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The objective is to discern events and behavior in activities using video se-

quences, which conform to common human experience. It has several applications

such as recognition, temporal segmentation, video indexing and anomaly detection.

Activity modeling offers compelling challenges to computational vision systems at

several levels ranging from low-level vision tasks for detection and segmentation to

high-level models for extracting perceptually salient information. With a focus on

the latter, the following approaches are presented: event detection in discrete state

space, epitomic representation in continuous state space, temporal segmentation

using mixed state models, key frame detection using antieigenvalues and spatio-

temporal activity volumes.

Significant changes in motion properties are said to be events. We present an

event probability sequence representation in which the probability of event occur-

rence is computed using stable changes at the state level of the discrete state hid-

den Markov model that generates the observed trajectories. Reliance on a trained



model however, can be a limitation. A data-driven antieigenvalue-based approach

is proposed for detecting changes. Antieigenvalues are sensitive to turnings whereas

eigenvalues capture directions of maximum variance in the data. In both these ap-

proaches, events are assumed to be instantaneous quantities. This is relaxed using

an epitomic representation in continuous state space.

Video sequences are segmented using a sliding window within which the dy-

namics of each object is assumed to be linear. The system matrix, initial state value

and the input signal statistics are said to form an epitome. The system matrices

are decomposed using the Iwasawa matrix decomposition to isolate the effect of ro-

tation, scaling and projection of the state vector. It is used to compute physically

meaningful distances between epitomes. Epitomes reveal dominant primitives of ac-

tivities that have an abstracted interpretation. A mixed state approach for activities

is presented in which higher-level primitives of behavior is encoded in the discrete

state component and observed dynamics in the continuous state component. The

effectiveness of mixed state models is demonstrated using temporal segmentation.

In addition to motion trajectories, the volume carved out in an xyt cube by a moving

object is characterized using Morse functions.
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Chapter 1

Introduction

The objective of human activity modeling is to develop a system that can

discern events and behaviors using video sequences. Learning activity models is

useful for several applications including surveillance and monitoring in urban envi-

ronments, detection of anomalous activities and designing assistive technology for

improving the quality of life of elderly citizens. The urgency for effective activ-

ity modeling continues to grow with the increasing amount of video data that is

available. There are three main sources of video streams: surveillance scenarios

(buildings, commercial establishments, transportation centers, city streets), indus-

trial sources (manufacturing processes, rail track monitoring) and home-videos (as

evidenced by the phenomenal popularity of youtube.com). All these applications

may be said to be passive in which the system recognizes, indexes or raises an alarm

after processing the input video stream. In contrast, learning activity models can

be useful for active applications in which the system generates new activities using

learnt models. For example, models can be used for motion planning and robotic

navigation.

There are several challenges in developing effective activity models. Low-level

video processing challenges limit the amount of information that can be extracted

from video streams. For instance, tracking objects in surveillance scenarios contin-
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ues to be encumbered by poor contrast between foreground and background, and

noise. As a result, it may not be possible to reliably obtain trajectories in far field

surveillance scenarios. It is desirable to build systems that are robust to low level

limitations. Many high-level challenges stem from semantic equivalence, i.e., an

activity could produce trajectories whose appearance varies drastically. We as hu-

mans, may recognize the activity in spite of drastically varying conditions. It is

difficult to automate this task without using domain knowledge during modeling.

Domain knowledge can be readily incorporated in semantic and ontological

approaches to activity modeling. Ontology involves manually specifying concepts

related to an activity. This intervention for each activity however, is tedious and

does not lend itself to easy generalization. Moreover, it relies on the expert’s ability

to predict all possible scenarios in an activity. Our work focuses on developing

statistical models that detect events and behaviors.

At the outset, it may be worth clarifying terms such as actions, activities

and events. Many existing approaches distinguish between actions and activities

depending on the scale of representation ([1],[2]); i.e., individual parts of the body

are said to perform actions such as picking up and putting down objects, whereas

human interaction with the environment is said to constitute activities such as those

in surveillance scenarios. We do not make this distinction and use the term activities

to denote both these cases. The distinction is not crucial since we are interested

in applications such as recognition and anomaly detection irrespective of whether

they are actions or activities. In [3], activities are decomposed as a sequence of

primitive segments. Primitives can be considered as building blocks of activities
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that are spread over an interval of time [4]. This is analogous to decomposing

speech into phonemes, which are the building blocks of the speech signal. We use

the term events to denote instantaneous entities that can be thought of as boundaries

between primitive segments. Perceptually significant changes in motion properties

are said to represent events. Events are assumed to be instantaneous quantities

unlike behaviors that can persist over a time interval.

1.1 Overview of the dissertation

An overview of the dissertation and its organization is described next. This is

followed a brief discussion of related work.

1.1.1 Events in a discrete state space setting

Many commonly performed human activities can be regarded as a sequence

of certain important events. If the events occur in a particular sequence, then the

activity is said to have taken place. We model the event detection problem in a

discrete state space setting using motion trajectories of objects as the observed data

sequence. An event representation called the event probability sequence is presented

in chapter 2 using the hidden Markov model (HMM) framework.

The choice of an appropriate scale of event representation may not be obvious

in a given scenario. Constructing a coarse to fine hierarchy of events is a power-

ful way to address this challenge. We describe goodness criteria and quantitative

measures to judge the efficacy of a coarse to fine hierarchical event representation.
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1.1.2 Epitomic representation in continuous state space

In chapter 3, an epitomic representation of activities is presented in a con-

tinuous state space setting. Motion trajectories of objects within video segments

are modeled using linear dynamical systems. The estimated system matrix, initial

value of the state and the input signal statistics (mean and covariance) are said

to form an epitome. The epitomes are analyzed using the Iwasawa matrix decom-

position that allows us to compute geodesic distances between activities that are

perceptually informative. The Iwasawa decomposition gives three components that

represent rotation, scaling and projective action of the state vector. Besides their

application for activity recognition, the usefulness of the decomposition is illustrated

for applications such as clustering and key frame detection.

1.1.3 Mixed state model

Quantities such as velocity and acceleration of objects in the scene are contin-

uous valued, whereas behavior (start, stop, etc.) and instantaneous events (grasp,

turn, etc.) are discrete-valued. This motivates the need for mixed state systems that

can handle both continuous and discrete valued states. In chapter 4, a mixed state

model along with its application for video indexing is described. It can characterize

multiple moving objects in the scene and adapt to changing behavior. A basis of

behaviors is introduced so that domain knowledge can be used in developing activity

models.
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1.1.4 Key frames using antieigenvalues

In chapter 2 the space of allowable events was confined to a combination of

a pair of (unequal) states. This limits the number and nature of events that can

be represented. In chapter 5, we present a way to overcome this limitation using

antieigenvalues. Antieigenvalues measure changes in the data unlike eigenvalues

that extracts dominant characteristics in the data.

1.1.5 Modeling spatio-temporal volumes

The previous methods have focussed on modeling motion trajectories. Alter-

natively, activities can be represented using spatiotemporal volumes or xyt cubes

that are formed by stacking frames in a video sequence. Objects moving in the scene

carve out patterns in the volume. In chapter 6 an algebraic way of characterizing

the topology of spatio-temporal volumes using Morse functions is presented. We

propose a Morse function based on dynamics of moving objects and use the critical

points and the associated critical values as a signature of the activity.

1.2 Related Work

In recent years research in activity modeling has grown from modeling simple

activities to complex ones involving semantics. A few related works are mentioned

below. A more detailed review may be found in [5].
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1.2.1 Semantic approaches and event modeling

Event recognition can be traced back to an early work in the field of artificial

intelligence where Tsuji et al. [6] used simple cartoon films for representation. Neu-

mann and Novak [7] proposed a hierarchical representation of event models. At each

level, a template of a verb of locomotion is matched to the observed data. More

recently, Kojima et al. [8] proposed a natural language representation of human

actions based on extracted positions of the hand, head and body. A hierarchy of

verbs was built using case frames. Vu et al. [4] defined a description of activity

consisting of actors, logical predicates and temporal relations between sub-events.

Zelnik-Manor and Irani [9] considered events as long-term temporal objects at mul-

tiple temporal scales. The chi-squared distance between empirical distributions is

used to compare these event sequences. Chan et al. [10] extract spatial semantic

primitives from the observed data. This procedure uses domain knowledge and a

pre-specified set of primitives.

Medioni et al. [11] developed a system that includes techniques for object de-

tection, tracking and recognition of multi-agent events. Pre-specified features such

as distance, direction of heading and speed were defined for various scenarios. Fran-

cois et al. [12] described a framework for video event representation and annotation.

The Video Event Representation Language (VERL) and the Video Event Markup

Language (VEML) were introduced to describe ontologies of activities, and man-

ually annotate events. The user has the freedom to define events and choose the

desired level of granularity in representation. In other words, their framework uses
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a designed semantic structure to describe activities.

The large amount of data generated by the escalating ubiquity of video cameras

poses a significant challenge to semantic approaches. Unlike statistical approaches,

semantic ones are limited in their ability to generalize to new scenarios. This is one

of the reasons for the increasing popularity of statistical techniques.

1.2.2 Statistical approaches

Johnson and Hogg [13] presented a neural network approach to learn the distri-

bution of motion trajectories. They used vector quantization to cluster trajectories

into a known number of classes. The cluster centers were updated by annealing.

This approach was developed further in [14] for robust tracking and anomaly de-

tection using a fast fuzzy k-means algorithm. As the number of trajectories and

activities increases, comparing raw trajectories may be computationally expensive.

Also, it ignores the structure inherent in activities.

Stauffer [15] proposed a factored learning approach to classifying surveillance-

type data. These techniques accumulate motion trajectories in the scene to produce

an intuitively appealing map of trajectories. Similar to [15], we do not attempt

to track objects over the entire video sequence. Rather motion trajectories are

extracted for video segments.

Motion features can be selected depending on activities of interest. For exam-

ple, Parameswaran and Chellappa [16] computed view invariant representations for

human actions in both 2D and 3D. In 3D, actions were represented as curves in an
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invariance space and the cross ratio is used to find the invariants. Rao et al. rep-

resented actions as a sequence of dynamic instants [1] that are points of maximum

curvature along the motion trajectory. Curvature was chosen as a feature to derive

view-invariant representations. Similarly, in [17], changes in velocity curve profiles

of actions have been used to segment actions in videos streams. Syeda-Mahmood et

al. [18] used generalized cylinders to represent actions. Assuming that the start and

end points are known, they formulated the task as a joint action recognition and

fundamental matrix recovery problem. Reliance on features such as curvature can

limit the domain of applicability. For example, in an airport tarmac surveillance

scenario, trajectories formed by passengers walking from gate to aircraft can follow

a straight-line path. So this approach is not entirely applicable for our case. An-

other limitation is that trajectories may contain only a few points of high curvature

making it possible to encode only a few activities.

An unsupervised system for classification of activities was developed by Stauf-

fer and Grimson [19]. Motion trajectories collected over a long period of time were

quantized into a set of prototypes representing the location, velocity, and size of the

objects. Assuming that the sequence of prototypes in each trajectory consist of a

single activity, a co-occurrence matrix representing the probability that a pair of

prototypes both occur in the same sequence was estimated and used for classifica-

tion.

Vaswani et al. [20] regarded a sequence of moving points engaged in an activity

as a shape using Kendall’s shape space theory. Shape is defined as the geometrical

information that remains after filtering out the effects of translation, rotation and
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scale. Procrustes distance between two activities was used to check for anomalous

trajectories. Dynamics are modeled in the shape’s tangent space using a first order

Gauss-Markov model. This can only model small changes about the mean activity

shape. It may be necessary to preserve distinctions arising from factors such as

rotation to distinguish between activities. For example, shape representation fails

to distinguish between trajectories of persons embarking an aircraft from those of

persons disembarking the aircraft.

Factorization approach, originally proposed by [21] and extended to non-rigid

shapes by [22], was used in [23] to model activities. They used rank constraint in

the factorization theorem to distinguish between trained models. An activity is said

to be anomalous if the projections on the basis shapes do not cluster as expected.

They demonstrated the effectiveness of the approach for repeated activities such as

passengers embarking an aircraft. As the authors note, however, it cannot be used

to recognize ground crew movement because of drastic variations across samples.

Caspi et al. [24] presented a sequence matching approach that incorporates

shape information instead of relying solely on interest points. Based on the ex-

tracted motion trajectories, they compute several motion properties that depend

on activities of interest. The features are used to match the given unsynchronized

video sequences. Our method is similar in principle, in that it computes a mid-level

representation based on space-time trajectories. A major difference, however, is

that features in [24], which form the mid-level representation, have to be manually

specified depending on activities of interest. We attempt to recover structure that

is inherent in activities by analyzing the geometrical structure of epitomes.
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1.2.3 Graphical models

HMMs and dynamic Bayesian networks (DBNs) have been widely used to

model activities. HMMs have been successfully applied in many vision and speech

applications ([25],[26],[27]). Usually, the HMM is used as a statistical representation,

without an explicit physical interpretation of its parameters ([2],[25], [28], [29]).

In DBNs, states are specified using domain knowledge ([30], [31]) and the graph

structure is manually designed. These models clearly reflect semantics, but building

(or altering) them can be tedious. Alternatively, the state space may be augmented

([32], [33]). The augmentation generally makes model estimation intractable. The

main difference of the proposed approach is that, instead of attaching a semantic

significance to states themselves, we use stable transitions between states of an

HMM to represent significant changes in motion that may be interpreted as events.

Tractability in parameter estimation and event detection is retained. Also, events

are not chosen manually. Some related state space approaches are described below.

Brand et al. [32] used coupled HMMs to model actions involving body parts

such as hands and head. The states of the HMMs representing the motion in dif-

ferent parts of the body are forced to evolve synchronously. In a general activity

model, deciding which of the HMM states have to be coupled may not be obvious.

Also, an increasing number of parts presents a computational challenge. Ivanov

and Bobick [2] consider activities that are semantically defined, i.e., activities with

structurally defined relationships of primitives. Their approach used a two-step pro-

cess that involves an HMM stage to extract probabilities associated with primitives,
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and a stochastic grammar parsing stage that recognizes the structure of the activ-

ity. The primitives are obtained using sub-HMMs that are trained using previously

segmented data.

Koller and Lerner [34] described a sampling approach for learning parameters

of a DBN. Hamid et al. [30] presented a DBN-framework for recognizing complex

multi-agent activities. They used a feature-based particle tracker and a DBN for

recognition. In general, if the structure of the activity changes, DBNs have to be

completely re-estimated.

Brand and Kettnaker [35] recognized that the states of an HMM need not

represent meaningful entities. They interpreted states as events by training the

HMMs using entropy minimization rather than the Baum-Welch algorithm. The

HMMs were designated as entropic HMMs. Oliver et al. [36] presented a layered

HMM model for representing activities at multiple levels of temporal granularity. Shi

and Bobick [31] presented a propagation-net (P-Net) model to incorporate duration

modeling in a DBN (or HMM)-like framework.

Most existing activity modeling approaches use motion trajectories as features

of interest ([1], [2], [20]). Alternatively, techniques in video summarization have used

frame-based features such as color histograms ([37], [38], [39]). Motion trajectories

offer the following main advantages. They contain temporally dense representation

of motion that can be used to infer behavior. As shown in [1] and [16], it is possible

to compute view invariant signatures of activities using trajectories.

Graphical models may be considered to be part of a broader category consisting

of state space approaches. Some related works are described next.
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1.2.4 State space approaches

Activity modeling can be viewed as a problem of inferring behaviors and inter-

actions between moving objects using the observed motion trajectories (or extracted

features). In [3], activities were modeled as a sequence of linear dynamical systems,

as are the proposed epitomic representation. Unlike [3], we analyze patterns in

epitomes that change as an activity progresses to find distance measures between

them.

Mixed state models have been used for several applications including activity

modeling, air traffic management, smart highway system, etc. ([40], [41], [42], [43]).

In some of these applications such as [42], [43], the focus is on analyzing the mixed

state systems where the model parameters are known (by design). On the other

hand, we are interested in learning parameters of mixed state models, which is ad-

dressed in [40] and [41] as well. Unlike HMMs, parameter estimation in mixed state

models is intractable. Isard and Blake presented a sampling technique for estimat-

ing a mixed-state model [40]. They assumed that the structure of the activities is

known, and that the parameters are stationary. Ghahramani and Hinton described

a varational method for learning [41].

1.2.5 Distance based on dynamics

The notion of distance between dynamics can be traced back to atleast the

nineteenth century, when Jordan proposed principal angles between linear vector

spaces [44]. Hotelling gave a statistical formulation using canonical correlations
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[45]. Based on principal angles, subspace angles have been defined to compare

linear systems and ARMA models. De Cock and De Moor described various ways of

computing subspace angles between linear systems [46]. It is defined as the principle

angle between the column spaces generated by the observability matrices of two

models. The Martin distance [47] uses principal angles to compare AR models.

In vision literature, subspace angles have been used to measure similarity between

dynamical models in [48] for recognizing humans based on gait. In [49], subspace

angles between measurement matrices are used to find the distance between actions.

We develop a distance metric for comparing activities using ideas, in part, from [47]

and [46].

1.3 Datasets

We give a brief description of the datasets used to demonstrate our approaches

to activity modeling. The datasets are chosen to illustrate the effectiveness of the

approaches in both indoor and outdoor video sequences.

1.3.1 UCF human action dataset

The UCF dataset consists of 60 trajectories of common activities. We divide

these into 7 classes: open door, pick up, put down, close door,erase board, pour

water into cup and pick up object and put down elsewhere. The hand trajectories are

obtained in a two step process in which the hand is first detected and then tracked.

A skin detector is used to initialize the position of the hand in the first frame [50].
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Figure 1.1: Sample images from the UCF dataset. (a) Open cabinet door, (b) Pick

up an Object. The stars indicate the dynamic instants detected by [1].

The hand is approximated as a point object using the centroid of the bounding box

on the hand. A mean shift tracker is used to obtain the trajectories. The resulting

trajectories are smoothed out using anisotropic diffusion [51] so that corners and

sharp changes are retained. A detailed description is available in [1]. Figure 1.1

shows sample images from the dataset along with the trajectories. Typically, most

of the activities in the dataset last for a few seconds i.e., of the order of 100 frames.

1.3.2 TSA airport tarmac surveillance dataset

The TSA dataset consists of surveillance video captured at an airport tarmac

[20]. The stationary camera operates at approximately 30 frames per second and the

frame size is 320×240. Though it is approximately 120 minutes long, a large portion

of the video does not contain any activities. We divide the entire data into 23 blocks

of about 10, 000 frames each. Here onwards, we refer to such sets of 10, 000 frames
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Figure 1.2: Sample images from the TSA airport tarmac surveillance dataset.

as blocks. Moving objects are detected and tracked as described in section 4.2.1.

The background at each pixel was modeled using a Gaussian distribution. The

parameters are reinitialized every hundred frames. Each frame is compared with

the background and the moving objects are detected. A bounding box is drawn

on the detected blobs. The KLT algorithm is allowed to choose feature points for

tracking within the bounding box. The average trajectory of feature points within

the bounding box is regarded as the motion trajectory of the objects. Since the

video sequence is long, it is impractical to obtain ground truth of trajectories. The

activity model needs to be robust to imperfections in tracking. The ground truth

for temporal segmentation was extracted manually, i.e., by direct inspection of the

video sequences. Figure 1.2 shows sample images from the dataset along with the

trajectories extracted.

1.3.3 Bank surveillance and monitoring dataset

The bank dataset consists of staged videos collected at a bank [52]. There

are four sequences, each approximately 15-20 seconds (∼ 400 frames) long. Figure
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Figure 1.3: Sample images from the bank surveillance and monitoring dataset.

1.3 show sample images from the dataset. Moving objects are detected and tracked

using the same procedure as in section 1.3.2.

1.3.4 Motion Capture (MOCAP) dataset

The MOCAP dataset available from Credo Interactive Inc. and CMU consists

of motion capture data of subjects performing different activities including different

kinds of walking, jogging, sitting, and crawling. The system tracks 53 joint locations

during an instantiation of the activity and the tracks are stored in bvh format. Since

not all the 53 points are relevant to the types of activity that we are interested in,

we use only a few of the trajectories. For example, trajectories of the different

fingers and toes may not be as informative as the location of the arms, legs or hip

for activities such as walking or sitting. We choose five such regions to demonstrate

activity classification: head, neck, shoulders, hands and feet. Another practical

reason for choosing a subset of the available trajectories is the limited number of
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observations per activity.

1.4 Contributions of the dissertation

1. We propose event probability sequences to model activities as a sequence of

important instantaneous events. Its effectiveness is demonstrated using activ-

ity recognition and anomaly detection.

2. We introduce an epitomic representation using linear dynamical systems as

building blocks. The tuple consisting of the system matrix, initial state value

and input signal statistics is said to be an epitome. We presente star diagrams

as a way of visualizing the epitomes. Star diagrams reflect similarities be-

tween motion trajectories of activities, which may not be seen at the motion

trajectory level because of semantic ambiguity.

3. We propose using the Iwasawa matrix decomposition to decompose the effect of

epitomes on the state vector. It is used to isolate the effects of rotation, scaling

and projective action on the moving object. The efficacy of the components

is illustrated using clustering and key frame detection.

4. We develop a new distance metric to compare activities using the Finsler-

Minkowski metric as the infinitesimal metric. The distance is computed component-

wise using the factors in the Iwasawa matrix decomposition.

5. We propose the use of antieigenvalues for detecting key frames in activities.

Antieigenvectors are sensitive to turnings in the data, whereas eigenvalues
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capture the direction of maximum variance.

6. The volume carved out in space and time by moving objects is considered

as a feature to model activities. We present Morse functions as a way of

characterizing the topology of the spatio-temporal volumes.

7. Scale Invariant Feature Transform (SIFT) features are shown to be equivalent

to a special choice of Morse functions on the space of image volumes in which

images (x, y, I(x, y)) are considered as 3D objects, where I(x, y) is the intensity

value at pixel (x, y).
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Chapter 2

Event Probability Sequences

2.1 Introduction

Human activities can be decomposed into a sequence of events that have a nat-

ural physical interpretation. This can be accomplished using semantic approaches

([2], [4], [8], [11], [12]) in which events are pre-specified. Alternatively, they can

be modeled using statistical approaches ([25], [28], [31], [32], [34], [53]), in which

modeling is viewed as a problem of inferring (hidden) events from observed features

(e.g., motion trajectories). We present a statistical approach for modeling activities

as a sequence of events.

Events can be defined based on certain dominant and persistent characteristics

of the data. For example, events can be associated with key frames or exemplars. On

the other hand, they can be defined using significant changes in data. Change-based

events, in addition to providing an effective way of representing events are naturally

suited to anomaly detection. By nature, events based on changes are associated

with both past and future states of an object, and thus provide a more complete

local representation of activities. Change can be defined in several ways – changes

in direction of motion, appearance, etc. The goal of activity modeling is to find

stable changes from observed data that can be interpreted as events.

We propose an event detection technique using the HMM framework that
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focusses on stable state transitions under the hypothesis that certain state-level

transitions denote events. In most of the existing approaches that use HMMs, the

focus is either on finding a compact model to represent time series data ([25], [26])

or finding a representation in which states may be interpreted as meaningful entities

([2], [29], [35], [31]). Both these types of approaches emphasize the optimal state

sequence, which maximizes the likelihood of generating the given data. It is not

necessary, however, for the optimal state sequence to contain physically meaningful

information for representing events.

