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An Optimization Algorithm for Separating
Land Surface Temperature and Emissivity from
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Abstract—Land surface temperature (LST) and emissivity are
important components of land surface modeling and applications.
The only practical means of obtaining LST at spatial and temporal
resolutions appropriate for most modeling applications is through
remote sensing. While the popular split-window method has
been widely used to estimate LST, it requires known emissivity
values. Multispectral thermal infrared imagery provides us with
an excellent opportunity to estimate both LST and emissivity
simultaneously, but the difficulty is that a single multispectral
thermal measurement with bands presents equations in
+ 1 unknowns ( spectral emissivities and LST). In this study,

we developed a general algorithm that can separate land surface
emissivity and LST from any multispectral thermal imagery, such
as moderate-resolution imaging spectroradiometer (MODIS) and
advanced spaceborne thermal emission and reflection radiometer
(ASTER). The central idea was to establish empirical constraints,
and regularization methods were used to estimate both emissivity
and LST through an optimization algorithm. It allows us to
incorporate any prior knowledge in a formal way. The numerical
experiments showed that this algorithm is very effective (more
than 43.4% inversion results differed from the actual LST within
0.5 , 70.2% within 1 and 84% within 1.5 ), although improve-
ments are still needed.

Index Terms—Emissivity, land surface temperature, remote
sensing, thermal infrared.

I. INTRODUCTION

L AND surface temperature (LST) is required for a variety
of climatic, hydrologic, ecological, and biogeochemical

studies [1]. Emissivities are strongly indicative of composition,
especially for the silicate minerals that make up much of the
land surface. They are also important for bedrock mapping
and resource exploration [2]. Both are needed in the accurate
calculation of outgoing longwave radiation emitted from the
Earth’s surface [3]. There have been many algorithms proposed
and implemented for the retrieval of LST from remote observa-
tions. In particular, much research has focused on methods that
use two thermal channels of the advanced very high resolution
radiometer (AVHRR) sensor [4]–[6]. One common algorithm
is the so-called split-window method, which has been used
successfully for sea surface temperature retrievals [7], [8].
However, temperature derivation over land is more difficult
than over the ocean because of the high spatial and temporal
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variability of surface emissivity and atmospheric water vapor,
both of which significantly affect the thermal radiance reaching
the sensor (hence the recovered temperatures).

The central part of most split-window algorithms is based
on the assumption that LST is linearly related to the bright-
ness temperatures of two thermal channels. With the assump-
tion that surface emissivities of these two channels are known,
the split-window method can eliminate atmospheric effects for
LST estimation. More studies have revealed that when the at-
mosphere is not particularly dry, the traditional split-window
algorithm cannot remove the atmospheric effects completely.
Many efforts (e.g., [9], [10]) therefore have been made to incor-
porate the column water vapor content of the atmosphere into
the split-window formulae.

Estimating land surface emissivity at the global scale for
being used in the split-window algorithms is very challenging.
Several methods have been reported in the literature. One
approach is to link emissivity with normalized difference
vegetation index (NDVI) [11], [12]. Another approach is to
associate it with land cover information [13] in which each
cover type is assigned one emissivity value. Obviously, these
two approaches cannot completely capture the tremendous
amount of variability of surface emissivity, particularly over
nonvegetated regions. An inaccuracy of only 0.01 in emissivity
causes errors in LST exceeding those due to atmospheric
correction [5]: “In fact the error due to an error in the emissivity
correction is two times larger than that due to an error in the
atmospheric correction … Certainly this is an area of research
that requires much more study”[14].

A very practical way for accurately estimating spectral emis-
sivity is from thermal infrared imagery itself, which certainly
requires multiple thermal channels. Fortunately, several space-
borne sensors will have multiple thermal infrared bands that en-
able us to estimate LST and emissivity simultaneously, such as
MODIS and ASTER. The MODIS [15] has multiple thermal
bands in the 3.5–4.2m and the 8–13.5 m ranges, and the
ASTER [16] has five thermal bands in the 8–12m range (see
Table I).

