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An Optimization Algorithm for Separating
Land Surface Temperature and Emissivity from
Multispectral Thermal Infrared Imagery

Shunlin Liang Member, IEEE

Abstract—tand surface temperature (LST) and emissivity are variability of surface emissivity and atmospheric water vapor,
important components of land surface modeling and applications. poth of which significantly affect the thermal radiance reaching
The only practical means of obtaining LST at spatial and temporal the sensor (hence the recovered temperatures)

resolutions appropriate for most modeling applications is through o : .
remote sensing. While the popular split-window method has The central part of most split-window algorithms is based

been widely used to estimate LST, it requires known emissivity On the assumption that LST is linearly related to the bright-
values. Multispectral thermal infrared imagery provides us with ness temperatures of two thermal channels. With the assump-
an excellent opportunity to estimate both LST and emissivity tion that surface emissivities of these two channels are known,
simultaneously, but the difficulty is that a single multispectral the split-window method can eliminate atmospheric effects for

thermal measurement with N bands presents N equations in . - .
N+ 1 unknowns (N spectral emissivities and LST). In this study, LST estimation. More studies have revealed that when the at-

we developed a general algorithm that can separate land surface mosphere is not particularly dry, the traditional split-window
emissivity and LST from any multispectral thermal imagery, such algorithm cannot remove the atmospheric effects completely.
as moderate-resolution imaging spectroradiometer (MODIS) and Many efforts (e.g., [9], [10]) therefore have been made to incor-

advanced spaceborne thermal emission and reflection radiometer 416 the column water vapor content of the atmosphere into
(ASTER). The central idea was to establish empirical constraints, L
the split-window formulae.

and regularization methods were used to estimate both emissivity . i L
and LST through an optimization algorithm. It allows us to Estimating land surface emissivity at the global scale for

incorporate any prior knowledge in a formal way. The numerical being used in the split-window algorithms is very challenging.
B 13 e G o e ST i Scweral Mefods Mave been repored i the erature, One
0.5°, 70.2% within 1° and 84% within 1.5°), although improve- approa(_:h 1S to link emissivity with normalized dlﬁergnce
ments are still needed. vegetgtlon_lndgx (NDVI) [11]., [12]. Another a_pproaph is to
associate it with land cover information [13] in which each
cover type is assigned one emissivity value. Obviously, these
two approaches cannot completely capture the tremendous
amount of variability of surface emissivity, particularly over
I. INTRODUCTION nonvegetated regions. An inaccuracy of only 0.01 in emissivity

AND surface temperature (LST) is required for a variet auses errors in LST exceeding those due to atmospheric
of climatic, hydrologic, ecological, and biogeochemica orrection [5]: “In fact the error due to an error in the emissivity

studies [1]. Emissivities are strongly indicative of compositiorﬁ:,Orrecuon IS two tlmes larger thgn thgt ‘?'“e to an error in the
especially for the silicate minerals that make up much of t mospheric correction ... Certainly this is an area of research

land surface. They are also important for bedrock mappillilajat requires ?uclh mo;e study [1t4¥. imat tral emi
and resource exploration [2]. Both are needed in the accurat Very practicalway for accurately estimating spectral emis-

calculation of outgoing longwave radiation emitted from thglvity is from thermal infrared imagery itself, which certainly

Earth’s surface [3]. There have been many algorithms propoi&gu"es multiple thermal channels. Fortunately, several space-

