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Abstract

Despite many studies in human motion analysis using optimal control theory to understand
how movement is generated, less attention is focused on the structure of the optimal
controller. The majority of existing studies assume that the person is using a feedforward
controller to accomplish the desired task. However, during perturbed motions a feedback
controller becomes active, and enables the person to react to unforeseen perturbations
and adapt their motions to the environment. As such, understanding controller structure
becomes important to analyze human motion more accurately. Three key contributions
will be elaborated in this thesis to enable analyzing the human feedforward and feedback
controller components.

The first key contribution is the formulation of an inverse optimization problem for
trajectories generated by feedforward-feedback controllers for nonlinear systems and feed-
back controllers for linear systems. We adapt the recovery matrix inverse optimal control
approach, originally developed for recovering the cost matrices from trajectories observed
under feedforward control, and apply it to analyze trajectories observed from systems con-
trolled in the feedback form plus additional feedforward term. This method also estimates
the feedback gain for linear systems where inverse linear quadratic regulator approaches
are dependent on the given feedback gain assumption. The perturbation in this study is
added as a zero mean Gaussian noise at the state output.

The second key contribution is an algorithm to decompose the controller components
for tracking problems. This algorithm uses Bellman optimality condition to form an op-
timization problem to detect whether the system was disturbed or not. We formulate
a constrained optimization problem to estimate the control signal. The identification of
controller components is made based on the estimated and the reference experimental tra-
jectories. The proposed approach is tested in simulation, where a perturbation is applied
on different nonlinear systems in a continuous form.

The third key contribution is to combine the first two contributions to analyze feed-
forward and feedback controller components of human movement. First, squat motion is
identified as a suitable motion for analyzing human perturbed motion and controller struc-
ture. We collected both unperturbed and perturbed squat motions for this study. The
perturbation is applied during a short time in a continuous form through a push stick.
Then the human body is modeled as a three degrees of freedom system, and the task is
modeled by an optimal control problem. By modifying the decomposition algorithm, the
trials are classified and the controller components are identified by the inverse optimal
control.
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Chapter 1

Introduction

Humans have a remarkable ability to adapt their motions to the environment and learn how
to react and predict unforeseen perturbations. The human central nervous system (CNS)
controls body motions and can generate reactive motion in the face of a disturbance. In
general, two categories of control models can be considered: open-loop control (feedfor-
ward) and closed-loop control (feedback) [178]. When we perform a task, the motor system
is thought to deploy both feedforward and feedback control [178]. The first category of
models focuses on open-loop control: If the CNS only relies on the learned information,
and does not adjust the commands in real-time [I21] then the motion is thought to be
controlled by a feedforward controller. This controller ignores the role of online sensory
feedback, and usually assumes deterministic dynamics. The second category of models
focuses on closed-loop control: The CNS can adjust the movement by feedback control
law to update the trajectory in the presence of noise, delays, internal fluctuations and
unpredictable changes in the environment. The CNS has to constantly update the motor
commands to correct for errors during conscious voluntary movements [178]. The sensory
information can be received from vision, proprioception, audition, the vestibular system
and internal models that can predict the motion [17].

To understand the control principle of natural movements, optimal control theory has
been applied to human motion analysis [62]. In optimal control theory it is hypoth-
esized that the CNS produces human motions that minimize certain task specific cost
functions. Identifying the control strategy being used by the central nervous system for
human movements has been widely studied for motions with feedforward controllers for
unperturbed conditions [16, 54,81, 133]. On the other hand, a few studies have focused
on analyzing the role of feedback controllers by adding either mechanical or visual distur-
bances [121, 173, 181].



Understanding the control principles is not limited to finding the underlying cost func-
tions, but also how the controllers are formed to perform a task. Therefore, in this thesis
we address the following questions:

e How can we estimate the underlying cost functions in human motions?

e [s it possible to identify the controller structure which produces the human motion
trajectory?

e If so, is it possible to separate out feedforward and feedback components?

The results can be used for applications such as physical therapy and sports medicine, as
a rehabilitative modality, and as an assessment tool. It also provides an abstracted repre-
sentation of the task [1410], with the ability to: (1) model and generate new trajectories,
(2) provide insight into why a given trajectory was selected, out of all possible trajectories,
and (3) generalize motions to other tasks.

1.1 Problem Formulation

When analyzing human motions using objective learning techniques, it is assumed that
the human is generating optimal trajectories according to the (unknown) objectives. As
illustrated in Figure 1.1, we start with a dynamical system —which may represent the human
in an environment — which evolves according to some function dependent on the current
system state and the control actions. The system dynamics are assumed to be deterministic
and are approximated by a function xpy1 = f(2g, u, dg) that maps the current state of
the system x;, € X C R™ and control action u;, € U C R™ at time k£ to a new state xp, 1,
with some disturbance d;. The agent can assess its current state x; and the control action
uy via the objective function J(zy, u).

The goal of the forward problem is to find a control policy 7 that optimizes the expected
cumulative return starting from an initial state xy. The policy 7 is a function that maps a
sequence of states and control actions (o, = { (%o, uo), - - -, (Tg, ux)} up to time k to a new
control action. The cumulative return is given by:

V(o) = Y (@, up)
k=0

where T is the duration of the trajectory. V™ (z) : X — R is also known as the state-value
function (or simply value function) under .
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Formally, when the objective function is known, it is hypothesized that the human
motion solves the following optimization problem:

min, V"™ (zy)
st wp1 = f(ok, ug, di,)
Ug = W(Cozk)
g(xr) <0,

(1.1)

If the initial state is known, it is represented as a constraint on the initial state of the
system. From Equation (1.1), we observe that policy learning algorithms aim to optimize
the objective function J(z,ux) with respect to the control actions wuyg, subject to the state
dynamics f(xy,ux,dy) and any additional constraints g(zy), and where the policy 7({o.x)
is the decision variable.

Given these key elements, we now introduce the objective learning problem, also known
as the inverse problem (i.e., inverse optimal control/inverse reinforcement learning). Given
an observed set of motions D = {¢Y, ..., ("N} sampled from the unknown control policy
of the human expert 7%, objective learnlng algorithms seek to find an objective function
J (x,u) such that any optimal trajectory C generated with respect to this function would
match in some way those provided by the expert. With 7 as the optimal control policy
learned from the candidate objective function J (x,u), we formally introduce the objective
learning problem as follows:

j((l}, U) = argmaXJ(a:,u) Z S<é7 C)? (12)

¢eD



where S (é‘ ,¢) corresponds to a similarity criterion used to guide the search for the expert’s
unknown objective function. We note that objective learning algorithms may also have
knowledge of the dynamics of the system.

1.2 Thesis Contributions

This thesis develops optimization-based methods that identify the underlying objective of
a given trajectory and analyze its structure. The three main contributions of this thesis
are:

e Controller identification through inverse optimal control

In the first study, we propose an algorithm based on recovery-matrix inverse op-
timal control [77] to infer the underlying controller. In this study, we adapt the
recovery matrix inverse optimal control approach, originally developed for recovering
the cost matrices from trajectories observed under feedforward control, and apply it
to trajectories observed from systems controlled in the feedback form, with an ad-
ditional feedforward term. This algorithm enables objective function recovery from
trajectories generated by controllers with both feedback and feedforward components.
Accurate cost function recovery is demonstrated via simulation examples with both
linear and nonlinear systems.

The proposed algorithm also estimates the controller gain for inverse linear quadratic
regulator problems. In previous inverse optimal control approaches for linear sys-
tems [29, 123, 154, 190], it is assumed that the feedback gain is known. Without this
assumption, the inverse linear quadratic regulator algorithms fail to provide the es-
timated weights for the underlying objective functions. Our algorithm removes the
assumption of knowing the feedback gain.

e Controller Decomposition Algorithm for Tracking Problems

In the second study, we present an approach to study the structure of controllers for
nonlinear systems which may or may not be subject to a disturbance. We address
whether the motion of nonlinear systems were generated by a feedforward controller
or a combination of feedforward and feedback controller. Specifically, we are in-
terested in understanding if the feedback is optimal or non-optimal. Our proposed
method is based on the value function and Bellman’s optimality condition. We for-
mulate a constrained optimization problem to estimate the control signal, and the



decision on the structure is made based on comparing the estimated and the refer-
ence experimental trajectories. We assume four structures as a reference to decide
about the controller. The performance of the algorithm is illustrated on an inverted
pendulum and a two-link leg model in simulation.

e Controller Analysis of Human Motion

In the third study, we adapt the approaches used in the first two studies to analyze
the controller components on a real human dataset. We first identify and select the
squat motion for the analysis. A simple experiment is designed and data is collected
from one participant to study the differences between motions where the feedback is
active or not. The activation of feedback is generated by perturbing the participant.

We present an algorithm to classify perturbed and unperturbed trials, and then
extract the information regarding the feedback and feedforward components through
inverse optimal control results. We model the squat motion and identify potential
objective functions to define the optimal control problem. This version of inverse
optimal control approach is applied for the first time for understanding the differences
between perturbed and unperturbed motions.

1.3 Thesis Outline

The rest of the thesis is organized as follows: Chapter 2 provides a summary of related works
on optimization techniques for forward and inverse problems. It also overviews the methods
used to analyze feedforward and feedback controllers in human motion analysis, and the
type of perturbations that have been applied for studying human motion in practice.

Chapter 3 formulates the inverse optimization problem for trajectories generated by
iterative linear quadratic regulators for nonlinear systems. The control policy in this type
of formulation has both feedforward and feedback components and is locally-optimal for
nonlinear systems. We show how to infer the underlying controller for this type of problem.

Chapter 4 proposes a decomposition algorithm using value function approximation. An
optimization problem is formulated using Bellman optimality conditions to estimate the
control signal. Assumptions are made on the structure of controllers in the feedforward and
feedback forms in order to test the idea in simulation. The performance of the algorithm
is shown on inverted pendulum and two-link leg model in simulation.

Chapter 5 modifies the algorithm proposed in chapter 4, and extends the idea to explain
human movement analysis in practice. We explain the analysis of feedforward and feedback



controllers for squat motion. We present the squat motion dataset collected for analyzing
the structure of controllers. This dataset includes both perturbed and unperturbed trials.
Then, the task is formulated through an optimal control problem, and the inverse optimal
control approach is explained for estimating the underlying objective functions. At the
end, the controller of the squat motion is analyzed by the proposed algorithm and the
feedforward and feedback components are identified.

Chapter 6 summarizes the results, and suggests possible extensions for future work.



Chapter 2

Related Works

In this Chapter we first overview the forward problem (Section 2.1) and inverse problem
(Section 2.2 ') that was defined in Section 1.1. Then, we provide a summary of studies
done on human perturbed motions in Section 2.3. Lastly, we talk about the core elements
needed for this thesis from the related work in Section 2.4.

2.1 Forward problem

In forward problems, the objective functions are known, and the goal is to find a control
policy by solving an optimal control problem. In general two types of controllers have been
studied for human motion analysis: feedforward controllers and feedback controllers. Bet-
ter feedforward control enables successful open-loop control during fast motions, whereas
the feedback controller is necessary to make online error corrections in the presence of
large internal fluctuations, noise, delays, and unpredictable changes in the environment.
Humans have a remarkable ability to adjust movements to novel tasks or environments.
When we perform a task, the motor system is thought to deploy both feedforward and
feedback control [38]. Currently, little is known about how the learning of these two mech-
anisms relate to each other [38]. Performing some tasks cannot be done with only the
feedback information from the sensory receptors [29]. A combination of both feedback and

!The text in this section is extracted from our survey paper “Objective Learning from Human Demon-
strations” [113] that was a collaboration with Jonathan Feng-Shun Lin, Pamela Carreno-Medrano, Maram
Sakr, and Dana Kulié¢.



feedforward processes is likely to be involved for most optimal movement control tasks. Es-
pecially in the context of adaptation to new tasks or new dynamical environments where
the motion might have been perturbed, feedback is needed.

2.1.1 Feedforward Controllers

In feedforward models, the central nervous system (CNS) only recalls the learned infor-
mation, and does not intelligently adjust the commands in real-time [121]. The majority
of existing optimality models in motor control have been formulated in feedforward and
assume deterministic dynamics. These models predict average movement trajectories or
muscle activity by optimizing cost functions that correspond to what the sensorimotor sys-
tem is trying to achieve [178]. For example, [59] studied the coordination of the human arm
by minimizing hand jerk subject to boundary constraints such as hand position, velocity,
and acceleration at the beginning and end of the movement. [118] studied maximum-height
jumping by formulating an optimal control problem which maximizes the height reached by
the center of mass of the body. The constraints include limitation on the magnitude of the
incoming neural control signal, body-segmental, musculotendon, and activation dynamics,
a zero vertical ground reaction force at lift-off. [185] formulates an optimal control problem
to study human stand-to-sit movement. The optimization criterion minimizes three kind
of energy costs, a center of gravity cost, and an input cost.

2.1.2 Feedback Controllers

To adjust the movement, the CNS needs sensory (feedback) information to update the
trajectory and has to constantly update the motor commands to correct for errors dur-
ing conscious voluntary movements [178] and reject unpredictable perturbations. The
sensory information can be received from vision, proprioception, audition, the vestibular
system and internal models that can predict the motion [17]. There exist some stud-
ies on understanding the role of feedback control on hand movement in the horizontal
plane [18, 118, 192], and hand reaching motion in the vertical plane [112]. From these
studies, it appears that both the feedforward and feedback controllers are responsible for
generating motions in our body, but the relative contributions of the two components are
not yet fully understood. An improved understanding of the relative importance of feed-
back and feedforward contributions could be helpful for understanding human movement.
For example, if the difference in the motions of novices and experts can be quantified in
terms of the difference in control methods, the stage of learning that a person has reached



can be identified, and a learner could be given proper guidance. By analyzing the motion
control of a person with a movement disorder, the movement disorder would be understood
correctly and a clue to treatment may be established [39].

Optimal feedback control theory can be used to work on feedback models. Optimal
feedback control on linear models such as linear quadratic Gaussian (LQG) have been
applied to linear models before [18,192]. These methods require a state-estimation process
to estimate the current state of the body. The models have assumed that there is either no
noise, or constant noise on the sensory inputs. [192] developed an optimal feedback control
framework based on Bellman equation in which the cost is comprised of accuracy and effort.
As the sensory input is state-dependent, the control policy is a combination of feedforward
and feedback commands. This work developed sensorimotor strategies to reduce the overall
cost. The optimal control model is able to reproduce the behavior of human arm reaching
motion in the horizontal plane. [18] studied the problem of coordination in human arm
reaching motion. The goal was to use optimal feedback control theory that predicts task
demands changes in feedback control, and the correlation of different effectors that work
together to achieve a goal.

For nonlinear systems, LQG methods cannot be used. [181] developed an iterative LQG
for locally optimal feedback control of nonlinear stochastic systems subject to control con-
straints. This method constructs an affine feedback control law, obtained by minimizing
a quadratic approximation to the optimal cost-to-go function. The performance of this
method is shown on a human arm with 10 state dimensions and 6 muscle actuators in
simulation. Later, the online version of iLQG was developed in [173] as online trajectory
optimization to analyze complex humanoid robots to get up from an arbitrary pose on
the ground and recovering from large disturbances using dexterous acrobatic maneuvers.
Online trajectory optimization is known as model predictive control (MPC) where it re-
peatedly solves a finite-horizon optimal control problem. MPC enables to solve iLQG in
real-time.

The iLQG solves the linearized model for the optimization at the end. Another method
to use nonlinear models, is nonlinear model predictive controllers (NMPC) with a finite
prediction horizon. NMPC was employed in [121] for planar human arm reaching motion.
The NMPC uses an internal model to predict a future trajectory, and feedback information
to correct the prediction errors. The methods used by [121] can correct the tracking errors
for static targets or can follow a moving target seamlessly. The NMPC prediction horizon
can represent the time horizon for which the CNS minimizes a physiological cost function.



2.2 Inverse Problem

In inverse problems, the objective functions are unknown. To infer the objective of a
demonstration, the trajectory executed by the human is assumed to be optimal with respect
to some unknown objective function. Objective learning methods have been developed
from two research communities: the control community, where they are known as inverse
optimal control (IOC) and the machine learning community, where they are known as
inverse reinforcement learning (IRL) methods.

The majority of objective learning algorithms assume that the objective function J(z, u)
is given by a linear combination of basis features ¢(z,u) € R* with weight parameters
such that

JO(x,u) = 0T ¢(z,u) (2.1)

The objective learning problem then corresponds to estimating the weight vector 6.
However, it is not immediately clear how to select these basis features. Most works manu-
ally identify features relevant to the specific task studied. For example, [151] minimized the
combination of total force and moment of force for 4-finger pressing tasks, [152] considered
torque minimization, pelvis position and velocity, joint angle regularization, foot motion
periodicity and arm swing features for locomotion.

[16] summarized four types of features that are commonly included for human motion
analysis: kinematic features such as velocity, acceleration and jerk, dynamic features such
as torque and torque change, geodesic features such as path length, and energy features
such as kinetic energy, work, positive work, and total absolute work.

If the system dynamics and optimal controller are assumed to be linear, the objective
function is often assumed to penalize the states and control signal in quadratic form [52,
, 112,154, 182] to facilitate analytic solutions to the policy learning problem.

More recently, researchers have proposed approaches to relax this assumption on the
structure of the objective function by using non-parametric models such as radial basis func-
tions [112,175], Gaussian processes [33, 107, 156] or neural networks [58,63, 189]. Although
Gaussian processes can capture complex relationships between features and scalar-value
rewards as well as determine the saliency of each feature with respect to the relevance of the
expert’s demonstrations, they suffer from poor scaling with the number of samples. Neural
networks also allow to model complex, nonlinear objective functions with the additional
advantages of a favorable computational complexity and good scaling to problems with
large, potentially high-dimensional state spaces [189]. However, they lack the structure
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typically encoded in hand-engineered features and thus require additional regularization
techniques [58] or the inclusion of a discriminator [03] in order to robustly scale to com-
plex tasks. While these approaches can represent a richer and nonlinear objective function
structure, the interpretability of the objectives may be lost.

The above algorithms assume that a single reward function guides the demonstrated
behavior. However, for longer demonstrations, multiple sub-goals may partition the demon-
stration. A number of works have examined how to automatically detect and identify these
sub-goals. The assumption that the whole trajectory shares a common objective function
can be relaxed by applying objective learning on a fixed-length sliding window [114] or
with a dynamically sized window based on the recoverability of the windowed data [31].

If demonstration trajectories were generated by different experts, some experts might
follow different objective criteria, resulting in multi-intent problems. [13] consider the case
when there are multiple demonstration trajectories, corresponding to multiple intents. The
objective is to simultaneously cluster the trajectories by intent, and estimate the intents.
Their approach requires the number of clusters to be specified a prior: .

