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Abstract

A variety of control systems with specific goals are designed and utilized in every vehicle

system. Optimal performance of each of these control systems is essential to keep the vehicle

in a safe and desirable driving condition. A model predictive controller (MPC) is a type

of control system that employs an internal model of the system being controlled to predict

its future behavior and determine the optimal control actions to achieve desired outcomes.

The controller works by continuously updating its predictions based on the current state

of the system and using an optimization algorithm to calculate the best control actions

while satisfying any constraints on the system.

In each MPC controller, there is an objective function with a set of weights. These

weights can directly affect the response of the system. The appropriate selection of weights

results in the generation of an effective control action, which reduces tracking errors to a

minimum. In the conventional MPC controllers, the focus is solely on optimizing the

control actions, and weight values remain fixed or scheduled for different ranges of system

operations. Therefore, the effects of real-time selection of optimum weights in the controller

performance are overlooked.

This research aims to improve the performance of MPC control systems by developing

a weight tuning and real-time weight selection scheme that considers the dynamic system’s

state. The proposed approach is applied to the vehicle stability control under a variety

of environmental and/or driving conditions. The weight tuning is performed by using the

prediction model of the vehicle and the Bayesian optimization (BO) technique. The weight

selection is carried out in real-time by learning the adjusted weights through Gaussian pro-

cess regression (GPR). These are two main modules developed to be used for selecting and

tuning the weights of an MPC controller. Hence, in addition to optimizing control actions

through the MPC controller’s optimization problem, the weights of the MPC controller are

also assessed and adjusted to achieve the highest level of optimality in the vehicle control

system.

Furthermore, an authentication process is proposed to evaluate the tuned weights after

being selected in the tests. This way, unnecessary increases or decreases in the weights

stored in the weight selection dataset can be avoided. To further enhance the model
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predictions, a blending-based multiple model approach is utilized. In this approach, instead

of considering a fixed prediction model with invariant parameters, a combination of finite

number of models with different parameters are considered. Based on the prediction error

of each model, a weighted sum of matrices of these models are utilized both in the MPC

controller and weight tuning modules.

To verify the proposed methodology, MATLAB/Simulink and CarSim co-simulations

as well as experimental tests are carried out. Comparing the vehicle responses with and

without the proposed weight tuning and real-time weight selection approach strongly cor-

roborates the proposed technique in enhancing the controller performance. The capability

of the proposed multiple model technique in improving the weight tuning has been demon-

strated in the simulations and experimental results.

v



Acknowledgements

First and foremost, I extend my deep appreciation to my supervisor, Prof. Amir Kha-

jepour, for his exceptional guidance, support, and encouragement throughout my PhD

journey. I feel fortunate to have had the opportunity to work with such a knowledgeable

mentor and it is due to his guidance that I have developed my current academic abilities,

professional vision, and understanding of engineering ethics.

I also extend my gratitude to everyone at the University of Waterloo and General Motors

who supported me throughout my journey. I will always cherish their contributions.

I would like to express my gratitude for the financial support received from Ontario

Research Fund (ORF), Natural Sciences and Engineering Research Council of Canada

(NSERC), and General Motors in this project.

Appreciation also goes to the technicians at the Waterloo Mechatronics Vehicle Systems

laboratory, specifically Jeff Graansma, Aaron Sherratt, and Adrian Neill, for facilitating

the experimental tests. I would also like to thank Dr. Ehsan Hashemi, Dr. Mohammad

Pirani, and Dr. Reza Valiollahi Mehrizi for their significant technical support and insights

during my PhD studies. My colleagues and friends at the University of Waterloo have

been a great source of support, help, and camaraderie, so my gratitude goes to Mobin

Khamooshi, Mehdi Zabihi, Reza Hajiloo, Amin Habibnejad, Ehsan Mohammadbagher,

Mehdi Abroshan, and everyone else who has been part of my experience.

Above all, I extend my gratitude to my family, including my parents and sister, for

their unwavering support and encouragement throughout this journey. I am grateful for

their sacrifices and acknowledge that I would not have reached this point without them.

vi



Dedication

This dissertation is dedicated to my parents for their unwavering love and encourage-

ment, and to my sister for her invaluable support throughout my academic journey.

vii



Table of Contents

List of Figures xi

List of Tables xv

List of Acronyms xvi

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Overview of the Proposed Approach . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Literature Review and Background 6

2.1 Model Predictive Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Tuning Model Predictive Controller Weights . . . . . . . . . . . . . . . . . 7

2.2.1 Analytical Weight Tuning . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Optimization-Based Weight Tuning . . . . . . . . . . . . . . . . . . 9

2.2.3 Learning-Based Weight Tuning . . . . . . . . . . . . . . . . . . . . 12

2.2.4 Genetic Algorithm-Based Weight Tuning . . . . . . . . . . . . . . . 13

2.2.5 Particle Swarm Optimization-Based Weight Tuning . . . . . . . . . 15

viii



2.2.6 Other Tuning Methods . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Direct Yaw Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Multiple Model Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Vehicle Prediction Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Actuator Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.7 State Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.8 Desired Response of the Vehicle . . . . . . . . . . . . . . . . . . . . . . . . 26

2.9 Model Predictive Control for Lateral Stability . . . . . . . . . . . . . . . . 28

2.10 Gaussian Process Regression . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.11 Bayesian Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 MPC Weight Tuning and Weight Authentication 36

3.1 Bayesian Optimization-Based Weight Tuning . . . . . . . . . . . . . . . . . 36

3.2 Applying the Weight Tuning Approach to the Vehicle Stability Controller . 44

3.3 Learning-Based Weight Selection . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.1 Weight Selection Dataset . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.2 Dataset Training Using Gaussian Process Regression . . . . . . . . 51

3.3.3 Real-Time Weight Selection . . . . . . . . . . . . . . . . . . . . . . 53

3.4 Weight Tuning Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5 MPC Weight Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5.1 Weight Authentication Criterion . . . . . . . . . . . . . . . . . . . . 64

3.5.2 Weight Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.6 Weight Authentication Simulations . . . . . . . . . . . . . . . . . . . . . . 70

ix



4 Multiple Model MPC Weight Tuning 76

4.1 Switching-Based Multiple-Model Control . . . . . . . . . . . . . . . . . . . 77

4.2 Blending-Based Multiple-Model Control . . . . . . . . . . . . . . . . . . . 79

4.2.1 Obtaining the Vector of Weights . . . . . . . . . . . . . . . . . . . . 81

4.3 Blending-Based Multiple-Model MPC for Vehicle Lateral Stability . . . . . 84

4.4 Multiple-Model-Based Weight Tuning . . . . . . . . . . . . . . . . . . . . . 88

4.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 Experimental Studies 97

5.1 MPC Weight Tuning on a Dry road . . . . . . . . . . . . . . . . . . . . . . 99

5.2 MPC Weight Tuning on a Wet road . . . . . . . . . . . . . . . . . . . . . . 104

6 Conclusions and Future Work 110

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

References 114

x



List of Figures

1.1 General architecture of the proposed approach. . . . . . . . . . . . . . . . . 3

2.1 Vehicle model diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Representation of the linearized tire model with respect to side slip angle α. 22

2.3 Representation of the linearized tire model with respect to derating factor ξ. 22

2.4 The β − r phase plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 The diagram of the GPR method. . . . . . . . . . . . . . . . . . . . . . . . 32

2.6 Diagram of the BO algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.7 An example of the BO process when optimizing an unknown one-dimensional

objective function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 The scheme of the weight tuning module . . . . . . . . . . . . . . . . . . . 37

3.2 Weight tuning procedure for a general dynamic system . . . . . . . . . . . 44

3.3 Weight tuning procedure for the vehicle’s MPC controller . . . . . . . . . . 49

3.4 Real-time learning-based weight selection module . . . . . . . . . . . . . . 50

3.5 Selection of weights based on the points in the neighborhood, ϵX . . . . . . 54

3.6 Overall MATLAB/Simulink and CarSim co-simulations diagram . . . . . . 55

3.7 Steering wheel angle input for the DLC maneuver. . . . . . . . . . . . . . . 57

xi



3.8 Responses of the vehicle in terms of yaw rate and sideslip angle, and the

weights wr, wβ selected in real-time on a dry road. . . . . . . . . . . . . . . 58

3.9 Tracking errors of the yaw rate and sideslip angle of the vehicle on a dry road. 59

3.10 Front left and front right wheel torques generated by the MPC controller on

a dry road. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.11 Responses of the vehicle in terms of yaw rate and sideslip angle, and the

weights wr, wβ selected in real-time on a slippery road. . . . . . . . . . . . 61

3.12 Tracking errors of the yaw rate and sideslip angle of the vehicle on a slippery

road. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.13 Front left and front right wheel torques generated by the MPC controller on

a slippery road. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.14 General diagram of the weight authentication process . . . . . . . . . . . . 64

3.15 Tuning the weights from default values with respect to the vehicle’s state

datapoint and its neighborhood . . . . . . . . . . . . . . . . . . . . . . . . 68

3.16 The process of authenticating the weights after a new test . . . . . . . . . 69

3.17 Responses of the vehicle in terms of yaw rate and sideslip angle, and the

weights wr, wβ selected in real-time when MPC controller is tuned without

weight authentication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.18 Tracking errors of the yaw rate and sideslip angle of the vehicle; MPC con-

troller is tuned without weight authentication. . . . . . . . . . . . . . . . . 72

3.19 Front left and front right wheel torques generated by the MPC controller

that becomes tuned without weight authentication. . . . . . . . . . . . . . 72

3.20 Responses of the vehicle in terms of yaw rate and sideslip angle, and the

weights wr, wβ selected in real-time when MPC controller is tuned with

weight authentication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.21 Tracking errors of the yaw rate and sideslip angle of the vehicle; MPC con-

troller is tuned with weight authentication. . . . . . . . . . . . . . . . . . . 74

xii



3.22 Front left and front right wheel torques generated by the MPC controller

that becomes tuned with weight authentication. . . . . . . . . . . . . . . . 75

4.1 The switching based multiple-model diagram . . . . . . . . . . . . . . . . . 77

4.2 Graphical illustration of the convex hull formed by the N models, and con-

tribution of each model to the estimation of the plant model. . . . . . . . . 83

4.3 The Blending Based multiple-model diagram . . . . . . . . . . . . . . . . . 84

4.4 The blending based multiple-model predictive control for vehicle lateral sta-

bility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.5 Steering wheel angle input. . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.6 Comparison of the yaw rate and sideslip angle predictions made by the

nominal and multiple models . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.7 Responses of the vehicle in terms of yaw rate and sideslip angle, and the

weights wr, wβ selected in real-time after the MPC is tuned with single and

multiple model approaches; Vehicle is on a dry road. . . . . . . . . . . . . 92

4.8 Tracking errors of yaw rate and sideslip angle after the MPC is tuned with

single and multiple model approaches; Vehicle is on a dry road. . . . . . . 93

4.9 Comparison of the generated front wheel torques when MPC is tuned with

the single and multiple model approaches; Vehicle is on a dry road. . . . . 93

4.10 Responses of the vehicle in terms of yaw rate and sideslip angle, and the

weights wr, wβ selected in real-time after the MPC is tuned with single and

multiple model approaches; Vehicle is on a slippery road. . . . . . . . . . . 95

4.11 Tracking errors of yaw rate and sideslip angle after the MPC is tuned with

single and multiple model approaches; Vehicle is on a slippery road. . . . . 96

4.12 Comparison of the generated front wheel torques when MPC is tuned with

the single and multiple model approaches; Vehicle is on a slippery road. . . 96

5.1 The Chevrolet Equinox EV utilized in the experimental tests. . . . . . . . 97

xiii



5.2 The diagram of the setup for experimental tests. . . . . . . . . . . . . . . . 98

5.3 Steering wheel angle input of the manual driver on a dry road. . . . . . . . 100

5.4 Yaw rate responses of the vehicle during the experimental tests on a dry road101

5.5 Sideslip angle responses of the vehicle during the experimental tests on a

dry road . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.6 Generated front wheel torques during the experimental tests on a dry road. 103

5.7 Real-time selected weights wr, wβ during the experimental tests on a dry road.104

5.8 Steering wheel angle input of the manual driver on a wet road. . . . . . . . 105

5.9 Yaw rate responses of the vehicle during the experimental tests on a wet road106

5.10 Sideslip angle responses of the vehicle during the experimental tests on a

wet road . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.11 Generated front wheel torques during the experimental tests on a wet road. 108

5.12 Real-time selected weights wr, wβ during the experimental tests on a wet road.109

xiv



List of Tables

3.1 Parameters of the vehicle in CarSim. . . . . . . . . . . . . . . . . . . . . . 55

3.2 Parameters of the MPC controller, weight tuning, and weight selection mod-

ules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 Parameters of the multiple prediction model. . . . . . . . . . . . . . . . . . 89

5.1 Parameters of the Chevrolet Equinox EV. . . . . . . . . . . . . . . . . . . 98

xv



List of Acronyms

ARX Auto-Regressive with eXogenous

AWD All-Wheel Drive

BO Bayesian Optimization

CAN Controlled Area Network

CAV Connected and Automated Vehicle

CG Center of Gravity

DLC Double Lane Change

DMC Dynamic Matrix Control

DYC Direct Yaw-moment Control

EI Expected Improvement

ES Entropy Search

EV Electric Vehicle

FALA Finite Action-set Learning Automation

FOPDT First-order Plus Dead Time

xvi



GA Genetic Algorithm

GP Gaussian Process

GPC Generalized Predictive Controller

GPR Gaussian Process Regression

GPS Global Positioning System

HDV Human Driven Vehicle

IAE Integral of the Absolute Error

IDT Interactive Decision Tree

IMU Inertial Measurement Unit

IRL Inverse Reinforcement Learning

LQG Linear Quadratic Gaussian

LQR Linear Quadratic Regulator

LTI Linear Time Invariant

LTV Linear Time Variant

MAC Model Algorithmic Control

MCA Motion Cueing Algorithm

MIMO Multiple-Input and Multiple-Output

MMAC Multiple-Model Adaptive Control

MOFDM Multi Objective Fuzzy Decision Making

MPC Model Predictive Control

xvii



NN Neural Network

PSO Particle Swarm Optimization

RL Reinforcement Learning

RMSE Root Mean Square Error

SE Squared Exponential

SISO Single Input and Single Output

SUV Sport Utility Vehicle

WA Weight Authentication

xviii



Chapter 1

Introduction

1.1 Motivation

Vehicle control systems play an important role in improving the motion of the vehicle

in a variety of conditions. Model predictive controllers (MPCs) utilize a model of the

vehicle to obtain optimal control actions based on the current state of the vehicle and the

predictions made by the model. This is done by defining an objective function and solving

the corresponding constrained optimization problem at each time step. In the MPC’s

objective function, there are also some weights that directly impact the overall response of

the system.

Typically, in MPC controllers, only the control actions are optimized at each time step.

The MPC weights, however, are usually tuned off-line and remain unchanged irrespective

of the system’s state. In vehicle control systems due to the non-linearity in vehicle dy-

namics, and changes in road conditions and vehicle mass, fixed set of controller weights

does not result in a good performance in all driving conditions. Selecting a suitable set

of weights that aligns with the current state of the vehicle can assist in preserving the

optimal performance of a vehicle control system under different road, driving, and vehicle

conditions.

In this study, a weight tuning approach and a real-time learning-based weight selection
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method is developed for the vehicle yaw stability control. To evaluate a control system

performance, the state errors can be monitored. A high-performance controller can keep

state errors in a safe domain even under a variety of vehicle and road conditions. Each set of

weights results in a different set of tracking errors corresponding to the current state of the

vehicle. Hence, for each vehicle state, an optimal set of weights can be considered such that

the controller’s overall performance remains optimal. Through the proposed weight tuning

technique, the weights are adjusted by using the system’s prediction model and Bayesian

optimization (BO). Afterwards, the tuned weights as well as the vehicle states are stored in

the real-time weight selection dataset. The dataset is trained using the Gaussian process

regression (GPR) method to employ the tuned weights in similar vehicle’s states. In the

next step, the tuned weights that has been selected by the controller in another simulation

or experiment become authenticated based on the response of the vehicle.

The proposed weight tuning method is carried out by using the predictions made by the

vehicle prediction model. Therefore, improving the accuracy of the model leads to better

predictions and hence weight tuning. To enhance the weight tuning module’s performance,

a multiple-model approach is utilized for the MPC control and weight tuning processes,

and the results are compared to those achieved when using a single nominal model.

1.2 Overview of the Proposed Approach

The general architecture of the proposed approach is illustrated in Figure 1.1. The driver,

through his/her senses, receives information from the environment and provides the control

actions through steering wheel, throttle, and brake pedals. The MPC controller receives

sensory data, in addition to the driver inputs to make any additional control actions needed

to maintain the the vehicle’s stability while following the driver’s desired intention. The

main contributions of this study are illustrated as two modules in Figure 1.1: The first

one is the weight tuning module, and the second one is the real-time learning-based weight

selection. Through the weight tuning module, the MPC controller weights are evaluated

and tuned. The tuned weights are then stored in the dataset of the weight selection module.

A fixed set of default weights are always defined for the MPC controller. After the
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Figure 1.1: General architecture of the proposed approach.

control actions are generated by the controller, applied to the vehicle, and a maneuver is

finished, the system’s response is assessed based on the tracking errors, and then weights

become adjusted if necessary. The weight tuning is performed off-line by using the vehicle

prediction model and BO method. Next, the vehicle sensory and driver data as well as the

corresponding tuned weights are stored in a dataset that is considered for the real-time
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weight selection. Hence, the weight selection dataset becomes enriched and updated by

the new data received from the weight tuning module. This dataset becomes trained by

using the GPR learning method. As a result, instead of considering a fixed set of weights,

the controller’s weights are determined with respect to the state of the vehicle in current

time.

The weight tuning is conducted according to the model’s prediction utilized in the MPC.

Thus, the accuracy of the model affects the tuning process. The tuned weights are evaluated

after they are selected by the MPC controller in a simulation or a test. The state variable

errors resulted by the tuned weights are compared with the previously selected weights for

each vehicle state, and then unnecessary weight changes can be avoided through a weight

authentication process provided in this study. Additionally, it is possible to enhance the

model prediction accuracy by considering a multiple-model approach. Instead of a fixed

single model, a blending-based multiple-model is used for the MPC controller and weight

tuning calculations. As a result, more accurate predictions can be made and, hence, better

tuning can be achieved.

Consequently, in this study, a weight tuning and a real-time learning-based weight

selection method for a vehicle stability control system is developed. Its effectiveness in

improving the performance of the controller to maintain vehicle stability under a variety

of driver and road conditions is investigated using simulations and experimental tests.

1.3 Organization

Chapter 2 comprises a literature review of methods for MPC weight tuning, direct yaw

control (DYC), and multiple-model control. Different techniques employed for tuning the

weights including the analytical, optimization-based, and learning-based methods are re-

viewed. In the background section, the vehicle model that is considered for the MPC

controller, the MPC controller design, GPR, and BO methods are explained.

