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ABSTRACT. We propose a new model for multivariate Markov chains of order one or higher
on the basis of the mixture transition distribution (MTD) model. We call it the MTD-Probit.
The proposed model presents two attractive features: it is completely free of constraints, thereby
facilitating the estimation procedure, and it is more precise at estimating the transition probabilities
of a multivariate or higher-order Markov chain than the standard MTD model.

Key words: high-order Markov chains, maximum likelihood method, mixture transition distri-
bution, multivariate Markov chains

1. Introduction

In this paper, we consider a multivariate stochastic Markov process ¹.S1t ; : : : ; Sst /; t D
1; 2; : : :º where Sjt .j D 1; : : : ; s/ can take values in the finite set ¹1; 2; : : : ; mº. One assumes
that Sjt depends on the previous values of S1t�1; : : : ; Sjt�1; : : : ; Sst�1, which are used to
predict or explain Sjt . To simplify the notations, we consider a first-order multivariate Markov
chain (MMC), but in the following, Sjt can also depend on some explanatory variables
lagged over more than one period—our approach may in fact be viewed as a higher-order
MMC (we briefly address this issue in Section 4). A natural model to represent dependencies
between these categorical variables is the Markov chain, through the transition probabilities
Pj .i0ji1; : : : ; is/ WD P.Sjt D i0jS1;t�1 D i1; : : : ; Ss;t�1 D is/ where j 2 ¹1; 2; : : : ; sº. These
probabilities are the main focus of statisticians, and they can be easily estimated through the
expression (maximum likelihood estimates)

OPj .i0ji1; : : : ; is/ D
ni1i2:::iis i0Pn
i0D1

ni1i2:::iis i0
; (1)

where ni1i2:::iis i0 is the number of transitions of type S1;t�1 D i1; : : : ; Ss;t�1 D is ; Sjt D i0.
However, modelling these probabilities, when s andm are relatively large and the sample size is
small or even moderate, is impracticable because the total number of parameters is ms.m� 1/.
In practical terms, this means that the numerator as well as the denominator of (1) may be, in
most of cases, zero or very close to zero. As a consequence, the parameters cannot be efficiently
estimated or even identified with finite sample size. To overcome this problem, Ching & Fung
(2002) considered a simplifying hypothesis, which is, in fact, an extension of Raftery (1985a),
for modelling high-order Markov chains (HOMC). It involves assuming that the probability
Pj .i0ji1; : : : ; is/ WD P.Sjt D i0jS1;t�1 D i1; : : : ; Ss;t�1 D is/ can be written as a linear
combination of ¹Pj1.i0ji1/; : : : ; Pjs.i0jis/º, where Pjk.i0ji/ WD P.Sjt D i0jSk;t�1 D i/,
that is,

P.Sjt D i0jS1;t�1 D i1; : : : ; Ss;t�1 D is/ D P
MTD
j .i0ji1; : : : ; is/ WD �j1;

Pj1.i0ji1/C : : :C �jsPjs.i0jis/;
(2)
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where
Ps
iD1 �ji D 1 and

0 �

sX
kD1

�jkPjk.i0jik/ � 1: (3)

This expression is called the mixture transition distribution (MTD) model and tries to combine
realism with parsimony (Raftery, 1985a). With 0 � �ji � 1, the inequality (3) is auto-
matically satisfied. Imposing this condition has the advantage that the � parameters may be
interpreted as probabilities and that the estimation procedure is easier to implement; however,
it reduces the range of dependence patterns, including negative partial effects that the MTD can
actually capture.

2. A brief literature review

We first focus on the MTD model and its generalizations, and then on the estimation process.
The MTD model has proven to be very useful in several areas, for example, in wind