As shown in Figure 2.1, at a high-level, estimating an objective function from demon-
strated expert behavior can be framed as an iterative process. Starting from an initial
guess of the objective function, the estimate is improved in a two-step process: (1) a com-
parison step in which the similarity between the behavior induced by the current estimate
of the objective function and the observed demonstrations is measured; and (2) an update
step in which the current estimate is modified so as to increase the similarity between the
induced and observed behaviors. Thus to solve the inverse problem, an accurate measure
of similarity between the induced and observed behavior is critical. Note that the framing
in Figure 2.1 also implies that a solver for the forward problem for each new objective
function candidate is required.

2.2.1 Inverse Optimal Control
IOC was first proposed by Kalman [37], and then applied to tasks such as human locomotion

[5,133,155], human arm movement [3,16,17,182], and squat motions [31,114]. We describe
the existing [OC methods as follows:

Bi-level I0C

In the bi-level IOC approach [133], as illustrated in Figure 2.1, the update step is imple-
mented via an “upper-level” optimization, minimizing the error between the demonstration
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Figure 2.1: High level overview of typical objective learning algorithms.

trajectory and a simulated trajectory. A nested “lower-level” optimization solves the for-
ward problem to generate the simulated trajectory. Due to the nested forward problem,
the upper-level problem is both nonlinear and lacks an analytical gradient, thus requiring
a derivative-free optimization method.

Formally, the upper-level is formulated as the minimization of the error between f (z,u,0),
the trajectory resulting from the minimization of the objective expected cumulative cost
V(z,u,0), and the demonstration trajectory ¢, where 6 denotes the parameters of the
objective function, i.e. the basis function ¢(z,u) weights

min || (z, v, 0) — ¢||” (2.2)

while the lower-level solves the forward problem to generate é’ (z,u,0)

min V' (x, u, 0) ZO d(xy, uy) (2.3)
¢

st @ = f(a:t, w), t=0,...,T (2.4)
where f;(x, u) is the deterministic and continuous time version of the dynamic function first

introduced in Equation (1.1). Equation (2.2) can then be solved to obtain the objective
function [133].
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Alternative formulations include minimizing trajectory error while calculating the weights
using Pontryagin’s maximum principal [78] or linear quadratic regulator (LQR) [52,53, 182]
as an optimization framework.

One-level I0C

Instead of the bi-level approach, [(6] proposed replacing the lower-level direct problem
with optimality conditions, to combine the two stages into a single step. This formulation
consists of utilizing Lagrangian multipliers [| 7] or Karush-Kuhn-Tucker (KKT) conditions
[8,00] to solve the lower-level forward problem, allowing the two levels to be combined into
a single level optimization problem. Given the Lagrangian £ =V + )\Z(;lreq + Ageqrineq
where Acq and Ajpeq denote the Lagrangian multipliers associated to the equality 7., and
inequality rineq constraints respectively, the optimization problem is formulated as follows:

min > (e u, 0) — () (2.5)
t=0

(4,0, eq>Nineq)
s.t. Tir1 = f(xt,ut),
0 = req(Te, ur),
0 = Tineq($t, U,t),

0= V(%%Q)E(‘Th Ut, 67 Aeqa Aineq);

0 S Aineq7
0= Aﬁeqrineq(xt; ut), t=0,... 7jﬂ’

where (; indicates the observed state-control pair at time ¢ in the demonstration trajectory
(. The one-level method’s main advantage is that the problem can be formulated into a
single stage, reducing the problem complexity during implementation.

Optimality-based 10C

The most indirect set of IOC methodologies do not assess similarity directly, but instead
minimize the residual or optimality violations. Since the input trajectory is assumed to
be optimally generated from a dynamic system and a set of cost functions, the generated
trajectory should be optimal with respect to the cost function, and therefore satisfy opti-
mality criteria. However, practical factors like noise in the trajectory or uncertainty in the
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cost function formulation lead to deviations from the optimal trajectory. In this class of
approaches, these optimality violations are minimized to recover the objective function.

These methods are computationally fast because they do not require the trajectory
or features to be computed, i.e., they avoid the need for solving the forward problem.
However, the majority of these methods require computing the cost function gradient along
the trajectory, thus requiring higher order derivatives of the system dynamics and features
to be available. The minimization of the gradient may not also lead to a minimization of
the cost function value [19)].

Karush-Kuhn-Tucker Conditions: A common approach is to rely on the KKT
conditions [28], which specify that the gradient of the objective function should be zero
along the optimal trajectory. To calculate the cost weights, the KKT equations can be
re-formulated into a linear residual matrix and minimized. Given an objective function
modeled as a weighted sum of basis cost functions ¢(x) to be minimized with respect to
some given equality 7 (inequality terms excluded for brevity):

min V(x*) = 67 p(x*) (2.6)

St Teq(x") =0

the KKT Lagrangian L(x) and gradient V4 L(x) are defined as:

L(x") = 07 (x") + AeqTeq(X")
Vi L(x*) = 07V, d(X*) + Aeq VaTeq (X7)

where the partial differential of the gradient Vy is calculated with respect to the state x,
Aeq are the Lagrangian multipliers on req(x*). The condition that must be met to ensure
optimality is:

ViL(x*) =0 (2.9)
If it is assumed that the system is not strictly optimal, but rather only approximately
optimal [91], then Equation (2.10) is minimized but is not strictly zero:
min Vi L(x) (2.10)
6.1
st. @ >0
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Since the KKT equations are linear with respect to the unknown variables 6 and Aeqs
Equation (2.10) can be written as a least square problem and solved computationally
efficiently [155].

While [155] hand-selected a significant basis cost function to prevent the zero weight
(6 = 0) trivial solution, [111] employed a basis function pivot to estimate the significant
basis function, while [74] add a regularizing constraint to force |||, = 1. Key improve-
ments to the inverse KKT method include checks to ensure that the residual matrix is well
formed [145], and factoring out A terms using the Hessian [51].

Other Optimality Conditions: Other optimality conditions that have been used
in the literature include the Euler-Lagrange equation [5, 175], the Pontryagin’s maximum
principle [82, 130, 194], as well as the Hamilton-Jacobi-Bellman [112, 122, 1306].

Controller-based I0C

A small number of papers approach the IOC problem by minimizing the error with respect
to the gains. [154] and [123] employ a LQR framework. The optimal gain K, is either
known, or estimated using least squares from the observation data y = A— Bx* K, assuming
known system dynamics matrix A and B. They then estimate the state () and controller
R matrix via gradient descent to minimize the Frobenius norm of K — K..

2.2.2 Inverse Reinforcement Learning

Given the parametrization of the objective function as a weighted sum of features (Equa-
tion (2.1)), early works in the IRL literature proposed to compare demonstrations and
generated trajectories based on the feature expectations. With this approach, the expected
cumulative discounted feature counts, or more succinctly the feature expectations for a
policy 7, are defined as

p(m) = E¢or [M(C)}

_ Ew[ifyf%(zt,ut)], (2.11)

where T indicates the duration of the demonstration trajectory and p(¢) = Zthl VL p(ay, up)
corresponds to the feature expectations along any trajectory sampled from a policy 7. Us-
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ing this notation, the value function of a policy 7 can be rewritten as V™ (x) = 07 u(m)Vz €
X.

Given a set of expert demonstrations D = {(i,...,(y}, we denote the empirical esti-
mate of the expert’s feature expectations by

a(r”) = % Z 1(G) (2.12)

Apprenticeship Learning Algorithms

First introduced by [3], the apprenticeship learning (AL) algorithms aim at finding a policy
7 whose performance (or expected value) is close to the expert’s policy 7% maximizing
the unknown reward function R?(s,a) = 07 f(s,a). It is important to notice that for
these linear reward function approximations, feature expectations completely determine
the expected cumulative reward for any policy [3]. Hence, a match in feature expectations
under 2 policies implies a match in the expected value of both policies. Formally, this
relation is defined Vx € X as

V(@) = V™ (2)] = |07 pu(7) — 67 p(x?))| (2.13)
< [16]]a][p(7) — p(7)]]2
<l-e=¢€

where the first and second inequalities follow from the Cauchy-Schwarz inequality and
167[[2 < [|67[| < 1.

From Equation (2.13) it follows that a policy 7 that induces feature expectations p(7)
close to u(m%), i.e., ||u(7) — p(7¥)|| < e will result in a performance close to the expert’s.
To find this policy 7, AL algorithms solve the following optimization problem

m%x D
p’
st. 0Tp(r?) > 0T (V) +p, j=0,--,i—1 (2.14)
1612 < 1.

The solution to Equation (2.14) generates an objective function J%(s,a) = 8@ - ¢(s, a)
such that the expert’s policy (as illustrated by the observed trajectories) does better, by
a p margin, than any of the policies found so far. The solutions IT = {#©® ... #()}
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and © = {0 ... W} are found through a three-step iterative process, as illustrated in
Figure 2.1: (1) find an optimal policy #® under the current objective function estimate
0" (2) compute feature expectations p (7)) of the optimal policy obtained in the previous
step, and (3) update the objective function estimate so as to reduce the difference in feature
expectations between the optimal and expert’s policies until convergence. Notice that steps
(1) and (2) require access to a RL method that computes an optimal policy from a given
objective function.

Although AL algorithms estimate an objective function as part of the optimization
process, they do not necessarily recover the expert’s underlying objective function correctly.
These algorithms are only guaranteed to find an objective function that matches feature
expectations and results in a policy whose performance is bounded by the expert’s observed
performance [25].

Maximum Margin Planning

Although apprenticeship learning algorithms aim at finding an objective function that
maximizes the similarity between the feature expectations underlying the optimal and ex-
pert’s policies, this optimization criterion alone fails to provide a mechanism for explicitly
matching the expert’s behavior [167]. To address this issue, the Maximum Margin Plan-
ning (MMP) algorithm proposed in [159] learns an objective function for which a single
deterministic and stationary policy with a guaranteed upper-bound (or margin) on the
dissimilarity between the expert’s and policy demonstrations can be obtained.

Starting from the same assumption of a linear objective function, MMP augments the
optimization criterion based on the similarity between the expected value of the learned
and expert policy with a loss function [((, é’ ) that penalizes all state-action pairs for which
the optimal path ¢ sampled from the learned policy # fails to match the observed expert’s
trajectory ¢ € D. Formally, the MMP algorithm aims to solve the following optimization
problem

N
min A6+ B 015,
. i=1 2.15

st 0T u(G)Y(G) + 6 < mngTu(f)ib(C) +1(¢,¢), Vi=1,...,N

T

where N is the total number of demonstrated trajectories, 1(() are the state-action visi-
tation counts along a trajectory (, [3; is a slack variable that accounts for the error in the
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margin constraint for the i —th trajectory, and A balances the trade-off between regulariza-
tion and meeting the constraints. The loss function {((, é ) is proportional to the empirical
visitation frequencies of each state-action pair so as to make highly visited state-action
pairs take on larger reward values. By doing so, a preference over learned policies that
frequently visit these states and thus closely mimic the observed behavior is induced [159].

Maximum Entropy IRL

Based on the observation that a policy m can be also interpreted as a distribution over
the entire class of possible trajectories or paths, [199] proposed to leverage the principle of
maximum entropy (MaxEnt) so as to deal with the degeneracy of the IRL problem. Given
that typically many different distributions of paths (i.e., policies) can match the empirical
feature expectations obtained from the expert’s observed trajectories D = {(1,...,(n}, the
principle of maximum entropy resolves this ambiguity by choosing “the least committed”
distribution, that is, the distribution (or policy) that does not exhibit any additional
preferences beyond matching the expert’s feature expectations. In addition to dealing
with the inherent degeneracy of the IRL problem, the MaxEnt formulation also offers
a principled way of accounting for potentially imperfect or sub-optimal behavior in the
expert’s demonstrations. Formally, the maximum entropy IRL algorithm aims at matching

> p(Qwr() = mx"), (2.16)

Cit

where the empirical feature expectations fi(7%) are computed according to Equation (2.12)
and p(() corresponds to the distribution over paths induced by the optimal policy 7 learned
from the parameterized objective function J®(x,u). Thus, p(¢|@), the probability of ob-
serving a trajectory ¢ given the weights 6, is defined as

p(c]8) = %q«) exp (671(C)), (2.17)

where ¢(() is the (un-normalized) probability of any trajectory ¢ to occur according to the

system dynamics T
T

9(¢) = po(x1) [ [ plwesa e we), (2.18)

t=1

and Z(0) = > ... q(¢') exp (0T (¢")) is the normalization constant often referred to as the
partition function. We note that according to Equation (2.17) equally rewarded trajectories
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have equal probabilities, trajectories with higher rewards have the highest likelihood and
the expert can still generate sub-optimal trajectories with a probability that decreases ex-
ponentially as the trajectories become less rewarded. In the case of deterministic dynamics,

Equation (2.17) reduces to p(¢|@) = ﬁ exp (07 1 (Q)).

Learning “the least committed” distribution over paths can be formally defined as
finding the objective function parameters 6 that maximize the casual entropy H(-) of m,
subject to the constraint of matching the observed feature expectations
max H(W)
st. 0Tp(n) =07 E(r"),

S p(cl6) = 1, (2.19)
Crom
p(¢l@) >0V~

One of the main limitations of the MaxEnt IRL formulation initially proposed by [199]
is the need for an exact computation of the partition function Z(8). Although this can
be easily done in discrete environments for which a full knowledge of the dynamics of the
system is available, it becomes computationally unfeasible for large, continuous spaces for
which the dynamics of the system are likely unknown. Several extensions to the MaxEnt
formulation have been proposed to address this issue, they can be divided into two main
groups: discretization and continuous approximations.

Bayesian IRL

Bayesian approaches estimate a probability distribution over the objective function given
the observed demonstrations. [157] proposed the first Bayesian formulation for IRL.

Similar to the MaxEnt approach, they model the probability of observing a trajectory
¢ given a particular objective function J? via an exponential distribution:

p(¢]J%) = %exp aE(¢, J%) (2.20)

where « is a parameter representing the confidence in the demonstrator’s expertise; E((, J?)
> V(z;,0) , with & denotes the optimal policy with respect to the objective function .J®
and Z is a normalizing constant. Given this model, the posterior probability of J¢ can be
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computed by applying Bayes theorem

0 0
p(2716) = T RE) _ 2 expak(, 4%)p()

such that p(J%) captures any prior knowledge about the reward.

Given the posteriori distribution p(J?|¢), different point estimates can be interpreted to
optimize different similarity criteria. The posteriori mean minimizes the least squared loss
function between the actual and estimated objective function, while the median minimizes
the linear loss function. The optimal policy corresponding to the mean objective function
is also shown to minimize the policy loss function (i.e., the difference between the optimal
and estimated value functions). Therefore, depending on which posteriori point estimate is
used, the Bayesian IRL (BIRL) framework either uses objective function or value function
comparison for the similarity estimate.

Maximum Likelihood

In this class of approaches, given a model of the likelihood of observing a given trajectory
given an objective function, the likelihood is directly optimized. For example, [$5] use
the PI? algorithm [170] as the basis for IRL. They assume that the state-dependent cost
function is linearly parameterized (as in Equation 2.1), and the weight vector to be learned
is the concatenation of the state-dependent basis function weights, the control cost scaling
(assuming the shape of the quadratic control cost is known) and the terminal cost scaling.
Given an exponential probability of observing a given trajectory conditioned on the re-
ward (as in Equation (2.20)), the weights are found by minimizing the negative log of the
probability of observing the demonstrated trajectories, with an added L-1 norm regular-
ization term over the weights, using a quasi-Newton optimization approach. The proposed
approach is demonstrated for learning inverse kinematics and optimal motion trajectories
for reaching with a 7 DoF arm. [119] apply the path integral IRL algorithm [35] to recover
the objective function of segmented human-human collaborative motions.

Controller-based TRL
Under the assumption that reward functions are paramterizations of a policy class, [139]

propose a novel gradient algorithm that learns a reward function such that the resulting
optimal policy matches closely an expert’s observed trajectories. To do so, the authors

20



combine ideas from supervised learning and apprenticeship learning [3]. Specifically, the
proposed algorithm seeks to minimize an optimization criterion that penalizes deviations
from the expert’s policy (i.e., supervised learning). The policy against which the expert’s
policy is compared is obtained by tuning a reward function and learning the optimal policy
with respect to this function (i.e., AL). Formally, the proposed gradient algorithm aims to
solve the following optimization problem

min P (@) (7 (2, u) — 7 (2, u))
o aceXZz;eu (2.21)

st w(z,u) = G(Q(x,u,0)) V(x,u) € X xU,

where ¢F(z) = + SV 1 > wec; Loy=o 18 the empirical occupation frequency of state x
N 1‘T =T, ut+=u . .
under the expert’s policy, 7% (u|z) = Lz Zeyupecy Leize corresponds to the empirical

Yt Y. e¢; Llog=a
estimate of expert’s policy, Q(z,u, @) is the optitmcal action-value function of the optimal
policy # learned from the parameterized objective function J®(z,u), and G is a suitable
smooth mapping that returns a greedy policy with respect to its argument. Since the
mapping from the space of reward parameters 6 to action-value functions Q(x,u, @) is
non-smooth and the primary objective of this optimization problem to find the policy
that is the closest to the expert’s policy, the authors proposed to use sub-differentials and
natural gradients when solving Equation (2.21). While the former allows to approximate
the gradient of the non-differentiable reward to action-value function mapping, the latter
determines the gradient direction in each step such that @ moves in the steepest descent
direction.

2.2.3 System and Environment Modeling

Most early approaches [3] assume that the system model is fully known, while more recent
approaches move towards inferring the objective when the model is unknown.

Discrete vs. Continuous Space models

Early TRL methods [140] were mostly demonstrated on grid problems with discrete states
and actions, exhibiting less than a hundred states and four actions. Having a finite state
and action space is the easiest scenario [198] and even allows for online testing [79)].

To deploy IRL approaches in continuous space, it requires either discretizing the space
[31] or using an approximation function such as a neural network [58]. [1] and [30] extend
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the MaxEnt IRL formulation to continuous-time stochastic systems with continuous state
and action spaces by replacing feature counts in the objective function with a path integral
formulation based on continuous states. Similarly, [98] applies MaxEnt IRL to learn the
probability distribution over navigation trajectories of interacting pedestrians using a sub-
set of their continuous space trajectories. A mixture distribution models both the discrete
and continuous navigation decisions. [105] utilizes MaxEnt IRL in high dimensional contin-
uous domains by using a local approximation to the reward function likelihood. [11] utilizes
differential dynamic programming that approximately solves continuous state-space MDP.
This is done by iteratively approximating it as an LQR control problem.

In most IOC works, the state and action spaces are continuous, either using continuous-
time (e.g. [38,82] or discrete-time (e.g. [31,55, 130]) representations.