The split-window algorithms combine atmospheric correc-
tion and the LST estimation into one process. However, it is
necessary to correct the atmospheric effects before separating
temperature and emissivity from multiple thermal infrared im-
agery. The ASTER science team has proposed to correct the at-
mospheric effects using the atmospheric profiles produced by
the MODIS sounders [17]. The MODIS science team proposed
a day/night algorithm [1] that adjusts the MODIS atmospheric
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TABLE I

profiles for each pixel with the surface air temperature and a
scaling factor of the total water vapor amount as two unknown
variables by solving a 14-equation set.

Assuming that the atmospheric impacts can be effectively
removed, we can therefore focus on estimating both LST and
emissivity from multispectral thermal infrared imagery in this
study. Both MODIS and ASTER teams have developed new
algorithms for separating LST and emissivity from multiple
thermal bands [1], [2], which are quite different in nature.

Effects of LST and emissivity on thermal radiance are so
closely coupled that their separation from thermal radiance mea-
surements alone is quite difficult. This is because a single mul-
tispectral thermal measurement withbands presents equa-
tions in 1 unknowns ( spectral emissivities and LST). It
is a typical ill-posed inversion problem. Without any prior in-
formation, it is impossible for us to recover both LST and emis-
sivity exactly. Most LST-emissivity separation studies used one
additional empirical equation so that measurements plus this
additional equation can be solved for 1 unknowns. For ex-
ample, the Alpha-derived emissivity (ADE) method [18], [19]
makes use of the relation between the weighted logarithm values
of spectral emissivity and the variance of spectral emissivities.
The reference channel method [20] assumes that the value of the
emissivity for one of the image channels is constant and known
a priori, reducing the number of unknowns to the number of
equations.

The comparisons among different LST/emissivity separation
algorithms have been well discussed by Gillespieet al.[2], [21]
and Li et al. [22]. Based on previous algorithms, the ASTER
team developed a new empirical equation, which was derived
by using 86 samples. When more samples were available, the
coefficients of this equation varied [2]. Based on nearly 1000
samples from different sources, we found that none of the em-
pirical relationships in the previous studies hold. Fig. 1 shows
the relationship between the minimum emissivity and the range
of emissivities. There is a tremendous amount of variability in
this figure, which may result in a possible failure of such an em-
pirical equation. This demonstrates a need for developing new
algorithms. In this study, we developed a new empirical equa-
tion. Moreover, our algorithm utilizes an optimal inversion algo-
rithm that has solid foundations in computational mathematics
and different regularization techniques for stabilizing the final
solutions. In this context, we can easily incorporate any possible
prior information and knowledge into this iterative procedure.

II. NEW APPROACH

The central idea of the proposed algorithm is very similar to
the previous algorithms in the sense that we created a new equa-

tion so that 1 equations are used to solve 1 unknown
variables. However, since any added equations are based on em-
pirical formulae, the solutions are likely to be unstable. It is a
typical ill-posed inversion problem. According to Moritz [23],
the inversion problem is calledproperly posedif the solution
satisfies the following requirements: 1) the solution must exist
(existence); 2) the solution must be uniquely determined by the
data (uniqueness); and 3) the solution must depend continuously
on the data (stability). If one or more these requirements are vi-
olated, then we have animproperly posed, or ill-posedproblem.
In our present case, it is an ill-posed problem sinceobserva-
tions cannot determine 1 unknowns uniquely. Additional
information is needed to turn it to aproperly posedproblem.
One way of providing this additional information is the use of
appropriate constraints. This process is known asregularization
of the ill-posed problem. Different regularization methods [24],
[25] were explored to stabilize the solutions in this study.

Nearly 1000 surface emissivity spectra of different cover
types provided by Dr. Salisbury and from the JPL spectral
library were integrated to the ASTER and MODIS bands using
their sensor spectral response functions. We developed a new
empirical relation to predict the minimum emissivity for the
MODIS and ASTER, respectively. This inversion algorithm
is quite general and suitable for any multispectral thermal
infrared remote sensing. We simply take MODIS and ASTER
as examples while discussing this new inversion algorithm
below, but this method has general applicability.

