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Abstract 
 

Laser Directed Energy Deposition (LDED) is one of the advanced manufacturing technologies for 

building near-net-shaped engineering components in a layer-by-layer fashion using high-power 

lasers as an energy source. LDED using powder feeding (LDED-PF) is widely used due to its 

higher dimensional accuracy and ability to build fine features. The quality and performance of 

LDED-PF-built components are dependent on several factors such as process parameters, process 

conditions, feedstock properties, system configuration, tool-path generation, etc. Among the 

above, trajectory control is one of the emerging and active areas of research. Generally, trajectories 

are developed offline for printing the parts. However, some of the major challenges involved in 

conventional trajectory development for LDED-PF are the propensity for collision between the 

deposition head/ nozzle and the part being built and challenges in building components with 

variable overhang.  

The major goal of this work is the development of adaptive trajectory control of the LDED-PF 

process using online and offline techniques to build high-quality components. The work involves 

the offline trajectory development to build complex-shaped components with variable overhang 

angles by considering collision between the nozzle head and the part; adaptive layer thickness for 

higher dimensional accuracy. In addition, the work is extended to the development of online and 

intermittent trajectory control using a combination of in-situ surface quality monitoring and 

machine learning technique. 

Offline trajectory planning is performed for two complex-shaped geometries such as a 

hemispherical dome and a bent pipe. Offline adaptive trajectory planning for hemispherical dome 

involves the development of an algorithm including the deposition parameters with variable 

overhang and collision checking, while the trajectory planning for building bent pipe structures 
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includes the deployment of adaptive slicing in addition to the collision check and overhang angle 

deposition. To manufacture the dome, the tilt angle is used to avoid the collision between the 

nozzle and previously built material with a condition that the tilt angle cannot exceed the maximum 

allowable overhang angle. The algorithm verifies the tilt angle suitable to build the dome and the 

angle is transferred from the tilt angle to the tilt angle of the rotary table. In order to build the bent 

pipe geometry, the variation in scanning speed is used to realize the adaptive slicing, which aids 

in having point-to-point variable layer height thereby permitting non-parallel deposition. In 

addition, changing the tool orientation during the deposition permits the manufacturing of support-

free bent pipe parts as observed for dome structures. LDED-PF of the hemispherical dome and 

bent pipe was performed using the developed algorithms and the built geometries have good 

dimensional stability and density.  

In the case of online trajectory planning, a novel in-situ monitoring software platform was 

developed for the online surface anomaly detection of LDED-PF parts using machine learning 

techniques. The above starts with the development of a novel method to calibrate the laser line 

scanner with respect to the robotic end-effector with sub 0.5 mm accuracy. Subsequently, 2D 

surface profiles obtained from the LDED-PF built part surface using the laser scanner are stitched 

together to create an accurate 3D point cloud representation. Further, the point cloud data is 

processed, and defect detection is carried out using unsupervised learning and supervised (deep) 

learning techniques. Further, the developed defect detection software platform was used to create 

an online adaptive toolpath trajectory control platform to correct the dimensional inaccuracies in-

situ. It uses a laser line scanner to scan the part after the deposition of the definite number of layers 

followed by the detection of concave, convex, and flat surfaces using deep learning. Further, the 

developed adaptive trajectory planning algorithm is deployed by using three different strategies to 



vii 

 

control material deposition on concave, convex, and flat surfaces. The material deposition is 

controlled by using adaptive scanning speed, and a combination of laser on-off and scanning speed. 

Subsequently, the built geometries are subjected to geometric, microstructure, and mechanical 

characterizations. The study offers an integrated and complete methodology for developing high-

quality components using LDED-PF with a minimal dimensional deviation from the original CAD 

model.  
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1 Introduction  
 

1.1 Motivation  

 

Metal Additive Manufacturing (MAM), a disruptive technology, is revolutionizing industrial 

manufacturing through a unique combination of shape and material design freedom [1–3] uses a 

layer-by-layer manufacturing methodology to build metallic components directly from 3D model 

data. MAM is used to build complex-shaped metallic components with overhangs, undercuts, etc. 

that enable the fabrication of lightweight structures for various engineering applications. MAM 

primarily uses wire and powder as feedstock source [4-5].Among them, powder-based MAM is 

the most commonly used technique mainly due to the higher precision. Laser Directed Energy 

Deposition- Powder Fed (LDED-PF) is a MAM process that uses a moving laser heat source to 

create a melt pool on the surface of the substrate/ previously built layer onto which powder is 

added to deposit material as per the desired geometry. The material deposition is carried out in a 

layer-by-layer fashion to build 3D components. LDED-PF is also known by several names such 

as laser metal deposition, direct metal deposition, laser solid forming, laser engineered net shaping, 

etc[6]. LDED-PF permits the fabrication of components with desired density and high performance 

with tailored properties by manipulating the process parameters and conditions [7].  

The quality and performance of LDED-PF-built components are dependent on several factors such 

as: process parameters, process conditions, feedstock properties, system configuration, tool-path 

generation, etc. In LDED-PF, the major process parameters that control the process quality are 

laser power, scanning speed, powder feed rate, shielding gas feed rate, powder particle size 

distribution, working distance, etc [8]. In addition to the above, the slight change in the process 

conditions such as variations in ambient temperature, humidity, etc. can influence the process 



2 

 

quality. The quality of feedstock governs the density of the part, mechanical properties, and 

minimum feature size of the LDED-PF built part [9]. The system configuration is significant in 

deciding the amount of design freedom that can be achieved with LDED-PF. 

Among the above, trajectory control is one of the emerging and active areas of research. Generally, 

trajectories are developed offline for printing the parts. However, some of the major challenges 

involved in conventional trajectory development for LDED-PF are the propensity for collision 

between the deposition head/ nozzle and built part and challenges in building components with 

variable overhang. In order to manufacture complex parts with a high overhang angle using LDED-

PF, the nozzle need to rotate to keep tangent to previous layers. This avoids the requirement of 

building support structures for geometries having high overhang angles. However, the above 

introduces the possibility of a collision between the deposition head, the substrate, or previously 

deposited layers. In addition, the trajectory may need to be adaptive to suit the geometry of the 

components with overhangs as it is challenging to build complex components with uniform slicing. 

Another challenge in trajectory development is the lack of dimensional accuracy due to heat 

accumulation and melt-pool overflow [10]. The rapid heating and cooling cycles during LDED-

PF can lead to the induction of residual stresses and consequently distortions in the parts. 

Therefore, it is required to have in-situ process monitoring to understand the deviations in real-

time [11]. Recently, the use of various vision systems including laser scanners, laser line profilers 

and stereo vision cameras are reported in the literature for in-situ assessment of  LDED-PF parts 

[12-13]. Computer vision algorithms have been tested heavily on feature extraction and error 

identification on the LDED-PF parts and they have been proven to detect the surface defects of the 

LDED parts [14]. Subsequently, the prediction of the geometric defects and adaptive trajectory 

development can be used to improve dimensional accuracy. 
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1.2 Objectives  

 

The major goal of this work is the development of adaptive trajectory control of LDED-PF process 

using online and offline techniques to build high-quality components. The work involves the 

offline trajectory development to build complex shaped components with variable overhang angles 

by considering collision between the nozzle head and built part; adaptive layer thickness for higher 

dimensional accuracy. In addition, the work is extended to the development of online and 

intermittent trajectory control using a combination of in-situ surface quality monitoring and 

machine learning technique. This is further used for developing the intermittent repair trajectory 

to improve the surface quality of the LDED parts. 