Human Body Models

For demonstrations of articulated body movement, most papers assume that there is some
knowledge of the kinematics/dynamics of the limb or the whole body either in 2D or 3D.
These models can be linear or nonlinear. Linear models for studying human motion are
used to simplify the problem formulation and are generally formulated for specific tasks,

such as reach to grasp behavior [52], seated balancing system [151], left shoulder flexion
to study neuromuscular disorders [182], and gaze movements [53]. On the other hand,
nonlinear models are used to represent the task with more details. Examples include
squat motions [$1, [ 14], human arm movement [8, 16,32, 112,122 142147, 172], human
locomotion [, 37-39, 115, 131, 133], and human running [65, 115, 131, 134, 149, 155]. To
simulate and analyze dynamic models of human movement, several software systems are
also available. Some of open source ones are OpenSim [15], OpenSim Moco [16], and
Mujoco [179].

[38] highlights this question: What is a good mechanical model that is able to repro-
duce the essential characteristics of the motions under investigation? [161] suggests that
models should be chosen based on the experimental protocol and hypothesis under con-
sideration. Common nonlinear models are : (1) torque-driven models (robot models), (2)
musculoskeletal models (biomechanical inspired models). Torque driven models consider
joint torques as control inputs, and joint angles and velocities as outputs. Examples in-
clude [8,32,81, 112,114,142, 147,172]. Musculo-skeletal models consider muscle activation
as control inputs. [16] models the musculoskeletal arm dynamics in the sagittal plane by
adding the actuator dynamics (i.e., set as the acceleration of torques equals to the neural
input to muscles) to the torque-driven model. [3] models the human arm by presenting the
joint torques as a combination of torques generated by the muscle forces and the moment
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arms, the torques resulting from passive properties of the human arm with joint damp-
ing and the torques induced on the arm by external forces and the Jacobian of the hand
position. In this model the muscle behavior is considered as the second-order low-pass
filter.

[10] observed that a more complex model (i.e., modeling agonist /antagonist muscles as
second order low-pass filters) does not improve the prediction results for the cost functions
drastically. Therefore, the choice of the model depends on the re-targetting objective. Also,
there might me some properties that are difficult to estimate. For example, [112] models
the musculoskeletal system for human arm reaching motion with torque-driven model.
It is mentioned that viscous frictions and elastic properties of the tissues are difficult to
estimate, so they are neglected in the dynamics.

Focusing on gait, [38] classifies walking models into two classes. First, template models,
which represent some major characteristics of human gait, and second, full body models,
which describe motion at the joint level, with kinematic and dynamic properties that
are close to a real human body. The clear advantage of full body models lies in their
anthropomorphic kinematics and dynamics. However, even though considering a template
model does not give insight into human behavior at the individual joint level, those models
can reveal characteristic behavior of human gait. Furthermore, template models can be
used for human gait analysis and humanoid gait generation. [37] explains that making use
of template models for the identification of optimality criteria is an interesting approach for
robotic applications for the following reasons: (1) the same model can be used for different
walking scenarios; (2) the same model with different parameters can be used for human gait
analysis and humanoid gait generation; (3) a sequence of several steps can be considered;
(4) computational results are directly usable for robot controllers if they are based on the
same template model; (5) it has potential to be used for robot control in real time. The
walking model in [161] is based on a ballistic walker that contains key aspects of gait, such
as a heavy swinging leg, ground impacts, and torso balancing. This model omits many
aspects of human locomotion, such as muscles, ligaments, and detailed anatomical joints.
However, the goal is to capture the role of the major joints involved in walking, which are
often analyzed in terms of overall rotational motion and simple torques. [119] considers a
high-level kinematic model perspective for human path planning. So the walking human
can be modeled with the unicycle kinematic model and the complex activities performed
during walking by muscles and brain in commanding and coordinating many elementary
motor acts can be neglected.
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Unknown Dynamics

To relax the assumption of known dynamics, one approach is to use the demonstrated tra-
jectories to both infer the objective and identify the system model [2]. A second approach
is to simultaneously learn the expert’s objective function and policy and thus learn the
optimal policy directly.

Sample-based methods use trajectories sampled from the optimal policy [!] or a ref-
erence distribution [20, 58, 63] to solve the IRL problem when the model of the system
dynamics is unknown. In [1], sampled trajectories are used to estimate the parameters of
a close form maximum entropy distribution over trajectories as well as the reward function
parameters. [26] uses model-free reinforcement learning methods and importance sampling
to approximate both the partition function and log-likelihood gradient. Aware of how
critical the choice of sampling distribution is when using sampled trajectories to estimate
the function, [58] and [63] proposed to exploit deep policy optimization and generative
adversarial networks to simultaneously learn the sampling distribution that best matches
the maximum entropy trajectory distribution with respect to the current reward function
parameters and the objective function parameters themselves. By doing so, the proposed
methods can simultaneously learn the expert’s objective function and policy.

[135] proposed a model-free apprenticeship learning for transferring human behavior
to the robot, evaluated on a ball-in-a-cup scenario. They rely on the implicitly encoded
dynamics information in the human demonstrations rather than the need for explicit dy-
namics model. Similarly, [3], [30], and [12] implicitly model the agent through expert
demonstrations.

Stochastic vs. Deterministic Policy /Controller

In a situation where randomness is oblivious to the agent’s intended actions, deterministic
policies should be optimal in theory [110,170]. However, in practice, it is almost always
the case that the agent does not have access to a perfect model of the environment and
necessarily has to approximate a policy or value function that aliases many different un-
derlying environmental states. In this case, a deterministic policy may have a systematic
bias. Adding some stochasticity to the policy allows the agent to eventually break out
these situations.

While both deterministic [110, 162, 170] and stochastic [25, 94, 107] policies have been
assumed in the literature, almost all of the IOC approaches applied on human motion
analysis have been formulated for deterministic systems. An exception is the work done
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in [112] in which both deterministic and stochastic systems are considered. The authors
include noise as control dependent and additive term in the dynamics of the system. Then,
the necessary and sufficient condition of the control signal to be optimal is defined based
on the Hamilton-Jacobi-Bellman equation, and then the IOC approach is applied on the
planar biological arm movement in simulation.

2.2.4 Validation Techniques

To validate the proposed approaches, most works consider one or more of the following
strategies: validation with simulated data, human data, or noise-corrupted data.

Stmulation Data: Objective learning methods aim to recover the underlying objective
function from demonstration trajectories. As the ground truth objective functions are
impossible to obtain from human demonstrators, simulations are commonly used to vali-
date that the recovered objective function is accurate. This is typically accomplished by
implementing a controller that generates optimal demonstration trajectories given a pre-
defined objective function. The generated demonstration trajectories are then used in the
proposed algorithms to recover the original objective function. A majority of these tasks
are discrete-space gridworld type applications [13,68, 139], but also have been applied to
continuous-space models [1,32] as well.

Human Data: For human data, methods are typically validated by assessing to what
extent the optimal trajectory corresponding to the recovered objective function matches
either the original demonstration trajectory, or some metric derived from the demonstra-
tion. This type of validation has been applied to gait [115] and locomotion [105, 107, 155]
tasks.

A notable subset of human data validation are methods that use kinesthetic teaching
to provide demonstration data and use the resultant objective function to regenerate the
demonstrations. While they don’t tend to verify the trajectory error, they replay the
trajectory on a robot to verify that the task can be replicated. These tasks have been
carried on object manipulation tasks on the Barrett WAM [25] and the PR-2 [58].

Non-optimal Assumptions: While a majority of the algorithms require the demon-
stration trajectory to be strictly optimal, in real-life applications, strictly optimal data
is impossible to guarantee if the data was not simulated, due to suboptimal trajecto-
ries or noisy sensors [31, 78, 81,82 142 152161, 193]. Papers tend to apply strong pre-
filtering [1 14, 147, 180], or minimize the degree of optimality violations [155].

To investigate the sensitivity to approximately optimal demonstration trajectories,
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some researchers validate their results on noisy data [122,157,199], or manually corrupt ob-
servation data with injected control dependent [34,112,194,195], or state dependent [, 155]
noise. Other researchers use multiple demonstrations to mitigate the impact of subopti-
mality affecting objective function accuracy [161].

2.3 Perturbation

Perturbation is an unanticipated disturbance in motion that increases the chance of a
breakdown in the human movement system [129]. Perturbation can be used for physical
therapy and sports medicine, as a rehabilitative modality, and as an assessment tool.
Perturbation can also be used as assessment tool to determine a client’s readiness for full-
contact play and reintegration into a sport or activity. The application of perturbations has
been clinically proven to improve balance, joint stability, postural control and longer-term
success with return-to-activity programs [129].

In most studies, three types of perturbation are applied as external forces to human
body: (1) mechanical only [7,11,24,97], (2) visual only [192], and (3) mechanical and visual
[40,43,137]. All of these perturbations are repeatable, except the mechanical perturbation
studied in [97] for push recovery.

Mechanical Perturbation

[24] studied human arm reaching motion in the horizontal plane for two tasks: static
task and dynamic task. Subjects sat in a chair and moved a parallel-link direct drive
air-magnet floating manipulandum in a series of forward reaching movements performed
in the horizontal plane. Their shoulders were held against the back of the chair by means
of a shoulder harness. Subjects were required to make 0.25 m long reaching movement in
600+ /-100 ms in the forward direction. There were three force fields. Velocity-dependent
force field and two different divergent force fields, which exerted forces on the hand. Visual
feedback is provided on a screen behind the apparatus. The position of the cart is visualized
by a dot and the workspace safety boundaries are visualized in the form of a boundary
box. In both tasks, the visual feedback of the position of the cart is deactivated during
the perturbations.

[7] studied human arm reaching motion to understand how the experience of error in
the feedback signal improves the subsequent motor command. In this study, participants
performed a center-out reaching task while holding the handle of a planar robotic arm.
The forearm of each participant was supported by an arm set that moved freely with the
arm. The arm was obscured from view by a horizontal screen, upon which a projector
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displayed a cursor, serving as a proxy for hand position. The perturbations were standard
velocity-dependent curl force fields that pushed the hand clockwise or counter-clockwise.

[97] addressed the problem of fall avoidance by analyzing push recovery during walking
on level ground based on optimization techniques. The pushes were applied by a push stick
at three different locations at the spine from the back (pelvis segment, middle trunk, and
upper trunk) to avoid visual prediction of the perturbation.

[11] designed an experimental paradigm that exposes sensorimotor control mechanisms
and the adaptations to danger of falling and injury. [I1] studied an unconstrained whole
body motion where the human subjects performed squat-to-stand movements that were
methodologically subjected to non-trivial perturbations. The squat-to-stand motion in
this study can be considered as a whole body equivalent to the well-studied arm-reaching
motion with the same level of complexity, yet it inherently involves the danger of falling and
injury. The experimental setup involved a 6 degrees-of-freedom Stewart platform on which
human subjects stood and performed squat-to-stand movements. The vertical velocity of
the participant’s center of mass was acquired by the motion capture system in real time
and was used to generate perturbations in the form of a linear motion of the platform
in the posterior direction. The upward motion caused a posterior displacement of the
platform whereas the downward motion caused no displacement of the platform. A visual
feedback-loop in the form of a LCD was showing the subjects their current center-of-mass
position (COM) in the sagittal plane together with the allowed circular areas of the fully
squatted and fully extended COM positions.

Visual Perturbation

[192] analyzed human arm reaching motion in the horizontal plane by applying visual
perturbation. In this study, a monitor-mirror system is used that both prevented the
subjects seeing their own arm and allowed projecting images into the plane of movement.
The position of the hand is displayed online as a red cursor. The visibility of the hand
cursor depends on the hand velocity and it changes to affect the sensory noise.

Mechanical and Visual Perturbation

In three studies performed in upper limb motor tasks at the Queens University [10,413,

], both visual and mechanical perturbations have been applied which are repeatable.
For mechanical perturbations, they happen exactly when elbow and shoulder are at some
configuration and a step torque is applied on them. The data collected in [13] suggests
that when dealing with unpredictable events, such as external disturbances, vision plays a
secondary role to proprioceptive feedback.
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2.4 Discussion

This chapter focused on approaches for analyzing forward and inverse problems in hu-
man motion analysis. Feedforward and feedback controllers are studied in the form of
forward problems where the objective functions are assumed to be known. However, this
assumption is not valid in this thesis, and we are interested in addressing trajectories with
unknown objective functions. Therefore, we plan to use IOC to estimate the underlying
objective functions.

It is not preferred to use IRL methods as they typically require a lot more data. In these
methods, special form of models is not needed and, they permit more general policies, and
more general reward structures. But the cost is that many more examples and demonstra-
tions data are required for IRL methods. These approaches are black-box methods, that
when a policy is learned through a neural network, there is limited interpretation.

One way of analyzing different controllers is to study perturbed and unperturbed mo-
tions. Given the studies done on human motion, we design simulation and experimental
examples to test simple ideas on including perturbation on motion and understand the role
of controllers. We plan to design an experiment with mechanical perturbation to under-
stand how the human behaves before, and after perturbation. We would like to identify
how the objective functions are weighted in different situations.

28



Chapter 3

Inverse Optimal Control for
Feedforward-Feedback Controllers

! Tnverse optimal control (IOC) is a useful tool for elucidating the control principles of
human movements from the observed trajectory data [10], and applying them to imitation
learning for robotics [54]. For example, IOC can be used to analyse human arm reaching
movements, to understand what objectives the central nervous system is optimizing during
various types of movement [16]. Typically, the controller is assumed to optimize a cost
function consisting of a weighted sum of known features, and thus the objective of IOC is
to estimate the weights of the cost function. Most IOC approaches infer the underlying
cost function weights by assuming that a feedforward optimal controller generates an open-
loop control input trajectory [16,54,81,133]. On the other hand, for linear systems and
quadratic cost functions, linear quadratic regulator (LQR) approaches present a closed-
form solution which generates a feedback controller [18]. There is evidence that biological
movements are generated via both feedback and feedforward control schemes [111], with
feedback dominating particularly when a novel action is being performed. Therefore, in
this paper, we aim to develop an IOC methodology for trajectories generated by controllers
with a dominant feedback component.

In order to identify the underlying cost functions given trajectories generated by feed-
back controllers, the inverse LQR methods have provided closed-form solutions. For ex-
ample, Menner et al. formulated a semidefinite program and a linear programming convex

IThe content of this chapter is from the following conference paper: Mahsa Parsapour, and Dana
Kuli¢, “Recovery-Matrix Inverse Optimal Control for Deterministic Feedforward-Feedback Controllers”,
American control conference (ACC), pp. 4765-4770, IEEE, 2021 [153].
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optimization problem to infer the cost function matrices of a quadratic cost from both op-
timal and non-optimal closed-loop gains when the system is linear and time invariant [123].
The objective function is defined based on the deviation from the optimal solution of the al-
gebraic Riccati equation (ARE). Zhang et al. presented an inverse optimal control approach
for the discrete-time LQR over finite time-horizons [196]. They solved the problem for a
linear system, assuming the cost weighting matrices are fixed and only the state-penalty
matrix elements have to be found through IOC. The optimization problem is formulated
as a feasibility problem with the constraints obtained from the conditions of Pontryagin’s
Maximum Principle. Priess et al. in [154] presented an approach based on the inverse LQR
by describing a linear matrix inequality formulation. They also proposed a gradient-based
least squares minimization method that can be applied when the linear matrix inequality
is infeasible. These examples are limited to linear systems and quadratic cost functions.
However, real-life systems are nonlinear in practice; in this work, we formulate an I0C
approach that is able to deal with both linear and nonlinear systems.

IOC for nonlinear systems is well-studied for trajectories generated under feedforward
control [16,82]. Berret et al. [16] used a bilevel optimization approach where the forward
optimal control problem is solved repeatedly in an inner loop while the cost function is
updated in the outer loop. Other techniques such as [32] directly compute the cost weights
by minimizing the violation of the first-order necessary conditions for optimality for the
observed trajectory. A recent approach [81] recovers the cost weights and estimates the
boundaries of multiphase trajectories by building a recovery matrix that captures the
relationship between the observed trajectory and the cost function weighting matrices.
Most of the IOC methods assume that the cost functions are stationary. However, this
method deals with distinct cost functions in each phase of motion. Based on the successful
implementation of this approach on human squat motion segmentation [31,114], we would
like to use this idea to formulate the IOC for trajectories generated by controllers with the
feedback component as well.

In this chapter, we present an optimization approach for the inverse problem of both
linear and nonlinear systems, assuming a quadratic cost. Quadratic cost functions are
of particular interest, since most cost functions hypothesized to be relevant for human
motion analysis are quadratic in both the states and the control signal e.g. [16,81]. For
linear systems, the common LQR can be employed to generate the trajectory; however,
LQR cannot be used for nonlinear systems. For nonlinear systems, iterative LQR (iLQR)
method introduced in [111] is an approximation to LQR that iteratively updates the control
sequence by linearizing the system. We propose an IOC approach to estimate the cost
function from an observed state trajectory of a nonlinear system using recovery matrix
IOC [80] and then extend it to estimate the time-varying feedback gain for LQR, problems.
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3.1 Problem Statement

Consider a discrete time dynamical system described by
Tpy1 = fln, ur), xy € R", (3.1)

where f(.,.) : R™ x R" — R" is a given (possibly nonlinear) time-invariant function,
x; € R" and u; € R™ are the state and input vectors at time instance k, respectively. Let
us define the following quadratic cost function:

1
J = §<wN —z6)" QN — ()
| Nl (3.2)
+ 3 (a:;wik + u;;FRuk),
k=0

where NN is the number of time steps, x y is the final state, and @ is the given goal state. Q
and Q are symmetric positive semi-definite (S7) state penalty and terminal state penalty
matrices, and R is a positive definite (S7’, ) input-penalty matrix. Here, we assume that
the weighting matrices are diagonal. The running cost (the second term of equation 3.2)
can be represented as

=2
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Given the system dynamics in equation (3.1) and the cost function in equation (3.2),
two optimization problems can be defined. The first is the direct optimal control (DOC)
problem, which tries to minimize the cost function J subject to the constraints defined by
the system dynamics in order to find the optimal trajectory xj., and the optimal control
input uj.y_;. The second is the inverse optimal control (IOC) problem which aims at
finding the weighting matrices (Q, R, Q) given the optimal trajectory 7., and control
input uj.y_;-

We assume that the controller is an optimal feedback controller. For the DOC problem,
we generate the trajectory in the feedback form using variations of the LQR. We then
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formulate the IOC problem by reformulating the recovery matrix IOC algorithm proposed
by Jin et al. in [30] for feedback control.

3.2 Direct Optimal Control

The LQR algorithm is unfortunately limited to linear systems. For nonlinear systems, an
approach for finding the optimal controller is Iterative LQR (iLQR) [L11]. This algorithm
is a special case of Differential Dynamic Programming (DDP) [74,177]. The DDP is solved
by a linear approximation of the nonlinear dynamics model and a quadratic approximation
of the cost function along the trajectory.

