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ABSTRACT

This paper provides general overview of how computers process numbers and
how computers do arithmetic. Different ways to implement digital arithmetic
logic are presented. Bit-serial designs can save chip real estate, but require more
clock cycles for arithmetic operations such as additions and multiplications.
Bit-parallel designs produce results with fewer clock cycles, but require more
gates, e.g., due to carry-look-ahead generators. This may translate into higher
power dissipation.
This BSc thesis presents an exploration of bit-serial-parallel and bit-parallel
arithmetic logic designs. The intention is to gain understanding of their basic
design characteristics.
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TIIVISTELMÄ

Tämä tutkimus antaa yleiskatsauksen tietokoneiden tapaan prosessoida
numeroida ja suorittaa laskutoimituksia. Tässä esitellään erilaisia tapoja
implementoida digitaalista laskulogiikkaa. Bitti kerrallaan - toteutus voi säästää
sirutilaa, mutta se vaatii enemmän kellojaksoja operaatioihin kuten yhteen-
ja kertolasku. Bitit rinnakkain-toteutus vähentää kellojaksoja, mutta vaatii
enenmmän logiikkaportteja. Tämä voi johtaa virtahävikkiin.

Tämä kandidaatin tutkielma paneutuu bitti rinnakkain-kerrallaan ja bitti
rinnakkain- arithmetiikkalogiikkatoteutukseen. Tarkoitus on saada ymmärrystä
niiden toteutuksien perusteista.

Avainsanat: VHDL, kertolasku, yhteenlasku, kellotus
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LIST OF ABBREVIATIONS AND SYMBOLS

Bit Smallest unit of information in binary number system
Bit-serial Processing bits 1 bit at a time
Serial-parallel Processing some bits in serial and some bits in parallel
Bit-parallel Processing all bits at the same time
Ripple-carry
adder

Bit-parallel adder where the carry propagates

Binary number
system

Base-2 numeral system

Decimal number
system

Base-10 numeral system

Digital system System which processes discrete numbers
Carry bit A bit that has information of arithmetic overflow
Sign bit A Bit that has the sign information of a number
MSB Most significant bit - the bit that has the largest value
LSB Least significant bit - the bit that has the smallest value
Register A Digital circuit that stores bits
D Flip-flop A Digital circuit that stores 1 bit
Clock frequency Duration of a clock cycle in hertz
Combinational
logic

Digital logic which does not rely on clock signal

Sequential logic Digital logic that depends on clock cycles to operate
RTL Register Transfer Level - A layer of abstraction in digital

logic
Logic synthesis A process where RTL code is generated into logic gates
Critical path The path from input to output with a maximum delay
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1. INTRODUCTION

Design and implementation of digital arithmetic logic has always depended on the
available technologies. All early computers were serial computers, meaning they
process data 1 bit at a time. This is because in the days of early computers logic was
very expensive. Bit-serial system is cheaper to implement due to its simplicity over
parallel system. Bit-serial processing requires less logic, but it is much slower than
bit-parallel processing.

Figure 1 shows a basic 4-bit parallel ripple-carry adder. Ripple-carry adder is
not very optimal, but it shows well the nature of bit-parallel adder. Ripple-carry adder
has usages in shorter word lengths. In longer word lengths carry look-ahead logic is
needed to make bit-parallel adders efficient with short critical path. Carry look-ahead
logic block can be seen in Figure 2. The carry look-ahead block takes both operands
as an input and generates carry to the full adders. This avoids the long critical path of
ripple-carry adder. In the bit-parallel design, all inputs are loaded at the same time,
and the adder processes all bits at the same time. Combinational logic increases when
increasing the word size in bit-parallel adders.

Figure 3 presents a basic 4-bit serial adder. Serial arithmetic requires the use of
shift registers. Bit-serial block only has 1 full adder, where the bit-parallel adder has
4. In contrast, the bit-serial design only processes 1 bit from the inputs at a time.
Serial-parallel design usually processes one input in serial and the other in parallel.
Bit-serial adders are very flexible when increasing word lengths - it only needs to
increase the size of the registers. When designing massively parallel computers,
bit-serial and bit-parallel arithmetic blocks are at the opposite solutions where a
serial-parallel solution is somewhere in between.

