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1. Introduction

One way to test the Purchasing Power Parity (PPP) is by analyzing
whether real exchange rates (RER) follow a mean-reverting process.
Most estimated models have, in fact, confirmed the existence of an
equilibrium level of the RER that is “consistent with a theoretical
literature on transaction costs in international arbitrage” (Taylor et al.,
2001).

To our best knowledge, all models analyze PPP assuming that the
RER are a discrete-time process. The most popular model is the
(discrete-time) Exponential Smooth Autoregressive model (ESTAR)
proposed by Granger and Teräsvirta (1993). The ESTARmodel is used,
for example, in Taylor et al. (2001), Kilian and Taylor (2003), Paya and
Peel (2006), among others authors.

In this paper, we analyze the conditions under which the
discrete-time ESTAR converges in distribution to a diffusion process
as the length of the discrete-time intervals between observations
goes to zero. We obtain a continuous-time version of the ESTAR
process that provides further insights into the mechanism of
reversion and into the limit properties of the process. In particular,
we conclude that the random walk behavior in the middle of the
sample space (the so-called band of inaction) may induce a flat
shape in the center of the stationary distribution. This may justify
why the kurtosis of the unconditional empirical distribution of (log-)
RER cannot in general be very high (say higher than 3). We also
discuss the expected time to leave certain sets, which may be
relevant to study the stability of RER and the tendency for RER to
maintain in the vicinity of equilibrium value.

The stationary distribution and expected times to leave certain sets
are only two examples of functionals that can be easily obtained in
diffusion processes but are extremely difficult or even impossible to
obtain in a discrete-time setting (especially if the process is non-linear).
From amore conceptual point of view, it can be argued that continuous-
time formulation is closer to the way that the data are actually
generated. As Bergstrom (1993) says: “?…the economy does not move
in regular discrete jumps corresponding to the observations—it is
adjusting in between observations and it can change at any point of
time…”?. This is especially true for RER.

An important advantage of the continuous-time version of the
ESTAR model is that the estimated parameters are independent of the
frequency of the data. That is, if one uses consistent estimators (such
as the ones provided in this paper) and a large time span, the
estimates of the model are asymptotically equivalent, whether we
consider (say) weekly, monthly, or annual data. This does not hold for
a discrete-time model as the results of estimation depend on the
frequency of the data. As such, temporal aggregation in discrete-time
models from high-frequency data may induce severe bias in the real
exchange rate analysis. In fact, Sarno (2000) shows that the
nonlinearity present in real exchanges rates is significantly altered
by systematic sampling and concludes that “the frequency of the data
is crucial for detecting nonlinear mean reversion in RER.” Taylor

http://dx.doi.org/10.1016/j.econlet.2010.11.012
mailto:nicolau@iseg.utl.pt
http://dx.doi.org/10.1016/j.econlet.2010.11.012
http://www.sciencedirect.com/science/journal/01651765


183J. Nicolau / Economics Letters 110 (2011) 182–185
(2001) shows that the half-life of deviations suffers from severe bias
in the presence of temporal aggregation and that the bias increases as
the degree of temporal aggregation increases.

2. The continuous-time version of the ESTAR model

Most studies suggest a nonlinear adjustment of the (log-) RER, say
y, according to the ESTAR model

yt = μ + b1 yt−1−μð Þ + b2 yt−1−μð Þ F yt−1ð Þ + sεt ;

F xð Þ = 1−e−θ2 x−μð Þ2
:

ð1Þ

Under some mild regularity conditions, it is possible to obtain a
continuous-time version of this process, by analyzing the limit process
of the stochastic difference Eq. (1), as the length of the discrete-time
intervals between observations goes to zero. Let iδ be the instances at
which the process is observed, (0≤δ≤2δ≤...) and δ is the interval
between observations. When δ changes (as δ→0) the parameters b1,
b2, s, etc. of Eq. (1) should change accordingly. To reflect this fact, we
rewrite Eq. (1) as follows:

yδi−y i−1ð Þδ =
bδ1−1

δ
+

bδ2F y i−1ð Þδ
� �
δ

0
@

1
A y i−1ð Þδ−μ
� �

δ +
sδffiffiffi
δ

p
ffiffiffi
δ

p
εδi

ð2Þ

(When δ≡1, we settle bδ1=b1, bδ2=b2, sδ=s etc. and, in this case,
Eqs. (1) and (2) are equivalent).