In iLQR, the LQR algorithm is used iteratively to estimate an optimal control signal
sequence by using a linearised approximation of the nonlinear system along the trajectory.
Each iteration starts with a nominal control sequence u, and a corresponding nominal
trajectory x obtained by applying u; to the open-loop dynamical system.

Let us consider deviations from the nominal sequence xj, u; to be dxy, du,. The
linearisation is,

0xpy1 = Ardxy + Birouy, (34)

where A;, = g—i\wk,uk, and B = %\wk,uk are the Jacobians of f(.,.) with respect to
the state and control signal and are evaluated along x; and u,. Therefore, the linear
approximation transforms the nonlinear system into a linear time-variant system. Li et al.
obtained the formulations for the iLQR from the optimality conditions on the Hamiltonian
function [111]

1
Hy = —(xp + 6x1) T Q(z), + Sy,

Ll V]

where 0y is the Lagrange multiplier. [I 1 1] assumed that for some unknown sequences S,
and v, and based on the boundary condition in the Hamiltonian function, the following
equations can be substituted to the state and costate equations

With the boundary conditions as Sy = Qf and vy = Qf(xy — ), we can solve for the
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optimal controller by the backward recursion

oup = —Kjjdwy — Kjvg — Kjug, (3.7)
K} = (B{Si11Bi + R)"'B| Si11 Ay, (3.8)
K} = (B{Sw1Biy + R)"'BJ, (3.9)
Kj; = (B; Si1B. + R)™'R, (3.10)
S, = AL S;1(Ar — BLK{) + Q, (3.11)
vp = (Ap — BLK?) vy — K,fTRuk + Qxy, (3.12)

Once the modified LQR problem is solved, an improved nominal control sequence can
be found: w; = wuj + duy. Algorithm 1 summarises the whole process for the forward
optimal control.

Algorithm 1 Iterative Linear Quadratic Regulator

Input: Nominal state and control sequence uy and x9

1: for i = 1 to maxIter do
2. Initialise Sy <~ Qf and vy + Qf(xy — x¢)
3:  Initialise dx; < O
Backward pass:
4:  Form equations (3.8)-(3.12)
Forward pass:

5. Update duy in (3.7)

6:  Obtain the state sequence dxy in (3.4)

7. Update uy < uy + duy

8:  Update x;, from (3.1)

9:  if No change in the value of the cost function (3.2) then
10: Exit for loop

11:  end if

12: end for

13: return 4j.y_, = u, and .y = T

Algorithm 1 gives the locally-optimal trajectories 1.y and @1.y_1 for the DOC problem.
When there is no further change in the cost function (line 9 of Algorithm 1), we can
assume that our estimate is approximately equal to the optimum. This means that duy, is
approximately zero, and equation (3.7) gives the control signal as
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Uy = _RilBgSkJ’»lAkéwk — RilBgvk+1.

Here the control signal is a combination of a linear feedback plus an additional forcing
term. The forcing term is acting as the feedforward component. Because of the forcing
term, it is not possible to express the optimal control law in linear state feedback form
similar to the classical LQR problem.

Remark: iLQR is a trajectory optimization for nonlinear systems. The optimal solution
converges to the solution of LQR, if the system is linear. To understand the similarities,
let us consider the time-invariant linear system as:

L1 = Awk + B’U,k, (313)

By assuming that (A, B) is stabilizable, B has full column rank, and (Qz, A) is
detectable [123], a unique optimal feedback controller can be found. This controller is the
solution to the minimization problem of (3.2) subject to (3.1) with the following form

U = _KLQRkwka (314)
The time-varying LQR optimal feedback gain Kgr is defined as

BTPk+1(A+BKLQRk) +RKLQRk =0, (315)
where P is the positive definite solution of the discrete-time algebraic Riccati equation [18]:
P, =A"P,(A-BKr,) +Q, (3.16)

This equation is exactly equation (3.11) with P acting as S and the feedback gain Kor
as K7®. As a result, by considering the linear system (3.1), iLQR converges to the LQR
solution, and we can use algorithm 1 for generating optimal trajectories for both linear
and nonlinear systems.

3.3 Recovery Matrix

The recovery matrix was proposed in [30], and was used to recover the weights of trajecto-
ries generated by an optimal feedforward controller for both linear and nonlinear systems.
The recovery matrix H (k) captures the relationship between available observations and
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the weights of the given basis functions. The update of this matrix is iterative, and the
approach for building and updating the recovery matrix H is defined as

H(k) = [Hy(k) —Hs(k)] € R™) (3.17)
where ofT 0T 9T
H =
l(k) (9'u,k 8a:k + 6uk
B afT afT

for a single observation at (g, uy). g%z is the Jacobian matrix with respect to x evaluated

at . The recovery matrix is updated as

Hl(k‘) —Hg(/f) I 0
H(k+1)=| gor o5 | | oer o057 |, (3.18)
Oupi1 Oupi1 Oxpy1  OTp4

This way, each new observation is integrated into the recovery matrix. The matrix is
updated until the observed trajectory is sufficient to recover the weights. By examining
the rank of the recovery matrix, it is possible to detect whether sufficient observations
have been collected to enable cost weight recovery. For noise-free observations, [30] proved
that if rank of H (k) is equal to r + n — 1, the corresponding window length is sufficient
for successful weight recovery. Here n is the dimension of @x; and r is the dimension
of the ®(xy, uy) vector (i.e., the number of cost function terms). However, with noisy
observations, checking the rank of H directly can lead to numerical issues. Instead of
directly checking the rank condition of the recovery matrix, a new metric was introduced
by [80] as:

o2(H(E)) v, (3.19)
a1(H (k)
with v as a pre-defined threshold and H (k) = % with Frobenius norm. This metric is
defined as the ratio of the second smallest singular value, oo (H (k)), to the smallest singular
value, o1 (H (k)), of the normalized recovery matrix. The recovery matrix is normalized to
avoid having entries close to zero in solving the optimization problem. Note that as we are
not going to use the minimal observation length in our formulation, we have removed the

dependency of the H matrix on the observation length.
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3.4 Inverse Optimal Control using Recovery Matrix

Given the above preliminaries, we now describe the optimization formulation for recovering
the weights of a feedback controller. To formulate the IOC problem, we consider the
recovery matrix in the objective function. The recovery matrix is formed based on the
Karush-Kuhn-Tucker (KKT) optimality criteria [30]. If col{wy, D1} is non-zero, the
following property holds:

H(k) {“’k] — 0, (3.20)
Vi+1

where v € R” is the Lagrange multiplier. This means that col{wy, D1} € kernel(H (k))

and @ is a successful recovery of w [30]. The equality remains true as each observation

(g, ui) is added to the recovery matrix, as in equation (3.18). We find the weight estimates

which minimize the Euclidean norm of the recovery matrix. Given an observed trajectory

1.y and wy.y_1, and if the pair (Ay, By) is controllable, the weighting matrices can be

estimated through the following inverse optimal control problem

winllE1(6) 2] I

Y (3.21)

,
st. Y wi=1ReS? Q€S
i=1
Algorithm 2 shows the steps of estimating the cost function weights, solving the op-
timization problem in equation (3.21). Given the inputs to the algorithm, the algorithm
starts by initializing the recovery matrix. The recovery matrix is updated and normalized
after each new observation (xy,uy) is added. After that, the optimization problem for-
mulated in equation (3.21) is solved, and the weights w, are estimated. The optimization
problem is solved if the rank condition between the ratio of singular values meet the pre-
defined threshold ~; otherwise, a constant value % is returned, where r is the number of
features. Then the steps are repeated for the next observation time step until the end of
the horizon.

Estimating the controller gain: For linear systems, most IOC approaches such as
[29,123,154,196] assume that the feedback gain K gp is known. Without this assumption,
the optimization problem proposed for IOC fails to provide the estimation for weighting
matrices. To provide the feedback gain for IOC, [154] formulated an unconstrained opti-
mization problem. By minimizing the following least square minimization, they estimate
the feedback gain as a constant value and ignore the transient behavior of the gain.
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Algorithm 2 Feedback 10C
Input: x7.5y, uj.5y_; output of Algorithm 1
Output: Estimated wy

1: Initialise H(k = 1) - (3.17)

2: for k=2 to N do

3:  Add new observation (@, u)
Update H (k) - (3.18)
normalize recovery matrix to get H (k)
if —Z?Egggg > ~ then

Solve (3.21) to estimate wy,

else

10: end if
11: end for
12: return w;

KLQR = arg min”(mestimated(k) - wtrajectory(k:)HQ' (322)

The weakness of the formulation of equation (3.22) is that it is not providing time-varying
feedback gain, and assuming the gain stabilises to a constant value. In practice, having the
whole trajectory might not be possible which results in the need of having the time-varying
feedback gain. Algorithm 2 can contribute to solve this issue. This algorithm removes the
assumption on knowing the feedback gain. The proposed approach estimates the weighting
matrices first, then the time-varying feedback gain can be obtained by solving equations
(3.15) and (3.16).

Our goal in developing such an optimization approach is to apply it for human motion
analysis. In practice, model error and noisy observations can affect the performance. When
analysing human datasets, it is common to apply filtering and /or interpolation before using
this kind of method in order to reduce the impact of noise [5, 114, 146]. However, the errors
cannot be completely removed. In the numerical examples, we evaluate the performance
of the proposed algorithm in terms of observation noise in order to highlight the need to
improve the method for stochastic systems.

We study the performance of the IOC algorithm in two examples. For each example,
weighting cost function matrices are estimated for noise-free and noisy cases.
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Linear System Example

Let us consider the system
-1 1 1
Tpy1 = [ 0 1:| Ty + |:3:| Uk, (323)

with the initial condition @y, = [2, —2]". The system is controlled by an optimal con-
troller by minimizing the quadratic cost function in equation (3.3) with weighting matrices

q2
[0.3333,0.5556,0.1111].
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Figure 3.1: Solution of the DOC problem (a) System state trajectory and control signal,
(b) time-varying feedback gain.

We first generate the system trajectory using DOC (the solution is shown in Fig. 3.1),
and then use it as input into the IOC algorithm described in Section IV. Also, to compare
our method to the inverse LQR problem, we adapted the approach proposed in [123] for
this study. The results are shown in Table 3.1. The errors shown in this table are focused
on the recoverable part of the trajectory. As inverse LQR assume the feedback gain is
known, the feedback controller gain K Lor is estimated through our approach in Section
IV. For this example, we first consider the noise-free case, and then introduce zero mean
Gaussian noise at the state output at each time step. As the noise variance increases, the
accuracy of the weight estimates decreases for both the recovery matrix IOC (RM IOC)
and the inverse LQR approach. Moreover, the estimate of K rLor deviates from the true
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Table 3.1: Error comparison by changing the noise variance

RM 10C Inverse LQR
Tnoise | ||[w — W2 | [|lw— |z | [[Krgr — Kigrll2
0.001 0.0042 0.0338 0.0012
0.01 0.0813 0.1901 0.0074
0.1 0.7433 1.2257 0.1886

gain. Overall, RM IOC is a more general approach that works for nonlinear systems as
well, and its sensitivity to the increase of the noise variance is less than inverse LQR.

To understand the effect of time-varying feedback gain, the recovery error of both
approaches is shown in Fig. 3.2 for different noise variances. Larger errors are observed
for the inverse LQR than RM IOC at the beginning of the motion. Therefore, if we have
a time-varying feedback gain, RM IOC outperforms inverse LQR.

Nonlinear System Example

We illustrate our feedback IOC approach for an inverted pendulum system. The dynamics
of the system has the following form

9 = 73@719 — W&—}- WU,

(3.24)

where the pendulum mass m = 1lkg, length [ = 1m, g = 9.8, and friction coefficient
1 = 0.01 are specified. The state variables are 1 = 6 describing the angle between the
vertical axis and the pendulum, and z, = 6 is the joint velocity. The input to the system is
a torque at the pendulum base u. The system dynamics can be expressed in the state-space
representation

T = f(x,u), (3.25)

with the system state & = [x1,25]", and the control signal u. The dynamics can be
discretised by Euler integration with sampling time At = 0.001 sec as

]T

L1 = Tk + Atf(ack, ’U,k), (326)
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Figure 3.2: Recovery error of (a) RM IOC method. The weights are recoverable when
the condition (3.19) is met. The time that satisfies this condition is shown as an orange
vertical dash-dot line. (b) Inverse LQR method. The behavior of the feedback gain shown
in Fig. 3.1 affects the performance of the recovery error of inverse LQR at the end of the
estimation. Considering the time-varying feedback gain shown in Fig. 3.1, the performance
of the inverse LQR method degrades towards the end of the trajectory when the feedback
gain changes magnitude, violating the constant gain assumption.

For this system, the goal is to find the control sequence u; such that the pendulum swings
up by minimizing the following objective function

N-1
1
J = éw%mz\; +3 ;(pma:wik + puti}), (3.27)

with Q = [g 1 0 al 0.1 <q <09, p, = 5e —5, and p, = le — 6, respectively. For
this example, we assume that p, is known and the sum of the diagonal elements of the Q
matrix is one. In the DOC, changing the parameter ¢ changes the shape of the optimal
state trajectory and the control signal. These trajectories, obtained from Algorithm 1, are
shown in Fig. 3.3(a) and (b). Given these trajectories, the IOC problem in equation (3.21)
successfully recovers the true weights as shown in Fig. 3.3(c) and (d). At the beginning of
the estimation, the rank condition (3.19) is not satisfied and weights are set to 0.5.

Now, let us add zero mean Gaussian noise at the state output. Three noise levels with
variance (07 = le — 3,09 = le — 4,03 = le — 5) were applied to the system. For each o;
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the estimation was done 10 times. Fig. 3.4(a) shows the mean and standard deviation of
the 2-norm of the final error between the true weights and the estimated weights. We can
observe that, for the case ¢ = 0.4, higher error is observed in the weight recovery compared
to the case of ¢ = 0.9. This is because, as the noise is increased, trajectories of the system
generated with ¢ = 0.4 deviate more from the nominal trajectory than those generated
with ¢ = 0.9. One example of estimation with ¢ = le — 3 is shown in Fig. 3.4(b) and (c).
Based on the recommendation of [$0], instead of considering one specific threshold level for
the rank condition (3.19) in the implementation, a range for v was set for different noise
levels in Algorithm 2. As noise increases, more time steps are needed for the trajectory
to satisfy the rank condition. For example, when ¢ = le — 4, the suitable range of v is
3,38] x 103.

3.5 Summary

In this chapter, we formulated the inverse optimization problem for the trajectories gen-
erated by the feedforward-feedback controller for nonlinear systems and the feedback con-
troller for linear systems. We employed the iterative LQR approach to generate the equa-
tions for a locally-optimal feedback controller for nonlinear systems, and showed that it
converges to the optimal feedback controller LQR for linear systems. The norm of the
recovery matrix, capturing the KKT conditions, was used as the objective function for the
optimization problem. Our method contributed to providing a solution for estimating the
feedback gain of linear systems where inverse LQR approaches are dependent on the given
feedback gain assumption. The simulation results showed the performance of our approach
for deterministic systems.
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Figure 3.3: Optimal trajectories and recovered weights for the inverted pendulum system.

s

(a) State optimal trajectories starting at position 7 (rad) and zero velocity highlighted
with the blue cross and converging to zero highlighted with the blue circle. All trajectories
are shown in gray, the red (¢ = 0.4) and black (¢ = 0.9) trajectories are used as inputs for
the IOC. (b) control signal with the same coloring as part a, (c) estimated weights when

q =04, (d) estimated weights when ¢ = 0.9.
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Figure 3.4: Estimation performance for inverted pendulum in the presence of noise. (a)
Bars show the 2-norm on the final error between the true weights and the estimated ones
under different noise levels. (b-c) Estimated weights with noise variance o = le — 3 when
(a) ¢ =0.4 and (b) ¢ = 0.9. The estimation error in (a) is more than (b) under this noise
level. This happens as the trajectory deviates more from the noise-free trajectory when
q = 0.4.
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Chapter 4

Feedforward-Feedback Controller
Decomposition

In Chapter 3, we formulated the inverse optimization problem for trajectories with both
feedback and feedforward terms to learn the underlying control objective function. Learn-
ing the control objective functions of the observed behaviors enables us in understanding
and predicting human motions. The results of the proposed algorithm in Chapter 3 helps
in understanding rational behaviors. However, we need to develop other algorithms that
can identify the controller structure and its components in order to extend the understand-
ing of human motion analysis. In this chapter, we focus on using optimality conditions to
extract information for the controller structure.

We address the following questions to analyze the human motion: What is the structure
of the controller? Is the motion generated by a feedforward controller or the combination
of the feedforward and feedback controllers? When was the perturbation applied? How
are unperturbed and perturbed motions different? Given these questions, we present an
algorithm based on value function to decide about the structure of the controller. We
first describe the problem formulation and then explain the proposed algorithm. In this
algorithm, the estimated control signal introduced above is going to be compared with the
reference control policy to analyze the controller’s structure. We define four structures
to generate simulation trajectories where each includes an offline trajectory (feedforward
controller). For the feedback controller, two cases of optimal and non-optimal feedback are
implemented. For the non-optimal feedback, a proportional-derivative controller is used to
reject perturbations, while for the optimal feedback we formulate an online optimization.
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4.1 Problem Statement

Consider a discrete time nonlinear dynamical system described by
L1 = .f(wka Uy, dk)? T € Rna (41)

where f(.,.,.) : R™ x R" x R™ — R" is a time-invariant function, x; € R", u; € R™
and d € R™ are the state, control input, and disturbance vectors at time instance k,
respectively. The system may or may not be subject to a disturbance dy; if there is no
disturbance then dj, is equal to zero. Given the control law in the general form

wp =ug "+ uy (@), (4.2)

with both feedforward and feedback components, the goal is to obtain an optimal state
and control input trajectory by minimizing the following performance index

=2

J(x1) = cr(xn) + - ¢ (T, ug), (4.3)

>
Il

where N is the time horizon, x is the final state with ¢;(xy) as the terminal cost function
and ¢, (xx, ux) as the running cost function. V' (x) is the accumulated cost if the system
is initialized at the first time step in state @; with wi.y_1 = {uq,...,uny_1}.

