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ABSTRACT
We propose a new nonparametric density forecast based on time- and state-
domain smoothing. We analyze some of its asymptotic properties and provide 
an empirical illustration. Copyright © 2010 John Wiley & Sons, Ltd.
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INTRODUCTION

Forecasting densities has been at the core of the fi nance and economic research agenda. For example, 
in risk management, it is fundamental to properly evaluate the density forecast of the change in the 
value of customized portfolios over a particular holding period. In general, most of the classical 
fi nance theories, such as portfolio selection, options valuation and asset pricing aim to model the 
uncertainty via distribution function. Also in economics there has been increasing interest in evaluat-
ing forecasting models of unemployment, infl ation and output.

Consider a time series of cross-sections X = {Xt,i; t = 1, . . . , T; i = 1, . . . , n} where for each t, 
{Xt,i; i = 1, . . . , n} is a random sample of n observations, and where Xt,i may be correlated over 
time. Let ft,i(x) be the density of Xt,i (at point x). We assume that ft,i(x) = ft,j(x), ∀i, j, so we omit the 
subscript i in ft,i(x) and write ft(x) instead of ft,i(x). In our setting, ft(x) may be different from fs(x) 
either because X is nonstationary (for example, it may contain a unit root) or has a deterministic 
trend. Our framework is also suitable for the case where X is stationary but the conditional densities 
are time-dependent (for example, Xt,i may follow an AR(p) or GARCH process).

To predict fτ+1(ξ) we use (in principle) the past values of ft(ξ), t ≤ τ. This is plausible if there is 
some kind of autocorrelation in the sense cov(h1(Xt,i), h2(Xs,i)) ≠ 0, for any h1 and h2 real functions. 
For example, suppose cov(|Xt,i|, |Xt−1,i|) > 0, as is common to observe in fi nancial markets (this 
measure is related to the so-called volatility clustering under which, as noted by Mandelbrot, ‘large 
changes tend to be followed by large changes, of either sign, and small changes tend to be followed 
by small changes’). Under these circumstances, one should expect that the sequence of densities {ft}, 
conditioned on a set of random variables, are (in some way) correlated. This point is illustrated with 
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three examples. In Figure 1 we plot the average autocorrelations of over 10,000 simulations of the 
conditional density of a GARCH process for various values of ξ. Specifi cally, we considered the 
GARCH process yt = σtεt, where εt ∼ i.i.d.N(0, 1) and σ  2t = 0.01 + 0.3y2

t−1 + 0.6σ  2t−1. The conditional 
density is ft(ξ) = (2πσ 2t)−1/2e−ξ2/(2σ  2

t
). We analyzed three values for ξ: 0, 2 × ( )var yt  and 3 × ( )var yt  

where var(yt) = 0.01/(1 − 0.3 − 0.6) is the unconditional variance of yt. Figure 1 clearly shows that 
the nonlinear correlation in yt (for example, |yt| or y2

t exhibit strong autocorrelations) translates into 
autocorrelation in ft (although yt is not autocorrelated). The autocorrelations of ft are higher when ξ 
is zero (i.e., when ξ coincides with the conditional mean, where the density reaches its maximum). 
Nevertheless, the autocorrelations associated with the other values of ξ are also relatively high. We 
also verifi ed (results not shown) that the more persistent the GARCH process is, the higher the 
autocorrelations of ft are.

Another example, from a nonstationary process involving a linear trend is presented in Figure 2. 
Part A1 shows a simulated path from the process yt = 0.005t + εt, where εt ∼ i.i.d.N(0, 1). Part A2 
shows the corresponding sequence of marginal densities {ft(ξ)} across time. Although, in this case, 
it does not make sense to invoke the autocorrelation function of the densities (as they are determin-
istic), the point is that past values of ft can be used to predict future values of ft.

We provide a third example of an autocorrelated process with correlated densities. In this case we 

take an analytical approach. Let yt = ϕyt−1 + εt, |ϕ| < 1, where εt N~ ,
i.i.d.