Theorem 1. Assume that (i) the non-stochastic sequences
bδ1−1

δ

� �
,

bδ2
δ

� �
,

sδffiffiffi
δ

p
� �

converge as follows:

bδ1−1
δ

→ ϕ1;
bδ2
δ

→ ϕ2;
sδffiffiffi
δ

p →σ

when δ→0; (ii) the (stochastic) sequences {εδi} is i.i.d., E[εδi]=
E[εδi3 ]=0, E[εδi4 ]b∞ for all i; (iii) (equality of the initial conditions)
y0=X0; (iv) E[(yδ−x1)4|y0=x1]b∞. In these circumstances, the
A: sweden RER against the dollar
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Fig. 1. Sweden RER against the dollar and
process ytδ=yiδ if iδ b¼ tb i + 1ð Þδ, converges in distribution to Xt when
δ→0, where Xt is the solution of the stochastic differential equation

dXt = ϕ1 + ϕ2F Xtð Þð Þ Xt−μð Þdt + σdWt ð3Þ

where {Wt} is a Wiener process and F(x)=1−e−θ2(x−μ)2.
The proof is in the Appendix. A typical representation of the drift

coefficient a(x)=(ϕ1+ϕ2F(x))(x−μ) is presented in Fig. 1, panel B.

Theorem 2. If ϕ1+ϕ2b0 then the solution of the stochastic
differential Eq. (3) is ergodic and has a stationary density of the form

σ−2exp
ϕ1 + ϕ2ð Þ x−μð Þ2

σ2 +
e−θ2 x−μð Þ2ϕ2

σ2θ2

( )
: ð4Þ

Furthermore, the solution X is ρ mixing and α mixing.
To prove this theorem, it suffices to apply the lemma given in the

Appendix. Notice that, under the condition ϕ1+ϕ2b0, the drift
coefficient verifies the following crucial condition, defined in the
lemma: there exists aMN0 and a kN0 such that xb−M⇒a(x)Nk and
xNM⇒a(x)b−k. This condition is the basis for the mean reversion
mechanism. It establishes that when the level of X is high (low), say
above the constant M (below the constant −M), the drift is negative
(positive) and so the probability that X decreases (increases) will be
high. Therefore, if X is too “high” or too “low” (say if X is outside the set
(−M, M)), there will be reversion effects that attract it again towards
the “central set” (−M, M).

It is worth analyzing the expression of the stationary density (4).
We can interpret the density as composed of two multiplying terms
(to simplify, assume σ=1): (a) exp{(ϕ1+ϕ2)(x−μ)2}, ϕ1+ϕ2b0
and (b) exp{e− θ2(x− μ)2ϕ2θ−2}. The first term is related to the
normal distribution and has the usual bell-shaped form centered at
μ. When ϕ2b0 (the most natural condition), the second term has a
form of an inverted bell (i.e., an upside down bell) also centered at
μ. The multiplication of these two terms gives a distribution that is
flat at the center of the sample space (an example is given in Fig. 1,
panel D). This unusual form has an obvious interpretation: in the
middle of the sample space (the so-called band of inaction), where
the drift a(x) is approximately zero, the process behaves like a
D: Stationary Distribution
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Table 1
Estimation results.

ϕ1 ϕ2 μ θ σ

Estimates
ðstandard errorsÞ

0
NAð Þ

−1:33
0:64ð Þ

0:143
0:048ð Þ

0:32
0:09ð Þ

0:0262
0:001ð Þ
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random walk; therefore, inside this interval, there are no sub-
intervals more likely than others so the distribution in levels must
be flat at the center. It is worth noting that while the distribution of
first differences is usually leptokurtic, the distribution in levels may
be completely different. In fact, it can be proved that the
distribution of the ESTAR process is platykurtic. The conclusion is
that, in general, RER cannot exhibit high values of kurtosis, since the
random walk behavior in the middle of the sample space induces a
flat shape in the center of the distribution. This claim is confirmed in
the empirical analysis below.