The proposed method differs from the above-mentioned methods in that we

attempt to interpret certain stable transitions at the state level as events. So the

optimal state sequence is less important for event detection. During event detection,

several state sequences of the HMM are explored as follows. Consider an observed

data sequence (e.g., motion trajectory) of length T . In an ergodic HMM with

N states, there are NT possible state sequences, each of which can generate the

observed data with some probability. The optimal state sequence which is one among

these state sequences, maximizes this likelihood. Given an observation sequence and

a learned HMM, an event probability sequence {ep
t , t = 1, . . . , T, p = 2, . . . , P} is

computed in which a local maximum denotes a stable transition at the state level.

Here p denotes the scale parameter. An efficient way of exploring state sequences

to compute {ep
t} is described.

It is desirable to find an event representation of activities that are invariant

to changes in viewing conditions. The HMM, however, is view-dependent since it is

trained using apparent 2D motion trajectories. So multiple HMMs are required if
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the appearance of motion trajectories changes significantly. The usefulness of event

probability sequences is illustrated using activity recognition and anomaly detection

in both indoor and outdoor scenarios. In many of these scenarios, it is common to

have several samples of normal activities, but very few anomalous cases. It is not

practical to model all possible anomalous activities, some of which can arise due

to subtle, statistically insignificant deviations from normal cases. Events in the

proposed methods can be used to detect such anomalies since they are a result of

local changes, and is largely unaffected by rest of the activity.

The rest of the chapter is organized as follows. Section 2.2 motivates activity

representation as a sequence of instantaneous events and section 2.3 describes the

proposed event probability sequences. An efficient way of computing event proba-

bilities is described in section 2.4. Section 2.5 discusses view invariance of events.

Section 2.6 demonstrates the usefulness of the proposed approach for recognition and

anomaly detection using the UCF human action dataset, the CMU motion capture

dataset and the TSA airport surveillance dataset.

2.2 Motivation

In this section, typical activities are described to motivate a representation

of activities as a sequence of events. Consider an office environment, in which ac-

tivities as opening and closing doors, picking up and putting down objects, and

sitting and standing are commonly observed. Figure 1.1 shows sample images de-

picting such activities, along with automatically extracted motion trajectories of
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Figure 2.1: (a) Motion trajectory of picking up an object from the desk and (b)

picking up an object in the cabinet.

the hand. Figure 2.1 shows trajectories of picking up an object. Though the two

trajectories represent the same activity, the variation in appearance is significant.

The high degree of intra-class variability poses a challenge to existing approaches

like the HMM. Moreover, for the activity pick up an object to occur, the time in-

stant associated with the picking up the object is more important than the rest of

the trajectory. This suggests a representation that can highlight important time

instants when events such as start, pick up and stop occur. At a finer resolution, we

may say that the sequence of events extend hand - make contact with object - pick

up - withdraw hand forms the activity. Each of these events represent a significant

change in the motion trajectory that has a semantic interpretation. These changes

are highlighted as peaks in the event probability sequence in the proposed model.

Similarly, a typical activity in a parking lot may be represented as a sequence of

events: exit building - enter parking lot - enter car - exit parking lot.

In an airport tarmac surveillance scenario, common activities include passen-

gers embarking and disembarking an airplane. One may be interested in not only

recognizing the activity, but also in detecting anamalous activities. Anomalies can
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be of various types: spatial, temporal, contextual, etc. It is not practical to enumer-

ate all possible anomalies, and check for them. An alternative approach is to model

normal activities and declare deviations from the normal model as anomalies. This

too, has limited applicability since anomalies can result from subtle deviations from

the normal trajectories that need not be statistically significant. Also, anomalies

can be localized in time and space so that a major portion of the activity would

appear normal. The anomalous part can be confined to a small region (in time and

space) of the activity.

Activities can be represented as a sequence of events that are localized in time

and space, as illustrated in the examples above. We propose a representation called

event probability sequences for this task. Events are detected based on stable, local

changes in motion properties that can be semantically interpreted.

2.3 Event probability sequence

In this section, we describe a probabilistic event representation that quantifies

the notion of important characteristics of activities. Every motion trajectory in

the scene is associated with an event probability sequence that is computed using

a two-step process: an HMM is learnt using the given motion trajectories, and

event probability sequences are computed using the learnt HMM and given motion

trajectories. One of the main advantages of retaining the HMM learning step is that

it allows for easy generalization, i.e., the structure of the model need not be manually

specified for different activities. Using the learnt HMM, we explore a subset of the
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state sequences to detect events. The hypothesis is that significant changes in the

video sequence are reflected as events; and a sequence of events forms an activity.

Let O = {o1, o2, . . . , oT} represent the motion trajectory (observed sequence)

of an object for T frames, where ot is a 2-vector of the pixel location at frame t.

The observed sequence O is assumed to be generated by an HMM whose hidden

state sequence is denoted by Q = {q1, q2, . . . , qT}. Here qt ∈ {1, . . . , N}, where

N is the number of states. For every t = 1, . . . , T , qt can take any of N discrete

values. So there are NT possible state sequences that can generate the observed

motion trajectory O. Among these NT state sequences, the optimal state sequence

maximizes the probability that the given motion trajectory is observed. Instead of

the optimal state sequence alone, we explore other state sequences to detect events.

The key idea is that stable transitions at the state level reflect significant

changes in motion properties that are denoted as events. State-level transitions

provide a robust representation of change compared to those defined at the data-

level. Moreover, the number of distinct changes at the state level at any given time

is finite (and equal to N2 −N), and its probability of occurrence can be computed

efficiently. The simplest change at the state level is passing from state i at time

t to state j at time t + 1 (denoted by i → j). In the example of picking up an

object (figure 2.1), there is a significant change associated with the pick up event

when the hand, after having made contact with the object reverses direction and

withdraws. The pick up event can be said to be a semantic change in state from

state i before picking up the object to state j after picking up the object. The goal

of activity modeling is to detect these changes in motion trajectories extracted from
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video sequences without an explicit semantic model.

The probability of state change i → j , conditioned on the observed trajectory,

can be expressed [26] as:

ξt(i, j) = P (qt = i, qt+1 = j|O, λ) (2.1)

for states i, j ∈ {1, 2, . . . , N}. ξt(i, j) is used in the Baum-Welch algorithm to

efficiently compute the HMM parameters [26].

The change in (2.1) is based on one time-step before and after an event’s

occurrence. So it accounts for the hand’s state one frame before and after the pick

up event. For stable transitions at the state level, instead of transitions of the form

i → j in (2.1) is modified so that the probability of change associated with the

following state transitions i → i → j → j is used, where the inner i → j transition

occurs at time t [54]. In other words, given the observed trajectory, the probability

of its generation by the following state sequence is computed: persistence in state i

for two consecutive frames, then a transition to a state j and persistence in state j

for two consecutive frames. This uses the following sequence of states to detect an

event at time t:

i → i︸ ︷︷ ︸ → j → j︸ ︷︷ ︸ . (2.2)

2 frames 2 frames

The event variable η2
t (i, j) is defined as follows (so that η1

t (i, j)
def
= ξt(i, j)):

η2
t (i, j) = P (qt−1 = i, qt = i, qt+1 = j, qt+2 = j|O, λ) (2.3)

More generally, the region of support of an event can be extended from two
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frames to p frames by considering a subset of state sequences that are constrained

for 2p frames. Instead of the sequence of states in (2.2), ηp
t (i, j) uses the following

sequence of states:

i → i → . . . → i︸ ︷︷ ︸ → j → j → . . . → j︸ ︷︷ ︸ (2.4)

p frames p frames

Event variable ηp
t (i, j) for p = 2, 3, . . . , P is defined as follows.

ηp
t (i, j) = P (qt−p = i, qt−p+1 = i, . . . , qt = i, qt+1 = j, qt+2 = j, . . . , qt+p+1 = j|O, λ),(2.5)

where P ∈ N. At every time instant, there are N2 transitions between pairs of states

(i, j). Of these, there are N(N − 1) transitions between distinct (i, j). A transition

from state i to j, where j 6= i represents change. The most likely change among

the N(N − 1) transitions may be interpreted as an event. The event probability,

parameterized by scale parameter p, is defined as follows:

ep
t (k, l) = max

i6=j
ηp

t (i, j), (2.6)

where (k, l) = arg maxi6=j ηp
t (i, j). As p increases, the region of support for computing

an event increases. The before and after states k and l are said to characterize the

type of the event.

There are several reasons for choosing events based on transitions. First,

it is a simple and robust way of representing change. The event probability can

be efficiently computed using the variables in the Baum-Welch algorithm (section

2.4.2). Though stable transitions at the state level yield events, the representation

is tied to the underlying HMM. Since the HMMs are trained using 2-D motion
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Figure 2.2: An outline of the event probability sequences for activity recognition

trajectories, their parameters are view-dependent. This, however, is not a significant

limitation provided viewing conditions do not change drastically. Under certain

assumptions, the event probability sequence is quasi invariant to changes in viewing

conditions(section 2.5).

2.4 Approach

Figure 2.2 shows an overview of the proposed method. The training phase

cconsits of three steps: pre-processing, HMM estimation and computing event proba-

bility sequences. Motion trajectories are extracted and used to train an HMM. Using

the trained HMM, an event probability sequence is computed for every trajectory

of the activity. Given a new trajectory (not used for training) in the testing phase,

candidate event probability sequences are computed using each of the learnt HMMs

so that there are as many candidate event probability sequences as the number of

trained HMMs. Every candidate event probability sequence is compared with those
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computed during the training phase using dynamic time warping [55] to handle

slight changes in time alignment. These steps are described in the remaining part

of this section.

2.4.1 Pre-processing

Given a video sequence, moving objects are detected and motion trajectories

are automatically extracted. Motion trajectories of different objects in the scene are

separately modeled. The details are described in section 2.6.

2.4.2 Efficient computation of event probability sequences

Let λ = (A,B, Π) represent the HMM [26]. In our notation, we have tried to

maintain consistency with the commonly-used HMM notation, e.g. as in [56].

• A = [aij] is the probability transition matrix of size N × N . The quantity

aij = P (qt = j|qt−1 = i) denotes the one-step transition probability from state

i to state j.

• B represents the probability of observing a given data vector conditioned on

the current state. In our experiments, the (stationary) output distribution

bj(ot) = P (ot|qt = j) is assumed to be Gaussian, i.e., bj(ot) ∼ N (ot; µj, Σj).

• Initial probability of states is given by Π = [π1, . . . , πN ], where πi = P (q0 =

i|λ).

The parameters of the HMM are computed using the Baum-Welch algorithm

(Appendix A, [26]). Using the learnt HMM, an event probability sequence is com-
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(a) (b) (c) (d) (e) (f)

Figure 2.3: Events detected at different scales for picking up an object. The scale

parameter p varies from (a) p = 3 to (f) p = 8.

puted for every motion trajectory.

An efficient algorithm for computing event probability η2
t is described below.

From (2.3), we have

η2
t (i, j) =

P (qt−1 = i, qt = i, qt+1 = j, qt+2 = j, O|λ)

P (O|λ)
(2.7)

=
P (qt−1 = i, ot−1

1 , qt = i, qt+1 = j, qt+2 = j, oT
t |λ)

P (O|λ)
(2.8)

It is easy to show that (2.8) simplifies to

η2
t (i, j) =

αt−1(i)aiibi(ot)aijbj(ot+1)ajjbj(ot+2)βt+2(j)

P (O|λ)
, (2.9)

where αt(i) and βt(j) are forward and backward variables defined as follows [26]:

αt(i) = P (o1, o2, . . . , ot, qt = i|λ) (2.10)

βt(j) = P (ot+1, ot+2, . . . , oT |qt = j, λ) (2.11)

Similarly, for p ≥ 1,

ηp
t (i, j) = αt−p(i)a

p
iibi(ot−p+1)bi(ot−p+2) . . . bi(ot)aij ×

bj(ot+1)bj(ot+2) . . . bj(ot+p+1)a
p
jjbj(ot+2)βt+p+1(j)/P (O|λ) (2.12)
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(a) (b) (c) (d) (e) (f)

Figure 2.4: Events detected at different scales for opening the cabinet door. The

scale parameter p varies from (a)p = 3 to (f) p = 8.

Events detected for different activities are illustrated using examples. Consider

the activity of picking up an object. We may expect the relevant event to occur at

the instant when the object is picked up. At a finer scale, we may think of events

marking the start of the hand, the hand about to make contact, the hand making

contact, the hand starting to withdraw along with the object and the withdrawal

of the hand from the scene. The scale parameter p provides a control over the level

of detail that we may be interested in. For example, when p = 3, picking up an

object is characterized by the longer sequence of events described above, whereas

for p = 8, the activity has one event that corresponds to the instant the object is

picked up. Figure 2.3 shows the trajectories and the sequence of events detected at

various scales. The events are represented by dots. Similarly, for opening the cabinet

door, the number of events is related to the choice of scale. Figure 2.4 shows the

trajectories and the sequence of events detected.

2.4.3 Parameter Selection

In this section, we discuss the choice of HMM model order N and the scale

parameter p. Researchers have proposed several criteria to estimate the optimal
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model order N∗ for HMMs. We use the Bayesian Information Criterion (BIC) in

our experiments since it has been shown to be a strongly consistent Markov order

estimator [57]. The optimal value N∗ is given by

N∗ = arg min
N∈N

log l(N) +
kN

2
log T (2.13)

where log l is the negative log likelihood of the observed motion trajectory of length

T and kN is the degrees of freedom associated with the N th order model. We describe

two choices of scale parameter p: conditionally optimal p∗ (conditioned on optimal

N∗) and jointly optimal (N, p)∗.

2.4.3.1 Conditionally optimal scale parameter p∗

Using BIC, the scale parameter can be chosen as follows:

p∗ = arg min
p∈P

(Σt=T
t=1 ep

t (k, l) +
p

2
log T ). (2.14)

These two criteria for optimality, i.e., N = N∗ and p = p∗ imply that both

the representation of trajectory and the sequence of events are optimal. This is a

stronger requirement than finding the optimal scale of event representation. Instead

of the optimal pair (N∗, p∗). there may be a pair of values (N, p)∗ = (N1, p1) that

gives an optimal representation of event probabilities, where N1 may be a sub-

optimal order. This suggests a way to modify the optimality criterion to focus on

the event probability sequences.
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2.4.3.2 Jointly optimal parameters (N, p)∗

Events at certain key frames are said to represent the activity. This does

not require the entire trajectory to be modeled optimally. So we can confine the

penalized likelihood calculations to the key frames, or equivalently to the sequence of

event probabilities {ep
t , t ∈ [1, T ]}. If the underlying HMM is ergodic, each event can

be one of N2−N possible types as given by (2.6). If a left-to-right model is assumed

for the HMM, then the degrees of freedom for the possible types of events is halved.

The overall penalty is α(N2 − N) + p, where 0 < α ≤ 1 with equality for ergodic

HMM. For a left-to-right model, α = 1
2
. The event likelihood term associated with

the pair (N, p) is
∑

t e
p
t . We discuss the behavior of event probability sequences for

different values of N and p.

Case 1: Low value of N : Since only a few events are allowed to occur, we may

not be able to obtain a sufficiently rich sequence of events to represent the activity.

For example, with a 2-state HMM, only two types of events are allowed: (1, 2) and

(2, 1), where 1 and 2 are state indices. Even at moderate p values, many activities

may resemble each other leading to poor recognition performance.

Case 2: High value of N : This permits the occurrence of several types of

events. Besides the number of observation sequences required to estimate a higher

order HMM, there is the issue of over-modeling of events. The maximum value of

scale parameter P has to smaller than that of Case 1 to obtain a reasonable number

of events since the required transitions in (2.6) may not occur for larger values of p.

32



2.4.4 Matching event probability sequences

Given a test sequence O0, we extract the motion trajectory as before. Suppose

there are R trajectories in the training set. Then there are R sets of event probability

sequences that are computed using the respective HMMs for different values of

p. In general, the number of distinct HMMs is less than the number of training

trajectories. Multiple trajectories may be associated with the same HMM, but each

of the trajectories is associated with an event probability sequence. We compute R

candidate event probability sequences using O0 as the observation sequence in (2.5)

and (2.6).

The candidate event probability sequences are compared with the event prob-

ability sequences that were obtained during the training phase (at the same scale)

to compute a similarity score. If there are P candidate event probability sequences

computed for different scale parameters, we obtain P similarity scores. A direct

frame-to-frame matching of event probability sequences is not realistic since the

events need not occur at exactly the same time instants during different realizations

of an activity. There have to be allowances for missed or spurious events as well.

We use dynamic time warping (DTW) for computing the similarity score since it

allows for non-linear time normalization [55].

A brief outline of the DTW algorithm is described here. The objective of

the algorithm is to align the test sequence {x(t), t = 1, . . . , T1} with the reference

sequence {y(t), t = 1, . . . , T2} so that the distance between the two sequences along

the warping path {C(t), t = 1, . . . , T1} is minimized. Both the signals x(t) and
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y(t) can be vector-valued. A band of size 2W is defined along the diagonal, which

contrains the warping region. Roughly speaking, this means that a test vector

x(t) can be matched with a one of the reference vectors in the sequence {y(t −

W ), . . . , y(t+W )}. For every point within the warping region, the distance between

the test and reference vectors are computed using a suitable norm (Euclidean, in

our case). The warping path is found by the backtracking step.

2.5 View invariance in representation

In this section, we discuss the effect of changing viewing conditions on event

probability sequences. The changes could be due to changes in position of the

person performing an activity while the camera and rest of the objects in the scene

are held fixed. Or, it could be due to camera motion. These two cases are discussed

separately. The event probability sequence is shown to be a quasi view-invariant

representation, and sufficient conditions on the structure of event generating HMMs

are presented.

If the camera and objects in the scene are fixed, motion trajectories can appear

different due to difference in style between persons performing the activity. The

differences, however, are minimal at the time of occurrence of events. For instance,

consider the example of activity of picking up an object performed by two persons.

Due to changes in style, motion trajectories of the hands in the two cases may require

different HMMs. The changes near pick up event, however, is similar in both the

cases. As another example, consider an airport tarmac surveillance scenario. One
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of the common activities is that of a luggage cart approaching a plane after arrival

(and before departure). The luggage cart can enter scene in a wide area, but the

event of interest occurs when it stops near the plane. This location is relatively

unchanging though the rest of the trajectory of the luggage cart can vary drastically.

So the event probability sequences can be expected to resemble each other (for an

appropriate scale parameter) in spite of differences in motion trajectories in other

parts of the activity. In other words, though the HMMs may differ for the two

persons performing the same activity, they give rise to similar stable transitions

that mark events of interest.

Changes in motion trajectories can occur due to camera motion, in which case

the position of objects in the scene also changes unlike the former case. The param-

eters of HMMs depend on the viewing conditions. This is not a serious limitation as

far as the comparing event probability sequences are concerned, which form a rel-

ative invariant. Fels and Olver [58] give formal definitions of absolute and relative

invariants as follows. An invariant or absolute invariant of a transformation group

G acting on a manifold M is a real valued function I : M → R, which is unaffected

by group transformations, i.e., I(g · x) = I(x) for all g ∈ G and all x in the domain

of definition of I. A relative invariant of a weight µ is a function R : M → U which

satisfies R(g · x) = µ(g, x)R(x) for all x ∈ M , g ∈ G where defined, U is a finite-

dimensional vector space and µ is a smooth mapping. The HMM representation of

the trajectories may be regarded as the weight function µ. The event computation

plays the role of R(x). We describe a sufficient condition on the structure of HMMs

corresponding to different viewing directions to ensure that the event probability
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sequence are view-invariant.

Assume that an affine camera model is used to relate the 3D trajectories to

the 2D trajectories viewed from two different viewing points. The state descriptions

represent the spatial context in the image plane. The transition matrix encodes the

temporal evolution of the activity. It is reasonable to expect equivalence relations

between the models corresponding to two different views. The idea is that such

relationships can be captured by using the event probability sequence.

Definition 1: A pair of HMMs are said to be conforming if there exists a

homeomorphism between the set of states of the two HMMs.

Proposition 1 (Sufficient condition for event sequence to be view invariant):

For the event probability sequences to be invariant under changing viewing condi-

tions, the associated HMMs must be conforming.

Proof: In appendix.

2.5.1 An example of view-invariance

It may be worth seeing the implications of the condition in the proposition

through an example. In particular, it shows the effect of the condition being invali-

dated.

To illustrate view-invariance using the event probability sequence, consider a

set of straight-line trajectories generated by a person walking from one part of the

scene to some other fixed part. Assume that the camera axis (z-axis) is perpendic-

ular to the 3D trajectory. Let the HMM contain two states, and be a left-to-right
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model with a single Gaussian distribution per state. From (2.5), we observe that a

sharp peak in the event probability sequence occurs at the instant of switching from

state 1 to 2. Clearly, camera translation is not an issue. Rotation by an angle θ

about the z-axis causes the 2-D trajectory to rotate by θ and the HMM parameters

change correspondingly. In particular, the mean values of the two states also rotate

by the same angle. The homeomorphism between the two trajectory models across

viewing directions ensures that there exists a corresponding pairs of states (k, l) and

(k̃, l̃) such that ηp
t (i, j) and ηp

t (̃i, j̃) respectively are maximized. In other words, the

event probability sequence is preserved. As the angle changes beyond 90o, the roles

of the two states are reversed.

Rotation with respect to the x-axis (tilt) does not change the 2-D trajectory.

Camera rotation with respect to the y-axis (pan) by an angle α causes a foreshort-

ening of the 2D trajectory by a factor cos α. Correspondingly the mean values of

the two states move closer. As long as the two states are physically separated in the

2D image, the two states remain distinct. This ensures that O and Õ, as described

in the proposition, are of the same dimension. Practically speaking, this means that

straight-line trajectories in one viewing direction do not collapse to a point when

viewed from a different direction.

2.6 Experiments

We demonstrate our approach to activity recognition and anomalous trajectory

detection using the UCF, the Credo Interactive Inc./CMU MOCAP and the TSA
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airport surveillance datasets.

2.6.1 Activity recognition

2.6.1.1 UCF human actions dataset

A description of the dataset is presented in section 1.3.1 along with a summary

of the tracking algorithm used to extract trajectories of the hand as different actions

such as picking up, opening a door and erasing the white-board, are performed.

Training conforming HMMs: We build a view-invariant representation

of the activity trajectories using the event probability sequence. Given trajectories

of an activity, we compute the parameters of an HMM with 4-states using the

Baum-Welch algorithm. Each state is modeled using a single Gaussian. The state

transition matrix is assumed to be a left-to-right model. Generally, if the variations

in viewing direction are reasonably small, multiple HMMs are not required since the

distribution of the states of the HMM provides sufficient generalization across these

views. As the variation becomes large, the states of the HMM become too diffused

to model the data reliably. In our experiments, we found that each of the following

activities needed 2 HMMs: open the cabinet door, pick up an object, put down an

object, whereas close the cabinet door, erase white board, pour water into a cup, pick

up an object and put it down elsewhere all had one HMM per activity.

Event Probability Sequences for training data: Using the trained HMM,

we compute the event probability sequence using the relations for ηp
t (i, j) and ep

t (k, l)

given in (2.5) and (2.6). The event probability sequence, along with the HMM, is
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Figure 2.5: Invariance to spurious events: (a) Hand trajectory for closing the door,

(c) its event probability sequence. (b) closing the door along with random motion.

