a
reduction in the rates of convergend¢eurth as in the case of the diffusion
estimatoy similar bias adjustments can be designed for the usual drift estimator
T,. Fifth, an evaluation of the bias produced by other nonparametric estimators
(in the case\, = A constank such as the local linear or local quadratic regres-
sion can be analyze@ee Fan and Yad 998.

NOTES

1. I thank a referee for pointing this aut

2. Let us assumé, = O(n?), h, = O(n?), and consequently, = t,/n = O(n*~1). To assure
the conditionss, — 0, h, — 0, nhy, — +00, Nhg — 0, and4/nh,A, — 0 asn — +oo it is necessary
and sufficient thag andy be such that-1 < 8 < —3 and 0=y < 3 — 3/2.

3. With uniform kerne) we haveK, = 3 and (nh,/2K2)B, = 320 K((x — X, )/h,) =

10 3T x, 1<nyy = Ni/2; thus A[(NA,72) B, ([S1()/b2(0)] — 1) = \/N,72([S,(x)/b(x)] — 1)
N(0,1), as in Florens-Zmiro§1993, Theorem 1

4. From note 2 we can conclude thatcan be zero wherg is defined int, = O(n?). That is
consistency can be obtained withconstantIn this casethe condition\/n_hnAn — 0 is redundant

5. To assure the conditions, — 0, hy — 0, nhy — +0c0, nhg — 0, 4/nh,A, — 0, andt,h, —
+o00 asn — +oo it is necessary and sufficient thatl < g8 < —3, -8 < y < 3 — /2 (see
notations in note 2 which defines a nonempty convex open seftih Obviously the condition
v > —f means that the time span cannot be fixieel, we must havey > 0.
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APPENDIX A: PRELIMINARY RESULTS

LEMMA 7 (Florens-Zmiroy1989. Assume that £ C25*Y and ab? € €25 (CXis
the space of k times continuously differentiable functions). Then,

S Al
E[ f(xt‘)|xt,,1] = _ZOL‘f(XtH) J_' +R
i= !
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where L= a(d/dx) + 3b?(d%/dx?) and

A [fup Ug
= f f f E[LS (X, o, )X, 1dup...dug, ;.
0 Jo 0

See Hansen and Scheinkmdr®95 for additional discussianVe assume in all ap-
plications involving Lemma 7 that

E[l LoFif (Xti,1+us+1)||xli,1] < +oo.

For example if |LSTf(x)| = ki(1 + x?7) holds for k; > 0 and if for some
integer r > 0, we have E[XZ|X] = (1 + [X2])eA®® for A > 0, then
E[ILS M (X +u. )X, ] < +oo (these conditions are generally easy to salisfly
is worth mentioning thaR depends orX, , andAS™®. We denoteR by R = O(AS*?).

The next lemmas deal with a central limit theorem version for discrete time pro-
cessegX,, i = 0} extracted from the diffusion proce$X;t = 0}.

LEMMA 8 (Florens-Zmiroy 1989. Let A1-A4 hold. LetfE C R — R such that
E[ f(X)] = 0 and E[ f2(X)] < 400 where the expected values are evaluated with re-
spect to the invariant distribution ® Then(1/4/n) =L, f(X;) 45 N(0,Vy( f)) where
Va(f) = E[F2(X)] + 2371 E[ £(Xo) F(X,)].

(We note that our A4 condition implies the* condition defined in Florens-Zmirou
1989)

LEMMA 9 (Florens-Zmiroy1989. Let A1-A4 hold. Let gE? C R? — R such that
E[g(X,_,, X, )] = 0 and E[g?(X,_,,X;)] < +oo where the expected values are evalu-
ated with respect to the invariant dlstrlbutlonOPThen(l/\/—)E. 1 90X, 1,th)
N(0,V2(g)) where M(g) = E[g%(X,_,, X,)] + 23,1 E[9(Xo, X, )9( Xy, Xy, )]

Note that

E[9%(X; _,, %) = E[E[Q*(X;_,, X)X, 1]

= f(fgz(x, Y)p(4, X, y) dy> p(x) dx,

wherey — p(A, x, y) is the transitionor conditiona) density ofX.;, givenX; = x and
p is the stationary densitifhe following result is well knowr{see e.g., Rag 1983.

LEMMA 10. Let A1-A5 hold and h— 0 and nh, - +00 as n— +co. Then

B, (x) H p(x) where B(x) = (1/nh,) X", L K((x — X,)/hn) (i) denotes corer-
gence inMSE).