and implemented for the retrieval of LST from remote observ: Orne Sensors will have multiple .the_m‘a' i_nfrared bands that en-
tions. In particular, much research has focused on methods t@%e us o estimate LST and emissivity S|mu|tane_ously, such as
use two thermal channels of the advanced very high resoluti DIS. and ASTER. The MODIS [15] has multiple thermal
radiometer (AVHRR) sensor [4]-[6]. One common algorithnt?ands in the 3'5_.4'2”“ and the 8_?3'5““ ranges, and the
is the so-called split-window method, which has been usghSTER [16] has five thermal bands in the 8-16h range (see
successfully for sea surface temperature retrievals [7], [ f‘ble . . . . .
However, temperature derivation over land is more difficult The split-window a_lgon_thm_s combine atmospheric correc-
than over the ocean because of the high spatial and temp&%‘ and the LST estimation inta One process. However, it IS
necessary to correct the atmospheric effects before separating
temperature and emissivity from multiple thermal infrared im-
Manuscript received December 6, 1999; revised March 29, 2000. agery. The ASTER science team has proposed to correct the at-
The author is with the Laboratory for Global Remote Sensing Studies, Dﬁhospheric effects using the atmospheric profiles produced by
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TABLE | tion so thatV+ 1 equations are used to sol¥&+ 1 unknown
variables. However, since any added equations are based on em-

S 5 pirical formulae, the solutions are likely to be unstable. Itis a
ensor and (um) X A X K . X

" " " " " " typical ill-posed inversion problem. According to Moritz [23],
MODIS | 66384 | 39203989 | 402408 8.4-8.7 10.78-11.28 | 11.77-12.27 the_ m_verS|on prObI_em 1S cglleﬂroperly posedf th_e solution .

" " " ” ” satisfies the following requirements: 1) the solution must exist
ASTER | e ours | 84758805 | 89259275 | 10251095 | 10951165 ) (existence); 2) the solution must be uniquely determined by the

data (uniqueness); and 3) the solution must depend continuously
on the data (stability). If one or more these requirements are vi-

profiles for each pixel with the surface air temperature and@lated, then we have amproperly posegor ill-posedproblem.

scaling factor of the total water vapor amount as two unknowli ur Present case, itis an ill-posed problem siftebserva-

variables by solving a 14-equation set tions cannot determin&+ 1 unknowns uniquely. Additional

Assuming that the atmospheric impacts can be effectivdffformation is needed to tum it to groperly posedproblem.
removed, we can therefore focus on estimating both LST aftd'® Way of providing this additional information is the use of
emissivity from multispectral thermal infrared imagery in thi@PPropriate constraints. This process is knowregalarization
study. Both MODIS and ASTER teams have developed nd&f the ill-posed problem. D!fferent regule_1r|zat_|on r_nethods [24],
algorithms for separating LST and emissivity from multipléz‘r’] were explored to stablll_ze Fh_e solutions in th'_s study.
thermal bands [1], [2], which are quite different in nature. Nearly 1000 surface emissivity spectra of different cover

Effects of LST and emissivity on thermal radiance are ggpes provided by Dr. Salisbury and from the JPL spect.ral
closely coupled that their separation from thermal radiance mdgrary were integrated to the ASTER and MODIS bands using

surements alone is quite difficult. This is because a single miieir Sensor spectral response functions. We developed a new

tispectral thermal measurement withbands present¥ equa- empirical relation to predict the minimum emissivity for the
tions in N+ 1 unknowns IV spectral emissivities and LST). itMODIS and ASTER, respectively. This inversion algorithm

is a typical ill-posed inversion problem. Without any prior in-?S quite general and_ suitable. for any multispectral thermal
formation, it is impossible for us to recover both LST and emié'jfraer remote sensing. We simply take MODIS and ASTER

sivity exactly. Most LST-emissivity separation studies used o, €xamples while discussing this new inversion algorithm

additional empirical equation so that measurements plus this®€!oW: but this method has general applicability.

additional equation can be solved ¥+ 1 unknowns. For ex-

ample, the Alpha-derived emissivity (ADE) method [18], [19]A- MODIS

makes use of the relation between the weighted logarithm valueghe MODIS sensor has a total of 36 bands and more than a

of spectral emissivity and the variance of spectral emissivitiagozen thermal bands. The MODIS science team has proposed