In Chapter 3, the developed weight tuning and real-time learning-based weight selection

methods are presented for a general MPC controller. Subsequently, the proposed approach

is employed for a vehicle yaw stability controller. The studied MPC controller ensures

4



the vehicle stability by torque vectoring. Weight tuning is performed off-line, and weight

selection is carried out in real-time. The details of the proposed weight authentication

process are also explained in this chapter. Through co-simulations in MATLAB/Simulink

and CarSim, the proposed approach is evaluated.

Chapter 4 describes the multiple-model approaches. A blending-based multiple model

method is explained and applied to the MPC controller. A comparison is made between

the predictions generated by the single-model and those produced by the multiple-model

technique. Then, the blending-based multiple-model is employed as the weight tuning

module’s prediction model to enhance its tuning performance. The effect of considering a

multiple-model method instead of a single model is evaluated and discussed by performing

MATLAB/Simulink and CarSim co-simulations.

In Chapter 5, experimental results of the proposed weight tuning and real-time weight

selection method are illustrated. The vehicle undergoes various tests under dry and wet

road conditions. The tests are conducted using the controller with fixed weights, followed

by the controller with the single model tuning approach, and finally the tests are carried

out using the controller with the blending-based multiple model approach. To confirm the

efficacy of the proposed approaches, a comparison is made between the results obtained

for yaw rate, side-slip angle, wheel torques, and tuned weights.

Chapter 6 provides a conclusion to this thesis and suggests potential areas for future

research to build upon the findings presented in this thesis.
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Chapter 2

Literature Review and Background

In this chapter, first, a comprehensive review of the previous studies in the area of tuning

MPC controllers is provided. Then, the DYC control approaches, and multiple model-

based control studies in the literature are reviewed. After reviewing the literature, the

background information required for developing the MPC controller with weight tuning is

provided including: the vehicle model used as the MPC controller’s prediction model; the

details of the MPC controller’s design; the GPR; and BO method that employed for the

purpose of this research.

2.1 Model Predictive Control

The efficacy of MPC as a control strategy has been established through numerous studies

and real-world applications [1]. Rafal and Stevens [2], Propoi [3], and Zadeh et al. [4],

have paved the way for the researches in this field, and it has progressed greatly and been

adopted in numerous sectors [5–12]. The MPC control method has particular applicability

for multivariate complex systems that are constrained [1]. Stochastic MPC [13–15] and

economic MPC [16–18] are study topics that encompass the recent researches in MPC. Since

its inception, MPC formulation and execution have undergone significant development.

Nonlinear MPC, state-space MPC, dynamic matrix control (DMC) [19], linear quadratic

gaussian (LQG) [20], and model algorithmic control (MAC) [21] are among them.
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The MPC controller is an optimal control method that control actions are computed

according to the predictions made by using a model of the system for a predefined future

horizon. An objective function is minimized to obtain the optimal control actions which

includes different terms, weights, and parameters to reflect the desired performance and

intended control objectives. The performance of any MPC controller is closely dependant

on the weight values, and numerous studies in the literature have focused on tuning them.

In the following section, different methods and approaches in the area of MPC weight

tuning are reviewed.

2.2 Tuning Model Predictive Controller Weights

It has always been challenging to tune the weights of optimal linear quadratic regulator

(LQR) and MPC controllers [22, 23]. It takes a long time to choose an appropriate set

of weights, and numerous simulation or experimental tests, and a ton of trial-and-error

decisions are needed [24,25]. A detailed review of heuristic and analytical tuning approaches

for various implementations of MPC control is presented in [20], which includes the studies

published up through 2009.

The general linear discretized state-space equation of a dynamic system can be repre-

sented as:
xp(k + 1) = Apx(k) +Bpu(k)

yp(k) = Cpx(k) +Dpu(k)
(2.1)

where Ap, Bp, Cp, and Dp denote the plant matrices, xp(k) indicates the state variables

vector, and u(k) represent the manipulated variables vector. The objective function of the

MPC controller is written as:

J =
[
Yd(k)− Y (k)

]T
Q
[
Yd(k)− Y (k)

]
+ UT (k)RU(k) + ∆U(k)TT∆U(k) (2.2)

subject to:

EU(k) ≤ e

FX(k) ≤ f
(2.3)
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Eq. (2.3) represents the actuator and state constraints. The elements of Q matrix are the

weight values considered for the tracking errors, T matrix includes the weights of proximity

of inputs to the previous solution, and R matrix contains the weights for the magnitude of

inputs. The relative significance of minimizing the tracking error of each state is reflected by

the corresponding relative weight values in Q. They relatively indicate the costs associated

with the difference between the state variable values and their corresponding setpoints. The

control actions magnitude and rate of variations are significantly influenced by the weight

elements of R and T matrices.

The weight selection is mostly based on observed relations that the plant model de-

scribes. In some studies, general guidelines are provided to select the weights (e.g. [26]).

Nevertheless, when plant parameter uncertainties and model mismatches exist, its perfor-

mance is negatively impacted. There are difficulties in tuning the MPC controller weights

through conventional methods including the necessity of a standard controller, an accurate

model, and continuous cost functions. Some of the widely used tuning approaches are

provide in the following.

2.2.1 Analytical Weight Tuning

In some studies, analytical approaches have been developed for obtaining and tuning the

MPC controller weights. Bagheri and Sedigh [27,28] constructed closed-form equations for

tuning the weight matrices utilizing the pole placement idea for first-order plus dead time

(FOPDT) model of the plant. Rapid tracking performance was obtained after evaluating

the proposed tuning instructions. Nevertheless, when employed for inaccurate, or time-

variant plant models, the performance of the controller was not desirable. This study was

expanded in [29] by developing other equations for calculating the weights in closed-form,

which was capable of decreasing the controller’s tracking error. For multiple-input and

multiple-output (MIMO) systems, the approach of [27] was expanded in [30]. In [31], MPC

weights are calculated by closed form equations derived for a linear time invariant (LTI)

controller and a MPC controller by utilizng a controller-matching technique. Correlations

between the weight matrices and covariances of these matrices are investigated in [32], and

an on-line MPC tuning method is proposed. This method is applied to a multi-dimensional
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robotic system.

In a large number of studies, it is recommended that Q = I and T = ρI be used. ρ is

referred to as a move suppression factor. Even though this approach can make MPC tuning

straightforward, it reduces MPC’s extensibility and restricts the amount of controllability

of the MPC controller. Bagheri and Sedigh [33] used this approach to find an analytical

limit for the value of ρ that gives resilience to the uncertainty of the model. Yamashita,

et al. [34] suggested having T = I and Q = R = I, as well as considering a tiny number

for ρ. Burgos, et al. [35] proposed considering T = ρI and Q = CTC. This approach

was employed to address the reference tracking problem of a quadrotor which produced

acceptable setpoint tracking results. Other relevant studies and tuning guidelines have

been provided for the SISO and MIMO systems in [36–41].

A single-input and single-output (SISO) MPC with no offsets is developed in [42] on

the basis of an auto-regressive model with exogenous terms (ARX). Authors proposed

obtaining the elements of the weight matrices according to the closed-loop system’s input

and output variances. The proposed method entails computing the variances at various

weight values, ranging from no control to minimal variance control. The weights that

correspond to the point of inflection in a log-log graph of the variances are selected.

In [30], an analytical weight tuning procedure is provided when there are inactive

constraints. Instead of using numerical methods, MPC weight tuning formulas for control

horizon of one are derived to achieve the optimal performance.

2.2.2 Optimization-Based Weight Tuning

Tuning strategies on the basis of optimization methods for several control systems, particu-

larly MPC, are established in the literature. Weight tuning approaches based on optimiza-

tion were demonstrated to perform better than trial-and-error when the prediction horizon

and sampling intervals are fixed [43]. However, it is a challenging procedure to formulate

the cost function, which must be minimized for the determination of MPC weights. Several

efforts have been documented in the literature in this regard [44–46]. A greater variety of

MPC tuning approaches have been introduced for the cost function customization and the
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choice of optimization procedures. The formulation of the cost functions are performed

utilizing both the economic factors and information about the current plant.

In [47], the values of the weight matrices are obtained by defining a cost function and

minimizing it. To adjust weights, Vallerio, et al. [48] used a multi-objective optimization

strategy that aimed to minimize the discrepancy between the desired and measured values.

Another multi-objective technique is utilized in [46]. Tracking errors’ L2-norm is minimized

while hard constraints are considered for the weights.

Shah and Engell [49] investigated tuning the weights of an MPC controller for SISO

systems without active constraints through closed-loop pole placement. The relationships

between the weights, closed-loop zeros, and poles were identified, followed by determining

the optimal weights through the solution of an optimization problem. Following that, they

offered a methodical procedure for calculating the MIMO MPC controller weights in [50].

This strategy relies on a characterization of the closed-loop system’s expected behav-

ior. The system’s robustness to model discrepancy is investigated in this study. The

tuned weight values were achieved by the following steps, after constructing the requisite

transfer functions of the closed-loop system. First, the difference between the actual and

the intended transfer function was minimized in order to achieve the gain of the desired

transfer function. Then , the weight matrices’ values were determined after the solution

of an optimization problem which also sought to minimize the desired and actual transfer

functions discrepancy.

Two techniques of weight tuning on the basis of lexicographic multi-objective opti-

mization were introduced in [51]. The user orders the objective functions in this approach

according to significance. In the first technique, input-output pairing is performed; then,

control actions and control outputs are normalized; finally, the sum of the squared errors

between the desired and actual responses of the closed-loop system is minimized by solving

the corresponding optimization problem. The alternative technique takes into account the

same performance index, while finding viable weights that yield the nearest response to

the response which is both feasible and desired.

In [52], an optimization strategy was provided that determines the MPC weights by

minimizing the variance of a gain factor. In the proposed minimization problem, the
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difference between the desired and actual response is constrained. This method was utilized

to tune a steering-wheel position controller. A technique for tuning the MPC controller for

non-square systems was provided in [53]. Soft state variable constraints are considered in

the formulation of the designed MPC controller. They used a three-step approach to tune

the controller: 1) The determination of a desired closed-loop response; 2) determining the

best scales for the control actions; and 3) Obtaining the optimal weight values through the

proposed optimization problem solution. The slack variables that are considered to apply

the soft constraints, and the difference between the simulated and desired responses of the

closed-loop system are minimized by solving this optimization problem.

For the purpose of tuning the weights of the generalized predictive controller (GPC),

Romero, et al. [54] proposed a technique in which the weight optimal values are obtained by

minimizing the amount of gain margin under some constraints. The constraints include:

phase margin bounds, robustness to changes in the plant gain, rejection of the accept-

able output-disturbance, and rejection of the high-frequency noise. Olesen, et al. [55, 56]

presented a weight tuning method for a MIMO ARX model-based offset-free MPC. The

optimal weight values are achieved by minimization of the integral of the absolute error

(IAE) when there are variations in the disturbance and setpoint, and weight values are

constrained.

In [57], the weight tuning was performed through solving an optimization problem

in which the disturbance and control effort are minimized under a defined constraint.

This constraint is defined based on ∞-norm of weights set by the user, and functions of

sensitivity between the output response and the disturbance of the load.

On the basis of BO method, an automated weight tuning process is provided in [58] for

an MPC controller that is employed to control a vehicle’s lateral motion. The approach

produces optimal gains based on the determination of the user, aside from making the

procedure more convenient by lowering the workload. The proposed approach is evaluated

by simulation tests under a driving test case. The vehicle can undertake lane-keeping

movements at various speeds.

Kumar and Zavala [59] provided a thorough derivation of BO technique for tuning MPC

controller. The proposed approach treats the relationship between the tuning parameters of

11



the MPC controller and its closed-loop functionality as a black box. The tuning parameters

space is aimed to be explored and exploited strategically to rapidly obtain the optimal

tuning parameters, in the provided framework.

In order to address the mismatch between the actual dynamic model and the linearized

model, BO is employed in [60] to optimize an objective function’s weights. The proposed

framework automatically enhances a starting set of controller gains in accordance with a

pre-specified performance goal assessed by experimental data. The entropy search (ES) is

considered as the acquisition function of the utilized BO method.

Dependable performance has been achieved by MPC weight tuning using the con-

strained least-square optimization method [61]. To be able to find the best combination

of MPC weights that ensures the repeatability of the process and satisfies predetermined

time-domain criteria, gradient descent technique is examined in [62].

In [63], a goal attainment method is used for tuning MPC controllers weights. In this

methodology, a group of desired objectives is defined corresponding to a group of objective

functions, such that each objective function is a function of MPC tuning parameters.Several

desirable objectives that may be considered by specifying a relative weight indicating the

relative importance of each one.

2.2.3 Learning-Based Weight Tuning

Learning algorithms have also been employed for tuning the MPC weight. In the most

of the studies in this area, optimal weights are achieved by combining an optimization

problem with a learning-based method according to the intended objective.

In [64, 65], the optimum values of MPC weights were learned by using the deep rein-

forcement learning (RL) method, and these weights could be adapted and changed online.

The policy of the proposed RL approach is capable of being learned autonomously. A

reward function which is multi-objective has been employed in this study. It has been

demonstrated that the performance of the proposed method exceeds those produced by

a human expert. A similar concept of using RL to learn the MPC controller tuning pa-

rameters is provided in [66]. A quad-copter’s MPC controller was tuned by using an RL
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method based on Q-Learning which had a piece-wise reward function, and its action space

was discrete.

An optimal MPC weight adaptation technique is provided in [67] for a designed game

theoretic MPC problem formulated based on the interaction between a human-driven ve-

hicle (HDV) and connected and automated vehicles (CAVs). An inverse reinforcement

learning (IRL) method is utilized to learn the HDV objective function’s weights, and an

approach is proposed on the basis of BO for adapting the weights in the objective function

of CAV for minimizing the expected true cost. The proposed optimal approach is evaluated

by simulation tests conducted for a vehicle crossing example.

In [68,69], the authors used finite action-set learning automation (FALA) to determine

an MPC controller weight elements. Using this method, the weight values converge to

an optimal element set by using an iterative training procedure. In [70], a framework is

provided in which a neural network (NN) is used for predicting the cost function learned by

humans in combination with an MPC weight tuning problem. This problem is posed as an

optimization problem. A random search algorithm using “random oracle” object is selected

for optimization. Constrained optimization problems are considered in this algorithm and

the optimization can be done without requiring derivative information of any order. The

focus of the author in this study is to automate the procedure of weight tuning to reduce

the cost and time of tuning. For evaluating the performance of the framework, it is used

in a simulation for tuning the weights of a MPC controller designed for diesel engine’s air

path.

2.2.4 Genetic Algorithm-Based Weight Tuning

The genetic algorithm (GA) is a metaheuristic technique that is employed for solving

search and optimization problems. Natural selection, the mechanism that propels biological

evolution, is the foundation of GA. Some of the researches have proposed using GA for

obtaining the optimal MPC weights.

In [71], a multi-objective GA is utilized to optimize the weights of an MPC-based mo-

tion cueing algorithm (MCA). It is intended to minimize sensed motion errors, output
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displacements, input rates, and motion inputs. A set of predetermined requirements relat-

ing to the maximum permitted displacement and maximum permitted error must be met

by the modified weights.Through the suggested technique, the best combination of weights

is searched, which seeks to minimize the effort of the user associated with weight tuning,

and receives feedback regarding the user satisfaction.

In [72], weight values of the MPC that can provide the minimum energy consump-

tion along with decreased tracking error, are determined using GA. Importance-weighted

performance indicators are utilized for the formulation of the objective function. Desired

response tracking IAE and energy consumption are among the considered metrics. To

specify importance weights for each control situation, an interactive decision tree (IDT) is

employed.

A GA-based multi-objective optimization method is presented in [73] for tuning pre-

diction horizon and weights of the MPC controller. The defined cost function is mini-

mized for obtaining the optimal values. In comparison to the iterative weighted tuning

method, the GA-based algorithms can offer a quicker convergence. A generalized auto-

mated MPC weight tuning algorithm is developed in [74]. Multi-objective fuzzy decision

making (MOFDM) is combined with GA in the proposed approach. The “optimum” re-

sponse of the system is determined by the engineer and the algorithm aims at providing

the MPC controller with the tuning parameters that result in this optimal response.

Many of the weight tuning methods on the basis of evolutionary algorithms generally

employ two main approaches: (i) in a large number of studies, the objective function is

reformulated by considering new objectives [24, 25, 75]. In this method, the designer’s

judgment is used to decide one the weight values in the new objectives, leaving the issue of

determining the ideal weights unresolved. Furthermore, a successful tuning of the previous

objective functions may not always follow from the new objective functions weight tuning.

(ii) A vector of weights is considered as the ideal set of weights. Then, weights become

optimized, and then the results get evaluated by comparing them to those obtained by the

reference weights. The reference weight values are usually determined by trial and error.

Therefore, these weights are biased and are not a reliable measure for assessment. There

are instances, though, where the same MPC objective weights are used, or normalizing

weights depending on each objective’s maximum value, are chosen [76]. It is also possible
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to combine the reference weights with additional objectives [77]. Nevertheless, the reference

weights are always determined by the designer which may not be the ideal weight values

to be considered for the MPC.

2.2.5 Particle Swarm Optimization-Based Weight Tuning

Particle swarm optimization (PSO) is a powerful technique for solving the optimization

problems that seeks to solve a problem more effectively by repeatedly attempting to make

a candidate solution better in terms of a specified quality metric [78]. PSO has been the

focus of various optimization-related studies including the MPC weight tuning.

A technique that integrates PSO and multi-objective optimization was proposed in [79]

to adjust a constrained MPC controller weights. The MPC’s prediction model is subject

to uncertainty. A worst-case scenario for the controller is considered in this method in

terms of the resiliency index and condition number [80] in the description of the model

uncertainty. The user is able to select the intended performance functions. To optimize a

multi-objective cost function in tracking a set point and disturbance rejection test cases,

a MPC weight tuning method based on PSO is employed in [81]. PSO algorithm is also

used for automatically estimating the nonlinear MPC weights in [82,83].

The PSO optimization method was utilized in [84] to tune the weights of SISO and

MIMO MPC controllers. The settling time, rise time, overshoot, and steady-state error

are minimized by solving the provided optimization problem which takes into account some

constraints and gives the optimal weight values. Weights are bounded in this approach.

2.2.6 Other Tuning Methods

One of the extensively used methods to obtain the weight values is controller matching. It

entails adjusting the MPC weights to make it operate similar to a typical, predetermined

controller. Two MPC weight tuning techniques are proposed in [85] on the basis of con-

troller matching. A linear MPC controller without state or input constraints is matched

to a desired LTI state feedback controller. An optimization problem is defined based on
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this matching problem such that the elements of the weight matrices are bounded, and

solution of this optimization problem gives the optimal weights.

Online altering the structure of control is the topic of other relevant research. A

multiple-model MPC control strategy is provided in [86]. To address ongoing fluctua-

tions in the operating point and nonlinearities of the model, switching between various

MPC controllers is performed. More similar researches have been conducted that involve

online change in the structure of the controller, e.g. [61, 87–91]. Shadmand, et al. [92]

presented the application of IAE in tracking in performing the MPC weight tuning online.