We discuss subsequently two distinct cases involving the estinBgtorhey are as
follows: A, — 0 andA, = A constant as — +co. In both casesB,(X) is consistent in
guadratic mean fop(x) provided that the other conditions in Lemma 10 are satisfied
We stress that the convergence of the density estimator in the presence of a canstant
requires an increasing spén
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APPENDIX B: PROOFS

The arguments we use to prove theorems in this Appendix differ from those of Florens-
Zmirou (1993 and Jiang and Knightl997) in that we do not consider an expansion of
transition density

Proof of Theorem 1. Let S,(x) = A,(X)/Bn(X) where
1 X_Xt,> Xy, — Xt,)z

n—1
K
nhnz‘a ( hn A,

Given Lemma 10it is enough to prove that,(x) LN (b2(x) + a?(x)A + f(X)A +
0(A?))p(x). To simplify we write A, instead ofA,(x). We have(with A, = A)

AL(x) =

1 — — 7)2
et = [ (57) PR e zvp@ e

ifK X—z E (Xy = Xp)?
h, Jr h, A
Xy — Xg)?
_ JK(U)E[( A O)
A
(with the change of variable = x — h,u). Using Lemma 7Awith A,, = A)

_ 2
E[ (Xa = Xo) Xo]

A
= b?(Xy) + [a%(Xp) + b2(Xg)a'(Xo) + a(Xe)b(Xg)b' (Xo)

Xo = z] p(z)dz

onx—hnu] p(x—h,u)du (B.1)

+ 3b2(Xo) (0" (X0))? + 3b3(Xo)b” (Xo)]A + O(4?)
= b2(Xo) + a2(Xg)A + f(Xo)A + O(A?)
equation(B.1) can be written as
E[A,] = fK(u)(bZ(x— h,u) + a%(x — h,u)A

+ f(x— hyu)A + O(A%))p(x — h,u) du.

Consideringh,, — 0, [K(u) du= 1, and the fact thag, b, f, andp are continuous func-
tions (these sort of arguments will be used throughout the pipofse has

lim E[A,] = (b2(x) + a2(x)A + f(x)A + O(A?))p(x) fK(u) du

= (b%(x) + a2(X)A + f(X)A + O(A?))p(x).
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It is now necessary to prove \[gk,] — 0. We have

n—1 _ _ 5
Var[A,] = Var[ 1 D K<X Xn) (Xti+1A Xy,) }

hn i=0 hn

1 Vi [ o K X=X, (Xtiﬂ_xti)z
= ar
r]hn i=0 th hn A
1

F(Xe Xy, 1)}

1
= Var

1
\n
1
nhn \/ﬁ i=0
1 1
vn

L Vi
= ar
nh,

f*(Xti,XtiH)},

wheref * (X, X,,,) = f(X;, X,.,) — E[ T(X;,X%,,,)] and
1 K X~ Xti (Xti+1_ X'fi)2
\h, h, A '

Note thatE[( f*(X,X;,))?] = E[ f2(X;, X, )] — (E[ f(X,,X,,,)])? and

2 X Xli (Xti+1 B Xli )4
E[K h A2
X=X, (X, = X)*
E|K? h E A2 \Xti .

By Lemma 7 it is possible to check that

(Xt,ﬂ - Xt,)4
E —A2

f(th7 Xt|+1) =

E[ f Z(th Xt,H)] =

Fle

Fle

xti] = 3b%(X,) + O(A).

In this way

1 X—z
ELF2(X,, X,,)] = h—fK2<h—>(3b“(Z) + 0(4))p(2) dz

= sz(u)(Sb“(x— h,u) + O(A))p(x — h,u) du

= (3b*(x) + O(A))p(x)sz(u) du.