In order to achieve this goal, the objectives of this research are defined as follows:  

a) Development of collision-free offline adaptive trajectory planning for building components 

with variable overhang angles and characterization of the built parts. 

b) Development of offline trajectory planning using adaptive slicing technique to build parts with 

variable overhangs followed by geometrical and material characterization of the built parts 

c) Development of machine learning technique for in-situ surface quality assessment of LDED-

PF built parts.  

d) Development of an online adaptive tool path platform for LDED-PF and extensive geometrical, 

microstructural, and mechanical characterizations on the built parts. 



4 

 

1.3 Outline  

 

 

This thesis consists of eight chapters. The first chapter includes the introduction, motivation and 

objective of the thesis. Chapter two is dedicated to the short literature review on metal additive 

manufacturing, LDED-PF and adaptive trajectory planning. Chapter three outlines the architecture 

of the in-house developed LDED-PF system, all the experimental process parameters and 

characterization techniques and settings. At the beginning of chapters 4-7, a short literature survey 

related to the objectives of the associated chapter is provided.  

The fourth chapter is a journal article published in the journal of Additive Manufacturing Letters:  

❖ F. Kaji, A. N. Jinoop, M. Zimny, G. Frikel, K. Tam, and E. Toyserkani, “Process planning 

for additive manufacturing of geometries with variable overhang angles using a robotic laser 

directed energy deposition system,” Addit. Manuf. Lett., vol. 2, p. 100035, 2022, doi: 

https://doi.org/10.1016/j.addlet.2022.100035 1.  

 
1 The copyright permission is provided in the Letters of Copyright Permission section 

https://doi.org/10.1016/j.addlet.2022.100035
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The fifth chapter is a journal article published in the journal of Additive Manufacturing:  

❖ Farzaneh Kaji, Arackal Narayanan Jinoop, Ali Zardoshtian, Patrick Hallen, German Frikel, 

Mark Zimny, Ehsan Toyserkani, “Robotic Laser Directed Energy Deposition-based Additive 

Manufacturing of Tubular Components with Variable Overhang Angles: Adaptive Trajectory 

Planning and Characterization”, Addit. Manuf., vol. 61, 103366, 2023, doi:  

https://doi.org/10.1016/j.addma.2022.103366 2.   

The sixth chapter is a journal article published in the Journal of Manufacturing Processes:  

❖ Farzaneh Kaji, H. Nguyen-Huu, A. Budhwani, J. A. Narayanan, M. Zimny, and E. Toyserkani, 

“A deep-learning-based in-situ surface anomaly detection methodology for laser directed 

energy deposition via powder feeding,” J. Manuf. Process., vol. 81, pp. 624–637, 2022, doi: 

https://doi.org/10.1016/j.jmapro.2022.06.046 3. 

The seventh chapter is a journal paper submitted to the Journal of Optics and Laser Technology:  

❖ Farzaneh Kaji, H. Nguyen-Huu, Arackal Narayanan Jinoop, M. Zimny, and E. Toyserkani, 

Intermittent Adaptive Trajectory Planning for Geometric Defect Correction in Robotic  

Laser Directed Energy Deposition-based Additive Manufacturing. 

 

Chapter eight includes the conclusions and future work, Figure 1-1 shows the structure of the 

thesis  

 
2 The copyright permission is provided in the Letters of Copyright Permission section 
3 The copyright permission is provided in the Letters of Copyright Permission section 

https://doi.org/10.1016/j.addma.2022.103366
https://doi.org/10.1016/j.jmapro.2022.06.046
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Figure 1-1: Structure of the thesis 
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2 Literature Review and Background 
 

2.1 Introduction  

 

This chapter provides a brief literature survey in general. Specific and detailed literature review 

will be provided in chapters 4-7. 

2.2 Metal Additive Manufacturing  

 

Additive Manufacturing (AM) is a growing technique for processing polymers, metal, and 

ceramics using layer by layer deposition. It is a direct form of manufacturing to build complicated 

geometries with minimal wastage [17–19] AM is also a new paradigm for the design and 

manufacturing of high-performance components for medical, energy, automotive and aerospace 

applications [19–23].   

Among the seven AM processes as per ASTM/ ISO classification, the most commonly used Metal 

Additive Manufacturing processes are Laser Powder Bed Fusion (LPBF), and Laser Directed 

Energy Deposition (LDED) [22].   

2.2.1 Laser Directed Energy Deposition (LDED) 

 

In LDED, a high power laser (e.g., Disk, Fiber, CO2 or Nd:YAG) is used to create a melt pool onto 

which the feedstock material (wire or powder) is added to deposit a layer. The most commonly 

used LDED technique is LDED-Powder Fed (LDED-PF), where the metal powder is injected into 

the melt pool using a powder nozzle in the presence of the shielding gas or inert atmosphere as 

shown in Figure 2-1.  The advantages of LDED-PF include near-net shape manufacturing of high-

value and complicated components, manufacturing of functionally graded materials, in-situ 

alloying, and free-form fabrication [25–27].  
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Figure 2-1 Schematic of LDED-PF Process 

 

Table 2-1. Comparison of LPBF and LDED-PF Processes 

Feature LPBF LDED 

Material addition Pre-placed powder bed [26] In-situ feeding [24] 

Layer height Micron-scale [27] mm scale [28] 

Surface Finish Medium [29] Low [32–35] 

Design complexity Unlimited [34] Limited [35] 

Multi-material components Restricted freedom [36] Possible [36-37] 

Overhang Structures Possible [39] Limited [40] 

Support structures Mainly required [41] Mainly not required [42] 

 

Table 2-1 presents a comparison between LDED-PF and LPBF processes. Thus, the major 

advantages of LDED-PF technology are the higher build rate and multi-material freedom. In 

addition, due to its ability to join dissimilar materials, provide large area coating with minimal 

dilution, good metallurgical bond and low distortion levels, the technology has been widely used 

as compared to other joining and coating techniques such as laser welding, thermal spraying, etc. 
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As compared to other DED counterparts such as wire-arc DED and electron beam DED, LDED-

PF has the advantages of better precision and accuracy leading to the development of components 

having dimensions close to the original design, paving the way for near-net-shaped parts [43]. It 

also provides a smaller heat-affected zone and better surface quality. LDED-PF also provides 

opportunities to build free-form complicated geometries using advanced five-axis toolpath 

planning by reducing the time to market for prototyping and new product developments [44-45].  

On the process side, LDED-PF is a non-equilibrium thermodynamic process that entails very rapid 

heating and cooling rates often in the order of the 103 𝐾/𝑠 or even more [46]. The major process 

parameters for LDED-PF are laser power (P), powder feed rate (F), scanning speed (V), and laser 

spot size (d) [47].A diverse set of process parameters coupled with complex heat transfer including 

conduction to the substrate, convection to the surrounding atmosphere, evaporation and radiation 

makes it difficult to understand the effects of process parameters on the overall quality of the 

LDED-PF process individually [48].Thus, combined process parameters such as laser energy 

density (LED) and powder fed per unit length (PFL) are used to correlate the process parameters 

with deposit quality. Equations 2-1 and  2-2 are used to calculate LED and PFL, respectively. 