0 1( ) Let ft(ξ) ≡ f(ξ|yt−1) be the 
one-step-ahead conditional density (notice that we interpreted ft(ξ) ≡ ft(ξ|yt−1) as a random variable, 
since it depends on yt−1 which, in turn, is interpreted as a random variable and not as the value of y 
observed at time t − 1). Now, it can be proved that

Figure 1. Autocorrelations of a density of GARCH process
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where (fj(u, s) is the joint probability density function and fm is the marginal probability density 
function; the proof is available upon request). Thus, when ϕ ≠ 0, i.e., when y is autocorrelated, the 
conditional densities are also autocorrelated. The message of the last paragraphs is clear: it makes 
sense to predict fτ+1(ξ) based on the past values of ft(ξ), t ≤ τ.

The rest of the paper is organized as follows. In the next section we introduce the proposed esti-
mator. In the third section we analyze some asymptotic properties. The fourth section deals with the 
estimation of α (we will see that the proposed estimator involves the ‘nuisance’ parameter α, that 

Figure 2. Simulated path from a nonstationary process and the corresponding densities (past values of ft may 
be used to predict future values of ft)
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Figure 3. ft(ξ) is evaluated at t = 1, 2, 3, 4, 5 in a panel dataset

needs to be estimated). The fi fth section analyzes the bandwidth selection issue. The sixth section 
illustrates the method and fi nally, in the seventh section, we present some extensions that can be 
considered for future work.

A PREDICTOR FOR THE PROBABILITY DENSITY FUNCTION

To predict fτ+1(ξ), using the past values of fτ(ξ), t ≤ τ, we propose the predictor

 g ft t
t

t

t

τ

τ τ

τξ ξ ω ω α α
α

α+
=

−

( ) = ( ) = −( )
−

≤ ≤∑1
1

1

1
0 1, ,

Figure 3 illustrates the idea. In this example the aim is to predict f6(ξ). Using the fi ve past values 
of ft (i.e., f1(ξ), . . . , f5(ξ)), we form the sum ft tt

ξ ω( )
=∑ 1

5
. The most recent value f5(ξ) is weighted 

by ω5 = (1 − α)/(1 − α5) and the oldest value is weighted by ω1 = α5−1 (1 − α)/(1 − α5) < ω5.
Clearly, gτ+1(ξ) is a weighted mean. The weights ω′ts decay exponentially fast as we move back-

wards in time. The result is that: (i) 
t t=∑ =

1
1

τ ω ; (ii) limα→0ωt = 0 if t < τ, limα→0ωt = 1 if t = τ; and 

(iii) limα→1ωt = 1/τ. Thus, if α = 0, gτ+1(ξ) equals fτ(ξ), if α = 1, each value of ft contributes equally 
to the gτ+1(ξ) average.

In practice, we need to replace the unknown value ft(ξ) by the nonparametric estimate
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Figure 4. Kernel K x t e
x

t( , ) ( ) ( ) /( )= − −− − −2 1 11 2 2

2

π α α ατ τ . Smoothing techniques are used in both time and 
state domain
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(the estimation of α is addressed in the fourth section). Hence the estimator of g is given by
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Equation (1) allows us to see that ĝτ+1(ξ) uses smoothing techniques in both time and state domains. 
To exemplify, suppose that K is the Gaussian kernel. In this case, we have
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X

h h
et i

t

t

t

Xt i
ht t,

,−⎛
⎝⎜

⎞
⎠⎟

−( )
−

= −( )− −
−( )

−ξ α α
α π

α ατ

τ

ξ

τ1

1

1

2

1

1

2

2

−−ατ

It is clear now that the Xt,i value receives more weight (on the average ĝτ+1(ξ)) when Xt,i is closer 
to ξ and t is closer τ. Figure 4 illustrates the idea for ξ = 0, τ = 20 and α = 0.8 and α = 0.7. To 
predict fτ+1(0) at time τ + 1 = 21, the most important values of the sample X = {Xt,i; t = 1, . . . , T; 
i = 1, . . . , n}, on the average ĝτ+1(ξ), are those that are at the vicinity of ξ = 0 and t = 20.

