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Abstract—The Advanced Land Imager (ALI) is a multi-
spectral sensor onboard the National Aeronautics and Space
Administration Earth Observing 1 (EO-1) satellite. It has similar
spatial resolution to Landsat-7 Enhanced Thematic Mapper Plus
(ETM+), with three additional spectral bands. We developed
new algorithms for estimating both land surface broadband
albedo and leaf area index (LAI) from ALI data. A recently
developed atmospheric correction algorithm for ETM+ imagery
was extended to retrieve surface spectral reflectance from ALI
top-of-atmosphere observations. A feature common to these
algorithms is the use of new multispectral information from ALI.
The additional blue band of ALI is very useful in our atmospheric
correction algorithm, and two additional ALI near-infrared
bands are valuable for estimating both broadband albedo and
LAI. Ground measurements at Beltsville, MD, and Coleambally,
Australia, were used to validate the products generated by these
algorithms.

Index Terms—Atmospheric correction, Advanced Land Imager
(ALI), broadband albedos, Earth Observing 1 (EO-1), leaf area
index (LAI), validation.

I. INTRODUCTION

EARTH Observing 1 (EO-1) is the first satellite of the
National Aeronautics and Space Administration (NASA)

New Millennium Program Earth Observing series. EO-1
was launched on November 21, 2000. It flies 1 min behind
Landsat-7 in the same orbit and carries three sensors: the
Advanced Land Imager (ALI), Hyperion, and Atmospheric
Corrector (AC). Both Hyperion and AC are hyperspectral
sensors with more than 200 bands. The ALI is a multispectral
sensor. These three advanced imaging instruments will lead to
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a new generation of lighter weight, higher performance, and
lower cost Landsat-type imaging instruments for the NASA
Earth Science Enterprise. Additionally, the EO-1 Mission
validates a number of cross-cutting spacecraft subsystem
technologies that will enable future earth and space science
missions to be conducted using smaller, lower weight, and
reduced-power spacecraft buses. Studies presented in this
special issue have also proven that EO-1 data can be applied
to address a variety of earth environment and resource issues.
A detailed description of the EO-1 mission is given by Ungar
et al. [30].

The spatial resolutions of ALI are very similar to Landsat-7
ETM+. Note the three additional spectral bands of ALI:
0.43–0.45 m (1p), 0.85–0.89 m (4p), and 1.20–1.30 m
(5p). The objective of this study is to assess if ALI observations
can be used to estimate land surface biophysical variables
accurately. To achieve this goal, we developed and tested a
series of new algorithms, and validated the derived products
using correlative ground measurements.

We have focused on two biophysical variables in this study:
broadband albedo and leaf area index (LAI). Broadband albedo
is a fundamental component that determines the earth’s climate
[1]–[3]. It is a parameter needed by both global and regional
climate models, and for computing the surface energy balance.
The seasonal and long-term vegetation dynamics that signifi-
cantly impact climate are accompanied by dramatic variations
of albedo. Remote sensing is the only practical means for map-
ping land surface albedo. LAI is an important structural property
of vegetation, and is a basic quantity driving many land surface
models.

There are two important preprocessing steps when estimating
these two biophysical variables quantitatively [4]. The first is
sensor radiometric calibration that converts digital numbers
(DNs) to a top-of-atmosphere (TOA) radiance. The reader
is referred to the EO-1 summary paper by Ungaret al. [30]
for details on this process. The second step is atmospheric
correction to convert the TOA radiance to surface reflectance.
If all atmospheric parameters are known, correcting broad-
band multispectral instruments for atmospheric affects is
straightforward. The difficulty is estimating some of these
key variables from the imagery itself. Since most commercial
image processing software packages have not been modified
for this purpose, we have made substantial efforts to extend
our previously published atmospheric correction algorithm for
Landsat-7 ETM+ imagery [5], [6]. The details are discussed as
Sections II-A and III-A.
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There are two approaches for estimating land surface broad-
band albedo from multispectral remote sensing observations.
The first builds on our understanding of physical processes. It
consists of the following:

1) atmospheric correction that converts the TOA radiance to
surface directional reflectance;

2) bidirectional reflectance distribution function (BRDF)
modeling that converts directional reflectance to narrow-
band albedos;

3) narrowband-to-broadband spectral conversions (e.g.,
the Moderate Resolution Imaging Spectroradiometer
(MODIS) albedo algorithm [7], [8]).

