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Abstract

We present Timestepped Stochastic Simulation (TSS) for 802.11 WLANs. TSS overcomes scalability

problems of packet-level simulation by generating a sample path of the system state S(t) at time t =

δ, 2δ, · · · , rather than at each packet transmission. In each timestep [t, t + δ], the distribution Pr( S(t +

δ) |S(t) ) is obtained analytically and S(t + δ) is sampled from it.

Our method computes sample paths of instantaneous goodput Ni(t) for all stations i in a WLAN over

timesteps of length δ. For accurate modeling of higher layer protocols, δ should be lesser than their control

timescales (e.g., TCP’s RTT). At typical values of δ (e.g, 50ms), Ni(t)’s are correlated across both timesteps

(e.g., a station with high contention window has low goodput for several timesteps) and stations (since they

share the same media). To model these correlations, we obtain, jointly with the Ni(t)’s, sample paths of

the WLAN’s DCF state, which consists of a contention window and a backoff counter at each station.

Comparisons with packet level simulations show that TSS is accurate and provides up to two orders

of magnitude improvement in simulation runtime. Our transient analysis of 802.11 complements prior

literature and also yields: (1) the distribution of the instantaneous aggregate goodput; (2) the distribution

of instantaneous goodput of a tagged station conditioned on its MAC state; (3) quantification of short-

term goodput unfairness conditioned on the DCF state; (4) efficient accurate approximation for the n-fold

convolution of the distribution of the total backoff duration experienced by a tagged packet; and (5) a

simple closed form expression and its logarithmic approximation for the collision probability as a function

of the number of active stations.

I. Introduction

Performance evaluation of computer networks has been based primarily on packet-level simulation models

because analytical methods have typically not been able to capture state-dependent control mechanisms

∗ Supported in part by the Laboratory for Telecommunications Sciences under the UMIACS contract.
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adequately. However, packet-level simulation becomes prohibitively expensive as link speeds, workloads,

and network size increase. Timestepped Stochastic Simulation (TSS) is a method to achieve the modeling

accuracy of simulation at a fraction of the computational cost. TSS generates sample paths of the network

state, just as in packet-level simulation, but only at increments of discrete timesteps rather than at every

packet transmission. If S(t) represents the network state at time t, TSS generates S(t) for t = δ, 2δ, · · · ,

given S(0). In each timestep t, the distribution Pr( S(t + δ) |S(t) ) is obtained analytically assuming that

all stochastic inputs are time-invariant in [t, t + δ], and S(t + δ) is sampled from it. This time-invariance

assumption holds for δ less than the feedback time-scale of the end-to-end control mechanisms employed, in

which case TSS generates sample paths which are very good approximations of those generated by packet-

level simulation. The time-invariance requirement means that δ cannot be too large; we use δ = 50ms.

TSS has been developed for networks of point-to-point links [13], [12]. We present a method to perform

TSS for 802.11 wireless networks (WLANs). The basic MAC protocol in all WLANs is the 802.11 Distributed

Coordination Function (DCF) [16]. 802.11 DCF is a variant of Carrier Sense Multiple Access with Collision

Avoidance (CSMA-CA). It uses ACKs and performs retransmissions probabilistically to ensure successful

delivery. Each station uses a time-based procedure to adapt its MAC state, and hence, its transmission

attempts, to the current level of contention. The MAC state of station i is the tuple 〈Ci(t), Bi(t)〉, where

Ci(t) is the contention window and Bi(t) is the backoff counter at time t. Station i continuously

decrements Bi(t) at the rate of one unit per slot, pausing only when the channel is sensed to be busy. The

station transmits when Bi(t) reaches zero. If the transmission is unsuccessful (i.e., ACK not received) Ci(t)

is doubled, otherwise Ci(t) is reset to a specified initial value. In either case, a new value of Bi(t) is chosen

uniformly at random from [0..Ci(t)–1]. (An overview of the protocol can be found in Section II.)

Consider an 802.11 WLAN with α stations, where each station i is either active or inactive over time,

with transitions occurring only at timestep boundaries. A station that is active (inactive) at time t has (no)

packets to send in its output queue throughout [t, t + δ]. (The output queue is fed, in general, by state-

dependent data sources, e.g., TCP.) Let M(t) be the vector of length α whose ith entry is 1 if the station

i is active and 0 if not, and M(t) be the number of active stations. Let Ni(t) be the goodput of station i in

timestep [t, t + δ], defined as the number of packets successfully transmitted by station i in the timestep.

Ni(t) is zero for a station i inactive at t. For a station i active at t, Ni(t) depends on all the active stations

at t, as determined by the 802.11 MAC protocol.

Given M(t), our method computes evolutions of the goodput vector 〈Ni(t):1≤i≤α〉 for t = 0, δ, 2δ, · · · .

For the timestep size δ of interest (i.e., δ = 50ms), the DCF protocol introduces strong dependencies in

the Ni(t)’s, specifically, positive correlation in Ni(t) across timesteps and the negative correlation between

Ni(t)’s across stations i in the same timestep. It is essential to capture these dependencies, otherwise the

evolutions of the Ni(t)’s would not be an adequate foundation for simulating upper-level protocols (e.g.,

TCP) in a timestepped manner. Thus the key issue is the short-term behavior of the DCF protocol. Our

method computes evolutions of the goodput vector and DCF state jointly: at each timestep, the goodput
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and DCF state at the end of the timestep is obtained in terms of the goodput and DCF state at the previous

timestep. We validate against PLS by comparing the resulting marginal distributions, the crosscorrelations

(across stations), and the autocorrelations (across timesteps) of the per-station instantaneous goodput and

DCF state. We find that TSS is quite accurate and yields runtime speed-up of up to two orders of magnitude.

To compute sample path evolutions of the goodputs and the MAC states, we need to probabilistically

obtain {Ci(t + δ), Bi(t + δ), Ni(t)} given {Ci(t), Bi(t)} accounting for correlations both across stations and

time. It turns out, however, that Bi(t) can be approximated in terms of Ci(t) as we explain later in Section

IV. So we need to probabilistically obtain Ci(t + δ), Ni(t) given Ci(t) for all i. Our method obtains this in

the following steps:

• Step 1: Obtain the distribution Pr( NA(t) ) of the aggregate goodput NA(t) =
∑

Ni(t), and sample

NA(t) from it.

We extend the analysis in reference [2] (which obtains the longterm average aggregate goodput) to show

that Pr( NA(t) ) can be approximated by a normal distribution dependent on δ. We first characterize

both the mean and the variance of the renewal period between two successes (prior works focus on the

mean alone). The distribution follows from the central limit theorem for renewal processes. (Analysis

in Section III.)

• Step 2: Obtain the distribution Pr( X ) of the total backoff duration of a tagged packet, which is

the total time spent in backoff by the packet’s station during the packet’s lifetime (from the start of

the first transmit attempt until successful transmission or abort). (Analysis in Section V-A.)

• Step 3: For each station i, obtain Pr( Ni(t)|Ci(t) ) by abstracting the interaction with the rest of the

stations by an average collision probability.

We use the fact that Ci(t) (stochastically) determines the instant ts when the first successful transmission

of station i occurs in [t, t + δ]. Conditioned on ts, the distribution of the number of successful packet

transmissions in the interval [ts, t+δ] is obtained by seeing how many total backoff durations (one for each

successful packet transmission; aborts are explained later) can “fit” within this interval. Unconditioning

on ts gives Pr( Ni(t)|Ci(t) ). (Analysis in Section IV. An efficient algorithm to obtain n-fold convolution

of the total backoff duration is given in Section V.)

• Step 4: Dependently sample Ni(t) from Pr( Ni(t)|Ci(t) ) for all i such that the sampled Ni(t)’s are

correlated and
∑

Ni(t) = NA(t).

This step uses a randomized algorithm that enforces a negative correlation constraint among any subset

of stations, in addition to the constraint that the samples add up to the sampled NA(t). (Explained in

Section VI.)

• Step 5: For each station i, obtain Pr( Ci(t + δ)|Ni(t), Ci(t) ) and sample Ci(t + δ) from it.

This distribution is obtained by accounting for the total backoff durations spent in the Ni(t) successful

transmissions in [t, t + δ]. (Analysis in Section VII.)
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Because all probability distributions involved can be parametrized in terms of the collision probability

and the timestep length δ, they can be precomputed or cached across simulation runs.

A. Contributions

To the best of our knowledge, there has been no prior work on timestepped stochastic simulation of

WLANs. There has also been no transient analysis of the 802.11 DCF performance. Specific contributions

of our work are as follows:

• We present a transient analysis of 802.11 performance, yielding a method to generate sample paths

of instantaneous metrics. Prior performance analyses (e.g., [3], [6], [9], [21], [19]) obtain the average

aggregate steady-state goodput over a sufficiently long interval of time.

• We obtain the distribution of the instantaneous aggregate goodput NA(t) by obtaining both the mean

and variance of the aggregate goodput renewal period.

• We obtain the distribution of the instantaneous goodput of a tagged station conditioned on its MAC

state. This explains the short-term unfairness in instantaneous goodputs due to the 802.11 DCF backoff

mechanism.

• We present an efficient algorithm to obtain the n-fold convolution of the distribution of total backoff

involved in a packet’s successful transmission or abort. Our results show how this seemingly long-tailed

convolution can, in fact, be modeled well as a weighted combination of gaussian distributions.

• We obtain a closed form expression for the collision probability as a function of the number of stations

for finite number of transmission attempts (extending the results in reference [2] which considers infinite

number of retries) and present a simple logarithmic approximation for this function.

B. Roadmap

Section II introduces the notation, explains the operation of the DCF protocol, and states the modeling

approximations. Section III obtains the distribution of the idle interval and from this, the distribution of

instantaneous aggregate goodput. Section IV obtains the distribution of the instantaneous goodput of a

tagged station in a timestep conditioned on its MAC state at the beginning of the timestep. Section V

obtains the distribution of the total backoff duration of a packet and presents an algorithm to obtain its

n-fold convolutions; this is used in Section IV. Section VI explains how we obtain correlated samples of

Ni(t). Section VII explains how we obtain the new MAC state given the old MAC state and goodputs from

the previous timestep. Section VIII puts all the pieces of analysis together into the TSS simulator. Section

X surveys related literature. Section XI discusses proposed extensions and Section XII concludes.