 

 

𝐿𝐸𝐷 =
𝑃

𝑉𝑑
 

       2-1 

𝑃𝐹𝐿 =
𝐹

𝑉
 

2-2 
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2.3 Advantages and Limitations  

 

The various advantages of LDED-PF are as follows: 

a) LDED-PF can manufacture metallic parts with desired density and excellent material 

properties [49].  

b) Compared to traditional welding, LDED-PF can result in lower residual stresses, especially for 

joining dissimilar materials [50]. 

c) LDED-PF can be used to join dissimilar materials by creating a smooth transition in the 

composition of the materials based on the position using the gradient path. This avoids the 

formation of detrimental phases and sharp interfaces, which can increase joint strength and life 

[51].  

d) LDED-PF can be used for multi-axis deposition using 5-axis CNC machines and robotic 

systems, making it possible to deposit the material in different orientations. This can provide 

opportunities to manufacture the components with overhang features without using support 

structures [52]. Robotics systems show great flexibility for LDED-PF since they provide 

additional degrees of freedom, if required. LDED using robotics also provides a larger build 

volume due to the high reachability of the robotic arm. It makes them the best candidate for 

manufacturing large-size components [53].  

Despite all the benefits of the LDED-PF, the process has some limitations. Some of the limitations 

of LDED-PF are: 

a) Being a very rapid thermal process with high complexities, LDED-PF suffers from a lack of 

repeatability [44].  
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b) A significant number of experiments are required for establishing the toolpath efficiency and 

process parameters to achieve the desired density and geometrical stability [54] 

c) For parts with complex features, multiple iterations are required to optimize the process 

parameters for achieving the desired dimensional accuracy and material properties [55]. 

d) The surface roughness and dimensional accuracy of LDED-PF parts are lower than LPBF 

processes mainly due to larger met-pool size and higher energy density [56].  

e) Fabrication of thin wall structures is challenging [57]. 

Therefore, manufacturing parts with desirable dimensional accuracy and material properties is 

time-consuming and expensive using LDED-PF. Thus, modelling techniques such as finite 

element analysis (FEA) and controlled LDED-PF are being used recently to address these issues 

and they are still active areas of research in LDED-PF [58-59].  

2.4 Applications  

 

2.4.1 Near-net shape Manufacturing  

 

One of the main applications of LDED-PF is the manufacturing of near-net-shape components for 

various industries, especially when the application requires hard-to-machine materials. Machining 

hard materials is a slow and costly process. The machining speed can be accelerated, and cost can 

be reduced by using LDED-PF, which aids to build the near-net-shaped component and final 

finishing can be done using traditional subtractive manufacturing. Some examples include the 

development of Titanium brackets for aerospace applications [60-61].  

2.4.2 Large area cladding  

 

Cladding is mainly used to develop a high-performance coating on a part surface with strong 

metallurgical bonding and controlled dilution. Cladding aids to improve the properties of the 
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component by improving its surface hardness, corrosion resistance, wear resistance, oxidation 

resistance, etc. to increase the lifetime of the component [62-63]. Multi-axis cladding using LDED-

PF permits the cladding of the interior surface of pipes and elbows and surfaces that have non-

planar curvatures as shown in Figure 2-2(a).  

2.4.3 Feature Addition  

 

LDED-PF can be used to add features to the existing parts, and it is beneficial when the required 

features are expensive to build using conventional manufacturing techniques. The features can be 

the same material as the substrate, or new material, which is metallurgically compatible with the 

base material [64]. An example of a feature addition application is shown in Figure 2-2(b).  

 

  

 

 

(a) (b) 

Figure 2-2: Applications of LDED (a) Cladding on an SS316 shaft (b) Building features on 

the existing parts 
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2.4.4 Repairing or remanufacturing  

 

Repairing/Remanufacturing is one of the most common applications of the LDED-PF, especially 

in the aerospace and nuclear industries. In the case of high-value components, repairing a worn-

out high-value part is more cost-effective than manufacturing a new part. Some of the main 

examples of repair using LDED-PF are repairing the jet engine gas turbine blade using Ni-based 

superalloys, repairing the manufacturing molds, etc. [65–67].   

2.5 Challenges and opportunities  

 

LDED-PF has the potential to replace/ compliment conventional manufacturing in several sectors. 

However, the process limitations offered by the technology such as lack of dimensional accuracy 

slow down the wide implementation of the technology. In addition, conventional slicing 

techniques used for trajectory planning are not yet robust enough to support automatic collision 

avoidance and variable layer height deposition. The above techniques are necessary to build 

components with complex shapes and variable overhangs. In addition, during the component 

fabrication, dimensional inaccuracies are introduced by the thermal cycling, acceleration and 

deceleration in turns and corners, and laser and powder stream defocusing. Adaptive trajectory 

planning and control are also required to measure the deviations during the build and develop 

remedial strategies to reduce the dimensional deviations.   

2.6 Summary  

 

In this chapter, LDED-PF process, its advantages, limitations, and application were discussed. This 

research aims to address the limitations of conventional trajectory planning and propose remedial 

measures to build complex geometries with improved dimensional accuracy.  To conquer the 

above-mentioned challenges, an adaptive collision avoidance technique is introduced in Chapter 4 
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and an adaptive slicing algorithm for non-uniform layer height deposition is discussed in chapter 

5.  The dimensional accuracy is addressed by developing a deep learning-based framework to 

detect the geometrical defects in chapter 6 followed by an adaptive intermittent dimension 

correction platform to improve the dimensional accuracy in chapter 7.  
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3 Fabrication and Experimental Methodologies 
 

3.1 Introduction 

 

In the previous chapters, a short literature review is carried out, gap areas are identified, and 

objectives are defined. In the present chapter, a discussion on the powder characterization, LDED-

PF experimental system, process parameters, and characterization system used for the experiments 

are presented.  

3.2 Material 

 

The experiments are carried out by using gas atomized SS 316L powder provided by Carpenter 

Additive. SS 316L powder is mainly spherical with fine satellites attached to the surface of powder 

particles as shown in Figure 3-1(a). The powder particle size distribution obtained from the laser 

particle size analyser is presented in Figure 3-1(b) and the D10, D50 and D90 values 

are 19.66 µm, 29.54 µm and 44.08 µm, respectively. The powder composition is confirmed using 

Energy Dispersive Spectroscopy (EDS) and the elemental composition is presented in Figure 

3-1(c) and Table 3-1. 

  
(a) (b) 
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(c) 

Figure 3-1: SS 316L powder (a) Morphology (b) particle size distribution (c) composition (d) 

material composition 

 

Table 3-1: Composition of SS316L powder 

Element Iron Chromium Nickle Molybdenum Manganese Silicon Cobalt Sulfur 

Mass %  65.23 18.77 11.37 2.13 1.48 0.52 0.35 0.10 

3.3 Laser Directed Energy Deposition -Powder Fed (LDED-PF) system  

 

Figure 3-2: Schematic representation of the in-house LDED-PF system and the flow of material, 

energy and signals 
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Figure 3-2 presents the in-house developed robotic LDED-PF system used for the present 

research work. The main components of the system are listed below: 

a) 6-axis Fanuc M-20iA arm with the repeatability of  ± 0.1 𝑚𝑚 with 2-axis servo positioner 

H875 and a maximum payload of 500 kg. The robot and the servo positioner are controlled 

by R30iB controller.  

b) Micro-Epsilon scanCONTROL 2950-100-BL line laser profiler as shown in Figure 3-3(a), 

mounted on the end effector for scanning the components. It has a measuring range of 265 

mm in the z-direction and 143 mm in the x-direction. The resolution is 18 µm with a 

maximum of 2000 Hz. It is rigidly mounted on the robot 6th axis using a bracket as shown 

in Figure 3-3(b).  