An advantage of using this approach is that we know where to
improve the algorithms as more data are accumulated and as
knowledge advances. The disadvantage is that any errors asso-
ciated with each processing step may be propagated and sig-
nificantly impact the accuracy of the final broadband albedo
product.

The second approach for estimating land surface broadband
albedo from multispectral remote sensing observations is a
hybrid that combines extensive radiative transfer simulations
(physical) with nonparametric regression methods (statistical).
It directly links the TOA radiance to surface broadband albedo
without performing different processes as per the first ap-
proach. This approach has been successfully used to estimate
broadband albedo from MODIS data [9].

The first approach has been adapted for this study. A compar-
ison of both approaches is planned for a future study using ALI
data.

There has been a long history of estimating canopy LAI
from multispectral satellite observations. The typical ap-
proaches include statistical regression based on vegetation
indixes [10]–[12], optimization inversion [10]–[12], lookup
table searching [13], [14], and hybrid inversion algorithms
[15]–[17]. In this study, we employ the hybrid inversion method
[18]. This approach combines our current understanding of
radiation transfer in vegetation canopies and state-of-the-art
statistical estimation techniques. The details are discussed as
Sections II-C and III-C.

Validation of the products derived from satellite data has been
an important part of this study. We conducted field campaigns at
both Beltsville Agricultural Research Center (BARC), MD, and
Coleambally Irrigation Area Region (CIAR), Australia. Exten-
sive correlative measurements were made, and some ancillary
information was also collected. The details will be presented in
Section II-D.

II. M ETHODS

A flowchart of methods is shown as Fig. 1. The absolute
radiometric calibration generates the coefficients for converting
DNs to TOA radiance. Following atmospheric correction to
surface spectral reflectance, the retrieved surface reflectances
are used to estimate both broadband albedo and LAI. Correl-
ative surface measurements are then used to validate surface
reflectance, broadband albedos, and LAI.

Fig. 1. Flowchart of methods.

A. Atmospheric Correction

Recently, we developed a new atmospheric correction algo-
rithm to remove the heterogeneous aerosol effects of Landsat-7
ETM+ imagery [5]. The algorithm consists of five steps.

Step 1) Distinguish hazy and clear regions using the visible
bands (mostly contaminated by aerosols).

Step 2) Group all pixels into clusters using near infrared
(NIR) (these are less contaminated by aerosols).

Step 3) Determine surface reflectance of clear pixels by
searching lookup tables created from MODTRAN.

Step 4) Match surface reflectance of hazy pixels with that of
clear pixels.

Step 5) Determine the aerosol optical depths of the hazy
pixels with a spatial smoothing process.

This procedure has been used successfully to correct many hazy
images. The retrieved surface reflectances have compared ex-
tremely well with correlative ground measurements [6].

This algorithm was modified to correct ALI imagery by ad-
justing the lookup tables for the ALI spectral response functions.
One of the difficult tasks of this algorithm is distinguishing
hazy pixels from clear pixels, especially when the background
is very bright. At shorter wavelengths, surface reflectance tends
to be lowered because of stronger atmospheric scattering. We
have explored several methods for determining hazy regions on
ETM+ imagery [5]. The clustering method gave the most sat-
isfactory results for the first few shortwave bands. The extra
blue band of ALI has contributed greatly to the success of this
approach.

B. Narrowband-to-Broadband Albedo Conversion

The algorithm we adapted for calculating surface broadband
albedo consists of 1) atmospheric correction, 2) angular mod-
eling of surface reflectance, and 3) narrowband-to-broadband
albedo conversion. The procedure is illustrated in Fig. 2. The as-
sumption of a Lambertian surface is used for the angular mod-
eling, as there is not enough information available from ALI
for an accurate angular model. Thus, the surface reflectance re-
trieved from the atmospheric correction step is equal to spectral
albedos. The final step converts narrowband albedo to broad-
band albedo.
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Fig. 2. Procedure for deriving surface broadband albedos. Note in this study
BRDF modeling was not performed due to assumptions of a Lambertian surface.
This is shown by the dashed line in the flowchart.

Conversion formulas exist in the literature that were devel-
oped from limited observations and/or simple radiative transfer
simulations. These solutions are mainly for total shortwave
broadband albedo. A procedure for determining the conversion
coefficients for a variety of sensors based on extensive radia-
tive transfer simulations and linear regression analysis was
recently developed [19]. These formulas proved very accurate
for predicting broadband albedo based on extensive ground
measurements [20]. The same approach was applied here
to establish conversion formulas for ALI. The MODTRAN
atmospheric optics simulation model was used to simulate
broadband albedo for a range of atmospheric conditions and
surface reflectance spectra. Linear regression analysis is used
to produce the conversion formulas.