modelling, social behaviour and DNA sequences, and in many areas of finance and economic
areas (see a detailed description of these applications in Berchtold and Raftery, 2002; see also
Ching et al., 2004 and Ching et al., 2008). Several generalizations of the HOMC under MTD
hypothesis have been proposed aimed at a better data fit and to extend the scope of applications.
Raftery (1985b) proposed using different transition matrices for each lag. Berchtold (1996,
1998) generalized this approach. Ching et al. (2004) still considered this hypothesis and applied
a linear programming formulation to estimate the � parameters. Mehran (1989a, 1989b) and
Le et al. (1996) devised an infinite-lag MTD model, which can be useful to capture ‘long-
memory’ effects. Berchtold (1996) discussed a version of an MTD model to analyse missing
data. Raftery (1985b) discussed the case of infinite denumerable state spaces. An MTD specifi-
cation was also generalized to cover the analysis of non-Gaussian processes with an arbitrary
state space to model time series exhibiting outliers, change points, bursts of volatility and even
flat stretches (see Le et al., 1996). Another extension, considered in Raftery & Banfield (1991),
was developed to approximate the conditional distribution of spatial data, in which the tem-
poral reference in the MTD model was replaced by a concept of neighbourhood. Ching et al.
(2008) combined the HOMC and MMC models in a single model. Other contributions related
to the MTD model are made by Adke & Deshmukh (1988), Raftery (1993) and MacDonald &
Zucchini (1997), among others.

Let us now focus on the estimation process. To estimate the parameters �ji of MMC under
the MTD hypothesis, Ching & Fung (2002) assumed 0 � �ji � 1. They considered a method
based on linear programming involving the stationary vector. As referred to in Zhu & Ching
(2010), this method generally produces a large error when the data sequence period is not long
enough. Zhu & Ching (2010) have proposed a more efficient method based on minimizing
the prediction error. However, neither article addresses the statistical inference problem. It is
important to emphasize that the maximum likelihood estimation (MLE) for MMC under the
MTD hypothesis is essentially the same as the MLE for HOMC under the same hypothesis.
In fact, in terms of estimation, the MMC process can be seen as an HOMC if we inter-
pret the conditioning variables S1;t�1; S2;t�1; : : : ; Ss;t�1 as, respectively, the lagged variables
St�1; St�2; : : : ; St�s . For this reason, we briefly look at some contributions to the literature
on the estimation HOMC under the MTD hypothesis. The log likelihood function is known
(either for HOMC or MMC) and is given by

logL D
X

i1i2:::iis i0

ni1i2:::iis i0 log
�
PMTD
j .i0ji1; : : : ; is/

�
;
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subject to
Ps
iD1 �ji D 1 and (3). As referred to by Raftery & Tavaré (1994), this estimation

is difficult to carry out as the parameter space is highly non-convex, being defined by a large
number of non-linear constraints (in totalms.m� 1//. The number of constraints can however
be reduced to m. They prove that (3) is equivalent to

Tq�.i/C .1 � T /qC.i/ � 0 for all i; (4)

where T D
P
iW�ji�0

�ji ; q�.i/ D min1�g�m Pjk.i jg/ and qC.i/ D max1�g�m Pjk.i jg/.

The maximization of the likelihood, even under the constraints (4), still poses difficulties as
the objective function is highly non-linear and the number of constraints can still be considered
high. In particular, reaching a global maximum can be difficult, especially if the initial values
are far away from the optimal values. Berchtold (2001) proposed a method to improve the selec-
tion of the initial values by computing a measure of the strength of the association between each
lagged value and the present one. Other papers such as Mehran (1989a) and Berchtold (1998)
have also addressed the choice of initial values. Several other strategies have been employed to
circumvent the difficulties in maximizing the likelihood given the non-linearity of the objec-
tive function and the high number of constraints. Berchtold (2001) developed an algorithm
that does not require any ‘external optimization routine’ and can lead to satisfactory results
provided that good initial values are chosen. The idea leads to a modification of the Newton
methods and consists of balancing an increase in one of the parameters with an equal decrease
in another using the boundary adjustment in the MLE. Lèbre & Bourguignon (2008) also
pointed out that ‘[: : :] the efficiency for the MTD parameter estimations proposed up to date
still remains problematic on account of the large number of constraints on the parameters’.
They used the expectation–maximization algorithm to estimate the parameters of the MTD
model, with good results, although Chen and Lio mentioned that the complexity from the
counts of the pattern of sequences is still unsolved in the search for a global maximizer. Chen
& Lio (2009) proposed transforming the non-linear constraints of the parameters in the MTD
into box-constraints in that each parameter is given a lower and/or upper bound. This tech-
nique allows the MLE to be obtained via a hybrid algorithm from the evolutionary algorithms
and/or quasi-Newton algorithms and has the advantage of focusing on a search for a global
maximizer.