This generates a spurious peak in the event probability sequence, shown in (d).
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Figure 2.6: (a) Hand trajectory and (b) its event probability sequences for picking

up an object from the desk with p = 5; (c) and (d) for picking up an umbrella from

the cabinet. Both instances of pick up activity have two dominant events.

stored as the signature of the activity.

Matching: Given an new (test) trajectory x, we compute a set of candidate

event probability sequences ex,g
t (k, l) for every model in the database using HMM

λg for g = 1, . . . , G, where G is the number of trajectories in the database. To

compare the candidate event sequences with those obtained during training, we use

the DTW algorithm. The best match for each event is found by searching in a local

neighborhood. The globally optimal path for matching two event sequences is found

by backtracking. It allows for correct recognition even if there are spurious or missed
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Figure 2.7: Quasi-view Invariance: Different samples of open cabinet door. The

appearance of the trajectory depends on the location of the person performing the

activity. The top row shows the hand trajectories, and bottom row the corresponding

event probabilities.

events. For example, in figure 2.5, the activity is correctly recognized in spite of

spurious events. We compute the candidate event probability sequences at 6 scales

for scale parameter values ranging from p = 3 to p = 8. These are matched with the

event probability sequences in the database, at the appropriate scale. This yields a

6-D vector of similarity scores. To calculate the overall similarity score, we perform

a coarse-to-fine matching as described in section 2.4.4. Figure 2.10 summarizes

the recognition results using cumulative match scores (CMS) as the performance

measure. The CMS is computed by accumulating recognition rates from rank 1

onwards. For instance, a CMS of 90% at rank 5 means that on an average, within

the top 5 matches, the action is correctly recognized 90% of the time. The first

two columns are the CMS scores at rank 1 and 5 respectively, obtained using the

proposed method. The third column shows the recognition rate obtained in [1].

Analysis of results: We illustrate properties of the recognition scheme with

a few examples:
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Figure 2.8: Recognizing sub-activities: (a) Hand trajectory for picking up an object

from the cabinet shelf and putting it on the desk,(c) its event probability. (b) Hand

trajectory for picking up an object and (d), the event sequence for the top match

using (a) as test sequence.
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Figure 2.9: Recognizing composite activities: (a) Hand trajectory for picking up

an object from the desk and putting it back on the desk, (c) corresponding event

probability. (b) is another sample of the same composite activity. It was the top

match when (a) as test sequence. (d) shows the event probability sequence computed

during the testing phase.
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• Context insensitive: Figure 2.6 shows trajectories and event probability se-

quences associated with pick up activities that differ in context. Though their

HMMs - for picking up object from the desk and picking up an umbrella from

cabinet - are different, both event sequences show two peaks surrounding the

instant when the pick up event occurs.

• Quasi view invariance: Unless the viewing directions cause singularities, i.e.,

straight lines in one view collapsing to a point in the other, etc., the events

detected remain insensitive to the viewing direction. Figure 2.7 shows the

differences in appearance due to differing position of the person opening the

cabinet. All the four trajectories were correctly recognized.

• Spurious events: Stylistic variations or errors in tracking may cause spurious

events. For example, in figure 2.5, the first figure shows a normal activity of

closing the door. In the second figure, the hand performs some random motion

after closing the door creating spurious events. In spite of the spurious peaks,

the activity was correctly categorized.

• Sub-activities: Composite activities may have sub-activities embedded within

them. The sub-activities may be regarded as activities themselves, and we may

wish to recognize them individually. On the other hand, we may be interested

in recognizing the composite activity in its entirety. Figure 2.8 illustrate the

former. The top 3 matches were sub-activities and the 4th match was the

correct composite activity. In figure 2.9 the composite activity is recognized

correctly in the top 1st and 2nd matches. The next 3 matches are the sub-
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activities.

Comparison with the UCF method[1]: Rao et al. treat activities as a sequence

of dynamic instants [1], which are points of maximum curvature along the trajectory.

They may be considered as a subset of our event probabilities et. Events in et do not

require sharp curvatures in the trajectory unlike dynamic instants. For instance, the

action pick up umbrella while twisting hand is not recognized as a pick up action in [1]

because of numerous peaks in curvature caused by twisting. The event probability

sequences, however, are correctly matched. Further, collinearity in the trajectory is

an issue in [1] and causes incorrect matches. In our case, the changes in direction of

motion of the hand is sufficient to produce event probabilities. For similar reasons,

recognition using dynamic instants may not be able to deal with composite activities

that have sub-activities. A comparison of recognition rates is given in figure 2.10.

The improved recognition performance of the event probability sequences may be

attributed to two reasons. An event probability sequence is defined using variations

at the HMM state level. This is more robust than defining events at the data

level. The set of event probability sequences indexed by the scale parameter is a

richer representation of the activity compared to the dynamic instants in [1] that

are defined at a scale corresponding to the observed data level. We match event

sequences at multiple scales of the activity. The experiments demonstrate that a

jointly optimal choice of parameters (N, p) yields better performance compared to

the conditionally optimal choice.
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Figure 2.11: TSA dataset. Dominant activities are passengers embarking and dis-
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2.6.1.2 Motion Capture (MOCAP) dataset

We use the MOCAP dataset (section 1.3.4) to demonstrate recognition of

commonly performed human actions such as walking, running and sweeping the

floor. In the confusion matrix obtained by comparing all the activities to each other,

we may expect activities such as normal walk, blind walk, jogging to be clustered

more closely compared to sit or neutral. There are 9 activities in the dataset and

approximately 75 sets of observation overall. The tracks for an activity, say walking,

consists of multiple cycles of the activity. We divide the sequence into individual

walking cycles and treat each half-cycle as an observation. Half-cycle refers to

the part of the walking cycle starting from the standing pose, right (or left) leg

forward, reaching the swing pose, and withdrawing the right (or left) leg to the

standing pose. This assumes that the right-leg forward and left-leg forward half-

cycles are symmetric. We increase the number of observations to 365 by treating

similar trajectories of nearby locations as multiple samples, i.e., 2 locations near

the abdomen are treated as multiple samples of the same location. To ensure that

there is no bias due to the displacement between similar locations, we use mean-

subtracted trajectories for all locations. This gives us more samples per location

but loses the physical context by forcing the mean to be zero.

Training event probability sequences: We divide the dataset into two

parts: the training and testing set. Using the training set trajectories obtained by

the MOCAP system, we build one HMM per activity. We assume a left-to-right 4-

state, single Gaussian model. For each trajectory, we compute the event probability
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Figure 2.12: MOCAP dataset: Examples of event probability sequences. Each figure

has multiple event sequences corresponding to multiple observations. (a) Sit, (b)

Blind walk, (c) and (d) Two instances of normal walk.

sequence as described in section 2.3 using the HMM for that activity. This forms

the training set of event probability sequences. We observe that the different forms

of walking, i.e., normal walk, blind walk, prowl walk, usually exhibit two events in

the event probability sequence at approximately similar time instants during the

walk cycles. The strength of the two events may vary based on the type of walking.

Figure 2.12 shows the event probability sequences for some of the activities.

Comparing test data: Given a test observation sequence, we compute as

many candidate event probability sequences as the number of HMMs in the database.

Throughout the experiment, we fixed the scale parameter at p = 3. In contrast, in

the UCF dataset, we matched event probability sequences at multiple scales. The

intra-class variation in the MOCAP dataset activities is much less compared to that

in the UCF dataset. This could be one of the reasons that we are able to correctly

identify all activities in the MOCAP dataset by considering the event probability

sequences at one value of p. We compare each of these event sequences with the

ones in the training set using DTW. All the activities were correctly recognized.
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Figure 2.13: MOCAP dataset: Illustrating relative invariance of event probability

sequences. In all three cases, the test sequences are blind walk sequences. The HMM

used to generate the event sequences are (a) Normal walk, (b) Jog, (c) Exaggerated

walk. In the confusion matrix across activities, these three activities resembled blind

walk.

Table 2.1 summarizes the activities that were the closest matches following the top

match. We observe that the different types of walking resemble each other whereas

the similarity scores corresponding to sitting, sweeping with a broom are significantly

larger. Figure 2.13 illustrates the relative invariance property of event probability

sequences. The figure shows the event probability sequences obtained by using blind

walk tracks as the test sequence and normal walk, jog and exaggerated walk as the

training HMM. These were the closest matches to the blind walk activity.

View invariance: We tested view invariance of event probability sequences

for two activities across four viewing directions within a 120o hemisphere (60o on

either side of reference direction). We chose walking and sweeping with a broom

as the two activities. Using the 3-D motion capture data, several 2-D views were

synthesized. The classification rates are summarized in table 2.2. The same training

data was used in all four test viewing directions. We compared the time of occurrence

of events and not their type or strength in computing the similarity score. The event
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Table 2.1: MOCAP dataset: Closest-matching activities based on comparing event

probability sequences. All activities were correctly recognized. Table shows the

matches following the top match.

Test activity Match #1 Match #2 Match #3

Blind-walk Exaggerated walk Normal walk Jog

Prowl-walk Normal walk Exaggerated walk Jog

Broom Broom2 Exaggerated walk Normal walk

Crawl Prowl walk Jog Normal walk

Exaggerated walk Normal walk Jog Blind walk

Jog Normal walk Prowl walk Exaggerated walk

Sit Sit1 Jog Prowl walk

Normal walk Sad Walk Jog Prowl walk

Sad walk Normal walk Jog Jog

probability sequences for the test sequences are generated using the trained HMM

for the reference direction.

2.6.2 Anomalous trajectory detection

Anomalies can be subtle deviations from normal activities. This makes it

difficult to use measures based on model approximation error (or likelihood) to

detect anomalies. On the other hand, event probability sequences can be used to

detect anomalies as demonstrated in this section.
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Table 2.2: MOCAP dataset: Effect of changing viewing direction: Classification

rate for distinguishing between walking and sweeping activities. T.V.D.=Test data

Viewing Direction. All the four cases are compared with the same reference viewing

direction.

T.V.D. #1 T.V.D. #2 T.V.D. #3 T.V.D. #4

Walk 100 94 91 80

Sweep 100 98 95 95

2.6.2.1 TSA airport surveillance dataset

Figure 2.11 shows extracted motion trajectories from the TSA dataset (sec-

tion 1.3.2). We trained HMMs for three activities that occur around the plane:

passengers embarking, passengers disembarking and luggage cart leaving the plane.

During the training phase, the HMM parameters are estimated using the Baum-

Welch algorithm and event probability sequences are computed using the learnt

HMMs. Figure 2.16 shows the event probability sequences for passengers disem-

barking and proceeding to the gate. We observe that fewer number of events are

detected at coarser scales as expected. At a particular scale, we may think of the

events as reflecting the progress of a passenger as he/she walks from the airplane to

the gate. The events partition the path into regions. If we use a left-to-right HMM

model, these regions roughly correspond to the states of the HMM at a sufficiently

fine scale. In other words, at the appropriate scale p̃, we may expect N − 1 events,

where N is the number of states at regularly spaced intervals.
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(a) (b)

Figure 2.14: (a) Snapshot of TSA dataset (b) Simulated anomaly - person deviates

from virtual path between plane and gate, and walks toward the fuel truck.
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Figure 2.15: Negative log likelihood for normal (’x’) and anomalous (’o’) instances

of people walking to the gate after disembarking. Values on the left end of the scale

are more likely to be generated by the learnt HMM.

Given a test trajectory, we compute the event probability sequence using each

of the learnt HMMs (for the three activities) to generate three candidate event proba-

bility sequences. These candidates are compared with trained event sequences using

DTW. All activities were correctly recognized. Not surprisingly, in this limited set-

ting, the HMM itself (without reference to event probability sequences) successfully

classifies the different activities, i.e., the log-likelihood obtained using the Viterbi

algorithm is able to distinguish among the three activities.

Anomaly detection using event probability sequences: Consider nor-

mal trajectories of people disembarking from the plane and walking toward the plane
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Figure 2.16: Event probability sequence at different scales for normal trajectories of

people deplaning. At coarse scales, fewer events are detected. The scale parameter

increases from (a) through (d).

(figure 2.14(a)). Deviations from the normal path taken by passengers may be con-

sidered anomalies. The extent of deviation need not be large. Since there are no

anomalous cases in the dataset, we simulate one by introducing a spatial anomaly. A

person is assumed to deviate from the normal path (as illustrated in figure 2.14(b)).

The hypothetical person violates the normal path, and walks toward the fuel truck

(lower left corner of figure 2.14(b)). The extent of deviation is controlled by a pa-

rameter σ. As the value of σ increases, the V-shape of the anomalous trajectory in

figure 2.14(b) “deepens”, and the deviation from the normal path increases.

Using the set of normal trajectories, a 5-state left-to-right HMM is trained.

Figure 2.15 shows a plot of negative log-likelihood for different normal (marked

with a cross) and anomalous (marked with a circle) cases. As the value increases

along the x-axis, it indicates that the trajectories are less likely to be generated by

the trained HMM. It may be tempting to find a threshold above which trajectories

are declared anomalous (i.e., outlier detection). This is not a feasible solution as

illustrated in figure 2.15. In some instances, the anomalous trajectory has a higher
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Figure 2.17: The top row shows event probabilities for 3 normal trajectories of people

deplaning and walking toward the terminal. There are four dominant events in the

normal trajectories, irrespective of the exact paths that people follow. The bottom

row shows trajectories with increasing extents of spatial deviation σ2 = 2, 4, 16

respectively.
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probability (more left on the scale) of being generated by the trained HMM compared

to a normal one. The HMM likelihood is insensitive to anomalies that are subtle

deviations from normal trajectories. Also, the deviations can be confined to a part

of the activity.

Given a new trajectory, we use the trained HMM to compute event probabili-

ties. Any anomalies present are reflected in the sequence of events detected, even if

the anomaly is present in a part of the trajectory. The method does not accumulate

errors at all time instants, but only based on the times when events occur or when

an event was expected to occur as seen in the training data. To declare the presence

of an anomaly, we use both the number of events detected (spurious and missing

events are both anomalies) as well the location of the detected events. Figure 2.17

(d)-(f) shows the event probability sequences for a person who deviates from the

normal path and later rejoins the virtual path. Figures 2.17 (a)-(c) show three such

sequences. We observe that the latter two dominant peaks in the anomalous tra-

jectories resemble the latter half of the normal event sequences, whereas a missing

event in the first half indicates an anomaly.

Measuring relative speed using event probability sequence: The rela-

tive strength of the events is a measure of walking speed of the passenger. Consider

the event probability sequence at scale p̃. The event variable ηp̃
t (i, j) measures the

probability of persisting in state i for p̃ frames, transitioning to state j at time t and

persisting in state j for p̃ frames conditioned on the observed data. A faster moving

person is likely to persist to a lesser extent in either state i or j. Consequently, the

strength of the event is likely to be less compared to a passenger walking at a slower
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speed. Whereas a passenger who stops at an intermediate point will not produce

an event since the necessary state transition does not occur. The relative strength

of the events in the event probability sequence bears an inverse relation to speed.

In figures 2.16(a) and (b) we see that the second event is larger than the rest. This

means that initially, as the passenger started walking from the plane, he/she was

walking slowly. Gradually, as the passenger approached the terminal, he/she picks

up speed as the latter event probabilities show.

2.7 Coarse to fine event hierarchy

Human activities can be modeled at various scales, ranging from a coarse scale

that captures aggregate information to a fine scale that reflects detailed characteris-

tics. Coarse-to-fine hierarchical structures have been successfully used to represent

images and objects ([59], [60], [61]). Hierarchical structures are attractive because of

their modularity and efficiency. Activities can be divided into smaller parts such as

sub-activities and events that are localized in time and space. The division proceeds

till a level of detail that is suitable to the intended application is attained. At the

same time, the model has to effectively address limitations of low video quality and

computation time.

There are several ways of decomposing activities to construct a hierarchical

structure. It may be useful to have a set of guiding principles to analyze the ef-

fectiveness of a hierarchy. We describe criteria based on existing work in 3D shape

and action modeling [16], [62]. The usefulness of coarse-to-fine event representation
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is demonstrated for efficient indexing and browsing. This addresses the effect of

degrading video quality (reduced frame rate and low resolution) on event detection.

2.8 Analysis of coarse to fine event models

In this section, we describe five criteria that can be used to determine the

effectiveness of a coarse-to-fine event representation. The criteria are minimalism,

stability, consistency, accessibility and applicability. They are based on those devel-

oped in and [62] and [63] for 3D shape modeling, and extended by [16] to incorporate

the effect of covariates in modeling actions. Activities can be viewed as objects in

spatio-temporal domain. Therefore, many criteria that are relevant in 3D shape

modeling can be readily extended to activity modeling. We propose quantitative

measures to evaluate the criteria.

2.8.1 Minimalism

An event representation should use a minimal number of model parameters

required for an application. Generally, the number of parameters needed increases

from coarse-to-fine scale. In statistical event models, minimalism can be quantified

using a suitable information theoretic criterion such as Akaike information criterion

(AIC), bayesian information criterion (BIC) or minimum length description (MDL)

[64].
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2.8.2 Stability

Events should be robust to small changes that are caused by imperfections

in low-level processing techniques and noise. On the other hand, sensitivity may

be desirable at fine scales in order to distinguish between activities with subtle

differences.

In event probability sequences, as the scale parameter p increases, stable events

are retained. The change in total probability of event probability sequence with

change in scale parameter can be used as a measure of stability. If the coarse-to-

fine structure is a stable representation, the sum of event probabilities is expected to

decrease with increasing value of scale parameter. So, the negative log probability of

the sum of event probablities increases. Let Lpi
denote the negative log probability

at scale pi. An event representation is said to be stable if the following conditions

are satisfied:

1. Lpi
> Lpj

for all pi < pj.

2. |Lpi
− Lpj

| > |Lpj
− Lpk

| for all pi < pj < pk.

3. LpM
→ L for sufficiently large pM , and a constant L.

If the above statements hold for all p < pi < pj < pk, where p > 1, then the

event representation is said to be marginally stable.
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2.8.3 Consistency

Events should be consistent at every scale, i.e., the number of events and the

location of each event should converge in probability to the true value as the number

of samples grows. One of the advantages of consistent event representation is that it

places less emphasis on obtaining perfect tracking results. Even if some parts of the

trajectory are incorrect, its effect would be mitigated at a sufficiently coarse scale.

Consistency can be quantified using a statistical test or a coefficient of consistency

such as Pearson’s test and Cronbach’s correlation coefficient. Pearson’s test assumes

that the underlying data is normally distributed, which need not be valid in real

data. So we use the Cronbach’s alpha coefficient, which is defined as follows [65]:

α =
K

K − 1
(1− Σσ2

Xi

σ2
Y

), (2.15)

where K is the total number of components, σ2
Xi

is the variance in the ith component

and σ2
Y is the total variance found by summing across components. Ideally, α should

be equal to 1, its maximum value. In the case of event probability sequences, the

components are the number of peaks in the event probability and the location of

each event. So the number of components need not be constant across activities or

across scales in an activity. Each component has to be normalized (mean-subtracted)

before computing α.

2.8.4 Accessibility

The event representation should be constructed such that fundamental limita-

tions are taken into account. For instance, it may not be possible to determine fine
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(a) (b) (c)

Figure 2.18: Events detected at different scales for trajectory of picking up an object.

The scale parameter p varies from (a) p = 3, (b) p = 6 (c) p = 8. Original video

resolution is used in event detection.

details of an activity because of low video resolution. Also, computationally feasible

model estimation algorithms should be available.

2.8.5 Applicability

Ultimately, application-specific performance measures decide the utility of a

model. The relative importance of above criteria may be tuned to a specific appli-

cation. For instance, stability of coarse-to-fine structure may be more important for

activity recognition rather than anomaly detection. Applicability can be quantified

using performance measures such as recognition rate, ROC curves and delay time

in event detection.

2.9 Experiments

In this section we highlight the advantages of coarse-to-fine hierarchical ac-

tivity representations for quick video browsing. Hierarchical structures readily lend

themeselves to efficient browsing. When browsing, activities can be compared at a
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coarse scale. Subsequent comparison can be restricted to only those activities that

are matched at the coarse scale. Another way to reduce computational time is by

reducing the frame rate of test video sequences. These are illustrated using the UCF

and TSA datasets.

2.9.1 Consistency in event detection: effect of reduced frame rate

The UCF human action dataset is used to demonstrate consistency in event

detection along with the effect of video quality. Several motion trajectories of each

activity are used to train a 4-state left-to-right HMM. Event probability sequences

are computed for every motion trajectory as described in section 2.3. Events de-

tected for picking up an object are shown in figure 2.18. The dots represent events

detected along the trajectory traced out by the hand while picking up an object

lying on the desk. As expected, fewer events are observed at a coarse scale (larger

value of p) compared to those detected in a fine scale.

Results: The Cronbach’s alpha co-efficient is used to quantify consistency

in the event representation across multiple observations at a particular scale. The

results are summarized in table 2.3. The effect of reduced frame rate on consistency

of events detected is also shown. It is observed that the events detected remain rea-

sonably consistent at a reduced frame rate as well. This suggests that computation

of event probability sequences can be speeded up by processing frames at a reduced

rate without adversely impacting event detection. If the frame rate is further halved,

however, there is a precipitous drop in performance. Also, many quantities in the
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event computation (section 2.3) become ill-conditioned because of fewer available

data points.

2.9.2 Coarse-to-fine structure for efficient browsing: effect of reduced

spatial resolution

Surveillance videos are usually recorded over long periods of time making it

necessary to develop methods to enable quick and efficient browsing. The user may

be interested in producing reports that broadly summarize activities in the scene.

If necessary, relevant parts of the video sequence can be analyzed to extract fine

details of activities. Application of coarse-to-fine structure for video browsing is

illustrated using the TSA airport tarmac surveillance dataset.

Activities were classified into four classes of movement: aircraft, passengers,

luggage cart and ground crew. HMMs for each class were trained using multiple

trajectories at the fine scale, and event probability sequences computed. A 4-state

left to right HMM is used. At a coarse scale (spatial resolution is halved), motion

histograms are computed and used to train an HMM and compute event probability

sequences as before. Using a departure scenario, several synthetic motion trajecto-

ries were generated and used to train an HMM. This was necessary since the dataset

consists of only three departure scenarios that occur in entireity.

The testing phase consists of the following steps. Events are compared at the

coarse scale using event probability sequences of motion histograms. If a match is

found, event probability sequences are computed at high resolution (original video
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resolution) using motion trajectories. Detected activities are classified into one of

the four classes of movement (defined in the training phase) at the fine scale.

Results: Recognition rates for the aircraft departure activity are presented

below. The dataset contains three such scenarios (one of whose trajectories were

perturbed and used for training).

(i) At the coarse level, four segments were detected as aircraft departure. The

three expected segments were correctly identified. The fourth segment was a false

alarm that contained aircraft arrival.

(ii) The segments detected at the coarse level were analyzed further to identify

detailed activities. Recognition rates obtained for different activities were as follows.

Movement of ground crew: 92%; movement of luggage cart to plane: 100%; pas-

sengers embarking: 78%; plane departure: 100%. Some of the passengers were not

correctly identified because of truncated trajectories after loss of tracking. In the

fourth segment (false alarm), movement of passengers and aircraft were not detected

so that matching at the coarse level can be rejected.

2.10 Summary

In this chapter, we have presented a coarse to fine hierarchical event char-

acterization that explores several state sequences of the HMM that generates the

observed motion trajectories. The main hypothesis is that significant changes in

motion can be interpreted as semantically salient events. With this hypothesis, a

computationally efficient event detection procedure was developed using the HMM
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Table 2.3: Consistency of hierarchical event representation in the UCF human action

dataset measured using Cronbach’s alpha coefficient. The maximum (and best)

value of the coefficient is unity. Results for different activities under two temporal

resolutions demonstrate the trade-off between video quality and reliability of event

representation.