Most studies in the literature provide conversion formulas for
calculating only the total shortwave broadband albedo. The vis-
ible and NIR broadband albedos are quite often needed for land
surface modeling. Moreover, both total visible and NIR broad-
band albedos are further divided into direct and diffuse albedos.
Forexample,theNASAGoddardEarthObservationSystem–Data
AssimilationSystem(GEOS–DAS)surfacemodel [21],National
Center for Atmospheric Research (NCAR) community climate
model [1], and the simple biospheric model [22], [23] use all four
broadband albedos of the visible and NIR region. It is desirable
to generate direct and diffuse visible and NIR broadband albedo
directly from satellite observations to calibrate and validate these
land surface models.

The following are the formulas for converting ALI narrow-
band albedos to three broadband albedos (visible: 0.4–0.7m;
NIR: 0.7–2.5 m; total shortwave: 0.35–2.5m) based on the
same procedure reported earlier [19], [20]:

-

-

Fig. 3. Fit of the linear conversion formula for the total shortwave.

Fig. 4. Fit of the linear conversion formulas for the visible and NIR.

-

-

where is the reflectance of all band; specifically, , ,
and are the reflectance of ALI bands 1p, 4p, and 5p, respec-
tively; and dir and dif represent direct and diffuse components.
The fitted intercept constants are small and have been omitted
for the above formulas. Figs. 3 and 4 demonstrate that these
linear functions fit the simulated data very well.

C. Hybrid Inversion Method for Retrieving LAI

Statistical and physical algorithms are used to estimate LAI
from remote sensing observations. Statistical algorithms rely on
spectral vegetation indixes that are linked with calibration LAI
measurements. They are simple and easy to implement. Unfor-
tunately, a universal relationship suitable for all species over all
regions does not appear to exist. Physical models are based on
canopy reflectance model inversions. The traditional optimum
inversion schemes are very time consuming and difficult for re-
gional applications. Lookup table and artificial neural network
(ANN) approaches have been used to speed up the process. A
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Fig. 5. Hybrid procedure for estimating LAI.

new approach, called a hybrid algorithm, combines canopy ra-
diative transfer simulations with statistical regression using an
ANN.

Our inversion algorithm is also a hybrid algorithm, similar
to the approach for estimating broadband albedo (Fig. 5). The
hybrid model is based on an initial off-line signature training
[18], which is illustrated in the upper right corner of Fig. 5.
These signatures are generated through extensive canopy radia-
tive transfer simulations with variable inputs of different vari-
ables. The trained algorithm can be then used for online deter-
mination of the LAI values from remotely sensed data.

The physical part of the hybrid algorithm uses a canopy radia-
tive transfer model for extensive simulations. For this study, we
used the canopy radiative transfer model developed by Kuusk
[24], [25]. The model outputs spectral reflectances that are then
integrated into ALI band reflectances using the ALI spectral re-
sponse functions. The statistical part of the hybrid algorithm
uses a nonparametric regression algorithm (i.e., ANN) to link
LAI and band reflectance. A major difference from the lookup
table approach is that we do not have to fix most input vari-
ables (set them as constants) for the hybrid algorithm. During
the canopy reflectance model simulations, many variables are
used, each with a reasonable range. Then, the nonparametric re-
gression algorithm links band reflectance with only the variables
of interest (i.e., LAI in the current case).

Theoretically, we can keep every variable free during the sim-
ulation stage. It is, however, desirable to fix certain variables to
which the band reflectances are not sensitive as realistic canopy
models contain a few dozen variables. The reader is referred to
the published algorithm description for details [18].

The Kuusk canopy model is very sensitive to soil reflectance.
As it is unrealistic to vary multispectral soil reflectance ran-
domly, the concept of a soil reflectance index based on the soil
line concept was used [26]. By examining the red and NIR
two-dimensional spectral reflectance space from the ALI im-
agery, a soil-line index was devised with its minimum value (0)
at the low end of the soil line, and the maximum value (1) at the
high end of the soil line. A soil-line index value corresponds to
a set of multispectral soil reflectance that are interpolated.