3. The mixture transition distribution-Probit model

3.1. Motivation

We have shown the usefulness of the MTD and its extensions. One of the main challenges in
applying the MTD model is linked to the estimation and the way the non-linear constraints
are dealt with in the numerical optimization, although some progress has been made as we
described in the previous section (e.g. Berchtold, 2001, Lèbre and Bourguignon, 2008 and Chen
and Lio, 2009). However, the constraints associated with the MTD model still pose difficulties.
Even in Chen & Lio (2009), who transformed the non-linear constraints of the parameters in
the MTD into box-constraints, the constraints are still present.

In this paper, we propose a specification, inspired by the MTD model, which is completely
free from constraints, facilitating the estimation procedure and, at the same time, as we show in
the succeeding text, is a more accurate specification for Pj .i0ji1; : : : ; is/. We suggest modelling
Pj .i0ji1; : : : ; is/ as follows

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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Pj .i0ji1; : : : ; is/ D P
ˆ
j .i0ji1; : : : ; is/

WD
ˆ.�j0 C �j1Pj1.i0ji1/C : : :C �jsPjs.i0jis//Pm
kD1ˆ.�j0 C �j1Pj1.kji1/C : : :C �jsPjs.kjis//

;
(5)

where �ji 2 R.j D 1; : : : ; sI i D 1; : : : ; m/ and ˆ is the (cumulative) standard normal
distribution function. We denote this specification as an MTD-Probit model. We have the
following remarks:

(i) the numerator of (5) follows the same principle as the original MTD model: the argu-
ment of ˆ.�/ is a linear combination of probabilities Pjk.i0jik/; k D 1; : : : ; s, just as in
the MTD model;

(ii) no constraints are needed in (5), as Pˆ
j
.i0ji1; : : : ; is/ is bounded in the interval .0; 1/,

regardless of the values �js ;
(iii) the purpose of the denominator in (5) is to guarantee that

Pm
i0D1

Pˆ
j
.i0ji1; : : : ; is/ D 1.

Notice, by analogy, that the same condition has to hold for Pj .i0ji1; : : : ; is/; that is,Pm
i0D1

Pj .i0ji1; : : : ; is/ D 1;
(iv) a constant term �j0 is introduced in the Pˆ

j
.i0ji1; : : : ; is/ specification, and in this way,

the proposed specification involves one additional parameter in comparison with the
MTD case; although it can be set to zero, �j0 generally improves the fit (i.e. allows the
probability Pˆ

j
.i0ji1; : : : ; is/ to be closer to Pj .i0ji1; : : : ; is//;

(v) here ˆ can be replaced by another distribution function of any continuous random
variable with state space R;

(vi) in principle, it is possible to add exogenous explanatory variables to the model (this
topic deserves further research);

(vii) when Sjt is the dependent variable, the likelihood is

logL D
X

i1i2:::iis i0

ni1i2:::iis i0 log
�
Pˆj .i0ji1; : : : ; is/

�
; (6)

and the maximum likelihood estimator is defined, as usual, as O�j D arg max�j1;:::;�js
logL. The parameters Pjk.i0ji1/; k D 1; ; : : : ; s can be estimated in advance, through
the consistent estimators

OPjk.i0ji1/ D
ni1i0Pn
i0D1

ni1i0
;

where ni1i0 is the number of transitions from Sk;t�1 D i1to Sjt D i0. This procedure
greatly simplifies the estimation procedure and does not alter the consistency of the
MLE O�j estimator, as OPjk is a consistent estimator of Pjk .

Equation (5) can be superior to the MTD hypothesis for several reasons. First, in the absence
of constraints, the estimation is much easier, and standard numerical optimization routines
may apply. We have used the constrained maximum likelihood module in GAUSS software
(Aptech Systems, Chandler, Arizona, United States) that allows switching between several algo-
rithms (BFGS, Broyden-Fletcher-Goldfarb-Shanno, DFP, Davidon-Fletcher-Powell, Newton,
BHHH, Berndt-Hall-Hall-Hausman, scaled BFGS and scaled DFP) depending on three mea-
sures of progress, change in function value, number of iterations or change in line search step
length. However, the likelihood (6) is not a strictly concave function on the entire parameter
state space; hence, the choice of the starting values is relevant. Second, because no restric-
tions on the parameters are needed, the MTD-Probit enables the description of a wide range
of possible dependencies; according to the theorem in the succeeding text, this range is likely
to be wider than that of the MTD. Third, the proposed model is more accurate than the

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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MTD model in the sense that Pˆ
j
.i0ji1; : : : ; is/ is closer in Euclidean distance to the true prob-

ability Pj .i0ji1; : : : ; is/ than that of PMTD
j

.i0ji1; : : : ; is/. This result is proved in the following
theorem.