The reference channel method [20] assumes that the value oftdénake use of seven bands for LST and emissivity estimation

emissivity for one of the image channels is constant and knoya]. Based on our MODTRAN simulations, we found that band

a priori, reducing the number of unknowns to the number &3 has very low atmospheric transmittance (lower than 0.35 in

equations. many cases) under different atmospheric conditions. We there-
The comparisons among different LST/emissivity separatidore consider only six bands in this study. Their spectral wave-

algorithms have been well discussed by Gillesgial.[2], [21] lengths are shown in Table I. The spatial resolution of MODIS

and Li et al. [22]. Based on previous algorithms, the ASTERhermal bands is 1 km, and the scanning angle is as largeas 55

team developed a new empirical equation, which was derivids carried by Terra (EOS-AM platform) and acquires data at

by using 86 samples. When more samples were available, #itz30am local time and will be also carried by the EOS-PM plat-

coefficients of this equation varied [2]. Based on nearly 10G8rm acquiring data at 2:30pm local time.

samples from different sources, we found that none of the em-The general empirical equation for the MODIS implementa-

pirical relationships in the previous studies hold. Fig. 1 showi®n of our method is given by

the relationship between the minimum emissivity and the range

of'emissivities'. Thereis a trgmendoqs amount of variability i1 . — (. 06740.319%€50-+0.232% 35 +0.271% €93 +0.38 1 k20

this figure, which may result in a possible failure of such an em- .

pirical equation. This demonstrates a need for developing new +0.289% €31 +0.261 €33 —0.583 % €1rgnge —0.822% € e

algorithms. In this study, we developed a new empirical equa- 1)

tion. Moreover, our algorithm utilizes an optimal inversion algo-

rithm that has solid foundations in computational mathemati¥d1ere €, cq ande,q, 4. are the median and range of absolute

and different regularization techniques for stabilizing the fing&Mmissivities of 6 bands. The fitted results were very good, with

solutions. In this context, we can easily incorporate any possifi¢ R-squared value of 0.999 and the residual standard error

prior information and knowledge into this iterative procedure (RSE) of 0.0073. If the emissivity spectra is quite smooth, the
uncertainty associated with (1) does not affect the inversion re-

sults significantly. However, it has been realized from the ex-
ploratory experiments that the separation of emissivity and LST

The central idea of the proposed algorithm is very similar ig highly sensitive to this additional empirical relation. Based on
the previous algorithms in the sense that we created a new egta-observations in Fig. 1(a), we established specific empirical

Il. NEwW APPROACH
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Fig. 1. Relations between the minimum emissivity and the range of the emissivity values for both (a) MODIS and (b) ASTER. A few outliers in the lower left
corner were excluded.

equations for several ranges of the maximum emissivity that had +0.133%€92+0.225% €93 +0.263 % €29 +0.16% €37
significantly improved the results. .« < 0.85 10.22%€3. ©)

€min = 0.592 — 0.916%¢,61,5¢10.083ke23H0. 12%xe294+0.08 2% 31 .

If 0.9 < emax < 0.95
) -

85< ¢ : .
FO.85 < fmax < 0.9 Emin = 0.396—0.741 €070 — 0.595¢,,0040.185€20+0.19€27

€min = 0.349—0.723% €,.qpn ge —0.643% €109 +0.25% €29 +0.178¢23+0.2645¢29+0.168¢31 +-0.185¢35. 4)
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Fig. 2. Fitted minimum emissivity again the actual MODIS minimum emissivity values using (2)—(6).

If 0.95 < €pax < 0.975 +0.2458% €13 4+-0.2862x €14 —0.5406% €41, ge

A —0.4411%€peq. (7
€min =0.399—0.734%€qnge —0.473% €1neq+0.2125 €99

+0.15%€294+0.137%€23+0.22% €99 +0.215 % €31 The fitting result was similar to the MODIS analysis, with an
+0.127x€3,. ) _R-squared val_ue of0.998 and RSE of O.QQ75. L|_keW|se, afurther
improvement in temperature and emissivity estimates was made
If 0.975 < e < 1 by fitting similar equations for several ranges of the maximum
emissivity. If e, < 0.85
€min =0.175—0.622%€,qnge —0.715% €104 +0.246 5 €99

+0.244% €99 +0.243%eo3+0.34%e30+0.284 % €31
+0.182*632. (6)

€min = 0.101 — 0.634%€range — 0.326% €neq + 0.2%€19
+ 0.289%¢€1; 4 0.189%€12 4+ 0.197x€13 + 0.326% €1 4.