Depending on the activation of the feedback component the direct optimal control
problem can be formulated for two cases. The first case is having only the feedforward
term wl ¥ where the optimization problem is solved offline with the general performance
index form in equation (4.3). The second case is when the feedback component is active
and the control signal is ul? 4+ ul?. For this case, the optimization problem is solved

online with the following specific index form

k4N,
J(@e) = Y kyllas — @[]° + kall: — @717, (4.4)

i=k
where k, and k,; are constants, N, is the prediction time horizon, x* is the desired state
and &* is the derivative of the desired state. For the online optimization problem, a finite-
horizon constrained optimal control with the performance index equation (4.4) is solved
at each time step to find the control inputs on the prediction horizon. Then, only the first
input is applied on the dynamics and the state obtained from the dynamics is set as the
initial condition for the optimization; the horizon moves forward and the same procedure

is repeated for the next time step.
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4.2 Controller Structure

The main question in this section, we are interested in answering is “What is the controller
structure in equation (4.2)7”. To answer this question, the structures shown in Figure 4.1
could be assumed to be the forms under which the state trajectory was generated. If the
motion is not perturbed, then the feedforward optimal control can describe the task best,
Figure 4.1(a). However, if it is perturbed, then the objective cannot be achieved by the
feedforward form Figure 4.1 (b), and a feedback must be provided to reach the desired
configuration. Two possible structures could be assumed which is an optimal feedback
loop or a non-optimal feedback structure. For the optimal feedback loop Figure 4.1(c), the
online optimization with the performance index introduced in equation (4.4) can correct
the motion online under disturbance. On the other hand, for the non-optimal feedback loop
Figure 4.1(d), a simple proportional-derivative (PD) controller can reject the disturbance
and achieve the desired configuration.

Disturbance

Offline u Output Offline
Plant Optimizaﬁon

(a) (b)

Offline
Optimization Disturbance Offline
Optimization
Online
Optimization

Disturbance

Output Output

Figure 4.1: Reference trajectories (a) optimal control without disturbance, (b) optimal
control with disturbance and no feedback, (c) optimal control with disturbance and optimal
feedback, (d) optimal control with disturbance and non-optimal feedback.

One approach to identifying the controller structure is to look at the value function.
The value function is the minimal total cost for completing the task starting from a given
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state. This function captures the long-term cost for starting from a given state, and makes
it possible to find optimal actions. The value function for the [th time step can be written
as follows which is known as discrete-time Bellman equation

Vi(z) = e (x, w) + Viga(@ig1), (4.5)

where at the Nth stage, we have Vy(xy) = ¢/(xy). The Bellman optimality principle
states that if a given state-action sequence is optimal, and we were to remove the first
state and action, the remaining sequence is also optimal. In fact the choice of optimal
actions in the future is independent of the past actions which led to the present state.
Thus, optimal state-action sequences can be constructed by starting at the final state and
extending backwards.

Given the state and control trajectory, and the known objective functions, the nonlinear
Bellman optimality equation can be used to estimate the optimal control signal. In fact,
the Bellman equation relates values of the function at different points while exploiting the
fact that there exists a deterministic optimal policy that achieves the minimum value at
each point. To do the estimation, we formulate equation (B.3) to recursively solve for the
optimal control starting from Viy(xy) backward in time. The optimal control law at kth
stage can be estimated by minimizing the following objective function

min cT(wk, ’U/k) + Vit (in+1> — Vk(wk)
w (4.6)
s.t. Lp4+1 = f(mkv uk’)v

If we would like to extend the estimation in equation (4.6) for different state trajectories,
the value function needs to be approximated first. Value function approximation aims at
providing a scalable and effective approximation to an exact value function. There are
a variety of architectures available for value-function approximation: perceptrons, neural
networks, splines, polynomials, radial basis functions, support vector machines, decision
trees, CMACs, wavelets, etc [102]. These architectures have diverse representational power
and generalization abilities, and the most appropriate choice will heavily depend on the
properties of the decision making problem at hand. In this work, we use neural networks
for approximating the value function.

Algorithm 3 shows the steps to be taken to approximate the value function when there
is no perturbation. First, for each initial condition in the entire state space x{, ..., wfm,
we generate a set of optimal trajectories D = {(1,¢2, ...,¢p|}- Each optimal trajectory
is made of the state and control sequence {; = {x;,u;} where i = 1,2,...|D|. Then, a
corresponding set of unperturbed optimal value function trajectories V = {V4, Vs, ..., Vip|}
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can be generated with V; = [V}, ..., Vy|T. Finally, the value function V(wk) is approximated
using the radial basis function network [188] where the output of the network is the linear
combination of radial basis functions as

V(i) = Zwi¢i(wk)> (4.7)
where )
i(@i) = ea:p(—”“’"“r;ﬁ”x (4.8)

(]

is the ¢** Gaussian radial basis function centered at ¢; and of width r;. w; is the associated
weight of ¢;(xx). The network is trained with error accuracy le — 7.

In Algorithm 3, we assumed that the underlying cost function is known for equation
(4.3); however, when we are observing data (e.g. from a human demonstrator) we need to
apply inverse optimal control first to identify the underlying cost function given the optimal
state and control trajectories. Given the cost function, it is possible to approximate the
value function for the entire state space.

Algorithm 3 Unperturbed Value Function Approximation
Input: Initial conditions of the entire state space x{, ..., x|p|
1: for i =1 to |D| do
2:  Generate the state and control sequence ¢; = {x;,u;} by solving direct optimal
control of the controller structure Fig. 4.1(a)
3:  Generate the corresponding set of optimal value function trajectory V; by (4.3)
4 V<V
5. end for
6
7

: Approximate the value function Vixy) (4.7)
: return V' (xy)

Given the approximated value function, we propose Algorithm 4 to identify the con-
troller structure in the presence of perturbations. In Algorithm 4, the input is the ex-
perimental data xf{,; where a disturbance might have been applied. We assume that the
objective functions for all optimization problems are known. By computing the value func-
tion from Algorithm 3, we can solve the optimization problem in equation (4.6) to estimate
the control signal ;.51 and apply it to the system dynamics to get the corresponding
state trajectory &i.n for the unperturbed case. Now, we can compare the experimental
and the estimated state and control trajectory to output the controller structure.
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The first step is to compare the experimental state trajectory and the estimated tra-
jectory. If the difference is negligible, the controller is in the feedforward form and there
is no disturbance; otherwise there is disturbance. The second step after the disturbance
is identified, is to check the feedback part. As we have already assumed that the cost
function is known, we can simply solve the optimization problem with equation (4.3) to
have the feedforward control signal without disturbance @ . Then the feedback part can

be computed by 4f? = uf — 4L ", Now, if the norm of the feedback part is really small,

there is no feedback; otherwise, we need to solve the online optimization to get ui’]’éiﬁ“l
for the unperturbed case to identify whether the feedback is optimal or non-optimal. De-
pending on the systems to be analyzed, thresholds are assigned based on the 2-norm of the

trajectories.

Algorithm 4 Controller Structure
Input: Experimental state x{. 5

1: Compute the corresponding value function V(wz) by (4.3)

2: Estimate @y.y_1 by (4.6) given x¢, and V(z¢)
3: Compute &.y given (4.1) and .51

4: if ||zf, — &k|| < €, then

5. msg < No disturbance - Feedforward control
6: else

7:  There is disturbance

8:  Estimate the feedback part @} ? = uf — @} ©
9: if ||’EL£BH < erpp then

10: msg < No feedback

11:  else

12: There is feedback

13: Solve (4.4) to obtain w2

14: if ||ug — ul”" | > €28 then

15: msg < Non-optimal feedback

16: else

17: msg < Optimal feedback

18: end if

19:  end if
20: end if

21: return msg
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4.3 Computational Results

This section shows the results of Algorithm 3 and 4 on two nonlinear systems. We start
with a two-states system as it permits full visualization of the state space and can give
instruction about what problems to look out for with larger systems.

4.3.1 Inverted Pendulum

The dynamics of the system has the following form

0= %sin@ - #9 + #u, (4.9)
where the pendulum mass m = 1kg, length [ = 1m, ¢ = 9.8, and damping coefficient
i = 0.01 are specified. The state variables are xy = 6 describing the angle between the
vertical axis and the pendulum, and x5 = 0 is the joint velocity. The input to the system is
a torque at the pendulum base u. The system dynamics can be expressed in the state-space
representation

T = f(x,u), (4.10)

with the system state @ = [z1,22]7, and the control signal u. The dynamics can be
discretized by Euler integration with sampling time At = 0.001 sec as

Tpy1 = T + Atf(mk,uk)7 (411)

For this system, the goal is to find the control sequence wu; such that the state trajectory
reaches zero by minimizing the following objective function

1 N-1

1
k=0

with Q = Isyo, p, = 2e — 7, and p, = 8e — 7, respectively. The perturbation is added to
the control signal with the magnitude of 10Nm at 0.1 sec. By, implementing the structures
explained in Figure 4.1, the reference trajectories for the inverted pendulum are generated
as Figure 4.2. When the perturbation is applied to the open-loop structure, the motion
is diverged after 0.1 sec from the unperturbed motion, while with either non-optimal or
optimal feedback there is a quick return to the offline optimal trajectory and the effect of
the disturbance is rejected.
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Figure 4.2: Inverted pendulum (a) state trajectories, (b) control trajectories.

The value function is shown in Figure 4.3(a). Using Algorithm 3 the value function
is approximated and the estimation results for the control signal are shown in Figure 4.2
(b) and (c). When there is no perturbation, the control signal is estimated to be exactly
the same as the reference control trajectory. For other structures, in the estimation error
we can observe that if the perturbation is active or not. Figure 4.2(c) is the estimated
feedback component. For the optimal structure, after the disturbance is rejected, the signal
is zero while for the non-optimal structure it has some value over the time. The output of
Algorithm 4 is summarized in Figure 4.2(d). Before the perturbation is applied all signals
are without disturbance which is the offline trajectory; however, after the perturbation is
applied depending on if the control signal is returned back to the offline signal the output
shows which condition happens.

4.3.2 Two-Link Leg

This example focuses on a two degrees of freedom system. The system is a leg model with
two joints (ankle and knee), moving in the sagittal plane, Figure. 4.4. The task we are
interested in studying is squatting. In this model, the phase from squatting to standing
pose is going to be studied where the leg has to start at an initial position and move to a
target position in a specified time interval. It has to stop at the target, and do the task
with minimal energy consumption. The system dynamics is

T =M(0)6+C(0,0)0 +g(0), (4.13)

ol



IV

FF w)o dist

- = =FF w/ dist
wesssusss FF + non-optimal FB
— = —FF + optimal FB

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

time(sec)
0.5
— FF /0 dist
e FE w/ dist
o wvssssess FE + non-optimal FB
Optimal FB [ (= m—-—-- ) = = =FF + optimal FB
1 1
1 1
-05 1 1
IFB !
1
S !
= 1
No FBf :
15F 1
1
1
No Dist
2f
25 R R R R R R R R R R R R R
0 0.1 02 03 04 05 06 07 08 09 0 0.2 0.4 0.6 0.8 1
time(sec) time(sec)
() (d)

Figure 4.3: (a) True value function without disturbance over the state space for the offline
optimization problem, (b) estimation error for different structures (c) feedback part of the
estimation for different structures, (d) Output of Algorithm 4.

where 8 = [0y, 6,]” is the joint angle, M (0) is the positive definite inertia matrix, C/(6, 0)
is the Coriolis matrix, and g(0) is the gravity vector. w = [uy, us]? are the torques applied
to each joint. The mentioned matrices are defined as

2 2 2 2
o = [ B et
219 2 219 2
N —mglngéQS’in(eg) —mgll’f‘g(él -|-92)3m(92)
0(070) n |: mgllrgélsin(92> 0

0) = (lymg + rimy)gcos(6y) + remagcos(6y + 05)
g romagcos(fy + 65)
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Figure 4.4: Starting and ending poses of 2-link leg model.

a; = [1 -+ IQ + 2m2l1r2003(62)
o = [2 + mglﬂ“gCOS(eg)
where the mass of link 7 is (m; = 3.84kg, my = 6.3kg), the length of link 7 is (I; = 0.45m,
l = 0.38m), the distance from the joint center to the center of mass for link ¢ is (r; =
0.2712m, 7, = 0.1666m), and the moment of inertia with respect to the corresponding

center of mass for link i (I; = 0.1332kgm?, I, = 0.0972kgm?). The system dynamics can
be expressed in the state-space representation

&= f(x,u), (4.14)

with the configuration space & = [0y, 6s,0;,60)7 and torque input w = [uy,up)7. The
dynamics can be discretized by Euler integration with sampling time At = 0.001 sec as
equation (4.11). The state and control trajectories are generated by solving the following
optimal control using direct collocation method [90]:

0.5
min wy.ul + wo.u;
x,u 0

(4.15)

where the weightings in the objective function are wy; = 0.3 and wy = 0.7. The goal is to
start at ; = [r/2 + 0.3,-0.3,0,0]” and reach zz = [7/2,0,0,0]”. The perturbation is
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added on joints through the control signal. For this example the perturbation is equally
applied to both joints at 0.1 sec with the magnitude of 10Nm. The four different trajectories
based on Figure 4.1 is shown in Figure 4.5. The task from squatting to standing is achieved
for all controllers except the open loop controller where the joint angles are diverged from
the offline optimal control trajectory. The same behavior as the previous example on
inverted pendulum is observed for this model for other controllers. After the perturbation
is applied, there is a quick return to the offline optimal trajectory. The magnitude of the
optimal feedback control signal is higher than the non-optimal feedback control signal.
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Figure 4.5: Leg Model (a) state trajectories, (b) control trajectories.

For this model, the estimation error on the control signal is shown in Figure 4.6(a).
In these plots, we can observe that at 0.1 sec the disturbance is activated and we can use
this information to confirm that the motion was perturbed. The estimated feedback part
is shown in Figure 4.6(b). The magnitude of the control signal for the optimal feedback is
higher than the non-optimal feedback and it takes more time to become zero, while for the
non-optimal feedback the reaction is faster but the signal does not become zero after the
perturbation is rejected. From this information, we conclude that which signal is optimal.
The output of Algorithm 4 is summarized in Figure 4.6(c). Before the perturbation is
applied all signals are without disturbance which is the offline trajectory; however, after
the perturbation is applied depending on if the control signal is returned back to the offline
signal the output shows which condition happens.

To investigate the sensitivity of the algorithm to changes of parameters, we focus on
the parameters that are likely to be estimated inaccurately in practice. The limb length is
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Figure 4.6: (a) Estimated control signal for unperturbed condition with feedforward con-
trol, (b) Estimated control signal for perturbed with feedforward control (¢) Output of
Algorithm 4 for the leg model.

likely to be accurate, since we have motion capture data. However, the estimate of limb
masses and inertia distributions may be inaccurate, because the participant’s whole body
weight is measured and limb masses are estimated through tables that correspond to the
average population [187].

To evaluate sensitivity to inertial parameters, we keep the mass of leg constant and
redistribute the mass of the thigh and the shank. The redistribution of the mass is by in-
creasing the mass of the thigh and decreasing the mass of the shank. Given these changes
in the model, the algorithm reports the correct structures by two percent change of the
whole leg mass. When the mass is changed more than two percent, the difference between
the true state trajectory and the state trajectory with new mass is significant for the feed-
forward structure without disturbance, and it is classified as a perturbed trajectory. For
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the feedforward structure with disturbance, the algorithm always classifies the correspond-
ing trajectory as disturbed because the difference is larger than other specified thresholds
in the algorithm and by increasing the change in the mass the difference becomes even
larger. Structures with feedback information cause the output of the algorithm to be with
disturbed status even before the perturbation is applied.

4.4 Discussion and Summary

This chapter looked at analyzing the underlying controller from a new perspective by
looking at value function and Bellman’s optimality condition. A constrained optimization
problem was formulated to estimate the control signal and this optimization problem was
used in an algorithm to decide about the structure of controller that generated the motion
for nonlinear systems. Four structures were introduced as a reference to simulate motions
and hopefully these structures can be used in the future for human motion analysis. The
feedforward part of the controller was the same for all structures while the feedback parts
were different. We used a proportional-derivative controller for non-optimal feedback and
an online optimization for the optimal feedback.

The main component of the approach was based on value function and we represented
the value function by approximating it with a neural network for the entire state space.
Generating the value function for each model may take some time, but the advantage is
that it is possible to save the function and use it for many different trajectories to be
analyzed. If we do not know about cost functions, we input the state trajectory to the
approximated value function. The value function helped us in understanding the effect
of perturbation. The approximated function is valid if the disturbance is not really huge.
Otherwise, the states of the system are pushed out into an entirely new state space. As
such, we need to assume that the disturbance is going to stay in some neighborhood, as
long as we have trajectories in that neighborhood.

This research is an introduction to answer questions on the human motion controllers
and how the CNS controls the body. In this work, we assumed the structures for both the
offline and online controllers are known. The next step is to see which of these structures
are valid for human motions. We are going to apply an inverse optimal control on the
optimal trajectories from human motions to estimate the underlying cost functions and
decide about the experimental controller structures using the algorithm presented here.
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Chapter 5

Human Motion Controller
Components Analysis

In daily life, we often need to adapt our motion to the environment to cope with per-
turbations to accomplish the task successfully. To detect the perturbations in the envi-
ronment, humans use their senses and mainly rely on vision, the vestibular system and
the somatosensory sensor (proprioception) [97]. These sensory systems provide feedback
to the central nervous system (CNS) about the orientation and position of the body. For
weak perturbations, only a small reaction may be needed to recover from the perturbation.
Strong perturbations may result in failure to accomplish a task, such as fall. To avoid
falling due to a perturbation, three strategies can be taken: ankle strategy (i.e. movement
of the ankles to apply torque to the ground) [92], hip strategy (i.e. movement of hips and
arms to apply horizontal ground forces) [72], and foot placement (i.e. movement of hips
and knees to take a step or squat) [117].

In this chapter, we investigate the difference between perturbed and unperturbed hu-
man motions to extract information about feedforward and feedback controller components.
For this study, we modify the algorithm developed in Chapter 4 to analyze human motion
in the presence of perturbations. First of all, we select the motion of interest, and describe
the task. Then, we explain the dataset collected for the analysis and present the dynamic
equations of motion. After that, we formulate the optimal control to describe the part of
motion we will focus on. The main part of the analysis is on the inverse optimal control and
how we recover the weights of the features in the objective function. Finally, we discuss the
controller structure by inverse optimal control results and presenting the new algorithm.
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5.1 Motion Selection

The aim of this chapter is to identify the human controller structure. To test the method
proposed in Chapter 4, we need to find the suitable motion first to see how the feedback
part is acting to reject perturbation. This motion has to fulfill several criteria:

The recorded motion should be analyzable in a multi-body simulation. The trajec-
tories generated in simulation can be compared with the data for the analysis and
validation.

The motion has to be simple enough such that the model can be represented with
few segments. This helps simplifying the analysis.

The perturbation has to be measurable. The information from this measurement can
help modeling and analyzing the problem better.

The perturbation has to be small enough to avoid injuries to participants.

The task has to have clear objectives. If the objectives are not well-defined, the
demonstrator can interpret the objectives in different ways leading to unexplained
variability.

Also we could have two task specifications for generating a suitable dataset:

Approach one: We could specify to the participant that the motion objective is
trajectory tracking. If a disturbance occurs, they should aim to return the motion to
the nominal (feedforward) trajectory. This can be handled by the approach presented
in Chapter 4.

Approach two: We could specify to the participant that the motion objective is goal
reaching and we can look at the difference between the unperturbed and perturbed
motion to see what kind of decision has been made about the new trajectory.