Theorem 1. Suppose that Sjt and Sk;t�1 are not independent (the transition probability matrices
between Sjt and Sk;t�1 do not have identical rows). For each j 2 ¹1; : : : ; sº, we have

min
�ji

mX
i1i2:::iis i0D1

ˇ̌
ˇPj .i0ji1; : : : ; is/ � Pˆj .i0ji1; : : : ; is/

ˇ̌
ˇ
2

�; (7a)

min
�j1C:::C�jsD1

0�
Ps
kD1 �jkPjk.i0jik/�1

mX
i1i2:::iis i0D1

ˇ̌
ˇPj .i0ji1; : : : ; is/ � PMTD

j .i0ji1; : : : ; is/
ˇ̌
ˇ
2

: (7b)

Proof. To simplify the notations, consider without any loss of generality that �i D �ji and
�i D �ji . The probabilities Pj .i0ji1; : : : ; is/ and Pj1.i0ji1/; : : : ; Pjs.i0jis/ are assumed to be
known for all permutations in the set ¹i0; i1; : : : ; isº. The constraints 0 �

Ps
kD1 �kPk.i0jik/ �

1 are considered in part (4), below. For now, assume that
®
�ji W

Ps
iD1 �ji D 1

¯
. We prove the

theorem in four steps.

(1) The value of the expression of the right-hand side of the inequality (7b) is equal to the
sum of squared residuals (SSR) of the regression

Pj .i0ji1; : : : ; is/ D ˇ1Pj1.i0ji1/C : : :Cˇs�1Pj;s�1.i0jis�1/CˇsPjs.i0jis/Cerror1;

subject to the restrictions
Ps
iD1 ˇi D 1. (notes: (i) in classical linear regression terms,

Pj .i0ji1; : : : ; is/ may be understood as the ‘ independent’ variable and can take on
msC1 values (as many as the number of permutations in the set ¹i0; i1; : : : ; isº).
For each of those values, ¹Pj1.i0ji1/; : : : ; Pjs.i0jis/º are the corresponding ‘explana-
tory variables’. (ii) The error term error1 results from the fact that the prob-
abilities Pj .i0ji1; : : : ; is/ are not generally equal to a linear combination of
¹Pj1.i0ji1/; : : : ; Pjs.i0jis/º. This linear combination is only an approximation to the
true probabilities Pj .i0ji1; : : : ; is/. Hence there is always an error that is identified
here by error1). Given that ˇs D 1 � ˇ1 � : : : � ˇs�1, we may rewrite the previous
equation as

Pj .i0ji1; : : : ; is/ D Pjs.i0jis/C ˇ1Pj1.i0ji1/C : : :C ˇs�1Pj;s�1.i0jis�1/

C .�ˇ1 � : : : � ˇs�1/Pjs.i0jis/C error1; or

Pj .i0ji1; : : : ; is/ � Pjs.i0jis/ D ˇ1Pj1.i0ji1/C : : :C ˇs�1Pj;s�1.i0jis�1/

C .�ˇ1 � : : : � ˇs�1/Pjs.i0jis/C error1:
(8)

(2) To deal with the left-hand side expression (7a), we use the Gauss–Newton method to
find the non-linear regression estimates by running successive linear regressions until
a solution is reached. We start by linearizing Pˆ

j
.i0ji1; : : : ; is/ using a Taylor series

expansion with linear terms Pj1.i0ji1/; : : : ; Pjs.i0jis/ around the vector �.0/ such that
ˆ.�.0// D Pjs.i0jis/. This produces a linear regression equation of type

Pj .i0ji1; : : : ; is/ D Pjs.i0jis/C ˇ1Pj1.i0ji1/C : : :

C ˇs�1Pj;s�1.i0jis�1/C ˇsPjs.i0jis/C error2;

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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Pj .i0ji1; : : : ; is/ � Pj .i0jis/ D ˇ1Pjs.i0ji1/C : : :C ˇs�1Pj;s�1.i0jis�1/