Figure 1. 4-bit bit-parallel adder.
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Figure 2. 4-bit bit-parallel adder with carry look-ahead.

Figure 3. 4-bit bit-serial adder.

Some estimations about the gate counts can be made between these adders. In a
study [1] 64-bit ripple carry adder and carry look-ahead adders are compared: Ripple
carry adder has 320 logic gates and carry look-ahead adder has 256 logic gates in
64-bit configuration. Note that 64-bit ripple carry-adder would not be feasible due to
the long critical path. If a D flip-flop has 6 gates then 3 64-bit registers would have
64 ∗ 6 = 384 ∗ 3 = 1152 gates. Adding the 5 gates from the full adder and the carry
register would result in 1162 gates. No estimations about energy consumption can be
made in the absence of clocking data.

This paper provides insight into the differences of serial-parallel and bit-parallel
arithmetic blocks. Basic design and implementation of bit-serial and serial-pararallel
4-bit multiplication blocks is done in VHDL and Design Compiler is used to
synthesize designs. A comparison of area, power and timing is done with both
designs.
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2. DIGITAL ARITHMETIC

In digital computers, numbers are represented in binary numeral system. A binary
number of length N is a sequence of digits. A single digit in a binary number is called
a bit. Binary number system has a radix of 2, meaning that a bit can have a value 0 or
1.

(xN−1, xN−2, xN−3, · · · , x1, x0)

A binary number by default represents an unsigned(positive) integer number. A
binary N -bit unsigned integer number system produces numbers in the range 0 to
2N − 1. The Table 1 shows all possible numbers unsigned binary numbers when
N = 2.

Table 1. All possible decimal values of 2-bit unsigned binary numbers
Unsigned binary Decimal value
00 0
01 1
10 2
11 3

2.1. Different Binary Number Notations

Naturally, computers also have to do arithmetic with binary numbers. Obvious
drawback of unsigned binary representation is that for example the result of 102 − 112
or 012/112 cannot be represented. To overcome this problem, different binary number
representations have been developed so that negative and fractional numbers can be
accessed.

2.1.1. One’s Complement

One’s complement system gives access to negative numbers. Negative numbers are
accessed by using unary bitwise negation operator (∼). For example a binary −1 is
taken from binary 1:

∼ 012 = 102

N -bit one’s complement system’s range is −(2N−1 − 1) to (2N−1 − 1). The Table 2
shows a drawback of the one’s complement number system, zero has 2 representations.
This has to be taken into account when designing arithmetic hardware that uses one’s
complement system.

The MSB (Most Significant Bit, the leftmost bit) in signed notations is the sign bit,
meaning that 1 represents a negative and 0 represents a positive [2].
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Table 2. Values of integers in unsigned binary and one’s complement system
Decimal value Unsigned binary One’s complement
-3 - 100
-2 - 101
-1 - 110
0 000 000 & 111
1 011 001
2 010 010
3 011 011

The one’s complement representation was used by early computers such as the
UNIVAC 1107 [3]. Another problem of the one’s complement system is end around
borrow and carry. In Figure 4 addition of −1 and 2 is done. Normal addition will not
produce the correct answer and the carry bit needs to be added back to the result to
produce the correct answer. This results in extra addition.

Figure 4. Example of end-around carry in one’s complement addition.

2.1.2. Two’s Complement

Two’s complement of a binary number is taken with a negation operator (∼), and +1
is added to the result. For example: −1 in two’s complement:

∼ 012 = 102 + 12 = 112

The range of N -bit two’s complement system is −(2N−1) to (2N−1 − 1). The
Table 3 shows that the two’s complement system does not suffer from the double
representation of zero unlike one’s complement system. Two’s complement’s range
is also one integer greater towards negative than one’s complement’s range. It is
also more straightforward to use with negative numbers because same arithmetic
algorithms can be used with unsigned binary numbers and 2’s complement numbers.