This expression is clearly finiteOn the other hand

_ 1 X=X\ (X, — xt,)2
E[ (X, X, J]=E ﬁ K h A

= \/h.E[A,]

is finite and tends to zero
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In conclusion E[(f*(X, X,_.,))?] is finite becauseE[ f2(X,,X, )] is finite and
E[ f(X,,X,.,)] tends to zeroThen by Lemma 9 Var[1/vn 3 g (X, X)) =
Vo( %) < +oo, and so VafA,] = (1/nh,)(Vu(f*) + 0(1)) — 0. Therefore A, -
(b2(x) + a2(x)A + f(X)A + O(A2))p(x) andAn/Bn = (b2(x) + a2(x)A + f(X)A +
0(A?)) because, > p(x) > 0 by Lemma 10 [ |

The proofs of Theorems 2 and 3 are similar to the proof of Theorem 1 and thus are
omitted

Proof of Theorem 4. Let V;(x) = Ai(x)/B,(x) where

1 "_lK X=X, (xtwl_xt‘_T(Xt,)An)z
nhn i=0 hn An ’

ANX) =

To simplify we write A}, instead ofA’(x). We first note thafwith A, = A)

1 2 <X - Xt,) (Xt.+l - X[, - Tn(xt,)A)z
A, = K
nhn i=0 hn A
_ 1 "21K<X - Xti> (X, = Xy — alXy)A) = (To(X,) — a(X,))4)?
nh, %% h, A
_ 1 X~ Xti (Xti+1 B Xti - a(xli)A)z
_nhn,oK< h, ) A
2 X=X (K, = X — alX ) A (TR(X, ) — alX))A
TS K( h, ) A

1 n—1 X_Xt
P K(—')(mx[,)—a(xt,)m

To simplify we write Dy , and D, , instead ofD; n(X) and D, (x), respectively We
now need the following resultT,(X;) LN a(X;) + O(A). Pointwise convergence
T.(x) 5 a(x) + O(A) (Theorem 3, does not implyT,(X,) = a(X,) + O(A) (see
Davidson 1994 Ch. 21). From Theorem 28 of Davidson(1994), suitably adapted to
our problemif T,(x) converges in probability ta(x) + O(A) uniformly on an open set
containing all the possible values ¥f{, then it follows thafT,(X;) LN a(X;) + O(A). In
principle, the uniform convergence must hold i’ although in practice becauseX is
stationaryit is enough to take an open Sétcontained in some compact $ésuch that
P(X € V) = 1. Following Davidson(1994), Theorem 219, T,(x) converges in proba-
bility to a(x) uniformly on a sev if and only if T,(x) LN a(x) for eachx € V andT,(x)
is stochastically equicontinuou3o guarantee this last conditipit is sufficient that
supev|dTy(x)/dx| be bounded in probabilitfDavidson 1994 Theorem 2110).
Under the conditions establishédote that we imposed that the kernel function and
the infinitesimal coefficients are continuously differentighitefollows that T,(X;) LN
a(X) + 0O(4), i.e, To(X;) = a(X;) + O(A) + &n, wheree, = 0y(1). Thus
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2 Nl x =X\ (X, — X, — alX) A (T(X,) — a(X,)A
Dl’“__nhngoK< h, > A
2 n—1 X—Xt
= - > K( ')(xt, — X, —a(X,)A)(O(A) + &,). (B.2)
nhn i=0 hn i I I

We have(with A, = A)

1 —
E[D, ] = h—fRfRK<Xh Z)(yza(z)A)(om)+sn>p<A,z,y>p<z>dydz

1 X—z
=h—fRK< h >E[(XAXOa(xO)A)(O(A)+8n)|X0:Z]p(Z)dZ

= f K(WEL(Xy = Xo = a(Xo)8)(O(4) + &,)[ Xo = X — hyu] p(x = h,u) du

Using Lemma 7Awith A, = A),
E[(Xsy — Xo — a(Xo)A)(O(A) + &,)|X,] = O(A3),

and the hypothesik, — 0, one has linE[Dy ,] = O(A®). To prove VafD; ] — 0
we follow the same arguments we used in previous ptacds we define

4 1t
Var[D; ] = Ty Var[ﬁ _Zof*(xti>xti+1):|7
n 1=

wheref * (X, X,,,) = f(Xy, X,.,) — E[ (X, X%,,,)] and

G it

1 X
f(Xt,vxt,ﬂ) = W K <h—ntl>(xt,+l - Xt, - a(xt,)A)(o(A) + en).

Using Lemma 7 one concludes
EL 120X, %, = 0(4%)p(0 [K2(w du

ELf(X,, X,,,)] = \/hE[Dyn],

and using Lemma 9 and Assumption A5 we have lim\&,] = 0 and thus
Dyn(x) 5 O(43).
Also, it is easy to see that