C ˇsPjs.i0jis/C error2;
(9)

where ˇ1; : : : ; ˇ2 are unknown parameters, depending on �i , which are estimated by
ordinary least squares. The main point is that the SSR of regression (9) is lower than the
SSR of regression (4), despite the fact that both equations use the same ‘ explanatory
variables’ ¹Pj1.i0ji1/; : : : ; Pjs.i0jis/º. The reason for this difference is that the param-
eters of (4) are subject to restrictions, whereas the parameters of (9) are free. In other
words, a solution of an unconstrained optimization problem is always equal or better
than that of a constrained optimization problem. Let �.1/ be the least squares estimates
of (9). The Gauss–Newton algorithm proceeds by approximating Pˆ

j
.i0ji1; : : : ; is/

through a Taylor series expansion with linear terms Pj1.i0ji1/; : : : ; Pjs.i0jis/ around
the vector obtained in the previous step, �.1/, and a new regression is formed.

(3) Now it is necessary to show that successive iterations of the Gauss–Newton method
cannot worsen the solution obtained in step (2). A sufficient condition is that
(a) the set ¹� W F.�/ � F.�.0//º is bounded, where F.�/ WD

Pm
i1i2:::iis i0D1ˇ̌

ˇPj .i0ji1; : : : ; is/ � Pˆj .i0ji1; : : : ; is I �/
ˇ̌
ˇ
2

and that (b) the Jacobian J.�/ WD @Pˆ
j

.i0ji1; : : : ; is/=@� has full rank in all steps (see, for example, Madsen et al., 2004). Con-
dition (a) may be easily satisfied if one assumes that � is compact (i.e. we assume that
any admissible value for �i is finite). On the other hand, one is able to show that the
assumption of the theorem guarantees condition (b) (note: if Sk;t�1 is independent of
Sjt , the variable Sk;t�1 can be removed from the model, and the assumption of the
theorem may hold with respect to the other explanatory variables).

(4) The theorem was proven assuming that �j1; : : : ; �js belong to the set®
�ji W

Ps
iD1 �ji D 1

¯
. Therefore, a fortiori, it also applies to the smaller set®

�ji W
Ps
iD1 �ji D 1; 0 �

Ps
kD1 �jkPjk.i0jik/ � 1

¯
.

The previous theorem does not quantify the gains in using the model Pˆ
j
.i0ji1; : : : ; is/.

These gains can be small or substantial depending on the values Pj .i0ji1; : : : ; is/ and
¹Pj1.i0ji1/; : : : ; Pjs.i0jis/º. The following example illustrates the gains that can be obtained
in using the proposed specification. Consider an MMC ¹.S1t ; S2t /º with s D 2 and m D 2.
Each process takes values in the set ¹1; 2º. Suppose that the data generating process is defined
as follows:

P1.1j1; 1/ D P.S1t D 1jS1;t�1 D 1; S2;t�1 D 1/ D 0:1; P1.2j1; 1/ D 1 � P1.1j1; 1/ D 0:9;

P1.1j1; 2/ D P.S1t D 1jS1;t�1 D 1; S2;t�1 D 2/ D 0:1; P1.2j1; 2/ D 1 � P1.1j1; 2/ D 0:9;

P1.1j2; 1/ D P.S1t D 1jS1;t�1 D 2; S2;t�1 D 1/ D 0:2; P1.2j2; 1/ D 1 � P1.1j2; 1/ D 0:8;

P1.1j2; 2/ D P.S1t D 1jS1;t�1 D 2; S2;t�1 D 2/ D 0:9; P1.2j2; 2/ D 1 � P1.1j2; 2/ D 0:1;

and P.Sr;t�1 D i2jSk;t�1 D i1/ D 0:5 for i2; i1; k; r 2 ¹1; 2º. By the law of total probability,
we obtain the following values for Pj1.i0ji1/ and Pj2.i0ji2/:

P11.1j1/ D 0:1; P11.2j1/ D 0:9; P11.1j2/ D 0:55; P11.2j2/ D 0:45;

P12.1j1/ D 0:15; P12.2j1/ D 0:85; P12.1j2/ D 0:5; P12.2j2/ D 0:5:

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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1130 J. Nicolau Scand J Statist 41