8
The fitting results were much better (Fig. 2), and the RSE dﬁ'0.85 < e <09
creases to 0.0047. - e e

Any other prior knowledge might help to determine the solu- ¢, = 0.44—0.776%€pqnge —0.238%€pycq+0.164x €1

tions more accurately. After examining these spectral emissivity 40.1455% €11 +0.145%¢19+0. 154515 +0.128 %€ 4.
spectra, we found many additional relations that can be used to
constrain the LST and emissivity separation. These relations can ©)
be derived from these constraints, as illustrated in Fig. 3. fpg9< ¢ < 0.95

B. ASTER €min =0.267— 0.664*6“1”96 —0.377%€me0q+0.305%€1g
The ASTER sensor has five thermal bands (see Table I) with 4+0.117%€e11 +0.287x€12+0.171xe13+0.211%€14.
the spatial resolution of 90 m, and the scanning angle is less than (10)

8.5°. It is also carried by Terra.
The general empirical equation we developed for the ASTHRO.95 < ¢nax < 0.975

estimates is given b
9 y €min =0.441—0.754% €1qpn ge —0.233%€1,04+0.169% €19

€min = 0.01604-0.3098x€19+0.2352%¢€11 +0.3477x¢€12 +0.151%€e1140.164%€124+0.123%€13+0.17xe14. (11)
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Fig. 3. lllustration of the conditional constraints used for retrieving MODIS surface emissivities. The envelopes banded by two dashed lie#sandication
ranges of these MODIS band emissivities.

If0.975< epax <1 C. Inversion Procedure
. To estimatgV+ 1 unknowns fromV+ 1 nonlinear equations,
€min = 0.359—0.715%¢range —0.312% ¢ pea+0.255% 10 amultidimensional optimization algorithm is needed. For global

+0.15%€114+0.23%¢124+0.188%¢13+0.126x€14. (12) applications, computational speed is a major concern. On the
other hand, the added empirical equation does not fit the data
The results were significantly better (Fig. 4). Similar to theerfectly. If we treat it as a perfect equation, the uncertainty
MODIS analysis, we also found many additional constrainis introduced into the inversion process. Instead, we developed
based on the range of data values used in the estimations. Sencenstrained one-dimensional (1-D) inversion procedure. The
of these constraints are illustrated in Fig. 5. 1-D optimum inversion algorithm for estimating LST is to min-
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Fig. 4. Fitted minimum emissivity again the actual ASTER minimum emissivity values using (8)—(12).

imize the merit function that consists of a sum of squares (SS)The penalty functiory;(e; »2...n, T) is designed to force all
term and a penalty function estimated parameters in reasonable ranges. If the value of a vari-
able is beyond its range, a huge penalty is posed (with the huge
Fle,0..n, T) =SS+ Y filer,2..v, )10, (13)  weight 16°). This huge weight was recommended by Siddall
. . [26]. In our previous studies [27]-[30], we found Siddall algo-
The SSterm is expressed by the smoothness of the retrieyggl, is very effective. In particularly, we can easily incorpo-
emissivity curve. Different regularization techniques produGge the new empirical equation and other constraints into the
different measures of the smoothness [25], [24]. Four regul‘?)(énalty term. Rather than requiring a perfect additional equa-

ization techniques were explored in this study tion, we just force all points to be within the envelope around the
(N regression line that defines the empirical equation. For MODIS,
Z ;2 power if (1) is used the envelope is defined by0.035 1% ¢, —
i=1 €min < 0.04455. If (2)—(6) are used, the envelope is defined by
N -0.024 88< €pin — €min < 0.018 72. Similarly, for the ASTER,
Z(q —¢)? variance if (7) is used, for example, - 0.040 46 ¢,,,;,, — €min < 0.029 82.
im1 If (8)—(12) are used, - 0.039 26 ¢,,,;;, — €min < 0.028 27. From
55 = N these envelopes, we can see that the fitting formulae (2)—(6) and
Z(ci_l —€)? first-order difference (8)—(12) can produce better results.
i=2 Estimation of LST and emissivity values from (13) is an typ-
N ical nonlinear optimization problem that determines the solu-
Z(Gi_Q —2¢;,_1 +¢;)? second-order difference tions iteratively. The iterative process works as follows. Given
\ i=3 (14) an initial LST (I5), band emissivities are derived based on
wheree; is the emissivity value at bangl € is the mean value (L; — L;°)