II. Overview of 802.11 DCF

An 802.11 network evolves in slotted time (of 9µs slots for 802.11a). Each evolution of basic 802.11 DCF

(i.e., no RTS/CTS) consists of a sequence of successful or unsuccessful (collision) transmission intervals



5

B
i (

t)
 

at
 t

im
e

i 
of

 s
ta

ti
on

t 

0
t

1
t

2
t

3
t

Y1

T = Transmission begin
T’ = Transmission end 
F = Failure 
S = Success 

4
t

7
t

6
t

Y2

Y3

5
t

11
t

10
t

9
t

8
t

T
attempt 

Pause in Begin first
backoff 

B
ac

ko
ff

 C
ou

nt
er

Legend: 

T’ F T FT’ T T’ S
Time 

Lifetime of a packet (Number of attempts K = 3)

Fig. 1. Evolution of Bi(t) during a packet’s lifetime at station i. Ci(t) changes at t5 and t8 to 2γ and 4γ respectively.

Symbol Stands for

α number of stations

β retry limit

γ initial contention window size

PKT time to transmit a packet

ACK time to transmit an ACK

SIFS Short Inter-frame Spacing

DIFS DCF Inter-frame Spacing

τ transmission interval;

equals PKT + SIFS + DIFS + ACK

For per-station attempt process:

Ci(t) contention window size of station i at time t

Bi(t) backoff counter of station i at time t

〈Ci(t), Bi(t)〉 MAC state of station i at time t

p per-station collision probability

For a tagged packet of a station:

K number of transmission attempts

Yj backoff duration for j th attempt

X total backoff duration; equals Y1 + Y2 + · · · + YK

For aggregate attempt process:

I idle interval;

variable interval between successive packet transmissions

when all stations decrement their backoff counters

L number of attempts for one successful transmission

pA aggregate collision probability

TABLE I

Notation
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separated by variable idle intervals. A successful packet transmission has a transmission interval τ that

consists of:

• The time to put the packet on the air (equals packet size divided by bitrate for data),

• The SIFS duration, which is the period separating a packet from its ACK transmission

• The time to put the ACK on the air (equals ACK size divided by bitrate for ACK), and

• The DIFS duration, which is the minimum period separating an ACK from the next data frame.

An unsuccessful transmission also has the same transmission interval τ . Specifically, stations respond to a

collision as follows [16]:

• If a receiving station’s physical layer deciphers an 802.11 packet with a checksum error from a signal

resulting from the collision, then the station waits for an EIFS (Extended Inter-Frame Spacing defined

to be SIFS + ACK + DIFS) after the end of the colliding transmissions before resuming its backoff.

• If a receiving station’s physical layer cannot decipher any 802.11 frame (even with a checksum error)

from the collision, then it waits only for DIFS after the end of the colliding transmissions before resuming

backoff.

• A transmitting station always starts backing off only after DIFS + ACK Timeout (specified to be ACK

+ SIFS in the Systems Description Language appendix of [16]) irrespective of whether the transmission

succeeded or failed.

In the case of receiving stations, we believe that the common case is the reception of a frame in error rather

than the non-reception of any frame. So we choose the same transmission interval for both collision and

success. References [9], [10], [4], [11] do the same. Some prior works (e.g., [3]) do not include the ACK time

following a collision. Note that the use of RTS/CTS implies different transmission intervals for successful

and unsuccessful transmissions.

In addition to the DIFS duration, the ACK of each transmission is separated from the next frame by a

variable idle interval that is determined by the protocol operation as explained next.

A. Protocol operation

Figure 1 shows one possible evolution of the backoff counter Bi(t) of a tagged station i that gets a packet

to transmit at time instant t0. The following steps occur:

• The MAC state 〈Ci(t
−

0 ), Bi(t
−

0 )〉 just before t0 (denoted by t−0 ) is the idle state 〈0, 0〉.

• At t0, the station chooses an initial backoff counter value Y1 from Uniform[0..γ−1]. Thus the MAC state

〈Ci(t
+
0 ), Bi(t

+
0 )〉 just after t0 is 〈γ, Y1〉.

• The station senses the medium. As long as the channel is idle, Bi is decremented at the rate of one per

slot (in the figure, the decrease is shown as continuous). Whenever the medium is busy (due to another

station transmitting), the decrementing is paused as shown between t1 and t2.

• At time t = t3, Bi(t) becomes zero and the station starts the transmission of the packet and finishes it

at t4 = t3+ PKT
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Fig. 2. Evolution of WLAN-wide transmissions, including a transmission by a tagged station i.

• No ACK is received within the standard timeout duration of SIFS + ACK. So at time t5 = t4+

SIFS + ACK, the station doubles Ci(t) to 2γ and chooses a new random backoff counter value Y2

from Uniform[0..2γ−1]. This is the so-called Binary Exponential Backoff (BEB).

• The second attempt to transmit begins at time t6 = t5+ DIFS.

• The second transmission starts at t7 and is decided a failure at time t8.

• The third attempt is successful at time instant t10 when it receives an ACK. At this point, the MAC

state is reset to 〈0, 0〉 if there are no packets to transmit. If there is a packet to transmit, Ci becomes

γ and a new value for Bi is chosen from Uniform[0..γ−1].

If successful transmission does not occur within β attempts, then the packet is aborted and the MAC

state is reset to 〈0, 0〉. Thus, for evolution of the MAC state, an abort is equivalent to a success. The lifetime

of a packet refers to the time elapsed from the start of the first transmit attempt to the end of either its

successful transmission or abort.

We refer to the sequence of transmission attempts of a station as its attempt process. Each station in

the system executes the same protocol. So each station has its per-station attempt process. The super-

position of the per-station attempt processes results in the WLAN-wide aggregate attempt process as

shown in Figure 2. A collision occurs if two or more stations start transmission in the same slot. Because

collisions waste the channel, DCF tries to minimize collisions by performing BEB.

Figure 2 shows the the WLAN-wide transmissions and the associated timing details during the interval

[t0, t6] of Figure 1. At t0 station i gets a packet to transmit and starts the backoff procedure. From time t1
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Symbol Stands for Type within timestep

δ timestep of TSS constant

M bit-vector of active stations constant

M # of stations with packets to transmit, i.e., |M| constant

p per-station collision probability constant

pA aggregate collision probability constant

I generic idle interval stationary random variable

η equals E[I]/(E[I] + τ) constant

Ni goodput of station i random variable

N vector of Ni for all i random variable

NA aggregate goodput,
�

i Ni random variable

TABLE II

Notation for TSS quantities defined in time interval [t, t + δ]. All quantities termed constant can vary only at

the boundaries of timesteps. All quantities measuring time (δ, I, τ) are in 802.11 slots.

through t2, station j transmits a packet, so backoff counters of all stations remain unchanged in the interval

[t1, t2]. Finally station i makes the first attempt at time t3 resulting in a collision. Station j transmits the

next packet after t6.

Now consider the variable period preceding a packet transmission (for instance, the period between t2

and t3) during which backoff counters of all stations are decremented. This variable period is called the idle

interval and is denoted by I . The value of I before a transmission is determined by the minimum of the

backoff counters of all stations at the end of the preceding transmission. Note that I does not include the

fixed overhead SIFS + ACK + DIFS after each packet transmission.

B. Modeling assumptions

Notation used in TSS is shown in Table II. We assume the following within a given timestep:

• The number of stations with packets to transmit is constant and denoted by M .

• Each attempt by a tagged station is a collision with per-station probability p dependent only on M

(“per-station” distinguishes this from the aggregate collision probability explained in Section III).

• The transmission interval of a collision is the same as that of a successful packet transmission.

• The per-station collision probability p is constant within a timestep and can be obtained as a function

of M (either by our empirical model in Section IX-I or a fixed point iteration as in reference [2]).

• There are no aborts. For standard values of protocol parameters, the probability of an abort is pβ is

negligible (e.g., < 0.007 for p < 0.5 and β = 7).

• Each idle interval is an IID copy of a stationary random variable I .

All quantities that are assumed constant within a timestep can change over the course of a TSS run at

timestep boundaries. We assume the following across all timesteps for the entire run of a TSS simulation:
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t t

t t  + δ

+δ

Real timeline 

Backoff timeline 

Transmission intervals Idle intervals

Fig. 3. Real-to-backoff-timeline contraction approximation. An interval [t′, t′ + δ′] in the backoff timeline corresponds to an

interval [t, t + δ] in the real timeline, where δ′ = ηδ and η � E[I]/(E[I] + τ).

• RTS/CTS exchanges are not used.

• Every successful transmission is received at all stations (i.e., no hidden or exposed terminals) and all

packets involved in a collision result in checksum errors at receivers (i.e., no physical layer capture).

• The transmission bitrates are constant.

• Packet size is constant.

Define the backoff timeline to be the sequence of all idle intervals ordered by their occurrence time.

In other words, the transmission intervals in the real timeline are collapsed to points to obtain the backoff

timeline. Figure 3 illustrates this real-to-backoff-timeline contraction approximation. Note that an interval

of δ slots in the real timeline would on average have δE[I ]/(E[I ] + τ) idle interval slots. So the δ interval

would on average correspond to an interval ηδ in the backoff timeline, where η , E[I ]/(E[I ]+τ). To simplify

the analysis, we assume that the variablity from the average is negligible. That is

• Any interval of length δ slots in the real timeline contracts (corresponds) to an interval of length ηδ

slots in the backoff timeline. (Section III-D justifies this in detail.)

III. The distribution Pr( NA(t) )

Recall that the per-station collision probability p is available as a function of M . Given this relationship,

we obtain the distribution of the instantaneous aggregate goodput NA(t) in [t, t+δ] in terms of the number of

active stations M , the transmission interval τ , and the timestep δ. In Sections III-A and III-B, we leverage

results from reference [2]. Section III-A analyzes the per-station attempt process in the backoff timeline

to obtain a tagged station’s attempt rate λ in terms of p. This is done by considering the number of the

transmission attempts K by the station for successful transmission of a tagged packet and the total backoff

duration X in those attempts. Section III-B analyzes of the aggregate attempt process as the superposition of

the per-station attempt processes to obtain the distribution of the idle interval I and the aggregate collision

probability pA.
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Then, in Section III-C, we present our analysis in the real timeline for the distributions of the instanta-

neous aggregate throughput and the instantaneous aggregate goodput NA(t). This is done by obtaining the

moments of the throughput and goodput renewal periods and applying the central limit theorem for renewal

processes. (Reference [2] obtains the mean of NA(t) alone.) Section III-D justifies the real-to-backoff-timeline

contraction approximation for the aggregate idle interval in a timestep.

All analysis is within a timestep [t, t + δ]. For sake of brevity, we omit the suffix “(t)” for time-dependent

quantities henceforth unless essential for the discussion.

A. Analysis of per-station attempt process in backoff timeline

The per-station attempt process of a station i is driven by its backoff counter Bi(t); transmissions occur

whenever Bi(t) reaches zero. Figure 4 shows the evolution in the backoff timeline of Bi(t) of a station i

attempting to transmit a tagged packet. On reaching zero, Bi(t) is renewed according to the backoff process

under our modeling assumption that each transmission results in a collision with probability p.