The first approach does not study all types of motions, while the second approach can
be applied to any kind of natural motions human do everyday. For the second approach,
one example that involves whole body motion is the squat exercise. The squat exercise
involves multiple joints in a single motion and is considered effective for improving lower-
limb muscle function [23]. Furthermore, the ability to perform this task is a prerequisite
for more complex skills of daily living such as picking up an item, descending the stairs,
or rising from a chair. Given that, in this chapter we will apply and modify the algorithm
proposed in Chapter 4 to the squat motion.

o8



5.2 Squat Motion

In biomechanics, squatting has been described using a variety of measured and estimated
quantities [99]. Kritz et. al [99] reviewed the literature on major segment and joint during
the upward and downward phase of a bilateral squat. They showed that the squat is a
fundamental movement pattern that requires mobility at the ankle, hip, and thoracic spine
and stability at the foot, knee, and lumbar spine [99]. Table 5.1 summarizes this review
and explains the kinematic region engaged during the motion. The main regions considered
are head, thoracic spine, lumbar spine, hip joints, knees, and feet/ankles. The motion of
head and lumbar spine are neutral. Thoracic spine is slightly extended or neutral and held
stable. Hip joints are stable and no mediolateral movement and no dropping of the hips,
should stay aligned with knees. Knees are stable and they are aligned with the hips and
feet. There is no excessive movement inside/out, forward/back. Feet are flat and stable,
heels are in contact with the ground at all times.

Based on this pattern, we will consider three degrees of freedom in our model consisting
ankle, knee, and hip. These are the most relevant joint angles to describe the motion in
the sagittal plane. It has been proposed that the ability to perform a bodyweight squat at
or below 90° of knee flexion with proper symmetry and coordination is a good indicator of
overall movement quality [99]. The optimal movement may be described as movement that
occurs without pain or discomfort and involves proper joint alignment, muscle coordination,
and posture.

The majority of previous studies for human squat motion analysis have been also fo-
cused on three DOF models with relevant joint angles (ankle, knee, and hip) in the sagittal
plane. For example, Matsui et. al [120] formulated the optimal control problem for simulat-
ing the squat motion. The model is characterized by sequentially minimizing two functions
for crouching—down and rising up. Lin et. al [I14] formulated the inverse optimal control
problem for this motion to recover the underlying cost functions. This paper showed that
power and Cartesian acceleration are the important basis functions in this motion.

5.2.1 Task Description

The task instructions are to do a squat motion with bare feet or comfortable shoes and
focus on keeping the feet always on the ground. The squat motion task is performed
without time limitation. The task starts and ends with the standing pose. The depth of
the squat is determined through an elastic band in front of the participant. The person is
asked to hold their arms in front of the body as shown in Fig. 5.1. The height is adjusted
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Table 5.1: Kinematic consideration for the bilateral squat motion from [99]

Anatomical Region Kinematic Motion

Optimal Pattern

Head Neutral

Held straight inline with the
shoulders, gaze straight or slightly up

Thoracic Spine

Slightly extended

Scapulae adducted, slightly extended
or neutral and held stable

Lumbar Spine Neutral

Neutral, stable throughout movement

Hip Joints

Flexed and aligned

Stable, no mediolateral movement and
no dropping of the hips, should stay
aligned with knees

Knees

Aligned with feet

Aligned with the hips and feet, stable,
no excessive movement inside/out,
forward /back

Feet /ankles
in/lifting up

Flat not rolling

Feet flat and stable, heels in contact
with the ground at all times

based on the participant’s preference for the depth in order not to make them exhausted
after a few sets of 10 repetitions. After each set there is a break to minimize fatigue.

For the perturbation sets, another person with a push stick pushes the participant from
behind on the upper trunk. This push is done from the back to avoid visual prediction of
the perturbation Fig. 5.1(c). The participant is asked to continue the motion after being

perturbed.

5.2.2 Data Collection

One participant is recorded for the squat motion. The following sets are done by the

participant:

e Set one: 10 repetitions without perturbation.

e Set two: 10 repetitions with pushes at each repetition.

e Set three: 10 repetitions without perturbation.
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Figure 5.1: (a) standing phase (b) squatting phase (¢) how the perturbation is applied
through a push stick.

e Set four: 10 repetitions with pushes at random repetitions.

e Set five: 10 repetitions without perturbation.

The motion is recorded through a Vicon motion capture system consisting of ten in-
frared cameras, which record whole-body motion kinematics by tracking the spatial po-
sitions of markers with a high spatial resolution. The markers are attached with double
sided adhesive tape to tight clothing worn by the participant. Markers are placed on the
locations specified by Istituti Ortopedici Rizzoli (IOR) marker set [103] shown in Fig. 5.2.
The position of these points in a global coordinate system is saved as data files. The motion
is recorded with a rate of 100 Hz.

The force of the perturbation is measured with the 3D force sensor OMD - 50SA -
1800N from OptoForce. It is a three-axis force sensor that measures slippage and shear
forces using infrared light and different kinds of optical grade elastomers to detect the
smallest deformation in the shape of the outer surface, Fig. 5.3. Deforming surfaces are
physically separated from the sensing element. For our experiments, the sensor is attached
to a stick [97] to be able to push the subjects, Fig. 5.4. The push force is recorded with a
rate of 100Hz.
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Figure 5.2: (a) upper body marker set, (b) lower body marker set.

To synchronize the data from the OptoForce and the Vicon, the participant is standing
on two force plates. Before the experiment, the push stick is dropped down vertically on
the force plate and a push is applied. In both the OptoForce data and the force plate, this
point in time can be determined by the first significant increase in the force. In the same
setup, also pushes during squatting are recorded and experiments in which the subject is
told not to take a step in a defined area. The data for both sensors is shown in Fig. 5.5.

To get joint angles from marker positions, Biorbd library is used [126] for inverse kine-
matics where the model is specified in a .biomod form as shown in Fig. 5.11. The zero
configuration is defined when the participant is at the upright posture. The output of
Biorbd is shown in Fig. 5.6 for ankle and knee joint angles. To segment the data, we
looked at the joint velocity in the knee and considered the zero joint velocity as the crite-
rion for segmentation, as shown in Fig. 5.7. The vertical red line on the joint angle and the
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Figure 5.3: Function of the OptoForce sensor.

Figure 5.4: Picture of the push stick with markers

joint velocity for each repetition shows the peak of force of the push stick that is applied.
For all repetitions, the external force is applied when the participant was squatting.

Fig. 5.8 shows the selected trials and repetitions for unperturbed and perturbed mo-
tions. Ten unperturbed motions are chosen as follows: five trials are selected from ”set
one” which are before the perturbation set "set two”, and five trials are chosen after the
perturbation set from ”set three”. Also, five repetitions from the perturbed motions are
extracted in "set two”. In this analysis our focus is on how the motion is affected after
perturbation is applied, so we extract the motion after the peak of perturbation (red line)
in Fig. 5.7(b). This will be the part from squatting to standing. The first observation for
the comparison between trials in Fig. 5.8 is on the variation of joint angles. Before and
after perturbation, the trials are consistent and the consistency is higher before the per-
turbation. However, when the motion is perturbed the initial joint angles are significantly
impacted which is more obvious in Fig. 5.6. Also, Fig. 5.7(b) shows the planning for the
ankle is not a straight path from the initial point to the final point and there is a bump in
the signal. This is less observed for the knee and the hip joints.

The force plate also records center of pressure (CoP) data. CoP is a point where the
ground reaction force is balanced. This data can gives information if the CoP is within
the based of support (BoS) to keep the balance. BoS is the region of ground surface which
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Figure 5.5: Synchronization data for the push stick and the Vicon through (a) force plate
data, (b) push stick data. The red circle shows the peak force used for synchronization.

the body contacts with. Fig. 5.9 shows CoP along the position of markers from the IOR
model Fig. 5.2 in the feet. To highlight the BoS, FCC is approximately the position of
the heel, and Toe is the estimated position of the tip of toe. CoP reports that the motion
is balanced during the motion. For unperturbed motion, the markers positions are almost
flat, but they oscillate for perturbed motions and return back to the original location.

5.3 Modelling and Analysis of Human Squat Motion

5.3.1 Fixed-Base Mechanical Model of Human Squat Motion

The human sagittal model with three degrees of freedom is shown in Fig. 5.10. The base
of the model at the feet is assumed to be fixed on the ground. It consists of ankle, knee
and hip joints. The link angle ; (i = 1,2, 3) is the angle between link ¢ and the vertical
line. The joint angle ¢; = 6; — 0;_; (with 6y = 0) is the angle between link ¢ — 1 and 1.
The first joint angle, ¢, is the same as the first link angle 6;. For link ¢, m; is its mass,
l; is the length, I.; is the distance from its center of mass (COM) to joint ¢, and I; is the
moment of inertia around its COM. These parameters are calculated according to [11] and
the calculated parameters are summarized in Appendix A.
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Figure 5.6: Inverse kinematic results from Biorbd for perturbed motion (a) ankle joint
angle, and (d) knee joint angle; the vertical red line shows the time at which the peak of
force from push stick is applied on the participant.

We assume that the model is frictionless. The equation of motion follows the dynamics
presented in [191] and is

BT =M(0)6 +C(6,6)0 + G(9), (5.1)

where 8 = [0, 05, 05]", M () is the positive definite inertia matrix, C(0, 0) is the Coriolis
matrix, and g(@) is the gravity vector. 7 = [, 72, 13]T are the torques applied to each
joint. The mentioned matrices are defined as

M(0) = [Oéz'jCOS(ez‘ - ej)}
C(0.6) = [a,;0;sin(6; — 0,)]

G(0) = g [ Bisin(0;)]

in these formulas,

3
ai=Ti+mll + 17 ) mpy 1<i<3
k=i+1
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Figure 5.7: Segmentation on the perturbed motion (a) push stick data, and (b) knee joint
velocity; the vertical red line shows the time at which the peak of force from push stick is
applied on the participant.

3
ozij:aji:mjlilcjj%ilj Z mi. 1§Z§]§3
k=i+1

3
Bi = milei +1; Z mp 1<:<3
k=i+1
g is the acceleration gravity. The input matrix B € R"*P
-1 0

-1

1
B=|0 1
0 0 1

The inverse kinematics in the Biorbd library gives q = [q1, g2, 3|7 in Fig. 5.10. The
model used in Biorbd has zero configuration when the participant is at the upright position
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Figure 5.8: Selected trials/repetitions for analysis (a) unperturbed motions before pertur-
bation, (b) perturbed motions, and (¢) unperturbed motions after perturbation.

Fig. 5.11. Given that, 0 is obtained as follows:

th =aq
0 = q2 + 0, (5.2)
s = g3 + 02

5.3.2 Optimal Control Problem Formulation for Squatting to
Standing Motion

We formulate the problem as a one-phase optimal control problem for squatting to standing
part of motion. A general optimal control problem can be formulated as:

); (5-3)

In the optimal control formulation, an objective function of Lagrangian type (.) is
minimized with respect to the states a(t) and the controls w(t).
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Figure 5.9: Center of pressure data from force plate (a) unperturbed motion for trial B
after perturbation, (b) perturbed motion with ten repetitions. The solid lines are from
measurements, and the dashed line is the estimated position. In the legend, COP shows
the center of pressure data, FAL is the marker on the outside of ankle, FM1 is the marker
on first knuckle of the foot, FM5 is the marker on the fifth knuckle of the foot, FCC is the
marker on the back of the heel, and Toe is the estimated position of the tip of foot.

T
’

States and Control: The state vector isx = [9, H]T where 8 = [kale, Ornee, thp]

. . . . T . T
and @ = [Qankle, Ornees thp] . The control vector is u(t) = 7(t) = [Tankle, Thnee Thip} )
The system dynamics can be expressed in the state-space representation

&= f(x,u), (5.4)

The right hand side of the f(.) is represented by the forward dynamics formulation, with
the equation of motions and actuation torques described in the previous section. The
dynamics can be discretized by Euler integration with sampling time At = 0.01 sec as
equation (4.11).

Objective function: The objective function is a weighted sum of features

P = iwi‘l’i (5.5)
i=1

The component features are derived from the human motion analysis literature. It has been
shown that a single feature cost function can not describe a task fully, and a combination
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Figure 5.10: Three degrees of freedom human model for squat motion.

of features explain the human behavior better [16]. The following component features of
the cost function are considered:

e Minimization of joint torques squared, which had shown good motion optimization
results in dynamic motions [185]. This term produces smooth solutions with quite
low energy consumption [90].

Oy (k, xp, up) = uf’uk (5.6)

e Minimization of power [132]

q)Q(kawkauk) = ‘uqu’ (57)

e Balance maintenance, formulated as the distance between the foot center and the
center of pressure (COP). The ground reaction force vector represents the sum of
all forces acting between a physical object and its supporting surface. Balance is
ensured when the sum of total momentum is equal to zero [143, 144],

COP — bFy, — 11+ cmyg
F,

gz

(5.8)
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Figure 5.11: Biorbd model with z axis (red), green y axis (green) and z axis (blue) in the
upright posture at the zero configuration.

where 77 is the ankle torque, F,, and F,, are horizontal and vertical components of
the ground reaction force; Fy, and F,. are the resultant joint force components. my,
ly, a, b, c, and COP are the feet mass, the length of the base of support, the distance
between the ankle and the heel, ankle height, the distance between the center of the
foot and the ankle, and the distance between the COP and the toe. Fig. 5.12 shows
these parameters on the foot.

Figure 5.12: Foot model with free body diagram.

To define the vertical and horizontal ground reaction forces, we need to obtain the

acceleration of center of mass for each segment in the model from the position vector

re — Sy Tiemi d rc = Sy i,
¢ = =5l and rf = =g
i=1 " Do My
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Tiz = lc15m(Q1)

ro. = lisin(qi) + le2sin(q + ¢2)

T3, = lisin(q1) + lasin(q + q2) + lessin(q + g2 + q3)
T, = lc1005(Q1)

Ty, = licos(qi) + leacos(q1 + q2)

r3. = licos(q1) + lacos(q1 + q2) + lescos(qu + g2 + g3)

3
ng = E miTix
=1

3
ng = —mrg + Zmii;i,z

i=1

(5.9)

The CoP feature in the objective function is included as follows with 2, the position
of the center of foot

(133(/{3, T, uk) = (COP(:ck, uk) — x]goot)2 (510)

Angular momentum, which has been identified as a factor in motion control [169].
This feature is formulated as [69]:

G4k, xr) = | L(x)| (5.11)

where L is defined as the sum of individual segment angular momenta about the foot
center.

L= Z(’I"Z — T?Oot) X (mlrz) + Izwl (512)

This formulation has two terms. The first term represents the transnational move-
ment of each segment by defining the vector r; which is the position of center of mass
of each segment with respect to ankle. 7%,, is the position of the foot center. The
second term is the rotational movement of each segment which is expressed by an
angular velocity w; multiplied by a moment of inertia I; around the center of mass
for each segment.
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As each objective feature has different units, we require normalize each term to enable
comparison. Each objective term ®; is normalized by multiplying it by constant /3; which

is defined as )

ZZI ©l<k7 Iy, uk‘)

Constraints: The set of constraints included in the optimal control are defined as
follows:

fi =

e System dynamics based on equation (5.1).

e [nitial and end positions: We specify the initial and final conditions based on the
values of the joint positions and velocities at which the segment starts in the squatting
and ends at the standing posture.

e Box constraints: For the joint angles, the ranges are defined based on the range
obtained from the dataset.
0° < Gankie < 407
—139° < Grnee < 0°
0% < gpip < 1807 (5.13)
~10<6,; <10 j=1,2,3.
—200 <71; <200 ¢ =1,2,3.
Software tool: we solve the optimal control problem with the OptimTraj library [90].

The solution of the optimal control problem is carried out using the direct collocation
method.

In summary, the optimal control problem is defined as follows:

T
min Zwlﬁlu%,k + wafu j, + wsPsus , + wabslwr k] + wsPs|wekde] + wes|ws kgs .kl

z,u
k=1

+ w1 B(COPy — 5,5,)* + wsfs| L
st. Ty = f($k>uk)>

zl <z <z

v <u <l

ry =&, — TF.
(5.14)
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where the weightings w; in the objective function are estimated by inverse optimal control
first and the starting point &; and ending point &y are the same as the data.

5.3.3 Inverse Optimal Control

Here we use the recovery matrix inverse optimal control method by Jin in [77] to estimate
the weights of the objective function. As the objective function does not change for the
upright motion, we assume that the weights are not time-varying and build the recovery
matrix for the whole window size. Therefore, the recovery matrix is defined as

with
H =F,F'd,+®,
H,=F,F; 'Z

Here, F,, F,, ®,, ®, and Z are defined as:

afT
1 _8:1:’2‘
1
F.(t) = N of" (5.16)
ECET
I
afT
ou}
Fu(t) = (5.17)
afT
our_,y
T
9 9o P
q)x:[ax; oz 8x}71:| (5.18)
0> 0% oo 17T
(I)u:|:8u§ ouy 8u}71:| (5.19)
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T
0P
Z - [0 82;71] (5.20)

Wlth —6{ = I The Optlmal tra'ectory 1S governed b the KKT Optlmaht Criteria Wlth the
ox J Y y

T
following Lagrange function

T T
L= w'®@pup) + > A (zp — fzp1,up)) (5.21)
k=1 k=1
where A, € R" is the Lagrange multiplier. The optimal solution is given by
0L
=0
amT:T
oL
=0
a/u’iﬂ:T

Based on this condition, the optimization problem is defined as follows

min H(0) | -

T
s.t. Zwi =1, w>0.
i=1

5.3.4 Controller Structure Analysis

To analyze the controller structure for the squat motion dataset, we present Algorithm 5 for
the current selected squat motion trial to output the status of the controller. In Algorithm
5, the input is the experimental state trajectory «f. where a disturbance might have been
applied. We first compute the control signal by inverse dynamics to obtain u§.,_;. Then,
an inverse optimal control is applied on the state and control trajectory to recover the
weights. Using the identified weights of the active objective features, the optimal control
problem is solved to estimate the state and control trajectory @, w. The experimental and
estimated state trajectories are compared. If the difference is negligible, the controller is
in the feedforward form and there is no disturbance; otherwise there is disturbance. Next,
the experimental and estimated control signals are compared to determine if the controller
has only a feedforward term or not. The threshold in this algorithm is set by choosing two
of trials as the train data.
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Algorithm 5 Human Controller Structure
Input: Experimental state trajectory x{.y

1: Compute control signal u{.5_; from inverse dynamics
w <+ Apply IOC on the state and control trajectory
x,u <+ Apply DOC
if ||zf — k|| < €4 then
msg < No disturbance - Feedforward control
else
msg <— There is disturbance
if ||’U/i — ’Uij < epp then
msg < The controller has only a feedforward term.
else
msg <— The controller includes more terms than a feedforward term.
end if
: end if

: return msg

— = = e
Ll O 4

Table 5.2: Confusion matrix for classifying trajectories as disturbed (D) or not disturbed
(ND).

