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A Direct Algorithm for Estimating Land Surface
Broadband Albedos From MODIS Imagery

Shunlin Liang, Senior Member, IEEE

Abstract—Land surface albedo is a critical variable needed in
land surface modeling. The conventional methods for estimating
broadband albedos rely on a series of steps in the processing chain,
including atmospheric correction, surface angular modeling, and
narrowband-to-broadband albedo conversions. Unfortunately,
errors associated with each procedure may be accumulated and
significantly impact the accuracy of the final albedo products.
In an earlier study, we developed a new direct procedure that
links the top-of-atmosphere spectral albedos with land surface
broadband albedos without performing atmospheric correction
and other processes. In this paper, this method is further improved
in several aspects and implemented using actual Moderate Res-
olution Imaging Spectroradiometer (MODIS) imagery. Several
case studies indicated that this new method can predict land
surface broadband albedos very accurately and eliminate aerosol
effects effectively. It is very promising for global applications and
is particularly suitable for nonvegetated land surfaces. Note that
a Lambertian surface has been assumed in the radiative transfer
simulation in this paper as a first-order approximation; this
assumption can be easily removed as long as a global bidirectional
reflectance distribution function climatology is available.

Index Terms—Broadband albedo, land surface, MODIS, multi-
spectral imagery, remote sensing.

I. INTRODUCTION

L AND SURFACE broadband albedo is a fundamental com-
ponent in determining the earth’s climate. It is a param-

eter needed by both global and regional climatic models and
for computing the surface energy balance. The seasonal and
long-term vegetation dynamics that significantly impact the cli-
mate are reflected by the dramatic variations of albedo. Ac-
cording to Hartmannet al. [1], the surface absorbs about twice
as much solar radiation as does the atmospheric column (160
versus 79 Wm). Surface solar absorption is modulated by the
surface shortwave albedo.

Although many algorithms for estimating land surface
albedos have been proposed [2], most work mainly by fo-
cusing on spectral (or narrowband) albedos. Additionally,
no global broadband albedo products of land surface had
been operationally produced until the Moderate Resolution
Imaging Spectroradiometer (MODIS), one of the sensors in
the National Aeronautics and Space Administration (NASA)
Earth Observing System (EOS) Terra platform, launched in
1999. MODIS provides comprehensive and frequent global
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earth imaging in 36 spectral bands and at variable spatial
resolutions. For land applications, the first seven spectral bands
are primarily used, and their spectral and spatial characteristics
are listed in Table I. The swath width of MODIS is 2300 km,
with the across-track field-of-view angle of 110. MODIS
images the earth on a two-day repeat cycle, with a one-day or
more frequent repeat at higher latitudes greater than 30due to
orbital convergence.

The MODIS land surface products are derived through a se-
ries of steps in the processing chain [3], [4] as illustrated in
Fig. 1, including atmospheric correction [5], angular modeling
for calculating spectral (narrowband) albedos [6], and narrow-
band-to-broadband albedo conversions [7]. The accuracy of the
MODIS albedo products depend on the performance of all these
processes. Errors associated with each procedure may be can-
celed out, but are also very likely to accumulate. For example,
the MODIS atmospheric correction algorithm [5] requires the
aerosol product [8]. Determining the aerosol optical depth over
land is based on the “dark-object” approach that relies on the ex-
istence of dense vegetation canopies widely distributed over the
scene [8]. The “dark-object” method does not work well over the
nonvegetated surfaces (e.g., snow, ice, desert, and winter land-
scape in the northern hemisphere) [9], but nonvegetated surfaces
have larger albedos and thus greater feedback to the atmosphere.
“Until EOS determines the surface albedo of all land surfaces
to greater accuracy, we cannot adequately quantify the radiative
forcing to climate that is associated with changes in land use”
[1].

An alternative scheme developed in our earlier study links
TOA (top-of-atmosphere) narrowband albedos with three land
surface broadband albedos using a feedforward neural network
(NN) without performing any atmospheric corrections [10].
This idea stems from earlier studies [11]–[14] that linearly
related TOA and surface broadband albedos. Surface broad-
band albedo depends on surface spectral reflectance as well as
atmospheric conditions. TOA observations contain information
on both surface reflectance and atmospheric optical properties,
which implies that it is possible for us to predict the broadband
albedos using TOA narrowband albedos without performing
any atmospheric corrections.