Thus the attempt process of a station i is a sequence of intervals with the pattern 〈Block〉〈Block〉 · · · .

Each 〈Block〉 is of the form Y1, Y2 · · ·YK where

• there is a transmission after each Yi;

• the transmission after YK alone is successful; and

• the total backoff duration X for a successful transmission is Y1 + Y2 + · · ·+ YK .

In the backoff timeline, Bi(t) is a markovian renewal process with average overall cycle (renewal) period

E[X ] and average number of attempts in a cycle E[K]. By the renewal reward theorem [18], the attempt

rate λ is given by E[K]/E[X ]. In other words, the probability that a station transmits at the start of a given

slot in the backoff timeline is λ.

E[K] and E[X ] are calculated as follows. Each Yi is chosen from Uniform[0..γ2i−1−1], and so E[Yi] =
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transmissions.

γ2i−2 − 1/2. We have E[X ] =

i=β
∑

i=1

Pr(K = i).E[Y1 + Y2 + · · ·+ Yi]. Because each attempt is Bernoulli with

failure probability p, K is a truncated geometric random variable with the distribution

Pr(K = i) = (1− p)pi−1 for 1 ≤ i < β

= pβ−1 for i = β

B. Analysis of aggregate attempt process in backoff timeline

The aggregate attempt process is the superposition of the per-station attempt processes. In the backoff

timeline, the aggregate attempt process is a sequence of intervals with the pattern 〈Block〉〈Block〉 · · · . Each

〈Block〉 is of the form I1, I2 · · · IL where

• each Ii is an IID copy of the idle interval I ;

• a single station transmits successfully after IL; and

• two or more stations transmit unsuccessfully after each Ii for i 6= L.

We assume that the per-station attempt processes evolve independently in the backoff timeline though

they evolve with the same p. Then the probability that there is a transmission in at least one of the M

superposed per-station processes with attempt rate λ each is 1− (1− λ)M . Therefore the idle interval I is

a geometric random variable with success probability 1− (1− λ)M .

An Ii is followed by a collision with aggregate collision probability pA, which is the probability that two

or more transmissions start in a slot given that there is at least one transmission. That is

pA =
1− (1− λ)M −Mλ(1− λ)M−1

1− (1− λ)M

Assuming that collisions are independent, L is geometric with success probability 1− pA.

Note that pA 6= p, the per-station collision probability, because two or more frames collide in any collision.

[To illustrate, suppose there are two active stations. Over some time interval, let s1 and s2 denote the number

of packets transmitted successfully by the two stations and f , the number of collisions. Then p ≈
f

s1 + f

and pA ≈
f

s1 + s2 + f
. If s1 ≈ s2 and f � s1, then pA ≈ p/2.]
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C. Analysis of aggregate attempt process in real timeline

The aggregate attempt process in the real timeline is a sequence of intervals with the pattern 〈Block〉〈Block〉 · · · .

Each 〈Block〉 is of the form T1, T2, · · · , TL, where each Ti is an IID copy of T = I+τ and only TL is successful

(as before). Thus the aggregate throughput process is a renewal process with period T . With E[T ] = E[I ]+τ

and Var[T ] = Var[I], by the central limit theorem for renewal processes [18], we have

Theorem 1 The aggregate throughput (i.e., number of throughput renewals including both successes and

failures) in [t, t + δ] is normally distributed with mean δ/E[T ] and variance δVar[T ]/E[T ]3.

The aggregate goodput process is a renewal process with period G corresponding to each 〈Block〉 of T1, T2, · · · , TL.

Figure 5 shows the renewal period of the aggregate goodput and its relation to the aggregate throughput

renewal periods. Observe that G is a compound random variable, i.e., a sum of a random number (L) of

random variables (Ti). All prior work (e.g., [2], [3], [9]) compute E[G] and thereby compute the mean goodput

in [t, t + δ] as δ/E[G] from the renewal reward theorem. However, to obtain the distribution of NA(t), we

need both E[G] and Var [G], which we obtain as follows:

E[G] = E[E[G|L]]

= E[E[
i=L
∑

i=1

Ti]]

= E[L.E[T ]] (by independence of Ti’s and L)

= E[T ].E[L]

E[G2] = E[E[(

i=L
∑

i=1

Ti)
2]]

= E[Var(
i=L
∑

i=1

Ti) + E[
i=L
∑

i=1

Ti]
2]

= E[LVar [T ] + (L.E[T ])2]

= E[L].Var [T ] + E[L2]E[T ]2

= E[L]Var [T ] + (Var [L] + E[L]2)E[T ]2

= E[L].Var [T ] + Var [L].E[T ]2 + E[G]2

Therefore, we have Var [G] = E[L]Var [T ] + Var [L]E[T ]2, which appeals to intuition in accounting for the

variance in both L and T . Because L is a geometric random variable with success probability 1 − pA, we

have E[L] = 1/(1− pA) and Var [L] = pA/(1− pA)2.

Theorem 2 The random variable NA(t) is normally distributed with mean δ/E[G] and variance δVar[G]/E[G]3.
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D. Real-to-backoff-timeline contraction approximation

Because each throughput renewal has an idle interval I that is geometrically distributed, the aggregate

idle interval in [t, t + δ] would actually be the sum of a (normally distributed) random number of geometric

random variables. One can compute the mean and variance of the total backoff compound random variable

and approximate this by a normal distribution.

However, we approximate this random variable by a constant that is equal to its mean, namely, δE[I ]/(E[I ]+

τ) , δη. This contraction approximation greatly simplifies the presentation of the analysis for the per-station

instantaneous goodput Ni(t) (which would have otherwise needed conditioning and unconditioning on the

aggregate idle interval in [t, t + δ]). This assumption is justified because the deviation of the aggregate idle

interval is very small relative to the mean (<8% for δ = 50ms), which is because the deviation in the number

of throughput renewals is not high relative to its mean. As can be seen from the results in Section IX, this

approximation does not significantly compromise the accuracy.

IV. The distribution Pr( Ni(t)|Ci(t) )

To obtain the distribution of Pr( Ni(t)|Ci(t) ), we consider the per-station attempt process for station i

in the backoff timeline; and obtain the required distribution in terms of the distribution of the total backoff

duration X in a packet’s lifetime. For the case 〈Ci(t) = 0, Bi(t) = 0〉, i.e., the station transmitted successfully

just before t and starts attempts for a new packet just after t, we obtain Pr(Ni(t) = n) as the probability

of fitting n copies of X within a total backoff of ηδ in the timestep. For an arbitrary starting state, we first

obtain the distribution of X∗

f , the time to the first successful transmission in the interval conditioned on

〈Ci(t), Bi(t)〉. Conditioned on X∗

f , the distribution of Ni(t) can be obtained by fitting copies of X in ηδ−X∗

f ,

as in the previous case. Finally, we uncondition on Bi(t) to obtain distribution of Ni(t) conditioned on Ci(t)

alone.

A. Obtaining the distribution Pr( Ni(t)|Ci(t) = 0, Bi(t) = 0 )

Figure 6 shows successful transmissions of the tagged station i in the corresponding interval in the backoff

timeline given by [t′, t′+δη], which is the contraction of [t, t+δ]. The backoff duration between two successful

transmissions is Xi, an IID copy of the total backoff duration X in a packet’s lifetime. There are n successful

transmissions in the interval [t′, t′+δη] iff n IID copies of X when added is less than the total backoff duration

δη in the interval and the n + 1th successful transmission occurs outside the interval.

Let E1 denote the event X1 + · · ·+ Xn ≤ ηδ and E2, the event X1 + · · ·+ Xn+1 ≤ ηδ. Clearly E1 ⊂ E2.

Denoting the probability of n successful transmissions in a backoff timeline interval of length ηδ as h(n, ηδ),
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t t+

X2 X3X1 X Xn

Backoff timeline δη

New packet arrives just after t

Last successful transmission just before t

n+1

Fig. 6. Successful transmissions of a tagged station in the interval [t′, t′ + δη] in the backoff timeline. The timestep [t, t + δ] in

the real timeline is contracted to [t′, t′ + ηδ] in the backoff timeline.

we have

h(n, ηδ) = Pr(Ni(t) = n|Ci(t) = 0, Bi(t) = 0)

= Pr(X1 + · · ·+ Xn ≤ ηδ ∧

X1 + · · ·+ Xn+1 > ηδ)

= Pr(E1 ∧ E2)

= Pr(E1)− Pr(E2) (since E1 ⊂ E2)

= F n
X (ηδ)− F n+1

X (ηδ)

where the pdf fn
X of the distribution Pr( X1 +X2 + · · ·+Xn ) is the n-fold convolution of fX with itself, and

F n
X denotes the corresponding cdf. Once fn

X has been obtained (as described in section V), the pdf h(n, ηδ)

can be obtained as above. Note that h(n, ηδ) depends solely on δ and η.

B. Obtaining the distribution Pr( Ni(t)|Ci(t) = γ2c−1, Bi(t) = b )

We now obtain the distribution of Ni(t) given an arbitrary starting state Bi(t), Ci(t). Figure 7 shows the

interval [t′, t′ +ηδ] in the backoff timeline corresponding to the interval [t, t+ δ] in the real timeline. At time

t′, the state is not 〈0, 0〉 and the first successful transmission occurs at t′f . Define X∗

f to be the time to first

success in the backoff timeline given Ci(t), Bi(t), i.e., X∗

f , t′f − t′. Conditioned on X∗

f , Pr(Ni(t) = n) is

given by h(n−1, ηδ−X∗

f ), the probability of n−1 successes in the backoff timeline interval ηδ−X∗

f starting

from the neutral state at t′f . This is because the first successful transmission occurs at t′ + X∗

f and n − 1

more occur in the interval of length ηδ −X∗

f with probability h(n− 1, ηδ −X∗

f ). So we want to obtain the

pdf of backoff time to first success X∗

f .
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t+Backoff timeline δηf

X f X1 X2 Xn−1 Xn

t t

Fig. 7. Transmissions of a tagged station in the backoff timeline interval [t′, t′ + ηδ] corresponding to real timeline interval

[t, t + δ] when 〈Bi(t), Ci(t)〉6=〈0, 0〉. A shorter arrow indicates a failure, a longer arrow success. The first successful transmission

occurs at t′
f

and X∗

f
is the backoff duration t′

f
− t′.