Original video Reduced frame rate

(by a factor of 2)

Open door 0.82 0.81

Pick up object 0.94 0.95

Put down object 0.81 0.76

Close door 0.65 0.67

Pick up object and 0.68 0.70

put down elsewhere

Pour water 0.77 0.71

Erase board 0.91 0.86
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forward and backward variables. The probabilistic event model is called an event

probability sequence that measures the probability that an event occurs at every

time instant.

Properties such as minimalism, stability and consistency are presented for eval-

uating the goodness of hierarchical event representations. The effectiveness of event

probability sequences for activity recognition and anomaly detection was demon-

strated using both indoor and outdoor video sequences.
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Chapter 3

Epitomic Representation of Activities

3.1 Overview

Our aim is to infer structure inherent in activities for activity recognition and

video indexing. The tasks involved can be divided into three phases as shown in

figure 3.1: low-level, mid-level and high-level phases.

The low-level processing phase accepts video sequences as input and produces

motion trajectories as output. It has modules for modeling the background, detect-

ing moving objects and obtaining motion trajectories of the detected objects. The

operations are summarized in section 3.2.

The mid-level processing phase accepts trajectories as input and estimates

parameters of epitomes, which form a mid-level activity representation. The kine-

matics of motion is assumed to be linear within a video segment so that it can be

characterized using a system matrix and input signal uk as described in (3.2). The

tuple consisting of the system matrix, the initial value of the state vector and the

input signal statistics is said to form an epitome. Each moving object is modeled

as a sequence of epitomes. The system matrices are decomposed into three compo-

nents that have a physical interpretation using the Iwasawa matrix decomposition.

The three components represent rotation, scaling and translation of the state vector

as the motion of the object changes across epitomes. The estimation of epitomic
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Figure 3.1: Overview of the epitomic model for activities.

parameters is described in sectoin 3.3.1 and the Iwasawa matrix decomposition is

presented in section 3.4.

The separation between high-level and mid-level processing phases is not as

clear as that between the mid and low-level phases. The high-level phase involves

distance computation between epitomes (and in turn, activities) for applications

such as activity recognition and video indexing. In section 3.5, we discuss the

problem of selecting a distance metric that is not only cognizant of distances between

matrices but also lends itself to physical interpretation. The physical interpretation

is necessary to introduce high-level domain knowledge when comparing activities.

3.2 Low level video processing

In our experiments we have used existing algorithms for object detection and

tracking with slight modifications. They are briefly summarized in this section.

Tracking is challenging in surveillance scenarios because of low video resolution,
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poor contrast and noise. Instead of attempting to track objects across the entire

video sequence, we periodically reinitialize the tracker. The low-level tasks may be

divided into two components: moving object detection and tracking. The detec-

tion component uses background subtraction to isolate the moving blobs. We use

a procedure based on [66] and [67], which is summarized here. The background in

each RGB color channel is modeled using single independent Gaussian distributions

at every pixel using ten consecutive frames. If the normalized Euclidean distance

between the background model and observed pixel value in a frame exceeds a certain

threshold, then the pixel is labeled as belonging to a moving object. A static back-

ground is insufficient to model a long video sequence because of changing lighting

conditions, shadows and cumulative effects of noise. So the background is reinitial-

ized at regular intervals.

Motion trajectories are obtained using the KLT algorithm [68] whose feature

points are initialized at detected locations of motion blobs. The KLT algorithm

selects features with high intensity variation and keeps track of these features. It

defines a measure of dissimilarity to quantify the change in appearance between

frames, allowing for affine image changes. Parameters control the maximum allow-

able interframe displacement and proximity of feature points to be tracked. The

trajectories from the KLT tracker are smoothed using a median filter. The effect of

tracking errors is discussed in section 3.7. Of the three datasets used in the exper-

iments, tracking was accurate and reliable in the indoor bank monitoring dataset

and the UCF human action dataset. On the other hand, there were a few tracking

errors in the TSA airport tarmac surveillance dataset that caused errors in temporal

66



segmentation.

3.3 Epitomes

A video sequence is divided into segments of length T . Moving objects are

detected and their short-time motion trajectories are obtained as described in the

previous section. The kinematics of motion within segments is assumed to be lin-

ear so that linear systems can be used in modeling (3.2). The estimated tuples

(x0; F ; (µ, Σ)) are called activity epitomes, where x0 represents the initial state,

F ∈ GL(n,R) is an invertible n× n system matrix and (µ, Σ) represents the statis-

tics of input signal uk, k ∈ [0, T ] that is assumed to be i.i.d. Gassian distribution.

Assuming full state output, kinematics of motion in each video segment can

be written as:

xk+1 = Fxk + uk, (3.1)

yk = xk, (3.2)

where xk ∈ R4 is the state vector with initial value x0, F is the system matrix

of size 4× 4 and uk is the input signal. The state vector represents the 2-D position

and velocity. The model in (3.2) is a state-space representation of the familiar

Newton’s laws in mechanics given by mq̈(t)+k1q̇(t)+k2q(t) = u(t), which describes

the motion of bodies subjected to conservative forces. Forces in mechanics could

be due to gravity, energy in springs, and so on. In activity modeling we are not

trying to infer forces that cause humans or vehicles to move, although that could be
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useful in building realistic models for synthesizing trajectories. Instead, the goal is

to build statistical models that can capture kinematics from video streams. In [3],

the control input uk is assumed to be a constant unit signal scaled by a parameter.

The signal uk is typically treated as Gaussian noise [48].

The signal uk can have a useful role in modeling activities, besides providing

a way to deal with uncertainty. It can be used to synthesize parts of the activity for

handling occlusions. Also it provides a way of visualizing the data. We introduce

star diagrams as a means of visualizing epitomes in section 3.3.2 after describing the

computation of system matrices in the next section.

3.3.1 Estimation of epitomes

There are several ways of estimating parameters of linear dynamical systems.

We illustrate a straightforward estimation procedure that can accommodate a de-

sired structure in F . Consider the state evolution given by (3.1). The state xk is

said to be the instantaneous position and velocity. Let F : H → H be a matrix that

relates the previous state xk−1 to the current state xk, where H ⊂ GL(n,R) (The Lie

matrix groups are defined in appendix C). For robust estimation, we assume that

the state of the system remains constant for a short interval of time W . The value

of W depends on the type of data. For instance, it may be reasonable to assume

W = 100 or 4 seconds in far field surveillance data. On the other hand, we may

assume W = 15 or 1 second for short-term human actions (e.g. opening the door,

picking up an object, etc.) performed in an office environment. Of course, there is
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no reason for W to be a fixed number and we can use the temporal segmentation

to find best value of W for different parts along the trajectory. For simplicity, we

assume a fixed W . The least squares estimate of F that relates the past and future

values of state is computed as follows.

For two vectors x, b ∈ Rn, let Fx = b, where F = [fij], i, j = 1, 2, . . . , n. This

can be rewritten as Xf = b, where

f = (f11, f12, . . . , f1n, f21, . . . , f2n, . . . , fn1 . . . , fnn)

and X is a matrix that consists of rows of the form (0, 0, x1, x2, . . . , xn, 0, 0, . . . , 0).

The entries in F can be selectively set to zero to impose prior knowledge of the

dynamics. For example, the dynamics may be modeled using a decoupled second-

order system, which creates a block diagonal matrix F . Suppose Fx = b holds for

W vector pairs (x1, b1), . . . , (xW , bW ), we can write




X1

X2

...

XW




f =




b1

b2

...

bW




(3.3)

We use least squares technique to solve for f in (3.3) and recompose the vector f

into the matrix F .

3.3.2 Star diagram

In this section, we present a way to visualize the learnt epitomes, which is

referred to as star diagrams. Star diagrams provide a snapshot of an activity and
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demonstrate similarities between motion trajectories of the activity that may not

be observed at the level of motion trajectories because of semantic ambiguity and

context dependency. Semantic ambiguity refers to incomplete textual description

of an activity whose motion trajectories can vary significantly across samples [2].

Spatial and temporal context dependency can produce similar effects. The variations

in appearance of motion trajectories are illustrated using picking up an object as an

example (figure 3.2). It depends on several factors including position of the object

relative to the initial position of the hand, viewing direction and location of the

person performing the action. Star diagrams reflect these variations and capture

the activity of interest.

Trajectories of activity are extracted and segmented into intervals of equal

length. For each segment, parameters of epitomes, i.e., the system matrices and

the input signal statistics (mean and covariance) are calculated. The trajectory is

thus represented as a sequence of epitomes. Using the learnt epitomes, trajectories

are sythesized using different values of the signal sampled from the learnt distribu-

tion. Temporally overlaid patterns of synthesized trajectories are referred to as star

diagrams.

Figure 3.2 shows star diagrams for the pick up activity in figure 3.2. The

star diagrams in the two cases of picking up objects (figure 3.2(a) and (b)) differ

by a rotation angle reflecting the differences in position of the object that creates

differences in the appearance of trajectories. The similarity in relative structure of

epitomes within each diagram is exploited during activity recognition.

Figure 3.3 shows star diagrams for surveillance scenarios at an airport tarmac.
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Figure 3.2: UCF Dataset: (a) Sample image along with the extracted hand trajec-

tory, (b) Motion trajectory for picking up an object from the desk and (c) its star

diagram; (d)Motion trajectory for picking up an umbrella from the cabinet and (e)

its star diagram.

Figure 3.3: TSA airport surveillance dataset. (a) Motion trajectories of passengers

embarking; (b) its star diagram
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Figure 3.3(a) depicts a scene in which passengers embarking an airplane is the

dominant activity. It also contains movement of ground crew and a truck. The star

diagram (figure 3.3(b)) shows a compact representation using activity epitomes that

were learnt using motion trajectories in figure 3.3(a).

3.4 Iwasawa decomposition

Star diagrams provide a visual representation of epitomes. Motivated by the

structure inherent in star diagrams, we propose a decomposition of epitomes into

three components using the Iwasawa matrix decomposition. The three components

are rotation, scaling and projection of the state vector.

Definition 1 Let F ∈ GL(n,R). Then there exist unique matrices K,A, N , such

that F = KAN , where

• K is an orthogonal matrix.

• A is a diagonal matrix with positive diagonal entries

• N is a unit upper triangular matrix, i.e., all the diagonal elements are unity.

This is called the Iwasawa matrix decomposition [69].

It may be worth noting that the Iwasawa decomposition applies globally to the

entire group manifold [70]. If F ∈ SL(n,R) (i.e, det F = +1), the matrices take

the following form [71] for n = 2:
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K =




cos θ sin θ

− sin θ cos θ


 , A =



√

a1 0

0 1√
a1


 and N =




1 β

0 1


 , (3.4)

where β ∈ R, a1 ∈ R+ and θ ∈ R/πZ. Each of the three components are a one-

parameter family that decouple the effect of transformation F on the state of the

moving object. This is used to define distances between F ’s in the next section.

3.4.1 Special case: n = 2

Consider F ∈ SL(2,R)

F =




f11 f12

f21 f22


 ,

where fij ∈ R, i, j ∈ {1, 2}. By hypothesis, f11f22 − f12f21 = 1. From (3.4), the

components of the decomposition can be calculated as follows:

a1 = f 2
11 + f 2

21

cos θ =
f11√

f 2
11 + f 2

21

sin θ =
−f21√
f 2

11 + f 2
21

a1 =
1

f11

(
f21 + f12(f

2
11 + f 2

21)

f 2
11 + f 2

21

)

=
1

f11

(
f21(f11f22 − f12f21) + f12(f

2
11 + f 2

21)

f 2
11 + f 2

21

)

=
f11f12 + f21f22

f 2
11 + f 2

21

(3.5)

Remark 1: The Iwasawa decomposition F = KAN is unique upto a factor

α that can occur in K along the secondary diagonal, i.e., the decomposition in
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definition 1 can be replaced by the following:

K =




cos θ α sin θ

−α−1 sin θ cos θ


 , A =



√

a1 0

0 1√
a1


 and N =




1 β

0 1


 ,

where β ∈ R, a1 ∈ R+, α 6= 0 and θ ∈ R/πZ.

3.4.2 Special case: Symplectic group

For n ≥ 2, F ∈ Sp(2n,R) ⊂ SL(2n,R) it has been shown that the decompo-

sition has a block structure [72]:

K =




K̃1 K̃2

−K̃2 K̃1


 , A =




a1 0 . . . 0

0 a2 0 . . .

...
...

...
...

...

0 . . . am 0

0 . . . 0 a−1
1 0

...
...

...
...

...

0 . . . a−1
m




N =




N̂1 N̂2

0 (N̂1
−1

)T


 ,(3.6)

where K ∈ SO(n), ai > 0 for i = 1, . . . , m, m = n/2 and N̂1N̂2
T

= N̂2N̂1
T
.

K̃1, K̃2, Ñ1, Ñ2 are all block matrices of size m×m.

Theorem 1 Let P ∈ Sp(2n,R) ⊂ SL(2n,R), n > 1 such that

P =




P1 P2

P3 P4
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for Pi ∈ Rn×n, i = 1, . . . , 4. Let

R = P T P =




R1 R2

R2 R4


 ∈ Sp(2n,R),

where R1 is positive definite. Then Iwasawa decomposition of P = KAN is given

by

A =




D1/2 0

0 D−1/2


 , N =




Q QR−1
1 R2

0 (Q−1)T




and K = PN−1A−1.

Proof: In appendix.

3.4.3 General case

Let F ∈ GL(n,R) be a non-singular matrix with real entries. Consider

M = F T F, (3.7)

where M is symmetric and positive definite. (3.7) can be written as

M = (KAN)T (KAN) (3.8)

= NT AT KT KAN (3.9)

= NT AT AN, (3.10)

using F = KAN with K being orthogonal, i.e.,KT K = I. Let

R
def
= AN (3.11)

Clearly, R is an upper triangular matrix. (3.10) can be written as

M = RT R (3.12)
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Table 3.1: Computing the Iwasawa matrix decomposition of an invertible matrix F

Let M = F T F

Compute the Cholesky decomposition M = RT R

Form the diagonal matrix A = diag(R)

Compute the unit upper triangular matrix N = A−1R

Compute K = FR−1

The factorization in (3.12) is computed using the Cholesky decomposition

that factorizes any symmetric, positive definite matrix into the product of a lower

triangular matrix and its transpose, i.e., M = RT R.

From definition 1, we know that N is a unit upper triangular matrix. The

diagonal matrix A is formed by extracting the diagonal elements of R, i.e., A =

diag(R) so that

N = A−1R (3.13)

. Since F = KAN (definition 1), the K component can be obtained by

K = FN−1A−1, (3.14)

= FR−1.

The steps involved in computing the Iwasawa matrix decomposition is summarized

in table 3.1.

Remark 2: The Iwasawa decomposition can also be written as ÑÃK̃, such
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that

Ñ =




1 0

β̃ 1


 , Ã =




√
ã1 0

0 1√
ã1


 and K̃ =




cos θ̃ sin θ̃

− sin θ̃ cos θ̃


 ,

where β̃ ∈ R, ã1 ∈ R+ and θ̃ ∈ R/πZ.

Example 1 The following example illustrates the Iwasawa decomposition. Consider

F =




1 1 0 0

0 1 0 0

0 0 1 0

0 0 −1 1




, (3.15)

which represents a second-order decoupled motion model (i.e., the x and y compo-

nents of kinematics are decoupled). Its Iwasawa decomposition gives:

K =




1 0 0 0

0 1 0 0

0 0 1√
2

1√
2

0 0 −1√
2

1√
2




, A =




1 0 0 0

0 1 0 0

0 0
√

2 0

0 0 0 1√
2




, N =




1 1 0 0

0 1 0 0

0 0 1 −1
2

0 0 0 1




.

3.4.4 Geometric interpretation and Singular Value Decomposition

The Iwasawa decomposition yields F = KAN as described in definition 1.

The matrix K contains a set of orthonormal basis vectors for F with KT K = I. It

is used to compute the principal angles between matrices. As seen from (3.4), K

represents the effect of rotation component on the state vector that is parameterized
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by a single parameter θ. The diagonal matrix A of size contains positive real entries

representing a scaling of the state vector along each dimension. If the transformation

F of size 2n × 2n belongs to the special linear group (i.e., det F = 1), then the A

component has half as many degrees of freedom as F . The scaling in the first n

dimensions of the state vector determines the extent of scaling in the remaining

dimensions. The N component introduces a lens action or a projective action. It

can also be interpreted as a translation in certain cases. For instance, consider the

case n = 3.

N =




1 β1 t

0 1 β2

0 0 1




,

where β1, β2, t ∈ R. Or equivalently, the matrix N can be represented by the tuple

(β1, β2, t). Each point (β1, β2, t) can be viewed as a translation from 0 to this point

(β1, β2, t) · (0, 0, 0) = (β1, β2, t). The 0 point corresponds to the identity matrix. In

the 2× 2 case, N has one free variable β ∈ R as seen in (3.4).

Suppose F ∈ GL(n,R) is a full-rank, square matrix with real entries. Using

SVD, it can be factorized as F = UΣV T , where U and V are orthonormal matrices,

and Σ is a diagonal matrix of singular values. The Iwasawa decomposition also has

three components in its factorization F = KAN . It may be interesting to see the

connection between the two decompositions.

Consider the case n = 2, i.e., when F is a 2× 2 invertible matrix. Appplying

SVD, we obtain a pair of left eigenvectors in the matrix U and a pair of right

eigenvectors in V . This specifies a co-ordinate basis for F . The diagonal matrix Σ
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has singular values (σ1, σ2), which are both positive. A comparison between the two

decompositions is given below:

• The K component of F = KAN decomposition reflects the amount of rotation

in F . The U and V components in F = UΣV T specify a coordinate basis.

• Both the diagonal matrices Σ and A in the two decompositions contain positive

real entries.

• The N component in KAN decomposition, which is in reduced row-echelon

form captures a projective (lens) action of F . It contains the translative part

of F as described above.

3.5 Distance between activity epitomes

It is necessary to define a notion of distance between activity epitomes for

many applications including activity recognition and clustering. Euclidean distance

between F1 ∈ Rn×n and F2 ∈ Rn×n may be defined, in which F1 and F2 are thought

of as vectors in Rn2
. Alternatively, Frobenius distance between F1, F2 can be used,

which is defined as follows:

df (F1, F2) = ||F1 − F2||2F = tr((F1 − F2)(F1 − F2)
T ). (3.16)

This does not take the geometry of the space into account and it ignores the group

structure of matrices. In this section, we define a Riemannian metric to compare

epitomes. The Iwasawa matrix decomposition simplifies the calculation of the metric

and provides a physical insight into quantities being compared.
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In the familiar Euclidean setting, distance between points p1, p2 ∈ Rn in the

familiar Euclidean setting can be computed by integrating infinitesimal metrics

dx1, dx2, . . . , dxn from p1 to p2. This gives straightline distances between p1 and

p2. Similarly, distance between points on a manifold can be computed by integrat-

ing with respect to a Riemannian metric. Unlike dx and dy in the Euclidean case,

however, the choice of metrics in the case of manifolds may not be obvious. There

are broadly, two approaches to overcome this problem as summarized below.

A Riemannian metric can be chosen (or learnt from the data) so that the

length minimizing geodesic distance can be computed by evaluating the integral

along a parametrized curve. The Euclidean metric dx is replaced by a Riemannian

metric ∆. The geometry of space GL(n,R) in which dynamical matrices lie is well-

studied and several metrics have been proposed [73], [74]. So, in principle, one of

the metrics can be chosen and used to evaluate the geodesic distance. A few such

metrics are described next.

Riemannian metrics have been defined on the space of linear systems using

traces [74]. Let

xk+1 = Axk + Buk,

yk = Cxk + Dvk (3.17)

be a linear system with state xk ∈ Rn, control input uk ∈ Rm, output1 yk ∈ Rp,

measurement noise vk ∈ Rm and matrices2 A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈
1The notation x for state and y for system output is not related to the co-ordinate position on

the xy plane. Here, the definition of the state vector reflects physical parameters of the system.
2The notation A for the system matrix is not meant to invoke the A component of the KAN
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Rp×m. The following inner product is used to define the norm of the system:

‖(A,B, C, D)‖2 = tr(CL(BBT )CT + DDT ), (3.18)

where L(K) is the solution to the discrete time Lyapunov equation L−ALAT = K.

The inner product in (3.18) induces a Riemannian metric on the manifold. Analyt-

ical computation of the Riemannian metric tensor becomes rather difficult even for

n = 3 case as shown in [74] requiring numerical computation. Nevertheless, using

the Riemannian metric induced by the inner product can be an effective strategy.

The metrics computed using traces can be used for comparing epitomes in activ-

ity recognition. The choice of a suitable trace may depend on the application of

interest.

Distance measures based on subspace angles (or principal angles) are widely

accepted for comparing matrices that represent dynamics. A commonly used dis-

tance (e.g., in [48]) is the Martin distance d2
M defined as [47]:

d2
M = − log

n∏
i=1

cos2(θi), (3.19)

where θi, i = 1, . . . , n are subspace angles. Subspace angles capture differences that

are caused by rotation of subspaces while ignoring changes in other factors such as

scaling and translation. Finsler distance [75] uses the largest principal angle between

the subspaces unlike the Martin distance that uses all n values in (3.19). This is

best suited when the signal is scalar-valued and generated by a strictly second-order

stationary process. In our case, the number of outputs of the system is 4 (2D

decomposition.
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position and velocity). When the number of inputs and outputs associated with the

system is more than one, the distance is not guaranteed to be non-negative.

Alternatively, geodesic distance can be approximated by a sequence of small

Euclidean distances that converge to the geodesic in the limit. For example, Klassen

et al. [76] used a shooting approach to compute geodesic distances between shapes.

The algorithm involves taking small increments in the tangent space at a point, and

then re-projecting onto the manifold. Since the tangent space is a vector space, the

Euclidean metric is used to compute the small distances at every step. The shooting

approach requires a measure of “energy” along which to shoot at each point. Also,

distances computed by shooting are sensitive to local minima. Given a suitable en-

ergy function, the shooting approach is attractive not only for its simplicity but also

for providing well-defined statistical measure. The approximate geodesic distance

need not provide physical insight into the inherent structure that is reflected in star

diagrams (section 3.3.2).

We propose a way of computing distance between epitomes by choosing a

metric motivated by geometry of the underlying space as in the former approach.

At the same time, analytical tractability is retained by computing distances along

each of the components following the Iwasawa matrix decomposition. The space

underlying dynamics is called Finsler space [73]. Finsler geometry is concerned with

integrals of the form
∫ b

a

f(q1, . . . , qn;
dq1

dt
, . . . ,

dqn

dt
)dt.

The function f(q1, . . . , qn; dq1

dt
, . . . , dqn

dt
) is positive unless all dqi

dt
are zero. Here q
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stands for position and dq
dt

for velocity so that F denotes speed of the moving object.

The integral measures the total distance traveled. Finsler spaces also appear in

optics where the amount of time it takes for light to travel is captured by f(·).

Another example of Finsler spaces occurs in applied mechanics where the extent

of elastic-plastic deformation of bodies is measured. The natural metric in Finsler

space is the Finsler-Minkowski metric.