Maran [23] used a weight tuning method that involved manually changing the weights.

The weights have to be sufficiently large to prevent impossibility, and without impairing

motion perception at the same time.

In almost all of the proposed MPC weight tuning approaches, after the weights are

obtained or calculated, they remain fixed although the weights have a crucial effect in the

controller’s performance. In this thesis, A technique is developed to tune the weights with

respect to the state of the system. Therefore, the weights can be changed and selected in

real-time according the system’s state.

2.3 Direct Yaw Control

The corrective yaw moments produced by torque/brake vectoring are referred to as direct

yaw moment control (DYC). The DYC directly affects longitudinal forces to control the

vehicle’s yaw rate. By providing braking force to the wheels, a corrective yaw moment is

generated through the differential braking to maintain the yaw rate close to the desired

value. Numerous research have focused into how differential braking affects control of the

vehicle.

In [93], differential braking was utilized in the designed MPC controller to control the

tractor-trailer vehicle’s stability. A friction circle was used to calculate the tire’s remaining

capacity to limit the maximum value of corrective yaw moment. The performance of the

designed controller was evaluated under various trailer and tractor differential braking

scenarios.
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A control method based on fuzzy logic was developed in [94] to control the stability

of vehicle. The deferential braking was performed by brake-by-wire system. A nonlinear

model of the vehicle was employed to design the controller. There was an assumption that

yaw rate remains within a stable range allowing the driver to react to the fluctuation in

the yaw rate which prevents the vehicle to become unstable.

Utilizing the electric powertrain, a practical way is offered in [95] to enhance the stability

and handling of the vehicle by managing the amount of torque that is generated and applied

to each wheel. In contrast to the differential braking control method, torque vectoring does

not decrease the speed of the vehicle which is the reason that torque vectoring is usually

preferred. Active differentials and electric motors are employed as the means of distributing

wheel torques respectively in conventional and electric vehicles (EVs).

In [96], a modular optimal control approach was provided for vehicle’s combined lateral

and longitudinal control. In this approach, the applied torque on each wheel is controller.

To minimize the tracking errors, the required change in the yaw moment and longitudinal

force was determined by using a high-level MPC controller. In accordance with the control

actions determined by the high-level controller, the torque applied on each wheel was

regulated by using a low-level controller.

In [97], an optimal vehicle control method based on torque vectoring was used to provide

a generalized integrated control approach. In order to maintain the vehicle on a desired

route, the designed controller adjusted yaw moment and tire forces through applying suf-

ficient amount of torque on each wheel. Lower and upper bounds was considered for the

amount of generated wheel torque in the optimization problem that was used for obtaining

the torque values.

By controlling the applied wheel torque on each wheel, an MPC controller is designed

in [98] to perform the combined control of stability of the vehicle and wheel traction.

Yaw rate tracking was the objective of the designed controller subject to the constraint of

keeping the lateral velocity of the vehicle and slip ratio of the tire within the predetermined

safe regions. The proposed method decreased the computational complexity by reducing

the prediction model size. By modifying the reference yaw rate, the controller indirectly

accomplished the vehicle’s lateral stability.
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In [99], to stabilize an EV in real-time and within the handling limits, a nonlinear MPC

is developed.Three MPC techniques to maintain the stability of the vehicle were developed.

Control actuation was the torque vectoring of the rear wheels.

2.4 Multiple Model Control

Due to changes in the dynamics of the plant, failure or aging of the components, or vari-

ations in the operating conditions, parametric uncertainties can grow significantly in ex-

periment. Instability or unsatisfactory transient response may be resulted by these large

parametric uncertainties. To deal with these problems across a wider range of system

changes and uncertainties, multiple model control approaches have been constructed.

Utilization of multiple models in the design of controllers allows for a more thorough

explanation and improved control of systems that are time varying and have various un-

certainties. Rather than relying on a single model that may have a significant uncertainty

range, this approach suggests employing a collection of models to reflect the system behav-

ior under different operating conditions. This method enables the design of a combination

of controllers to create a blended or switching-based control structure in a setting that is

noticeably less conservative.

In order to increase the precision of state estimation, multiple-model Kalman filter was

first proposed in [100, 101]. A linear SISO system with significant modeling inaccuracies

was taken into account in [102]. A group of controllers that were under the supervision

of a switching logic in high-level were used. The focus of this study was primarily on the

switching logics. Moreover, the flexibility of the switching-based approach compared to the

conventional controllers are highlighted in this research. In [103], the benefits of switching-

based methods over conventional adaptive control approaches are discussed including the

modularity, low computational cost, and ease of parameterization.

To minimize the controller’s poor response due to the switch from one fixed controller

to another one, an approach of switching and tuning was developed in [104, 105]. The

basic concept was to enhance the performance by tuning the gain of the controller after

employing switching logic to speed up the adaptation. Additionally, this method may be
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applied to uncertain linear time variant (LTV) systems as opposed to the basic approach,

which were designed for uncertain LTI systems. This idea is also implemented in [106,107]

for parameter identification.

Some influential studies [108,109] have been conducted in the area of traditional multiple-

model control that concentrated on the quantity of fixed and adaptive models used for esti-

mation, as well as the information source of each model. These studies suggested blending

the gains of predetermined controllers according to their model-specific identification er-

rors. In comparison to earlier multiple-model based strategies, it has demonstrated an

enhanced performance and a quicker convergence [110]. A blending-based multiple-model

adaptive control (MMAC) scheme is developed in [111,112] for MIMO systems with poly-

topic parameter uncertainties. LQ based and MPC based designs are provided and applied

to the vehicle motion control. In the proposed approach, weighting vectors are generated

for a set of fixed linear parametric identification models in real-time to obtain the true

model.

In the following sections, the background information required for developing the MPC

controller with the weight tuning and the weight selection is provided. First, the vehicle

model used as the MPC controller’s prediction model is explained. The details of the MPC

controller’s design are then described. Following this, the GPR and BO techniques that

employed for the purpose of this study are discussed.

2.5 Vehicle Prediction Model

In order to design an MPC control system, a prediction model is required. This model

includes the yaw motion, and lateral motion. Additionally, this model incorporates the

effects of torque vectoring. In Figure 2.1, the dynamics of a vehicle having in-wheel electric

motors is illustrated. The equations of the lateral dynamics of the vehicle can be expressed

as:

β̇ = −r + 1

mu
(Fyf cos (δ) + Fxf sin (δ) + Fyr) (2.4)

ṙ =
1

Iz
(lfFyf cos (δ)− lrFyr + lfFxf sin (δ) +MDY ) (2.5)
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CG

Figure 2.1: Vehicle model diagram

where β is the sideslip angle; r is the yaw rate; m is the total mass of the vehicle; Iz is

the vehicle’s yaw inertia; lf and lr are the distances between the vehicle’s center of gravity

(CG), and the front and rear axles respectively; MDY is the total corrective yaw moment

acted on the vehicle; and g is the gravitational constant.

Torque vectoring is used as the control actuation in this thesis. This actuation generates

separate torques for each of the front wheels in order to control the stability of the vehicle.

To develop a combined-slip prediction model, it is necessary to incorporate this effect into

the tire model. It is important to note, however, that combined slip tire models require an

estimation of a large number of parameters. Furthermore, an accurate estimate of slip ratio

may not be available. Thus, to overcome these challenges and complexities, a brush tire

model is used to consider the effect that the longitudinal forces have on lateral forces [113]:

Fy =

−Cα tanα + C2
α

3ξµFz
|tanα| tanα− C3

α

27ξ2µ2F 2
z
tan3 α |α| < αsl

−ξµFz sign α |α| ≥ αsl

αsl = arctan
3ξµFz

Cα

,

(2.6)
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where Cα denotes the cornering stiffness of the tire; α is the slip angle of each of the front

and rear tires:

αf =
v + lfr

u
− δ, αr =

v − lrr
u

(2.7)

FZ represents the normal load on each tire; and, based on the friction limit circle, ξ is a

derating factor indicating the remaining lateral force capacity:

ξ =

√
1−

(
Fx

µFz

)2

(2.8)

A linear relationship between longitudinal forces of the tires and wheel torques is assumed:

Fx =
Q

Re

(2.9)

By linearizing the nonlinear plant dynamics at each timestep, a convex quadratic op-

timization problem is utilized to implement the MPC controller in real-time. In order to

obtain this linear vehicle model, the nonlinear characteristic of the tire can be linearized

around its operating point. Calculation of the partial derivatives of the lateral force is

required in order to linearize the nonlinear model with respect to slip angle and derating

factor. Fyi can be expressed as follows using these partial derivatives:

Fyi = F̄yi + C̄αi
(αi − ᾱi) + C̄ξi

(
ξi − ξ̄i

)
, (2.10)

where ᾱi and ξ̄i are respectively the slip angle and derating factor at the operating point;

Fyi is the lateral force computed at the operating point by Eq. 2.6; C̄αi
and C̄ξi are

calculated at the operating point as follows:

C̄αi
=
∂Fyi

∂αi

|ᾱi,ξ̄i , C̄ξi =
∂Fyi

∂ξi
|ᾱi,ξ̄i . (2.11)
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In other words, C̄α is the slope of the tangent line of the Lateral force, Fy, versus side slip

angle, α, at the operating point, as shown in Figure 2.2:
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Figure 2.2: Representation of the linearized tire model with respect to side slip angle α.

Similarly, C̄ξ is the slope of the tangent line of the Lateral force, Fy, and derating factor,

ξ, at the operating point, as shown in Figure 2.3.
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Figure 2.3: Representation of the linearized tire model with respect to derating factor ξ.

It is possible to rewrite the lateral force equation in terms of axle torque by utilizing

successive partial derivatives:

Fyi = F̄yi + C̄αi
(αi − ᾱi) + C̄Qi

(
Qi − Q̄i

)
, (2.12)
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where C̄Qi
is calculated at the operating point as:

C̄Qi
=

[
∂Fyi

∂ξi

∂ξi
∂Fxi

∂Fxi

∂Qi

]
ᾱi,ξ̄i

(2.13)

Eq. (2.12) is substituted into Eq. (2.4) and (2.5) for the lateral forces of the front and

rear tires, and by using Eq. (2.7) for slip angles, state-space form of the equations can be

rewritten as:

ẋ = Ax+Bu+D, (2.14)

where x =

[
β

r

]
, u =

[
Qf

MDY

]
, and

A =


C̄αf

cos δ+C̄αr

mu

lf C̄αf
cos δ−lrC̄αr

mu2 − 1

lf C̄αf
cos δ−lrC̄αr

Iz

l2f C̄αf
cos δ+l2rC̄αr

Izu

 (2.15)

B =


C̄Qf

cos δ−C̄Qr

mu
+ sin δ

muRe
0

lf C̄Qf
cos δ+lrC̄Qr

Iz
+

lf sin δ

IzRe

1
Iz



D =


F̄yf cos δ+F̄yr−C̄αf

ᾱf cos δ−C̄αr ᾱr−C̄Qf
Q̄f cos δ−C̄Qr Q̄r−C̄αf

δ cos δ

mu

lf F̄yf cos δ−lrF̄yr−lf C̄αf
ᾱf cos δ+lrC̄αr ᾱr−lf C̄Qf

Q̄f cos δ+lrC̄Qr Q̄r−lf C̄αf
δ cos δ

Iz


The corrective direct yaw moment, MDY , is generated by torque vectoring which is

utilized for the simulations and experimental tests this thesis. Eq. (2.14) has to be dis-

cretized to be able to be implemented in the MPC controller. The zero-order hold (ZOH)
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method [114] is used to discretize the continuous-time model as:

x(k + 1) = Adisx(k) +Bdisu(k) +Ddis, (2.16)

where Adis = eAdists , Bdis =
∫ ts
0
eAdisτBdis.dτ , and Ddis =

∫ ts
0
eAdisτD.dτ . This discretized

vehicle model is considered as the prediction model of the MPC controller.

2.6 Actuator Constraints

The actuator effort of each MPC controller must be limited to solve the optimization

problem. The vehicle stability controllers are generally subject to two main actuator

constraints: The first constraint concerns the actuators’ maximum capability to generate

wheel torque. The maximum friction force between the road and tire is another constraint

that must be considered.

The drive torques are generated by the electric motors in the front and rear axles. The

maximum torque that can be generated by the electric motor, Qe,max, and the maximum

friction force, µFz, constrain the wheel torques. The minimum total torque generated by

the front wheels are calculated as:

Qf,min = Qfl +Qfr = 0, (2.17)

The rear wheel torques are obtained such that the total torque applied to all wheels are

equal to the driver requested torque:

Qr = Qd +Qf , (2.18)

where Qd is the driver’s total requested torque, and Qr is the rear wheel torques. Both

the front and rear torques must be constrained within the allowable ranges. Therefore, the
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minimum and maximum front wheel torques are calculated as:

Qf,min ≤ Qf ≤ Qf,max,

Qf,min = Qd −Qr,max,

Qf,max = min (Qe,max, µFz,f , Qd),

Qr,max = min (Qe,max, µFz,r, Qd)

(2.19)

2.7 State Constraints

It is necessary to constrain some of the vehicle model’s states in order to maintain the

vehicle in a stable condition. To define the maximum and minimum allowable vehicle’s

yaw rate, the steady state condition is assumed in Eq. (2.14):

v̇ = 0 → rmax =
FY,max

mu
(2.20)

In the absence of longitudinal forces acting on the tires, the maximum stable yaw rate is:

Fx = 0 → rmax =
µg

u
(2.21)

Otherwise, the capacity of the tire’s lateral force will be decreased on the basis of the

derating factor, ξ, as:

FY,max = µmgξ (2.22)

where ξ is obtained by Eq. (2.8). Hence, the maximum vehicle’s stable yaw rate will be:

rmax =
µgξ

u
(2.23)

and the minimum stable yaw rate will be:

rmin =
−µgξ
u

(2.24)
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A linear inequality can be used to represent the yaw rate constraint:

Hrx ≤ Gr, (2.25)

where Hr and Gr are expressed as:

Hr =

[
0 1

0 1

]
, Gr =

[
rmax

rmin

]
(2.26)

The sideslip angle of the vehicle should also be constrained to ensure the vehicle sta-

bility. The bounds of the sideslip angle are obtained by limiting the rear slip angle of the

rear tires to:

|αr| ≤ αr,sat (2.27)

which results in:
lrr

u
− αr,sat ≤ β ≤ lrr

u
+ αr,sat. (2.28)

The Eq. (2.28) can be rewritten in the linear equality matrix from as:

Hβx ≤ Gβ, (2.29)

where Hβ and Gβ are:

Hβ =

[
1 − lr

u

−1 lr
u

]
, Gβ =

[
αr,sat

αr,sat

]
. (2.30)

Figure 2.4 shows the constraints on the lateral velocity and yaw rate of the vehicle in the

β − r phase plane. The green region indicates the vehicle’s stable area.

2.8 Desired Response of the Vehicle

The desired values of the vehicle’s yaw rate and sideslip angle should be determined for the

MPC controller. These values are tracked by the controller to improve the handling of the
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Figure 2.4: The β − r phase plane

vehicle. When a vehicle’s sideslip angle is small, it means that the lateral velocity is also

small and the vehicle is traveling mostly in the direction of its heading. In such a scenario,

the sideslip angle is imperceptible, and the vehicle appears to be moving tangentially to its

trajectory at all times. This is desirable for stability because it means that the vehicle is

not experiencing large lateral forces that could cause it to lose control or tip over. However,

if the sideslip angle becomes large, it means that the vehicle is experiencing a significant

lateral velocity and is traveling more sideways than forward. This can cause the vehicle to

become unstable, particularly at high speeds, and may result in the driver losing control of

the vehicle. In extreme cases, a large sideslip angle can cause the vehicle to tip over or spin

out of control. Therefore, to minimize the sideslip angle to the greatest extent possible,

the desired sideslip angle is determined as:

βdes = 0, (2.31)

By considering the steady state yaw rate of the vehicle operating in the linear range, the

desired value of the vehicle’s yaw rate is determined as:

r∗des =
u

l + kusu2
δ, (2.32)

27



where l = lf + lr, and kus is the understeer coefficient obtained as:

kus =
−m

(
aCαf

− bCαr

)
lCαf

Cαr

. (2.33)

kus indicates how sensitive the vehicle is to the steering. In the evaluation of the

quality of the vehicle’s handling, understeer coefficient is an essential parameter. In some

circumstances, there is an insufficient friction force to track the desired yaw rate defined

in Eq. (2.32) based on the friction coefficient of the road. Hence, the desired yaw rate

is changed and limited by the maximum allowable yaw rate defined in Eq. (2.23). The

adjusted desired yaw rate can be expressed as:

rdes = min (rmax, |r∗des|) sign(r∗des) (2.34)

2.9 Model Predictive Control for Lateral Stability

This section discusses the MPC controller used to control the vehicle lateral stability. The

control actuation is the front wheel torque vectoring that is applied by separate electric

motors on each wheel. There are two main objectives defined for this controller: main-

taining the vehicle’s yaw rate and sideslip angle within the stable region and tracking the

desired yaw rate and sideslip angle. The objective function of the MPC controller can

therefore be defined based on the aforementioned control actuation and objectives.

This objective function is formed by the weighted summation of the following main

terms: (1) system states’ tracking error, (2) magnitude of the control actuations or control

effort, and (3) proximity of the control actuations to their previous values. Additionally,

two types of constraints are considered in this objective function: (1) a hard constraint for

the control actuations, and (2) soft constraints for the yaw rate and side slip angle based

on limits shown in Eqs. (2.25) to (2.30). The soft constraints are applied by defining slack

variables and they are weighted to be penalized for the violation of the corresponding state
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constraints. The final objective function of the MPC controller can be expressed as:

J =

Np∑
k=1

(
x (k)− xdes (k)

)T
Q
(
x (k)− xdes (k)

)
+ uTRu (k) + ∆uT (k)T∆u (k)

+Wss (k) ,

(2.35)

subject to the following constraints:

Hx(k) ≤ G+ s(k),

umin(k) ≤ u(k) ≤ umax(k),

s(k) ≥ 0.

(2.36)

and the discretized prediction model of the vehicle (Eq. (2.16)), where Q is the weight

matrix of the tracking error, R denotes the weight matrix of the control effort, T is the

weight matrix for the control actions’ proximity, and Ws is the slack variables’ weight

matrix. xdes is the vector of desired states, Np denotes the number of time steps in the

prediction horizon, and s in the vector of slack variables to enforce the soft constraints on

the states.

Using the stability analysis techniques, it can be demonstrated that the MPC controller

is stable [115–117], and we do not discuss that in this thesis. At each time step, the convex

optimization problem with the objective function of Eq. (2.35) is solved with respect to the

linear constraints provided in Eq. (2.36). The qpOASES solver [118] is used to solve this

quadratic optimization problem. Upon solving the optimization problem at each time step,

a sequence of optimal control inputs in the form of a vector, denoted by u∗, is obtained as:

u∗ =


u1

u2
...

uNp

 (2.37)

The initial sequence of wheel torque inputs denoted by u1 is the only one that is applied
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to the vehicle wheels. The optimization problem is subsequently resolved at the next time

step, taking into account the updated measured data.