 
 

(a) (b) 

Figure 3-3: (a)The mounted laser scanner sensor on the robot, (b) Laser scanner sensor 

mounting position based on the CAD model 
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c) IPG CW YLS-1000 fiber laser source with maximum laser power of 1 kW, laser beam 

wavelength of 1069 nm and the spot size of 1.2 mm  

d) Dual hopper GTV powder feeder is used to deliver the powder using a carrier gas (Argon) 

to the meltpool 

e) Fraunhofer Coaxial nozzle COAX-14 with 4 powder ports  

f) In-house developed PROERA 3D CAD/CAM software was used for the tool-path planning  

3.4 Robot and Positioner setup 

 

The tilt angel of the nozzle will adversely affect the deposition quality due to the effect of gravity 

on the powder stream in tilted position of the nozzle [68]. The nozzle manufacturer also 

recommends the maximum tilt angel of 15° [69]. The positioner is used to transfer the tilt angel of 

the nozzle to the base plate to overcome the limitation of tilt angel of the nozzle.  

The 2-axis Fanuc positioner is used for periodic positioning of the workpiece for effective reach 

or access for manufacturing processes. Fanuc motion planner provides a coordinated motion option 

which maintains the absolute relative speed between the Tool Center Point (TCP) and the Tool 

frame of the positioner.  

A coordinated motion setup and calibration are required to calculate the position and orientation 

of the TCP of the positioner [70]. Since the positioner is made by FANUC, a known four-point 

calibration method can be used [62]. Once the positioner TCP is found, a coordinated pair is set 

up using the active TCP of the robot. It means that when coordinated motion is used, the TCP of 

the robot (laser focus point) maintains the absolute velocity and position with respect to the TCP 

of the positioner. It simply means that if the positioner is rotated in a particular direction, the laser 

head rotates in the opposite direction. This means to be able to print the parts predominantly using 
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the external axis, the position and orientation of the laser TCP must be calculated and continuously 

get updated to maintain the relative position and orientation with respect to the positioner TCP.  

The position of the TCP in the FANUC H875 is located at the cross-section of the 𝐸1 and 𝐸2 as 

shown in Figure 3-4.  The kinematic relationship between the positioner TCP and laser TCP is 

shown in Figure 3-4. The rotation matrix between the positioner TCP and laser TCP can be 

expressed in Equation 3-1, where 𝑅𝑇𝐵 is the  3 × 3 rotation matrix between the positioner tool 

frame and the base userframe (which is located at the corner of the substrate), and 𝑅𝐵𝑙 is the 

rotation matrix between the base userframe and the laser TCP which is computed during the 

toolpath generation process.  

𝑅𝑇𝑙 = 𝑅𝑇𝐵 × 𝑅𝐵𝑙 3-1 

 

Figure 3-4: Kinematic relationship between the positioner and laser TCP 

 

𝑅𝑇𝐵 can be presented as Equation 3-2.  
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𝑅𝑇𝐵= 𝑅𝑇𝐸1
× 𝑅𝐸1𝐸2

× 𝑅𝐸2𝐵 3-2 

where, 𝑅𝐸2𝐵 is the rotation matrix between the base user frame and the new frame obtained from 

the rotation of positioner TCP in −𝐸1 ×𝐸2 direction.  

FANUC convention uses the right-hand rule and Euler angles of (u,v,w) which are intrinsic rotations 

around the X, Y and Z axis, respectively, to calculate the reference frames rotation matrix [71]. The 

rotation matrix is then calculated using Equation 3-3.  

𝑅 = 𝑅𝑍(𝑤) × 𝑅𝑌(𝑣) × 𝑅𝑋(𝑢) 3-3 

𝑅𝑇𝐸1
and 𝑅𝐸1𝐸2

 can be rewritten as Equation 3-4 and Equation 3-5.  

𝑅𝑇𝐸1
=𝑅𝑋𝑇

(−𝐸1) 3-4 

𝑅𝐸1𝐸2
=𝑅𝑍𝑇

(𝐸2) 3-5 

The kinematic links of the robot and positioner reside inside the in-house developed toolpath 

planning engine (PROERA 3D), and it is used to compensate for the laser TCP orientation when 

the positioner axes are selected as the priority axes.  

3.5 Process Parameters  

 

Single track experimental trials are carried out by varying the laser power, scan speed, powder 

feed rate, and shielding gas flow rate. The range of process parameters that yielded continuous 

deposition is selected for the study. Table 3-2 presents the range of process parameters deployed 

for the present study. 
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Table 3-2: Process parameters used for the experiments 

Laser power 500 - 800 W  

Powder feed rate 5 - 12 g/min  

Scanning speed (deposition) 4 - 20 mm/sec 

Shielding gas flow rate 10 - 15 slpm 

Laser beam diameter 1.2 mm 

 

3.6 Characterization 

 

3.6.1 Geometrical Analysis 

 

The built parts are scanned using the optical scanner (Make: HEXAGON; Model: AICON 

SmartScan). The scanning was performed using an S-350 mm lens having a field of view of 260 

× 205 mm. Scanning data acquisition was performed using OptoCat 2018R3 software, and the 

point cloud data was converted to an STL file using a triangulation accuracy of 0.005 mm. 

Subsequently, the CAD model and the scanned STL file are imported in PolyWorks|Inspector™. 

In order to analyze the geometrical deviation, automatic alignment is performed. The automatic 

alignment aids in aligning the CAD model and STL file and to overlay the CAD model of the 

component with the scanned STL data. To measure the geometrical deviation from the intended 

dimensions, a CAD to the part comparison was performed.  

3.6.2 Density analysis 

 

The samples are hot-mounted, and ground and polished using an automatic polisher (Make: 

Struers; Model: LaboPol-20). The mirror-finished sample surface is observed using a digital 

microscope (Make: Keyence; Model: VK-X250) to check the presence of defects. The density of 
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the samples (ρ) was measured using the Archimedes density analyzer (Make: GAOTEK; Model: 

GT00WI00ZV) using Equation 3-6.  

𝜌 =
𝑊𝐷𝜌𝑤

𝑊𝐷 − 𝑊𝑤
 

3-6 

where WD, Ww and ρw are the dry weight, wet weight, and density of distilled water, respectively. 

The density of each sample was measured three times to obtain the average density values. The 

density of standard SS316L is measured as 7.9 g/cc to calculate the relative density. 

X-ray computed tomography (CT) was performed using a Sub-micron CT Scanner (Make: ZEISS; 

Model: Xradia 520 Versa) to understand the distribution of the pores in the built samples. The 

parameters used for the CT scan are as follows: number of projections: 1601, Voltage: 140 kV, 

and exposure time: 1.0 second per image with the voxel size of 5 - 6 µm. Reconstruction is 

performed using a beam hardening constant of 0.05, and the obtained images were post-processed 

and analyzed in Dragonfly 3.1. 

3.6.3 Microstructure and Micro-hardness 

 

Further, the polished samples are chemically etched using Kalling’s2 (CuCl2 5gm + HCL 100ml 

+ C2H6O 100ml) reagent to reveal the microstructural features. The microstructure of the samples 

is analyzed using a scanning electron microscope (Make: TESCAN; Model: VEGA3) at an HV of 

15 kV. Microhardness measurements are taken using a Vickers automated hardness tester (Make: 

CLEMEX; Model: CMT) by applying a load of 300 gm for a dwell period of 15 s. 