A. MODIS

The MODIS sensor has a total of 36 bands and more than a
dozen thermal bands. The MODIS science team has proposed
to make use of seven bands for LST and emissivity estimation
[1]. Based on our MODTRAN simulations, we found that band
33 has very low atmospheric transmittance (lower than 0.35 in
many cases) under different atmospheric conditions. We there-
fore consider only six bands in this study. Their spectral wave-
lengths are shown in Table I. The spatial resolution of MODIS
thermal bands is 1 km, and the scanning angle is as large as 55.
It is carried by Terra (EOS-AM platform) and acquires data at
10:30am local time and will be also carried by the EOS-PM plat-
form acquiring data at 2:30pm local time.

The general empirical equation for the MODIS implementa-
tion of our method is given by

(1)

where and are the median and range of absolute
emissivities of 6 bands. The fitted results were very good, with
the R-squared value of 0.999 and the residual standard error
(RSE) of 0.0073. If the emissivity spectra is quite smooth, the
uncertainty associated with (1) does not affect the inversion re-
sults significantly. However, it has been realized from the ex-
ploratory experiments that the separation of emissivity and LST
is highly sensitive to this additional empirical relation. Based on
the observations in Fig. 1(a), we established specific empirical
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(a)

(b)

Fig. 1. Relations between the minimum emissivity and the range of the emissivity values for both (a) MODIS and (b) ASTER. A few outliers in the lower left
corner were excluded.

equations for several ranges of the maximum emissivity that had
significantly improved the results. If

(2)
If 0.85 0.9

(3)

If

(4)
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Fig. 2. Fitted minimum emissivity again the actual MODIS minimum emissivity values using (2)–(6).

If

(5)

If

(6)

The fitting results were much better (Fig. 2), and the RSE de-
creases to 0.0047.

Any other prior knowledge might help to determine the solu-
tions more accurately. After examining these spectral emissivity
spectra, we found many additional relations that can be used to
constrain the LST and emissivity separation. These relations can
be derived from these constraints, as illustrated in Fig. 3.

B. ASTER

The ASTER sensor has five thermal bands (see Table I) with
the spatial resolution of 90 m, and the scanning angle is less than
8.5 . It is also carried by Terra.

The general empirical equation we developed for the ASTER
estimates is given by

(7)

The fitting result was similar to the MODIS analysis, with an
R-squared value of 0.998 and RSE of 0.0075. Likewise, a further
improvement in temperature and emissivity estimates was made
by fitting similar equations for several ranges of the maximum
emissivity. If 0.85

(8)

If 0.85 0.9

(9)

If 0.9 0.95

(10)

If 0.95 0.975

(11)
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Fig. 3. Illustration of the conditional constraints used for retrieving MODIS surface emissivities. The envelopes banded by two dashed lines indicate the variation
ranges of these MODIS band emissivities.

If 0.975 1

(12)

The results were significantly better (Fig. 4). Similar to the
MODIS analysis, we also found many additional constraints
based on the range of data values used in the estimations. Some
of these constraints are illustrated in Fig. 5.

C. Inversion Procedure

To estimate 1 unknowns from 1 nonlinear equations,
a multidimensional optimization algorithm is needed. For global
applications, computational speed is a major concern. On the
other hand, the added empirical equation does not fit the data
perfectly. If we treat it as a perfect equation, the uncertainty
is introduced into the inversion process. Instead, we developed
a constrained one-dimensional (1-D) inversion procedure. The
1-D optimum inversion algorithm for estimating LST is to min-
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Fig. 4. Fitted minimum emissivity again the actual ASTER minimum emissivity values using (8)–(12).

imize the merit function that consists of a sum of squares (SS)
term and a penalty function

(13)

The SS term is expressed by the smoothness of the retrieved
emissivity curve. Different regularization techniques produce
different measures of the smoothness [25], [24]. Four regular-
ization techniques were explored in this study

power

variance

first-order difference

second-order difference

(14)
where is the emissivity value at band, is the mean value
of the spectral emissivity curve. This first measure corresponds
to the power of the emissivity signal. The second technique is
closely related to the first one, which eventually is the variance
of the spectral emissivity curve. The third and forth technique
is based on the first-order and second-order differences of the
emissivity curve.