Moreover, with one’s complement extra carry bit has to be added in order to
get the right result from a arithmetic operation. Figure 5 shows the same addition of
−1 and 2 that was done in one’s complement in Figure 4. It can be observed that
in two’s complement representation no extra addition is needed to get the correct
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result. This is why 2’s complement is more common over 1’s complement in modern
computers.

Table 3. All possible 3-bit two’s complement binary number values
Decimal value Unsigned binary Two’s complement
-4 - 100
-3 - 101
-2 - 110
-1 - 111
0 000 000
1 001 001
2 010 010
3 011 011

Figure 5. Example of addition in two’s complement.

2.1.3. Sign Magnitude Representation

Sign magnitude representation is perhaps the most straightforward way to represent
negative numbers in binary. Negative counterpart from a unsigned binary number is
obtained by assigning some bit as a sign-bit. Usually the sign-bit is the MSB.

For example: Decimal 15 in unsigned binary is 11112 but to get the sign-magnitude
representation the number is extended one bit and assigned as the sign-bit: 011112.
−1510 is obtained by flipping the sign: 111112. Sign magnitude representation suffers
from the same double representation of zero: Both 10002 and 00002 for 010. Sign
magnitude is used in floating point representation.

2.1.4. Fixed Point

Fixed-point and floating point representations enables binary to represent real numbers.
Fixed-point representation is done by assuming the decimal point somewhere in the
between the bits of the binary number. Bits to the right from the decimal point
represent the fractions and bits to the left represent the whole.
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The Table 4 shows a representation of a number 7,62510 with N = 6 in fixed-
point binary, assuming the point between 3rd and 4th bit: 111,101. The point would
not be stored in the memory because arithmetic hardware is designed to handle the
fractional bits.

Table 4. Fixed-point representation of a number 7,625
22 21 20 2−1 2−2 2−3

4 2 1 1
2

1
4

1
8

1 1 1 1 0 1

Fixed-point representation can be combined with 2’s complement, 1’s complement
or sign-magnitude representations to have access to real binary numbers. The range is
a trade-off between the fraction’s precision and the width of the integer range.

2.1.5. Floating Point

Floating point representation is the most common way to represent real numbers and it
is defined in IEEE 754 [4] standard. Consider the scientific notation for real numbers:

m ∗ 10n

Where a real number m is the mantissa and an integer n is the exponent. The floating
point representation is the binary equivalent for this scientific notation. IEEE 754
standard for single precision 32-bit floating point binary number is seen in Figure 6:

Figure 6. IEEE 32-bit single precision floating number representation of 203,510.

The mantissa is a fixed-point representation of a real positive number. Mantissa’s first
bit is hidden and it is always 1. The decimal point is located between the hidden first
mantissa bit and the second fraction bit. The mantissa’s fraction bits have a precision
down to 2−23. Steps to convert this number:

• Determine the sign: +
• Determine the exponent: 100001102 = 13410
• Subtract the exponent bias: 134− 127 = 7
• Convert the mantissa: 2−1 + 2−4 + 2−6 + 2−7 + 2−8 = 0,58984375
• Add the hidden bit and include the sign: 1 + 0,58984375 = 1,58984375
• Calculate the result = 1,58984375 ∗ 27 = 203,5

The IEEE 754 has also defined standards for 16-bit half precision, 64-bit double
precision, 128-bit quadruple precision and 256-bit octuple precision binary numbers.
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2.2. Basic Arithmetic Hardware and Arithmetic Architectures

2.2.1. Half Adder and Full Adder

Adders are one of the most basic digital circuits that perform arithmetic. Half adder
adds two 1-bit binary numbers together. Half adder has 2 inputs A and B. Two
outputs S representing sum and C representing overflow, also known as carry. Figure
7 presents the logic circuit of a half adder.

Figure 7. Logic circuit for a half adder.

Table 5 shows the truth table for half adder. As the Figure 8 presents, half adder
is used in full adder as a component. A full adder performs the same calculation as a
half adder but the difference is a carry input from a previous full adder. is more useful
because it has a carry input so multiple full adders can be chained together [5] to create
parallel adder designs.