3.7 Summary  
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In this chapter, powder characteristics, experimental setup, process parameters, and 

characterization tools were presented. The subsequent chapter deals with process planning for 

LDED-PF of components with overhang features. 
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4 Process planning for LDED-PF of components with overhang features  
 

4.1 Introduction  

 

In this chapter, a novel LDED-PF process planning methodology is proposed to build a dome 

structure with variable overhang angles. Overhang structures with different overhang angles were 

built where the maximum angle of 35° can be used to build overhang structures without the process 

and structure compromise. The thin-wall hemispherical dome built using the developed 

methodology shows a maximum deviation of 2% with respect to the diameter of the original CAD 

model data. The study paves a way for building high-value, lightweight thin-walled structures with 

complex cylindrical-based shape (e.g., storage tanks, nozzles, combustion chambers) for 

engineering applications. 

4.2 Literature review 

 

LDED-PF enables the fabrication of lightweight and complex-shaped structures, which requires 

process-specific planning and strategy development. LDED-PF systems often use three-axis or 

five-axis configurations to build intricate components. However, increasing focus on the 

deployment of five-axis configuration is seen recently due to improved freedom to build complex 

shaped components with overhang feature [68–70]. Overcoming the challenges of overhanging 

features is easier in LPBF compared to LDED-PF due to support material generation [41], 

however, the size of the parts printed using LPBF is limited [75], therefor, 5-axis toolpath planning 

in LDED-PF is used to facilitate the fabrication of large-scale components with overhanging 

features. The five-axis configuration allows the nozzle to remain tangent to the surface, which 

eliminates the need for support structures to build features having a larger overhang angle 

(𝛼)[76].However, this configuration increases the process complexity and probability of collision 
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between the nozzle and substrate/ previously deposited layers. It is critical to avoid collisions that 

can damage the LDED-PF nozzles as they are costly and collision sensitive. In addition, focusing 

on the overhang features is a critical matter for the LDED and extrusion processes. The evaluation 

of the maximum overhang angle (𝛼max) is critical and once the 𝛼 exceeds the maximum limit, the 

structure collapses due to a lack of force balance between gravitational forces, surface tension, and 

capillary forces [77]. Researchers have investigated the fabrication of thin-wall structures with 

overhang features such as dome structures, which is challenging primarily due to the continuously 

changing 𝛼 in two directions and the chances of collision between the nozzle and previously built 

layers [78]. Kalami et al.[79]. encountered nozzle collision issues while building a dome structure 

and used the geometrical partitioning method for successful fabrication. However, the transition 

region between the partitions shows large surface irregularities, which increases the roughness 

values significantly in these regions [80] . A combination of multi-directional segmentation and 

single-directional slicing was carried out by Xiangping et al. for building overhang structures [81]. 

Prahar et.al developed a novel slicing algorithm to tilt and rotate the build platform to avoid support 

structure using a robotics FDM setup [82].  Thus, the process methodology for building overhang 

structures using LDED-PF is limited to geometrical partitioning or segmentation.  

The literature indicates that there are limited published works available on the development of tool 

paths for building overhang components such as dome structures in a single step. The present work 

proposes a novel approach based on the identification of maximum allowable overhang angle and 

collision detection interactively to directly build the dome structures in a single step, which can 

pave way for building complex and lightweight components using LDED-PF. 

 



26 

 

4.3 Developed Methodology for Dome Structures 

 

LDED can take advantage of 5-axis techniques such as lean (tilt) and lead angles to avoid collision 

between the nozzle and the built parts. It must be considered that the lead angle must not exceed 

the αmax [78] as large values of α may result in lack of support for melt pool leading to molten 

material collapse. Lean (Tilt) angle is the orientation of the nozzle measured in the plane 

perpendicular to the deposition direction as shown in  Figure 4-1(a), where D is the deposition 

direction, N is the substrate normal vector, and B is the Cross product of D and N. Lean angle is 

defined as the orientation of the nozzle measured in the plane parallel to the deposition direction 

as shown in Figure 4-1(b). When the nozzle tilts in the B-N surface, the angle is called lean (tilt) 

angle, and when the nozzle leans in the D-N surface it is called lead angle. 

To manufacture a dome in a single step using LDED, in this work, the tilt angle is used to avoid 

the collision between the nozzle and previously built material while keeping in mind that the tilt 

angle cannot exceed αmax . In Figure 4-1(c), 𝑏⃗  is the deposition direction and 𝑁𝑐
⃗⃗ ⃗⃗ (𝑝) is the surface 

normal direction to the surface at the point P. The relationship between the 𝑏⃗  and  𝑁𝑐
⃗⃗ ⃗⃗ (𝑝) is 

𝑁𝑐
⃗⃗ ⃗⃗ (𝑝). 𝑏⃗ = 0 to ensure that the deposition can be supported fully by the previously built layers. 

However due to partial support from previous layers, the deposition range can be extended as 

shown in Equation 4-1.  

−sin 𝛼𝑚𝑎𝑥 ≤𝑁𝑐
⃗⃗ ⃗⃗ (𝑝). 𝑣 ≤ 0 4-1 

where, 𝛼𝑚𝑎𝑥 , a function of  
∆𝑑𝑚𝑎𝑥

∆𝑙
 , is the maximum allowable overhang angle along the deposition 

direction of 𝑏⃗ , ∆𝑑𝑚𝑎𝑥 is the maximum offset value that a new layer can overhang from the previous 

layer without melt pool collapse, and ∆𝑙 is the layer thickness.  
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Figure 4-1 (d) and (e) presents the schematic indicating the variation in α in the dome and flowchart 

of the developed methodology, respectively. Initially, the geometry is prepared, which includes 

the creation of a surface model [78-79]. Subsequently, the 𝛼𝑚𝑎𝑥 is given as the input and the 

starting tilt angle is 0° in the beginning. The input track width and height are used to generate the 

stock model of the deposited material and the collision of the stock model versus the nozzle head 

is performed within the interface of PROERA 3D. If the collision is not detected, the toolpath will 

be generated in the robot native language. If the collision is detected (refer to Figure 4-1(f)), the 

tilt angle will be increased, and the toolpath will be re-generated. This continues until the 

methodology converges to the tilt angle that avoids the collision.  

 

  

(a) (b) 



28 

 

  

(c) (d) 

 

 

(e) (f)  

Figure 4-1: Dome structure using LDED (a) lead angle schematic (b) lean angle schematic (c) 

deposition direction and surface normal (d) Varying α for a typical dome (e) algorithm (f) 

collision issue 

4.4 Results and Discussion 

 

Figure 4-2(a) presents the schematic of the overhang structures and photographic view of built 

cones, respectively. The overhang cone geometry was built by laying overlapped tracks one over 

the other by shifting the laser spot center as per the required angle. As discussed in the previous 

section, the primary data for developing the methodology is the αmax. It was observed the αmax of 
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35° can be used to build cone structures of height 20 mm without the material collapse as the melt 

pool becomes asymmetrical and collapses when the α exceeds 35º. This can be mainly due to the 

imbalance between the gravitational forces, viscous forces, and surface tension. The 35º overhang 

will result in an offset value of 0.4 mm as per Equation 4-2 based on the nominal track height and 

a track width of 0.5 mm and 1.5 mm, respectively (obtained from process parameter setting). 