Given Pj1.i0ji1/ and Pj2.i0ji2/, the precision of Pˆ
1
.i0ji1; i2/ and PMTD

1
.i0ji1; i2/

can be compared with the true values P1.i0ji1; i2/, by considering the following
optimization problems:

min
�1i

2X
i1i2;i0D1

ˇ̌
ˇP1.i0ji1; i2/ � Pˆ1 .i0ji1; i2/

ˇ̌
ˇ
2

D 0:040I

min
�11C�12D1

2X
i1i2D1

ˇ̌
ˇP1.i0ji1; i2/ � PMTD

1 .i0ji1; i2/
ˇ̌
ˇ
2

D 0:398:

In the second optimization problem, we checked that all estimated values of PMTD
1

.i0ji1; i2/

were probabilities. There is a significant difference between both methods. Our hypothesis
leads to an error that is about 10 times lower than the MTD ethod. This difference obvi-
ously depends on the parameters that were previously defined (other values may lead to
smaller differences).

3.2. Monte Carlo experiment

We have just performed a numerical analysis to show how close Pˆ
j
.i0ji1; : : : ; is/ can be to the

true probability. This analysis was conducted after we fixed the values of P1.i0ji1; i2/; P1.i0ji1/
and P1.i0ji1/ and then deduced the best numerical approximations of PMTD

1
.i0ji1; i2/ and

Pˆ
1
.i0ji1; i2/ to P1.i0ji1; i2/. It is also interesting to perform a Monte Carlo simulation experi-

ment in which the categorical data are simulated and then the estimates from both methods are
compared with the true probabilities. We consider a simple process with two categorical data
.s D 2/ andm D 2 (each variable takes on 1 or 2). Our objective is to estimateP1.i0ji1; i2/ from
the maximum likelihood estimates OPˆ

1
.i0ji1; i2/ and OPMTD

1
.i0ji1; i2/. Because the results are

sensitive to the values of P1.i0ji1; i2/, we let these probabilities take several different values in
the set [0,1], as described in the succeeding text. We use the following algorithm:

Step 0: Set ıi D 0:1; i D 1; 2; : : : ; 6.
Step 1: Set

P1.1j1; 1/ D ı1; P1.1j1; 2/ D ı2; P1.1j2; 1/ D ı3; P1.1j2; 2/ D ı4;

p11 D ı5; p21 D ı6

(we explain the parameters p11 and p21 in the succeeding text).
Set 2: Simulate a path ¹.S1t ; S2t /º; t D 1; 2; : : : ; n.

Step 2.1: Initialize the process ¹.S1t ; S2t /º.
Step 2.2: Simulate a random variable u � U.0; 1/. Assume that S1;t�1 D i1 and S2;t�1 D i2.
Then S1t D 1 if u � P1.1ji1; i2/, and S1t D 2 otherwise.
Step 2.3: Simulate S2t according to the probabilities P.S2t D i jS1t D j / D pji (say) (note:
because we are not focusing on the probability P2.i0ji1; i2/, we simulate S2t from a simple
probabilistic structure.
Step 2.4: Return to step 2, until t D n.

Step 3: Given the simulated sequence ¹.S1t ; S2t /º, estimate the parameters �1i and �1i by
maximum likelihood and obtain , from them, OPMTD

1
.i0ji1; i2/ and OPˆ

1
.i0ji1; i2/. If the con-

straints 0 �
Ps
kD1
O�jk OPjk.i0jik/ � 1 are not satisfied, the simulated sequence is removed and

not considered in the analysis. (note: in our Monte Carlo study, the aforementioned constraints
were satisfied in about 98.5 per cent of cases)

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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Scand J Statist 41 Multivariate Markov chains 1131

Table 1. Monte Carlo results

n
Average of MTD

Average of ˆ

100 1.10

1000 1.20

5000 1.23

Step 4: Assess the precision of OPMTD
1

.i0ji1; i2/ and OPˆ
1
.i0ji1; i2/ by comparing them with

the values P1.i0ji1; i2/ defined in step 1, using the statistics

 MTD D

2X
i1D1

2X
i2D1

�
OPMTD
1 .i0ji1; i2/ � P1.i0ji1; i2/

�2
;

 ˆ D

2X
i1D1

2X
i2D1

�
OPˆ1 .i0ji1; i2/ � P1.i0ji1; i2/

�2
:

Step 5: Increase one ı by 0.1. Keep all others ıi with the same value. Stop the procedure if
ı1 D : : : D ı6 D 0:9, otherwise go to step 1.