Given Ci(t) = γ2c−1 and Bi(t) = b, the first transmission occurs at t′ + b in the backoff timeline. The

number of further attempts K (which can be zero) before a successful transmission at t′f is distributed

according to a geometric distribution with

Pr(K = i) = (1− p)pi for i = 0 ≤ i < β − c

pβ−c for i = β − c

Therefore, the total backoff duration till t′f is b + Yc+1 + Yc+2 + · · ·Yc+K . Each of the Yi’s is uniformly

distributed in increasing intervals and the number of attempts K is bounded by β and so this pdf can be

obtained by straightforward convolution. In sum,

Pr(X∗

f = l|Bi(t) = b, Ci(t) = γ2c−1) =

i=β−c
∑

i=1

Pr(b + Yc + · · ·+ Yc+i = l)Pr(K = i)

Pr(Ni(t) = n|X∗

f ) = h(n− 1, ηδ −X∗

f )

Pr(Ni(t) = n|Bi(t) = b, Ci(t) = γ2c−1) =

l=ηδ
∑

l=0

Pr(X∗

f = l|Bi(t) = b, Ci(t) = γ2c−1)× h(n− 1, ηδ − l)

C. Obtaining Pr(Ni(t)|Ci(t) = γ2c−1)

If Ci(t) = γ2c−1, Bi(t) was chosen from the Uniform [0..Ci(t)−1] when it was renewed. Therefore at a given

t, the distribution of Bi(t) is distributed according to the forward recurrence time (or the remaining time)

of the distribution Uniform[0..Ci(t)−1]. For a random variable U ∼ Uniform[0..a], the forward recurrence
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time is a random variable U+ whose distribution is given by

Pr(U+ = k) = Pr(U > k)/E[U ]

=
(a− x)/(a + 1)

a/2

=
2(a− x)

a(a + 1)

Thus we have Pr(Bi(t) = b|Ci(t) = γ2c−1) = 2(Ci(t)−b−1)
Ci(t)(Ci(t)−1) for b ∈ [0, Ci(t)−1]. We have obtained P (Ni(t)|Ci(t), Bi(t))

and Pr(Bi(t)|Ci(t)). Unconditioning on Bi(t) gives Pr(Ni(t)|Ci(t))

D. Short-term unfairness in 802.11

Short-term unfairness in 802.11 has been the subject of much research [7], [8], [20], [22]. Reference [22]

examines short-term unfairness for hidden terminals while references [8], [7] claim 802.11 is fair over intervals

that are defined in terms of the number of inter-transmissions that other hosts may perform between two

transmissions of a given station. Our analysis naturally yields a quantification of the short-term unfairness

over arbitrary fixed intervals (δ here) even with no hidden terminals.

Consider a pair of tagged stations i and j among M active stations. Note that a difference between Ci(t)

and Cj(t) automatically results in a difference in the means of Ni(t), Nj(t). To quantify the extent of short-

term unfairness in goodputs, we use Jain’s fairness index JF [17]. For two stations, JF (Ni, Nj) is defined

to be
(Ni + Nj)

2

2(N2
i + N2

j )
and ranges in [1/2, 1], where 1/2 corresponds to lowest fairness (one station gets all

the goodput while the other gets nothing) and 1 corresponds to highest fairness (both get equal goodput).

Specifically, we compute E[JF (Ni, Nj)] in two different ways: 1) by approximating the jdf of 〈Ni(t), Nj(t)〉

the product of the pdf’s of Ni(t) and Nj(t), which are identical when unconditioned; and 2) by packet level

simulations (PLS) described later in Section IX. Likewise, we compute E[JF (Ni, Nj)|Ci, Cj ] analytically by

approximating the jdf of 〈Ni(t), Nj(t)〉 given 〈Ci(t), Cj(t)〉 as the product of the pdf’s of Ni(t)|Ci(t) and

Nj(t)|Cj(t) and verify the analysis by simulations.

Values of E[JF (Ni, Nj)] are shown for varying M in Table III for 1) Ni, Nj unconditioned on Ci, Cj ; and

2) conditioned on a fixed value of Ci(t) = 16 for varying Cj(t). The value predicted by the analysis matches

that obtained from PLS for the unconditioned Jain’s index almost exactly. For the conditioned case, PLS

results match the analysis almost exactly for small values of Cj(t) (16, 256). However, for large values of

Cj(t) (512) the analysis overestimates the fairness. This is because the analysis allows Nj to be high (with

some probability) jointly with high values of Ni due to the independence assumption. However, in reality,

when Ni is high (which is likely due to low Ci), Nj is less likely to be high (due to negative correlation).

V. Obtaining fn
X

To evaluate the pdf obtained in the previous section, we need the n-fold convolution fn
X of the pdf fX

of the total backoff duration X in a tagged packet’s lifetime (resulting in success or abort). We first obtain
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M Ci Cj

E[JF (Ni,Nj)|Ci, Cj ]

PLS Analysis

4 Unconditioned 0.94 0.95

4 16 16 0.96 0.97

4 16 256 0.89 0.90

4 16 512 0.68 0.83

8 Unconditioned 0.83 0.84

8 16 16 0.91 0.92

8 16 256 0.83 0.82

8 16 512 0.60 0.74

16 Unconditioned 0.73 0.74

16 16 16 0.88 0.88

16 16 256 0.77 0.75

16 16 512 0.56 0.68

TABLE III

Short-term unfairness illustrated by E[JF (Ni,Nj)] and E[JF (Ni,Nj)|Ci, Cj ] as obtained by PLS and analysis for

various values of M . For two stations, Jain’s fairness index ranges in [1/2, 1] where the value of 1/2 corresponds

to lowest fairness while the value of 1 corresponds to highest fairness. The extent of fairness varies depending

on the contention window for conditioned goodputs.

fX and explain why the structure of this pdf precludes a normal approximation to fn
X . Then we present a

simple and efficient convolution algorithm that exploits the structure of fX to obtain fn
X . The basic idea

behind the convolution algorithm is to first approximate fX as a weighted mixture of gaussians and then

obtain fn
X as a weighted mixture of gaussians efficiently using heuristics; the result is discretized to obtain

the discrete pdf fn
X .

A. The distribution of total backoff duration in a packet’s lifetime Pr( X )

Recall that for a tagged packet, K denotes the number of transmission attempts to success, and Y1, Y2, · · · , YK

denote the backoff values chosen for those attempts. As seen in Section III, K is a truncated geometric

variable with parameter p. Let Zi , Y1 + Y2 + · · · + Yi denote the total backoff duration if K = i. Then

fX =
∑i=β

i=1 Pr(K = i).fZi
. To obtain fZi

, we proceed as follows. Yi is sampled from Uniform[0..γ2i−1–1].

Because Zi is the sum of such uniformly distributed random variables, we approximate fZi
by the pdf of

a normal distribution with mean mi given by
∑j=i

j=0 E[Yj ] and variance s2
i given by

∑j=i
j=0 Var[Yj ]. Because

Y1, Y2, etc. have smooth uniform distributions, the normal approximation to Zi works very well for i > 1

though the number i of random variables being added is small. Thus fX can be written as
∑

wigi(mi, si),

i.e., a weighted combination of gaussian pdf functions. Here each weight wi is Pr(K = i) and gi is the pdf

of a gaussian with mean mi and si described before.

Figure 8 illustrates the accuracy of the approximation. It compares the pdf fX obtained by the analytical

approximation with that obtained by packet level simulation for a collision probability of 0.4. For the lowest
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Fig. 8. Illustrating the accuracy of the weighted gaussian approximation to the pdf of the total backoff duration in a packet’s

lifetime X.

lobe, i.e., for K = 1 the approximation is not very accurate. However, this approximation suffices in practice

in computing n-fold convolutions of fX .

B. The impracticality of a simple normal approximation to fn
X

A natural approach would be to use a normal approximation to the n-fold convolution of fX . This would be

similar to approximating the aggregate goodput NA(t) using the central limit theorem for renewal processes.

Because X has finite support, both E[X ] and E[X2] are finite and therefore a normal approximation is

theoretically feasible. However, the convergence to normal is very slow for f n
X because of the “cascading”

tail of the distribution. (For examples, see results in Section IX-J. The modes of fX are approximately the

E[Zi]’s. E[Zi] grows exponentially with increasing i while the associated weight wi shrinks exponentially,

implying a power-law dependence between E[Zi] and wi. Thus, the envelope of fX at its modes can be

thought of as a truncated Pareto distribution, and the sum of Pareto random variables can be approximated

only by a Levy distribution [14], [15].) Therefore, we need another method of approximating f n
X for our

purposes.

In the case of NA(t) however, the aggregate goodput renewal period G, neglecting the contribution from

the idle intervals is distributed as a well-behaved geometric random variable, which is why the normal

approximation works well for NA(t).
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C. Algorithm for obtaining convolution

Recall that the convolution of a normal distribution with mean m1 and deviation s1 with another of mean

m2 and deviation s2 results in a normal distribution with mean m1 + m2 and deviation
√

s2
1 + s2

2. Because

fX =
∑i=β

i=0 wigi, we have f2
X =

∑i=β
i=0

∑i=β
j=0 wiwjg(mi + mj ,

√

s2
i + s2

j ) to have β2 normal terms. Likewise,

fn
X will have βn terms in general. We need a way to evaluate this distribution efficiently. We observe the

following:

• The weights wi, being the probability of i consecutive losses, decrease exponentially with increasing i;

Therefore, not all wi are equally significant.

• The term-by-term convolution yields several gaussian terms whose means and deviations are close

enough to be approximated by a single term which absorbs the weights of such close terms.

These two observations yield an efficient and accurate approximation of fn
X as per Algorithm Convolve.

The loop in lines 3 through 25 iterates to compute to f i+1
X from f i

X in two phases. In the first phase

(lines 5-9), the convolution of terms f i
X (stored as curr -list) with fX (stored in init-list) is computed and

stored in new -list . In the second phase (lines 11 through 25), new -list is shrunk. The shrinking process first

sorts new -list in lexicographically increasing order according to the tuple (mk, sk) in line 11. The algorithm

maintains 〈w, (m, s)〉 as the candidate entry to be added to shrunk -list . For each entry 〈wk, (mk, sk)〉 in the

sorted new -list , the following heuristics are used:

• If wk is small compared to a threshold ε (typically, 0.001), the entry 〈wk, (mk, sk)〉 is ignored by simply

adding wk to current candidate weight w. This is done in line 16.

• If wk is significant and mk and sk are comparable to the current m and s values, then m and s are

combined with mk and sk respectively after weighting by w and wk . The value m is deemed comparable

to mk if |mk−m| < θm, where θ < 1 (typically, 0.1) is a small number. This is done in lines 18 through

20.

• If wk is significant and 〈wk, (mk, sk)〉 cannot be combined with 〈w, (m, s)〉 then 〈w, (m, s)〉 is added

to shrunk -list and the shrinking continues with 〈wk, (mk, sk)〉 becoming the new candidate shrunk -list

entry. This is done in lines 22 and 23.