Table 5. Truth table for a half adder
IN OUT
A B S C
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Figure 8. Logic circuit for a full adder.
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2.2.2. Bit-Parallel, Serial-Parallel and Bit-Serial

Bit-parallel, serial-parallel and bit-serial are arithmetic architectures. In bit-parallel
arithmetic corresponding bits of the input are processed at the same clock cycle. In
Figure 9 can be seen the parallel inputs for corresponding bits.

Figure 9. N-bit parallel ripple-carry adder.

In serial arithmetic one or all of the inputs is taken in serially which means one bit
at a time. In bit-serial systems all inputs are in serial form but it is possible to have
a mixed system where one input input is parallel form while other is in serial. This
is known as serial-parallel. Serial systems utilize registers so the same arithmetic
circuitry can be used in calculation over multiple clock cycles. Serial arithmetic is
useful when the interconnections and area (price) of the arithmetic block has to be
small but delay is acceptable [6]. This means serial-parallel arithmetic has initially
more delay compared to the bit-parallel arithmetic.

Figure 10 presents N-bit serial adder. In comparison to the Figure 9 which has
N amount of full adders, the former has only 1. Both inputs are loaded in parallel
to the registers and sum accumulates to the A shift register. Carry is saved to the D
flip-flop and is available in the next clock-cycle calculation. Shift control creates shift
signal N times and after that the sum is complete.

There are number of multiplication algorithms for bit-parallel e.g. Booth
multiplication, Wallace multiplication and Braun multiplication. Braun multiplier
has the simplest algorithm of all bit-parallel multipliers [7]. Wallace and Braun are
shift-and add multipliers meaning they utilize stages of full adder circuits which
produce and add partial products of the multiplication. These kind of multipliers
require more area compared to the conventional adders.

In contrast to the number of existing bit-parallel multiplication algorithms, there
are not that many bit-serial multiplication algorithms. Bit-serial multipliers are area
and power efficient and are useful in low speed applications [8].
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Figure 10. N-bit serial adder.
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3. IMPLEMENTING DIGITAL ARITHMETIC HARDWARE

There are endless ways to implement multiplication to hardware. The designer
balances between speed of the circuit, area and power consumption. The design
is optimized for a specific use case. There is not a simple, most optimal way to
implement a fast and efficient multiplication circuit. Designs are evolving and are
more optimized over previous implementations. A presentation of existing comparison
studies is done in this chapter.

It would seem obvious that serial-parallel multiplication algorithm would initially do
less operations in a given time frame than bit-parallel multiplication algorithm due
to some-bit parallel multiplication circuits being purely combinational circuits. In
space-constrained applications bit-parallel multiplication method could be too large,
even tough it would complete the calculation in 1 clock cycle [9]. Serial-parallel
multiplication sees usage in at least digital communication systems, signal processing,
embedded computing [10]. The article also proposes optimized way to implement
two’s complement multiplication of binary numbers from 2 to 32 bits. The paper
presents implementation of serial-parallel multiplication circuit with up to 30-percent
smaller area without speed penalty compared to the serial-parallel multiplication
method presented in [11].

3.0.1. Advantages of SIMD

Singe-instruction multiple-data (SIMD) allows the computer to perform multiple
multiplication operations over multiple value pairs with only one instruction. This
is useful in matrix multiplication where the usage of SIMD optimizes the speed of the
matrix multiplication. SIMD enables whole blocks of data to be used in multiplication
operation instead of one value-pair at a time. Effectiveness of SIMD is presented in
[12].

3.1. Synthesis of Bit-Serial and Serial-Parallel Multiplicator Designs

Both implementations are 4-bit multiplication circuits. Both circuits take two 4-bit
inputs A and B, and have one 8-bit RESULT output.
The bit-parallel implementation is a purely combinational circuit which means it does
not have any sequential logic. The design utilizes a booth’s multiplication algorithm.
Figure 11 presents the schematic from synthesis.
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Figure 11. Schematic of the bit-parallel multiplicator.