2.10 Gaussian Process Regression

Supervised learning for classification or regression can involve using Gaussian processes

(GPs) as a probabilistic model. These flexible and adaptable models can capture the

complexity of non-linear functions. For regression tasks, GPs can offer estimates of out-

put values along with uncertainties for inputs. For classification tasks, GPs can provide

probability distributions for classes instead of definitive outputs. GPs offer an effective

solution for supervised learning with predictions and uncertainties that can be useful in

various applications. GPs are employed when any finite number of random values in the

output space could be considered to have a joint gaussian distribution based on the input

variables [119].

To specify a GP, it is necessary to define a mean function denoted by m(x) and a

covariance function (or kernel) represented by k(x, x′). This GP considers a multivariate

gaussian distribution based on the previous observations data points, D = {xi, yi}i=1:N

which is assumed to come from an unknown nonlinear function f : Rd → R:

f (x) ∼ GP
(
m (x) , k (x, x′)

)
(2.38)

y1:N ∼ N
(
m1:N , K (x1:N , x1:N)

)
(2.39)

y1:N = f (x1:N) , m1:N = m (x1:N) (2.40)

where K is the covariance matrix that is calculated elementwise by the kernel function

k (x, x′). Using the observed data, a nonlinear function y∗ = f(x∗) is trained and the

output of this learned function for unobserved or inexperienced data points x∗ in the

feature space can be predicted as:

y∗|D, x∗ ∼ N
(
µ (x∗|D) , σ (x∗|D)

)
(2.41)
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where

µ (x∗|D) = m∗ + k (x∗, x1:N)K
−1
1:N (y1:N −m1:N) (2.42)

and

σ (x∗|D) = k (x∗, x∗) + k (x∗, x1:N)K
−1
1:Nk (x1:N , x

∗) (2.43)

K1:N = K (x1:N , x1:N)

The selection of the kernel function is very crucial here because the assumptions on the

y∗ are determined by this element. One of the commonly utilized covariance functions is

the squared exponential (SE) kernel. In this study, the SE kernel function is selected and

is defined as:

k (xi, xj|θ) = σ2
f exp

[
−1

2

(xi − xj)T (xi − xj)
σ2
l

]
(2.44)

where θ is the general term indicating the kernel function hyperparameters, σf is the mea-

surement uncertainty, and σl is the characteristic length scale. Suitable hyperparameters

θ are those that give the maximum log marginal likelihood for the observed data. Then,

the output of any unobserved data points in the input feature space can be predicted. The

GPR steps are illustrated in Figure 2.5. Therefore, based on the observed data, the GPR

predicts the most probable output which is the µ(x∗|D) and the probability distribution

of other possible outputs as the σ(x∗|D) function.

2.11 Bayesian Optimization

The GPR regression method, which is categorized under supervised learning, is used to

forecast the output of unobserved data points as a function of the observed data. In some

cases, using the observed data, it is required to find the data in the input feature space

corresponding to the optimum output. In other words, the observed data contains some

information about the correlation between inputs and outputs that can help to find data

points in the input feature space that maximizes the output of the system. BO is one of
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Figure 2.5: The diagram of the GPR method.

the widely used methods for obtaining global optimum of black-box functions. First, a GP

must be learned by the initial sample points. Using an auxiliary acquisition function, α(x),

BO technique gives the next possible sample point that optimizes the GP mean [120].

In the current study, the next sampling point is determined using the expected improve-

ment (EI) acquisition function, which estimates the potential improvement for any input

data point in maximizing the output of the learned function over the current best output

value, represented by ymax = max(y1:N+k). The EI function calculates the expectation of

the improvement amount based on N initial observations and K additional sampled points,

which is defined as:

α (x) = EI (x) = σ (x)
[
uΦ (u) + ϕ(u)

]
(2.45)
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where u = (y (x)− ymax) /σ (x), σ (x) is the predicted variance by the learned GP, Φ(.) is

the cumulative density function, and ϕ(.) is the probability density function for the normal

distribution. EI function can propose next sample points with high variance and/or high

mean.

To better clarify the BO process, the workflow is presented in Figure 2.6, and an ex-

ample is illustrated in Figure 2.7. The area with the purple color in Figure 2.7 indicates

the range of the GP model prediction with 95% confidence. The GP model is learned by

5 initial sample points and the corresponding output values calculated by f(x). The algo-

rithm computes the location of the next potentially optimal point by using the acquisition

function α(x). This point is crucial in the iterative process of updating the GP model. The

vertical green dashed line denotes the location of this point. During each iteration of the

algorithm, the output of the learned function at the next possible optimum point, f(Xopt),

is calculated. This value is then used in conjunction with all the previously evaluated pa-

rameters (represented by the red dots) to update the GP model so it can better represent

the observed data and increase its predictive accuracy. This iterative process of updating

the GP model based on new information is critical to the success of the algorithm.
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Bayesian Optimization

To find the point corresponding to 

the global minimum of a function

(Tuned weights in this work)

Goal

Learn a GP using the sample points 

(Initial weights in this work)

Find the next possible optimum 

point (weights) with the highest EI:

Calculate the output of the function 

in :

N iterations

Return the optimal point

(Weights here)

Algorithm

Figure 2.6: Diagram of the BO algorithm.
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Figure 2.7: An example of the BO process when optimizing an unknown one-dimensional
objective function [121].
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Chapter 3

MPC Weight Tuning and Weight

Authentication

As previously mentioned in Chapter 1, the proposed approach consists of these modules:

MPC controller, weight tuning, weight selection, and weight authentication. The MPC

controller design has been explained in section 2.9. In this chapter, (as highlighted in

Figure 3.1) the details of the proposed method for tuning the MPC controller weights are

discussed. This approach is then applied to the MPC controller designed for the vehicle’s

lateral stability to evaluate its effectiveness. In the next step, the real-time learning-based

weight selection based on GPR will be discussed, and finally the weight authentication

technique is explained.

3.1 Bayesian Optimization-Based Weight Tuning

In this study, weight tuning is accomplished through a BO based technique. The first

step toward defining a BO problem involves learning a GP from the observed or initially

available data. It is important to note that GPR is utilized in two distinct modules. In

the first instance, the GP is formed to formulate a BO problem for weight tuning. In the

second instance, the BO is formed to train a specific dataset that is considered for the
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Figure 3.1: The scheme of the weight tuning module

weight selection module. Thus, these two applications of GPR should not be confused.

In this section, details of the weight tuning for a general MPC controller are presented.

It is assumed that the MPC controller weights have already been set, and the focus is on

tuning them to obtain a better MPC performance. The general state-space representation

of a dynamic system can be written as:
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Ẋ = F (X,U)

Y = H(X,U)

(3.1)

where X represents the vector of states, U is the vector of inputs of the dynamic system

or control actions, and Y represents the output vector. An MPC controller is designed

to provide the system with suitable corrective control actions, δU , such that the system

outputs, Y , get closer to the desired output values, Yd:

Yd = [y1d, y2d, . . . , ynd ]T

erY = [ery1, ery2, . . . , eryn ]T = [y1 − y1d, y2 − y2d, . . . , yn − ynd] = Y − Yd
(3.2)

where erY refers to the vector of tracking errors, and eryi refers to the tracking error

associated with the i th output. Desired output values, yid, are obtained as a function

of current states, X, and inputs, U , of the system. The MPC controller generates the

corrective control actions, represented by the δU vector as:

δU = [δu1, δu2, . . . ., δum]
T =MPC1(X,U, Yd, Q,R, T,Ws)

Q = diag(w1, w2, . . . , wn)

(3.3)

These control actions are obtained by solving an optimization problem. The optimiza-

tion problem includes an objective function which, according to Eq. (3.3), is a function

of states, inputs, desired values, and the controller weights. In this thesis, the elements of

the Q matrix associated with the tracking errors are intended to be tuned. Weights have a

significant influence on the performance of the control system. According to Eq. (3.3), the

weight values can be specified in accordance with the current condition of the system and

1The notationMPC(.) is used to represent the whole calculations performed for solving the optimization
problem of the MPC controller to obtain the corrective control actions, which can be treated as a function
of variables in(.).
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the control objective for which the MPC controller is designed. In other words, rather than

considering a fixed set of weights for all of the conditions that the vehicle will experience,

the weights can be adjusted and tuned for each condition.

In what follows, a weight tuning technique is explained to obtain optimal weights by

using BO and a prediction model of the dynamic system. A prediction model to be used

by the MPC controller can be defined as:

˙̂
X = F̂ (X̂, U)

Ŷ = Ĥ(X̂, U)

(3.4)

where X̂2 and Ŷ are the predicted states and outputs of the vehicle system, respectively.

Depending on the control objective, an error examination criterion, ĒQ, corresponding

to the weight matrix, Q, is defined as a function of tracking errors, erY , in current and

previous time steps:

ĒQ = E(ertY , er
t−1
Y , ert−2

Y , . . . , ert−l
Y ) (3.5)

where ertY denotes the vector of tracking error in the time step of t. As previously men-

tioned, tracking errors are impacted by the weights. Therefore, ĒQ is indirectly obtained

by the weights at each time step. In order to determine whether the selected weight set

in the MPC controller is appropriate for the current condition of the dynamic system, a

threshold can be considered for ĒQ, as ĒQtres . If ĒQ is less than this threshold, then the

selected weight set is acceptable. Otherwise, another weight combination must be chosen,

or, in other words, the selected weights should be tuned. The ĒQ and erY are obtained

by using the system’s actual outputs and the corresponding desired values. For tuning the

MPC controller weights in this study, the prediction model of the dynamic system (Eq.

(3.4)) is used to predict the tracking errors for other possible weights. As an additional

clarification, similar to Eqs. (3.2) and (3.5), predicted tracking errors, êrY , and predicted

2Throughout this thesis, the superscript ̂ denotes the predicted variable obtained through the model,
rather than measured or estimated.
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error examination criterion, ̂̄EQ, are defined as:

êrY = [êry1, êry2, . . . , êryn ]T = [ŷ1 − y1d, ŷ2 − y2d, . . . , ŷn − ynd]T = Ŷ − Yd (3.6)

̂̄EQ = E(êrtY , êr
t−1
Y , êrt−2

Y , . . . , êrt−l
Y ) (3.7)

so that the performance of the control system by using the possible better weights can be

predicted. The êrtY is obtained by calculating the difference between the predicted outputs

and the desired ones at time step t. ̂̄EQ is calculated as a function of predicted tracking

errors in l number of previous time steps if other weight sets were used. In other words,

we want to predict what would be the tracking errors in a sequence of previous time steps

if the current weights of the MPC controller were substituted by other weights. These

predicted values are calculated and used for weight tuning through the following steps:

First, an initial set of new weights and corresponding Q matrices are generated either

randomly or by using a predefined algorithm as:

Qinitial
1 =


W 1

1 0 · · · 0

0 W 1
2

. . .
...

...
. . . . . . 0

0 · · · 0 W 1
n

 , Qinitial
2 =


W 2

1 0 · · · 0

0 W 2
2

. . .
...

...
. . . . . . 0

0 · · · 0 W 2
n

 , . . . ,

Qinitial
r =


W r

1 0 · · · 0

0 W r
2

. . .
...

...
. . . . . . 0

0 · · · 0 W r
n


(3.8)

The above initial weights as well as the already selected weights (presented by Q) in the

MPC controller are considered as the input data points for the BO:

BO initial points:
{
Qinitial

1 , Qinitial
2 , . . . , Qinitial

r , Q
}

(3.9)

Each of the weights in Eq. (3.9) are selected in the MPC controller’s objective function,
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and, using the prediction model (Eq. (3.4)), the MPC controller’s optimal control actions,

δUj, associated with Qj are obtained for each time step as:

δU t
j =MPC

(
X t−1, U t−1, Y t−1

d , Qj, R, T,Ws

)
(3.10)

Therefore, at each time step, t, a vector of optimal control actions, δU t
j is obtained based

on each of the initial weight sets, and the state of the vehicle in the previous time step:

Qinitial
1 → 3 δU t

1

Qinitial
2 → δU t

2
...

...
...

Qinitial
r → δU t

r

Q → δU t

(3.11)

By using the prediction model (Eq. (3.4)), the predicted outputs, Ŷ t
j , and the corresponding

predicted tracking errors, êrtYj
, under corrective control actions, δU t

j , are calculated as:

Ŷ t
j = H

(
X t−1, U t−1 + δUj

)
→ êrtYj

= Ŷ t
j − Yd (3.12)

Therefore, the Eq. (3.11) can be rewritten as:

Qinitial
1 → δU t−l:t

1

4

→ Ŷ t−l:t
1 → êrt−l:t

Y1
→ ̂̄EQ1

Qinitial
2 → δU t−l:t

2 → Ŷ t−l:t
2 → êrt−l:t

Y2
→ ̂̄EQ2

...
...

...
...

...
...

...
...

...

Qinitial
r → δU t−l:t

r → Ŷ t−l:t
r → êrt−l:t

Yr
→ ̂̄EQr

Q → δU t−l:t → Ŷ t−l:t → êrt−l:t
Y → ̂̄EQ

(3.13)

3The notation A→B is used to represent the relationship between A and B, where A is a factor or
condition that can lead to or generate B. The arrow (→) indicates that A can result in or lead to the
production of B.

4At−l:t = [At−l, At−l+1, · · · , At−1, At]
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The elements of the first column in Eq. (3.13),
{
Qinitial

1 , Qinitial
2 , . . . , Qinitial

r , Q
}
, are con-

sidered as the BO initial input points, and the last column elements,
{̂̄EQ1 ,

̂̄EQ2 , . . . ,
̂̄EQr ,

̂̄EQ

}
form the BO problem’s output points:

BO initial inputs : BOinps =
{
Qinitial

1 , Qinitial
2 , . . . , Qinitial

r , Q
}

BO initial outputs : BOouts =
{̂̄EQ1 ,

̂̄EQ2 , . . . ,
̂̄EQr ,

̂̄EQ

} (3.14)

According to the details explained in section 2.11 and illustrated in Figure 2.6, the

goal of this BO problem is to find the optimum weight set, Qopt, that minimizes the

error examination criterion, ĒQ, and, as a result, minimize the MPC controller’s tracking

errors, erY . Based on the information provided in sections 2.10 and 2.11, to formulate

the BO problem, a GP must be learned for the BO initial data points presented in Eq.

(3.14). This GP considers a multivariate gaussian distribution based on the initial data

points, D =
{
Qi,

̂̄EQi

}
i=1:N

which is assumed to come from an unknown nonlinear function

f : Rd → R. According to Eqs. (2.38)-(2.44), the GP formula can be written as:

f (Q) ∼ GP
(
m

(
Q
)
, k (Q,Q′)

)
̂̄EQ1:N

∼ N
(
m1:N , K (Q1:N , Q1:N)

)
̂̄EQ1:N

= f
(
Q1:N

)
, m1:N = m

(
Q1:N

)
(3.15)

where K is the covariance matrix that is calculated element-wise by the kernel function

k (x, x′). The kernel function represented in Eq. (2.44) is utilized in this study. Using the

initial data (Eq. (3.14)), a nonlinear function ̂̄E∗
Q = f (Q∗) is trained and the output of

this learned function, ̂̄E∗
Q, for unobserved weights, Q∗, can be predicted as:

̂̄E∗
Q|D, Q∗ ∼ N (µ (Q∗|D) , σ (Q∗|D)) (3.16)
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where:

µ (Q∗|D) = m∗ + k (Q∗, Q1:N)K
−1
1:N

(̂̄EQ1:N
−m1:N

)
(3.17)

and
σ (Q∗|D) = k (Q∗, Q∗) + k (Q∗, Q1:N)K

−1
1:Nk (Q1:N , Q

∗)

K1:N = K (Q1:N , Q1:N)

(3.18)

After the GP was learned for the BO initial data by means of Eqs. (3.15)-(3.18), using

the EI auxiliary acquisition function (Eq. (2.44)), BO technique gives the next possible

optimum weights, Q∗
opt, that minimizes the GP mean, µ

(
Q∗

opt

∣∣D). As explained previously,

EI function calculates the expectation of the amount of improvement for any given input

data point (weights in this study) in optimizing the output of the learned GP function

( ̂̄E∗
Q) over the current best output value,

̂̄EQmin
. After the next possible optimum weights,

Q∗
opt, is provided by means of the EI function and the learned GP, the ̂̄EQopt corresponding

to the Q∗
opt weights will be calculated using the Eqs. (3.10), (3.12), and (3.13).

In the next step, (Q∗
opt,

̂̄EQopt) will be a new datapoint that is added to the set of

previous BO datapoints (Eq. (3.14)). These datapoints are updated and the entire process

is repeated for a predetermined number of iterations, I. After the final iteration, the

updated set of BO datapoints are represented as:

BO inputs : BOinps =
{
Qinitial

1 , Qinitial
2 , . . . , Qinitial

r , Q∗
opt1, Q

∗
opt2, . . . , Q

∗
optI

}
BO outputs : BOouts =

{̂̄EQ1 ,
̂̄EQ2 , . . . ,

̂̄EQr ,
̂̄EQ,

̂̄EQopt1,
̂̄EQopt2, . . . ,

̂̄EQoptI

} (3.19)

Finally, the weight set in BOinps corresponding to the minimum value of the error

examination criterion, ̂̄EQmin
, will be considered as the potential optimum weight set, Qopt.