3. Hitting times and the expected time to leave certain intervals

Suppose that the process is at value x at time zero, i.e., X0=x. We
may ask what the expected time is for the process to reach any
element in an arbitrary set, or, which is equivalent, to leave a set, say
A that contains x. For example, we may consider the case where x is μ
(a central measure of the process) and A is a band of (say) 5 or 10%
around μ. Therefore, we may describe how much time (in mean) the
process closely stays around a central measure of the process. This
analysis provides further insights about the stability of the RER and
how much time the RER stays in the neighborhood of the PPP
equilibrium.

Analytically, the issue is to find E(T |X0=x) where T=inf
{t≥0:Xt∉A} and x∈A. It can be shown that the functional w(x)=
E(T |X0=x) satisfies the partial differential equation Lw(x)=−1,
where L = a xð Þ ∂

∂x + 1
2σ

2 ∂2
∂x2, with the boundary conditions w(l)=

w(u)=0. The solution of this problem is given in Karlin and Taylor
(1981):

E T jX0 = xð Þ = 2fk xð Þ∫u
x
S uð Þ−S ξð Þð Þm ξð Þdξ

+ 1−k xð Þð Þ∫x
l
S ξð Þ−S lð Þð Þm ξð Þdξg

where k(x)=(S(x)− S(l))/(S(u)− S(l)), S(x)=∫xs(u)du, s(x)=
exp{−∫x2a(u)σ−2du}, and m(x)=(s(x)σ2)−1. The expressions s(x)
and m(x) are known in closed form, while S(x) must be calculated
numerically.

4. An empirical illustration

To illustrate the model, we estimate the Sweden RER against the
dollar using monthly data from January 1973 to May 2009 (437
observations). The data were first normalized on the beginning of the
sample and transformed in logarithm. The time series is therefore
Xt= ln(St), where St is the RER (notice that at the beginning of the
sample, we have X1=0). The data are available at site http://pascal.
iseg.utl.pt/nicolau/sweden.xls, and the source is the International
Financial Statistics of the International Monetary Fund and Financial
Statistics of the Federal Reserve Board.

The transition (or conditional) densities of X required to construct
the exact likelihood function are unknown. To estimate the
parameters of Eq. (3), we considered the simulated maximum
likelihood estimator suggested in Nicolau (2002) (with N=100 and
S=50). The method is consistent and fully efficient as N, S→∞. We
obtained the following results (the parameters have monthly
interpretation, that is, we suppose that the X process is observed at
instants {iΔ, i=0, 1,..., n}, with a step of discretization of Δ=1).

We impose the restriction ϕ1=0, since ϕ1 was not found to be
significantly different from zero. From Table 1, we obtained the
following estimates: (1) â xð Þ = ϕ̂2F xð Þ x−μ̂ð Þ (see Fig. 1, panel B);
(2) expected time in years to leave a band of p%, give that at initial
time the process is at state μ̂ (panel C); and (3) stationary
distribution built from Eq. (3) (where the normalizing constant of
(4), unknown in closed form, was found by numeric integration)
(panel D).
The estimated drift is flat and approximately zero in the center of
the sample space, positive when X is low and negative when X is high.
This shape of the drift coefficient suggests the existence of an
equilibrium level at μ̂ = 0:143, in the vicinity of which the RER
behave like a random walk, becoming increasingly mean reverting as
RER deviates from equilibrium.