Those earlier studies mainly focus on the linkage of planetary
shortwave albedo with surface shortwave albedo. In our earlier
study [10], we suggested linking several TOA spectral albedos
with surface broadband albedos. In this study, the major objec-
tive is to implement this idea by using actual MODIS obser-
vations. However, several aspects of this algorithm have been
significantly improved. Section II outlines this new algorithm.
Attention will be paid to the improvements over our previously
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TABLE I
FIRST FEW MODIS BAND SPECTRAL RANGES AND SPATIAL RESOLUTIONS

(a)

(b)

Fig. 1. Illustration of the procedures of (a) the current land surface broadband
albedo mapping and (b) the proposed new method.

published algorithm [10]. Several cases studies will then be re-
ported in Section III. The first case is to validate the accuracy
of this algorithm. Several MODIS images over a remote sensing
test site at Beltsville, MD were processed, and the derived sur-
face broadband albedos were compared with ground measure-
ments that were scaled through Landsat7 ETMimagery. The
second case demonstrates how this new algorithm can automati-
cally eliminate thick aerosol effects. A brief discussion and con-
clusion is given at the end of the paper.

Before proceeding, it is worth discussing the major differ-
ences between this method and the current MODIS algorithm
[3], [4]. The current MODIS algorithm is based on physical un-
derstanding of all processes involved, and we are learning where
and how to improve it as more data and knowledge are accu-
mulated. It can be referred to as a physical approach. Our new
method is mainly a statistical one using nonparametric regres-
sion, but it also incorporates physical principles through exten-
sive radiative transfer simulations. It can be considered a hybrid
approach. Although some assumptions (e.g., a Lambertian sur-
face) are made in this study to simplify the process, this new
method does not prevent from incorporating new physical un-
derstanding and accumulated knowledge.

II. NEW METHOD

The basic procedure is similar to that in our previous study
[10], [29], which consists of two steps as illustrated in Fig. 1.
The first step is to conduct extensive radiative transfer simula-
tions using MODTRAN4 [15], and the second step is to link

the simulated TOA reflectance with surface broadband albedos
using nonparametric regression algorithms. This procedure,
however, has been significantly improved in several aspects
in this study. First, many more surface reflectance spectra
of different cover types with different conditions have been
incorporated into the radiative transfer simulations. In our
previous study, only 20 spectra were considered. Second, an
attempt has been made to estimate land surface broadband
albedos using TOA reflectance, instead of TOA spectral
albedos. This improvement has in fact greatly simplified this
method, since calculating TOA spectral albedo requires TOA
angular modeling that might introduce large errors. Lastly, the
projection pursuit regression method has been also explored
to link TOA directional reflectance with surface broadband
albedos in conjunction with the NN method.

A. Radiative Transfer Simulations

For a given atmospheric and surface condition, we need to
know the directional reflectance at the top of the atmosphere.
Many radiative transfer packages are available right now for
us to achieve that, such as MODTRAN [15], 6 S [16], and
SBDART [17]. MODTRAN has been extensively used in our
studies.

One of the major differences from our previous study [10]
is that we ran MODTRAN without using measured surface
reflectance spectra. Since the number of surface reflectance
spectra was increased from 20 in the previous study to 256,
representing a variety of surface cover types and conditions,
a novel approach is required to decouple surface reflectance
spectra in the simulations. This decoupling approach can incor-
porate as many surface reflectance spectra as we want without
increasing the simulation significantly. Specifically, MOD-
TRAN was run three times with three surface reflectances (0.0,
0.5, and 0.8) for each atmospheric condition and solar-viewing
geometry. Assuming the surface is Lambertian, the downward
flux and upwelling radiance at the TOA can
be expressed by [18]

(1)

(2)

where is the cosine of solar zenith angle ; corresponds
to the viewing zenith angle; and are the upwelling flux
and path radiance without the surface contribution (i.e., sur-
face reflectance is zero, ); is the spherical albedo of
the atmosphere; is the TOA downward flux; and and

are the total atmospheric transmittance of the solar illu-
mination path and the viewing path, respectively. Results from
three MODTRAN runs form six equations that enable us to de-
termine these unknowns (, , , , and ) in the
above equations. As long as these unknowns are determined, it
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is straightforward to calculate downward flux at the surface and
TOA radiance with any surface reflectance spectra.