tan𝛼𝑚𝑎𝑥 =
∆𝑑

∆𝑙
 

4-2 

Figure 4-2(b) presents the cross-sectional images of cones built with 5-degree, 20 degree, and 35 

degree overhang angle. It is observed that the built structures are crack-free and micro-pores are 

mainly seen along the cross-section. The micro-pores are primarily spherical, with the presence of 

a few irregular pores. The spherical and irregular pores are mainly due to gas-porosity and lack-

of-fusion porosity, respectively. Gas porosity is generated primarily due to gas entrapment inside 

the melt-pool during solidification. It can also be due to the presence of porosity inside the powder 

particles, which are generated during powder manufacturing. These pores get transferred to the 

built part during the fabrication. On the other hand, a lack of fusion porosity is generated due to 

the insufficient bonding at isolated locations due to insufficient heat input and/or unexpected 

disturbances during LDED. An increase in the number of lack of fusion pores are seen with 

increase in overhang angle, which is primarily due to increase in the melt-pool instability at higher 

overhang angles [45-46].  
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(a) 

 

5-degree overhang cone 

 

20-degree overhang cone 

 

35-degree overhang cone 

 

(b) 

Figure 4-2: LDED of overhang structures (a) Schematic (b) photographic view 
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Further, the deposition is simulated (refer to Figure 4-3(a)) and carried out as per the required 

machine configuration (refer to Figure 4-3(b)). The algorithm verifies that a tilt angle of 32.5º will 

be suitable to build the dome using the rotary setup. Further, the angle is transferred from the tilt 

angle to the tilt angle of the rotary table. The orientation of the nozzle is perpendicular to the 

previously built layer up to 57.5º and the tilting start at this point. The α varies from 0 to 32.5º from 

the bottom layers to the top of the dome as shown in Figure 4-3(c). 𝛼1, 𝛼2 , and 𝛼3 shows the angle 

between the normal to the previous layer direction and the nozzle at different curvature angles in 

the dome at different positions. For the initial layers, α1 is 90º  indicating that the nozzle is normal 

to the previously built layer, while at the top layers α3 is 57.5º and the corresponding α at the top 

of the dome is equal to 𝛽3 (Maximum tilt angle), which is equal to 32.5º. Figure 4-3(d) presents 

the photographic view of the built dome structure and it can be seen that deposition is uniform 

with reduced surface irregularities as opposed to ones built with partitioning [41][85]. A 

comparison with the CAD model (refer to Figure 4-4) shows the uniform surface quality and good 

agreement with the intended dimensions. The deviation is lower than 0.5 mm at the lower to middle 

layers and the maximum deviation of ~ 1.5 – 2 (about 2% of the dome diameter) mm is observed 

at the top layers primarily due to the higher degree of overhang.  
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(a) (b) 

 

 

(c) (d) 

Figure 4-3: LDED of dome structures (a) simulation (b) deposition process (c) schematic of 

varying overhang and tilt angle (d) final part  

 

Figure 4-4(a) shows the typical overlay of the CAD model cross section and the scanned data cross 

section. It is observed that the maximum deviation is at the top of the dome printed with maximum 

overhang angles of 32.5 degrees.  
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All dimensions are in mm 

CAD Model 

 

Scan Model 

(a)  

 
(b) 

Figure 4-4: CAD to part comparison of (a) typical cross-section (b) full dome structure 

Figure 4-5 presents the microscopic images obtained from different locations of the built dome 

structure. It is observed from Figure 4-5(a) that the deposition is defect-free without cracks and 

macro scale porosity. However, a deeper investigation of the structures shows that micro-porosity 
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is seen at different locations as shown in Figure 4-5(b). The micro-pores are mainly gas porosities, 

with the presence of a few lack of fusion pores at isolated locations.  

 

 

(a) (b) 

Figure 4-5: Cross-sectional images of the dome at different locations (a) lower magnification 

(b) higher magnification 

4.5 Summary 

 

The present work proposes a novel methodology to manufacture the parts with variable 

overhanging angle. The methodology aids to avoid collision between the nozzle and the previously 

built layers while providing a proper melt pool stability, which allows the fabrication of the dome 

in a single step. Further, the methodology is verified by manufacturing the part and CAD to part 

comparison shows the maximum deviation of  2% with respect to the diameter  of original CAD 

model data. The proposed methodology avoids partitioning of the component and the deployment 

of computationally expensive algorithms to manufacture overhang dome structures using LDED. 
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The subsequent chapter will discuss adaptive trajectory planning for geometries with overhang 

features; adaptive slicing and non-uniform layer height build-up for tubular components. 
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5  Adaptive trajectory planning for geometries with overhang features; 

Adaptive slicing and non-uniform layer height build-up for tubular 

components 
 

5.1   Introduction  

 

This chapter reports on an adaptive trajectory planning to build tubular components with variable 

overhang angles using a robotic LDED-PF based Additive Manufacturing process without utilizing 

support structures. The proposed technique uses a non-parallel slicing methodology to build 

complex components (e.g., bent pipes) and deploys adaptively varying scanning speed and tool 

orientation. The variation in scanning speed aids in having point-to-point variable layer height 

enabling non-parallel deposition while changing the tool orientation during deposition permits the 

manufacturing of support-free bent pipe parts. The bent pipes with 45° and 90° bents were built 

using an in-house developed LDED-PF system and the built parts are characterized for geometry, 

density, microstructure, and microhardness. The geometrical analysis indicates the deviation in the 

range of +0.5 mm to -0.5 mm, with minimal roundness deviation at different sections. The density 

analysis of the segments extracted from the bent pipe reveals a density >98%, with the presence 

of a few lack of fusion pores and gas pores at isolated locations. The microstructure and 

microhardness studies show that regions built with higher scanning speeds have a finer grain 

structure and higher average hardness. The study paves a path to build defect-free and 

dimensionally stable complex-shaped components with varying overhang angles using LDED-PF.   

5.2   Literature Review 

 

 Although LDED-PF permits the fabrication of complex-shaped metallic components with 

overhangs, undercuts, etc., the fabrication of these structures requires process-specific planning 

and strategy development. In LDED-PF, the fabrication of overhang structures is challenging as 
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there is no powder underneath the built layers to support the fabrication of overhang structures. 

[86]. Generally, overhang structures are built with the help of sacrificial support structures that are 

built using low energy density/ infill percentage for reduced strength, facilitating easy removal 

[87]. After the processing stage in MAM, these support structures are removed in the post-

processing stage. The deployment of support structures results in material wastage and can hamper 

the sustainable nature of the MAM process. In addition, support removal is time-consuming, 

unproductive, and requires human involvement in many steps[88]. This led to the development of 

five-axis LDED-PF systems that can be deployed for building complex-shaped components with 

variable overhang angles. These systems permit multi-directional deposition that evades the 

necessity of the support structures by appropriately positioning the part during the deposition [89].  

 
(a) (b) 

Figure 5-1 : Example of bent pipes with inclined angles of (a) two bends of 45°(b) 90° 

In addition, the approaches for building complex-shaped components also depend on the slicing 

approach. In the traditional parallel slicing, the overhang angles increase until there is no support 

for the consecutive layers [90]. Maximum overhang angles in LDED-PF depend on process setup 

and process parameters [77]. Thus, several researchers addressed this issue using non-parallel 

slicing to keep the tool orientation tangent to the surface curvature for avoiding the overhang 
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angles [91]. The non-parallel slicing approach uses the tilt angle of the tool and the base to 

compensate for the overhang angle [92]. The approach becomes more critical when the parts have 

variable overhang angles. One of the examples of the parts having variable overhang angles along 

the build direction is the bent pipe. Special geometrical and process-related considerations are 

required to build bent pipes using LDED-PF [93]. Figure 5-1(a) and Figure 5-1(b) show examples 

of a bent pipe with inclination angles of 45° and 90°, respectively.  