With regard to the distribution (Fig. 1, panel D), see our discussion
in Section 2. It is interesting to observe that the kurtosis estimate for the
Sweden RER is 2.11. Finally, in panel C, we present E Tp×100 jX0 = μ̂

� �
as

a function of p×100 where

Tp×100 = inf t ≥ 0 : Xt∉ μ−p; μ + pð Þf g:

One reads, for example, that E T10 jX0 = μ̂ð Þ is approximately
1 year, that is, the Sweden RER will take about 1 year (on average) to
leave the set (μ−0.10, μ+0.10) (i.e., a band of ±10%) given that the
process at initial time is at state μ̂ (equilibrium value).
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Appendix A
Proof of Theorem 1. We apply theorem 2.2 of Nelson (1990), which
is based on four assumptions A2–A5. The A2–A4 assumptions are
trivially satisfied (the initial conditions are the same and Eq. (3)
satisfies the Lipschitz and the linear growth bound conditions—a
proof of this claim can be given upon request). The crucial
assumption A5 still has to be verified. Under the hypotheses of our
theorem, we have three results: (A), (B), and (C) (see below). These
results imply, by definition, A5.We have after simplifications (noting
that E(εδ)=E(εδ3)=0):

(A)

lim
δ→0

sup
xbR

E yδ−y0ð Þ4 jy0 = x
h i

δ

= lim
δ→0

sup
xbR f bδ1−1

δ
+

bδ2F xð Þ
δ

	 
4
x−μð Þ4δ3

+ 6
bδ1−1

δ
+

bδ2F xð Þ
δ

	 
2
x−μð Þ2δ sδffiffiffi

δ
p

ffiffiffi
δ

p	 
2
E ε2δ
� �

+
1
δ

sδffiffiffi
δ

p
ffiffiffi
δ

p	 
4
E ε4δ
� �g = 0;

Let aδ(x) and a(x) be the drifts of yiδ and Xt, respectively. Then
B)

lim
δ→0

sup
xj jbR

aδ xð Þ−a xð Þj j

= lim
δ→0

sup
xj jbR

bδ1−1
δ

+
bδ2F xð Þ

δ

	 

x−μð Þ− ϕ1+ϕ2F xð Þð Þ x−μð Þ

����
����

= lim
δ→0

sup
xj jbR

bδ1−1
δ

−ϕ1 +
bδ2F xð Þ

δ
−ϕ2F xð Þ

	 

x−μð Þ

����
���� = 0;
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Let sδ =
ffiffiffi
δ

p� �2
and σ2 be the “diffusion” coefficients of yiδ and Xt,

respectively. Thus,
C)

lim
δ→0

sup
xj jbR

sδ =
ffiffiffi
δ

p� �2−σ2
��� ��� = 0: ■

Lemma. Let X={Xt, t≥0} be a diffusion process, with state space I=
(−∞, ∞), l=−∞, r=∞, governed by the Itô stochastic differential
equation dXt=a(Xt)dt+σdWt, (X0=x, σ N0), where {Wt, t≥0} is a
(standard) Wiener process, x is a random value F0-mensurable
independent of Wt and a is continuously differentiable. If there exists a
MN 0 and a kN0 such that

xb−M⇒a xð Þ N k and x N M⇒a xð Þb−k;

then X is ergodic and possesses a stationary distribution proportional to
{∫x2a(u)/σ2du}. Furthermore, X is ρ mixing and α mixing.

Proof. Let s(x)=exp{−∫z0
x 2a(u)/σ2du} be the scale density function

(z0 is an arbitrary point inside I) and m(x)=(σ2s(x))−1 the speed
density function. Let S(−∞, x]=limx1→−∞∫x1

x s(u)du and S[x, ∞)=
limx2→∞∫x

x2s(u)du where −∞bx1bxbx2b∞. Under the conditions
of the lemma, it is not difficult to conclude that (R1) S(−∞, x]=
S[x, ∞)=∞ for x∈ I; (R2) ∫−∞

∞ m(x)dxb∞; (R3) limx→∞ sup a(x)/
σb0, limx→−∞ sup a(x)/σN0. (R1) and (R2) imply that X is ergodic
and the invariant distribution P 0 has densitym(x)/∫−∞

∞ m(u)duwith
respect to the Lebesgue measure (Skorokhod, 1989, theorem 16).
(R3) implies that the process is ρ mixing and α mixing (Chen et al.,
2009). ■
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