The potential weights will be replaced by the weights already used by the MPC controller,

and will be added to the weight selection dataset. The proposed weight selection approach

is explained in detail in section 3.3. The whole procedure of weight tuning is illustrated in

Figure 3.2.
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Figure 3.2: Weight tuning procedure for a general dynamic system

3.2 Applying the Weight Tuning Approach to the Ve-

hicle Stability Controller

In this section, the proposed weight tuning approach is applied to the MPC controller

designed for vehicle stability control in section 2.9. The main objective of this MPC

controller is to maintain the lateral stability of the vehicle by keeping the vehicle’s yaw

rate and slip angle close to their desired values. Hence, the weight tuning method, can

adjust the weights of the MPC controller according to the current state of the vehicle to

maintain vehicle stability under a variety of vehicle and/or road conditions. According to

Eqs. (2.31) and (2.32), the vector of desired responses and tracking errors can be expressed

as:
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Yd = [rd, βd ]T

erY = [err, erβ]
T = [r − rd, β − 0] = Y − Yd

(3.20)

The vector of driver inputs, U , and corrective control actions, δU , can be written as:

U = [Qf ,MDY ]
T

δU = [δQf δMDY ]
T =MPC (X,U, Yd, Q,R, T )

Q = diag(Wr,Wβ)

(3.21)

The step time of ts is considered for the MPC controller. The weight matrix of the tracking

errors, Q, is already selected by the MPC controller at the previous time step, t − ts, to
find the optimal torques (control actions) to achieve the desired vehicle yaw rate and side

slip angle. The obtained optimal torques are acted on wheels during ts. Then, the actual

values of yaw rate and side slip angle are measured in the next time step, t, to calculate

the tracking errors and to evaluate the control system performance. The actual tracking

errors at each time step is calculated as:

etr =
∣∣rt − rtdes∣∣ , et−ts

r =
∣∣rt−ts − rt−ts

des

∣∣ , et−2ts
r =

∣∣rt−2ts − rt−2ts
des

∣∣ , ....
etβ =

∣∣βt − 0
∣∣ , et−ts

β =
∣∣βt−ts − 0

∣∣ , et−2ts
β =

∣∣βt−2ts − 0
∣∣ , .... (3.22)

In order to determine whether the selected weights in the controller were appropriate for

the driver and/or road condition at l number of previous time steps, the error examination

criterion is defined as:

ĒQ = E
(
ert:t−lts

Y

)
=

γr

l−1∑
i=0

∣∣et−its
r

∣∣+ γβ

l−1∑
i=0

∣∣et−its
β

∣∣
l
(
γret−lts

r + γβe
t−lts
β

) (3.23)

which calculates the average tracking error rate over a fixed time interval window by

dividing a weighted sum of tracking errors during the window by the tracking error at
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the start of the window. γr is the weight of vehicle’s yaw rate tracking errors, and γβ

represents the weight of the vehicle’s side slip angle tracking error in the defined criterion

formulation. ĒQ is calculated by the actual values of tracking error in Eq. (3.23). It

shows how successful the MPC controller was to push actual values of yaw rate and side

slip angle to the desired values during previous time steps. High values of ĒQ indicate

weak performance of the controller and vice versa. ĒQ can be reduced by making some

adjustments on the weight values. Therefore, a maximum acceptable value of ĒQmax is

predefined and considered as a threshold for weight tuning (as discussed previously). If

ĒQ is less than this threshold, then the selected weight set is acceptable. Otherwise, the

selected yaw rate and side slip angle weights should be tuned.

In order to tune the MPC controller weights, the prediction model of the vehicle (ex-

plained in section 2.5) is used to predict the tracking errors of yaw rate and side slip angle

if other possible weights were selected. Predicted tracking errors, êrY , and predicted error

examination criterion, ̂̄EQ′ , are defined as:

êrY ≜ [êrr, êrβ ]T =
[
r̂ − rd, β̂ − βd

]T
= Ŷ − Yd (3.24)

̂̄EQ′ ≜ E
(
êrt:t−lts

Y

)
=

γr

l−1∑
i=0

∣∣êt−its
r

∣∣+ γβ

l−1∑
i=0

∣∣êt−its
β

∣∣
l
(
γret−lts

r + γβe
t−lts
β

) (3.25)

The êrtY is obtained by calculating the difference between the predicted outputs in step

time t and the desired ones. ̂̄EQ′ is calculated as a function of predicted tracking errors

during the l number of previous time steps, êrt:t−lts
Y , if other weights, Q′, were used. These

predicted values are calculated and used for weight tuning through the following steps:

First, 4 initial set of new weights and corresponding Q matrices are generated as:

Qinitial
i =

[
wri 0

0 wβi

]
, i = 1, 2, 3, 4 (3.26)

For BO, the initial new weights in Eq. (3.26) as well as the already selected weights by
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the MPC controller (presented by Q) are considered as the BO input datapoints:

BO initial points :
{
Qinitial

1 , Qinitial
2 , Qinitial

3 , Qinitial
4 , Q

}
(3.27)

An objective function is defined for each weight matrix, Qi, in the MPC controller, and,

by using the vehicle prediction model, the MPC controller’s optimal control actions, δMj,

associated with Qj are obtained as:

δM t
j =MPC

(
X t−ts, U t−ts, Y t−ts, Y t−ts

d , Qj, R, T,Ws

)
(3.28)

Therefore, optimal torque control actions, δMj, corresponding to each of the BO initial

points are presented as:

Qj → δM t
j (3.29)

By using the vehicle prediction model presented in Eqs. (2.14) and (2.16), the predicted

outputs, Ŷ t
j , and the corresponding predicted tracking errors, êrYj

, under the wheel torques,

δM t
j , are calculated as:

Ŷ t
j = H

(
X t−ts, δt−ts,M t−ts + δM t

j

)
→ êrtYj

= Ŷ t
j − Yd =

[
r̂tj − rd
β̂t
j − 0

]
(3.30)

As a result, the Eq. (3.29) can be completed as:

Qj → δM t−lts:t
j → Ŷ t−lts:t

j → êrt−lts:t
Yj

→ ̂̄EQj
(3.31)

The Qj points are considered as the BO initial input points, and the ̂̄EQj
points form the

BO problem’s initial output points:

BO initial inputs : BOinps =
{
Qinitial

1 , Qinitial
2 , Qinitial

3 , Qinitial
4 , Q

}
BO initial outputs : BOouts =

{̂̄EQ1 ,
̂̄EQ2 ,

̂̄EQ3 ,
̂̄EQ4 ,

̂̄EQ

} (3.32)

The objective of this BO problem is to determine the optimum yaw rate and side slip
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angle weights,
(
Qopt = diag

(
Wropt ,Wβopt

))
, that minimizes the predicted error examination

criterion, ̂̄EQmin
, which minimizes the MPC controller’s predicted tracking errors, êrY . To

formulate the BO problem, a GP must be learned for the BO initial data presented in

Eq. (3.32). This GP considers a multivariate gaussian distribution for the datapoints

D =
{
Qj,

̂̄EQj

}
j=1:N

.

The GP formulation is similar to Eqs. (3.15) - (3.18). After the GP is learned for the

BO initial data (Eq. (3.32)), BO technique gives the next possible optimum weights, Q∗
opt,

by using the EI auxiliary acquisition function (Eq. (2.45)). The EI function calculates

the expectation of the amount of improvement for hundreds of input datapoint (weights

here) in optimizing the output of the learned GP function ( ̂̄E∗
Q) over the current best

output value, ̂̄EQmin
. The weight set associated with the highest amount of EI function

will be considered as the next possible optimum weights, Q∗
opt. Then, the value of ̂̄EQopt

corresponding to the elements of the weight matrix, Q∗
opt, will be calculated using the

prediction model of the vehicle. Hence, (Q∗
opt,

̂̄EQopt) will be a new datapoint that is added

to the previous BO dataset (Eq. (3.32)). The BO datapoints are updated and the entire

process is repeated for a predetermined number of iterations, I. After the final iteration,

the BO datapoints are obtained according to what follows:

BO inputs : BOinps =
{
Qinitial

1 , Qinitial
2 Qinitial

3 , Qinitial
4 , Q∗

opt1, Q
∗
opt2, . . . , Q

∗
optI

}
BO outputs : BOouts =

{̂̄EQ1 ,
̂̄EQ2 ,

̂̄EQ3 ,
̂̄EQ4 ,

̂̄EQ,
̂̄EQopt1,

̂̄EQopt2, . . . ,
̂̄EQoptI

} (3.33)

Finally, the weight set in BOinps corresponding to the minimum value of the error

reduction criterion, ̂̄EQmin
, will be considered as the potential optimum weight set, Qopt.

The potential weights will be replaced by the weights that have already been selected in the

MPC controller, and will be added to the weight selection dataset. Figure 3.3 illustrates

the weight tuning steps for the vehicle’s MPC controller.
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Figure 3.3: Weight tuning procedure for the vehicle’s MPC controller

3.3 Learning-Based Weight Selection

The proposed real-time learning-based weight selection technique is presented in this sec-

tion. Figure 3.4 shows a general representation of the weight selection module. Firstly, it

is explained that a dataset is considered to store the optimal weights, which are obtained

through weight tuning. A description of the feature space and outputs of this dataset

is then provided. Following this, the use of GPR to train the dataset is presented. Fi-

nally, selecting the MPC controller weights using the dataset learned by GPR method in

a real-time manner is explained.
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Figure 3.4: Real-time learning-based weight selection module

3.3.1 Weight Selection Dataset

A dataset is considered to store tuned weights along with vehicle and driver data. It

provides the MPC control system with access to the optimum weights obtained through

weight tuning. This dataset is represented by Dw. Dw is initially empty, however, as the

vehicle undergoes a variety of tests, the MPC weights become tuned, and fill the Dw. The
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feature space or input of the dataset is denoted by XD and is defined as:

XD = [xD1, xD2, . . . , xDn]
T

xDi = [ri Vxi Vyi δi]
T i = 1 : n

(3.34)

The dataset inputs include the yaw rate, r, longitudinal velocity, Vx, lateral velocity, Vy,

and the steering wheel angle, δ, of the vehicle. The outputs of the dataset, denoted by YD,

are the yaw rate and the side slip angle tuned weights corresponding to XD:

YD = [yD1, yD2, . . . , yDn]
T

yDi = [wri, wβi]
T

(3.35)

Therefore, after the weight tuning, the data of the XD matrix as well as the tuned weights

become added as a new sample point in the Dw dataset.

3.3.2 Dataset Training Using Gaussian Process Regression

In order to be able to select the appropriate controller weights, two GPs (one GP for

obtaining wr and another one for wβ) are learned by using the vehicle and weight data

in the Dw dataset. As previously mentioned, this should not be confused with the other

GP considered for the BO during the weight tuning. This GP considers a multivariate

gaussian distribution based on the data in the Dw dataset:

Dwr = {xDi, wri}i=1:n

Dwβ
= {xDi, wβi}i=1:n

(3.36)

where Dwr and Dwβ
are two different datasets considered for formulating the GP to obtain

yaw rate and side slip angle weights, respectively. According to Eqs. (2.38) - (2.44), the

GP formulation can be expressed as:
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fwr (xD) ∼ GP (mwr (xD) , k (xD, x
′
D)) , fwβ (xD) ∼ GP (mwβ (xD) , k (xD, x

′
D)) ,

wr1:n ∼ N (mwr1:n, K (xD1:n, xD1:n)) , wβ1:n ∼ N (mwβ1:n, K (xD1:n, xD1:n)) ,

wr1:n = fwr (xD1:n) , wβ1:n = fwβ (xD1:n) .

(3.37)

where K is the covariance matrix that is calculated elementwise by the kernel function

k (x, x′). The kernel function represented in Eq. (2.44) is again used here. Using the initial

data (Eq. (3.36)) , the nonlinear functions w∗
r = f (x∗D) and w

∗
β = f (x∗D) are trained and

the output of these learned functions for new input data, x∗D, can be predicted as:

w∗
r |Dwr, x

∗
D ∼ N (µ (x∗D|Dwr) , σ (x

∗
D|Dwr))

w∗
β|Dwβ, x

∗
D ∼ N (µ (x∗D|Dwβ) , σ (x

∗
D|Dwβ))

(3.38)

where:
µ (x∗D|Dwr) = m∗

wr + k (x∗D, xD1:n)K
−1
1:n (wr1:n −mwr1:n)

µ (x∗D|Dwβ) = m∗
wβ + k (x∗D, xD1:n)K

−1
1:n (wβ1:n −mwβ1:n)

(3.39)

and
σ (x∗D|Dwr) = k (x∗D, x

∗
D) + k (x∗D, xD1:n)K

−1
1:nk (xD1:n, x

∗
D)

σ (x∗D|Dwβ) = k (x∗D, x
∗
D) + k (x∗D, xD1:n)K

−1
1:nk (xD1:n, x

∗
D)

K1:n = K (xD1:n, xD1:n)

(3.40)

Hence, the weights associated with any new point is predicted by using the mean

function presented in Eq. (3.39), and Eq. (3.40) calculates the standard deviation of the

predicted weights with respect to the training data.
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3.3.3 Real-Time Weight Selection

To select the weights for the vehicle’s MPC controller, first, yaw rate, longitudinal velocity,

lateral velocity, and the steering wheel angle of the vehicle in the current time (xtD) is

extracted by using the vehicle sensors or estimators. A set of default weights, wdef
r and

wdef
β are predefined in the MPC controller. A neighbourhood variable, ϵx, is defined to find

all xD input data in Dw close to the current vehicle’s data, xtD:

ϵX = [ϵr ϵVx ϵVy ϵδ]
T (3.41)

Hence, xDi is assumed to be in proximity to xtD if:

||xiD|| ≤ ||xtD||+ ϵX (3.42)

As illustrated in Algorithm 1 and Figure 3.5, the MPC controller utilizes weights predicted

by the GPR if at least one xDi exists in Dw in proximity to xtD, otherwise; default weights

are chosen.

Algorithm 1 Real-time Weight Selection Algorithm

if ∃xDi ∈
[
xtD − ϵX , xtD + ϵX

]
then

wt
r ← µ (xtD|Dwr)

wt
β ← µ (xtD|Dwβ)

else
wt

r ← wdef
r

wt
β ← wdef

β

end if

After selecting the weights, the MPC controller calculates the optimal control actions,

wheel torques, which are then acted on the vehicle wheels. Clearly, the weight selection is

made in real-time. After the vehicle maneuver is finished, the weight tuning is executed

according to the explanations of sections 3.1 and 3.2, based on the history of data. There-

fore, a MPC controller with real-time weight selection is designed, and the used weights

are evaluated after each maneuver and tuned accordingly. As a result, the control system

generates the optimal control actions by solving the MPC controller’s objective function
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such that even its weight values are optimized.

3.4 Weight Tuning Simulations

To evaluate the proposed weight tuning and real-time learning-based weight selection

method, the designed MPC controller along with the weight tuning and weight selection

modules are implemented using MATLAB/Simulink [122] software. A co-simulation with

CarSim [123] is used to apply the controller to the vehicle running in CarSim. A CarSim

model of an sport utility vehicle (SUV) which accurately represents the vehicle’s behavior
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with detailed specifications outlined in Table 3.1 is employed for the simulations. The

aforementioned specifications have been obtained from the data source within the CarSim

software. The overall MATLAB/Simulink and CarSim co-simulations diagram is shown in

Figure 3.6.

Table 3.1: Parameters of the vehicle in CarSim.

Parameter Unit Value Description

m [kg] 2257 Vehicle mass

Lwb [m] 3.14 Wheelbase

lf [m] 1.33 CG distance to front axle

lr [m] 1.81 CG distance to rear axle

HCG [m] 0.78 CG hight

Re [m] 0.368 Effective radius of the tires

ls [m] 1.725 Front and rear track width

Iz [kg.m2] 3525 Vehicle yaw moment of inertia

Cαf [N/rad] 152343 Front tires cornering stiffness

Cαr [N/rad] 121943 Rear tires cornering stiffness

Driver
Driver 

Command 

Interpreter

+
+

CarSim 
Vehicle 
Model

Control 

Actions
MPC with Weight 

Selection and 

Weight Tuning 

System

MATLAB/Simulink CarSim

Figure 3.6: Overall MATLAB/Simulink and CarSim co-simulations diagram

According to Figure 3.6, Yaw rate, longitudinal velocity, and lateral velocity received

from CarSim are transferred to the MPC controller in MATLAB. During each simulation,

the desired values of yaw rate and sideslip angle are determined, and the suitable weights
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corresponding to current state of the vehicle are obtained by the weight selection module

in real-time (as discussed in the previous sections). Then, the optimal control actions are

calculated and applied to the vehicle. The parameters used for the MPC controller, weight

selection, and weight tuning are listed in Table 3.2.

Table 3.2: Parameters of the MPC controller, weight tuning, and weight selection modules.

Parameter Value Description

ts 0.02 Controller sampling time(s)

Np 6 Prediction horizon size

Nc 6 Control horizon size

T 5× 10−5 × I2×2 MPC weight matrix of proximity to previ-
ous solution

R 3× 10−6 × I2×2 MPC weight matrix of control action

ϵX [2 5 0.1 1] Neighborhood distances = [ϵr ϵu ϵv ϵδ]

wdef
r 50 MPC yaw rate tracking error default weight

wdef
β 10 MPC sideslip angle tracking error default

weight

wt
r - Selected yaw rate weight at time = t(s)

wt
β - Selected side slip angle weight at t(s)

[wr1, wr2, wr3, wr3]
t [wt

r, 0.2w
t
r, w

t
r, 5w

t
r] BO initial yaw rate weights at t(s)

[wβ1, wβ2, wβ3, wβ4]
t [

5wt
β, w

t
β, 0.2w

t
β, w

t
β

]
BO initial sideslip angle weights at t(s)

I 5 Number of BO iterations

ĒQth
0.8 Maximum acceptable value of ĒQ

l 5 Number of preceding time steps in ĒQ

Upon completion of each simulation run, the history of the vehicle and controller data is

used in the weight tuning process to adjust weights off-line. The weight selection dataset,

Dw, is updated by the tuned weights, and then it is retrained to be used for the next

simulation run. After a number of simulations, the results are extracted and discussed.

The CarSim vehicle model is subjected to double lane change (DLC) maneuvers. Figure
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3.7 shows the steering wheel angle input of the driver. High rates of steering wheel angle

changes are taken into account to evaluate the efficacy of the proposed weight tuning

method in scenarios where the vehicle’s stability may be compromised due to improper

selection of MPC weights.

0 1 2 3 4 5 6 7 8 9 10

t (sec)

-200

-100

0

100

200

(d
e

g
)

Figure 3.7: Steering wheel angle input for the DLC maneuver.

Two main series of simulations are conducted and discussed in this section. During the

first series of simulations, the road condition is dry with µ = 0.8, while in the second series,

the road is slightly slippery with µ = 0.6. The initial longitudinal speed of the vehicle is

u0 = 70 kph. Three successive simulation runs are performed under each road condition.

For the first run, default weights wdef
r , wdef

β are set in the objective function of the MPC

controller.

The results of the vehicle’s yaw rate, sideslip angle, and variations in the MPC weights

wr, wβ on dry road are illustrated and compared in Figure 3.8. Yaw rate and sideslip

angle tracking errors are shown in Figure 3.9. The yaw rate and sideslip angle responses

are improved after the first execution of the MPC weight tuning. The root mean square

error (RMSE) of the yaw rate and side slip tracking are respectively decreased about

26% and 16% when fixed default weights are replaced with the tuned weights selected

in real-time. Upon repeating the simulation runs, the tracking errors are decreased from

the previous repetition, indicating that the proposed method is capable of continuously

improving the performance of the controller to maintain the vehicle’s lateral stability.

Before weight tuning, large peak values are noticed in the tracking error diagrams. These

57



0 1 2 3 4 5 6 7 8 9 10
-40

-20

0

20

r 
(d

e
g

/s
)

Desired

Before tuning

After 1st tuning

After 2nd tuning

0 1 2 3 4 5 6 7 8 9 10

-5

0

5

10

 (
d

e
g

)

0 1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

w
r

0 1 2 3 4 5 6 7 8 9 10

Time (sec)

0

100

200

300

w

Figure 3.8: Responses of the vehicle in terms of yaw rate and sideslip angle, and the weights
wr, wβ selected in real-time on a dry road.

points correspond to the maximum magnitudes of the steering wheel angle. However, most

of these peak values are considerably decreased after weight tuning.