3.5.1 Finsler-Minkowsi metric

Let F ∈ G and ∆ : TG → R be a continuous mapping such that for any

p ∈ G, α ∈ R and ξ ∈ TpG

∆p(αξ) = |α|∆p(ξ). (3.20)

Then for any piecewise C1 curve η : [p1, p2] → G its length can be defined by

l(η) =

∫ p2

p1

∆η(t)(η̇(t))dt,

which gives rise to a non-oriented distance on G. Instead of the non-oriented dis-

tance in (3.20), consider an oriented version obtained by an additional constraint of

positive homogeity, i.e.,

∆p(αξ) = α∆p(ξ). (3.21)

A special case of (3.21) is the Finsler-Minskowsi metric ∆(F, Ḟ ) = ∆(F−1Ḟ )

[77].

The geodesic distance D : G × G → R between matrices F0 and F1 can by
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calculated using the norm induced by the inner product ∆ as follows:

D(F0, F1) = min{I∆(F (·)) : F ∈ C1([0, 1], G), F (0) = F0, F (1) = F1},(3.22)

with I∆(F (·)) =
∫ 1

0
∆(F, Ḟ )dt. More precisely, the minimum in (3.22) should be

replaced by an infimum and existence of geodesics has to be established. It is

known that geodesics exist as long as the manifold is complete ([73], [78]).

We illustrate the computation of geodesic distances using examples.

Example 2 Consider A =




a1 0

0 a2


. A simple calculation shows that the norm

∆(A) is

∆(A−1Ȧ) =
|ȧ1|
a1

+
|ȧ2|
a2

(3.23)

The shortest path distance from the identity matrix I to A is D(I, A) = | log a1| +

| log a2|.

Example 3 Consider N ∈ Aff(1) (also known as the “ax + b” group), i.e., N =


ρ β

0 1


. The Finsler-Minkowski metric becomes ∆(N−1Ṅ) = |ρ̇|+|β̇|

ρ
. For a unit

upper triangular matrix, α = 1 so that the shortest path distance minimizes
∫ 1

0
β̇dβ.

Example 4 For K =




cos θ sin θ

− sin θ cos θ


, the Martin distance in (3.19) can be

used.

3.6 Applications

We illustrate the usefulness of epitomic representation of activities and the

Iwasawa matrix decomposition using activity recognition, clustering and temporal
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segmentation.

3.6.1 Activity Recognition

Epitomic representation allows us to recognize activities based on motion prop-

erties within video segments. Since it does not rely on a global model, it provides

a degree of robustness to incomplete trajectories. Some common causes for missing

parts of trajectories are occlusion and tracking failure. The steps involved in activity

recognition using epitomes is outlined below.

Moving objects are detected and their motion trajectories are extracted as

described in section 3.2. Epitomes for segments of each trajectory are then com-

puted. The Iwasawa matrix decomposition is used to factorize the system matrices

into the three components K,A, N that represent rotation, scaling and translation.

The components are compared their counterparts obtained using the reference set.

Distances between components are calculated using the Finsler-Minkowski metric

(section 3.5).

Apart from their usefulness for activity recognition, the geometrical signifi-

cance of the Iwasawa components can be exploited by analyzing their effect sepa-

rately. In particular, the N and K components provide perceptually useful cues as

described in the remaining part of this section.
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Figure 3.4: Illustrating the effectiveness of the N component of the Iwasawa decom-

position using a sample trajectory from the UCF dataset.

3.6.2 Key Frame Detection using the N Component

In the proposed method, epitomes are estimated using video segments with

uniform boundaries that are pre-specified (e.g., a video segment may be defined as a

sequence of 100 frames). Though such segmentation is computationally attractive, it

may not provide perceptually informative cues for video indexing. The N component

of the Iwasawa decomposition provides a way to overcome the limitation to some

extent. From (3.4), we know that the N component has a unit upper triangular

structure. In particular, for F ∈ GL(2,R), the N component has one free element

β ∈ R. We propose a temporal segmentation based on sign changes of β since it

reflects abrupt changes in direction of motion. The following example is used to

show the usefulness of sign(β).

Let xk = (x
(x)
k , x

(x)
k−1, x

(y)
k−1, x

(y)
k ) represent the state, where (x

(x)
k , x

(y)
k ) denotes

the position of the object at time k. Figure 3.4 shows a trajectory from the UCF

dataset for picking up an object. The discrete time second-order decoupled system
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can be written as

xk+1 =




f
(x)
1 f

(x)
2 0 0

0 1 0 0

0 0 0 1

0 0 f
(y)
1 f

(y)
2




xk +




u
(x)
k

0

0

u
(y)
k




(3.24)

For simplicity, consider the x component of motion, i.e., the top left 2 × 2

block of the system matrix in (3.24). The variation of the N component is discussed

as the object traces the path PQRS in three consecutive epitomes. The x and y

co-ordinates of the points are denoted using superscripts, e.g., P = (P (x), P (y)). The

effect of N component is given by

x
(x)
k+1 =




1 β(x)

0 1


 x

(x)
k +




u
(x)
k

0


 , (3.25)

where the superscript on the truncated state vector denotes motion of the x com-

ponent. Using (3.25),

Case 1 Point P to Q: As the object moves from P to Q, since P (x) < Q(x),

β(x) > 0.

Case 2 Point Q to R: As the object moves from Q to R, since P (x) = Q(x),

β(x) = 0.

Case 3 Point R to S: As the object moves from R to S, since P (x) > Q(x),

β(x) < 0.

So the zero crossings of β(x) (and β(y)) denote perceptually significant changes. The

frames corresponding to the zero crossings are said to be key frames.
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3.6.3 Clustering using the K component

As shown in the star diagrams (figure 3.2), epitomes tend to cluster to produce

certain dominant patterns in motion trajectories. In particular, similarities in the

shape of trajectory segments are captured by star diagrams. This suggests that the

K component of the Iwasawa decomposition can be used to cluster epitomes, since

it indicates direction of eigenvectors of the system matrix. We use the k-means

algorithm to cluster trajectories based on parameter θ of the K component. The

value of the number of clusters k is manually initialized.

3.7 Experiments

We demonstrate the usefulness of epitomic representation of activities and the

Iwasawa matrix decomposition using the UCF human action dataset and the TSA

airport surveillance dataset.

3.7.1 UCF human actions dataset

A brief description of the dataset along with detection and tracking algorithms

is prresented in section 1.3.1. Figure 3.5 shows star diagrams for different cases of

opening the cabinet door. The star diagrams for several instances of picking up an

object is shown in figure 3.6.
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(a) (b) (c)

Figure 3.5: UCF Dataset: Star diagram for opening the door.

(a) (b) (c)

Figure 3.6: UCF Dataset: Star diagram for picking up an object.
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Figure 3.7: Cumulative match score (CMS) percentages for activity recognition at

rank 1 (recognition rate) and rank 5. Recognition rates in column 2 for proposed

method is compared with those reported in [1] in column 4)
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3.7.1.1 Activity recognition:

We follow Rao et al.’s ([1]) division of the dataset into gallery and probe sets to

ensure that the results remain comparable. Trajectories in the gallery set are labeled

with the activity, whereas those in the probe set are matched with trajectories in

the gallery set. For every probe trajectory in the dataset of 60 trajectories, the

remaining 59 form the gallery.

An extracted motion trajectory from the gallery set is divided into segments of

20 frames with overlap. The state vector is formed using the instantaneous position

along the trajectory. An epitome (x0; F ; µu, Σu) is estimated for every segment as

described in section 3.2. All 16 elements of F ∈ GL(4,R) are estimated using

least squares (section 3.2). The Iwasawa decomposition is used to find the K,A, N

components of the estimated F matrices.

The distance from a test video sequence to those in the gallery is computed as

follows. Epitomes of the test video sequence as before and its K,A, N components

are computed. The distance between components are computed separately using

the metrics as described in examples 2, 3 and 4 (section 3.5). The recognition rates

are summarized in table 3.7 along with comparable rates in [1].

3.7.1.2 Key frame detection

Activities such as picking up objects and opening a cabinet door have distinc-

tive points along the trajectory that contain a sharp change in motion. These points

denote perceptually siginificant time instants when the object is picked up or when
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(a) (b)

(c) (d)

Figure 3.8: UCF dataset: Temporal segmentation of trajectories. The dots represent

the segment boundaries detected using zero crossings of the N component.

the door is opened. The N component can be used to detect these time instants.

Motion trajectories are modeled using a decoupled second-order system (3.24)

so that parameters β(x) and β(y) can be used to find key frames (section 3.6.2). The

system matrices are factorized using the Iwasawa decomposition. The N component

of F ∈ GL(4,R) has two real-valued parameters β(x) and β(y) as indicated in (3.24)

and (3.25). A key frame is said to be detected when a zero crossing is detected in

either β(x) or β(y) sequence.

Figure 3.8 shows the detected segment boundaries for a few activities. In

figures 3.8(a)-(c), trajectories for picking up an object are shown along with the
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Table 3.2: Accuracy of key frame detection using the UCF dataset. The table shows

the averge difference between the accuracy and the number of key frames detected

in the proposed method and those reported in [1].

Avg. difference Avg. difference

in # frames in location of key frames

Open door 1.2 7.2

Pick up object 1.1 3.9

Put down object 1.1 5.9

Close door 2.7 8.1

Pick up object and 2.1 6.1

put down elsewhere

Pour water 1.8 3.3

Erase board 4.2 5.1

detected key frames. Table 3.2 shows the accuracy of the detected key frames in

which the results from the zero crossings of β(x), β(y) are compared with the location

of key frames obtained manually.

3.7.2 TSA airport tarmac surveillance dataset

The TSA airport dataset is summarized in section 1.3.2. A video segment that

is ten thousand frames ( 7 minutes) long is referred to as a block for convenience.

A snapshot from a block may not be sufficient to describe the activity within that

block. For each of the blocks in figure 3.9, dominant activities for each block are
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 3.9: Motion trajectories for ten blocks of TSA data.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 3.10: TSA dataset: Star diagrams for activities in blocks of video sequences.

The indices (a)-(j) correspond to those in figure 3.9.
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summarized below:

• Block (a): Ground crew walk from gate to center of the scene and returns;

another ground crew drives away in a truck.

• Block (b): Ground crew walk back and forth from the gate; a ground crew

drives away in a luggage cart.

• Block (c): Luggage cart activity around plane and leaves; ground crew walks

around plane; and to the gate.

• Block (d): Luggage cart and ground crew activity around the plane; luggage

cart leaves; truck crosses the scene.

• Block (e): Plane enters; luggage cart goes to plane; passengers embark.

• Block (f): Luggage cart goes to plane; ground crew from gate to plane and

back. Luggage cart leaves.

• Block (g): Ground crew walk from gate to truck and drive away; truck crosses

scene at the top.

• Block (h): Ground crew walk across scene.

• Block (i): Ground crew walk across scene and back to gate; truck crosses scene

at the top.

• Block (j): Ground crew walk from gate to plane and back; walks across the

scene and back to gate.
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3.7.2.1 Activity recognition:

Each motion trajectory is modeled separately so that at any given time there

are as many epitomes as the number of objects in the scene. We test the proposed

method for activity recognition. In figure 3.9, the right column shows the closest

match for blocks of activity in the left column. The corresponding segmentwise

trajectories (temporally overlaid) are shown in figure 3.10 in the same order, i.e.,

figure 3.10(a) shows segments of trajectories for activity block in figure 3.9(a); sim-

ilarly for (b),(c), etc. From the list of activities in each block given above, the top

matches were correct, except for block (g). Since we have approximated moving

objects as points, a truck driving away slowly was confused with a human (ground

crew) walking along a similar path.

3.7.2.2 Key frame detection using the N component

Trajectories are extracted as described in section 3.2 and epitomes are com-

puted for segments of trajectories assuming a decoupled second-order model (section

3.6.2). This is the same model that was used to identify key frames in the UCF

dataset (section 3.7.1). We test the efficacy of the N component for identifying the

completion of luggage transfer between an aircraft and luggage cart. In the two

hour long sequence, there are eighteen instances showing presence of luggage cart in

the scene. Of these four instances correspond to movement across the scene without

meeting an aircraft. In the remaining fourteen instances (or seven roundtrips to the

aircraft), the luggage cart goes to the aircraft to transfer luggage. The objective is
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to identify trajectories that correspond to these exchanges and the time instant at

which the exchange occurs.

Motion blobs are detected and tracked as described in section 3.2. Since we

are interested in activities involving luggage carts, we track motion blobs whose size

exceeds a certain threshold. The smaller blobs (which correspond to humans) are

discussed in the next section. The appearance-based thresholding greatly reduces

the number of errors in tracking that are caused when humans and luggage cart

merge and split. Of the fourteen cases in which luggage carts were present, twelve

were correctly identified. The average error in localizing the time at which the

transfer occurs was eighteen frames. The following objects caused three false alarms:

• Movement of fuel truck

• Two cases of truck moving to the terminal, stopping briefly before exiting the

scene.

3.7.2.3 Clustering using the K component

There are two classes of humans in the dataset: passengers and ground crew

persoonel. It is necessary to distinguish between these two classes for applications

such as anomaly detection. Unexpected motion patterns of passengers may be con-

sidered anomalous unlike the same motion pattern involving ground crew personnel.

We use the K component of the epitome to distinguish between these two classes

since the motion of passengers is tightly clustered in this space. The K component

represents rotation of the state vector as shown in (3.4). As shown in figure 3.9,
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the trajectories of passengers are tightly clustered as they walk from the gate to

the aircraft or vice-versa. This creates two values of θ that parameterizes the x

component in the epitomic representation.

In this experiment, we retain motion blobs whose size was below the threshold

in the previous experiment (section 3.7.2.2). The motion trajectories were modeled

using a decoupled second-order system (section 3.6.2). The K components of sys-

tem matrices are computed using the Iwasawa decomposition. The K matrices are

characterized by a single parameter θ as given by (3.4). The θ values are computed

and used for clustering using a k-means procedure with k = 2. Two cluster centers

are chosen since we are interested in modeling passengers as they embark an aircraft

or disembark from it.

There were nineteen trajectories of passengers in the dataset. All of these were

correctly clustered in the one of the two passenger clusters. There were twelve thirty

six trajectories corresponding to ground crew personnel. Of thirteen were wrongly

classified as passengers since they followed the same path as the passengers. It is

difficult to reduce these errors without using domain knowledge (e.g., assuming that

the passengers appear within a given time interval).

3.8 Summary

An epitomic representation for modeling activities was described in this chap-

ter. The kinematics of motion is assumed to be linear within video segments. The

system matrix that represents the linear kinematics along with the statistics of the
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input signal and initial value of the state is said to be an epitome. Star diagrams

are introduced as a new way of visualizing epitomes.

The physical significance of eptitomic representation is highlighted using the

Iwasawa matrix decomposition that isolates th eeffect of rotation, scaling and pro-

jective action of the state vector as the object moves in the scene. Gedesic distance

was introduced as a measure of similarity between epitomes that is both physically

meaningful and mathematically well-defined. The Iwasawa decompotion factors was

shown to be useful in computing the distance along each component.
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Chapter 4

Mixed State Space Models

4.1 Introduction

Modeling complex activities involves extracting spatio-temporal descriptors

associated with objects moving in a scene. It is natural to think of activities as

a sequence of segments in which each segment possesses coherent motion proper-

ties. There exists a hierarchical relationship extending from observed features to

higher-level behaviors of moving objects. Features such as motion trajectories and

optical flow are continuous-valued variables, whereas behaviors such as start/stop,

split/merge and move along a straight-line are discrete-valued. Mixed state models

provide a way to encapsulate both continuous and discrete valued states.

In general, the activity structure, i.e., the number of behaviors and their se-

quence, may not be known a priori. It requires an activity model that can not only

adapt to changing behaviors but also one that can learn incrementally and ’on the

fly’. Many existing approaches assume that the structure of activities is known; and

a fixed number of free parameters is determined based on experience or by estimat-

ing the model order. The structure then remains fixed. This may be a reasonable

assumption for activities such as walking and running, but becomes a serious lim-

itation when modeling complex activities in surveillance and other scenarios. We

are interested in these classes of activities. Instead of assuming a fixed global model
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order, local complexity is constrained using dynamical primitives within short-time

segments. We choose a basis of behaviors that reflects generic motion properties

to model these primitives. For example, the basis elements represent motion with

constant velocity along a straight line, curved motion, etc. Using the basis of be-

haviors, we present two Behavior-Driven Mixed State (BMS) models to represent

activities: offline and online BMS models. The models are capable of handling mul-

tiple objects, and the number of objects in the scene may vary with time. The basis

elements are not specific to a particular video sequence, and can be used to model

similar scenarios.

We present a Viterbi-based algorithm to estimate the switching times between

behaviors and demonstrate the usefulness of the proposed models for temporal seg-

mentation and anomaly detection. Temporal segmentation is useful for indexing

and easy storage of video sequences, especially in surveillance videos where a large

amount of data is available. Besides the inherent interest in detecting anomalies in

video sequences, anomaly detection may also provide cues about important infor-

mation contained in activities.

The rest of the chapter is organised as follows. Section 4.2 describes low-level

processing methods for detecting and tracking moving objects. The kinematics of

extracted trajectories is modeled using linear systems. Section 4.3 describes offline

and online BMS models. Section 4.4 describes a basis for representing segments

of video sequences, and a Viterbi-based algorithm for segmentation. Section 4.5

illustrates the usefulness of the proposed method using temporal segmentation and

anomaly detection. The airport surveillance TSA dataset, the bank surveillance
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dataset and the UCF database of human actions are used.

It may be useful to compare the proposed models with the HMM approach and

other mixed state models in order to place our work in context. The HMM topology,

i.e., the number of states and the structure of the transition matrix is assumed to be

known. The state transitions are assumed to be Markovian. The observed data is

assumed to be conditionally independent of its past given the current hidden state.

Also, the output distribution is assumed to be stationary. This makes the estimation

procedure tractable. The Viterbi algorithm is then used to find the optimal state

sequence efficiently.

We address some of these issues in the proposed activity model. In particular,

the evolution of hidden (discrete) states is allowed to depend on the continuous state,

which relaxes the Markov assumption. This causes the computational complexity

of the parameter estimation process to grow exponentially [41]. To overcome this

problem, we introduce a basis of behaviors motivated by motion properties of typical

activities of humans and vehicles within a short-time window. A basis can be chosen

so that it applies to similar scenarios across datasets. In our experiments, the same

basis of behaviors is used in both the TSA airport surveillance dataset and the bank

monitoring dataset. Further, we present a cost-based Viterbi algorithm instead of

the usual probability based one, since it is not easy to compute the normalization

terms of the probability distribution.

Remark on notation and terminology: We use the term non-stationary activ-

ities to suggest that parameters of behavior can change with time. The term has

been used in similar contexts in both speech [79] and activity recognition [20].
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Throughout the chapter, we use x(t) ∈ Rn to represent a continuous valued

variable and q(t) ∈ {1, 2, . . . , N}, a discrete valued variable. We use the notation

xt2
t1 to denote the sequence {x(t1), x(t1 + 1), . . . , x(t2)}.

4.2 Low-level video processing

The types of activity of interest may be illustrated using the following exam-

ple. In video sequences of an airport tarmac surveillance scenario, we may observe

segments of activities such as movement of ground crew personnel, arrival and de-

parture of planes, movement of luggage carts to and from the plane and embarkation

and disembarkation of passengers. The video sequences are usually long. It would

be useful to segment and recognize activities for convenient storage and browsing.

Viewed as an inference problem, activity modeling involves learning parameters of

behaviors using motion trajectories extracted from video sequences.

4.2.1 Detection and tracking

Moving objects are detected and their motion trajectories are extracted as

described in section 3.2. The effect of errors in low-level processing on activity

modeling is discussed in section 4.5. Of the three datasets used in the experiments,

tracking was accurate and reliable in the indoor bank monitoring dataset and the

UCF human action dataset. On the other hand, there were a few tracking errors

in the TSA airport tarmac surveillance dataset that caused errors in temporal seg-

mentation.
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In the case of a single object moving in the scene, its motion trajectory

and velocity (computed using finite differences) forms the continuous valued state

{x(t), t ∈ [0, T ]}, where, x(t) ∈ R4. When several objects are present in the scene,

this can be extended in a relatively straightforward manner if the number of objects

remains constant. If the number of objects varies with time, there are several ways

of defining the continuous state as described in the next section

4.2.2 Handling multiple objects

Let m(t) be the number of objects present in the scene at time t. Let Xc(t) ∈

R4m(t) represent the composite object. We use the notation Xc(t) to indicate the

sequence {Xc(1), Xc(2), . . . , Xc(t)}. Each of the m trajectories is associated with

the observation sequence with four components representing the 2-D position and

velocity. Clearly, the number of objects m(t) need not be constant. This problem

of varying dimension can be handled in several ways. For example, m(t) can be

suitably augmented to yield a constant number M by creating virtual objects. In

[20], motion trajectories are represented using Kendall’s shape space. The trajectory

is resampled so that the shape is defined by k points. As an illustration, consider

the trajectory formed by passengers (treated as point objects) exiting an aircraft on

a tarmac and walking toward the gate. The number of passengers in the scene m(t)

can vary with time. Irrespective of the value of m(t), a common motion trajectory

can be formed by connecting the position of the first passenger to that of the last

passenger such that the curve passes through every passenger in the scene. The
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common trajectory is resampled at k points creating k virtual passenger positions,

and used to represent the shape. This is equivalent to defining an abstracting map

from a 4m(t)-D space to a 4k-D space. When the objects are not interacting or the

nature of interaction is unknown, it is not clear how to place the k virtual objects

to obtain a constant cardinality.

Though there may be several objects in the scene, there are only a few types

of activities. For instance, in a surveillance scenario, there may be several persons

walking on a street. Each person has his/her own dynamics whose parameters can

vary. Walking activity, however, is common across persons. This motivates the

usefulness of constructing a basis of behavior. In this example, the direction and

speed of walking could distinguish different basis elements.

The choice of a basis of behavior depends on the domain of application, but

need not be specific to datasets. In our experiments, we use the same basis across

two surveillance scenarios, one captured on airport tarmac and the other inside a

bank. If there is insufficient domain knowledge to guide the selection of a basis, a

generic basis based on eigenvalues of the system matrix can be used to distinguish

between basis elements (section 4.3.3).

The dynamics of objects in the scene is modeled individually using the most

likely basis element. The number of objects m(t) is allowed to vary at discrete time

intevals so that m(t) is constant over a short video segment. The change in the

value of m(t) is modeled as a one-step random walk. The conditional probability

distribution function (pdf) for a segment s can be written as f(Xc(t),m(t)|S = s) =

bs,m(Xc(t))P (m(t) = m|S = s). A behavior segment s ∈ S is characterized by the
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distribution of the number of objects in the scene P (m|s) and a family of distribu-

tions bs,m(Xc(t)) that describes the segment. The pdf bs,m(Xc(t)) is calculated using

a basis of behaviors. This value is used for temporal segmentation (section 4.4.1).

To place this definition in context, consider an HMM. In this case, the probability of

the segment is written as the product bs,m(Xc(t)) =
∏t

i=1 f(Xc(i)|s) and the HMM

persists in this state with a geometric distribution.

4.3 Mixed State Models

Let the sequence of discrete states be {q(1), q(2), . . . , q(T )}, where q(i) ∈

{1, 2, . . . , N} indexes the discrete valued behavior. The objects may transit through

M behaviors, switching at time instants τ = {τ0, τ1, . . . , τM}, where τ0 = 0, τM = T .