It is critical to use the representative surface reflectance
spectra in data simulations. Different surface reflectance spectra
from the U.S. Geological Survey’s digital spectral library),
from measurements by J. Salisbury at the Johns Hopkins
University and from the Jet Propulsion Laboratory’s spectral
library were collected. Most of these spectra were measured
in the laboratory. To account for the natural environment
conditions, over 100 reflectance spectra of different surface
cover types were extracted from the Airborne Visible-Infrared
Imaging Spectrometer (AVIRIS) imagery, an airborne hyper-
spectral sensor. Depending on the spatial variations of surface
reflectance, different window sizes were selected, and a median
value was then calculated for each waveband. AVIRIS has
224 bands; unfortunately, we found 20 bands of little value
because of noise or the absence of signals. Spectral reflectances
(0.25–2.5 m) were interpolated from the remaining 204 bands.
In total, we employed 256 surface reflectance spectra in this
study, including soil (43) , vegetation canopy (115), water (13),
wetland and beach sand (4), snow and frost (27), urban (26),
road (15), rock (4), and other cover types (9). They have dif-
ferent wavelength dependences and magnitudes, from coastal
water (low albedos) to snow and frost (high visible albedos). It
represents the most comprehensive surface reflectance spectra
database we could assemble with available data. It will also be
updated regularly as new measured data are available.

In the MODTRAN simulations, 11 atmospheric visibility
values (2, 5, 10, 15, 20, 25, 30, 50, 70, 100, and 150 km) were
used for different aerosol loadings, four aerosol models (rural,
Navy maritime, urban, and troposphere), and five atmospheric
profiles (tropical, mid-latitude winter, subarctic summer,
subarctic winter, and US62) that also represent different water
vapor and other gaseous amounts and profiles. The aerosol
models and atmospheric profiles used are the defaults in
MODTRAN. For the operational application of this method,
more should perhaps be included to represent the variable
atmospheric conditions.

Land surface broadband albedo is simply defined as the ratio
of the surface upwelling flux to the downward flux

(3)

where is denoted to the waveband from wavelengthto
wavelength . If 0.25 ,0.5 m ,
is the total shortwave broadband albedo. The waverange
0.4, 0.7 m and 0.7, 5.0 m correspond to visible and

near-infrared (near-IR) albedos, respectively. is the surface
spectral reflectance spectra.

The upwelling TOA radiance is further normalized to spectral
reflectance

(4)

(a) (b)

(c) (d)

Fig. 2. MODIS imagery over the USDA Beltsville Agricultural Research
Center validation site.

(a) (b)

(c) (d)

Fig. 3. ETM+ imagery over the USDA Beltsville Agricultural Research
Center validation site.

The sensor spectral response functions can be inte-
grated with these TOA reflectance spectra to generate the TOA
reflectance of different spectral bands

(5)
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Fig. 4. Histograms of the three broadband albedo differences between those predicted by the NN method, projection pursuit regression (ppreg ) method, and
those converted from ETM+ imagery that was calibrated by the ground measurements. Both ETM+ and MODIS images were acquired on May 11, 2000.

TABLE II
ALBEDO DIFFERENCESFROM THE ETM+ COMPUTED ALBEDOS

One of the major limitations in this simulation study is
its assumption of Lambertian surfaces. The major reason is
that we do not have a good understanding of the directional
reflectance properties of various surface types at the MODIS
resolution. Both MODIS and Multi-angle Imaging Spectro-
Radiometer (MISR) teams are producing global land surface
bidirectional reflectance distribution function (BRDF) products
[3], [19]. It will be straightforward to improve this procedure
as long as we accumulate enough data, since many radiative

transfer models have the capability to incorporate directional
surface reflectance. However, it is speculated that the spectral
dependence of surface reflectance spectra is the most important
aspect.

B. Statistical Algorithms

As long as the database is created from the simulations de-
scribed above, the next step is to link TOA reflectance to land
surface broadband albedos. We proposed using an NN in our
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Fig. 5. Same as Fig. 3 except MODIS albedo products are also compared. Both ETM+ and MODIS were acquired on November 3, 2000.

previous study [10], but have also explored a new method called
projection pursuit regression in this study. The general concept
of this hybrid method is illustrated in Fig. 1(b).