The bottom graphs in Figure 3.8 show the real-time selected MPC weights. The DLC

maneuver involves significant changes to the vehicle’s steering wheel angle. Therefore,

significant increases and/or decreases can be noticed in the weight values to maintain the

vehicle’s stability. As previously mentioned, the weights are tuned based on the data

received from the vehicle and driver, and predictions of the vehicle model. The vehicle

model has predicted a decrease in the tracking error based on the value of ˆ̄EQ′ (calculated
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Figure 3.9: Tracking errors of the yaw rate and sideslip angle of the vehicle on a dry road.

by Eq. (3.25)) at each time step that weight values are different from those in the previous

simulation. In most of these time steps, the performance of the controller is improved;

however, in a few time steps, the change in the weight values has no considerable impact

on the yaw rate or sideslip angle response of the vehicle, indicating the predictions made

during the weight tuning process were not very accurate at those vehicle states.

Figure 3.10 demonstrates the front wheels torques generated by the MPC controller.

As previously mentioned, front wheels torque vectoring is considered as the control action.

The vehicle running in the CarSim is drived off-throttle, which means the total requested

torque by the driver is equal to zero. Therefore, the generated wheel torques are only

intended to control the vehicle lateral stability. The MPC controller’s objective function

generates small wheel torques when fixed default weights are set, as shown in Figure 3.10.

This accounts for the large average sideslip angle and yaw rate tracking error. After tuning

the MPC controller weights, wheel torques are increased in some time steps which improves

the tracking performance of the controller. Again, in some time steps, the change in the
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Figure 3.10: Front left and front right wheel torques generated by the MPC controller on
a dry road.

wheel torque does not considerably affect the response of the vehicle system. Thus, it is

necessary to develop a method to identify these vehicle states, and to avoid storing their

modified weights in the weight selection dataset, Dw.

The second series of simulations are conducted for a similar DLC maneuver on a slightly

slippery road with road friction of µ = 0.6. Figure 3.11 illustrates the vehicle’s yaw rate,

sideslip angle, and variations in the MPC weights wr, wβ, and Figure 3.12 demonstrates the

MPC controller’s tracking error on a slippery road. The vehicle becomes unstable before

weight tuning since the sideslip angle exceeds 10 degrees and the yaw rate tracking error

becomes larger than 25 deg/s. Thus, setting the default weights in the MPC controller’s

objective function cannot maintain the stability of the vehicle under this DLC maneuver.

This is due to the fact that the road is slippery with a lower road friction coefficient than in

the previous runs, and by default weights, the MPC controller does not generate sufficient

torque at the right time.
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Figure 3.11: Responses of the vehicle in terms of yaw rate and sideslip angle, and the
weights wr, wβ selected in real-time on a slippery road.

After tuning the weights, the DLC maneuver is repeated, and tracking errors are de-

creased. As depicted in Figure 3.12, after 2nd tuning, the yaw rate and sideslip angle

tracking errors are respectively improved about 55% and 54% when fixed default weights

are replaced with the tuned weights selected in real-time. The results clearly indicate the

effectiveness of the proposed method in improving the performance of the MPC controller

to control the vehicle’s lateral stability even in slippery road conditions. The selected MPC

tracking error weights wr, wβ are altered in real-time as depicted in the bottom graphs of
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Figure 3.12: Tracking errors of the yaw rate and sideslip angle of the vehicle on a slippery
road.

Figure 3.11. At most time steps during the last simulation run (after second tuning), the

weights tend to remain the same or very close to those selected during the previous run

(after first tuning). The reason for this is that during the weight tuning, the vehicle predic-

tion model did not predicted a better control performance if weights changed. In contrast,

at some other time steps the weights are greatly increased to ensure that the controller

generates enough torque to maintain stability of the vehicle (Figure 3.13).

Some fluctuations can be noticed in the wheel torque results after final tuning as de-

picted in Figure 3.13. It can be concluded that the real-time variation of the MPC weights

has altered the generated wheel torques such that a sufficient amount of torque is applied

to each wheel at the appropriate time. Nevertheless, there are some vehicle states in which

even a significant torque does not have an effect on the yaw rate or sideslip angle. This

issue is addressed through a proposed weight authentication (WA) technique provided in

the following section.
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Figure 3.13: Front left and front right wheel torques generated by the MPC controller on
a slippery road.

3.5 MPC Weight Authentication

A description of the MPC controller with weight tuning and real-time weight selection was

provided in the previous sections. As discussed in section 3.1, weight tuning is performed

based on the predictions made by the prediction model of the vehicle. If the prediction

model predicts a better response for another set of weights, then, the new weight set will

be substituted by the previously selected weights. However, no model is perfect in terms

of predicting the future states of the vehicle.

The vehicle’s model might predict a better response with lower amount of yaw rate

or sideslip angle errors, but in experiment, the response of the vehicle can become worse

when the new set of weights are considered for the MPC controller. Moreover, changing

the weights may not cause a considerable amount of improvement in the response of the

vehicle under some circumstances or vehicle states. It is intended to somehow recognize
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the conditions under which no tuning or further tuning of the weights is necessary.

A weight authentication (WA) technique is presented in this section to achieve the

aforementioned goal. The general structure of the proposed weight authentication method

is shown in Figure 3.14. During each new test (simulation or experimental test), the

measurements, either by the sensors or estimators, as well as the driver’s inputs (including

the steering wheel angle and requested torque), are received by the MPC controller. In

some cases, the current vehicle’s state values fall within the neighbourhood, εx, of other

states that has been previously experienced or tested, and their corresponding weights

have been tuned. These tuned weight are intended to be selected instead of the previous

weights when vehicle undergoes the similar state condition. The MPC controller generates

control actions based on the tuned weights which is applied to the vehicle. Through the

authentication step, the response of the vehicle will be compared to that when previous

weights were selected.

If, according to the vehicle’s response, the yaw rate, and lateral velocity error is de-

creased more than a predefined threshold, then, the tuned weights are authenticated. Oth-

erwise, the tuned weights are neglected, and previously selected weights are accepted. The

details of the weight authentication are discussed in the following.

3.5.1 Weight Authentication Criterion

It is essential to consider a criterion to evaluate the effectiveness of tuned weights after

they have been used in a test. Similar to the definition of the state variables error, and

MPC with 

Tuned Weights
Vehicle

Measurements

Control Actions MPC Weight 

Authentication 

Vehicle Response

Authenticated Weights

Driver Inputs

Figure 3.14: General diagram of the weight authentication process

64



error examination criterion in Eqs. (3.22) and (3.23), weight authentication criterion is

defined as:

ĒWpre =

γr

l−1∑
i=0

∣∣et−its
r

∣∣
Wpre

+ γβ

l−1∑
i=0

∣∣et−its
β

∣∣
Wpre

l
(
γret−lts

r + γβe
t−lts
β

) (3.43)

ĒWtun =

γr

l−1∑
i=0

∣∣et−its
r

∣∣
Wtun

+ γβ

l−1∑
i=0

∣∣et−its
β

∣∣
Wtun

l
(
γret−lts

r + γβe
t−lts
β

) (3.44)

CWtun =
ĒWpre − ĒWtun

ĒWpre

× 100 (3.45)

where ĒWpre and ĒWtun are error examination criteria calculated based on the actual re-

sponse of the vehicle when previous and tuned MPC weights are used, respectively. Thus,

the weight authentication criterion, CWtun , denotes the percentage of the error improvement

when previous weights are substituted by the tuned weights.

A threshold may be considered for the value of CWtun to decide whether accept or reject

the tuned weights. Algorithm 2 presents the general algorithm based on this threshold:

Algorithm 2 Weight Authentication General Algorithm

if CWtun > CWtrs then

Tuned weights, Wtun, are accepted

else

Tuned weights, Wtun, are rejected

Previous weights, Wpre, are accepted

No further tuning in the similar vehicle’s state

end if

It is noteworthy to mention that CWtun will be negative when ĒWtun > ĒWpre . This happens

when the response of the system becomes worse when tuned weights are selected by the

65



MPC controller. Therefore, the weight authentication can avoid unnecessary changes in

the weight values as well as the weight changes that deteriorate the response of the system.

3.5.2 Weight Labeling

After the definition of the weight authentication criterion (Eq. (3.45)) and describing the

general authentication algorithm, details of the weight authentication process are explained

here. A weight authentication dataset is defined as:

Dwa =


xD1 Wpre1 Wtun1 ĒWpre,1 ĒWtun,1 CWtun,1 L1

xD2 Wpre2 Wtun2 ĒWpre,2 ĒWtun,2 CWtun,2 L2

...
...

...
...

...
...

...

xDn Wpren Wtunn ĒWpre,n ĒWtun,n CWtun,n Ln

 (3.46)

where Dwa is the weight authentication dataset, xDi is the array of vehicle’s state and

steering wheel angle expressed in Eq. (3.34), ĒWpre,i
, ĒWtun,i

, and CWtun,i
are calculated

according to Eqs. (3.43) - (3.45), Wprei and Wtuni
denote the weight values before and

after the tuning process, respectively, that can be expressed as:

Wpre,i = [wri, wβi]pre , Wtun,i = [wri, wβi]tun (3.47)

Hence, for each of the experienced vehicle’s states, there are two sets of weights: one

before the weight tuning, and another one after the weights are tuned. The weight au-

thentication criterion, CWtun,i
in Eq. (3.45), associated with each state is compared with

its threshold, CWtrs , and a label, Li, is assigned to the vehicle’s state, xDi, according to the

following different conditions:

- Li = 0: Weights are changed through the weight tuning process, but not authenti-

cated.
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- Li = 1: The tuned weights are tested and authenticated: CWtun > CWtrs ; Therefore,

the tuned weights, Wtun,i, are replaced with the previous weights, Wpre,i.

- Li = 2: The tuned weights are tested but not authenticated: CWtun < CWtrs ; In this

condition, the tuned weights are neglected, and previous weights remain as the most

appropriate weight for this vehicle state.

Under the second condition (Li = 1), further weight tuning can be done in case the

state of the vehicle becomes in the neighborhood,ϵX , of xDi
and error examination criterion

is still more than the threshold, ĒQtres . On the other hand, if the third condition happens

(Li = 2), no further tuning will be conducted even if the yaw rate and lateral velocity errors

make the error examination criterion more than its threshold. Because the authentication

process has already shown that the response of the vehicle will not get better than what

it is even by changing the weights. This can avoid unnecessary increases or decreases in

the weights for such vehicle states. As a means of better explicating the whole weight

authentication process, the whole process of weight authentication is described in a step-

by-step manner for an exemplary vehicle state as follows:

The vehicle is assumed to be in x1 = x (t) = {r, u, v, δ}t state condition in current

time step, t. First, the MPC controller’s weights are selected according to the real-time

weight selection method discussed in 3.3.3. It is assumed that there is no data in the

weight selection dataset, Dw, in the ϵX neighborhood of the current vehicle state. Thus,

the default weights (wdef
r and wdef

β ) are automatically used for the MPC objective function.

The MPC controller generates the control actions using these default weights, and then

the response of the vehicle in the future time steps are obtained. Based on the discussion

provided in section 3.2, if the value of ĒQ is less than its threshold, the default weights are

accepted, the label of this vehicle state will be set to 2 (Li = 2), and the weight tuning will

not be carried out. Otherwise, the default weights become tuned according to the steps

presented in section 3.2. This is illustrated in Figure 3.15.

In the future event that the vehicle’s state falls within the ϵX neighborhood of this x1

state, the tuned weights,Wtun, are set in the MPC controller instead of the default weights.

Then, the wheel torques (control actuations) are obtained and applied to the vehicle, and

the yaw rate and lateral velocity of the vehicle under these torques are captured. The

67



After tuning

Vehicle’s state

Neighborhood

Figure 3.15: Tuning the weights from default values with respect to the vehicle’s state
datapoint and its neighborhood; the orange point represents the vehicle’s state within its
hypothetical neighborhood, ϵX , before tuning. As there is no point in this neighborhood,
the default weights,wdef

r , wdef
β are selected. The blue point represents the previous vehicle’s

state after its corresponding weights are tuned. The default weights are considered as the
previous weights, the tuned weights are intended to be tested in the future similar condition,
and it is labeled by L = 0 in the weight authentication dataset, Dwa.

ĒWtun is calculated by Eq. (3.44), and is compared with ĒWpre which was obtained in the

previous test. Later, the weight authentication criterion is calculated by Eq. (3.45), and a

label is assigned to the vehicle’s state. This process is illustrated in Figure 3.16
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Vehicle state: 
Tuned weights are authenticated

Tuned weights are rejected

Figure 3.16: The process of authenticating the weights after a new test; The orange point
represents the new vehicle’s state within its hypothetical neighborhood, ϵX , after tuning.
The blue point represents the previous vehicle’s state in the neighborhood of the new
state after its corresponding weight are tuned. The default weights are considered as the
previous weights, the tuned weights are tested in this new condition. The labels are assigned
according to the value of CWtres . Green points represent the authenticated weights, and
red points show the rejected or unauthenticated points.
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3.6 Weight Authentication Simulations

The effectiveness of the proposed weight authentication technique is evaluated through the

following simulations. The first series of simulations include 4 consecutive DLC maneuver

with the vehicle and MPC controller parameters provided in Tables 3.1 and 3.2, steering

wheel angle input shown in Figure 3.7, and road friction µ = 0.8. During the first maneuver,

the MPC default weights are selected which remain fixed until the end of the maneuver.

Tracking error weights are tuned three times such that after each tuning, a new simulation

run is performed without the weights being authenticated.

Figure 3.17 depicts the yaw rate, sideslip angle, and real-time selected tracking error

weights. The tracking error of the vehicle’s yaw rate and sideslip angle are shown in Figure

3.18. Similar to the results illustrated in section 3.4, the RMSE of the yaw rate and

sideslip angle tracking decreases after each round of weight tuning. However, without

weight authentication, the weight values may become too large or small without having a

considerable effect in the controller’s performance. It can be noticed in Figure 3.17 that

weight values become increased up to 500% after the third round of tuning, but yaw rate

and sideslip angle results are approximately identical to those in the previous run.

The RMSE of the yaw rate tracking after the second and third weight tunings are very

close, as shown in 3.18. This is also true for the sideslip angle tracking errors. Moreover, at

some time steps after the third tuning, the amount of generated wheel torque is increased

by more than 100% without having a discernible effect on the vehicle response (See Figure

3.19). It is intended to prevent such ineffective changes in the weight values and control

actions to make the weight tuning more efficient.
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Figure 3.17: Responses of the vehicle in terms of yaw rate and sideslip angle, and the
weights wr, wβ selected in real-time when MPC controller is tuned without weight authen-
tication.

71



0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

e
r r(d

e
g

/s
)

Before tuning;      RMS = 6.9258

After 1st tuning;    RMS =5.1113

After 2nd tuning;   RMS = 3.3539

After 3rd tuning;   RMS = 2.7081

0 1 2 3 4 5 6 7 8 9 10

Time (sec)

-5

0

5

10

e
r

 (
d

e
g

)

Before tuning;      RMS = 2.5749

After 1st tuning;    RMS = 2.1645

After 2nd tuning;   RMS = 1.7246

After 3rd tuning;   RMS = 1.5377

Figure 3.18: Tracking errors of the yaw rate and sideslip angle of the vehicle; MPC con-
troller is tuned without weight authentication.
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Figure 3.19: Front left and front right wheel torques generated by the MPC controller that
becomes tuned without weight authentication.
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The next series of simulations are carried out under the same conditions for the vehicle,

with the exception that the weights are authenticated at the end of each simulation. As

depicted in Figures 3.20 and 3.21, the ineffective sharp changes in the weight values are no

longer noticed. It implies that during the weight authentication, the tuned weights are only

accepted if they have considerably improved the MPC controller’s tracking performance

for the corresponding vehicle state. Following the third repetition of weight tuning, it can

be observed that the weights remain identical to their previous values, except for a few

time steps.
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Figure 3.20: Responses of the vehicle in terms of yaw rate and sideslip angle, and the
weights wr, wβ selected in real-time when MPC controller is tuned with weight authenti-
cation.
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Figure 3.21: Tracking errors of the yaw rate and sideslip angle of the vehicle; MPC con-
troller is tuned with weight authentication.

Similar behavior can be noticed in the generated wheel torques (See Figure 3.22).The

majority of the time during the maneuver, the wheel torques do not reach the ineffective

peak values observed in the last simulations (Figure 3.19) which makes the controller

operate more efficiently. Therefore, the proposed weight authentication method has been

effective in avoiding large unnecessary changes in the MPC controller’s weights as well as

optimizing the generated control action.
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Figure 3.22: Front left and front right wheel torques generated by the MPC controller that
becomes tuned with weight authentication.
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Chapter 4

Multiple Model MPC Weight Tuning

As discussed in Chapter 3, the weight tuning is performed based on the vehicle model’s

predictions. Therefore, the accuracy of the predictions can directly impact the tuning

process. For instance, if the model predicts that the yaw rate and sideslip angle of the

vehicle remain close enough to their desired values, the MPC weights do not change.

However, this prediction may not be accurate enough, and the yaw rate error becomes

very large through the experiments. In another case, the vehicle model may predict a

worsened yaw rate and sideslip angle tracking if the MPC weights remain unchanged, and

the weights get increased or decreased in accordance with the prediction. Nevertheless,

during the test, the change of weights might not cause any error improvement, or even

deteriorate the results. Inaccuracies in predicted values may result in other challenges.

Therefore, improving the model prediction improves the weight tuning.

The main reason for inaccuracies in the model prediction is the existence of uncertainties

in some of the vehicle model parameters. For instance, the vehicle mass changes by the

number of passengers, the road friction depends on the wear status of the tire and the road

condition (could be slippery or dry), and all of these variations affect the response of the

vehicle. Therefore, the prediction model must capture these parameter variations. Instead

of a using a single model with fixed parameters, a multiple model approach [111,112] can

be considered for the MPC control and weight tuning processes. By using the multiple-

model approach, the difference between the predicted and actual responses of the system
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is monitored. Then, the model or a combination of models with the least prediction error

will be employed to improve the predictions which, in turn, will improve the weight tuning.

Two distinct approaches to multiple-model control exist: switching-based multiple-model

control and blending-based multiple-model control. The following section will delve into

the specifics of each approach.