The expression gτ+1 coincides with the true one-step-ahead density fτ+1 if one assumes that fτ+1 can 
be expressed through a weighted mean of past densities. If we are not willing to assume such a 
parametric specifi cation, we may see gτ+1 as an approximation of fτ+1 whose quality may be assessed 
through the quantity QT,n(α̂  ), given in the fourth section. This is almost like a fi ltering problem where 
fτ+1 may be understood as the ‘signal process’ that cannot be observed directly. Given the observa-
tions X, we extract the ‘signal’ fτ+1 based on ĝτ+1(ξ; α) and on the criterion minαQT,n(α). As in the 
fi ltering problem, the solution ĝτ+1 satisfi es a criterion of optimally, but does not have to coincide 
with the signal process.
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SOME LIMIT RESULTS

Our limit results involve large cross-section-dimension data, n → ∞, and fi xed T. These hypotheses 
are plausible in our dataset, facilitate the proofs and avoid imposing unnecessary restrictions on the 
probabilistic behavior of X. We further discuss this issue in the sixth section.

We consider the following assumptions:

A1. Xt,i and Xs,j are independent for i ≠ j.
A2. The kernel K is a symmetric function around zero satisfying: ∫K(u)du = 1, ∫u2K(u)du < ∞, ∫K2(u)

du < ∞, |u||K(u)| → 0 as |u| → ∞, sup|K(u)| < ∞, ∫K2+δ(u)du < ∞ for δ > 0.
A3. f is continuous, ∫|f(x)|dx < ∞, the second-order derivative of f is continuous and bounded in some 

neighborhood of ξ.
A4. ht → 0 as n → ∞ and nht → ∞ as n → ∞.

These assumptions are very weak. In particular, stationarity is not imposed and no reference is 
made concerning the dependence of X (for example, a unit root is allowed). Under Assumptions 
A1–A4, we have the following results:

Theorem 1. f̂ ft

p

tξ ξ( )→ ( ) and ˆ .g g
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τ τξ ξ+ +( )→ ( )1 1
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 (2)

The asymptotic variance defi ned in equation (2) involves some unknown parameters. We may use 
the plug-in-principle and replace the unknown parameters with consistent estimates. However, the 
substitution of ωt by a ω̂  t estimate may alter the asymptotic distribution of ĝ (cf. Theorem 2), as ωt is a 
function of α and ĝ depends explicitly on this α parameter. We analyze this issue in the next section.

ESTIMATION OF α

We now address the estimation of α. To obtain an estimate of α for each ξ we consider the following 
minimization problem: minαQT,n(α), where

 Q
T

g fT n

T

, ;α ξ α ξ
τ

τ τ( ) = ( ) − ( )( )
=

−

+ +∑1

0

1

1 1

2

We write ĝτ+1(ξ; α) instead of ĝτ+1(ξ) to emphasize the dependency of ĝ on α. The idea 
with this optimization problem is simple: we look for the value of α that minimizes the mean 
square error of the forecast. Notice that the smoothing parameter α is (generally) different depending 

ˆ ˆ
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on the value of ξ. We assume that there is a unique value α0 ∈ [0, 1] such that 

1 1

11 1

2

0

1

T
f ft
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τ

τ

τ
ττ

( ) −( )
−

− ( )⎛
⎝⎜

⎞
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−

= +=

− ∑∑  is a minimum. This assumption is violated if all ft(ξ), 

t = 1, . . . , T − 1 are equal. Thus we implicitly assume that at least one density ft is different from 
the other densities. Let α̂   = argminα∈[0,1]QT,n(α). We have the following results.

Theorem 3. α̂ α→
p

0.

Theorem 4. nh g g N
d

ˆ ; ˆ ˆ ; ,τ τξ α ξ α σ+ +( ) − ( )( )( )→ ( )1 1
20E , where σ2 is given in Theorem 2.

Hence nh g gˆ ; ˆ ˆ ;τ τξ α ξ α+ +( ) − ( )( )( )1 1E  behaves the same way asymptotically whether we use α̂  
or α.

BANDWIDTH SELECTION

We will briefl y discuss the bandwidth selection problem. There are several strategies in dealing with 
bandwidths {ht}. One strategy consists of assuming that the bandwidths are equal, say h = h1 = . . . 
= hn. In this case, one may use as a criterion to be optimized the asymptotic mean integrated squared 
error (AMISE). Given the proofs in the Appendix, one obtains
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The solution of minhAMISE is h* = cn−1/5, where c is a complicated expression involving ωt, ρρ(t−s) 
and f ″t (x). Different approaches can be considered in order to deal with c. For example, one may 
choose a reference density for ft (e.g., normal density); or one may consider the plug-in-principle to 
deal with expressions such as ρ(t−s), ∫f ″t (x)dx and ∫f ″t  (x)f ″s (x)dx, etc. A deeper analysis of this topic is 
beyond the scope of the present paper.