Actual

D | ND | Total
D 5| 2 7
ND 0] 8 8
Total 5 10 15

Detected

Table 5.2 shows the output of the algorithm for classifying the trajectories as disturbed
or not disturbed. Out of 15 trials, 13 trials are classified correctly. However, 2 "not
disturbed” trials are in the category of disturbed as the error between the direct optimal
control and data was more than the threshold.

To better understand each part of the algorithm, we analyze the control strategy esti-
mated by the optimization problem given by (5.22). Estimated weights for all trials are
summarized in Table 5.3. In this table, the recovered weights correspond to the torque
squared at ankle, knee and hip, power at ankle, knee and hip, center of pressure around
the center of foot, and the angular momentum about the center of foot, respectively.

The recovered weights are also shown as bar graphs in Fig. 5.13 to better compare
the effect of each weight before perturbation, perturbed, and after perturbation. The
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Table 5.3: Inverse optimal control results. In each trial, the superscripts "bp”, "p”, and
"ap” stand for before perturbation, perturbed, and after perturbation, respectively. For
each result, the root mean-square error (RMSE) of trajectories is also computed.

Trials Recovered Weights RMSE
(W te: Whraue: WTomque: Wikomers Wiinsers W Pomers WOOPs Whiomentum]
Tflp [0.0000 0.3653 0.0000 0.0000 0.0966 0.2608 0.0000 0.2773] 0.0153
T]’gp [0.0000 0.3838 0.0021 0.0000 0.0276 0.3209 0.0000 0.2657] 0.0181
Tgp [0.0000 0.3704 0.0817 0.0000 0.0000 0.3109 0.0000 0.2370] 0.0177
Tgp [0.0000 0.4141 0.0384 0.0000 0.0002 0.2682 0.0000 0.2791] 0.0170
Tgp [0.0000 0.3452 0.1221 0.0000 0.2296 0.0000 0.0000 0.3031] 0.0178
T}; [0.0000 0.0000 0.0000 0.0796 0.1612 0.3392 0.2399 0.1801] 0.0318
Tg [0.0000 0.0000 0.0000 0.0143 0.3913 0.1118 0.3628 0.1198] 0.0330
Tg [0.0000 0.0000 0.0133 0.0000 0.3899 0.1564 0.3275 0.1129] 0.0466
7 [0.0000 0.0000 0.0000 0.1138 0.3122 0.0899 0.2914 0.1927] 0.0537
Tg [0.0000 0.0000 0.0093 0.0000 0.1359 0.3276 0.4347 0.0926] 0.0905
T [0.0000 0.4175 0.0214 0.0000 0.0000 0.3751 0.0000 0.1860] 0.0105
Tgp [0.0000 0.4853 0.0000 0.0000 0.0000 0.3305 0.0000 0.1842] 0.0129
Tgp [0.0000 0.4914 0.0000 0.0000 0.0000 0.2725 0.0000 0.2361] 0.0130
Tgp [0.0000 0.3412 0.0690 0.0000 0.0045 0.3329 0.0000 0.2525] 0.0208
Tgp [0.0000 0.2099 0.0069 0.0000 0.2383 0.2207 0.0000 0.3242] 0.0223

results suggest that the participant minimized joint torques on knee and hip before and
after perturbation while the effect of this term is negligible when the motion is perturbed.
The weight on the power on the hip is greater than the power on knee before and after
perturbation. This makes sense as more body weights is in the third segment of the
dynamical model, and more energy is needed for the hip. However, the weight on the
power on ankle is increased when the motion is perturbed Fig. 5.13(b). The weights
on the ankle and knee power might suggest that the participant used the ankle strategy
to maintain balance and reject the perturbation to continue the task. Also, when the
participant is perturbed the term on the center of pressure appears. This term appears
as a feedback term in the objective function to balance forces around the center of foot.
Also, the center of pressure includes a term on the ankle torque which confirms the ankle
strategy is being used to balance. The IOC also showed the effect of angular momentum
in all trials. It is slightly higher when the motion is not perturbed. For unperturbed trials,
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the angular momentum is quite low because the person is just going up and down, and
higher weight is observed. Whereas the participant uses angular momentum in perturbed
trials and this term increases to minimize the rotational movements in the body. The
participant lowers the weight on the angular momentum to allow themselves to rock its
body to recover from the disturbance.
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Figure 5.13: Recovered weights from inverse optimal control for (a) unperturbed motion
before perturbation, (b) perturbed motion, and (c¢) unperturbed motion after perturbation.

To validate the recovery results, we simulate the trajectory for each condition by solving
the optimal control problem based on the recovered cost functions. Fig. 5.14 shows the
simulated trajectory for one unperturbed trial and one perturbed trial. For the unperturbed
trial, the simulated trajectory using the recovered cost functions fits well the real data,
indicating the validity of the IOC. For the perturbed trial, there are remaining differences
for the ankle and hip trajectories, which suggests that additional terms in the cost function
might be needed to regenerate the motion.

The root mean square error (RMSE) of trajectories for each trial is summarized in
Table 5.3 and Fig. 5.15 presents the RMSE for each joint trajectory separately. When the
participant is perturbed, more error is observed on all joint angles. Errors on unperturbed
motion is relatively smaller with a lower variation. The errors on each joint for each
condition is almost in the same range; however, the error on the ankle joint is more than
other joints when the participant is perturbed.

To understand the controller structure better, we can also look at the control signal
we get from IOC and the inverse dynamics. Fig. 5.16 shows the control signals for one
unperturbed and one perturbed trial. The pattern of the signal for the unperturbed trial in
Fig. 5.16 (a) is similar between the inverse dynamics and the feedforward optimal control.
However, the differences for the perturbed trial in Fig. 5.16(b) shows the feedback terms
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Figure 5.14: Simulated motion using the recovered cost functions. Solid blue lines are
from the experimental data, and dashed red lines are the simulated trajectories for (a)
unperturbed motion trial A after perturbation and, (b) perturbed motion repetition B.

regenerated the command with a similar pattern; however, there is some error that might
be improved by including more terms in the feedback components.

5.4 Summary

In this chapter, we chose and collected data to study the effect of perturbation on an squat
motion. An analytical 3 degrees of freedom model with joints on ankle, knee and hip was
formulated to analyze the data. We also formulated the direct optimal control to simulate
the trajectories and compare the state trajectories with the dataset. To infer the objective
functions, a recovery-based inverse optimal control was applied and the results suggest that
the participant used the ankle strategy to balance and reject the perturbation to continue
the task. The proposed approach can differentiate between perturbed and unperturbed
trajectories with an accuracy of 87%.
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Chapter 6

Conclusions and Future Work

6.1 Summary

In this thesis, we approached the study of human feedforward and feedback controllers using
optimal control theory. For this study, we focused on understating how the optimality
criteria can be used to see what controller is used under different conditions. For this
analysis, we first proposed two main algorithms in simulation, and at the end tested and
modified the algorithm on real data.

Recovering Objective Functions for Feedforward-Feedback Controllers

We formulated the inverse optimization problem for the trajectories generated by iterative
linear quadratic regulators. The controller in these trajectories have both feedforward and
feedback components. The feedback controllers in these trajectories are locally optimal for
nonlinear systems. Through this formulation we showed that the controller converges to
the optimal feedback controller LQR for linear systems. Our method provided a solution
for estimating the feedback gain of linear systems where inverse linear quadratic regulators
are dependent on the given feedback gain assumption. This formulation only estimates
the underlying objective function, and does not decompose the feedforward and feedback
components.

To detect feedback components through IOC, we also formulated IOC on Hamiltonian
functions and summarized the results in Appendix B. The formulation represents the esti-
mation of cost function and value function at once; however, the final matrix always become
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undetermined (i.e., the number of rows is less than number of columns). Therefore, it is not
possible to estimate the cost function. To solve the issue, we proposed to use an iterative
algorithm instead. This approach estimated the cost function only in the quadratic form.
This approach is not preferred at the end, because it only estimates quadratic objective
terms, and is not efficient in comparison to our proposed method in chapter 3.

Decomposing Feedforward-Feedback Components

We decomposed controllers components by assuming specific structures for controllers in
simulation for tracking problems. In the implementation, we assumed the same feedforward
controller for all structures while the feedback parts were different. We used a proportional-
derivative controller for non-optimal feedback and an online optimization for the optimal
feedback. To decompose the controller components, we proposed an algorithm that is
based on value function. We formulated a constrained optimization problem to estimate
the control signal and this optimization problem was used in an algorithm to decide about
the structure of controller that generated the motion for nonlinear systems.

Perturbed Human Motion Dataset

As part of this thesis, motion capture data of unperturbed and perturbed for squat motion
are recorded. The motion is perturbed by pushes from behind the participant in the upper
trunk with random timing and different strength.

Squat Motion Feedforward-Feedback Controller Components Analysis

We studied human squat motion controller by classifying the recorded motions as perturbed
and not-perturbed motions. This classification was done based on describing the task by
an optimal control problem and regenerating the motion. To regenerate the motion, the
objective functions were inferred by applying recovery-based inverse optimal control on
the whole window of each trial at once. Then the controller feedforward and feedback
terms were extracted through inverse optimal control. The results showed that the partic-
ipant used the ankle strategy to balance by minimizing center of pressure distance. Also,
minimization of torques and power were shown as feedforward components in the motion.
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6.2 Future Work

Extension of the Database

e In this study, we only analyzed the motion for one participant. To generalize the
results of this work, it is reasonable to investigate for more perturbed motions of
more participants. It would be valuable to have data from different age groups in
order to compare the behavior of controllers.

Extension of the Human Model

e In this study, we simplified the model to three degrees of freedom. As what is
suggested in the literature, a four degrees of freedom with the additional degree in
the middle trunk could be more useful to study this motion when the perturbation is
included in the model. As we have the information from the push stick, it is possible
to model the perturbation as the external force and include it in the dynamical model.
Also, to understand the human behavior the model can be extended to include muscle
like behavior by muscle torque generators.

e For human squat motion, the deterministic part of the motion is analyzed. One
limitation in the implementation of optimal control was on the OptimTraj library
which is in MATLAB, and there is no option to connect other dynamical models in
C++ to this library. Other libraries for solving optimal control problems such as
MUSCOD-IT and Bioptim are alternatives to continue the analysis. MUSCOD-II is
not an open source library, and Bioptim is. We have summarized the results we got
from these libraries in the Appendix C. One challenge we faced with Bioptim is the
definition of unilateral constraints to fix feet on the ground. If this issue is fixed, the
library is a useful tool for human motion analysis. However, inverse optimal control
methods such as the one we used as recovery-matrix IOC limits the use of dynamical
models, which has to be analytical to be able estimate objective functions.

Extension of Optimization-based Approaches

e For the human squat dataset, we classified the motion as disturbed or not, and then
analyzed the feedforward and feedback components through inverse optimal control.
To improve the results for perturbed trials, we suggest to implement nonlinear model
predictive control to see whether the same motion can be generated.
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e If the human model becomes stochastic and includes more degrees of freedom, it
would be interesting to see what kind of optimal control problem can regenerate the
motion. The inverse optimal control method has to be adapted for this analysis,
respectively.

e If the control policy is detected as the linear combination of feedforward and feedback
components, one possible way of generalizing the controller for other conditions is
by approximating the controller through neural networks. Methods used on value
function approximation can be used to generalize the policy to other initial and final
conditions.

e We also formulated state feedback control estimation using Bellman optimality con-
dition and the method is explained in the Appendix D. In order to use this method
in practice, we need to extend the work such that non-quadratic terms such as center
of pressure and angular momentum could be included in the Hamiltonian function.
This might result in a non-closed form solution for the control signal. However, we
might be able to extract the feedback part in the control signal automatically.

e The recovery matrix IOC has the advantage of fast analyzing data, analyzing in-
complete observations and multiphase motions. This method only includes objective
terms which depends only on states and control signal. If the time is a free variable
in the task, it cannot be identified. To better identify the underlying objective terms,
inclusion of terminal cost function and other objective terms needs to be explored as
well.

Potential Applications

e Techniques to analyze the human’s controller structures could be useful to analyze
the way a person responds to disturbance and then to identify whether somebody is
at the falls risk before they actually fall. The results can aid in rehabilitation, sports
and mobility assessment. Also this study can support the development of training
equipment and assistive devices that work in synchronous manner with human. For
example, one specific application could be for falls risk for elderly. For elderly people
falling is really bad because they usually break their hip, and it is really hard for
them to heal again especially when they have dementia. This is really serious as
there is going to be a significant decline in health and increase the death after the
fall. Having better tools for being able to understand what people are doing in
response to a disturbance could be useful. When elderly people become more frail,
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the risk of falls for them is increased. Everyone falls when something unexpected
happens. For example, you try to get off from your chair there is something under
foot that you do not expect it or the cat walks by or something. For young people
when there is that kind of disturbance, they are able to quickly respond and reject
the disturbance but for older people that ability to handle disturbances becomes
challenging.
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Appendix A

Human Model Parameters

The participant is with the total mass my = 63 kg, and total height of 7 = 1.57 m. The
summary of each segment’s properties is shown in Table A.1. For link ¢, m; is its mass,
l; is the length, l.; is the distance from its center of mass (COM) to joint ¢, and I; is the
moment of inertia around its COM.

Table A.1: Parameters for the model. my is the total mass, and [y is the total height of
the participant.

Segment Shank Thigh Upper Body (Trunk

Name + Head+ Arms)
1=1 1=2 1=3

li[m] 0.2492[1 0.2717 0.420507

m;lkg| 0.0962mp 0.2956mp 0.5823mp

loi[m] 0.0931; 0.16215 (A.2)

Llkg.m?  0.0962m7(0.0931)2 0.2956m7(0.1621,)2 (A.3)

CoM [m]  0.44161 0.36121, (A1)

105



new
head

new

trunk

Co
Co

new
Co upper Arm

CoMyeY

orearm

new
CoMper,

MpeaaCoMPER) + Mypyng CoMIEY |+ 2(Mypper arm CoMIEY

= lirunk + lhead — CoMpeaa

= lypunk — CoOMypunk

= lirunk — CoMypper armcos(v)

= ltrunk — (lupperarm + COMforearm)cos(a)

- lt’runk - (lupperATm + lforearm + OOMhand)COS(a>

new new
upperArm T Mforearm COMETL 4y + Mhana CoM{ g y)

Mpead + Mirunk + 2(1\/IuppeTAr7n + Mfo'r'ea'l"rn + Mhand)

new
trunk

new
head

new
upper Arm

Inew
orearm

new
I hand

I3

o 2
- Iforearm + Mforearmd orearm

2
= Ihand + Mhanddhand

(A.2)

2
- Itrunk + MtTunkdtrunk
2
= [head + Mheaddhead

2

= IupperArm + MupperAT’mdupperArm

new

Jrew
upper Arm

head + Inew

Z:"i%k + + 2( orearm +

Lana)

106



Appendix B

Inverse Optimal Control and
Hamiltonian Function

This appendix summarizes the methods we develop on inverse optimal control to detect
the feedback component using the Hamiltonian function.

B.1 Inverse Optimal Control using Hamiltonian Func-
tion

Consider a class of discrete-time systems described by deterministic nonlinear dynamics in
the affine state space difference equation form

Tip1 = f@r) + Glag)uy, (B.1)

where f(x)) and G(x;) are known nonlinearities with @), € R™ and u; € R™ as the
state and input vectors at time instance k € Z, respectively. The performance index to be
minimized is

N-1
J(xo) = Z w! ®(xp, uy), (B.2)
k=0
where N is the number of time steps, and w?®(.,.) is the running cost function. The cost

function is represented as the linear combination of cost terms.
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V(o) is the accumulated cost if the system is initialized at time step zero in state xg
with wo.y_1 = {ug,...,un_1}. The value function (cost-to-go) for the kth stage can be

rewritten as
N-1

Vi(xy) = wh ®(xp, up) + Z w! ®(x,,u,)
n=k+1

which is known as discrete-time Bellman equation:
Vk(mk) = 'wT<I>(a:k, ’U,k) + Vk-i—l <$k+1) (B3)

where at the Nth stage, we have Vy(xy) = %m%Q ~yxy. The minimization of this equation
is just the discrete-time Hamilton-Jacobi-Bellman (HJB) equation.

Vi) = Tgllikﬂ(qu’(kaa ug) + Vi (Zg41)) (B.4)

Equation (B.3) can be used to recursively solve for the optimal control starting from the
end of the horizon backward in time.

The Bellman optimality condition states that
V(xp) = w' ®(xp, up) + V(wiay) (B.5)

where V' (x}) evaluated at state @} is unknown. By differentiating both sides of the Bellman
equation with respect to xj and uj, we have

oV(zy) 0@ Tw N OV (x},) Oz

ox: Oz ox;., Oz (B.6)
0= oo T oV (x;, ) Oxy 4
= w +
ouy ox;., Ouj
denoting 3‘3;??) =ALeR”
k
op " ofr
A, = dl w+ L*AI:JA
Ox;, Ox;, (B.7)
0= 09 T'w + afTX‘
- Ou; ou; k!
assuming 8;5_? is invertible, we can eliminate Aj_ ; from above and write the equations for
k

the entire horizon. By stacking the above equation for each time step we have
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®,w+ F,F ' (A — ®,w) = (B.8)

where
afT
oxy
Fm — . c an(Nfl)an(Nfl) (Bg)
afT
oz,
afT
ouy
Fu — o c Rmu(N—l)an(N—l) (BlO)
afT
Ouyy_4
| 0% oo 1T ngy(N—1)xr
(I)z — |0xy T Oy, eR <B11)
o0 o0 17 mu(N—1)xr
(I)u — | Ouy T Ouy_, eR <B]'2)
A=A Ayy] e RE(EDH (B.13)
simplifying the equation we have
(&, — F,F'®, F,F '] [";\’] =0 (B.14)

To find w and A, we can minimize the 2-norm of its residual
min|| [®, — F,F,'®, F,F]|Y| |3
w7}\ u ut* g xT u* x A 2

s.t. Zr:w =1.
i=1

(B.15)
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B.2 Iterative Algorithm using Hamiltonian Function

The previous section represents the formulation that estimates both the cost function and
value function at once; however, the final matrix always become undetermined. Therefore,
it is not possible to estimate the cost function. To solve the issue, we propose to use an
iterative algorithm instead.