1) Neural Network: Artificial neural networks (ANNs) can
be seen as highly parallel dynamical systems consisting of mul-
tiple simple units that can perform transformations by means
of their state response to their input information. The ANN ap-
proach has been used in different remote sensing applications
[20], [21]. ANNs learn by example. In a typical scenario, an
ANN is presented iteratively with a set of samples, known as
the training set, from which the network can learn the values of
its internal parameters.

There are at least four main aspects that should be considered
in the application of ANNs:

1) preparing the training data from radiative transfer
simulations;

2) designing the network architecture;
3) estimating the parameters, i.e., training a network;
4) assessing the performances of the network.

The key component is to design ANN architecture, which has
a critical effect on the results. Various studies have shown that
the NN’s complexity—mainly the number of free parame-
ters—must be fitted to the problem complexity and the number
of available training samples. If the network is too complex, it
will perfectly learn the training set (low bias), while general-
izing very poorly (high variance). Controlling the complexity
is, therefore, a necessity to ensure good generalization. It is
a key issue when the training set is small, noisy, and partially
inaccurate. However, our training dataset created from the
radiative transfer simulation is huge and, therefore, is not a
problem in this study.

The feedforward ANN used in this study has only one hidden
layer (but we can decide the number of units in the hidden layer)
and another free parameter (called the decay parameter). After
extensive experiments, it is found that five hidden layers with the
decay parameter 10 provide satisfactory results in all cases.
The details on this -plus function can be found in the literature
[22], [23].



LIANG: DIRECT ALGORITHM FOR ESTIMATING LAND SURFACE BROADBAND ALBEDOS 141

Fig. 6. Same as Fig. 4 except both ETM+ and MODIS were acquired on December 5, 2000.

2) Projection Pursuit Regression:Projection pursuit regres-
sion [24] applies an additive model to projected variables

(6)

where is the explanatory vector (i.e.,
spectral reflectance in this particular case). It can be further ex-
pressed as

(7)

The “projection” part of the term “projection pursuit regres-
sion” indicates that the carrier vectoris projected onto the di-
rection vectors , and the “pursuit” part indicates
that an optimization technique is used to find “good” direction
vectors . For any applications, the important pa-
rameter to be determined is . It depends on the number of
variables and the amount of training data. There are some gen-
eral guidelines to determine its value in-plus, but it is found

in this study that the results are not very sensitive when its value
is set from 15–25.

III. CASE STUDIES

Several case studies were conducted in this study to evaluate
if this approach is reasonably accurate in estimating land sur-
face broadband albedos from MODIS imagery. The first case
is based on several clear images over the greater Washington,
DC area where ground measurements were scaled up through
Landsat7 ETM imagery. The second case demonstrates how
this method can retrieve surface broadband albedos by automat-
ically removing a large thick patch of aerosols.

A. Case 1: Greater Washington, DC Area

The first experiment was conducted using MODIS imagery of
the greater Washington, DC region acquired on May 11, 2000,
November 3, 2000, December 5, 2000, and January 22, 2001,
shown in Fig. 2(a)–(d), respectively. These images contains a
NASA EOS Land Core Validation Site at the U.S. Department
of Agriculture (USDA) Agricultural Research Service Beltsville
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Fig. 7. Same as Fig. 4 except both ETM+ and MODIS were acquired on January 22, 2001.

Agricultural Research Center (BARC), in Beltsville, MD. This
site is located at the northeast of Washington, DC including the
NASA Goddard Space Flight Center (GSFC). On May 11, 2000,
there was an extensive field campaign with several aircraft mis-
sions and ground measurements. The sunphotometer located at
GSFC as part of AERONET [25] measured aerosol optical depth
and water vapor content of the atmosphere continuously.

For all dates, there are clear Landsat7 ETMimages (see
Fig. 3), acquired about 45 min earlier than MODIS. ETM
imagery were corrected atmospherically using MODTRAN
with inputs from sunphotometer measurements. Some of the
retrieved surface reflectance were calibrated using ground
radiometric measurements. The retrieved surface spectral
reflectance were converted to the broadband albedos using
the linear conversion formulae [7] that were later well vali-
dated [26]. These high-resolution albedo products were then
aggregated into MODIS resolution (1 km) using a two-step
registration process. This procedure is used to validate the
MODIS directional reflectance and albedo products [27].