Each parameter takes on nine different values in the range [0.1,0.9]; hence there are 96 D
531; 441 permutations. For each of these permutations, we simulate a path ¹.S1t ; S2t /º with
100, 1000 and 5000 observations (Table 1). To assess the models, we computed a global average
of the statistics mentioned in step 4.

Table 1 shows that the differences between the models are not so great as we saw in the
numerical analysis. Nevertheless, it is clear that the estimator OPˆ dominates the OPMTD .

3.3. An empirical application

In this section, we illustrate our method by considering an MMC to model the SP500, Nikkei
225 and DAX stock indices (we analyse weekly data from 6 January 1965 to 5 December 2012,
which corresponds to 2289 observations). This example can be seen as a generalization of
McQueen & Thorley (1991) approach to analysing the predictability of stock returns . They
consider a Markov chain model to test the random walk hypothesis of stock prices. Their
Markov chain is defined by two states: one to represent high returns and the other to repre-
sent low returns. We generalize this approach by considering three categorical data .s D 3/ and
ten states .m D 10/. A fully parameterized MMC involves ms.m � 1/ D 9000 independent
parameters, which is impossible to estimate with only 2289 observations. The main purpose of
this application is only to illustrate the proposed model and to compare both methods.

Let r1t ; r2t and r3t be the returns associated with the SP500, Nikkei 225 and DAX, respec-
tively. We split the returns into ten categories as follows. Let q.i/˛ be the ˛-quantile of the

marginal distribution of rit ; that is, q.i/˛ is such that P
�
rit � q

.i/
˛

�
D ˛, and Oq.i/˛ the corre-

sponding sample quantile (for simplicity, we will refer to the Oq0:10 as the tenth percentile, the
Oq0:20 as the 20th percentile and so on). We have

Sit D 1 if rit � Oq
.i/

0:10
;

Sit D 2 if Oq.i/
0:10

< rit � Oq
.i/

0:20

::::

Sit D 10 if rit � Oq
.i/

0:90

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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1132 J. Nicolau Scand J Statist 41

(the higher the value Sit takes on the higher the associated return; for example S1t D 10means
that at time t the return of the SP500 index is above the 90th percentile).

Tables 2 and 3 present the estimation results of both methods described in the previous
section (in the MTD case, we ran the optimization procedure with no restrictions on the �
terms. In all cases, the restrictions (3) were satisfied).

These results show that the proposed model is superior to that of the MTD model,
both in terms of likelihood and Bayesian information criterion .BIC D �2LL C q log.n/,
where LL is the log likelihood, q represents the number of independent parameters
and n the sample size), despite the fact that our model has one additional parame-
ter (the data and the routines in GAUSS to estimate the models are available at site:
http://pascal.iseg.utl.pt/�nicolau/myHP/codes.rar). An interesting fact is that all estimates are
statistically significant. This means that both models may have predictive power.

We present a simple illustration of the famous quotation by Mandelbrot when referring to
returns behaviour: ‘large changes tend to be followed by large changes, of either sign, and
small changes tend to be followed by small changes.’ Suppose that in the previous period, all
three returns were below the tenth percentile (there is a large negative change in period t � 1).
Then, from expression Pˆ

j
and estimates O�jk , we may calculate the conditional probabilities

OPˆ
1
.i0ji1 D 1; i2 D 1; i3 D 1/ (Table 4).

Table 4 shows that the probability of the SP500 being in a bull market (i.e. S1t D 10/ after
the three indices were below the tenth percentile in the previous week is relatively high (the
probability is 0.3124) and higher than the probability of the SP500 continuing below the tenth
percentile. Another similar exercise can be performed, using the conditioning set S1t�1 D
10; S2t�1 D 10 and S3t�1 D 10. The conditional probabilities of S1t are given in Table 5.

Table 2. Results of the mixture transition distribution model

O�j1 O�j2 O�j3 logLik: BIC

Equation 1 (SP500, j D 1) 0.2777 0.3274 0.3949 �1178.44 2380.08
(0.0788) (0.0779) (0.0781)

Equation 2 (Nikkei 225, j D 2) 0.2609 0.5838 0.1553 �1177.48 2378.16
(0.0789) (0.0690) (0.0823)

Equation 3 (DAX, j D 3) 0.2311 0.3889 0.3800 �1179.90 2383.00
(0.0779) (0.0743) (0.0776)

BIC, Bayesian information criterion.