4.1 Switching-Based Multiple-Model Control

The general architecture of a switching-based multiple model approach is illustrated in

Figure 4.1. Similar to Eq. (2.14), the linearized real MIMO system is expressed in the

form of:
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Figure 4.1: The switching based multiple-model diagram. The model with the minimum
value of state variable error is selected to be used in the model-based controller.
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ẋp (t) = Apxp (t) +Bpu (t) +Dp (4.1)

where Ap, Bp, and Dp represent the plant matrices at each time step after linearization;

xp(t) is the vector of real states of the system; and u (t) represents the vector of control

actuation inputs. In the switching based multiple-model approach, there are N number of

fixed models, each with its own system matrices that can be written as:

ẋi (t) = Aixi (t) +Biu (t) +Di,

xi (t0) = xi(t0), i = 1, 2, . . . , N

(4.2)

where Ai, Bi, and Di are the system matrices associated with each model. Each of these

matrices are formed based on a set of fixed parameters in the plant model. For instance,

if there are 3 uncertain parameters in the model of the plant, and for each of these pa-

rameters, 2 different but fixed values are considered, then there are N = 6 number of

models with their corresponding system matrices. The number, N , of these models are

determined according to the level of uncertainties in the system’s parameters, the total

variation that can be considered for the uncertain parameters, and the amount of accuracy

that is intended in the predicted values. The exact same control actuation input is entered

to each prediction model, and the state error of each model is obtained as:

Eri (t) = xp (t)− xi (t) (4.3)

A cost function should be defined to compare the outputs of the models at each time

step. In case of discretized prediction models, the cost function Ji(t) can be defined as a

function of prediction errors Eri(t) in a predefined sequence of passed time steps:

Ji (t) =
l∑

i=0

∥∥Eri (t− i.ts)∥∥ (4.4)

where l is the number of preceding time steps from which the prediction error is included

in the cost function, and ts is the sampling time. The cost function Ji (t) in Eq. (4.4) is

calculated for each model in real-time. These values are then compared and the model with

the minimum Ji (t) is selected as the most accurate model to be utilized in the controller.
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The selection of the best model can be done by defining an index signal as:

ψi (t) = arg min
i∈{1,2,...,3}

Ji (t) , ψi (t) ∈ {1, 2, . . . , N} . (4.5)

At each time step, if the selected best model is close enough to the real plant, then

the model-based controller can perform based on the most accurate prediction model.

Otherwise, there is still a considerable amount of prediction error. To ensure that there

is at least one model with sufficient accuracy (close enough to the actual plant) within

the range of operation of the system, it is essential to distribute the N prediction models

correctly.

As mentioned earlier, the Ai, Bi, and Di matrices of each prediction model are formed

based on a set of fixed parameters. Each of these uncertain parameters has a maximum

and a minimum value, and the prediction model matrices are distributed according to these

ranges. If the selected parameters for the fixed models are very far from each other, the

predictions may not be accurate enough in some instances. In contrast, if the selected

parameters are very close to each other, the number of fixed models will be very large

making the switching based multiple model control inefficient in terms of calculation time.

4.2 Blending-Based Multiple-Model Control

The application of a switching-based multiple-model approach may pose some challenges.

First, the number of prediction models increases exponentially when the number of uncer-

tain parameters is increased. This undesirable growth in the number of models N is due to

the fact that at each time step, there must be at least one model which is close enough to

the actual plant [124]. Additionally, only the best model which has the minimum value of

the cost function Ji(t) contributes to the prediction of the states. Although the prediction

error obtained by other models can give some information to come up with a more accurate

model, the switching based approach neglects all of them.

To use the data obtained from all of the models, [111, 112] has developed a blending-

based multiple model approach that instead of selecting only one of the prediction models,
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a weighted combination of them based on their prediction errors is utilized. In this section,

the proposed blending based approach is applied to a linearized MIMO system for the

purpose of this thesis.

Similar to Eq. (4.1), the state space equation of an uncertain linearized MIMO system

can be written as:

ẋp (t) = Ap (η)xp (t) +Bp (η)u (t) +Dp (η) (4.6)

where Ap (η), Bp (η), and Dp (η) are the linearized matrices of the plant expressed as a

function of the vector of uncertain parameters of the system η, xp(t) is the vector of real

system states, and u(t) denotes the control actuation inputs of the system. The following

assumption is considered to be able to utilize the blending based approach:

Assumption 4.1 There exist N number of linearized matrices of the plant Ai, Bi, and Di

such that for any value of the vector of uncertain parameters η:[
Ap (η) Bp (η) Dp (η)

]
∈ Co

{[
Ai Bi Di

]
: i = 1, 2, . . . , N

}
, (4.7)

where Co {.} expresses the convex hull of a set of matrices. We can consider a fixed model

for each set of uncertain parameters as:

ẋi (t) = Aixi (t) +Biu (t) +Di (4.8)

According to the convexity property expressed in Assumption 4.1, Eq. (4.7) can be rewrit-

ten as:

Ap (η)xp (t) +Bp (η)u (t) +Dp(η) =
N∑
i=1

wi (t)
[
Aixp (t) +Biu (t) +Di

]
, (4.9)

where wi(t) denotes the weights of model i at each time step t, and satisfies the following

condition:
N∑
i=1

wi (t) = 1, wi (t) ≥ 1 (4.10)
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There are N number of weights wi corresponding to N system matrices Ai, Bi, and Di

at each time step, and it is intended to obtain the weights based on the actual response

of the system. Therefore, the plant matrices Ap (η) , Bp(η), and Dp (η) are a weighted

summation of the N models’ matrices.

4.2.1 Obtaining the Vector of Weights

For the purpose of this thesis, the discretized form of Eq. (4.6) is considered:

xp(k + 1) = Ad
p(η)xp(k) +Bd

p(η)u(k) +Dd
p(η), (4.11)

where Ad
p(η), B

d
p(η), and Dd

p(η) denote the plant matrices of the discretized state space

equation of the system as a function of the vector of uncertain parameters η. Eq. (4.11)

can be rewritten in the parametric form as:

xp (k + 1) = Θp (η) Φ (k) (4.12)

where

Θp (η) =
[
Ad

p(η) Bd
p(η) Dd

p(η)
]

Φ (k) =


xp(k)

u(k)

1


(4.13)

The N number of discretized fixed models at each time step are represented in the para-

metric form as:
xi (k + 1) = ΘiΦ (k) , i = 1, 2, . . . , N,

Θi =
[
Ad

i Bd
i Dd

i

] (4.14)

The state prediction errors for the N prediction models can be defined as:

εi (k) = xp (k + 1)−ΘiΦ (k) , i = 1, 2, . . . , N, (4.15)
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The following equations can be derived from Eq. (4.9) based on the error definition in Eq.

(4.15):

Θp(k) =
N∑
i=1

wi(k)Θi,

N∑
i=1

wi(k)εi(k) = 0,

(4.16)

These relations can be rewritten as:

E(k)W (k) = 0

E(k) =
[
ε1(k) ε2(k) . . . εN(k)

]
W (k) =

[
w1(k) w2(k) . . . wN(k)

]T (4.17)

Using Eq. (4.10), the weight of the last model is calculated as:

wN(k) = 1−
N−1∑
i=1

wi(k). (4.18)

Therefore, by substituting Eq. (4.18) in Eq. (4.17), the following relations are derived:

E ′(k) =
[
ε1(k)− εN(k) ε2(k)− εN(k) . . . εN−1(k)− εN(k)

]
W ′(k) =

[
w1(k) w2(k) . . . wN−1(k)

]T
E ′(k)W ′(k) = −εN(k)

(4.19)

It is intended to calculate the elements of W (k) at each time step k to obtain an

estimation of Θp(k) using Eq. (4.16). According to the relations in Eq. (4.19), the

elements of W ′(k) vector can be computed as a function of prediction errors εi. In the case
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of E ′(k) in Eq. (4.19) being full-rank, W ′(k) is computed as:

W ′(k) =


[
E ′T (t)E ′(t)

]−1
E ′T (t)εN(t) n ≥ N − 1

−E ′T (t)
[
E ′(t)E ′T (t)

]−1
εN(t) n < N − 1

(4.20)

and satisfies:

E ′TE ′(k)W ′(k) + E ′T + εN(k) = 0 (4.21)

The convexity property described in Assumption 4.1, and the blending model based control

approach are illustrated respectively in Figures 4.2 and 4.3.

Convex Hull

Figure 4.2: Graphical illustration of the convex hull formed by the N models, and contri-
bution of each model to the estimation of the plant model.
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Figure 4.3: The Blending Based multiple-model diagram. The models’ matrices are
weighted based on their prediction errors and blended.

4.3 Blending-Based Multiple-Model MPC for Vehicle

Lateral Stability

In this section, the blending based multiple model approach presented in section 4.2 is

applied to the vehicle prediction model described in section 2.5 to be used in the MPC

controller presented in section 2.9 to control the vehicle lateral stability. The equations of

the lateral dynamics of the vehicle (Eqs. 2.4 and 2.5) can be rewritten as:

β̇ = −r + 1

ηmmu
(Fyf cos (δ) + Fxf sin (δ) + Fyr) (4.22)

ṙ =
1

Iz
(lfFyf cos (δ)− lrFyr + lfFxf sin (δ) +MDY ) (4.23)

where ηm is the uncertainty variable associated with the vehicle’s mass that captures the

changes in the mass; Fyf and Fyr are respectively the uncertain front and rear lateral forces
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caluculated by reforming the Eq. (2.6) as:

Fy(η) =

−ηcCα tanα + (ηcCα)2

3ξηµµFz
|tanα| tanα− (ηcCα)3

27ξ2(ηµµ)2F 2
z
tan3 α |α| < αsl

−ξηµµFz sign α |α| ≥ αsl

αsl = arctan
3ξηµµFz

ηcCα

,

(4.24)

where ηc denotes the uncertainty in the tire’s cornering stiffness, and ηµ specifies the road

friction coefficient uncertainty.

After obtaining each tire’s lateral force Fyi(η) by using Eq. (4.24), C̄αi
and C̄Qi

are

computed by Eqs. (2.11) and (2.13), respectively as:

C̄αi
(η) =

∂Fyi(η)

∂αi

|ᾱi,ξ̄i ,

C̄Qi
(η) =

[
∂Fyi(η)

∂ξi

∂ξi
∂Fxi

∂Fxi

∂Qi

]
ᾱi,ξ̄i

(4.25)

Then, the linearized state-space form of Eqs. (4.22) and (4.23) is expressed as:

ẋp (t) = Ap (η)xp (t) +Bp (η)u (t) +Dp (η) (4.26)

where η =


ηm

ηc

ηµ

 denotes the vector of uncertain parameters; xp(t) =

β
r

 is the vector

of vehicle’s system states; u(t) =

 Qf

MDY

 represents the system inputs including the

total front torque, Qf and corrective direct yaw moment, MDY generated by the torque

vectoring; Ap(η), Bp(η), and Dp(η) are the uncertain matrices of the plant that can be

computed as:
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Ap(η) =


C̄αf

(η) cos δ+C̄αr (η)

ηmmu

lf C̄αf
(η) cos δ−lrC̄αr (η)

ηmmu2 − 1

lf C̄αf
(η) cos δ−lrC̄αr (η)

Iz

l2f C̄αf
(η) cos δ+l2rC̄αr (η)

Izu

 (4.27)

Bp(η) =


C̄Qf

(η) cos δ−C̄Qr (η)

ηmmu
+ sin δ

ηmmuRe
0

lf C̄Qf
(η) cos δ+lrC̄Qr (η)

Iz
+

lf sin δ

IzRe

1
Iz



Dp(η) =


F̄yf (η) cos δ+F̄yr(η)−C̄αf

(η)ᾱf cos δ−C̄αr (η)ᾱr−C̄Qf
(η)Q̄f cos δ−C̄Qr (η)Q̄r−C̄αf

(η)δ cos δ

ηmmu

lf F̄yf (η) cos δ−lrF̄yr(η)−lf C̄αf
(η)ᾱf cos δ+lrC̄αr (η)ᾱr−lf C̄Qf

(η)Q̄f cos δ+lrC̄Qr (η)Q̄r−lf C̄αf
(η)δ cos δ

Iz


The elements of uncertain parameters in η are assumed to lie within the following ranges:

ηm,min ≤ ηm ≤ ηm,max, ηc,min ≤ ηc ≤ ηc,max, ηµ,min ≤ ηµ ≤ ηµ,max (4.28)

The zero-order hold (ZOH) method is used to discretize the continuous-time model of Eqs.

(4.26) and (4.27) as:

xp(k + 1) = Ad
p(η)xp(k) +Bd

p(η)u(k) +Dd
p(η),

Ad
p(η) = eA

d
p(η)ts , Bd

p(η) = eB
d
p(η)ts , Dd

p(η) = eD
d
p(η)ts

(4.29)

where Ad
p(η), B

d
p(η), and D

d
p(η) indicate the plant matrices of the discretized state space

equation of the system with the sampling time, ts, and as a function of the vector of

uncertain parameters η. According to the Assumption 4.1, it is essential to construct N

number of fixed models (Ad
i , B

d
i , and Dd

i ) using Eqs. (4.27) and (4.29) by considering
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uncertain parameters limits (Eq. (4.28)) such that:[
Ad

p (η) Bd
p (η) Dd

p (η)
]
∈ Co

{[
Ad

i Bd
i Dd

i

]
: i = 1, 2, . . . , N

}
(4.30)

Using the parametric form of Eq. (4.15), the vehicle’s state prediction errors are expressed

as:

εi (k) = xp (k + 1)−ΘiΦ (k) , i = 1, 2, . . . , N, (4.31)

where

Θi =
[
Ad

i Bd
i Dd

i

]

Φ(k) =


β

r

u(k)

1


(4.32)

Thus, weights wi(k) associated with each model can be obtained using Eqs. (4.17)-(4.20).

In section (2.9), the MPC controller used to control the vehicle lateral stability was

discussed. It was assumed that discretized plant matrices (Ap, Bp, and Dp) are formed

based on fixed parameters of m, µ, and Cα. Now, instead of fixed plant matrices, the

weighted combination of the matrices of N models (Ad
i , B

d
i , and Dd

i ) in Eq. (4.30) are

utilized for the MPC controller with the same control objective and constraints. The

discretized uncertain plant model (Eq. 4.29) is considered with respect to the actuator

and state constraints provided in Eq. (2.36).

Based on the bounds of uncertain parameters in (4.28), matrices of the N models

Θi =
[
Ad

i Bd
i Dd

i

]
are determined at each time step k. Then, the weighting vector

W (k) is obtained by using the vehicle’s state prediction errors calculated for each model

in Eq. (4.31) and the relations provided in Eqs. (4.17)-(4.20). After that, the estimated
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discretized plant matrices are obtained as:

Âd
p =

N∑
i=1

wiA
d
i B̂

d
p =

N∑
i=1

wiB
d
i D̂

d
p =

N∑
i=1

wiD
d
i (4.33)

At each time step, Âd
p, B̂

d
p , and B̂d

p are used as the matrices of the vehicle prediction

model for the MPC controller. Figure (4.4) illustrates this blending based multiple-model

predictive controller.
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Figure 4.4: The blending based multiple-model predictive control for vehicle lateral stabil-
ity.

4.4 Multiple-Model-Based Weight Tuning

The developed MPC controller weight tuning and weight selection method has been dis-

cussed and used to control the vehicle’s lateral stability in Chapter 3. As previously

mentioned, the weight tuning is performed based on the actual response of the system and

state predictions made by the vehicle’s predictions model. The single prediction model
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utilized in the weight tuning module can be substituted by the estimated multiple model

plant matrices Âd
p, B̂

d
p , and B̂

d
p in Eq. (4.33).

4.5 Simulations

In this section, the proposed multiple model approach is evaluated through MATLAB/Simulink

and CarSim co-simulations. The parameters of the vehicle, and MPC controller are re-

spectively provided in Tables 3.1 and 3.2. The number of models, N , as well as the bounds

of uncertain parameters in η are provided in Table 4.1. The simulations in this section

consider DLC maneuvers with the steering wheel angle input shown in Figure 4.5.

Table 4.1: Parameters of the multiple prediction model.

Parameter Value Description

N 8 Number of models

ηm,min 0.8 Mass uncertainty lower bound

ηm,max 1.2 Mass uncertainty upper bound

ηc,min 0.5 Cornering stiffness uncertainty lower bound

ηc,max 1.3 Cornering stiffness uncertainty upper bound

ηµ,min 0.2 Road friction coefficient uncertainty lower bound

ηµ,max 1.2 Road friction coefficient uncertainty upper bound

Two initial simulation runs are performed on a dry road with µ = 0.8 and initial

longitudinal speed of u0 = 70 kph to evaluate the prediction accuracy of the MPC controller

vehicle model. Figure 4.6 demonstrates the differences between the predictions made by

the vehicle’s single (nominal) model and multiple model, and compares them with the

actual response of the vehicle. The predicted yaw rate and sideslip angle by the multiple

model are more precise than those predicted by the single nominal model. It is because

the multiple model method uses the prediction error obtained from a variety of models

with different parameters and weights them according to their accuracy. In this case,
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Figure 4.5: Steering wheel angle input.

the multiple model approach has improved the RMSE of the yaw rate and sideslip angle

predictions by about 40% and 42%, respectively.

In the next step, the simulation cases discussed in sections 3.6 and 3.4 are repeated with

the designed multiple model MPC controller weight tuning technique. Figure 4.7 compares

the vehicle responses along with the selected MPC weight wr, wβ when single model and

multiple model methods are applied, and vehicle is on a dry road. The yaw rate becomes

closer to the desired value, and sideslip angle decreases when the nominal prediction model

is replaced by the multiple model. The RMSE of the tracking is improved by 20% and

13%, respectively for the yaw rate and sideslip angle (Fig. 4.8).

As illustrated in the two bottom graphs in Figure 4.7, the variation of MPC weights

tuned by the multiple model is smoother than that by the single model. Furthermore,

multiple model tuned weights are slightly larger than those tuned by the single model,

which is resulted by the fact that multiple model can better predict the future state of the

vehicle, hence adjust the controller weights quicker. This has also affected the generated

front wheel torques as depicted in Figure 4.9. At some time steps, the wheel torque values

are slightly larger when controller is tuned with the multiple model, resulted by a more

precise state prediction and better adjusted MPC weights wr, wβ.
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Figure 4.6: Comparison of the yaw rate and sideslip angle predictions made by the nominal
model and multiple model. Green curve shows the actual response of the vehicle; Pink and
blue lines indicate the predicted response by the nominal and multiple model, respectively.
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Figure 4.7: Responses of the vehicle in terms of yaw rate and sideslip angle, and the
weights wr, wβ selected in real-time after the MPC is tuned with single and multiple
model approaches; Vehicle is on a dry road.
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Figure 4.8: Tracking errors of yaw rate and sideslip angle after the MPC is tuned with
single and multiple model approaches; Vehicle is on a dry road.
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Figure 4.9: Comparison of the generated front wheel torques when MPC is tuned with the
single and multiple model approaches; Vehicle is on a dry road.
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The road condition changes from dry to slippery with µ = 0.6, and the following set

of simulations are performed. To have a better insight in the capability of the proposed

multiple model method, one simulation run of weight tuning is carried out when single

(nominal) model is used; then, one run of multiple model weight tuning is preformed, and

final results are compared (Fig. 4.10). As the road is slightly slippery, the deviation of the

yaw rate from its desired value in the middle of the DLC maneuver is considerable when

fixed weights are set in the objective function of the MPC controller. Additionally, the

sideslip angle reaches a peak value of more than 10 degrees. Therefore, the default weights

cannot maintain the stability of the vehicle.