(15)

of the spectral emissivity curve. This first measure corresponds “=

to the power of the emissivity signal. The second technique is

closely related to the first one, which eventually is the varianeehereL; andL,**¥ are the surface-leaving radiance and down-

of the spectral emissivity curve. The third and forth techniqueard sky radiance from the atmospheric correction procedure,
is based on the first-order and second-order differences of #red L;(75) is the blackbody radiance that can be calculated by
emissivity curve. integrating radiancé3; (7o) using the Planck formula with the

Li(Ty) — LM
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Fig. 5. lllustration of the conditional constraints used for retrieving ASTER surface emissivities. The envelopes banded by two dashed tend®inditation
ranges of these ASTER band emissivities.

sensor band spectral response functions. The Planck formulafersion algorithm that has solid foundations in computational
radiance with the unit WATTS CM? STER™! ;um~! is given mathematics.

by

16175 I1l. NUMERICAL EXPERIMENTS
1.19095610—*°V>°

exp(1.438 79V/Ty) — 1

Bi(1o) = (16)

To evaluate the performance of this new approach, we con-
ducted a series of numerical inversion experiments. The numer-
whereV is the wavenumber (10 000/ \ is the wavelength in ical experiments serve as the first step for testing any new algo-
#m). Note that this algorithm is based on the assumption th#hms. Field experiments ultimately should validate the new ap-
observed radiance has been corrected atmospherically. The@aches, but many conditions (e g.andZ;) cannot be easily
therefore no path radiance and transmittance in (15). After deeasured in the field. As a result, it is not easy to determine the
terminingemin, €med 8Ndérange, €min iS Predicted based on (1) model accuracy using measured data from the field.
or (2)—(6) for the MODIS, and (7) or (8)—(12) for the ASTER. We arbitrarily selected 10% of the profiles (590 in total)
The merit function (13) is then calculated. For the next iterérom our atmospheric profile database, which is composed of
tion, the iteration length and iteration direction must be foungrofiles from the NAVY profile model, and the measured real
optimally. The iteration continues until the convergence reachgofiles from the Large Scale Biosphere-Atmosphere Exper-
(i.e.,Tn41 — Iy smaller than a threshold). iment in Amazonia (LBA), Boreal Ecosystems Atmosphere

There are at least four major differences between the pres&nidy (BOREAS), and First ISLSCP Field Experiment (FIFE).
new algorithm and the published algorithms in the literature: LST was then assumed to be equal to the air temperature at
the empirical equations are dramatically different; 2) regulariztiie surface level, which varies from 268 307.2. A total of
tion methods are applied; 3) more prior information have be®37 emissivity spectra of soil, rocks, minerals and vegetation
defined and naturally incorporated into the new algorithm inand these atmospheric profiles were input to MODTRAN to
formal manner; and 4) the new algorithm uses an optimal isimulate downward sky fluxes and surface leaving radiance. A
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Fig. 6. Histogram of the actual and retrieved LST difference from the simulated MODIS data.

total of 55 283 observations for both MODIS and ASTER wer@.912 at band 32 to 0.967 at band 22. Since LST was not per-
generated by integrating the MODTRAN outputs with thedectly retrieved, the retrieved emissivities also could not match
sensor spectral response functions. the actual emissivities perfectly.

We compared the performance of these four regularizationThe errors may come from different sources. The majority of
techniques (14) that were discussed in the previous sectitire error is attributed to the empirical equation, which is only a
In most cases, the variance measure and the first order diffleest fit for a given emissivity range. Four cases are presented in
ence measure performed the best, and other two technigbes 8 to illustrate this point. The solid lines stand for the actual
performed less well. In the following, all reported results onlgmissivity curves. In case 1, two sets of solutions were found,
came from the variance regularization technique using thed the retrieved LST was about’1ffom the actual LST. Case
simulated MODIS data. 3 was similar, although the LST difference was much smaller.