1 -t X — X
Dy n= _ K<—I>(Tn(xt,) - a(Xli))ZA

nh, S h

1 ”‘1K x =X, O(A)2
= +0(4))2A

eI (el GRS EV)
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converges in probablllty t®(A%) (note that by Slutsky’s theoreffz,)? P 0). It fol-
lows from Dl (X)) B 0(a%), D2, n(X) 25 0(A%), Theorem 2 and Lemma 10 that
AL(X)/B(X) 5 b2(x) + f(X)A + O(Az) u

Proof of Theorem 5.
(@) Let V,,(x) = A%(x)/B,(x) where

-t X=X\ (Xy,, = Xy, — a(xti)An)Z
Ay )

A#
hn

Given Lemma 10it is enough to prove thad?(x) i> b?(x)p(x). From the proof of
Theorem 1 it is straightforward to verify that

E[A5(x)] — b?(x)p(x),  Var[A}(x)] -0
asA, — 0, hy = 0, andnh, — +oo. Therefore A%(x)/B,(X) = b2(x). Let us see the
second part of the theorem

(b) To simplify we use the notatiok;[-] = E[-|X,], and we writeX instead of
S3. We note that

1
2K2 n b2(X) - bz(X)m ,

where

(XX )= [
(R, Ay y) = 2h, h, Ni+15

M1 = Ay (Xt.J,1 Xy — a(xt,)An)z - b?(x).

First, we show the following

(bD lim E[(2/vn) Zg(X,, X, .,)] = O
(b2) lim E[g?(X, Xi,)] = b*(X)P(X)Kz,  (Kz = [KZ(u) du);
(b3) lim E[g(Xy,, Xll)g(XtJ, thﬂ)] =0, forj=1

In effect,
(b1) applying Lemma 7 we have

Ei[mi.1] = E[ARH(X Xy — a(X[,)An)Z - b2(x)]

i1

= b2(X,) — b?(x) + O(A,).

Thus

El9(Xe, X, )] = K<X—th>(b2(xti) —b%(x) + 0(4,))

2h, \ h,
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and

E[g(Xti, Xtiﬂ)] =E[E [g(xti’ Xtiﬂ)]]

) <5 ) b00 - opime:
h,

e
Vh

A (h,O(1) + O(An))

(using the change of variahle= x — h,u, and Taylor’s formulab?(x — h,u) — b?(x) =
O(hn) (b%(x — 6h,u))’, with 0 < @ < 1). Therefore

K(u)(b?(x — h,u) — b?(x) + O(A,))p(x — h,u) du

] e
lim E[ﬁ > g(Xt,thﬂ)] = I|m\/ﬁ< NG (h,O(1) + O(An))>

= lim(y/nhZ + y/nh,4,)0(1)

=0

under the conditions of the theorem
(b2) By Lemma 7

Elnéd.]1=E [(Aﬁl(xt.+1 =Xy, — a(xt,)An)z — b3(x))?]
= b*(x) — 2b2(x)b?(X,) + 3b*(X,) + O(A,).

Thus

1
E [gz(xtn Xtiﬂ)] =

- X,
2h K2<X '>(b“<x) — 2b%00b*(X,) +3b%(X,) + O(Ay))

hn
and
EL9*(X, Xq,,)]

= E[E [gz(xtn X

) zin / <K2<Xh_nz>(b4(x) ~ 2b%(x)b*(2) + 3b%(2) + O(An>>> p(2) dz

1
= EJ(KZ(U)(b“(X) — 2b2%(x)b?(x — h,u)

+ 3b*(x — hyu) + O(A,))p(x — h,u) du.

https://doi.org/10.1017/50266466603195035 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466603195035

NONPARAMETRIC ESTIMATION 775

With n —» +o0, h, —» 0, andA,, — 0 we have

lim E[g%(X,, X,,)]
1(.
T2 f lim K2(u)[b*(x) = 2b2(X)b?(x — hyu) + 3b*(x = hyu) + O(4,)]
X p(x—hyu) du

= b4(x)p(x)fK2(u)du
= b*(X)p(X)K,, (KzszZ(u)du< +oo>.