The histograms of three broadband albedo differences
between ETM and those produced by both the NN and

the projection pursuit regression procedure on May 11, 2001
are shown in Fig. 4. The mean and standard deviation of the
difference between neural network (nnet )/projection pursuit
regression (ppreg ) are listed in Table II. Note that the pre-
dicted albedos from both NN and projection pursuit regression
are always larger than that from ETM. These differences may
come from many different sources, such as the assumption of
a Lambertian surface, image registration, and choice of aerosol
model. The MODIS albedo products on May 11, 2000 were not
available at this point.

The same histograms on November 3, December 5, 2000,
and January 22, 2001 are shown in Figs. 5–7. The mean and
standard deviation of albedo difference between neural network
(nnet )/projection pursuit regression (ppreg ) are also listed
in Table II. Note that we have also compared these with the
MODIS albedo products generated by the MODIS science
team. From Figs. 5–7, we can see that our new approach using
both NN and projection pursuit regression can consistently
produce results similar to the predicted broadband albedos
from ETM imagery. On November 3 (Fig. 5) all products
look very similar. However, on both December 5, 2000 and
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January 22, 2001, the MODIS products are quite different
from ETM albedos and our new albedo products. Overall,
MODIS albedos are much smaller. This may be partially due
to the fact that MODIS albedos are the average values over the
period of 16 days, while ETM and our new albedo values
are the instantaneous ones. It is also possibly largely the result
of inaccurate MODIS atmospheric correction. The MODIS
albedo products are significantly smaller on January 22 when
the surface was covered by snow. We also converted MISR
spectral albedos to three broadband albedos on January 22, and
the results are very close to both ETMalbedos and our new
albedos using this new procedure. The detailed comparisons
with MISR products will be presented elsewhere.

In all these cases, MODIS atmospheric correction certainly
introduces errors and affects the accuracy of the broadband
albedo products, since it relies on large areas of dense green
vegetation that are very difficult to find in this area in the winter
season.

Overall, the average albedo differences and the standard de-
viations from ETM albedos are 0.026 and 0.023 (shortwave),
0.009 and 0.017 (visible), and 0.035 and 0.036 (near-IR) for
the NN. For the projection pursuit regression method, the cor-
responding values are 0.009 and 0.035 (shortwave), 0.004 and
0.035 (visible), and 0.025 and 0.041 (near-IR).

B. Case 2: Northeastern Coast, China

This case study is to apply this new method to a MODIS
image of the northeastern coast of China acquired on May 7,
2000. The true-color composite image (bands 1, 3, and 4) of
400 400 pixels is displayed in Fig. 8. The spatial resolution is
1 km. This image is severely contaminated by heterogeneously
distributed aerosol particles. Land cover types include snow,
ocean water, dense vegetation, and others. It is obvious that the
TOA albedos are quite different from surface albedos. We do not
have any “ground truths” in this area and did not attempt to col-
lect high-resolution imagery, such as an ETMimage. Based
on the first case study, we feel confident that our new method
can predict the land surface albedos accurately. The major ob-
jective in this case study is to demonstrate how this new method
can remove the observed haze effect.

The MODIS level 1 data were converted to TOA reflectance.
The broadband albedo predicted using the NN method are
shown in Fig. 8. It is clear that most haze has been effectively
removed, although some very thick parts still remain in the
visible albedo map. The visible albedo of snow cover at the left
corner seems lower, which leads us to speculate that the snow
might be very old and contaminated by vegetation and other
pollutants. The projection pursuit regression method produced
very similar results. The differences of the three broadband
albedos are displayed in Fig. 9.

In this experiment, we used the rural aerosol model, one of
the MODTRAN default models. It is found that different aerosol
models can cause large impacts on atmospheric radiative quanti-
ties. We believe this might be one of the major sources of uncer-
tainty. In fact, this is the generic problem in any atmospheric cor-
rection using the radiative transfer model. MISR or other sen-
sors can provide more accurate aerosol climatology models.