The penalty function is designed to force all
estimated parameters in reasonable ranges. If the value of a vari-
able is beyond its range, a huge penalty is posed (with the huge
weight 10 ). This huge weight was recommended by Siddall
[26]. In our previous studies [27]–[30], we found Siddall algo-
rithm is very effective. In particularly, we can easily incorpo-
rate the new empirical equation and other constraints into the
penalty term. Rather than requiring a perfect additional equa-
tion, we just force all points to be within the envelope around the
regression line that defines the empirical equation. For MODIS,
if (1) is used the envelope is defined by0.035 17

0.044 55. If (2)–(6) are used, the envelope is defined by
- 0.024 88 0.018 72. Similarly, for the ASTER,
if (7) is used, for example, - 0.040 46 0.029 82.
If (8)–(12) are used, - 0.039 26 0.028 27. From
these envelopes, we can see that the fitting formulae (2)–(6) and
(8)–(12) can produce better results.

Estimation of LST and emissivity values from (13) is an typ-
ical nonlinear optimization problem that determines the solu-
tions iteratively. The iterative process works as follows. Given
an initial LST ( ), band emissivities are derived based on

(15)

where and are the surface-leaving radiance and down-
ward sky radiance from the atmospheric correction procedure,
and is the blackbody radiance that can be calculated by
integrating radiance using the Planck formula with the
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Fig. 5. Illustration of the conditional constraints used for retrieving ASTER surface emissivities. The envelopes banded by two dashed lines indicate the variation
ranges of these ASTER band emissivities.

sensor band spectral response functions. The Planck formula for
radiance with the unit WATTS CM STER m is given
by

(16)

where is the wavenumber (10 000/, is the wavelength in
m). Note that this algorithm is based on the assumption that

observed radiance has been corrected atmospherically. There is
therefore no path radiance and transmittance in (15). After de-
termining , and , is predicted based on (1)
or (2)–(6) for the MODIS, and (7) or (8)–(12) for the ASTER.
The merit function (13) is then calculated. For the next itera-
tion, the iteration length and iteration direction must be found
optimally. The iteration continues until the convergence reaches
(i.e., smaller than a threshold).

There are at least four major differences between the present
new algorithm and the published algorithms in the literature: 1)
the empirical equations are dramatically different; 2) regulariza-
tion methods are applied; 3) more prior information have been
defined and naturally incorporated into the new algorithm in a
formal manner; and 4) the new algorithm uses an optimal in-

version algorithm that has solid foundations in computational
mathematics.

III. N UMERICAL EXPERIMENTS

To evaluate the performance of this new approach, we con-
ducted a series of numerical inversion experiments. The numer-
ical experiments serve as the first step for testing any new algo-
rithms. Field experiments ultimately should validate the new ap-
proaches, but many conditions (e.g.,and ) cannot be easily
measured in the field. As a result, it is not easy to determine the
model accuracy using measured data from the field.

We arbitrarily selected 10% of the profiles (590 in total)
from our atmospheric profile database, which is composed of
profiles from the NAVY profile model, and the measured real
profiles from the Large Scale Biosphere-Atmosphere Exper-
iment in Amazonia (LBA), Boreal Ecosystems Atmosphere
Study (BOREAS), and First ISLSCP Field Experiment (FIFE).
LST was then assumed to be equal to the air temperature at
the surface level, which varies from 268to 307.2 . A total of
937 emissivity spectra of soil, rocks, minerals and vegetation
and these atmospheric profiles were input to MODTRAN to
simulate downward sky fluxes and surface leaving radiance. A
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Fig. 6. Histogram of the actual and retrieved LST difference from the simulated MODIS data.

total of 55 283 observations for both MODIS and ASTER were
generated by integrating the MODTRAN outputs with these
sensor spectral response functions.

We compared the performance of these four regularization
techniques (14) that were discussed in the previous section.
In most cases, the variance measure and the first order differ-
ence measure performed the best, and other two techniques
performed less well. In the following, all reported results only
came from the variance regularization technique using the
simulated MODIS data.