(b3) We first show lImE[g(X,,, X,)9(X,,, X;,)] = 0. Given
E[g(xto, th)g(xtla th)] = E[Eo[El[g(Xto, th)g(xt1, th)]]]
we have by Lemma 7

El[g(xt07 th)g(xt17 xtz)]

1 K X=Xy, K X=X, £
= 2h, h, h, 11 E1[n,]

1 X=X X=X,
- K( )K( . >nl<b2<xtl>—b2<x>+0<An>>,

2h, h,
Eo[E1[9(Xe, Xi) 9( Xy, X,)1]

1 X=Xy, X=X,
(2o s -vea-o]

_ 1 2 X_X‘D 2 2 2
= o K (h—n>{(b (X)) = b?(X)? + O(4A,)},

and finally,

E[9(Xi,» X)) 9(Xy,, Xi,)]

1 L[ X2 5 5 >

_ f Lk <h—>{<b (2) - b?(x)? + O(A)}p(2) dz
1

-3 j K2(u){(b2(x — hyt) — b2(x))2 + O(A,)}p(x — hyu) dz

= (hZ + A,)0(1).

Hence with h, — 0 andA,, — 0 (asn — +c0), we get

lim E[g(X,, X;,)9(Xy,, X,,)] = O. (B.3)
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We now show limE[g(Xq,, X;,)9(X, X;,,)] = 0 for j = 1. By Assumption A4 the
jth autocovariance of any functigisquarePC-integrablg tends to zero at exponential
rate ag — +oo; thus for j = 1,

|E[9(Xips Xe )Xy, X, DI = [E[G(Key X, ) I(Xy,, X )] (B.4)

Given (B.3) and(B.4) we get(b3).
According to Lemma 9also see Florens-Zmirpd 989 Theorem 3 we have

1 g -
5 2 906X ) 5 NOb*(0P(0K,),

and thus (after standardization(1/vn) = g(X;, X;_.,)/(02(x)\/p(X)Ky) 45 N(0,1).
Using the asymptotic equivalence theorety v'n) > g(X,, X, _,)/(b?(x)4/B,K;) and
(L/NM) = g(Xq, %i.,,)/(b2(x)4[p(X)K,) have the same asymptotic distributjoand
thus the result is proved n

Proof of Theorem 6.
(a) Let Vi (x) = AL(X)/B,(x) where

1 nilK<X - Xt,> (X, = X — Tn(th)An)z
nhn i=0 hn An ’

AN(X) =

In the proof of Theorem 4 we saw that(x) can be written ag\; = A% + Dy, + Dy .

A crucial step in this proof is thak,(x) LN a(x) asA, — 0 andn — +co. The estimator
T.(x) does not converge ta(x) asA, — 0 unless we assumigh, — +oo, thereby
t, — +oo (see also Bandi and PhillipR003. With the conditions stated one has
Ta(x) > a(x) and evenT,(X) > a(X,), i.e, To(X) = a(X) + e, . where
plim,, ,0.n s+ €a,.n = O (s€e the proof of Theorem 4Hence

2 X=X\ (XL, — X —alX) A (Th(X,) — a(X)A
Dl,n — E K G T+ t i/ =n n\/\ t; n
nhn i=0 hn An
2 o /x—=X,
= - > K (Xy,, = X, = alXy)Ap) e, n- (B.5)
nhn i=0 hn

Itis straightforward to conclude that; 20 becausé2/n hn)E{Zol K((x = X;)/h,) X
(X, — %, — a(X,)A,) > 0 ande,_, -> 0 under the assumptions statéd fact
each term of the summation {iB.5) is of orderoy(1)). Using the same argumenisis
easy to verify that

1 n—1 X_Xt
D2,n = ZO K( h I)(Tn(xti) - a(xti))zAn

nh, i

1 2l /x=X, )
) K h (SAn,n) A,
n

converges in probability to zermote that by Slutsky’s theoref, )2 25 0.
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(b) First, note that

v +—DJ‘” + Da.n
nhy o (Vﬁ(m 1)__ nh, o " Bn¥) B0
2k, B\ b2 1) T 2k, B b2(x) B

_ [on, <vn<x> 1)
=y 2, e

1
+ rm (A/nh,Dy, + /nh,D, ).

2K, B,

Now vVnhD,_, = VnhA,(D; ,/A,) - 0 (i = 1,2) becausevnha, — 0 (by hypoth-
esi9 and

Din 2 3 <X - Xt) (X, — Xy —alXy)Ay,)

p
gx,n— 0,

= - K
An rlhn i=0 hn An

An nn, i=o hn

D 1 n-1 X_th
20 h 2 < )(sAn,n)zgo'

These results are obvious and their proofs are omittedemains to observe that
b~2(x) (2K, B, (x))"¥? converge in probability tdb~2(x)(2K,p(x))~Y2. Therefore the
result(b) follows from Theorem 5 |
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