On the other hand, if one assumes that, in fact, the bandwidths vary across time we may apply 
the existing methods of bandwidth selection to obtain the ‘optimal’ ht for each density estimation 
{f̂ t(ξ), t = 1, . . . , τ + 1}. An alternative consists of fi nding the ‘optimal’ ht using a criterion based 
on forecast errors such as

 
α α
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The bandwidth associated with f̂ τ+1(ξ) may be based on some of the existing methods, whereas 
{ht, t = 1, . . . , τ} solve the above optimization problem. Hence, these optimal bandwidths {ht, 
t = 1, . . . , τ} are chosen in order to obtain the best forecasts in L2 sense. In the next section, we 
use this principle to obtain the bandwidths, but considering ht = ηt(4/3)2σ̂  Xtn−1/5 so that the minimiza-
tion is done with respect to α and ηt. Obviously, the optimization problems minα,ht >0QT,n(α, ht) 
and minα,ηt >0QT,n(α, ηt) are equivalent. Notice that the estimates ηt may be compared with the 
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bandwidth ht
normal = (4/3)2σ̂  Xtn−1/5, which is optimal when Xt,i has normal distribution and the Kernel 

is Gaussian.

EMPIRICAL ILLUSTRATION

To illustrate the method we consider the same data as Pesaran (2007), which is available at the site 
http://qed.econ.queensu.ca/jae/datasets/pesaran002/. The data are the real earnings of households and 
were drawn from the 1971–1992 family and individual-merged fi les of the Panel Study of Income 
Dynamics (longitudinal survey of a nationally representative sample of US families begun in 1968). 
As reported in Pesaran (2007), the data were defi ned to include all households with male heads aged 
25–55 with 22 years of usable earnings. As a result, the dataset is of 22 × 181 observations (22 years; 
181 households). Given the short interval of time of our dataset, we consider nine forecasts out-of-
sample. We start using observations from 1971 to 1983 and then obtain the forecast for the density 
in 1984. The estimated predictor is ĝτ+1, where τ + 1 refers to the year 1984. This forecast is then 
compared with the target density of the year 1984, f̂ τ+1, obtained using all the observations of that 
year. Thus the quantity |ĝτ+1 − f̂ τ+1| gives a measure of the forecast precision. The quality of the pro-
posed forecasts is also assessed by comparing ĝτ+1 to a kernel estimation based on a method suggested 
by an anonymous referee. It consists of forecasting Xt+1,i for fi xed i, using exponential smoothing 
over Xt,i and lags, and then building the density forecasts over the forecasts X̂  

t+1,i using kernel estima-
tion. We also considered different smoothing parameters for each i, which were obtained by mini-
mizing the one-step-ahead forecast errors between X̂ 

τ+1,i and Xτ+1,i. Let us denote this kernel density 
by ˆ / ˆ / .,h nh K X hii

n

τ τξ ξ+ +=
( ) = ( ) −( )( )∑1 11

1  To get a picture of the entire density we select various ξj 
values across the most relevant interval of state space of X. We use 50 equidistant ξj values accord-
ing to the rule mint,iXt,i < ξ1 < ξ2 < . . . < ξ50 < maxt,iXt,i.

Next, we use the observations from 1971 to 1984 to obtain the forecast for the density in 1985. 
The estimates ĝ, f̂  and ĥ are recalculated using the new information. This procedure is repeated until 
the forecast of the last year is obtained. In this application we consider the Gaussian kernel and for 
simplicity we use the bandwidth ht = (4/3)2σXt

n−1/5, which is optimal when Xt,i has normal distribu-
tion. The results are presented in Figure 5. Both estimators seem to be close to the density f̂ , but the 
best results are obtained using the proposed estimator ĝ. To get a more precise measure of the esti-
mators’ quality, we computed the empirical integrated mean square errors, that is, the mean of (ĝτ+1(ξj) 
− f̂ τ+1(ξj))2 and (ĥ 