In general, the number of behaviors M and switching instants τi’s are unknown. We

present two BMS models to represent the behavior within such segments: offline

and online BMS models respectively.

Consider the general state equations of continuous and discrete variables.

ẋ(t) = hq(t)(x(t), u(t)), x(0) = x0 (4.1)

q+(t) = g(qt−1
1 , xt−1

1 , n(t)) (4.2)

The continuous state dynamics hq(t) depends on the discrete state q(t). It captures

the notion that a higher-level behavior evolves in time and generates correlated,

continuous-valued states x(t). The continuous state dynamics within each segment

is limited by the form of hq(t). The discrete state q(t) evolves according to g(·)

and depends not only on the previous discrete state, but also on past values of the
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observed data xt−1
1 . u(t) and n(t) represent noise. This makes the evolution of

discrete state non-Markovian.We make the following assumptions.

A1: The number of discrete state switching times is finite.

A2: Discrete state transitions occur at discrete time instants, i.e., τi = kα for

i = 1, . . . , M − 1, where k, α are integers.

A3: Between consecutive switching instants τi, τi+1, i = 1, . . . , M , the parameters

of the continuous dynamical model do not change.

(A1) ensures that we do not run into pathological conditions such as Zeno behav-

ior1. (A2) and (A3) are the practical conditions required for robust estimation of

parameters of each segment. We arrive at the offline and online BMS models by

making certain additional assumptions in (4.1) and (4.2) as explained in sections

4.3.2 and 4.3.3.

4.3.1 Special case: AR-HMM

Before describing the proposed mixed state models, we review the auto-regressive

(AR) HMM, which is a special case of (4.1) and (4.2). The AR-HMM was intro-

duced in [80] using a cross entropy setting. In addition to (A1)-(A3), the AR-HMM

requires the following assumptions:

A4: The number of discrete states N is known.

1Roughly speaking, an execution of a mixed system is called Zeno, if it takes infinitely many

discrete transitions in a finite time interval.
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A5: The processes are stationary and the model parameters do not depend on time.

Similar to the HMM, the hidden state in the AR-HMM follows the Markov dynamics.

P (q(t)|qt−1
1 , xt−1

1 ) = P (q(t)|q(t− 1)) (4.3)

The joint distribution of the continuous and discrete states can be written as follows.

f(x(t), q(t)|xt−1
1 , qt−1

1 ) =

f(x(t) , q(t)|q(t− 1), xt−1
t−α−1) (4.4)

This is useful for obtaining the optimal state sequence using the Viterbi algorithm.

Using (4.3) and (4.4), we have

f(x(t), q(t)|q(t− 1), xt−1
t−α−1) = f(x(t)|q(t), xt−1

t−α−1)

×P (q(t)|q(t− 1)) (4.5)

The distribution f(x|·, ·) is assumed to be normal. The mean and variance depends

on the discrete state. The parameters can be estimated using these hypotheses in

an EM setting [26].

4.3.2 Offline BMS model

The Markov assumption of discrete state evolution in (4.3) means that the

behavior parameters change without a direct dependence on the observed data. It

would be more reasonable to allow past values of observed data to influence changes

in behavior. So we present an offline BMS model whose discrete state transition is

given by the following:

f(q(t)|qt−1
1 , xt−1

1 ) = f(q(t)|q(t− 1), xt−α
t−β), (4.6)
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where q(t) ∈ {1, . . . , N} for some known number of states N and β = kα for some

integer k. Let the effective state be r(t) = (q(t), xt−α
t−β) so that (4.6) can be rewritten.

The state evolution of r(t) is Markov and the parameters and switching times can be

computed, in principle, using algorithms similar to the AR-HMM case. The compu-

tation of the parameters, however, is not as elegant as the classical HMM and it is

difficult to construct a recursive estimation procedure like the EM algorithm (briefly

described in section 4.4). Also, the transition probability P (r(t)|r(t − 1)) depends

on the observed data and violates assumption (A5). The transition probability of

the effective state can be written as follows:

f(r(t)|r(t− 1)) = f(xt−α
t−β |q(t), q(t− 1), xt−α

t−β)

f(q(t)|q(t− 1), xt−α
t−β) (4.7)

=
f(r(t− 1)|q(t), q(t− 1), xt−α

t−β)

f(xt−α
t−β |q(t− 1))

×(f(xt−α
t−β |q(t), q(t− 1))

×f(q(t)|q(t− 1))) (4.8)

The probability in (4.7) is difficult to compute due to two main reasons. Unlike (4.3),

(4.7) depends on xt−α
t−β . So the transition probability matrix is no longer stationary.

For parameter estimation using the EM algorithm, the denominator term in (4.8)

cannot be computed. So we turn to the underlying state equation (4.1), and define an

offline BMS model as a sequence of linear dynamics. The calculation of probabilities

can be replaced with running and switching costs incurred due to the estimated

dynamical parameters. In addition to (A1)-(A4), we assume the following:
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A6: The segment-wise dynamics are linear, i.e., (4.1) takes the following form:

ẋ(t) = Aq(t)x(t) + b, x(0) = x0, (4.9)

where Aq(t) ∈ {A1, A2, . . . , AN} for some known N , are obtained by training.

The offline BMS model can be used for activity recognition and anomaly detection.

Using training data, we can compute the parameters of normal behaviors. This

allows us to not only check for anomalies but provides a way to localise anomalous

parts of the activity, i.e., the unexpected Aq(t) segments.

4.3.3 Online BMS model

If the parameters of behaviors are unknown or time-varying, an activity model

that can estimate parameters of the model ’on the fly’ is needed. We present an

online BMS model for non-stationary behaviors. Assume that (A1)-A(3) and (A6)

hold, and relax (A4)-(A5). The number of segments N may be unknown, but (A6)

can be used to restrict the complexity of x(t) within a segment. This motivates the

construction of a basis of behaviors. The basis elements represent generic primitives

of motion depending upon the parameters of Aq(t). Specifically, for the segment-

wise linear dynamics of surveillance videos, we choose basis elements to model the

following types of 2-D motion: straight line with constant velocity, straight line with

constant acceleration, curved motion, start and stop.

The eigenvalues of the system matrix A are used to characterize the basis

elements. Consider a linear time-invariant system ˙x(t) = Ax(t), where A is a real

valued square matrix. Fixing the initial state x(0) = x0, we have x(t) = exp(At)x0,
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where exp(At) = Σ∞
k=0

tk

k!
Ak [81]. Depending on the eigenvalues λ1, λ2 of A, the

equilibrium point exhibits the following types of behavior: curved trajectories (both

eigenvalues are non-zero and real), straight line trajectories (one of the eigenvalues

is zero), spiral trajectories (complex eigenvalues). These distinctions are syntactic

rather than semantic, i.e., these types of motion may be considered as a context-free

vocabulary. We use these as the basis to describe behaviors of segments. Though

the total number of behaviors may be unknown a priori, we can specify a basis of

behaviors by partitioning the space of dynamics using the location of eigenvalues,

i.e., region in the space of allowable eigenvalues.

4.4 Approach

The estimation task in either offline or online BMS model consists of two main

septs: computing the parameters of the behaviors, and identifying switching times

between segments. It may be tempting to use the EM algorithm in this case [82]. The

EM algorithm involves an iteration over the E-step to choose an optimal distribution

over a fixed number of hidden states and the M-step to find the parameters of the

distribution that maximize the data likelihood [82]. Unlike the classical HMM,

however, the E-step is not tractable in switched state space models [41]. To work

around this, [41] presents a variational approach for estimating the parameters of

switched state space models, whereas [40] presents a sampling approach. Either of

these approaches is applicable in the offline BMS case, but neither is suitable for

the online BMS model. We propose an algorithm that has two main components:
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a basis of behaviors for approximating behaviors within segments and the Viterbi-

based algorithm.

The parameters of each segment is chosen so that the approximation error

R(τ, t0, q) defined below is minimized.

R(τ, t0, q) =
1

τ − t0

∫ τ

t0

(x− x̂q)
T (x− x̂q)dt, (4.10)

with ˙̂
qx(t) is a solution to (4.9).

R(τ, t0, q) is the accumulated cost of using the qth family of behaviors to ap-

proximate the current segment. For linear dynamics, the least square estimate

minimizes this error. This is consistent with the probability density estimates under

normal assumption for AR-HMM.

4.4.1 Viterbi-based algorithm

The Viterbi algorithm is used to find the optimal state sequence Q = {q(1), q(2)

, . . . , q(T )}, for the given observation sequence X = {x(1), x(2), . . . , x(t)} such that

the joint probability of states and observation is maximized. To place the proposed

Viterbi-based algorithm in context, we trace the modifications starting with the

Viterbi algorithm for the classical HMM approach. The quantity δ(t, i) is defined

as follows [26]:

δ(t, i) = max
qt−1
1

f(qt−1
1 , q(t) = i, xt

1|λ), (4.11)

where λ is the given HMM or AR-HMM. In the classical HMM case, we assume a

Markov state process P (q(t)|qT
1 ) = P (q(t)|q(t − 1)) and that the observations are
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conditionally independent of the past given the current state, i.e.,

f(x(t)|xT
1 , qT

q ) = f(x(t)|q(t)). (4.12)

It allows us to express (4.11) recursively as follows:

δ(t, j) = max
1≤i≤N

[δ(t− 1, i)aij]f(x(t)|q(t) = j), (4.13)

where A = [aij]1≤i,j≤N is the state transition probability matrix. The aij’s, which are

stationary, can be estimated using the Baum-Welch algorithm (Appendix A). The

trellis implementation of the Viterbi algorithm is used to compute the optimal state

sequence efficiently. The size of the trellis is N × T , where one observation variable

x(t) is involved at each stage [83]. In the AR-HMM, the observation probability

equation is written as (4.4) instead of (4.12). It is easy to derive the optimal state

sequence similar to the previous case. The major difference is that at each stage,

the error computation involves a window of observed data xt−1
t−α−1 instead of one

variable x(t) [84].

Compared to AR-HMM, the offline BMS model is more general in that the

evolution of state sequence is not Markov, but is allowed to depend on the continuous

state (4.6). This makes the computation of joint probabilities for δ(t, i) difficult,

as explained in section 4.3.2. The effective state r(t) = (q(t), xt−α
t−2α), however, is

Markov. We use this to set up a Viterbi-like algorithm based on approximation costs

incurred in persisting in each behaviors and switching costs due to transitions among

behaviors. If the denominator in (4.6) could be computed, then these costs could be

readily turned into probabilities. Also the probability aij is not stationary anymore,

and depends on the previous values of continuous state. The main difference in
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implementation is a reduced size of the trellis. By assumption (A2), the size of

the trellis reduces from N × T to N × K, where Kα = T and α is the minimum

size of each segment. This time axis is further halved due to effective state r(t)

being Markov instead of q(t) as shown in (4.7) and (4.8). The recursive equations

are given below. The online BMS case presents an additional challenge due to

non-stationarity. In this case, the N states represent N basis elements of behaviors.

In (4.13), the basic principle of dynamic programming is used to write the

recursive equation using two quantities: observation probability f(x|q) and the state

transition probability aij. The approximation cost R(τ, t0, q) is an analog of f(·|·).

We define the switching cost to be an analog of aij. For the BMS model, the

transition probability for the effective state is given in (4.7). Using (4.6), we have

f(q(t) = j | q(t− 1) = i, xt−α
t−2α)

=
f(q(t) = j, q(t− 1) = i|xt−α

t−2α)

f(q(t− 1) = i|xt−α
t−2α)

(4.14)

Using (4.14), the switching cost S : ∂Inv(i) × ∂Inv(j) → R+ is defined as

follows:

Let t1 ∈ [τi, τi+1) be a candidate switching time. Larger the value of the

switching function, higher is the error due to switching at t1, i.e., τi+1 = t1, when the

discrete state changes from m to n. The invariant set Inv(i) denotes the continuous

state dynamics for the hidden state i, i.e., as long as x(t) ∈Inv(i), we say that the

object exhibits the behavior indexed by the index i. The boundary of the invariant

set is denoted by ∂Inv(i).

S(m,n) =
(1 + R(t1, τi,m))(1 + R(τi+1, t1, n))

(1 + R(τi+1, τi,m))
(4.15)
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The 1’s are added to ensure that the function is well-defined at all time instants.

If t1 was the true switching time, the approximation error in the numerator will be

smaller than that in the denominator.

Let δ(k, n) denote the cost accumulated in the nth behavior at time k and

ψ(k, n) represent the state at time k which has the lowest cost corresponding to the

transition to behavior n at time k. The time index k is used instead of t, to denote

that switching is assumed to occur at discrete time instants (assumption (A2)).

• Initialization: For n ∈ N , let

δ(1, n) = R(1, 1, n)

ψ(1, n) = 0

• Recursion: For 2 ≤ 2k ≤ T and 1 ≤ j ≤ N ,

δ(k, j) = min
1≤i≤N

[δ(k − 1, i)− S(i, j)]−R(k, τk−1, j)

ψ(k, j) = arg min
1≤i≤N

[δ(k − 1, i)− S(i, j)]

• Termination:

C∗ = min
1≤i≤N

[δ(T, i)]

q∗(T ) = arg min
1≤i≤N

[δ(T, i)]

• Backtrack: For k = T − 1, . . . , 1,

q∗(k) = ψ(k + 1, q∗(k + 1))
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Figure 4.1: TSA airport tarmac surveillance dataset. Each image represents a block

of 10000 frames along with motion trajectories extracted.

4.4.2 Anomaly detection using Offline BMS model

It is common to have several examples of normal activities, and a very few

samples of anomalies making it difficult to model anomalies. Therefore, anomaly

detection can be formulated as change detection (or outlier detection) from the

normal model. Anomalies can be either spatial, temporal or both. Examples of

anomalies are path violation, gaining unrestricted access, etc. Offline BMS models

are trained using normal video sequences. Given a test (anomalous) video sequence,

motion trajectories and observation sequence are extracted as before. The Viterbi-

based algorithm is initialized with parameters learnt using training data. If an

unexpected state sequence is detected, an anomaly is declared. This assumes that

short time dynamics is consistent with the normal activity, but anomaly exists due

to an unexpected sequencing. Thus a completely unrelated activity would not be

declared an anomaly.
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Figure 4.2: TSA airport tarmac surveillance dataset. Each image represents a block

of 10000 frames along with motion trajectories extracted.

4.5 Experiments

We demonstrate the usefulness of the online BMS model for temporal segmen-

tation and the offline BMS model for anomaly detection using the following three

datasets: the TSA airport surveillance dataset, bank dataset and the UCF human

action dataset.

4.5.1 TSA airport tarmac surveillance dataset

A brief description of the dataset along with detection and tracking algorithms

is prresented in section 1.3.2.

In four blocks (a block is a ten thousand frame long video sequence), we observe

a significant amount of multi-object activity when planes arrive and depart. The

four blocks form the test set. Figures 4.1 and 4.2 shows the motion trajectories

for these blocks. The remaining portion of the dataset is used as the training
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Table 4.1: TSA dataset: Temporal segmentation of a block of video using the

online BMS model. Legend: GCP= ground crew personnel, PAX= passengers,

Det.=Segment Detected, TF=Tracking failed.

# Block in Figure 4.1(a) Comment

1 2 GCP split, walk away Det.

2 GCP across tarmac Det.

3 Truck arrives, GCP Det.

4 GCP across tarmac Det.

5 Truck Det.

6 GCP movement Det.

7 Plane-I arrives Det.

8 Luggage cart to plane Det.

9 Truck crossing scene TF

Plane-II arrives Det.

10 GCP and luggage cart

approach plane-I Det.

11 - Extra segment

12 PAX disembark Det., 2 extra segments
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Table 4.2: TSA dataset: Temporal segmentation of a block of video using the

online BMS model. Legend: GCP= ground crew personnel, PAX= passengers,

Det.=Segment Detected, TF=Tracking failed.

# Block in Figure 4.1(b) Comment

1 Luggage cart TF.

2 GCP movement near plane Det.

3 Luggage cart enter Det.

4 Plane enters Det.

5 PAX embark Det.

6 Luggage cart TF.

7 PAX embark Det.

Table 4.3: TSA dataset: Temporal segmentation of a block of video using the

online BMS model. Legend: GCP= ground crew personnel, PAX= passengers,

Det.=Segment Detected

# Block in Figure 4.2(a) Comment

1 Plane exits Det.

2 GCP movement Det.

3 Luggage cart to plane-II Det.

4 Bag falls off luggage cart Det.

5 Luggage cart to plane-II Det.
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Table 4.4: TSA dataset: Temporal segmentation of a block of video using the

online BMS model. Legend: GCP= ground crew personnel, PAX= passengers,

Det.=Segment Detected, TF=Tracking failed.

# Block in Figure 4.2(b) Comment

1 2 GCP movement Det.

2 Luggage cart TF

3 GCP movement TF

4 Plane-II arrives Det.

5 GCP movement TF

6 Luggage cart to plane-II Det.

7 Plane-III arrives Det.

8 PAX embark Det.

9 Truck movement Det.

10 GCP near plane-II TF

11 Luggage cart from plane-II Det.

12 More PAX embark Det.
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set. It may seem large compared to the size of the test set. The activity content,

however, is not as dense as in the test set. The paucity of training data makes it

unrealistic to train a model in the conventional sense, where parameters of the mixed

state model are estimated. Instead we train an online BMS model, which involves

finding a basis of behavior. The values of parameters are less important than the

region of parameter space they represent. Accordingly, the basis has elements that

can produce the following types of motion: constant velocity along a straight line,

constant acceleration along a straight line, curved trajectories with constant velocity,

start and stop.

We demonstrate temporal segmentation of the four test blocks using the online

BMS model. The segmentation results for the four blocks shown in figures 4.1(a)-(b)

and 4.2(a)-(b) are summarised in Tables 4.1 - 4.4 respectively. On an average, there

were 15% missed detections in segmentation. This was mainly because of tracking

errors.

4.5.2 Bank surveillance dataset

The actors in the bank surveillance and monitoring dataset (section 1.3.3)

demonstrate two types of scenarios:

• attack scenario where a subject coming into the bank forces his way into the

restricted area. This is considered as an anomaly.

• no attack scenario where subjects enter/exit the bank and conduct normal

transactions. This depicts a normal scenario. The normal process of trans-
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Figure 4.3: Bank dataset: Two segments detected in the no attack scenario: (a)

A subject enters the bank, goes to the area where paper slips are stored. Another

subject enters the bank and goes to the counter area, (b) Exit bank.

actions is known a priori and we train an offline BMS model using these

trajectories.

4.5.2.1 Temporal segmentation

We retained the same basis of behavior that was used for the TSA dataset

in section 4.5.1. Though the TSA data is captured outdoors and the bank data

indoors, they are both surveillance videos. They retain similarity at the primitive

or behavior-level. For the no attack scenario, segmentation using the online BMS

model yielded two parts. In the first segment, we see two subjects entering the bank

successively. The first person goes to the paper slips area and the second person

goes to the counter. In the second segment, the two subjects leave the bank. Figure

4.3 shows sample images from the two segments. We store the parameters of these

behavioral segments as the normal activity.

Figure 4.4 shows an example of an attack scenario. Here, the online BSM
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Figure 4.4: Bank dataset: Three segments detected in the attack scenario: (a) Enter

bank, (b) Gain access to the restricted area behind the counter (c) Exit bank. (d)

Shows a plot of the switching function. Peaks in the plot indicate boundaries in

temporal segmentation.
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model yielded three segments. In the first segment, the person enters the bank and

proceeds to the area where the deposit/withdrawal slips are kept. This is similar

to the first segment in the no attack case. During the second segment, he follows

another person into the restricted area behind the counter. The third segment

consists of the person leaving the bank.

4.5.2.2 Anomaly detection

The parameters of an offline BMS model are estimated using the no attack

scenario. To detect the presence of an anomaly, we compute the error accumulated

along the optimal state sequence using the test trajectory. It is difficult to assess

the performance of this naive scheme since we have very few samples. Alternatively,

we use the online BMS model to detect anomalies. If we assume that the attack

scenarios were normal activities while the no attack scenario was an anomaly, we

may expect the comparison scores of the different attack scenarios to be clustered

together. For each of the four scenarios in the dataset, parameters of their online

BMS models are computed. We form a similarity matrix of size 4 × 4 in order to

check whether the attack scenarios cluster separately. The L1 distance between the

histograms of parameters of learnt behavior is used as the similarity score. Table 4.5

shows the distance between the different attack examples with the no attack case.

We observe that the attack scenarios are more similar to each other compared to

the no attack scenario.
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Table 4.5: Comparing the no attack and attack scenarios in bank surveillance data.

L1 distance between histograms of parameters of online BMS model is used as

similarity score.

# No Attack Attack 1 Attack 2 Attack 3

No Attack 0 310 424 362

Attack 1 310 0 218 278

Attack 2 424 218 0 180

Attack 3 362 278 180 0

4.5.2.3 Comparison of results

Georis et al. [52] presented an ontology-based approach for video interpre-

tation in which activities of interest are manually encoded. They demonstrated

the effectiveness of ontologies for detecting attacks on a safe in a bank monitoring

dataset. Their method requires a detailed description in the form of a set of rules to

detect an ’attack’ activity. The proposed method, however, is data-driven. The ex-

tent of deviation observed in a given video sequence compared to a normal scenario

is used as a measure for detecting anomalies. Comparitive results are summarized

below.

In [52], the authors report the following results on tracking persons in the bank

scene: 88% true positives, 12% false negatives and 2% false positives. There were

no errors in tracking in our method.

For anomaly detection (i.e., detecting that the bank safe was attacked), the

results reported in [52] are 93.5% of true positives, 6.25% of false negatives and 0%
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of false positives. These results correspond to 16 repitions of the attack scenario.

We have access to only 3 attack scenarios. On these, we obtained correct anomaly

detection in all three scenarios.

4.5.3 UCF Human action dataset

The UCF human action dataset (section 1.1) is used to illustrate the effective-

ness of the Viterbi-based segmentation to detect primitive behaviors. We may think

of many actions as a sequence of behaviors. For example, picking up an object may

be abstracted as extend the hand toward object - grab object - withdraw the hand;

erasing the black board, as extend hand - move hand side to side on the board -

withdraw hand; opening the door, as extend hand - grab knob - withdraw hand. To

generate an action, we may compose a sequence of systems that operate with the

appropriate parameters.

We employ the Viterbi-based segmentation described in section 4.4.1 to find

the segments of actions. We show some of the segmentation results in figure 4.5.

A description of motion trajectories shown in figure 4.5 along with the detected

segment boundaries is given below.

• (a) Open cabinet door: start - reach door handle - open door - withdraw hand.

• (b) Pick up object: start - pick up object.

• (c) Put down: start - put object in cabinet - reach door handle - close door -

withdraw hand .
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• (d) Open cabinet door: start - reach door handle - open door - extra segment

- withdraw hand.

• (e) Pick up object: start - pick up object.

• (f) Put down: start - put object in cabinet - reach door handle - close door -

withdraw hand .

• (g) Open cabinet door: start - reach door handle - open door - withdraw hand.

• (h), (i), (j) Pick up object: start - pick up object.

• (k), (l) Open cabinet door: start - reach door handle - open door - withdraw

hand.

• (m) Pick up and put down elsewhere: pick up - put down - withdraw hand

• (n) Open cabinet door (different viewing direction): start - reach door handle

- open door - withdraw hand.

• (o) Pick up and put down elsewhere: pick up - put down (late detection) -

withdraw hand.