(a) (b)

(c) (d)

Fig. 8. (a) Color composite MODIS level 1 image acquired on May 7, 2000
over northeastern China and the retrieved land surface three broadband albedo
maps using the NN method: (b) total shortwave, (c) total visible, and (d) total
near-IR.

IV. DISCUSSION ANDCONCLUSION

Land surface broadband albedo is a fundamental component
in modeling any surface processes. The current common
estimation approach from multispectral satellite observations
is composed of a series of processing steps, typically including
atmospheric correction for estimating land surface directional
reflectance, angular modeling for calculating spectral albedos,
and narrowband-to-broadband albedo conversions. Each step
may have errors that ultimately impact the accuracy of the
final broadband albedo products. For example, the current
operational atmospheric correction algorithms usually rely on
the “dark-object” methods for estimating aerosol optical depth
for densely vegetated regions. They fail over nonvegetated
regions, such as snow, ice, and bare soils, which usually
have much larger albedo values. For multispectral sensors
that have one viewing direction at a time, observations have
to be accumulated during a period of time (i.e., 16 days for
MODIS) to determine the parameters of the angular model.
The derived albedo products, therefore, represent the average
state for that period of time. If the atmospheric condition or
surface conditions change dramatically, larger uncertainty will
be introduced. If the number of spectral bands is not large,
the conversions from narrowband to broadband albedos also
introduce errors.

In this study, our alternative broadband albedo estimation
method [10] has been greatly improved using actual MODIS im-
agery. This new method does not need all the processing steps
mentioned above, and it links TOA reflectance with land surface
broadband albedos directly. It is actually a hybrid method that
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Fig. 9. Histograms of the albedo differences predicted from both NN and prejection pursuit regression methods from the same images as Fig. 8.

combines the extensive radiative transfer simulations (physical)
and nonparametric regression algorithms (statistical).

Two case studies are presented in this paper. The first one val-
idates the accuracy of this method using ground measurements
and high-resolution imagery over our test site at Beltsville,
Maryland. The ground measurements were used to calibrate the
high-resolution albedo products from Landsat ETMimagery.
The high-resolution albedo products were then aggregated to
register with MODIS imagery. Data from four dates (May 11,
November 3, December 5, 2000, and January 22, 2001) demon-
strated that this new method is reasonably accurate. Both NN
and projection pursuit regression produced consistently similar
results. The average mean albedo differences from ETM
albedos are smaller than 0.03 (shortwave), 0.01 (visible), and
0.04 (near-IR), and the standard deviations are smaller than
0.04. These numbers are good indications of the accuracy of
this new method. The MODIS black-sky albedos products
were also used in the comparisons. The results indicate that our
new method produces albedo with accuracy comparable to the
MODIS standard albedo products and is even better when the
surface conditions are highly variable (e.g., snow).

The second case demonstrated that this new method can re-
cover land surface broadband albedos from the heavily contam-
inated MODIS image of northeastern China by aerosol particles
without performing any atmospheric correction.

In this paper, a Lambertian surface has been assumed in the
MODTRAN radiative transfer simulation as a first-order ap-
proximation. But it is not an inherent limitation of this new al-
gorithm. The reasons for making such an assumption is that it
not only significantly simplifies the procedure but also results
from the fact that a global surface BRDF database at the 1-km
scale is simply not available at this point. As long as we continue
to gain a deeper understanding of the surface non-Lambertian
properties and accumulate enough data from MODIS [3], [4],
MISR [19], [28], or other sensors, incorporating a non-Lam-
bertian surface into the radiative transfer simulation is straight-
forward. MODTRAN already has such an option. On the other
hand, our case studies have proven that this approximation does
not affect the inversion accuracy significantly. The error associ-
ated with this approximation is intuitively expected to be much
smaller than those due to the failed atmospheric correction over
nonvegetated surfaces or the use of a wrong BRDF model during
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a period of 16 days when a sudden change of the surface condi-
tions affects the current MODIS algorithm.

The implementation of this method for global operational ap-
plications is straightforward. The major changes will be the use
of more realistic climatology aerosol models that are being pro-
duced by the MISR teams rather than the MODTRAN default
aerosol models and more surface reflectance spectra. This new
method is particularly promising for nonvegetated land surfaces,
such as snow, ice, desert, and high-altitude land masses at winter
nongrowing season.
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