Let us define the performance index to be minimized in the quadratic form

N-1
1 1 1
J(xo) = §x%QNCUN + Z(ingwk + §U£Ruk), (B.16)
k=0

xy is the final state. @ and Qy are symmetric positive semi-definite (S'}) state penalty
and terminal state penalty matrices, and R is a symmetric positive definite (S}, ) input-
penalty matrix. In this problem, we only focus on recovering the weighting related to the
state penalty. Let us represent the penalty on the states in the running cost function with
q(xy) = 32} Quy. Therefore the Hamiltonian function can be states as

1
H(“% Uy, Av<mk)) = Q(wk) + §U£Ruk + Vk(wkﬂ) - Vk(iﬁk);

The optimal value of the cost-to-go function, V*(x;) can be estimated by the function
approximation method. Let us define it as:

Vi () = Zwi¢i(mk)7 (B.17)
i=1
where )
() = eap(— 12 CL (B.18)

)

is the i'h Gaussian radial basis function centered at ¢; and of width 7;. w; is the associated
weight of ¢;(xy).

In practice, the approximation of the value function can have some approximation error
such that as the number of basis function increases, the error converges to zero. The error
of the value function approximation leads to some residual error e, on the Hamiltonian
function. [184] showed that this residual error is bounded on a compact set under the
Lipschitz assumption on the dynamics. To estimate both w (weights of the value function)
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and g(xy), we can formulate the optimization problem based on minimizing the 2-norm of
the Hamiltonian function Hy(w) and the condition of having non-negative q(xy).

min||Hy (w)][;
w ’ (B.19)
st. q(xg) >0, k=1,...N—1.

where 1
Hi(w) = w' (®(xxpyy) — B(x1)) + qlxr) + §ugRuk, (B.20)
The structure of this problem is a constrained Quadratic Programming problem. As
q(xy) is unknown and appears in the objective function, we need to have an algorithm that
for each pair of (x, uy) the problem is solved and update q(x) based on that for the next
iteration. Algorithm 6 is the preliminary approach to implement this optimization problem.
Now by considering Ay = ®(xx41) — ®(x1), by, = q(x)) + 3ui Ruy, and ¢ = ui Ruy, the
general standard form of the problem becomes:

w (B.21)
s.t. ’U)TAk—Ck SO, k)zl,...,N—l.
at each iteration this optimization problem can be solved using the active-set method which
handles inequality constraints.

The output of equation (B.21), is a constant vector over time and states. If g(xy) was
known, then we could simply stack all Ay, by, and ¢, as A, b, ¢ and solve the following
optimization problem once

minw? Hw + fw
w

(B.22)
st. I<0, k=1,...,N—1.
AlA{ 2b1Ar‘1r wTA1 —C
where H = : , f = : ,and I = : . The
ANflAIJ\}_l QbN,lA%_l ’UJTAN,1 — CN-1

results for three different systems are shown in Fig. B.1.

However, the challenge here is that g(x)) is not known, and it appears both in the
objective function and the inequality constraint. One possible approach to update gq(xy)
is to update the Q as q(xy) has a structure.

rev = QM + 0P, (B.23)

) 2
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Figure B.1: Estimation of w when ¢(xy) is known. (a) and (d) linear system with one
state, (b) and (e) linear system with two states, (¢) and (f) inverted pendulum.

where 7 is a nonnegative relaxation factor which is between zero and one, and Py is the
search direction. The search direction can be defined on minimizing the squared residual
error on the Hamiltonian function. If we assume that Hy(w) = e, and E = se’e then the
search direction is

Oe1 1
OF Qi; 9L 151
Po=—gp-=-la = a]| i [==fa - a]| (B.21)
aQij den 1
0Q;; 2TiNT4N

where e; is calculated using Qf’lj‘-i. Algorithm. 6 shows the step of implementing the idea
for estimating both w and ¢(x;) based on minimization of Hamiltonian function. This
algorithm for systems with more than one state is implemented as a bilevel optimization
problem. In another word, the update explained above is just a search in the feasible
space to find the closest weights that give the estimated trajectory similar to the reference

trajectory. The initialization should start in such a way that all the space is covered.
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Algorithm 6 Estimation of w and ¢(x)) based on minimization of Hamiltonian function
(constrained QP optimization)

Input: Optimal state and control sequence uj.5_; and 7., and system dynamics (D.1),
with R

. Initialize Q + «

while Q > 0 and ||z}, — Z1.5]|]2 < v do

[N

3:  min, wl Hw + fw,
st. 1<0, k=1,.,N—1.
4 Qij + Qi — 77%
5: end while
6: q(xr) = w' (@) — w' d(@psr) — sl Ruy,
7 Q<+ Q
8: return ¢(x;) and Q

Now by implementing Algorithm 6, results are obtained in Fig. B.2.

—

———en ~
F &
y

(a) (b) ()

Figure B.2: Estimation of w when ¢(xy) is unknown with polynomial basis functions. (a)
linear system with one state, (b) linear system with two states, (c) inverted pendulum.
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Appendix C

Human Squat Motion Modeling by
Libraries

This appendix summarizes the human squat modelling using the Rigid Body Dynamics
Library [57] and Bioptim [125].

C.0.1 Mechanical Model

The human model is modeled as a four DOF system. The dynamics of the model is
described with the equation of motion:

T=M(q)G+Cl(q,q) +9(q) (C.1)

where the joint angles, joint velocities, and torques are ¢ € R* ¢ € R* and 7 € R*
respectively. M (q) is the inertia matrix, C' is the coriolis and centrifugal term, and g is
the gravity vector. Dynamics of the system is computed using the Rigid Body Dynamics
Library [57], and the model is defined in a .lua model. Another model named .bioMod
model is also generated by converting the .lua model to .hioMod model using the Biorbd
package [126]. The dynamic parameters are shown in Table. C.1. The total height (Lyoza;)
and the total mass (myq) of the human model is updated based on the measurements of
the female or male models reported on [11]. L; is the length of each segment, and m; is
the mass. The upper body segment is a combination of head, trunk, upper arms, forearms,
and hands. L,; takes the longitudinal center of mass (CoM) of each body segment.
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Table C.1: Dynamics parameters of the human body from |

]

’ parameter H Shank ‘ Thigh ‘ Pelvis ‘ Upper Body ‘
Li(m) 0.25L¢0tar | 0.21 L4011 | 0.10 Lot 0.34 L1 otar
Lei(m) 0.14L, 0.13Ls 0.05L3 0.06L,
m;(kg) 0.10myotar | 0.30myotar | 0.12m00a1 | 0.3TM01a

C.0.2 Formulation of Optimal Control Problem

We formulate the problem of squat motion as a two-phase optimal control problem. The
model starts the motion in upright standing position:

e Phase 1 (Squatting Phase): The initial posture is the standing pose, and then it
goes down to squat.

e Phase 2 (Standing Phase): The model goes back from squat to the upright
position.

A general multiphase optimal control can be formulated as:

min /0 B(t, (1), u(t))

st. &= f;(t,x(t),u(t)),
t e [Sj_hsj],
J=1,.n.,
so =0, 58,,, =T,
r*(x(0),...,2(T)) =0,
rinea (g (0), .., 2(T)) > 0.

(C.2)

The constraints of the optimal control problem are defined in equation (C.2) where f;(.) is
the differential equation describing the phase j, s; is the time boundary of the phase j, n,,
is the number of phases, and r(.) and 7™¢(.) are the equality and inequality constraints
of the problem. The final time T is fixed in this formulation.

States and Control:
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T. The

control vector is u(t) = 7(t) = [Tankle, Tknees  Thip TmidTmnk}T. The right hand side of
the f;(.) is represented by the forward dynamics formulation, with the equation of motions
and actuation torques described in the previous section.

The state vector is & = [9, O]T where 8 = [Hankle, Oknees  Onip, Hml-dTmnk]

Objective function: The following objective terms are implemented to simulate the
squat motion.

e Minimization of joint torques squared which had shown good motion optimization
results in dynamic motions is considered.

O(t, (1), u(t)) = u(t) u(t) (C.3)

e In addition, minimization of absolute power [132] is considered as well with appro-
priate weights )

O(t, z(t), u(t)) = wiu(t) u(t) + ws|u’ 6| (C4)

e To compare the results, we make the model track the dataset collected by [114] with

a least squares objective function. As the dataset will make sure the there is a squat,
this problem is implemented as a single phase problem. The first term minimizes the
residual between joint angles, and the second term is to make the trajectory smooth.

R
min > Sllaf — a(t)|3 +7llu(t)|3
j=0
st &= f(tx(t), u(t), (C.5)
rU(x(0),....,x(T)) =0
r"(z(0), ..., 2(T)) > 0.
Equality Constraints

e System dynamics for both phases are based on equation (C.1).

o [nitial and end positions: The motion starts and ends at the standing position where
the joint angles and joint velocities are zero.

z(0) = z(T) = Osx1 (C.6)
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e Constraint on Hip: For describing the task, we can say that the pelvis should go
down to a certain height. We can have an equality constraint on the beginning of
the second phase. This constraint is defined on the vertical distance between the hip
and the feet dpyor, where the desired squat depth is set to the seventy percent of

dstandin g as

dHtoF - 0-7dstanding =0 (C7)

This constraint is defined as the starting condition of the second phase.

Inequality Constraints

e Constraint on Knees: In the squat motion, knees should not pass the toes. This
can be implemented by assuming that knees should not go more than 20cm. This
constraint can be transformed into the angle constraint, by calculating the angle
between the foot and the shank. The limits for the ankle angle is

—2° S gankle S 687 (08)

o Constraint on feet: The feet would be flat and parallel to the ground. This can be
defined by the constraint on the ankle torque. The ankle torque should be compen-
sated by the force on the foot times the lever arm. As a first guess, the force is
equivalent to the weight of the person. It changes a bit as it starts moving. The force
cannot travel forward more than the toes and backward than the heel. Essentially
that helps to limit the torque in two directions such that the force travel limits are
0.6l oot forward and 0.141 s, backward where Ly, is the length of the foot [168].

Tankle = anklelfoot
Fankle = Myotal 9 (Cg)
- O'14lfoot S lfoot é 0-6lfoot

This constraint is implemented as a range constraint on the ankle torque for a person
with 62kg as:
— 110 < Tunkie < 0 (C.10)
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e Box constraints: For the joint angles, the ranges are defined based on the range
obtained from the dataset [111] as Fig. C.1.

— 22 < Ognie < 68°

— 1397 < Oppee < 3°

—10° < By < 90°

— 15% < Omiarrunk < 15° (C.11)
~10<6; <10 j=1,2,3,4.

— 110 < Tankie < 0

—200 < 7; <200 i=2,3,4.

100 10

50
0 3

50t

il

-150 - - y -20

joint angle (deg)

v \
| |

Phase 1 Phase 2
(b)
Figure C.1: The joint angles and torque for each degree of freedom from the dataset [114]

Software tool: we solve the optimal control problem with two packages: (1) MUSCOD-
IT [1041] and (2) open-source software package Bioptim [121]. At the beginning of formulat-
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ing the problem, MUSCOD-II was used but as it is not freely available, we have switched
to Bioptim.

C.0.3 Computational Results using MUSCOD-I11

This section illustrates the numerical solutions of the optimal control problem. To better
understand the role of the mid-trunk joint and observe its effect for describing the squatting
task more naturally, we compared the results of two models. One model with four degrees
of freedom including the mid-trunk joint and another model with three degrees of freedom
excluding the mid-trunk joint. The results from MUSCOD are validated to simulate the
intended motion based on the visualization output from RBDL Toolkit.

In MUSCOD-II [104], the solution of the optimal control problem is carried out using
the direct multiple shooting method described in [21], in which controls and states are
discretized. The phase times s, , are divided into my, intervals, over which a simple
function (constant or linear) is chosen for the controls. State variables are parameterized
with the multiple shooting method which uses the same grid as the control discretization.
From these two discretizations we obtain a large but structured nonlinear programming
problem (NLP), which is solved using an adapted sequential quadratic programming (SQP)
method. The dynamics of the systems is handled on all multiple shooting intervals in
parallel to the NLP solution by means of efficient integrator at a desired precision.

Two-Phase Optimal Control

First implementation is the minimum energy consumption problem. Fig. C.2 shows the
joint angles, joint velocities and torques for the three DOF model. In three DOF model, it
is observed that there is a negative joint velocity for the first phase which makes the model
go downward, and there is a positive joint velocity for the second phase which makes the
model come back into the upright position.

Fig. C.3 illustrates the same problem on the four DOF model. The ankle, knee and hip
joints have bell shaped profile which are more similar to the dataset in Fig. C.1. These
profiles are more symmetric than the results from the three DOF model in Fig. C.2(a).
These profiles potentially indicate more natural squat motion. The mid trunk angle is
between -0.5 rad and 1 rad. In comparison with the torques reported in Fig. C.1 higher
torques are obtained here, and high variation is observed.

By comparing the images of one cycle of motion in Fig. C.2(b) and Fig. C.3(b), the
posture of the four DOF model at the squatting looks more realistic, but after moving back
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Figure C.2: Two Phase Minimum Energy Problem in 3 DOF (a) joint angles, joint veloci-
ties, and torques, (b) image of one cycle of motion.

to the standing position the model leans forward more than the three DOF model where
the midtrunk joint is also affecting this posture. Also midtrunk joint has high velocity
profile which impacts the motion in the 4DOF. By looking at the peak of the hip and
knee angles, we can observe that they are higher than the three DOF which comes from
satisfying the equality constraint defined in equation (C.7).

Motion Reconstruction

Second implementation is the motion reconstruction by tracking the dataset [111] in the
single phase optimal control problem. Results reported here are based on the second squat
repetition of the first participant in the dataset. Fig. C.4 shows the tracking results for
the three DOF model and Fig. C.5 is for the four DOF model. The optimization was able
to generate the squat motion in the single phase problem as the dataset has the squatting
profile inside. The knee joint velocity goes from a negative to a positive in a single phase.
In the four DOF model, the range of motion of the mid trunk is between -2 to 2 degrees
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Figure C.3: Two Phase Minimum Energy Problem in 4 DOF (a) joint angles, joint veloci-
ties, and torques, (b) image of one cycle of motion.

Fig. C.5 (a). In comparison with the two-phase problem Fig. C.3 (a), the midtruk has
lower range of motion and joint velocities. The results on the midtrunk show that, for the
two-phase optimal control problem a suitable range for this joint should be considered in
order to avoid the model to lean forward less and more naturally.

The visualization output of RBDL toolkit in Fig. C.4 (b) shows the three DOF model
has a fixed upper trunk with stiff motion. And Fig. C.5 (b) for the four DOF model shows
slight movement in the trunk which makes the movement more realistic.

Discussion

The motion reconstruction results verifies that the four DOF model has more potential to
simulate the squat motion closer to the natural human squat movement. For the choice of
the objective function in the two-phase problem, the power was also implemented. Based
on the results, we observed that further investigations on objective functions is needed to
study the weighting of the torques and the absolute power in more detail. In the optimal
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Figure C.4: Motion Reconstruction in 3 DOF

control problem, we explained how the torque on the ankle can be limited to make sure
stability. There should also be exploration on suitable ranges for knee, hip and mid trunk
torque to get results closer to the tracking problem as well.

The optimal control results are compared in Fig. C.6 from the absolute error between
joint angles from MUSCOD and the dataset. Error in motion reconstruction with four
DOF is observed to be the lowest. By comparing the results from two optimal control
problems, motion reconstruction outperforms the two-phase problem in terms of the errors
for both three DOF and four DOF models. The hip error for the tracking results are less
than 0.1 rad which shows deeper squat posture. Overall, Fig. C.6 suggests that the box
constraints summarized in equation (C.11) should be modified in order to achieve better
optimal solutions.

C.0.4 Computational Results using Bioptim
The model used in Bioptim is shown in Figure C.7. The blue spheres are the marker sets

used during the data collection which is from Chapter 5. From the calibration data in the
form of .c3d in Vicon, a few frames are taken which are static. Then the data is converted
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Figure C.5: Motion Reconstruction in 4 DOF

to a .lua model. After that a .bioMod model is manually constructed from the .lua model.
In this model, the arms are fixed at some angle in front of the body. By applying inverse
kinematics on the data collected in Chapter 5, the joint angles are obtained as Figure C.8
for an unperturbed trial. This model is a floating-based model where the root is in the
pelvis and contact points are defined in the feet. To fix the foot in the ground, contact
points are defined in the model.

In the next step, we implemented the optimal control to check the motion. The results
are obtained as Figure. C.9 where the objective functions include minimizing the torque
squared and the final time. Through this implementation, the optimal solution is found;
however, the contact point is not well defined, and unilateral constraints have to be included
in the dynamics. This part is left as the future work.
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Figure C.6: Absolute error of joint angles. The results are from (blue): tracking the three
DOF model, (red): tracking the four DOF model, (black): two-phase minimum energy
three DOF model, (green): two-phase minimum four DOF model, (light blue): two-phase
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Figure C.7: Visualization of the .bioMod model for (a) standing phase and (b) squatting
phase.
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Figure C.8: Inverse kinematics results (a) joint angles, and (b) joint velocities.
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Figure C.9: Direct optimal control results (a) joint angles , (b) joint velocities, (¢) torques.
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Appendix D

Estimating Feedback Component
using Bellman Equation

One approach of estimating the feedback control signal dependent on state is by solving the
discrete-time Bellman optimality condition. Let’s reformulate the discrete-time dynamic
equations in the affine state space difference equation form

Lpi1 = f(il?k) + G(wk)uk, (Dl)

with the feedback control law u; as
Uy — ’Qb(il?k), (DQ)

Let us define the discrete-time Hamiltonian as [108]

1
H(CL‘k, ug, AV(CL'k)) = q(a:k) + §UgR’U,k + Vk(a:kH) — Vk(mk), (DS)
the above equation is the temporal difference error [108]. The Bellman equation requires

that the Hamiltonian be equal to zero for the value associated with a prescribed policy. The
first order necessary condition for a control law to be optimal is to calculate the gradient
of the right hand side of HJB equation (D.3) with respect to uy as [(]

d(g(z) + yuj Ruy) N 0Ty OVi(®h11)

8’U,k auk 8mk+1 =0 (D4)
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and therefore the predicted feedback part at each sample time is

Tavk*+1(93k+1)

’lAlfB(wk) = —R_lG((Ek) awk
+1

(D.5)

In this formulation, if we have objective terms for human squat motion in chapter 5 on

wy + w401’]€ 0 0
torque and power the matrices can be defined as R = 0 Wy + wsb i 0
0 0 ws + w603,k
and G = { Ml(z 0) B] . By inputting @l ?(x;) to the discrete form of the system dynamics,

we can get the estimated state of the system for the next sample time.

By estimating the control signal of the dataset in chapter 5 using this approach, we get
the results as Fig. D.1. For the unperturbed trial, the magnitude of the control signal in
the state feedback form is zero for the hip and the ankle, and approximately zero for the
knee. The output of the perturbed trial shows that the feedback is active for perturbed trial
in the knee and hip. However, the magnitude on the hip is really large. To get reasonable
range for the torque, other objective terms have to be included in the Hamiltonian to
extract information correctly.
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Figure D.1: Estimated feedback part for (a) unperturbed trial A after perturbation, and
(b) perturbed trial A.
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