Table 3. Results of the proposed model

O�j0 O�j1 O�j2 O�j3 logLik: BIC

Equation 1 (SP500, j D 1) �2.6524 6.7873 7.3376 7.094 �1166.78 2364.50
(0.1623) (1.2826) (1.3102) (1.3173)

Equation 2 (Nikkei 225, j D 2) �3.4530 2.6336 2.5880 2.5880 �1165.93 2362.80
(0.6657) (0.8004) (0.7430) (0.7430)

Equation 3 (DAX, j D 3) �3.0819 9.284 9.8165 9.3397 �1166.32 2363.58
(0.2770) (1.7169) (1.7544) (1.724)

BIC, Bayesian information criterion.

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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Scand J Statist 41 Multivariate Markov chains 1133

Table 4. Estimates OPˆ1 .i0ji1 D 1; i2 D 1; i3 D 1/

1 2 3 4 5 6 7 8 9 10

0.2135 0.078 0.0748 0.0469 0.0306 0.0314 0.011 0.0956 0.1059 0.3124

Table 5. Estimates OP˚1 .i0ji1 D 10; i2 D 10; i3 D 10/

1 2 3 4 5 6 7 8 9 10

0.1424 0.1396 0.1038 0.068 0.0899 0.097 0.0927 0.0808 0.1042 0.0814

Fig. 1. Conditional probabilities OPˆ1 .i0jS1t�1; S2t�1; S3t�1/I ; 2º.

Table 5 shows that the probability of the SP500 being in a bear market after the three indices
were above the 90th percentile in the previous week is relatively high and higher than the
probability of the SP500 continuing above the 90th percentile. Our results not only confirm
Mandelbrot’s idea (that low values of Sit�1 tend to be followed by low or high values of Sit ;
but not by moderate values) but also enable us to conclude that a bull (bear) market is more
likely to be followed by a bear (bull) market. This conclusion is also confirmed by Fig. 1. In
the first panel of this figure, we plot OPˆ

1
.i0ji1 D 1; i2 D 1; i3 D 1/ (i.e. the values of Table 4).

In the second panel, we plot OPˆ
1
.i0ji1; i2; i3/ when S1t�1S2t�1; S3t�1 take values in the set

¹1; 2º (in total, there are eight conditional probability functions, considering all the permuta-
tions of S1t�1; S2t�1; S3t�1 in the set ¹1; 2º/. It is interesting to observe the U-shape of these

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.

 14679469, 2014, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12087 by U

niversidade D
e L

isboa, W
iley O

nline L
ibrary on [30/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



1134 J. Nicolau Scand J Statist 41

conditional probability functions. This means that when the three markets were in decline, it is
more likely in the next period, which the returns of the SP500 will be in the lowest or highest
percentiles, but not in the middle ones (i.e. representing the moderate values of the process).

4. Conclusions

We propose a new method to estimate MMCs of order one or higher. Through a numeri-
cal analysis, a Monte Carlo experiment and an empirical application, we have shown that the
proposed method is more precise than the MTD model.

Our model can be easily adjusted to model higher-order Markov chain. To illustrate this
point, suppose that S1t depends on S1t�1; S1t�2 and S2;t�1. Then, according to our model,
Pˆ
1
.i0ji1; : : : ; is/ may be written as

ˆ.�10 C �11P.S1t D i0jS1;t�1 D i1/C �12P.S1t D i0jS1;t�2 D i2/C �13P.S1t D i0jS2;t�1 D i3//

†
;

where † is the normalizing constant (as described before).
The empirical application illustrated the potential use of MMC models. In particular, the

results suggest that the model may be able to generate trading rules. This is an issue that may be
worth analysing in a future paper. There are several other aspects that can be exploited. In fact,
because it is quite easy to obtain conditional moments (such as means, variance, skewness and
kurtosis) as well as Markov times and marginal moments, many interesting finance applications
can be devised in the context of the MMC . For example, using the expression Pˆ

j
and the

estimates O�jk , we may compute the conditional mean and volatility over time as follows

O�t D

10X
kD1

mk � OP
ˆ
1 .i jS1t�1; S2t�1; S3t�1/;

O�2t D

10X
kD1

m2k �
OPˆ1 .i jS1t�1; S2t�1; S3t�1/ � O�

2
t ;

where mk is a representative value of the kth class interval
�
Oq.k�1/=100; Oqk=100

�
(e.g. the

midpoint).
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