The serial-parallel implementation utilizes registers to be able to serialize one input.
Both inputs are loaded as parallel, and the circuit also has control signals load, enable,
rst and clk. Both inputs and the result are stored to internal registers and 8-bit result
signal shows the output along with 1-bit ready indicating the end of the calculation.
Figure 12 shows the synthesized serial-parallel circuit.

Figure 12. Schematic of the serial-parallel multiplicator.

From the Figure 13 can be seen that she sequential serial-parallel multiplicator
produces the output with 9 clock cycles of delay. Adding the clock cycles for parallel
load and output, the complete calculation takes 11 clock cycles.

Figure 13. Simulation waves of the serial-parallel multiplication algorithm.
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4. COMPARISON

Figure 14 shows the power consumptions of the circuits when optimized for given
clock frequencies. Both 4-bit multiplication circuits are optimized towards minimal
slack. The slack decreases towards higher clock frequencies and is greater towards
the lower clock frequencies. Both designs were synthesized for a given clock cycle
duration. Table 6 presents the clock durations used for synthesis.

There are great differences in the power consumption between the two designs.
In the case of the serial-parallel design, power consumption keeps decreasing with the
clock frequency, but the power consumption is greater at higher end frequencies.

Bit-parallel design sees only small increase towards 667 megahertz frequency.
Interestingly, there is also small increase of power consumption in the low end of the
frequencies. The design is the most optimal between 9 - 1.5 ns clock period.

The bit-parallel design could not be synthesized to 1 nanosecond clock period
without violating the slack. This means that the bit-parallel design could not produce
the result inside 1 clock period. Combinational logic circuits can take more than 1
clock period to complete, but this needs to be accounted for.

Figure 14. Chart of both multiplication algorithms.

The bit-parallel multiplication algorithm completes the calculation in 1 clock cycle.
Interesting results can be seen when analyzing the cell area to clock frequency chart.
Figure 15 shows the results. In contrast to the Figure 14, the serial-parallel design does
not grow in size when the power consumption grows. The area stays constant.
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Table 6. Conversion table for clock period duration to clock frequency
Duration of clk period
(ns)

Clk frequency
(Mhz)

10 100
9 111.11
8 124.99
7 142.86
6 166.66
5 200
4 259.99
3 333.33
2 499.99
1.5 666.66
1 999.99

The bit-parallel multiplier circuit starts to grow in cell area when the circuit is
synthesized for 3 nanosecond clock period or less. Before 300 megahertz clock
frequency it sees minimal area growth. Registers take the most of the cell area in
the serial-parallel multiplier. Registers consume a lot of power and that can be seen as
the power consumption growth in Figure 14.

Figure 15. Chart of both multiplication algorithms.
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5. DISCUSSION

Not much research has been done about this kind of subject where bit-parallel,
serial-parallel and bit-serial arithmetic architectures are compared. The current results
provide an insight into the differences between the schemes. The expectation was that
the break-even point of the power consumption in Figure 14 would be towards higher
clock frequency. The obvious expectation also was that the power consumption would
rise with the clock frequency. That can be observed in the Figure 14.

The synthesis results depend greatly from the chosen algorithms. Especially the
serial-parallel circuit could greatly be optimized and the synthesis results would
drastically change. The algorithms were chosen to be easy to implement. Synthesis
results also depend upon the chosen technology cell library. For this research synthesis
was done using high threshold voltage library. That corresponds to lower speed and
lower power consumption.

According to [13], the dependence between delay and area of combinational
circuits usually follows the graph presented in Figure 16. It concludes that if the
operation of the circuit is sped up by reducing the levels of logic, its area will increase.
This kind of trend can somewhat be observed in Figure 15 when approaching high end
of frequencies.

Figure 16. Delay and area graph of combinational circuits.
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6. SUMMARY

This paper provided an overview of digital arithmetic and how computers do
calculations. In choosing solutions for applications where highly parallel computations
can be employed, meticulous analysis between the energy dissipation and latency is
needed. Different binary number system notations are presented and Comparison of
bit-serial and serial-parallel 4-bit multiplier circuits is also done. Synthesis done for
both circuits and results are compared. A break-even point in power consumption is
found.
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