D. Runtime

We assume that n–1 fold convolutions have been computed and want to obtain the runtime of the n-

th convolution. Recall that we start with fX having β terms. In the worst case, the shrinking algorithm

(depending on the tunable threshold θ) may not reduce any terms at all from the partial convolutions.

However, in practice, we see that the shrinking algorithm keeps the number of terms in any partial convolution

to be within O(β). Under this assumption, the run-time for the n-th convolution is O(β2 log β). If a is the

number of discrete support points in fX , fn
X will have n(a− 1) + 1 points, which is O(na). Discretizing the

gaussian mixture approximation of fn
X with worst case O(β2 log β) gaussian terms over O(na) points takes
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Convolve(fX , n)

1 init-list ← list of < wi, (mi, si) > in fX

2 curr -list ← init-list , count ← 0

3 while (count < n)

4 count ← count + 1

5 new -list ← {}

� Phase-1: Obtain convolution of weighted

� gaussian sums by term-by-term convolution

6 for each 〈wi, (mi, si)〉 in init-list

7 for each 〈wj , (mj , sj)〉 in curr -list

8 m← mi + mj ; s←
√

s2
i + s2

j ; w ← wi × wj

9 Add 〈w, (m, s)〉 to new -list

� Phase-2: Shrink the obtained result

10 shrunk -list ← {}

11 Sort new -list according to increasing (m, s)

12 〈w0, (m0, s0)〉 ← first(new -list)

13 w ← 0, m← m0, s← s0

14 for each successive 〈wk , (mk, sk)〉 in new -list

� ε is a threshold

15 if (wk < ε)

16 w ← w + wk

17 elseif |mk −m| ≤ θm

and |sk − s| ≤ θs

18 p1 ← w/(wk + w) ; p2 ← wk/(wk + w)

19 m← p1m + p2mk; s←
√

p1s2 + p2s2
k + p1p2(m−mk)2

20 w ← w + wk

21 else

22 Add 〈w, (m, s)〉 to shrunk -list

23 w ← wk , m← mk, s← sk

24 Add 〈w, (m, s)〉 to shrunk -list

25 curr -list ← shrunk -list

26 return curr -list
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O(naβ2 log β). The use of an FFT based convolution, which starts with a discrete representation of fX over a

points and computes the partial convolutions proceeding with a similar strategy would take O(na log na) time

for the n-th convolution. If β2 log β is O(1) w.r.t. input size O(na), then our approach reduces O(na log na)

to O(na).

E. Optimizations

Our optimizations are based on the observation that we are interested in the pdf’s of the n-fold convolutions

for support points lesser than δη, the total backoff in a timestep of length δ.

Suppose F n∗

X (δη) ≈ 0 for some n∗, i.e., the probability that X1 + X2 + · · ·+ Xn∗ takes a value lesser than

ηδ is negligible, then the algorithm for computation of the convolution can be halted at n∗ because for any

n > n∗, F n
X (ηδ) ≈ 0 and does not give any more information required for obtaining P (Ni|Ci) and the other

pdf’s for timesteps of length δ.

Another related optimization is to to represent the a n-fold partial convolution only up to an interval

length of δη rather than over the entire support range of O(na). Thus this would help optimize both the

gaussian approximation method as well as the FFT-based approach specifically for our case.

VI. Dependent sampling of Ni(t)’s

The goodput of an active station i in [t, t+δ] is determined by two factors: 1) its initial state Ci(t); and 2)

its interaction with all other active stations in [t, t + δ]. If Ci(t) is too high, with high probability, i will not

attempt often enough to possibly get a high goodput. Likewise, if the goodputs obtained by other stations are

high, then Ni(t) will necessarily go down since there is only so much channel capacity in [t, t+δ]. So far we have

obtained Pr( Ni(t)|Ci(t) ), which captures the effect of the first factor by approximating the interaction with

all other stations by a constant per-attempt collision probability in [t, t+δ]. If the Ni(t) were independent of

each other, all that needs to be done is to sample each Ni(t) from the distribution Pr( Ni(t)|Ci(t) ). However,

in reality, the interactions within stations in [t, t + δ] ensures that Ni(t) is correlated, even if very weakly,

with every Nj(t) for i 6= j. Further, because Ci(t + δ) depends on Ni(t), the states of all stations are also

weakly correlated. Thus we want a method that will sample Ni(t)’s from their conditional distributions in

a manner that reflects their negative correlation.

A. The aggregate goodput constraint

We obtained the distribution of the aggregate goodput NA(t) independent of any constraint (even from

NA(t−δ)). Therefore, in each timestep, we sample NA(t) from its distribution and require that any sampling

of Ni(t) should be such that they add up to the sampled NA(t). Note that if the Ni(t) were chosen independent

of each other, the variance of the sum would be cumulative and not be as low as V ar[NA(t)], which is a result

of the negative correlation. Clearly, the constraint NA(t) =
∑

Ni(t) requires that the Ni(t) be sampled in a

way reflecting the negative correlation.
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B. Preliminary approaches

We want to obtain N(t) where:

• each Ni(t) is sampled from Pr( Ni(t)|Ci(t) );

•

∑

Ni(t) = NA(t); and

• Ni(t) are negatively correlated.

One option is to first obtain tentative samples N ′

i(t) from the respective distributions Pr( Ni(t)|Ci(t) )

independently and then obtain each Ni(t) as N ′

i(t).NA(t)/
∑

N ′

i(t). While this approach does handle negative

correlation, the resulting distribution of Ni(t) as obtained by TSS does not match the distribution of Ni(t)

obtained by PLS well. A second approach is to consider a random permutation π of the indicices of M that

are 1’s, i.e., the list of active stations. Suppose we sample Ni(t) for each i in π from Pr(Ni(t)|Ci(t) and assign

the remainder to the station not seen so far. This ameliorates the bias in favor of stations with lower indices,

but it makes the negative correlation between stations whose indices are considered last higher (because they

have the lowest goodput to share). Further, it leaves open the possibility that all stations whose goodputs

are chosen initially by the random permutation do not add up to a significant value thereby making the last

station to be assigned have an arbitrarily large goodput.

C. Algorithm for sampling Ni(t)

The basic idea is to sample the goodput of a station from a “suitable” portion of its pdf depending on

how much the aggregate of all previously allocated goodputs deviates from what could be expected for that

aggregate. Algorithm Sample-Goodputs shows our approach.

The variable count keeps track of the number of stations that have been allotted goodputs, and variables

allotted and expected represent the actual and expected goodput allocated to count number of stations with

allowable tolerance upper -tolerance and lower -tolerance . All variables are initialized as shown in lines 1

through 3. Note that the goodputs of all stations Ni(t) are assigned zero initially. The algorithm generates

a random permutation π of 1..M and a sample of NA(t) from Pr( NA(t) ) in lines 4 and 5 respectively. Each

iteration of the while loop from lines 6 through 22 assigns the goodput of the station i chosen in the position

count of the random permutation. If the actual allotted goodput for the count−1 stations is higher (lower)

than expected subject to an upper -tolerance (lower -tolerance) as checked in line 8 (line 10) then a tentative

sample s is obtained from the lower (upper) tail of distribution of P (Ni|Ci) in line 9 (line 11). Let n∗ be

a goodput such that Pr(Ni ≤ n∗|Ci) = 1/2. By sampling the lower (upper) tail of Pr( Ni|Ci ), we mean

sampling from the distribution Pr( Ni|Ci, Ni ≤ n∗ ) (distribution Pr( Ni|Ci, Ni > n∗ )). If both tolerances

are not exceeded, then Ni(t) is sampled from the full distribution Pr( Ni|Ci ) in line 13. As long as the

tentative sample s taken with the goodput allotted so far does not exceed the sampled NA(t) as checked in

14, Ni(t) is set to s in line 15 or is assigned the residual goodput in line 17 and the assignment stops. In

lines 18 through 22 the variables count , allotted , expected , upper -tolerance, and lower -tolerance are updated.

The last station in the random permutation π is assigned the residual goodput, if any, in line 23.
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D. Runtime and optimization

Like mentioned before, all pdf’s are precomputed or cached after computation during the simulation run.

Because this has a one-time fixed cost, we analyze the algorithm assuming that all pdf’s are precomputed.

The random permutation can be generated in O(M) time by a Knuth shuffle [5]. Each iteration of the

while loop takes O(1) time to sample a random variable from a distribution (independent of the pdf size by

building and indexing a table of the inverse of the cdf) and update state variables. Because there are at most

M−1 iterations of the loop, the runtime of Algorithm Sample-Goodputs takes O(M) deterministic time.

Even the most efficient implementation of a packet level simulator would take O(Mδ × bit-rate) because

each packet-transmission by any station schedules events in the other M−1 stations. This is the reason why

TSS scales much better with increasing bitrates.

VII. Obtaining the new state Ci(t + δ)

We want to obtain the distribution Pr( Ci(t+δ) ) given the old state Ci(t) and the goodput Ni(t) that was

obtained after accounting for correlation. We analyze the per-station attempt process in the backoff timeline

and obtain the distribution of the time instant of the last successful packet transmission in the interval.

Given the instant of the last successful transmission, the distribution of the new state can be obtained by

Bayes theorem.

We first analyze the case Ni(t) 6= 0. Figure 9 shows the backoff timeline interval [t′, t′ +δη]. In this backoff

timeline, X∗

f is the backoff time to the first success from the beginning of the interval. Likewise, X∗

l is the

backoff time from the last success to the end of the interval. Because Ni(t) 6= 0, X∗

f and X∗

l are well defined.