The literature indicates that efforts are being made by researchers to develop novel slicing 

algorithms to potentially build bent pipe parts. Murtezaoglu et al. [94] used the 3+2 partitioning 

technique to build the sections of the pipe using parallel slicing and re-orient the part to avoid the 

overhang angles in the next group of layers. Xiao et al.[95] developed an automated technique to 

reorient the part during the build using a 5-axis machine. The reorientation allows to part to be 

built using the traditional uniform slicing approach but without the support. They used volume 

decomposition to divide the part into printable sub-volumes that each can be built with planar 

layers without the support structure. Ruan et al. [96] developed an adaptive slicing algorithm to 

deposit non-uniform layer thickness in a different orientation to avoid the overhang angle. 

Panchagnula et al. [97] developed an adaptive height slicing technique to deposit variable height 

deposition using the regression model developed to predict the bead dimensions. Due to the 

unevenness in the flatness of the top surface, an additional subtractive operation was required. 

Xiangping et al.[81] developed an adaptive slicing algorithm for the segmentation of parts into 

sub-volumes which can be built using the traditional uniform layer height. A volume-based 

decomposition algorithm based on overhang identification between the adjacent segments was 

used to manufacture the decomposed parts separately. The above-mentioned volume 

decomposition strategies remain incapable of manufacturing large-scale parts with desired 



39 

 

dimensional accuracy. The volume decomposition divides the part into wedge-like segments as 

shown in Figure 5-2(a). A big disadvantage of the decomposition method is the creation of several 

open toolpaths at the boundaries of the segments, which leads to too many linking motions and 

staircase effect [98] at the boundaries of the segments as shown in Figure 5-2(b). Therefore, the 

top surface of each wedge-shaped segment will be very uneven. The bottom of the next wedge 

must be placed on top of this uneven surface, which will lead to obvious surface irregularities at 

the boundaries between the wedges. A case study by Kalami et al. [79] for building a surface dome 

using the partitioning technique shows surface irregularities at the boundaries of the wedges.  

 

 

(a) (b) 

Figure 5-2: (a) Volume decomposition of a bend-pipe geometry to wedge-like sub-volumes, (b) 

Uneven top surface of a wedge-like segment due to toolpath linking motions  

Thus, it can be concluded from the literature that the decomposition methods based on the volume 

and area difference of planar slices were mostly used for the deposition of geometries with large 

overhang angles (e.g., Bent pipes, pipes with branches). As these techniques lead to non-smooth 

toolpath and irregular geometry, there is a need to develop a generic methodology that can be used 

to build cylindrical components with varying overhang angles that can pave way for building 

tubular geometries [94-95].  
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The present work reports a novel slicing technique based on adaptive tool orientation and point-

to-point variable layer height using a centroid axis to build tubular components with variable 

overhangs. A perpendicular plane to the centroid axis is created at each layer for toolpath 

calculation resulting in smooth toolpath generation without discontinuity. This technique led to 

the successful manufacturing of two large-scale bent pipes in the first trial without extensive 

process planning or trial experiments. An extensive ex-situ quality assurance procedure is also 

performed to evaluate the dimensional accuracy, density, microstructure, and microhardness of the 

built components.  

5.3 Adaptive Trajectory Planning Algorithm 

 

LDED permits the supportless fabrication of complex-shaped parts with overhang features. The 

additional axis of rotation for the base plate aids to position the part in a way to avoid support 

structures. Figure 5-3 shows the fabrication of the bent pipe using the rotary table, where 𝐴1 is the 

first axis of rotation of the positioner. As the deposition moves from the bottom to the top layer, 

𝐴1 is incremented in each layer and it is kept constant for through the entire toolpath for the layer 

so that the previously built layers will act as a support structure for the consecutive layers using 

the rotary transformation of the piece. Thus, the bent pipe is built by laying self-supporting layers 

one over the other using positioner tilting. The developed algorithm has two main components, 

adaptive slicing and non-uniform layer height deposition which are elaborated in the subsequent 

sections.  
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Figure 5-3: Building of a bent pipe with overhang features using multi-axis LDED 

 

5.3.1 Adaptive Slicing  

 

Figure 5-4 presents the flowchart of the adaptive slicing algorithm. The algorithm starts by 

importing the input geometry, i.e. the machining surface (the surface on which the deposition is 

performed), containment boundary mesh (the mesh that contains all the toolpath geometry), and 

the centroid spine (which the machining surface is rotated about in different layers) as shown in 

Figure 5-5(a) (step 1). The distance between subsequent layers at the intersection points of the 

centroid spine and the machining surface (lcentroid) and maximum allowable tilt angle between two 

consecutive layers (αmax) are provided as the input to the algorithm. 𝛽𝑗 is the tangent direction 

along the centroid spine at the lcentroid. Step 2 begins with the determination of 𝛽𝑗, which is 

explained in detail later. The machining surface is rotated (step 2) and the cross-section of the 

rotated machining surface with the boundary mesh generated contour are obtained as shown in 

Figure 5-5(b) and Figure 5-5(c) (step 3). Step 2 and Step 3 are repeated until all the layers are 

processed. Once the contours are generated, they will be linked together to generate the toolpath 

(step 4). Once the toolpath is generated, the adaptive scanning algorithm adjusts the point-to-point 

scanning speed as shown in Figure 5-5(d).  
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Figure 5-4: Flowchart of the slicing algorithm 

 

 

 

  
(a) (b) 
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(c) (d) 

Figure 5-5: Adaptive slicing for the bent pipe using variable slice height 

 

 

The algorithm for estimation of the 𝛽𝑗 (step 2 in Figure 5-4) and transformation of the machining 

surface to a new position and orientation is shown in Figure 5-6 . The initial normal vector of the 

machining surface is denoted as 𝑛⃗ 𝑗  and it is equal to the unit vector along the z-axis and 𝐶𝑗 is the 

intersection of the centroid spine and the machining surface as shown in Figure 5-6(a). 𝐶𝑗+1 is the 

result of moving 𝐶𝑗 at a distance of  𝑙𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 along the centroid spine as shown in Figure 5-6 (b). 

The updated normal vector 𝑛⃗ 𝑗+1is defined by the tangent to the centroid spine at the 𝑙𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 and 

𝛽𝑗  is the angle between 𝑛⃗ 𝑗  and 𝑛⃗ 𝑗+1 as shown in Figure 5-6(b). 𝛽𝑗  is then calculated using Equation 

5-1. If 𝛽𝑗  is larger than αmax , 𝑛⃗ 𝑗+1will be iteratively computed until 𝛽𝑗 is less than αmax while 𝑛⃗ 𝑗+1is 

minimally different from the 𝑛⃗ 𝑗 .   Once 𝛽𝑗 is found, the machining surface is rotated (by 𝛽𝑗  ) to 

keep it  perpendicular to 𝑛⃗ 𝑗+1as shown in Figure 5-6(c).  

𝛽𝑗 = 𝑐𝑜𝑠−1(
𝑛⃗⃗⃗ 𝑗+1

𝑛⃗⃗⃗ 𝑗
) 

5-1 
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(a) (b) 

 

(c) 

Figure 5-6: Algorithm for estimation of β and transformation of machining surface 

 

The flowchart for robotic toolpath generation is shown in Figure 5-7. The scanning speed at each 

point is adjusted based on Equation 5-2, where, 𝑣𝑜 is the average scanning speed and 𝑃𝑗
𝑖  and 

𝑃𝑗+1
𝑖 are the two points from layer j and j+1, respectively. 𝑑𝑖𝑠𝑡(𝑃𝑗

𝑖, 𝑃𝑗+1
𝑖 ) is the layer height between 

𝑃𝑗
𝑖  𝑎𝑛𝑑 𝑃𝑗+1

𝑖 of a particular slice, and 𝐶𝑏 is estimated experimentally where it depends on 𝑙𝑚𝑖𝑛, 𝑙𝑚𝑎𝑥 

and α. A series of single-track experiments with different scanning speeds were performed to 

estimate 𝐶𝑏 .  𝐶𝑏 is set to 0.9 for the 90° bent pipe and 1 for the 45° bend pipe based on the 

experimental results.  