Another important issue is to select the most favorable bands
for the hybrid algorithm for a particular attribute (e.g., LAI),
since certain bands are more sensitive to other factors. Using
simulations, we select the best band combinations based on the

TABLE I
BEST ALI COMBINATIONS FOR LAI RETRIEVAL. SPECTRAL BANDS

ARE DESIGNATED BY BAND NUMBER. p REPRESENTSPRIME.
DETAILS CAN BE FOUND IN [30]

correlation coefficients and residuals between retrieved LAI and
true LAI values (Table I). Note that band combinations with an
rmse smaller than 1.0 are bolded. Other combinations produced
much worse results and are not shown. It is clear from this anal-
ysis that the additional bands of ALI (beyond that of ETM+) are
very useful for LAI inversion.

D. Field Campaigns and Ground Measurements

Extensive field measurements at BARC and CIAR were con-
ducted to validate the data products. BARC is an EOS land core
validation site [27], [28]. BARC has variable land cover types,
whileCIARhaslargehomogeneouscropfields.Extensiveground
measurements were collected coincident with EO-1 imagery
acquisitions. Albedometers were used for broadband albedo
measurements; field-portable spectroradiometers were used to
measure spectral reflectance (350–2500 nm); and nondestructive
optical methods with LAI2000 were used to measure LAI.

III. D ATA ANALYSIS

A. Atmospheric Correction

An assessment of the atmospheric correction algorithm to
retrieve surface reflectance accurately was deemed necessary



1264 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 41, NO. 6, JUNE 2003

Fig. 6. ALI-derived and measured surface reflectance. The lines represent
one standard deviation of the spectroradiometer-measured reflectance. Dates of
acquisition were (solid circle, BARC) August 2, 2001, (hollow circle, CIAR)
February 3, 2001, and (hollow diamond, CIAR) March 7, 2001.

as a first step. The assessment procedure is nearly identical to
that of the ETM+ atmospheric correction algorithm validation
[6]. Near the EO-1 overpass time (1 h), spectroradiometers
were used to measure the reflectance of transects in multiple
large, homogeneous plots. The average value of the within-tran-
sect samples was used to represent the reflectance of a plot.
The average reflectance spectra were then aggregated using the
ALI spectral response functions. Fig. 6 shows comparisons of
the surface spectral reflectance retrieved from ALI observations
with the aggregated surface measurement values. The agree-
ments are generally very good, although not all points match
exactly. Factors that may contribute to the differences include
selection of an inappropriate aerosol model, and the Lamber-
tian surface assumption, among others. For the first four bands,
the residual standard error (RSE) is roughly 0.01. For most other
bands the RSE is close to 0.03.

An atmospherically corrected image example of suburban
Beijing City, China is given in Fig. 7. The color composite im-
agery shows before (left image) and after (right image) atmo-
spheric correction of three bands 4p, 3, and 2 (red, green, and
blue, respectively). Fig. 8 shows the spatial distribution of TOA
radiance differences of band 1. The differences are the original
TOA radiance minus the calculated TOA radiance. (The cal-
culated TOA radiance was a forward simulation using the re-
trieved surface reflectance, a clear atmosphere, and the same
solar-viewing geometry.) It is evident that Fig. 8 captures the
spatial distribution of the aerosols very well.

B. Broadband Albedo Estimation

The conversion formulas that were developed from extensive
radiative transfer simulations using ground measurements de-
scribed in Section II-B were first validated. Spectroradiometer
and albedometer ground measurements from BARC were uti-
lized from five days: May 11 and August 4, 2000, and February
26, March 1, and March 29, 2001. Data were collected at CIAR

(a) (b)

Fig. 7. False-color composite imagery (a) before and (b) after atmospheric
correction (red: 4p, green: 3, blue: 2).

Fig. 8. EO-1 band-1 TOA radiance (in watts per square meter steradian
micrometer) difference between before and after atmospheric correction.

on February 3, 2001. Details of the field measurements were
presented by Lianget al.[20]. The visible broadband albedo can
be deduced from the measured shortwave and NIR up and down
radiative fluxes that were measured simultaneously. Fig. 9 com-
pares the measured broadband albedos, with the three broad-
band albedos calculated using the conversion formulas from
Section II-B. The results show excellent agreement. The pre-
dictions are not biased, and the residual squared errors for the
total shortwave, visible, and NIR albedos are 0.010, 0.016, and
0.022, respectively.

Following the flowchart of Fig. 2, we can easily generate the
broadband albedo maps if the surface is assumed to be Lam-
bertian. Fig. 10 illustrates the retrieved three broadband albedo
maps. Visually the spatial patterns and magnitudes look very
reasonable.