The objective of this numerical experiment was to determirie cases 2 and 4, three sets of solutions were found and they all
if this new inversion algorithm can accurately retrieve the rangatisfied the empirical relations.
of surface emissivities and temperature values. The results inditf we examined these cases carefully, we found that the re-
cated that we could not inverse both LST and emissivities périeved emissivity curves look very similar to the actual ones,
fectly. The histogram of the difference between the retrievedthough their magnitudes might be quite different. More im-
LST and actual LST is shown in Fig. 6. However, more thaportantly, all emissivity curves increase with wavelength similar
43.4% inversion results differed from the actual LST withitio the blackbody emitted radiance, which explains why shifting
0.5°, 70.2% within £ and 84% within 1.5. The regression be- emissivity curse can still make aN+ 1 equations valid.
tween the actual LST) and the retrieved LSTI() was a little It is found that one method can reduce the uncertainties to
biased: some extent. One can run the inversion codefdimes where

N is the number of thermal bands. The median value of the re-
T = 6.5651 + 0.97817". (17) trieved multiple solution is defined as the final solution. The
initial values are determined in this way. Assuming unity emis-
The R-squared value was 0.98, and the residual standard esiuity, the initial value is solved from the Planck equation using
was 1.2. the central wavelength of that band, which is calculated; as

The retrieved emissivities of individual bands are displayed y‘f‘f Fi()xdN/ f;‘f f:(A\) dX where f;()\) is the sensor spec-
Fig. 7. The residual standard errors ranged from 0.019 at bamds response function. Obviously, there are increased computa-
31 and 32 to 0.038 at band 20, the R-squared values varied friomal expenses.
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Fig. 7. Retrieved MODIS band emissivities and their actual surface emissivities.

When the same inversion code was run over the simulatiédt both LST and spectral emissivity can be estimated with a
ASTER data, the results were very similar. No details are rezasonably good accuracy (more than 70.2% inversion results
differed from the actual LST within ). Two regularization
techniques (variance and first-order difference) worked very
well, while other two regularization techniques (power and
second order difference) worked less well in our experiments.

In this study, we developed a general method for retrieving From these numerical experiments, we found that if the emis-
both LST and emissivity simultaneously from any multispecsivity values of all bands were very low, the solution was very
tral thermal infrared imagery. An empirical equation based dikely to be unstable. In a few cases, the maximum LST differ-
the measured emissivity spectra was established. Four differente could be more than 9.GFurther algorithm developments
regularization techniques were explored and an optimization ate needed to address this issue.

ported here.

IV. SUMMARY

gorithm was used to determine the solutions. One of the feature3his method works for surface-leaving radiance, an output
of this method is its ability to incorporate any prior knowledgé&om the atmospheric correction procedure. The accuracy of at-
about the spectral emissivities and LST into the inversion algmospheric correction of multispectral thermal infrared imagery
rithm. will eventually affect the separation of LST and emissivity. The
Numerical experiments were conducted to test this invetiscussion of atmospheric correction is beyond this paper, but
sion algorithm. Near 1000 emissivity spectra were integratéds a critical issue that we need to pay more attention to in the
into MODIS and ASTER thermal bands in conjunction witHuture.
the spectral response functions of these sensors. Differenfo validate this algorithm using ground measurements, we
atmospheric conditions using a range of LSTs were usedare also making efforts to apply this algorithm to the airborne
simulate the MODIS and ASTER surface leaving radiance antlltispectral thermal data from the MODIS airborne simulator
sky radiance. The optimization code was used to estimate LGWAS) and the airborne thermal infrared multispectral scanner
and spectral emissivities simultaneously. The results shom@dMS) sensors. The results will be reported later.
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lllustration of four cases that produce more than seven solutions with six MODIS observations and one additional equation.
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