The objective of this numerical experiment was to determine
if this new inversion algorithm can accurately retrieve the range
of surface emissivities and temperature values. The results indi-
cated that we could not inverse both LST and emissivities per-
fectly. The histogram of the difference between the retrieved
LST and actual LST is shown in Fig. 6. However, more than
43.4% inversion results differed from the actual LST within
0.5 , 70.2% within 1 and 84% within 1.5. The regression be-
tween the actual LST () and the retrieved LST () was a little
biased:

(17)

The R-squared value was 0.98, and the residual standard error
was 1.1.

The retrieved emissivities of individual bands are displayed in
Fig. 7. The residual standard errors ranged from 0.019 at bands
31 and 32 to 0.038 at band 20, the R-squared values varied from

0.912 at band 32 to 0.967 at band 22. Since LST was not per-
fectly retrieved, the retrieved emissivities also could not match
the actual emissivities perfectly.

The errors may come from different sources. The majority of
the error is attributed to the empirical equation, which is only a
best fit for a given emissivity range. Four cases are presented in
Fig. 8 to illustrate this point. The solid lines stand for the actual
emissivity curves. In case 1, two sets of solutions were found,
and the retrieved LST was about 15from the actual LST. Case
3 was similar, although the LST difference was much smaller.
In cases 2 and 4, three sets of solutions were found and they all
satisfied the empirical relations.

If we examined these cases carefully, we found that the re-
trieved emissivity curves look very similar to the actual ones,
although their magnitudes might be quite different. More im-
portantly, all emissivity curves increase with wavelength similar
to the blackbody emitted radiance, which explains why shifting
emissivity curse can still make all 1 equations valid.

It is found that one method can reduce the uncertainties to
some extent. One can run the inversion code fortimes where

is the number of thermal bands. The median value of the re-
trieved multiple solution is defined as the final solution. The
initial values are determined in this way. Assuming unity emis-
sivity, the initial value is solved from the Planck equation using
the central wavelength of that band, which is calculated as

where is the sensor spec-
tral response function. Obviously, there are increased computa-
tional expenses.
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Fig. 7. Retrieved MODIS band emissivities and their actual surface emissivities.

When the same inversion code was run over the simulated
ASTER data, the results were very similar. No details are re-
ported here.

IV. SUMMARY

In this study, we developed a general method for retrieving
both LST and emissivity simultaneously from any multispec-
tral thermal infrared imagery. An empirical equation based on
the measured emissivity spectra was established. Four different
regularization techniques were explored and an optimization al-
gorithm was used to determine the solutions. One of the features
of this method is its ability to incorporate any prior knowledge
about the spectral emissivities and LST into the inversion algo-
rithm.

Numerical experiments were conducted to test this inver-
sion algorithm. Near 1000 emissivity spectra were integrated
into MODIS and ASTER thermal bands in conjunction with
the spectral response functions of these sensors. Different
atmospheric conditions using a range of LSTs were used to
simulate the MODIS and ASTER surface leaving radiance and
sky radiance. The optimization code was used to estimate LST
and spectral emissivities simultaneously. The results showed

that both LST and spectral emissivity can be estimated with a
reasonably good accuracy (more than 70.2% inversion results
differed from the actual LST within 1). Two regularization
techniques (variance and first-order difference) worked very
well, while other two regularization techniques (power and
second order difference) worked less well in our experiments.

From these numerical experiments, we found that if the emis-
sivity values of all bands were very low, the solution was very
likely to be unstable. In a few cases, the maximum LST differ-
ence could be more than 10. Further algorithm developments
are needed to address this issue.

This method works for surface-leaving radiance, an output
from the atmospheric correction procedure. The accuracy of at-
mospheric correction of multispectral thermal infrared imagery
will eventually affect the separation of LST and emissivity. The
discussion of atmospheric correction is beyond this paper, but
it is a critical issue that we need to pay more attention to in the
future.

To validate this algorithm using ground measurements, we
are also making efforts to apply this algorithm to the airborne
multispectral thermal data from the MODIS airborne simulator
(MAS) and the airborne thermal infrared multispectral scanner
(TIMS) sensors. The results will be reported later.
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Fig. 8. Illustration of four cases that produce more than seven solutions with six MODIS observations and one additional equation.
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