τ+1(ξj) − f̂ τ+1(ξj))2 over the set {ξ1, . . . , ξ50} and over the nine forecasts out-of-sample. 
The empirical integrated mean square errors of ĝ and ĥ are 0.00068 and 0.00179 respectively. The 
general conclusion is that the proposed estimator performs very well and better than the estimator 
ĥ 

τ+1. Although ĥτ+1 is very intuitive and easily computed, it assumes a parametric linear representation 
of the underlying process, which may be a disadvantage if the true process is nonlinear. I think the 
estimator ĥ can be improved in several ways (e.g., the smoothing parameter may be chosen to mini-
mize the integrated mean square errors; another possibility is to consider a different model to forecast 
X̂τ+1,i).

When the bandwidths are selected according to the optimization problem (3) the results are even 

better. Using the whole sample, we found the ratio ˆ ˆ , . ., ,Q QT n T n tα α η( ) ( ) = 1 33  This means that 
the root mean square error of the forecast using the simple rule ht = (4/3)2σ̂ Xt

n−1/5 is about 33% higher 
than that of the forecast using the ‘optimal’ bandwidths, obtained in the context of minimization 
problem (3). These results are expected in view of the fact that these ‘optimal’ bandwidths are chosen 
in order to obtain the best forecasts in L2 sense.
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EXTENSIONS

There are a number of extensions that could be interesting to investigate in the future.

• The ideas presented in this work can be immediately applied to conditional moment estimation 
and nonparametric estimation of derivatives, to name only two areas.

• The case n,T → ∞ can also be studied. When analyzing T → ∞, temporal dependence is generally 
a crucial issue that needs to be accounted for. However, temporal dependence is not, in principle, 
a major concern in the context of our estimator as the ω ′ts weights naturally impose an exponential 
decay in the autocorrelation of f̂ t, whether or not X is strongly dependent (see our proofs in the 
Appendix). For this reason, our results are robust for large T.

• One may also consider the case where the vector {Xt,1, . . . , Xt,n} for fi xed t, is interpreted as 
describing n characteristics of a given population. In this case, cross-section correlations must be 
taken into consideration.

• A way to obtain α̂ would be by minimizing σ2 = σ2(α) with respect to α (see equation (2)). My 
conjecture is that this method is inferior to the one proposed in this paper.

Figure 5. Assessing the quality of density forecast. Legend: — f; - - - - g; . . . h
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• The minimization problem minαQT,n(α) can be seen as a minimization of the mean square error 
between the f̂ τ+1(ξ) and ĝτ+1(ξ; α). It turns out that this mean square error may be evaluated across 
different values of ξ. Actually, the same principle is behind the mean integrated square error. 
Therefore, the α parameter may be also obtained through the minimization problem:

 
α

τ τ
τ

ξ ξ αmin ;f gi i
i

NT

+ +
==

−

( ) − ( )( )∑∑ 1 1

2

10

1

This method has one disadvantage, however. It implies using the same estimate of α across all 
the ξi values. In the proposed method, we have an α estimate for each ξi point evaluated. It is quite 
natural to expect a more precise estimate when α is allowed to vary according to the value of ξ.

APPENDIX: PROOFS

Lemma 1. Let ωt = ατ−t(1 − α)/(1 − ατ) with 0 ≤ α ≤ 1 and zt a real function of t. Then

 ω ω ω ω
τ τ τ

t t
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t t
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t s t
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1
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1
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3,

where 0 < Ci < ∞, i = 1, 2, 3 and z = maxt{zt}. These results still hold when τ → ∞.
The proof is straightforward. Notice that limα→0ωt = 0 if t < τ and limα→0ωt = 1 if t = τ and 

limα→1ωt = 1/τ.

Remark on the proofs. In the following proofs we assume, without any loss of generality, that the 
bandwidths do not depend on t, i.e., h1 = . . . = ht = h. This greatly simplifi es the proofs. For example, 
to discuss O ht tt

( )
=∑ ωτ

1
,  without assuming this simplifi cation, we would have to consider

 O h O h O h O ht t
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t t
t

t t
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Thereby, O ht tt
( ) →

=∑ ωτ

1
0 as maxt{ht} → 0. We avoid all this reasoning by simply assuming 

that h1 = . . . = ht = h, as the fi nal result is the same whether or not h is time-dependent, in view of 
Assumption A4: ht → 0 as n → ∞ and nht → ∞ as n → ∞. With h1 = . . . = ht = h the calculation is 
easier: O h O h O ht tt tt

( ) = ( ) = ( )
= =∑ ∑ω ωτ τ

1 1
.