Table 4.6 shows the mean and variance of the number of segments detected for

different activities. The same number of segments were detected consistely across

multiple samples of activities picking up and pouring water an object. On the other

hand, variance in the number of segments detected for picking up an object and

putting it down elsewhere was high. This was because of excessive differences in

appearance across samples.
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Figure 4.5: Motion trajectories of the hand in the UCF dataset for different actions.

The dots along the trajectory denote segment boundaries detected.
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4.5.3.1 Comparison of results

We compared the location of detected segment boundaries with the dynamic

instants described in [1]. Dynamic instants are points of high curvature along the

trajectory. They are chosen as the feature of interest to ensure view invariant

representation of actions. The first segment switching in the proposed approach

occurs after sufficient evidence about the dynamics has been accumulated. This

is marked as the start segment, which usually occurs in 10-15 frames. We ignore

this boundary point when comparing our results with dynamic instants in [1] since

it does not have an explicit start instant. Segment boundaries detected using our

method, which are marked by dots in figure 4.5 are compared with the dynamic

instants in [1]. The average difference between the two values are as follows: 5.4

frames for open door, 4.1 frames for close door, 3.3 frames for pour water, 2.0 frames

for erase board and 6.2 frames for pick up object and put down elsewhere.

4.5.4 Home-care applications

Though the proposed approach was demonstrated using video sequences col-

lected in office and airport environments, it can be easily applied to home-care

scenarios. De Natale et al. [85] describe fall detection and accessing unauthorized

locations as typical applications in home-care scenarios. We highlight the applica-

bility of our method to some home-care applications.

As demonstrated using the bank monitoring dataset, our approach is able to

detect if a person gained access to unauthorized places. Similarly, as experiments
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Table 4.6: Number of segments detected for activities in the UCF indoor human

action dataset.

Activity Average # Variance

segments

Open door 4.44 0.53

Pick up 2.27 0.21

Put down 2.50 0.94

Close door 4.25 0.25

Erase 6.50 0.33

Pour water 3.00 0.00

Pick up object 3.75 3.92

& put down elsewhere
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using the UCF dataset demonstrated, human actions were segmented into a sequence

of elementary parts. For instance, opening a cabinet door was represented as start

- reach door handle - open door - withdraw hand. These actions could be used to

find the number of times is medicine cabinet is used. If an opening action does not

occur at expected times, an alarm could be issued.

4.6 Summary

In this chapter, mixed state models using segments of piecewise linear mixed

state models was presented. A sequence of such segments is said to character-

ize an activity based on a context-independent basis of behavior. Parameters of

the segmentwise models and switching times between them were estimated using

a Viterbi-based algorithm. Experiments using surveillance video streams in both

indoor and outdoor settings demonstrate that the method can be used to analyze

activities at different scales. The usefulness of the proposed method is shown using

applications such as temporal segmentation and anomaly detection.
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Chapter 5

Spectral Method for Event Detection

5.1 Introduction

The theory of antieigenvalues is based on changes in the data. It is sensitive to

how much a data vector is turned from a known direction, rather than the direction of

persistence [86]. On the other hand, eigenvectors represent the direction of maximum

spread of the data and the eigenvalues are proportional to the amount of dilation. We

propose an antieigenvalue-based approach for detecting key frames by investigating

properties of operators that transform past states to observed future states.

This chapter is organized as follows. Section 5.2 motivates the key-frame based

representation for activities. Section 5.3 gives a brief overview of antieigenvalue

theory. Section 5.4 describes the proposed approach. Section 5.5 demonstrates the

proposed method using two datasets: the MOCAP database and the UCF human

action database.

5.2 Key frame representation

As we argued through examples of opening a door, walking, etc., many ac-

tivities can be represented using key frames instead of the entire video sequence.

Generally, there are three ways to decide on what constitutes a key frame. We may

use domain knowledge in a top-down fashion. It requires an extensive model for
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the activity, which may be tedious. It relies on our ability to detect the key frames

across variations in the data that occur due to structural changes and noise [30].

We may hypothesize that the important characteristics of the activity are present

in the persistent and dominant frames [37]. This makes it difficult to detect subtle

changes, since it may be difficult to distinguish them from noise. We may look for

key frames that are a result of certain changes in the data. In other words, changes

in the activity may be more useful than the absolute values of a dominant feature

in representing the activity. We present an unsupervised approach for detecting key

frames based on changes in the data.

Let the past state vector x− be transformed by an operator At to a future state

vector x+. If motion properties do not change appreciably, then x+ may be related

to x− by an identity transformation modulo translation. Such a transformation

may be less interesting compared to the case where At turns the state x−. We show

how antieigenvalues may be used to detect such changes and to identify the key

frames. In contrast, eigenvalues are tuned to detecting identity-like transformations.

It is important to point out that these quantities are of intrinsic interest in their

own right. As the term denotes, however, it may be easier to gain an insight into

antieigenvalues by contrasting with eigenvalues and eigenvectors of the operator.

The motion trajectories are associated with two quantities: the antieigenvalue

sequence, which is the sequence of antieigenvalues for the operator At for every

time t, and the location of the key frames detected using minima in the average

antieigenvalue sequence. Both the extent of change as given by the antieigenvalues

and the location of key frame are useful for recognition. If viewing conditions change,
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we may expect the time instants of occurrence of key frames to be more useful since

the extent of change depends on viewing direction. On the other hand, if the

viewing direction is fixed, antieigenvalues may be used in comparing two activities.

We illustrate both these cases in our experiments.

5.3 Antieigenvalues

We present a brief description of antieigenvalues before discussing its applica-

tion. A detailed discussion of antieigenvalues may be found in [86] or [87].

For a square matrix A, a non-zero vector x is said to be an eigenvector if

Ax = λx, and λ is called the eigenvalue. Equivalently, we may state the condition

as cos θ = 1, where θ is the angle between x and Ax. Geometrically, we may

think of eigenvectors as those that dilate A but do not turn at all. The eigenvalues

represent the amount of dilation. On the other hand, antieigenvectors are critical to

the turning of A. Instead of seeking cos θ = 1 or θ = 0, antieigenvectors minimize

cos θ, or equivalently, maximize θ. The first antieigenvalue is defined as [86]

µ1(A) = inf
Axn 6=0

<〈Axn,xn〉
‖Axn‖‖xn‖ . (5.1)

It has been shown [87] that antieigenvectors occur in pairs. The first antieigenvector

is the pair

x = ±
(

λn

λ1 + λn

)1/2

e1 +

(
λ1

λ1 + λn

)1/2

en, (5.2)

where λ1 is the smallest eigenvalue with eigenvector e1 and λn is the largest eigen-
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value with eigenvector e2. For example, let

A =




9 0

0 16


 (5.3)

The eigenvalues of A are λ = 9, 16. Using (5.2), the first antieigenvector is

x1 = (−4
5

, 3
5
). The antieigenvalue may be calculated by substituting the value of x1 in

(5.1). The first antieigenvalue is µ1(S) = 〈Ax1,x1〉
‖Ax1‖ = 0.96 The second antieigenvector

is x2 = (3
5
, 4

5
) and the corresponding antieigenvalue is 0.97.

The first total antieigenvalue is defined as |µ1(A)| = infAx6=0
|〈Ax,x〉|
‖Ax‖‖x‖ . The

higher total antieigenvalues are similarly defined.

The total antieigenvalues for matrices of size greater than 2 × 2 may be cal-

culated as follows (theorems 2.1 and 2.2 in [86]). Let A be a normal operator with

eigenvalues λi = βi + jδi, i = 1, . . . , n and j =
√−1. Then the first total antieigen-

value is either 1 or the smallest number in the set of values

G = {
√

(βi|λj|+ βj|λi|)2 + (δi|λj|+ δj|λi|)2

(|λi|+ |λj|)
√|λi||λj|

, (5.4)

where i 6= j, 1 ≤ i ≤ n, 1 ≤ j ≤ n}. If |µ1(A)| = 1, then the first total

antieigenvector is z1 = (z1, z2, . . . , zn) with |zj| = 1 for some j and all other

zi = 0. If |µ1(A)| is one of the values in G, then the components of z1 sat-

isfy |zi|2 =
|λj |

|λi|+|λj | , |zj|2 = |λi|
|λi|+|λj | , all all other zk = 0. Further, all higher total

antieigenvectors take their value from the set G and the corresponding higher total

antieigenvectors possess the same component structure as the first total antieigen-

vector.
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5.4 Key frame detection using antieigenvalues

In this section, we describe the proposed antieigenvalue-based key frame de-

tection procedure. The key frames are used to compare two activities.

5.4.1 Feature selection

We obtain trajectories of the moving object and compute its apparent veloc-

ities. The tracking procedure for the different datasets is outlined in section 5.5.

The state of a moving object is said to be the tuple (x(t), y(t), ẋ(t), ẏ(t)), where

(x(t), y(t)) represents the instantaneous position. We assume that the state under-

goes certain important changes at the key frames. We are interested in detecting

these changes, rather than modeling the entire sequence of frames. Let At : H → H

be an operator that relates the past state x(t−) into the future state x(t+), where H

is the Hilbert space domain. There are two estimation tasks here. We need to esti-

mate the past and future states x(t−) and x(t+). For robust estimation, we assume

that the state of the system remains constant for a short interval of time. The other

estimation tasks involves optimizing the parameters of the operator At. If there is

no change in the state from t− to t+, we may expect A to be the identity matrix

(modulo translation). The matrix At is estimated using a least squares procedure

as described in section 3.3.1.
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Figure 5.1: Average antieigenvalue for A in (5.5) as a function of k.

5.4.2 Numerical range of the operator

The numerical range of an operator A is defined as the set W (A) = {〈Ax,x〉,x ∈

H, ‖x‖ = 1}, where H is the Hilbert space. For example, consider an operator

defined by the matrix A =




0 1

0 0


. Let x = (p, q). For simplicity, assume

‖x‖ = |p|2 + |q|2 = 1. Then Ax = (q, 0) and 〈Ax,x〉 = qp. A simple calculation

shows that W (A) = {x = (p, q) : |p|2 + |q|2 ≤ 1
2
} or the half disk. Closely re-

lated to the numerical range, we can define the angle of the operator cos A and the

antieigenvalues of the operator A as discussed in section 5.3.

5.4.3 Choosing key frames

We compute antieigenvalues of At using (5.4) and use the mean antieigenvalue

as a measure of relative significance of the frame in representing the activity. A

small value of the mean antieigenvalue indicates that the minimum cos At is small

or that the turning angle is large. This indicates a larger relative change in the

state vector and hence significant for representing the activity. We illustrate the use

of antieigenvalues in detecting key frames through a few examples in the 1-D case.
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The state of the moving object is the pair (x(t), ẋ(t)). Suppose the transformation

operator is given by

A =




2 0

0 k


 . (5.5)

For differing values of k, this means that the change in the state of the object is

due to a changing speed, while the position remains constant (modulo translation).

Figure 5.1 shows the variation of the average antieigenvalue as the value of k is

increased. We observe that, as expected, the average antieigenvalue varies inversely

as the extent of change in the state of the moving object.

5.4.4 Matching sequences

We compute the similarity score between two video sequences by comparing

the sequences of key frames. Clearly, an activity need not be repeated with the same

timing scale from one instantiation to the next and the location of key frames may

change slightly. To allow for non-linear time normalization while matching, we use

dynamic time warping (DTW) [55]. The similarity score is computed by traversing

the warping path, which gives the correspondence of the frames in the reference and

probe sequences.

To place the proposed approach in context, we compare this to the eigenvalue

based methods. Various approaches in the literature have used eigenvalue-based

ideas to model activities in two main ways: for pre-processing or filtering the data

and for extracting the dominant characteristics for representation. The basic hy-

pothesis in all these approaches is that the dominant characteristics of the signal
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are important. Also, the main characteristics are assumed to be highly structured

and stationary. In such a setting, the eigenvectors capture the dominant charac-

teristics and the eigenvalues represent the relative contribution of the eigenvectors

for representation. For example, eigenfaces capture the dominant characteristics for

face recognition [88]. By reconstructing the signal using the top few eigenvectors,

it induces a smoothing operation on the original signal [29]. Zhong et al. [37] use

this idea for activity classification where they cluster the sequence of frames into

prototype classes.

5.4.5 Algorithm overview

• Pre-processing: Extract object trajectory from video and smooth it.

• For every time t, compute the state x(t) = (x(t), y(t), ẋ(t), ẏ(t)). For comput-

ing ẋ(t), ẏ(t)), we use finite differencing over W frames of data.

• Compute the least squares estimate of the operator At : x(t−) → x(t+).

• Compute the antieigenvalues of the operator At using (5.4). Compute its

mean.

• Recognition: compare the key frames detected from the average antieigenvalue

sequence for the training using DTW.
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Figure 5.2: Confusion matrix for activities in the MOCAP dataset

5.5 Experiments

We demonstrate our approach to activity recognition using the MOCAP action

dataset and the UCF human action dataset.

5.5.1 Motion Capture (MOCAP) dataset

A brief description of the MOCAP dataset is presented in section 1.3.4. There

are 9 activities in the dataset and approximately 75 sets of observation overall. The

tracks for an activity such as walking consists of multiple cycles of the activity. We

divide the sequence into individual walking cycles and treat each half-cycle as an

observation. Half-cycle refers to the part of the walking cycle starting from the

standing pose, right (or left) leg forward, reaching the swing pose, and withdrawing

the right (or left) leg to the standing pose. The number of observations is increased

to 365 by treating similar trajectories of nearby locations as multiple samples, i.e.,

2 locations near the abdomen are treated as multiple samples of the same location.

To ensure that there is no bias due to the displacement, we use mean-subtracted
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Table 5.1: MOCAP dataset: Closest-matching activities based on comparing event

probability sequences. All activities were correctly recognized. Table shows the

matches following the top match.

Test activity Match #2 Match #3

Blind-walk Normal walk Normal walk

Prowl-walk Jog Exaggerated walk

Broom Sit Exaggerated walk

Crawl Broom Sit

Exaggerated walk Sad walk Normal walk

Jog Jog2 Normal walk

Sit Sit1 Neutral

Normal walk Normal walk Sad Walk

Sad walk Exaggerated walk Normal walk
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(a) (b) (c) (d) (e) (f)

Figure 5.3: Sample trajectories from the UCF dataset along with the detected key

frames

trajectories for all locations.

We compute the state vector for every time instant and estimate the trans-

formation operator At as described in section 5.4. We compute the antieigenvalue

and use its mean as a signature for the activity. The antieigenvalue sequences are

matched using DTW. All the activities were correctly recognized. Table 5.1 sum-

marizes the activities that were the closest matches following the top match. We

observed that the different types of walking resembled each other while the similar-

ity scores corresponding to sitting, sweeping with a broom were significantly larger.

Figure 5.2 shows the confusion matrix across all activities. It may not be straight-

forward to associate a physical meaning to the detected key frames for activities

such as walking, etc. other than saying a key frame was detected at the stance

when the feet are maximally apart, and so on. In the UCF action dataset described

below, the key frames are more readily apparent.

5.5.2 UCF human actions dataset

A brief description of the UCF dataset is provided in section 1.1.

The average antieigenvalue sequence was computed as outlined in section 5.4.5.
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The key frames were identified by finding the minima in the average antieigenvalues.

Figure 5.3 shows the key frames identified for some of the activity trajectories.

The dots marked along the trajectory denote the key frames detected along the

trajectory. Figure 5.3(a) shows the key frames for opening a door. In figure 5.3(b),

the trajectory for picking up an object from the desk and putting it on the floor

shows two key frames detected, one of which is the result of a sharp change in

direction and the other a gradual change. The second sharp change is not detected

due to boundary effects. In the case of erasing a white board, we observe a key frame

when the eraser is picked up, and several key frames at the left side of the erasing

back-and-forth action of the hand (figure 5.3(c). This means that each back and

forth action of the hand may be considered as the past and future states separated by

the key frames. Figures 5.3(d) and (e) show trajectories of picking up objects. They

each have one key frame detected at approximately the instant the object is picked

up. Figure 5.3(f) shows the trajectory of a random action. The lack of structure in

the data is reflected by a large number of changes leading to the detection of several

key frames.

Comparison with the UCF method[1]: Rao et al. treat activities as a

sequence of dynamic instants that are defined as the points of maximum curvature

along the trajectory [1]. The key frames in the proposed approach are detected

based on changes in the data including changes in direction and changes in speed.

The comparison of recognition rates are given in figure 5.4.
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Figure 5.4: UCF dataset: Comparing recognition rates. Solid black bar represents

proposed method, dashed gray bar are the rates reported in [1]
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5.6 Summary

We have presented a key frame based activity representation using the largely

unexplored theory of antieigenvalues. Key frames are characterized using changes

in the data, rather than dominant, persistent properties. This allows a natural way

to detect both subtle and sudden changes, which are often more interesting than

the portions of the data that are normally observed.
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Chapter 6

Spatio-temporal Volumes

6.1 Introduction

The motivation for representing human activities using spatiotemporal vol-

umes stems from a twofold objective of selecting useful features for recognition and

providing an intuitive way of visualization. The aim is to characterize the topology

of these activity volumes in an algebraic framework so that features that capture the

topology can be extracted. As an example of typical activities of interest, consider

a surveillance scenario where two people approach and meet each other. This cre-

ates two cylinder-like structures in the spatiotemporal volume that merge into one.

The persistence of the two persons at the place of meeting creates a maximum. In

general, the surface of spatiotemporal volumes consist of maxima, minima and sad-

dle points (collectively, known as critical points), and homotopic sections between

them. Since spatiotemporal volumes are created by moving objects, it is sensible to

express the topology of such volumes using motion properties.

In the mathematical abstract, topology is defined as “the study of open sets”.

Intuitively, this refers to the shape or structure that is invariant to deformations

that are one-to-one and continuous. These include all deformations that preserve

local structures such as holes and attached segments. Polygonal meshes and implicit

surfaces are some of the ways of representing topological shapes. Topological invari-
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ants can be computed using combinatorial structure of faces, edges and vertices.

For example, Euler characteristic χ was defined in this way.

χ = # vertices - # edges + # faces = 2− 2g,

where g is the genus (or the number of ’handles’).

Another way of representing surfaces is due to Morse theory. It uses critical

points of a smooth, real-valued function defined over the manifold. It reveals the

connection between differential geometry of a surface, its algebraic topology and

stability of dynamical systems evolving on the manifold. The topology changes only

at the critical points, i.e., connected sections can merge or split or local extrema

occurs. Morse theory has been used in many areas including graphics, image com-

pression and geographic information systems ([89], [90], [91]). In many of these

applications, the focus of research is on accurate rendering of images or shapes. For

activity modeling, however, capturing the global structure or feature selection and

extraction is more important.

If all critical points of a smooth, real-valued function defined on the manifold

are non-degenerate, then it is said to be a Morse function. We use the dynamics of

moving objects to construct Morse functions for spatiotemporal volumes. Assuming

that the dynamics is linear within intervals, a system matrix that captures the

dynamics is estimated. A suitable distance metric on the space of such matrices is

defined and the distance is used to construct a Morse function. Critical points of

the Morse function are detected. The Hessian at the critical points captures the

topology of the spatiotemporal volumes, and are used to compare activities formed
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by moving objects. We demonstrate an application to activity classification in a

surveillance scenario using the TSA airport surveillance dataset.

Critical points and critical values may be viewed as activity descriptors that

are based on motion when a suitable real-valued function is used in their extraction.

Local descriptors such as wavelet coefficients and SIFT features have been studied

extensively in the context of image matching and object recognition ([92], [93]).

One of the objectives of these methods is to find stable keypoints in images, which

possess desirable properties such as scale and affine invariance. To see the connection

between Morse functions and local descriptors of images, consider an image I(x, y),

where (x, y) specifies the pixel location, and I is the intensity. Instead of representing

an image as I(x, y), it can be expressed as the tuple (x, y, I(x, y)), i.e., in a 3-

D cube, x and y axes specify a co-ordinate system for pixels, and the intensity

I(x, y) is plotted along the z-axis. We show that the SIFT algorithm is equivalent

to characterizing the topology of (x, y, I(x, y)) with a particular choice of Morse

function f(x, y, I(x, y)) = I(x, y). The keypoints of I in the SIFT algorithm after

the post-processing steps form critical points of the Morse function and the keypoint

descriptors approximate the Hessian at its critical values.

The rest of the chapter is organized as follows. Section 6.2 presents a brief

overview of some results in Morse theory. Section 6.3 describes the connection be-

tween critical points of Morse functions and SIFT features. Section 6.4 describes

the construction of Morse functions based on dynamics for activity modeling. Sec-

tion 6.5 discusses some practical issues and describes an application of the proposed

approach to activity classification. Section 6.6 shows experimental results using the
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TSA airport surveillance dataset.

6.1.1 Related work

Niyogi and Adelson [94] used xyt slices for modeling gait patterns in one of the

earlier works based on spatiotemporal volumes. Cootes et al. [95] developed active

shape models, where training samples are used to fit deformable shapes. More re-

cently, level set methods have been used instead of active surfaces, where a suitable

energy functional is minimized. A framework for tracking and spatiotemporal seg-

mentation that can handle occlusions is described in [96].Spatiotemporal volumes

have been used for detecting and tracking humans in surveillance scenarios ([97]).

Image-level local descriptors have been used for matching ([98], [99]). Filter-

based approaches have been developed for detecting feature points and edges ([100],

[101]). More recently, SIFT features have been successfully used for applications

such as image matching and object recognition ([93]). Motion descriptors were

extracted from a motion stabilized spatiotemporal volume to recognize actions in

far field video [102].

Solutions to the Poisson equation have been used to find closed contours of

shapes in [103]. This was extended to the detection of closed boundaries of space-

time volumes in [104], and the detected shapes were used for action classification.

They use multigrid methods for efficient computation. This is similar to the ap-

proach adopted in [90], which uses the multigrid technique to solve for Laplacians

subject to Dirichlet boundary conditions. It requires initialization (or specifying
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constraints at known points). It is perhaps worth mentioning that we are not con-

cerned with reconstructing spatiotemporal volumes. The proposed approach, on

the other hand, approximates the objects in the scene using motion blobs that are

detected using a separate pre-processing step. The dynamics of the blobs is used to

find features from spatiotemporal volumes for activity classification.

Morse theory has its foundations in smooth functions on manifolds [105]. It has

been extended to piecewise linear functions on meshes [106]. A graphical structure is

used to represent the topology of surfaces, which encodes parent-child relationships

in contours. Perturbations are used to simplify the structure in terrain data, and in

general 2-manifolds, in [89].

6.2 Morse theory

This section briefly reviews Morse theory. Milnor [105] gives an accessible and

insightful description. Let f : M → R be a smooth real-valued function defined

on a manifold M . A point p ∈ M is said to be a critical point if ∂f(p)/∂xi = 0,

i = 1, 2, . . . , n. The real number f(p) is said to be a critical value. A critical point

p is said to be non-degenerate if and only if its Hessian

Hessp(f) =

[
∂2f

∂xi∂xj

(p)

]

is non-singular; otherwise it is degenerate.

A function f is said to be Morse if and only if all its critical points are non-

degenarate. Degenerate critical points are unstable and can be perturbed to render
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the function Morse, since the set of Morse functions on any M is dense. Alterna-

tively, any bounded smooth function f : M → R can be uniformly approximated by

a smooth function g, which has no degenerate critical points.