Recall that we have already seen how to obtain the distribution of the backoff time to the first success X ∗

f

given Ci(t) in Section IV. Our goal is to obtain the distribution Pr(X∗

l |Ci(t), Ni(t)). Once this is done, we

can obtain the distribution of Ci(t + δ) given that X∗

l slots have been spent in backing off since the last

successful transmission. We can rewrite Pr(Ni(t) = n|Ci(t)) as follows:

Pr(Ni(t) = n|Ci(t)) =

r=ηδ
∑

r=0

Pr(X∗

f = r|Ci(t))

s=ηδ−r
∑

s=0

Pr(X1 + · · ·+ Xn−1 = s)Pr(Xn > ηδ–r–s)

By Bayes’ theorem we have:

Pr(X∗

l = s|Ni(t) = n, Ci(t)) =

r=ηδ−s
∑

r=0

Pr(X∗

f = r|Ci(t))Pr(X1 + · · ·+ Xn−1 = ηδ–r–s)Pr(Xn > s)

Pr(Ni(t) = n|Ci(t))

Suppose X∗

l = x. This means the total backoff Xn of the n + 1-th successful transmission is greater than

x. Recall the notation that Y1, · · · , YK are the the backoff counter values chosen in successive transmission

attempts of a tagged packet, if there are successive transmission attempts at all. For Ci(t + δ) = 2c−1γ

to occur after spending a backoff duration x from a reset state < Ci(t) = 0, Bi(t) = 0 >, we want c − 1
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Sample-Goodputs(N,M)

� Pr( Ni|Ci ), Pr( NA ) are global to this routine

1 count ← 1

2 allotted , expected , upper -tolerance, lower -tolerance ← 0

3 ∀i Ni(t)← 0 , M ← number of active stations

4 π ← random permutation of indices of M with 1’s

5 NA(t)← sample from Pr( NA(t) )

6 while count < M and allotted < NA(t)

7 i← π(count)

8 if allotted > expected + upper -tolerance

9 s← sample lower tail of Pr( Ni(t)|Ci(t) )

10 elseif allotted < expected - lower -tolerance

11 s← sample upper tail of Pr( Ni(t)|Ci(t) )

12 else

13 s← sample from full distribution Pr( Ni(t)|Ci(t) )

14 if allotted +s ≤ NA(t)

15 Ni(t)← s

16 else

17 Ni(t)← NA(t)− allotted

18 allotted ← allotted +Ni(t)

19 count ← count +1

20 expected ← count× NA(t)
M

21 upper -tolerance ← θ1× expected

22 lower -tolerance ← θ2× expected

23 if (count = M)

24 Nπ(M)(t)← max(NA(t)− allotted , 0)

unsuccessful transmissions, Y1+ · · ·+Yc to just exceed x, and Y1+ · · ·+Yc−1 should be less than x. Therefore,

we have

Pr(Ci(t + δ) = 2c−1γ|X∗

l = x)

= pc−1 Pr(Y1 + · · ·+ Yc−1 ≤ x ∧ Y1 + · · ·+ Yc > x)

Pr(Xn > x)

= pc−1 Pr(Y1 + · · ·+ Yc−1 ≤ x)− Pr(Y1 + · · ·+ Yc ≤ x)

Pr(Xn > x)

Unconditioning on X∗

l yields Pr( Ci(t + δ)|Ci(t), Ni(t) ).
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Fig. 9. Transmissions of a tagged station in the backoff timeline interval [t′, t′ + ηδ] corresponding to the real timeline interval

[t, t + δ]. A longer arrows indicates a successful transmission, a shorter arrow failure.

When Ni(t) = 0, as in Section IV, we approximate Bi(t) as the forward recurrence time. Using the forward

recurrence time and a similar application of Yi’s, we obtain the distribution of Ci(t + δ) conditioned on X∗

f .

Again, unconditioning on X∗

f yields the required distribution.

VIII. The Timestepped Simulator

We describe how the analysis fits together as the TSS generates a sample path. The simulator initializes

the state of all stations at t = 0 in line 2. The while loop in line 4 iterates through sim-duration in

timesteps of δ. The number of active stations M is obtained in line 5 from either the simulation in-

put or from the outputs of higher layer protocols (e.g., TCP) making the WLAN output queues non-

empty. The corresponding collision probability is computed/looked up from M in line 6. By looked up,

we mean looked up from a cache that was populated either before the simulation began or during the

simulation run itself. The precomputation phase is possible because all required probability distributions

(Pr( NA(t) ), Pr( Ni(t)|Ci(t) ), Pr( Ci(t + δ)|Ni(t), Ci(t) ) are parametrized easily by δ and M (and other

fixed protocol parameters like the initial contention window γ and the maximum number of attempts β).

Within each timestep, the following steps occur:

• NA(t) is sampled from its distribution in line 8.

• For each station i, Pr( Ni(t)|Ci(t) ) is obtained in 9.

• Algorithm Sample-goodputs is used to sample the goodput of each station i in line 11.

• For each i, the distribution of 〈Ci(t+δ), Bi(t+δ)〉 is obtained given Ci(t),Bi(t), and Ni(t) and sampled

to obtain the new state. This is done in lines 12 through 13

As seen before, Algorithm Sample-goodputs takes O(M) time. All further random sampling can be done

in O(M) time. Each iteration of the while loop in line 4 takes O(M) time assuming that all pdf’s are

precomputed. Because the precomputation of the pdf’s can be amortized over various runs of the simulation,

we do not consider the runtime for it. Thus the runtime of Algorithm TSS-WLAN is O(M. sin-duration),

which is independent of the bit-rate.
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� α : total stations

� γ : initial contention window

� δ : simulation timestep

1 t← 0

2 for i = 1 to α

3 Ci(t)← γ

4 while (t < sim-duration)

� All this is for interval [t , t + δ].

� We omit t everywhere for brevity except in line 13.

5 M ← number of active stations

6 compute/look up collision probability p for M stations

7 compute/look up Pr( NA ) using M, δ, p

8 NA ← sample from Pr( NA )

9 for each station i

10 compute/look up Pr( Ni|Ci ) using M, δ, p

11 Sample-goodputs(N,M)

12 for i = 1 to M

13 compute/look up distribution of Pr( Ci(t + δ)|Ni(t), Ci(t) ) and sample

14 t ← t + δ

IX. Results

Our main results are broadly along two directions: quantifying speedup and validating accuracy. Because

the pdf’s required for TSS are precomputed using the transient analysis, we first quantify the cost for

precomputation in (memory) space and time. Then we compare the runtime improvement offered by TSS

over PLS. Next, we validate 1) the transient analysis of 802.11; and 2) the overall TSS technique for WLANs.

For validation of the transient analysis of 802.11, we compare the conditional pdf’s, namely, Pr( Ni(t)|Ci(t) )

and Pr( Ci(t + δ)|Ni(t), Ci(t) ). For validation of TSS, we compare an “internal” (to the method) metric,

namely, Ci(t) and an “external” metric, namely, Ni(t). Specifically, we consider:

1) the pdf of Ci(t);

2) the autocorrelation function of the timeseries Ci(0), Ci(δ), · · · that captures correlations across time;

3) the crosscorrelation function between the series Ci(0), Ci(δ), · · · and Cj(0), Cj(δ), · · · that captures

correlations across stations.

The same three points of comparison are considered for the metric Ni(t) as well. Note that the average delay

in a timestep can be obtained as the inverse of Ni(t). In addition, we also consider the pdf of the aggregate

goodput NA(t). Finally, we consider ensemble metrics for simulation scenarios with time-varying M .

Our secondary results include 1) validating the accuracy of our algorithm to obtain the convolution of the

total backoff duration pdf and quantifying the speedup obtained by it; and 2) a closed form approximation

and analysis of the per-station collision probability as a function of M .
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A. Simulation setup

Because TSS models only the MAC layer, to insure a fair comparison of the time taken for a simulation,

we have implemented a simple 802.11 MAC layer packet level simulator (PLS) instead of resorting to a

full blown simulator such as ns-2 [1]. This avoids the overheads of upper layer (routing, transport) as well

as lower layer (physical) events in ns-2 which TSS for 802.11 does not model. As an illustration of ns-2

overheads, a simulation run of 1000 seconds for a scenario of two constant bit rate (CBR) flows sharing one

802.11 channel takes about 4.5 seconds in our custom simulator with logging enabled, while ns-2 takes about

70 seconds with all logging disabled.

All simulations were carried on a machine with a 3.2GHz Pentium-4 processor and 1.5Gb RAM running

Red Hat Enterprise Linux release 3. We use a fixed packet size of 1500 bytes including the MAC-layer

overhead and the 802.11a parameters: slot size of 9µs, SIFS of 16µs, data bitrate of 54Mbps, ACK bitrate

6Mbps, PHY-layer overhead of 20µs, and contention window ranging over the 7 values [16, 32, · · · , 1024]

with 7 maximum attempts. Unless otherwise mentioned, all stations always have packets to transmit in

their output queues, i.e., M(t) is constant, during the entire run of the simulation.

B. Precomputation costs in space and time

Using the transient analysis, for each tuple 〈M, Ci(t)〉, a table of tuples of the form 〈Ni(t), pdfval〉 is

obtained for Pr( Ni(t)|Ci(t) ). Likewise, for each tuple 〈M, Ci(t), Ni(t)〉, a table of tuples of the form 〈Ci(t+

δ), pdfval〉 is obtained for Pr( Ci(t + δ)|Ni(t), Ci(t)) ). Because Ci(t) ranges over the standard seven values

[16, · · · , 1024], for a fixed M , the sizes of all tables are determined by the maximum value Ni(t) can take.

For a fixed M , let nm denote the maximum value of Ni(t) for which entries of tables are computed. So the

tables for Pr( Ni(t)|Ci(t) ) have 7nm entries in all. Likewise, the tables for Pr( Ci(t + δ)|Ci(t), Ni(t) ) have

7× nm × 7 = 49nm entries in all. Each entry in the table is stored as a double of size eight bytes. So the

space required is 400nm bytes. For M = 2, nm is about 130, and this yields a space requirement of about

52000 bytes (in uncompressed form).

Figure 10(a) shows the space requirement for pdf’s for δ = 50ms with M varying in [2, 4, 8, · · · , 64].

Because nm decreases with increasing M , the space required decreases with increasing M . A similar trend

can be seen in Figure 10(b), which shows the time taken to precompute the pdf’s and store it to disk.

The space requirement is almost negligible compared to memory consumed in typical packet level simula-

tors, and the time requirement is a one-time cost shared across all runs of a simulation scenario. Nevertheless,

these costs can be reduced by interpolating the pdf’s among the parameters M and Ni (Ci is likely not a

suitable candidate for interpolation for large M).

We note that nm increases with increasing δ, so the table sizes increase with increasing δ. Even though

the memory required is low, the nature of TSS allows us to trade off space with time as follows: instead

of precomputing tables for large δ, precompute for, say, δ/2 and perform computation for two smaller sub-

timesteps of δ/2 before updating metrics for the required timestep of δ. This sort of trade-off is very difficult,
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Fig. 10. The space and time costs of precomputation of Pr( Ni(t)|Ci(t) ) and Pr( Ci(t + δ)|Ci(t), Ni(t) ) for δ = 50ms with M

varying in [2, 4, 8, · · · , 64].
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if not impossible, to achieve in PLS.

C. Runtime comparison

TSS for WLANs provides an improvement up to two orders of magnitude in the runtime over PLS.

Figure 11(a) shows the average time taken by both PLS and TSS for a 1000s simulation run with M in

[2, 4, 8, · · · , 64]. Figure 11(b) shows the ratio of the runtimes for PLS and TSS. Each point plotted in Figure

11(a) and its associated 95% confidence interval is obtained from 100 runs. For PLS, the curve is shown

scaled down by a factor of 50 to enable visual comparison with TSS. For TSS, the runtime includes the time

taken to load precomputed pdf’s from disk, and the time taken for precomputation is amortized over 100

runs. The PLS curve shows a linear increase in the runtime as expected. The TSS curve shows a dip and

then an increase. This is because the amortized time to calculate precomputed pdf’s is significant compared

to the actual simulation loading time and runtime for smaller M ; once a threshold has been crossed in M ,

the computational costs predominate. The trend in the TSS runtime curve for smaller M is similar to the

precomputation cost curves in Figures 10(b) and 10(a).