The RMSE of the yaw rate and sideslip angle tracking are respectively improved by

about 26% and 20%, when nominal model is replaced with the multiple model(Fig. 4.11).

Hence, even one run of multiple model weight tuning performs better than the MPC

tuning by means of the fixed nominal model. The fluctuations in the weights are less when

tuned by the multiple model than those tuned by the single model. As a result of the

aforementioned improvement, the generated wheel torques have been adjusted such that

sufficient amount of torque is acted on each wheel to satisfy the control objective (Fig.

(4.12)).
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Figure 4.10: Responses of the vehicle in terms of yaw rate and sideslip angle, and the
weights wr, wβ selected in real-time after the MPC is tuned with single and multiple
model approaches; Vehicle is on a slippery road.
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Figure 4.11: Tracking errors of yaw rate and sideslip angle after the MPC is tuned with
single and multiple model approaches; Vehicle is on a slippery road.
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Figure 4.12: Comparison of the generated front wheel torques when MPC is tuned with
the single and multiple model approaches; Vehicle is on a slippery road.
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Chapter 5

Experimental Studies

In this chapter, the proposed MPC controller weight tuning is evaluated through two main

series of experimental tests. An all-wheel drive (AWD) Chevrolet Equinox EV (Figure

5.1) with the parameters provided in Table 5.1 is employed for the experiments. The

maintenance, customization, and operation of this test EV are carried out by the highly

skilled technicians at the ”Mechatronic Vehicle Systems Laboratory” [125] from which the

vehicle’s specifications are sourced. The vehicle is equipped with four electric motors,

with one of these motors installed on each corner of the vehicle. Figure 5.2 illustrates the

Figure 5.1: The Chevrolet Equinox EV utilized in the experimental tests.

97



Table 5.1: Parameters of the Chevrolet Equinox EV.

Parameter Unit Value Description

m [kg] 2270 Vehicle mass

Lwb [m] 2085 Wheelbase

lf [m] 1.41 CG distance to front axle

lr [m] 1.44 CG distance to rear axle

HCG [m] 0.72 CG hight

Re [m] 0.35 Effective radius of the tires

Cαf [N/rad] 130000 Front tires cornering stiffness

Cαr [N/rad] 130000 Rear tires cornering stiffness

ls [m] 1.63 Front and rear track width

Iz [kg.m2] 4600 Vehicle yaw moment of inertia

schematic diagram of the main components utilized in the experiments. With the help of

a CAN bus network, the Micro-Autobox is able to interact with sensors and actuators on

the vehicle. The Micro-Autobox compiles the designed MPC controller with the weight

tuning module. As described in the previous chapters, the MATLAB/Simulink has been

Figure 5.2: The diagram of the setup for experimental tests.
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used for the implementation of this MPC controller with the parameters specified in Table

3.2. During the testing process, the Chevrolet Equinox utilizes a six-axis GPS system to

measure lateral and longitudinal velocities. The yaw rate of the vehicle is measured by the

inertial measurement unit (IMU) sensor. The requested drive torque is delivered to the

electric motors via the CAN bus. The actual torques applied to the wheels are measures

by using the wheel force transducer.

Two series of tests have been conducted on the test vehicle. In the first set of tests, the

vehicle undergoes DLC maneuvers on a dry road, while in the second set, the road is wet.

For the initial test under each road condition, the tracking error weights in the objective

function of the MPC controller are the default weights that remain constant until the end

of the maneuver. Then, these weights are tuned by using the single model and multiple

model weight tuning methods and set in the MPC controller in real-time. Finally, the

results are compared and discussed.

5.1 MPC Weight Tuning on a Dry road

The first series of tests are conducted on a dry road. The steering wheel angle is under

the control of a manual driver which tries to generate the same DLC steering inputs. Nev-

ertheless, there are always some differences in the steering inputs in the trials. Therefore,

the graph of steering wheel angle inputs of the driver for three different tests are separately

shown in Figure 5.3 to avoid confusion. The top, middle, and bottom graphs present the

driver inputs respectively for the test with constant MPC weights, MPC weights tuned

with the nominal model, and MPC weights tuned with the multiple model. During the

Maneuver, the vehicle is driven off-throttle, and the average longitudinal speed is about

u0 = 70kph. In all of the experiments, the weight tuning (either by the nominal model

or multiple model approach) is repeated twice. At the end of the final test, the yaw rate,

sideslip angle, front wheels torques, and real-time selected MPC controller weights are

demonstrated and discussed.

Figure 5.4 compares the vehicle’s yaw rate results with the corresponding desired values.

When fixed default MPC weights are used, the deviation of the yaw rate from the desired
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Figure 5.3: Steering wheel angle input of the manual driver on a dry road; top figure:
default weights are selected; middle figure: weights are tuned by the nominal prediction
model; bottom figure: weights are tuned by the multiple model method.

values is considerable; particularly after t = 1.5 sec when the first lane change is about

to finish until the end of second lane change. By tuning the MPC controller weights by

the nominal model, the RMSE of yaw rate tracking is decreased by about 17%, while

by using multiple model, it is reduced by 42%. As depicted in Figure 5.4, the desired

yaw rate is better followed by the MPC controller tuned with the multiple model method.

Similar improvement can be noticed in the sideslip angle results (Figure 5.5). The vehicle’s

sideslip angle exceeds 8 degrees during the second lane change when default weights are

used. Single model and multiple model weight tuning can respectively improve the RMSE

of the sideslip angle tracking by about 18% and 32%.

Figure 5.6 demonstrates the changes in the torques generated by the MPCs with three
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Figure 5.4: Yaw rate responses of the vehicle during the experimental tests on a dry road;
the yaw rate results are compared with the desired values when MPC weights are fixed,
tuned with the nominal model, and tuned with multiple model.

different weight tuning strategies. The weights selected in real-time under each approach

are displayed in Figure 5.7. By examining yaw rate, side slip angle, and weight results

(Figures 5.4-5.7), it is apparent that weight changes have resulted in decreasing yaw rates

and side slip angle tracking errors. Moreover, the weights that have been tuned by the

multiple model approach resulted in better controller performance. Since the multiple

model method yields a higher prediction accuracy, the tuned weights make the vehicle

more controllable. The proposed weight tuning approach has improved the performance

of the MPC controller significantly and the multiple model approach has further enhanced
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Figure 5.5: Sideslip angle responses of the vehicle during the experimental tests on a dry
road; the results are compared when MPC weights are fixed, tuned with the nominal model,
and tuned with multiple model.

the controller effectiveness.
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Figure 5.6: Generated front wheel torques during the experimental tests on a dry road;
the results are compared when MPC weights are fixed, tuned with the nominal model, and
tuned with multiple model.
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Figure 5.7: Real-time selected weights wr, wβ during the experimental tests on a dry road;
the results are compared when MPC weights are fixed, tuned with the nominal model, and
tuned with multiple model.

5.2 MPC Weight Tuning on a Wet road

For the next set of experiments, a wet road is used to evaluate the functionality of the

proposed weight tuning approach on a slippery road condition. The road friction coefficient

is approximately µ = 0.5. Prior to commencing the primary experiments on the wet road,

preliminary DLC tests were conducted at a vehicle speed of u0 = 70kph. It was observed

that the tires became completely saturated at an early stage, and that weight tuning had a

minimal impact on enhancing the performance of the controller. Hence, it was determined
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that lowering the vehicle’s average longitudinal speed to u0 = 60kph would facilitate a

more thorough assessment of the efficacy of the proposed weight tuning method under wet

road conditions. The steering wheel angle is manually controlled by the driver as shown

in Figure 5.8. Due to the slippery condition of the road, the inputs from the driver may

differ on wet and dry roads (compare with Fig. 5.3).
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Figure 5.8: Steering wheel angle input of the manual driver on a wet road; top figure:
default weights are selected; middle figure: weights are tuned by the nominal prediction
model; bottom figure: weights are tuned by the multiple model method.

Similar to the previous tests described in section 5.1, the initial test is performed by the

MPC controller with fixed default weights which is followed by weight tuning. As depicted

in Figure 5.9, before weight tuning, the yaw rate of the vehicle deviates considerably from
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the desired value during the second turning. The sideslip angle becomes larger than β = 9

degrees (Figure 5.10), which indicates an unstable condition of the vehicle. The single and

multiple model weight tuning methods improve the RMSE of yaw rate tracking by 29%

and 42%, respectively. Regarding the sideslip angle results, the single model weight tuning

reduces the RMSE by 12%, while the multiple model weight tuning is capable of decreasing

the RMSE by 40%. It is evident from the sideslip angle results that the multiple model

approach has dropped the peak value of β ≃ 9 degrees at t = 2.7 sec to β ≃ 5 degrees.
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Figure 5.9: Yaw rate responses of the vehicle during the experimental tests on a wet road;
the yaw rate results are compared with the desired values when MPC weights are fixed,
tuned with the nominal model, and tuned with multiple model.
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Figure 5.10: Sideslip angle responses of the vehicle during the experimental tests on a
wet road; the results are compared when MPC weights are fixed, tuned with the nominal
model, and tuned with multiple model.

Due to the change in weights and their corresponding wheel torques, the tracking

performance of the MPC controller is improved (Figures 5.11 and 5.12). It has been noted

previously that MPC weights directly affect torque generation and, as a result, controller

performance. In the initial tests where fixed set of default weights are used in MPC, large

tracking errors are noticed which indicate weak performance of MPC. The performance

of the controller has been improved slightly after single model weight tuning, but this

change has been less significant than the change observed after multiple model weight
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tuning. Moreover, the torque result of the former exhibits more fluctuations. Therefore,

multiple model weight tuning could better enhance the performance of MPC and decrease

the torque fluctuation.
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Figure 5.11: Generated front wheel torques during the experimental tests on a wet road;
the results are compared when MPC weights are fixed, tuned with the nominal model, and
tuned with multiple model.
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Figure 5.12: Real-time selected weights wr, wβ during the experimental tests on a wet road;
the results are compared when MPC weights are fixed, tuned with the nominal model, and
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, an MPC controller weight tuning as well as a real-time learning-based weight

selection approach was proposed to improve the tracking performance of MPC controllers.

The proposed approach was applied to an MPC controller designed to control the vehicle

lateral stability. A weight authentication technique was provided to evaluate the efficacy

of the tuned weight in controller’s performance. A multiple model MPC controller weight

tuning method was employed to address the inaccuracies of the nominal prediction model.

Following is a list of this thesis’s significant contributions and findings.

The prediction model of the vehicle contains lateral and yaw motions which utilized for

designing the MPC controller to control the lateral stability of the vehicle. It was discussed

that using fixed set of weight do not necessarily give the optimal controller performance.

Therefore, a weight tuning approach was developed for tuning the tracking error weights

of the MPC controller’s objective function. An error examination criterion was defined as

a function of tracking errors during a predefined time interval to determine whether the

weights currently used in the controller should be adjusted. The BO method was used to

obtain the optimum weights based on the predictions and error examination criterion. It

was explained that real-time selection of weights can improve the tracking performance of

the controller. Therefore, a learning-based weight selection using GPR was provided.
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The proposed weight tuning approach was evaluated through MATLAB/Simulink and

CarSim co-simulations. The vehicle underwent DLC maneuvers under different road con-

ditions. The tracking error results indicated the capability of the developed weight tuning

technique in improving the tracking performance of the MPC controller. After two rounds

of tuning, the RMSE of yaw rate and sideslip angle tracking were respectively decreased by

51% and 33% on a dry road. For a slippery road, the aforementioned errors were decreased

by 55% and 54%. It was clearly seen that tuning the weights and real-time selection of

them can considerably improve response of the vehicle system.

It was observed that in some vehicle states, adjusting the weights would not considerably

affect the response of the vehicle, even if the generated control action significantly changed.

It was understood that a weight authentication technique was required, and was proposed

to address this issue. A weight authentication criterion was defined to evaluate the adjusted

weights as a function of tracking errors in a predefined time interval. The simulations

demonstrated that ineffective sharp changes in the adjusted weights as well as the torque

spikes were eliminated with the weight authentication process.

From the simulation results, it was noticed that predictions made by the nominal model

were not always accurate enough to avoid ineffective weight changes, or sometimes effective

weight changes were missed during the weight tuning. It was discussed that instead of a

single prediction model, a multiple model prediction approach could address this issue.

Therefore, a multiple model MPC controller weight tuning method was proposed to min-

imize the inaccuracies observed in the state predictions of the nominal prediction model.

A weighted summation of different models formed by different parameter values was em-

ployed for the prediction purposes of the MPC control and weight tuning. The simulation

results demonstrated that the multiple model technique could reduce the yaw rate and

sideslip angle prediction errors by about 40% compared to the nominal model.

After performing multiple model weight tuning, it was shown that the MPC controller’s

tracking errors were decreased when nominal prediction model was replaced by the mul-

tiple model both on the dry and slippery road conditions. The results indicated that the

variations of MPC weights tuned by the multiple model was smoother than those tuned

by the single model. The simulations carried out under slippery road condition showed

that even one run of multiple model weight tuning performed better than one run of single
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model weight tuning.

The effectiveness of the proposed weight tuning approach was verified by conducting

two series of experiments. A Chevrolet Equinox EV was employed for DLC maneuvers

under dry and wet road conditions. The deviation of the yaw rate and sideslip angle from

the desired values were considerable when fixed default MPC weights were used on the

dry road. This deviation of the yaw rate was reduced by 17% and 42% after tuning the

weights respectively by the nominal and multiple model methods. Similar improvement

was noticed in the sideslip angle results due to the wheel torque adjustment after the

weight tuning process. Under harsh DLC maneuvers on a wet road, the multiple model

weight tuning could prevent the vehicle from becoming unstable. It can be concluded

that the proposed MPC controller weight tuning approach was capable of improving the

controller’s performance under various road conditions. The best performance was achieved

when multiple model technique was utilized due to its higher prediction accuracy.
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6.2 Future Work

The objective of this section is to provide some suggestions for further developing the study

conducted in this thesis, with the aim of improving the efficiency of the suggested method

for adjusting controller weights.

Other than tracking error weights, there are other weights in the objective function

of MPC controllers. The elements of weight matrices of control effort R, control action

proximity T , and slack variable Ws are considered constant in the proposed weight tuning

method. Additionally, the MPC controller has some parameters including sampling time ts

and prediction horizon length Np that are all predetermined based on some initial trial and

errors. The performance of the MPC controller can be improved further by including the

above weights and parameters in the tuning process based on the predicted or experienced

responses of the system.
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machine learning approach for tuning model predictive controllers,” in 2018 15th

International Conference on Control, Automation, Robotics and Vision (ICARCV).

IEEE, 2018, pp. 2003–2008.

[71] A. Mohammadi, H. Asadi, S. Mohamed, K. Nelson, and S. Nahavandi, “Multiob-

jective and interactive genetic algorithms for weight tuning of a model predictive

control-based motion cueing algorithm,” IEEE transactions on cybernetics, vol. 49,

no. 9, pp. 3471–3481, 2018.

[72] V. Ramasamy, R. K. Sidharthan, R. Kannan, and G. Muralidharan, “Optimal tun-

ing of model predictive controller weights using genetic algorithm with interactive

decision tree for industrial cement kiln process,” Processes, vol. 7, no. 12, p. 938,

2019.

[73] D. Gorni and A. Visioli, “Genetic algorithms based reference signal determination

for temperature control of residential buildings,” Applied Sciences, vol. 8, no. 11, p.

2129, 2018.

121



[74] J. Van der Lee, W. Svrcek, and B. Young, “A tuning algorithm for model predictive

controllers based on genetic algorithms and fuzzy decision making,” ISA transactions,

vol. 47, no. 1, pp. 53–59, 2008.

[75] C. Wongsathan and C. Sirima, “Application of ga to design lqr controller for an

inverted pendulum system,” in 2008 IEEE International Conference on Robotics

and Biomimetics. IEEE, 2009, pp. 951–954.

[76] M. Johnson and M. Grimble, “Recent trends in linear optimal quadratic multivariable

control system design,” in IEE proceedings D (control theory and applications), vol.

134, no. 1. IET, 1987, pp. 53–71.

[77] Y. Li, J. Liu, and Y. Wang, “Design approach of weighting matrices for lqr based on

multi-objective evolution algorithm,” in 2008 international conference on informa-

tion and automation. IEEE, 2008, pp. 1188–1192.

[78] M. R. Bonyadi and Z. Michalewicz, “Particle swarm optimization for single objective

continuous space problems: a review,” Evolutionary computation, vol. 25, no. 1, pp.

1–54, 2017.

[79] G. A. N. Júnior, M. A. Martins, and R. Kalid, “A pso-based optimal tuning strategy

for constrained multivariable predictive controllers with model uncertainty,” ISA

transactions, vol. 53, no. 2, pp. 560–567, 2014.

[80] M. Morari, “Design of resilient processing plants—iii: A general framework for the

assessment of dynamic resilience,” Chemical Engineering Science, vol. 38, no. 11, pp.

1881–1891, 1983.

[81] A. Thamallah, A. Sakly, and F. M’sahli, “Constrained multiobjective pso and ts

fuzzy models for predictive control,” Turkish Journal of Electrical Engineering and

Computer Sciences, vol. 26, no. 6, pp. 3239–3257, 2018.

[82] L. Feng, F. Yang, W. Zhang, and H. Tian, “Model predictive control of duplex inlet

and outlet ball mill system based on parameter adaptive particle swarm optimiza-

tion,” Mathematical Problems in Engineering, vol. 2019, 2019.

122



[83] P. Mc Namara, R. R. Negenborn, B. De Schutter, and G. Lightbody, “Weight optimi-

sation for iterative distributed model predictive control applied to power networks,”

Engineering Applications of Artificial Intelligence, vol. 26, no. 1, pp. 532–543, 2013.

[84] R. Suzuki, F. Kawai, C. Nakazawa, T. Matsui, and E. Aiyoshi, “Parameter optimiza-

tion of model predictive control by pso,” Electrical Engineering in Japan, vol. 178,

no. 1, pp. 40–49, 2012.

[85] S. Di Cairano and A. Bemporad, “Model predictive control tuning by controller

matching,” IEEE Transactions on Automatic Control, vol. 55, no. 1, pp. 185–190,

2009.

[86] M. Soliman, O. Malik, and D. T. Westwick, “Multiple model predictive control for

wind turbines with doubly fed induction generators,” IEEE Transactions on Sus-

tainable Energy, vol. 2, no. 3, pp. 215–225, 2011.

[87] P. Falcone, M. Tufo, F. Borrelli, J. Asgari, and H. E. Tseng, “A linear time varying

model predictive control approach to the integrated vehicle dynamics control problem

in autonomous systems,” in 2007 46th IEEE Conference on Decision and Control.

IEEE, 2007, pp. 2980–2985.

[88] K. Alexis, G. Nikolakopoulos, and A. Tzes, “Switching model predictive attitude

control for a quadrotor helicopter subject to atmospheric disturbances,” Control

Engineering Practice, vol. 19, no. 10, pp. 1195–1207, 2011.
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