We are interested in a 2-manifold M closed and embedded in R3. According to

the Morse lemma, a Morse function can be expressed as f(x) = f(p)±x2
1±x2

2 in the

neighborhood of every non-degenerate critical point p. The number of minus signs

is the index of p. It is the number of negative eigenvalues of Hessp(f), counting

multiplicities, and characterizes the type of critical point, i.e., minimum has index

0, saddle has index 1 and maximum has index 2.

Let Ma denote a section of the manifold such that Ma = f−1(−∞, a] =

{p ∈ M : f(p) ≤ a}. For real numbers a < b, Ma is diffeomorphic to M b if

the set f−1[a, b] is compact and contains no critical points of f . Further, Ma is a

deformation retract of M b and the set f−1[a, b] is said to be of the same homotopy

type. This implies that there are no topological changes on a homotopic section of

a manifold that contains no critical points. It gives a convenient way to partition

the overall structure into homotopic segments.

We recount the topology of the torus to illustrate the use of critical points

(figure 6.1). Consider a doughnut being held vertically before dunking it in coffee.

The height h of a point on the surface from the base forms a Morse function that

has four critical points: a minimum at the base, a maximum at the top and two

saddles along a vertical line on the inner circle. The topology of the dunked portion

of the doughnut changes at the four instants when the critical points are submerged

in the coffee. At the saddles, there is one principal direction along which the Morse
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function (height) increases, and one direction where it decreases. At the minima,

clearly there are no directions where the function decreases whereas at the maximum,

there are two principal directions along which the function decreases. The behavior

about a critical point is captured by the Hessian of the Morse function. To complete

the characterization of the topology, handlebodies are used to connect neighboring

critical points.

In practical applications, spatiotemporal volumes do not lend themselves to

Morse functions that are smooth. The function, rather than the surface of the

spatiotemporal volume, is smoothed. It may be worth noting that there is no unique

Morse function for a given manifold. However, if a function is Morse, then the critical

points and the Hessian at the critical points completely specify the topology. In the

case of activities, the underlying dynamics of the moving blobs provides a natural

way to define a Morse function whereas in 3-D object modeling, the height function

can be used.

6.3 Morse function for SIFT features

Lowe [93] described a method for extracting keypoints called SIFT features.

It relies on identifying distinctive, stable features or keypoint descriptors that are

invariant to scale, image noise and rotation. Since critical points, together with

associated critical values and handlebodies are sufficient to characterize topology

of objects such as spatiotemporal volumes, it is reasonable to look for connections

between the two approaches. The SIFT features are extracted by convolving the
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Figure 6.1: Topology of torus is characterized by the four critical points A,B,C, D of

the height function h; A is a minimum, B, C are saddle points and D is a maximum.

Since all critical points are non-degenerate, h is a valid Morse function.

image with a difference of Gaussian (DOG) filter and identifying points of local

extrema. The computation is done across scales so that stable extremum points are

obtained. Since the DOG operator picks up edges as well as isolated maxima and

minima, post-processing steps such as edge-elimination and low contrast removal are

needed. Every keypoint is assigned an orientation based on a gradient histogram in

the neighborhood.

Consider the image I as a 3D object (x, y, I(x, y)), where I(x, y) is the intensity

at pixel location (x, y). Analogous to the height function h = z in the case of the

torus (figure 6.1), consider a candidate Morse function f(x, y, (I(x, y))) = I(x, y).

If the image has edges, clearly the critical points along edges will be degenerate

(with the rank of Hessian being 1). Post-processing methods are used for edge-

removal and elimination of low-contrast keypoints based on thresholding. This is

equivalent to removing degenerate critical points in the candidate Morse function so
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that the refined function becomes Morse. The orientation assignment to keypoints

finds directions of maximum (or minimum) gradient, i.e., the eigenvector directions

of the Hessian operator within the local neighborhood of the point. Thus, choosing

f(x, y, (I(x, y))) = I(x, y) as a Morse function, gives a Morse theoretic interpretation

to the SIFT features.

6.4 Morse Function for Activities

This section describes the computation of Morse functions using dynamics of

moving objects that are represented by moving blobs. It may be useful to illustrate

the intuition behind the use of dynamics for characterizing spatiotemporal volume

through an example. In an airport surveillance scenario, a common activity is that

of a luggage cart approaching a plane, stopping for a few minutes when the luggage is

loaded before turning and exiting the scene. This creates a spatiotemporal volume

that resembles a bent pipe, where the location of the ’bend’ corresponds to the

stopping of the luggage cart. The fine details of the surface of the volume depends

on the shape of the luggage cart. A detailed shape information may be required

to distinguishing between two types of cart, or more generally different types of

3D objects. But the low resolution and noise in video streams may not allow for

exact reconstruction. More importantly, we are not interested in these details. It

is sufficient to treat the luggage cart as a motion blob for the purpose of activity

classification. Similarly, a plane taxiing to the gate would be represented by the

volume carved out by its motion blob. We require an algebraic way of representing
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spatiotemporal volumes in order to compare them.

In the luggage cart example, there are three parts in the activity as described:

enter, stop at plane, turn and exit. When describing the activity, we associate a

meaning to these parts due to important changes in dynamics of the object at these

time instants. So it is desirable that these parts are reflected in the representation of

spatiotemporal volumes. In other words, the Morse function should attain criticality

to mark these events.

6.4.1 Motion blobs

Postion and velocity of the centroid of the moving object is said to be its state

z(t). We assume that the parameters of dynamics are constant for W frames. The

value of W depends on the type of data. For instance, it may be reasonable to

assume W = 100 or 4 second in far field surveillance data. Within a sliding window

of size W , state zt is estimated. Let the state evolution be modeled using a linear

transformation, i.e.,

zt+1 = Azt + vt, (6.1)

where v is the error in approximation. The parameters of the matrix A are estimated

using the least squares procedure (section 3.3.1).

6.4.2 Candidate Morse function

Let f(x, y, t) denote the value of the real-valued Morse function at pixel (x, y).

Let I(x, y, t) represent the image frame I(x, y) at time t. Our goal is to estimate f
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using dynamics of short time trajectories of motion blobs such that critical points

and the Hessian at those points describe the spatiotemporal volumes.Given a video

stream, moving objects are detected and the region M(x, y, t) containing motion is

said to be the region where the candidate Morse function is valid:

M(x, y, t) = II(x,y,t)6={I(x,y,t−∆)}, (6.2)

where {I(x, y, t−∆)} = {I(x, y, t−∆), I(x, y, t−∆+1, . . . , I(x, y, t−1))} for some

constant ∆ consecutive frames and I is the indicator function.

Every point (x, y, t) is associated with a moving blob. A candidate Morse

function f 0(x, y, t) is initialized based on the least squares estimates of dynamics

(section 6.4.1) as follows. A distance function between dynamics of the moving

blobs is computed within the region of interest M(x, y, t). All the pixels in a blob are

assumed to follow the same dynamics, i.e., zt+1 = Azt+vt, where zt ∈ V ⊂ R3 and V

is a spatiotemporal volume cube {V (x, y, t)}, x ∈ [x1, x2], y ∈ [y1, y2], t ∈ [t1, t1+W ]

and (x1, x2, y1, y2) gives a rectangular blob.

Using a segment of frames {zt−W , zt−W+1, . . . , zt−1}, parameters of A1, such

that zt = A1zt−1 +vt are estimated. Similarly for the segment {zt, zt+1, . . . , zt+W−1},

A2 is estimated such that zt = A2zt−1+vt for the new segment. The distance between

A1 to A2 forms the value of candidate Morse function at the tth frame that separates

the two segments.
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6.4.3 Motion-based critical point detection

The candidate Morse function is computed by comparing the distance between

a reference video sequence using the metric described in chapter 3. Using the can-

didate Morse function, maxima are computed using appropriate filters defined over

a local cubical region in space and time. A maximum in f(x, y, t) indicates that

the motion at that point underwent a perceptible change. On the other hand, a

minimum denotes that the point is strongly correlated with its past as expected.

This makes it difficult to isolate minimum points for the candidate Morse function.

At the first step, we only look for maxima. After the candidate Morse function has

been refined, minima can be detected.

Only those critical points that lie within the region M(x, y, t) defined in (6.2)

are considered relevant for modeling the activity. The candidate Morse function is

refined to obtain a smooth Morse function that retains the critical points detected

within M .

6.4.4 Refining Morse function

The candidate Morse function f is smoothed using a Gaussian kernel and the

critical points are recomputed based on the smoothed f . If the critical points in

the region of interest M are non-degenerate, then the smoothed function is a Morse

function. On regions of the spatiotemporal surface that are flat, the critical points

are degenerate, i.e., the Hessian at the point is rank-deficient. Degenerate critical

points, however, cannot be used to characterize the surface topology. To overcome
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this problem, we collapse flat regions into a point.

The critical points are recomputed and checked for degeneracy. Small, smooth

perturbations are added to the Morse function. The disadvantage is that this creates

additional critical points. However, since Morse functions exist on any smooth

manifold N and, moreover, form an open dense subset of smooth functions on N ,

it is reasonable to assume that the number of artificially created critical points is

small.

6.5 Approach

In this section, some practical issues in implementation and application to

activity classification are described.

6.5.1 Pre-processing

A stationary camera is used to capture far-field surveillance scene. The motion

trajectories are extracted as described in section 3.2. The 4-tuple representing the

2-D position and velocity is said to be the state of the object. Assuming that the

motion is piecewise linear, parameters of the linear dynamical model for the 2-D

position and velocities are estimated. For discrete time instants, state evolution can

be written as given in (6.1).
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6.5.2 Critical points

Distance between matrices A’s as the object moves is used to construct a

candidate Morse function and it is refined as described in sections 6.4.2 and 6.4.4.

The calculus for finding critical points on a manifold resembles the familiar first order

and second order conditions involving several variables in differential calculus except

for the restriction that global coordinates cannot be used. Instead, the standard

way of doing differential calculus on such a topological surface is by covering it with

overlapping patches. The patches are homeomorphic to open 2-D rectangles such

that the transitions between them define differentiable function in R2. This enables

us to restrict the function to be smooth as a function on rectangles. Critical points

of the function are those where the gradient takes the value zero. Critical values

and the Hessian at the critical points are computed as activity descriptors.

6.5.3 Activity classification

The topology of spatiotemporal volume provides a representation of the in-

herent characteristics of the different activity components, e.g., it is invariant to

translation and rotation on the ground plane. The topology is specified by the crit-

ical points of the Morse function and the Hessian at the critical points capture the

topology (along with homotopic sections that connect consecutive critical points).

So critical points and the eigenvalues of the Hessian at these points can be regarded

as descriptors that capture points of significance in activities. The overall similarity

score between two video sequences is calculated using the average of distances at each
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Figure 6.2: TSA dataset: Motion trajectories and critical points for a sequence with

ground crew movement.

critical point. Suppose a video sequence V1 has n critical points p1, p2, . . . , pn ∈ M

and a second sequence V2 has m critical points q1, q2, . . . , qm ∈ M . The distance

D(V1, V2) is:

D(V1, V2) =
1

n

n∑
i=1

d(pi, qK) +
1

m

m∑
j=1

d(qj, pL),

where d(pi, qK) represents the Euclidean distance between the diagonal values of the

Hessian at points pi, qK and

qK = arg
m

min
k=1

d(pi, qk).

Similarly,

pL = arg
n

min
l=1

d(qj, pl).

6.6 Experiments

The TSA dataset (section 1.3.2) is divided into segments of 1000 frames each.

Activities are labeled as follows: plane arrival, vehicle (luggage cart, jeep) movement,

passenger embarking and disembarking, ground crew movement. Motion trajecto-
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Figure 6.3: TSA dataset: Motion trajectories and critical points for a sequence

showing passengers disembarking and walking to the gate.

ries are extracted and system matrices that approximate the dynamics within 100

frames of a sliding window are computed. As the object moves, the distance be-

tween the matrices for the different time windows is computed (section 6.4.2). This

forms the Morse function value for the region within the blob whose centroid lies

on the trajectory. Critical points are computed, and the Hessian at those points is

evaluated. This is used to compare two video sequences.

Figures 6.2-6.5 show the activities in the scene with the motion trajectories

and the critical points detected. Each image represents a segment in the video

sequence and is labeled by the dominant activity in the segment. A segment can

have multiple labels if there is more than one activity occurring simultaneously. In

figure 6.2, a ground crew person walks to the truck and drives away. Also, a vehicle

crosses the tarmac at the top of the scene. In figure 6.3, the dominant activity

consists of people disemarking, luggage carts moving and ground crew moving. The

critical points detected are shown in figure 6.3(b). In figure 6.4 passengers disembark

and walk to the gate. Also, a luggage cart goes to the plane while a truck crosses
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Figure 6.4: TSA dataset: Motion trajectories and critical points for a sequence

showing passengers embarking and ground vehicles moving.

the scene. Figure 6.5(a) shows a plane entering, after which a luggage cart goes to

the plane.

The classification rate for the activities is as follows: plane arrival (100%), vehi-

cle movement (82%), passengers embarking (69%), passengers disembarking (79%),

ground crew movement (82%). Ground crew movement was sometimes wrongly

classified as passengers embarking or disembarking, when they followed similar tra-

jectories prior to the plane’s arrival and departure. The motion of vehicles in some

instances was wrongly identified as people. This was due to a failure in the pre-

processing steps when a vehicle was detected as multiple moving blobs.

6.7 Summary

Morse theory gives an effective way of combining algebraic and geometric

properties for representing spatiotemporal volumes. We have presented a method for

constructing a Morse function based on the underlying dynamics of the activity. The

candidate Morse function is refined to remove degenerate critical points. Preliminary
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Figure 6.5: TSA dataset: Motion trajectories and critical points for a sequence with

vehicle movement.

experiments with the TSA airport surveillance dataset shows encouraging results for

activity classification. A Morse theoretic interpretation to the computation of SIFT

features was described.
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Chapter 7

Summary and Future Work

7.1 Event probability sequences

A sequence of instantaneous events is said to represent an activity. They pro-

vide a compact model of relevant parts for recognizing activities. We formulate the

event detection problem within the HMM framework and compute the probability

of an event occuring at every time instant. Training is a two-step procedure in

which the HMM parameters are estimated before computing the event probability

sequences for every trajectory. Multiple trajectories are used to train an HMM

whereas every trajectory is associated with an event probability sequence. Depend-

ing on changes in the viewing direction, multiple trajectories of an activity may be

used to train separate HMMs. As part of future work, we plan to develop efficient

methods to check for such conditions.

The event probability is based on a simple step edge with a certain support

region, i.e., for p = 3 we have an event if Q = {2, 2, 2, 1, 1, 1}. We categorize events

based on the two states involved in the transition, the region of support and the

probability of the transition. This can be modified to include more complex patterns

so that the events of various types can be detected; for example, an event of the type

Q = {2, 1, 2, 1, 2, 1}. Discovering such event patterns using multiple observations of

an activity is an interesting problem.
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Applications to anomaly detection using event probability sequences were de-

scribed. As part of future work, we intend to quantify the types of anomalies that

can be detected.

Another direction we wish to pursue is to develop perceptual ways of organizing

events that occur due to object interaction. It would allow the system to focus on

those parts of the scene that affect events and activities of interest while ignoring

distracting motion in the scene.

7.2 Coarse to fine event hierarchy

We presented five criteria and quantitative measures for evaluating the effec-

tiveness of coarse-to-fine hierarchical representations of human activities. Experi-

ments using both indoor (UCF human action dataset) and outdoor (TSA airport

tarmac surveillance dataset) sequences demonstrate the usefulness of hierarchical

structures for activity modeling. It was shown that a reduced frame rate of com-

puting event probability sequences did not have a significant impact on consistency

in events detected. The effect of reduced spatial resolution on activity recognition

was demonstrated using the TSA dataset. At low resolution, it was not possi-

ble to reliably extract motion trajectories of individual objects. Instead, aggregate

information was used to identify activities in video segments. This reduces compu-

tational time required, but compromises the level of detail in modeling. Fine details

of activities were extracted using motion trajectories extracted at the original video

resolution. As part of future work, we will address minimalism and stability of
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hierarchical activity representations.

7.3 Epitomic representation of activities

We have presented an epitomic representation for modeling activities using

piecewise linear segments. An epitome is said to be a tuple consisting of the esti-

mated system matrix, initial value of the state and statistics (mean and covariance)

of the input signal. The Iwasawa matrix decomposition was used to factorize the sys-

tem matrices into three components that represent rotation, scaling and projective

action of the state vector. The decomposition not only provides a physical insight

into the effect of epitomes, but also allows us to compute geodesic distances using

Riemannian metrics on each component. The usefulness of each component was

demonstrated using activity recognition, key frame detection and clustering. Ex-

perimental results with the UCF action database and the TSA surveillance dataset

are encouraging.

Instead of treating the input signal as residual error in modeling, we intend

to explore its role in linking the statistical estimates of the model with semantics of

activities.

Star diagrams were introduced as synthesized trajectories of epitomes. The

shape of star diagrams formed by connecting end points of successive trajectories

can be used as a signature of activities. We wish to pursue this direction to model

activity trajectories.
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7.4 Spectral methods

Antieigenvalues were introduced as a way to characeterize key frames in activ-

ities, which are based on changes. As part of future work, we wish to develop more

efficient ways of calculating antieigenvalues. Presently, it is necessary to compute

eigenvalues since the problem is formulated using cosine of the operator. Alterna-

tively, sine of operator can be used to find approximations, which does not involve

an eigenvalue computation.

7.5 Spatio-temporal volumes

Morse functions based on dynamics were used to model the spatio-temporal

volumes carved out by objects as they move in the scene. Also, Morse functions

were shown to be related to SIFT features through a particular choice of the Morse

function based on image intensity. We wish to pursue this work further and attempt

to relate semantics of activities with homotopic sections of activity volumes. We

plan to investigate the utility volume representation of activities that are captured

using moving cameras.
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Chapter A

Baum-Welch algorithm

This section contains a brief overview of the Baum-Welch algorithm that was

introduced in [82]. There are several sources that offer a detailed explanation (e.g.,

[26], [82]). Let λ = (A,B, Π) represent an HMM, where A = [aij] is the transition

probability matrix, B contains emission probabilities conditioned on the current

state and Π is the initial distribution of states. Let O = {o1, o2, . . . , oT} be the

observation sequence. The Baum-Welch algorithm is an expectation-maximization

(EM) algorithm that can compute parameters of A,B and Π such that the likelihood

function P (O|λ) is maximized. It involves the following steps:

• Choose the initial parameters of λ. (usually through a k-means procedure).

• Re-estimate the parameters using the forward and backward variables. This

is equivalent to computing estimates such that:

āij =
expected # transitions from state ito j

expected # transitions from state i

b̄j(o) =
expected # times in statej and observing o

expected # times in state j

• Iterate until convergence.
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Chapter B

Proof of Proposition 1 (Chapter 2)

Proposition 1 (Sufficient condition for event sequence to be view invariant):

For the event probability sequences to be invariant under changing viewing condi-

tions, the associated HMMs must be conforming.

Proof: The basic idea of the proof is that for every event of type (ki, li)

detected for a viewing direction, there must be a corresponding event of type (k̃i, l̃i)

when viewed from a different direction.

Let λ = (A,B, Π) be an HMM that generates output symbols O, and X(λ)

the associated topological space. The structure of the probability transition matrix

A and the state distributions B reflect the topology of the HMM. Let f : Rn → Rn

be an affine transformation of O. We can construct another HMM λ̃, with the

same number of states, that generates Õ = f(O) such that F : X(λ) → X(λ̃) is a

homeomorphism.

(i) By construction, the two HMMs have the same topology (number of states,

model structure etc). Since the two sets of observation O and Õ are related by a

non-trivial affine map, we may write P (O ∈ S/λ) = P (f(O) ∈ S̃/λ̃) for some open

S. So, the map F is surjective. If O1, O2 ∈ X(λ) are both mapped to Õ ∈ X(λ̃)

under F, choose the observation sequence that is generated by the optimal state

sequence. So, the mapping F is made injective. (ii) Every open set U in X(λ̃) has

169



an open set F−1(U) ∈ X(λ) as long as the dimension of O and Õ are the same.

Every open ball in X(λ) is transformed to an open ball in X(λ̃) as long as the

dimension of O and Õ = f(O) are the same. It follows that F is continuous. (iii)

By interchanging the position of (O, λ) and (Õ, λ̃), we see that F−1 is continuous.

From (i)-(iii), F is a homeomorphism. We see that these assumptions may break

down at orthogonal viewing directions.
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Chapter C

Definitions

Definition 2 The general linear (matrix) group GL, special linear group SL, real

symplectic group Sp, orthogonal group O, special orthogonal SO group are defined

as follows:

GL(n) = GL(n,R) = {A ∈ Rn×n : det A 6= 0}

SL(n) = SL(n,R) = {A ∈ GL(n) : det A = 1}

Sp(n) = Sp(2n,R) = {A ∈ SL(2n) : AT JnA = Jn}

O(n) = O(n,R) = {A ∈ GL(n) : AAT = I}

SO(n) = SO(n,R) = {A ∈ O(n) : det A = +1},

where Jn =




0 In

−In 0


 and In is the n× n identity matrix.

Definition 3 A function f : U → Rn is differentiable of class Cr if the partial

derivatives of the component functions f 1, . . . , fn through order r are continuous on

the open set U . If f is of class Cr for all finite r, it is said to be of class C∞ or a

smooth function.

Definition 4 Let γ : [−1, 1] → M be a parameterized curve on a manifold M . Let

G be the set of all differentiable parameterized curves through x ∈ M , such that

γ(0) = x. Let F be the set of all functions that are defined and differentiable near
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x ∈ M . The derivative is defined as

d

dt
f · γ

∣∣∣∣
t=0

The equivalence class formed by all such curves γ ∈ G are called tangent vectors at

x ∈ M . The set of all tangent vectors at a point forms a vector space. It is called

the tangent space at x ∈ M and is denoted as TMx. The disjoint union of tangent

spaces at each point is called the tangent bundle TM , i.e., TM =
⋃

x∈M TMx.

Definition 5 Let M be a Cr manifold. Suppose we have an inner product 〈v, w〉

defined on each tangent space of M , which is differentiable of class Cq, 0 ≤ q < r.

Such an inner product is called a Riemannian metric on M .
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Chapter D

Iwasawa decomposition

Theorem 2 Let F ∈ Sp(2n,R) ⊂ SL(2n,R), n > 1 such that

F =




F1 F2

F3 F4




for Fi ∈ Rn×n, i = 1, . . . , 4. Let

M = F T F =




M1 M2

M2 M4


 ∈ Sp(2n,R),

where M1 is positive definite. Then Iwasawa decomposition of F = KAN is given

by

A =




D1/2 0

0 D−1/2


 , N =




R RM−1
1 M2

0 (R−1)T




and K = PN−1A−1.

Proof 1 From the definition of M , M1 = F T
1 F1 + F T

3 F3, M4 = F T
2 F2 + F T

4 F4 and

M2 = F T
1 F2+F T

3 F4. Since M ∈ Sp(2n,R), MT
1 M2 = MT

2 M1 and MT
1 M4−MT

2 M2 =

I. Following a simple calculation, M can be written as:

M =




In X

0 In







M1 0

0 (M−1
1 )T







In X

0 In


 , (D.1)

where X = M−1
1 M2. Let M1 = RT DR be the Cholesky factorization of M1,

where R is an upper triangular matrix and D is a diagonal matrix with positive
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entries. Since K ∈ SO(n,R) we have

M = P T P = (KAN)T KAN

= NT AT KT KAN = NT AT AN, (D.2)

The result follows from (D.1) and (D.2).
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