D. The instantaneous aggregate goodput distribution Pr( NA(t) )

We obtain the distribution of the instantaneous aggregate goodput for δ = 50ms through simulations

and analysis. In each run of the simulation, the system is “warmed up” for 5s from a “cold start” and

then a sample of the instantaneous aggregate goodput is obtained. We obtain the pdf of the instantaneous

aggregate goodput from the samples of 10000 such runs and the results comparing it with analytically

predicted distribution are shown in Figure 11.

We make the following observations:

• The distribution of NA(t) can be well approximated by a gaussian as predicted by the analysis.

• The means of the distributions obtained by simulation coincide almost exactly with those obtained by

analysis.

• The peaks (deviations) of the normal distributions obtained by simulations are higher (lower) than those

obtained by analysis; for M = 2 the scenario is reversed.

The last observation can be explained as follows. For the analysis, we had assumed that each throughput

renewal in the global timeline is a failure with a fixed probability independent of the past. In reality, there

are two factors that affect the variance, namely:

1 The size of an idle interval is positively correlated with the event that the preceding throughput

renewal(s) is a collision.

2 The event that a throughput renewal is a failure is negatively correlated with the event that previous

throughput renewal(s) is a failure.

Because a collision in a throughput renewal increases the contention windows of at least two stations, it

increases the range of values over which a minimum is chosen for the next attempt thereby causing factor
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1. For exactly the same reason, a collision reduces the probability of future collisions, thereby causing factor

2. Factor 1 increases the variance of the goodput renewal period over that of completely independent idle

intervals and transmission successes, whereas factor 2 decreases the variance of the goodput renewal period.

For M > 2, factor 2 dominates over factor 1, thereby explaining why simulations yield lower deviation. For

M = 2, factor 1 dominates because after any collision, there are no other stations whose backoff counters

could be in a lower range.

We illustrate these correlation factors through simulations. On some sample path, let I1, I2, . . . denote

the idle intervals in some sample path of the system, and let F1, F2, . . . be indicator random variables

such that Fi is 1 iff the the transmission preceding Ii is a failure. Figure 12 shows the cross-correlation

function between the sequences {Ii} and {Fi}. The peak at lag 1 illustrates factor 1. Figure 13 shows the

autocorrelation function of the sequence {Fi} obtained over 1000000 samples for varying M . As can be seen,

there is negative correlation over a significant lag, illustrating factor 2.

E. The distributions Pr( Ni(t)|Ci(t) ) and Pr( Ci(t + δ)|Ni(t), Ci(t) )

For each value of M , we do 100000 simulation runs with M constant throughout the simulation runs.

In each simulation run, at t = 5s and δ = 50ms, a sample of Ni(t), Ci(t), and Ci(t + δ) is obtained. From

100000 samples from 100000 such runs, a frequency distribution of Ni is obtained for each fixed Ci as an
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estimate of the conditional probability distribution Pr( Ni|Ci ). From this same set of samples, a conditional

distribution of Ci(t+δ) given Ci(t), Ni(t) is also obtained. This entire exercise is repeated for varying values

of M .

Figure 14(a) shows the PDF Pr( Ni|Ci ) for smaller contention windows for varying M . The pdf’s do not

match exactly because of our approximation in obtaining the random total backoff in an interval [t, t + δ]

by a constant ηδ. However, the accuracy improves with increasing M . For two stations, the distribution is

almost normal. While the mean matches, the deviation doesn’t quite match; this is due to the small lag

correlations as explained before. As M and contention window size increase, the goodput starts deviating

from normal significantly with an increased probability of zero instantaneous goodput. The analysis captures

this trend as can be seen in Figure 14(b). We also note that Pr(Ni(t) = 0|Ci(t) = 1024) for M = 16 is much

higher (around 0.45) than Pr(Ni(t) = 0|Ci(t) = 16) for M = 32 (around 0.075) illustrating the short-term

unfairness; even though the number of active stations is doubled (i.e. M = 32), the probability of zero

goodput is much lower (than for M = 16) because of a favorable contention window (in this case 16).

Figures 15(a) and 15(b) shows the distribution of Ci(t+ δ)|Ni(t), Ci(t) for varying values of M, Ni(t), and

Ci(t). Figure 15(a) covers low values of Ci(t) while Figure 15(b) shows the same distribution for relatively

higher values. The accuracy is quite good for both Ni(t) = 0 as well as Ni(t) 6= 0, thereby validating both

cases of the analysis in Section VII.

F. The distributions Pr( Ni(t) ) and Pr( Ci(t) )

We now compare the unconditional distributions of Ni(t) and Ci(t). As can be seen from Figures 16(b)

and 16(a), the distribution of Ni(t) as obtained from TSS is very close to that obtained from PLS except

for a large M (e.g., 64) where it overestimates the time with zero goodput (and underestimates the others).

This is because TSS overestimates the probability of Ci(t) being high for large M ; the reason for this is

explained in the next paragraph.

Next, we compare the distribution of Ci(t) obtained by both TSS and PLS in Figures 17(a) and 17(b).

Note that this distribution so obtained is an approximation of the frequency distribution of the time spent

by the tagged station in each possible value of the contention window. When M is low, TSS tracks the trend

quite accurately. However, when M is very high (e.g., 64) TSS overestimates the time spent in high backoff

states (e.g., Ci = 1024), which are more likely with more stations. This is because we track only Ci(t) and

approximate Bi(t) by the forward recurrence time. Suppose Ci(t) = 1024 and that Ni(t) was probabilistically

chosen to be zero in some timestep [t, t+δ] according to the algorithm. With high probability Ci(t+δ) = Ci(t),

i.e., there were no transmissions and the state is unchanged. Now note that Pr( Ni(t + δ)|Ci(t + δ) ) is the

same as Pr( Ni(t)|Ci(t) ), i.e., there is no credit for the backoff duration of the timestep [t, t+ δ]. This would

have been modeled if Bi(t) was also tracked and used in obtaining Pr( Ni(t)|Ci(t), Bi(t) ) instead of just

being approximated as Pr( Ni(t)|Ci(t) ). Thus TSS overestimates the frequency of Ci(t) being high for high

M , and therefore it also overestimates the frequency of a station obtaining zero goodput as observed in the
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previous paragraph.

G. Comparing sample paths

We now compare sample paths generated by TSS and PLS for statistical similarity. To do this, we obtain

one single sample path of the system for a run of 10000 seconds both by TSS and PLS for a fixed M . Like

before, all comparisons are repeated for varying values of M .

In a fixed sample path, we compare how TSS handles the correlations both across time for a tagged

station as well across stations at a given timestep. To do this, we obtain the autocorrelation function for

the per-station goodput time-series, i.e., Ni(0), Ni(δ), .... Figures 18(a) and 18(b) show the autocorrelation

function obtained from TSS and PLS. TSS tracks the correlation in Ni across time for a tagged station

well for small M . For higher M , while the exact values do not match as well, TSS captures the trend in

the autocorrelation function. The reason for this mismatch can be seen in Figures 19(a) and 19(b), which

compare the autocorrelation function of the timeseries Ci(0), Ci(δ), · · · for a tagged station i. For high M

(e.g., 64), TSS does not track the negative correlation between successive samples of Ci in a sample path

at higher lags (e.g., 2 through 6). This is because, as mentioned before, the remaining backoff time Bi(t) is

being approximated depending on Ci(t).

Next, we consider the crosscorrelation function computed between the goodput samples of two tagged

stations i and j, i.e., between the timeseries Ni(0), Ni(δ), Ni(2δ), · · · and Nj(0), Nj(δ), Nj(2δ), · · · . As can

be seen in Figures 20(a) and 20(b), the method to ensure negative correlation between goodputs works

well for varying M including larger values. Finally, we consider the crosscorrelation between the timeseries

Ci(0), Ci(δ), · · · and Cj(0), Cj(δ), · · · for the contention windows of two tagged stations i and j in Figures

21(b) and 21(a). The curves match except for the case M = 2 when the Ci and Cj are positively correlated

(because the two stations can collide only with each other) which TSS doesn’t track.

H. Time-varying M and ensemble metrics

We now consider an example where M varies over time. We allow the number of active stations to vary

during a simulation run and compare the ensemble metrics predicted by TSS and PLS. Each run of this

simulation lasts for 100s and the M is initially 32. M is halved at 25s,50s,and 100s eventually leading to

two active stations. The time evolution of the ensemble mean and deviation of Ni(t) of a tagged station i

is obtained as an average over 1000 such runs. The evolution of E[Ni(t)] is shown in Figure 22(a) and the

evolution of Dev[Ni(t)] is shown in Figure 22(b). TSS captures the ensemble mean accurately for all M ,

while it does not capture the ensemble deviation accurately for M = 2 (the time interval from 75s through

100s). A zoomed-in version of curves around the transition point at 50s is shown; TSS shows the same trend

as PLS in the very next timestep.
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Fig. 18. Autocorrelation function obtained from samples Ni(0), Ni(δ), Ni(2δ), · · · of one sample path for various values of M .
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Fig. 19. Autocorrelation function obtained from samples Ci(0), Ci(δ), Ci(2δ), · · · of one sample path for various values of M .
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Fig. 20. Crosscorrelation function obtained from samples Ni(0), Ni(δ), Ni(2δ), · · · and Nj(0), Nj(δ), Nj(2δ), · · · of one sample

path for varying values of M .
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Fig. 22. Time evolution of the ensemble mean and deviation of Ni(t) for a tagged station i with time-varying M . After every

25s, M is halved.
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Fig. 23. p(M) as obtained from simulations and an analytical fit of 0.1519 loge(M)+0.0159 for various values of M and β = 7.

The 95% confidence interval of each simulation point is within 2% of the mean.

I. Per-station collision probability

References [2], [3], [6], [9] all provide a formula for computing the per-station collision probability as an

implicit function of M . While one can use a fixed point iteration to obtain the per-station collision probability

from the implicit function of M , we are interested in a simple closed-form expression. We obtained the per-

station collision probability as a function of M for varying M by PLS and used MATLAB to fit the curve

0.1519 log(M) + 0.0159. Figure 23 shows the curves obtained by both simulation and the logarithmic fit for

M = 1..100. In one run of the simulation, all M stations were active throughout an interval of length 100s

and a tagged station’s collision rate was obtained as a sample of the per-station collision probability for that

run. Each point on the simulation curve is an average of 100 such runs. The 95% confidence interval of each

simulation point is within 2% of the mean. Figure 24 compares the fit of min(0.1519 log(M)+0.0159, 1) with

simulations for M = {100, 200, . . . , 1000}. The two curves diverge above 400 stations around p = 0.93, the

simulation based curve goes to one slower than the analytical fit.