The assumption of a Lambertian surface was debated when
we published similar albedo maps from ETM+ data [20], [29].
The key argument was that the broadband albedo depends on
both spectralandangular properties of the land surface. From
the validation analysis of this study, and studies for other sen-
sors [20], it appears that an assumption of spectral information
dominance over the angular information does not lead to signif-
icant errors.
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Fig. 9. Validation of the narrowband-to-broadband albedo conversion formulas using correlative ground measurements.

Fig. 10. Broadband albedo maps over Beijing from data shown in Fig. 7.

C. LAI Estimation

As in Sections III-A and III-B, the first step is to vali-
date the hybrid inversion algorithm for retrieving LAI from
ALI imagery. Field measurements were conducted at both
USDA/BARC and CIAR, primarily on three dates with EO-1
overpass: August 2, 2001 at BARC, and February 3, 2001 and
January 12, 2002 at CIAR. Our focus is on the agricultural
crops.

For each field campaign, we selected multiple small plots
within large crop fields. Within each plot, several transects were
identified, and LAI measurements were made along each tran-
sect using nondestructive methods. Because of geolocation and
registration uncertainties, it is difficult to make direct compar-
isons on the pixel basis. Instead, the average LAI for each field
was calculated. Comparisons between the measured and the re-
trieved LAI are shown in Fig. 11. This illustrates that the inver-
sion algorithm works extremely well. The rmse is only 0.44. It
is important to point out that none of the points in the figure
were used to train the model. Additionally, we did not use any
ground measurements to tune our algorithm. The ANN was
trained using the simulation results from the Kuusk canopy ra-
diative transfer model.

Given the promising performance of the hybrid inversion al-
gorithm, we made LAI maps of our test sites. Fig. 12 shows crop
LAI at three different times during the growing season at CIAR
using bands 4 and 4p. The temporal patterns make sense for
the southern hemisphere summer growing season. Note that the
January imagery is from 2002 and is assumed not significantly
different from 2001. LAI is highest during January for rice and

Fig. 11. Comparisons of the retrieved LAI values with the measured LAI
values over both BARC and CIAR.

Fig. 12. LAI maps over CIAR from three ALI images. (A) January 12, 2002,
(B) February 3, 2001, and (C) March 7, 2001.

corn, and smallest during March, whereas LAI is maximum for
soybeans and sorghum during early February.

IV. CONCLUSION

A series of new algorithms for estimating albedo and LAI
using ALI data have been developed and validated through ex-
tensive ground measurements at two validation sites. The results
indicate that these algorithms are very accurate and that the ad-
ditional ALI bands beyond those of ETM+ are helpful for atmo-
spheric correction and retrieval of land surface variables.

Since almost all inversion algorithms are based on surface
reflectance, atmospheric correction is a necessary step for con-
verting TOA radiance to surface reflectance. It was shown that a
newly developed ETM+ atmospheric correction algorithm can
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be successfully extended to correct ALI imagery. The atmo-
spheric correction algorithm can retrieve surface reflectance ac-
curately with small residual errors for shortwave and NIR bands.
The algorithm is particularly able to remove the effects of het-
erogeneous aerosol scattering.

Spectral albedo was approximated as a function of retrieved
nadir ALI reflectance. Thus, a Lambertain surface assumption
in the atmospheric correction algorithm appears adequate at
least for the landscape with the dominate agricultural fields.
This supports previous investigations suggesting that wave-
length dependence is more important when calculating surface
broadband albedo than angular reflectance dependence. New
formulas for converting ALI narrowband albedos to broadband
albedos appeared to work well, based on comparisons with
field measurements made at BARC and CIAR.

A hybrid LAI estimation algorithm that combines extensive
canopy radiative transfer simulations (physical) with nonpara-
metric regression methods (statistical) offers a promising al-
ternative to traditional approaches. The algorithm incorporates
a soil reflectance index based on the soil line concept. LAI
maps for CIAR during the 2000/2001 and 2001/2002 summer
growing seasons produced with the hybrid algorithm were sen-
sitive enough to capture expected temporal patterns related to
local management and crop phenology.

Future efforts will include incorporation of realistic surface
directional reflectance properties into the algorithms. Another
will be to extend these algorithms to hyperspectral data, such
as Hyperion imagery. Validation of algorithms under different
conditions as conducted with this presentation will be integral
to the analyses. The comparison will also be performed for ETM
and ALI for albedo and LAI. ETM is the baseline and both ALI
and Hyperion need to be compared to the current baseline of
ETM.
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