Proof of Theorem 1. The result f̂ ft

p

tξ ξ( )→ ( )  is well known, so we omit the proof. Let ωt = ατ−t

(1 − α)/(1 − ατ). Under the assumptions of the theorem we have E(f̂ t(ξ)) = ft(ξ) + O(h2) (see, for 
example, Pagan and Ullah, 1999, ch. 2). Hence
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as h → 0 (see previous remark). Now, consider
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Firstly, let us focus on the fi rst term of (4). We have
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as nh → 0 and n → ∞ (see Lemma 1).
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Hence
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Assuming the most unfavorable situation, i.e., |σ(t−s)| = 1, we have

 

cov ,f f
nh

Ot t s s
s

t

t
t s

s

t

t

ξ ω ξ ω ω ω
τ τ

( ) ( )( ) ≤ ( )
=

−

= =

−

=
∑∑ ∑∑

1

1

1 1

1

1

1
1

== ( ) = ( ) + +( )
+( ) +( )

→
=

−

=
∑∑O

nh
O

nh
t s

s

t

t

1 1 1

1 1
0

1

1

1

2

2 2
ω ω α α α

α α

τ

as nh → ∞. In conclusion, E(ĝτ+1(ξ)) → gτ+1(ξ) and var
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Proof of Theorem 2. It is well known that
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Now, Lemma 1 allows us to conclude, as nh → ∞ and h → 0,
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Proof of Theorem 3. Let the sample space Ω and the parameter space Θ be endowed with the 
σ-algebra A and B respectively. In our case, α ∈ Θ = (0, 1]. Consider the following classical 
assumptions. (1) The parameter space, say Θ, is compact; (2) the mapping QT,n(α) = QT,n(ω, α), 
where ω ∈ Ω, from Ω × Θ satisfi es (i) QT,n(⋅,α): ω → Q(ω, α) is mensurable from (ω, A) to (�, 
B(�)) for every α ∈ Θ, (ii) the mapping QT,n(ω, ⋅): α → Q(ω, α) is continuous for every ω ∈ Ω; 
(3) the QT,n sequence converges in probability uniformly in α to QT,∞; (4) the QT,∞ function is such 
that the minimum minα∈[0,1]QT,∞(ω, α) is attained at a unique value α0, independent of ω. Under 

(1)–(4) we have α α→
p

0 (see, for example, Gouriéroux and Monfort, 1995, ch. 24). In our problem, 
conditions (1)–(2) are immediately verifi ed. We prove now that (3) still holds. Following Davidson 
(1994, theorem 21.9), QT,n(α) converges in probability to QT,n(α) uniformly on a set [0, 1] if and 

only if a) Q QT n

p

T, ,α α( )→ ( )∞  for each α ∈ [0, 1] and b) QT,n(α) is stochastically equicontinuous. 
By Slutsky’s theorem and the fact that T is constant we have pointwise convergence (plim stands 
for limit in probability):
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(see Theorem 1) (notice that T is kept constant and n → ∞). This proves (a) Q QT n

p

T, ,α α( )→ ( )∞  for 
each α ∈ [0, 1]. To prove (b) it is suffi cient that supα∈[0,1]|dQT,n(α)/dα| be bounded in probability 
(Davidson, 1994, theorem 21.10). This is condition is now verifi ed:
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The fi rst term 
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(see Theorem 1), for all α ∈ [0, 1]. Hence |dQT(α)/dα| = Op(1). In conclusion, QT,n(α) converges in 
probability to QT,n(α) uniformly on a set [0, 1]. Finally, by assumption α0 = argminQT,∞(α). �

Proof of Theorem 4. By Taylor’s formula we have
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is convergent, as shown previously. The conclusion is that var ;′ ( )( ) = ( )( )+
−g O nhτ ξ α1

1 , which implies 
that nhg Opˆ ;′ ( ) = ( )+ ∗τ ξ α1 1 . �
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