We consider the question “Why does a logarithmic fit work?” in the appendix. Briefly, reference [2] obtains

a closed form expression for the per-station collision probability when β → ∞ using the Lambert function

W (W(c) = x s.t. xex = c). We extend this work and present an approximate analysis for the per-station

collision probability with finite β. The logarithmic fit works because it fits the expression involving the

Lambert function that occurs in the function p(M).

J. Convolution Algorithm

To estimate the order of speedup achieved by the convolution algorithm, we obtained 100 samples of

the time taken to compute a 20-fold convolution for a per-station collision probability of 0.4. MATLAB’s
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Fig. 24. p(M) as obtained from simulations and an analytical fit of min(0.1519 loge(M)+0.0159, 1) for M = {100, 200, . . . , 1000}

and β = 7. The two curves diverge after M = 400 stations at a per-station collision probability greater than 0.935.

FFT-based convolution (with the script launched from the command line to avoid any overheads due to

MATLAB’s GUI) takes a mean time of 2.4s (deviation 8ms) to compute a 20-fold convolution without any

logging to file, while our approach takes a mean duration of 1.19s (deviation 7ms). With file logging enabled,

our approach takes a mean time of 0.12s (deviation 2ms) for a 2-fold convolution while MATLAB takes 6.48s

(deviation 12ms).

Figure 25(a) compares the approximated distribution of the fn
X with the pdf obtained by straightforward

convolution in MATLAB for n = {2, 4, 8, 16}. The probability of collision is 0.4. Note how the tail of

the distribution is faithfully reproduced by the analytical approximation. In a realistic probability regime

(p < 0.5), there are few modes in the convolution’s pdf and thus the approximation works extremely well.

Even for a very high per-station collision probability regime, the method works well as can be seen in Figure

25(b) which consider the same convolutions for p = 0.8. In this regime, the errors tend to accumulate as

the number of convolutions increases because the distributions tend to become multimodal and eventually

smoothen out for higher convolutions. For instance, in Figure 26, the analytical approximation predicts a

mode around 50 when there is none in reality. However, the total probability mass in [0, 100] is less than

0.0005, which is ignorable for our purposes. Overall, the method is highly accurate for realistic regimes and

handles higher collision regimes with sufficient accuracy.

X. Related Work

Several analytical models [3], [6], [9], [21], [19] have been proposed for the evaluation of 802.11 performance.

The general approach has been to observe a tagged station between two successful transmissions and estimate

the average time taken for the same, thereby obtaining the average steady state goodput. Further, all models
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that obtained by MATLAB for various n.
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assume that the conditional collision probability, i.e., the probability that a packet encounters a collision

given it is transmitted, is constant.

Reference [6] approximates the 802.11 protocol by a persistent CSMA/CA protocol. Every station trans-

mits with probability 1/(E[B] + 1) in every idle (802.11) slot independent of other stations and its own

previous attempts; E[B] is the expected backoff duration for a successful packet transmission. A fixed point

iteration is used to compute E[B] and the collision probability of this new process, and the authors show

that this model approximates 802.11 well using simulations.

Reference [3] considers the stochastic process with state given by the contention window and remaining

backoff for a tagged station. This is a discrete time Markov chain under the constant collision probability

assumption and is solved to obtain steady state metrics.

Reference [9] provides a “fluid” approximation to 802.11. A “fluid chunk” in their model is the interval

between two successful packet transmissions, like in all prior models. The authors estimate the length of the

fluid chunk by assuming that the time between transmission attempts is exponentially distributed. Again,

the average contention window is obtained iteratively, and the goodput is obtained by obtaining the average

length of a “fluid chunk”.

Reference [19] obtains the distribution of the inter-arrival time between two frames of a tagged station in an

802.11 system. It approximates the backoff process as a renewal process and uses the remaining time theorem
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from renewal theory to obtain the distribution. The main result is that the inter-arrival time distribution is

typically multimodal. An equation from [21] is used to relate the probability of collision to the number of

stations.

Reference [21] provides the original approximation for the collision probability. It assumes that there are

sufficient number of stations so that any two arbitrary stations’ transmissions are independent to estimate

the collision probability, and therefore, the successful transmission rate.

As mentioned before, existing methods focus on steady-state approximations and yield the average long-

term goodput. It is not clear how these methods can yield sample-path evolutions of the system state that

approximate packet-level simulation well.

There has been much work on timestepped simulation of point-to-point networks (reference [12] provides

a list). For WLANs, reference [10] develops a fluid timestepped deterministic simulator in which the average

aggregate goodput is the input to the fluid model, and obtains long-run metrics. It is not clear if this model

can capture the short-term effects of DCF on TCP workloads.

XI. Future work

Future work includes modeling state-dependent transport layer (like TCP) and a lower layer (a more

realistic wireless PHY). For a state-dependent traffic source like TCP, the method needs to provide the

metrics of the WLAN link in each timestep. We have obtained a method for predicting the goodput of the

link in each timestep. The contribution of the link to the RTT seen by a TCP source is given by the inverse

of the goodput. Because the link layer performs retransmissions, the drop-rate would be determined by p(t)β ,

which is usually negligible. A TCP source would perceive a crowded 802.11 link as having large and variable

RTT and occasional losses. A key issue to be handled while modeling a TCP source over 802.11 would be to

handle ACKs and hence multiple-sized packets. Because data and ACKs of a TCP connection running over

802.11 share the same media, the model should handle packets of varying size. This would require replacing

the transmission interval τ by the mean of the packet size distribution.

The PHY layer has been modeled implicitly in this technique. Specifically, we assumed that all stations

sense each other and all collisions are lost. This sharing of the medium is reflected in the goodputs of flows

being correlated. Modeling a general PHY for TSS with several interacting WLANs is challenging for the

following reasons:

• Goodputs of two wireless flows are correlated if the transmitter and receiver of one flow influence or

are influenced by those of the other. (For instance, goodputs of all stations in a WLAN cell associated

with the same AP would be correlated.)

• In order to model PHY induced imbalances, different stations would obtain their goodput distributions

in each timestep with different probabilities of collision. That is, the collision probability is generalized

to be the loss probability which includes non-collision channel-condition induced losses.
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XII. Conclusions

We presented a transient analysis of 802.11 and used it to perform TSS for WLANs. The transient analysis

of 802.11 looks at a tagged station within a timestep and obtains conditional pdf of Ni(t) conditioned on the

MAC state Ci(t) and that of new MAC state Ci(t + δ) conditioned on Ci(t) and Ni(t). The TSS technique

uses this transient analysis to obtain the instantaneous goodputs of all stations such that they 1) add up

to the instantaneous aggregate goodput and 2) have the required correlation structure. In sum, the method

obtains the sample path evolutions of the contention windows and instantaneous goodputs of all stations with

time. We validate the transient analysis and TSS technique against PLS. TSS scales well with increasing

number of stations and is agnostic to bit-rate. Proposed work includes integration of the technique with

traffic sources with state dependent control (e.g. TCP) and modeling the PHY layer (with arbitrary location

of stations).

Appendix

Recall that λ is the attempt probability (rate), i.e., probability a tagged station starts transmission in an

802.11 slot and p is the probability that a tagged station’s transmission encounters a collision. By definition,

λ(p) = E[K]/E[X ], where K is the number of attempts to transmit a packet successfully with maximum

number of attempts β or abort, and X is the total backoff duration. It is easy to see that E[K] = 1 + p +

. . . + pβ−1 and E[X ] =

i=β
∑

i=1

pi−1

(

γ2i−1 − 1
)

2
.

Consider the following two equations:

λ(p) = E[K]/E[X ] (1)

p(λ) = 1− (1− λ)M−1 (2)

For each M , equations (1) and (2) can be solved for λ(M) and p(M) by a fixed point iteration as in all prior

work.

Reference [2] analyses this system under the assumptions β → ∞ and E[X ] = γ−1
2

i=β
∑

i=1

(2p)i−1. When

β →∞, λ(p) → 2
γ−1

(

1−2p
1−p

)

and a closed form expression can be obtained for the solution p(M) involving

the Lambert function (i.e., inverse function for xex).

We consider the case where β is finite (in this case, β = 7). The solution p(M), obtained from simulations,

looks as in Figure 23. Specifically, the solution p(M) looks like 0.1519 loge(M) + 0.0159 as fit by MATLAB.

Our goal is to show some analytical justification for p(M)’s log-like behavior.

We start by approximating λ(p) as 2(1 − p)2/(γ − 1) for β = 7 by matching the actual λ(p) and the

approximation at p = 0. Figure 27 shows the accuracy of this approximation. Clearly, the accuracy can be

made better by fitting higher order polynomials, but we stick to a second-order approximation for sake of a

simple analytical expression.
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We have

p = 1− (1− λ)M−1

≈ 1− e−λ(M−1)

= 1− e−
2(1−p)2

γ−1 (M−1)

Strictly speaking, the exponential approximation requires that Mλ go to a constant as M → ∞, i.e., the

system operates in a regime where BEB keeps the attempt probability λ to scale as 1/M with increasing

M . If β →∞ this condition is satisfied, but for finite β, as M →∞, p→ 1 and λ→ λ∗ > 0. However, even

with this approximation we are able to obtain intuition on how p(M) behaves with increasing M for finite

β.

Rearranging terms we have (1 − p)e2(1−p)2(M−1)/γ−1 = 1. Let W denote the Lambert function, i.e.,

x = W(c) is the solution of the equation xex = c. We want to solve an equation of the form xaebx = 1.

Straightforward algebraic manipulations yield the solution as x = a
bW( b

a ). In our context, x = (1 − p)2,

a = 1/2, and b = 2(M − 1)/γ − 1). Thus (1− p)2 = γ−1
4(M−1)W

(

4(M−1)
γ−1

)

In sum,

p = 1−

√

γ − 1

4(M − 1)
W

(

4(M − 1)

γ − 1

)

(3)

This expression for p(M) function can be approximated by a log(M) + b. We confirm this by plotting

p(M) as predicted by this analysis and computed using MATLAB, p(M) as computed by the logarithmic
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Fig. 28. Confirming the prediction of the model with simulation studies

approximation, and p(M) as obtained by simulations in Figure 28. The model works best when p < 0.6

approximately. A more refined model that works better for higher p can be obtained by considering a fit

for λ(p) of the form λ + λ2/2 = a(1− p)2 and 1− p = e−(M−1)(λ+λ2/2). This gives a similar Lambert based

solution.
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