𝑣𝑝 = 𝐶𝑏𝑣𝑜

𝑙

𝑑𝑖𝑠𝑡(𝑃𝑗
𝑖, 𝑃𝑗+1

𝑖 )
 

5-2 
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Figure 5-7: Flowchart for adaptive scanning speed adjustment 

 

Once the scanning speed is adjusted, the collision checking is performed using ModuleWorks 

(MW) inverse kinematics for industrial robots. The collision is checked between the robot end-

effector, base plate, deposited geometry, and robot axis. If any collision is detected, the trajectory 

is regenerated. The toolpath contains the tool vector information, as shown in Figure 5-8(a). Since 

deposition in this configuration is not desirable due to nozzle inefficiency in non-gravity direction, 

the positioner can be used to position the workpiece in a configuration in which the nozzle can 

deposit perpendicular to the slicing plane as shown in Figure 5-8(b). This can be achieved by tilting 

the positioner. Considering the orientation, the tool orientation vector (𝑁𝑙) can be transformed from 

𝑙 coordinate system to 𝑙′ coordinates system using Equation 5-3 [101]:  
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𝑅𝑇′𝑙′ = 𝑅𝑇′𝐸1
′ × 𝑅𝐸1

′𝐸2
′ × 𝑅𝐸2

′𝐵′ × 𝑅𝐵′𝑙′ 5-3 

where, 𝑅𝑇′𝑙′ is the rotation matrix between the positioner TCP and the updated laser head 

coordinate system (𝑙′), 𝑅𝑇′𝐸1
′  is the rotation matrix between the posterior TCP and the reference 

obtained by rotation of the tilt axis, 𝑅𝐸1
′𝐸2

′  is the rotation matrix between the tilt (𝐸1
′) and rotation 

(𝐸2
′ ) axis,  𝑅𝐸2

′𝐵′ is rotation matrix between the reference frame of 𝐸2
′  to the base userframe and 

𝑅𝐵′𝑙′ is the rotation matrix between the base user frame and laser head TCP. Since the rotation of 

the laser head with respect to the base userframe remain unchanged, the tilt axis is only needed to 

position the part to take advantage of gravity.  Equation 5-3 can be re-written as Equation 5-4:  

𝑅𝑇′𝑙′ = 𝑅𝑇′𝐸1
′ × 𝑅𝑍𝑇

(𝐸2) × 𝑅𝐸2𝐵 × 𝑅𝐵𝐿 5-4 

where,  

𝑅𝑇′𝐸1
′ = [

1 0 0
0 cos ∅ − sin∅
0 sin∅ cos∅

] 

and Ø is the tilt angle of the positioner in 𝐸1 direction.  

Once the collision-free toolpath is available, it is converted to the robot's native language and sent 

to the robot controller to start the deposition. 
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(a) (b) 

Figure 5-8: Transformation of the laser head orientation corresponding to the table tilt 

 

5.3.2 Deposition of non-uniform layer height  

 

The developed algorithm was implemented on two bent pipe geometries having a single bend of 

90° and a double bend of 45°.  The radius of the spine curve is 50 mm, and the length of the spine 

curve is calculated using Equation 5-5, where 𝑟𝑠 and 𝜃𝐿 are shown in Figure 5-9(b) and α is the 

bend angle of the pipe. An average layer height of 0.5 mm is considered to estimate the number of 
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layers (N) using Equation 5-6. Further, Equation 5-7 is used to estimate the bent angle between 

each layer (𝜶𝑳). A bent angle of 90° is considered for the single bent pipe, and 45° is considered 

for the double bent pipe. Figure 5-9(a) shows a typical single layer in adaptive slicing, which is 

used to estimate 𝒍𝒎𝒊𝒏 and 𝒍𝒎𝒂𝒙. For the 90° bent pipe, the calculated values of 𝒍𝒎𝒊𝒏 and 𝒍𝒎𝒂𝒙 are 

0.25 mm and 0.75 mm, respectively. As mentioned in section 2.2, the variation in layer height is 

achieved by varying the scanning speed. The single-track analysis indicates that the scanning speed 

required to deposit layer heights of 0.25 mm and 0.75 mm is 18 mm/sec and 6.4 mm/sec, 

respectively. Table 5-1 presents the corresponding layer height and scanning speed at each 

segment. Similarly, the calculated 𝜶𝑳 for the 45° bent pipe is 0.286°. Considering an average layer 

height of 0.5 mm, the calculated values of 𝒍𝒎𝒊𝒏 and 𝒍𝒎𝒂𝒙 are 0.4 mm and 0.625 mm, respectively, 

for the 45° bent pipe. 

 

 
 

(a) (b) 

Figure 5-9: (a) Single layer in adaptive slicing, (b) spine length based on curvature angle 

 

Figure 5-10 (a) - (d) present the schematic showing the segmentation of each layer into partitions 

based on distance from the previous layer. Each layer in the toolpath is decomposed to 𝒏(𝟐𝟎) 

segments with constant angular increments. In each segment, the Euclidean distance to the 

previous layer is calculated, and the scanning speed is adjusted according to Equation 5-2. The 

corresponding layer height and scanning speed for each segment for a typical layer are presented.  

In Figure 5-11. The relationship between scanning speed and distance to the previous layer for the 
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45° and 90° bent pipe is provided in Table 5-1. Figure 5-12 presents the variation of the scanning 

speed along the build direction. The outer portion of the bent pipes was built with a higher scanning 

speed, and the inner portion of the bent pipes was built with a lower scanning speed facilitating 

non-uniform height deposition. It can be noted that in the transition region from the first bend to 

the second bend, multiple layers were printed without the scanning speed adjustment since the 

point-to-point distance to the previous layer was constant within the layer, as shown in Figure 

5-12(b). It may be noted that the length of the spine belonging to the transition region is not 

considered for the estimation of the 𝜶𝑳.  

𝑙𝑠𝑝𝑖𝑛𝑒 = ∫ 𝑟𝑠𝜃𝐿

𝛼

0

 
5-5 

𝑁 =
𝑙𝑠𝑝𝑖𝑛𝑒

𝑙
 

5-6 

𝛼𝐿 =
𝑁

𝛼
 

5-7 

Table 5-1:Layer height and scanning speed at each segment of the path 

Segment Layer 

height(mm)-

bend pipe with 

90° bend  

Scanning Speed 

(mm/sec)- bend 

pipe with 90° 

degrees bend 

Layer height(mm)-

bend pipe with 

double 45° bend  

Scanning Speed 

(mm/sec)- bend 

pipe with 

double 45° 

bend 

ℎ(𝑖, 1)= ℎ(𝑖, 20) 0.25 18 0.4 12.5 

ℎ(𝑖, 2)= ℎ(𝑖, 19) 0.305 14.75 0.425 11.76 

ℎ(𝑖, 3)= ℎ(𝑖, 18) 0.36 12.5 0.45 11.11 

ℎ(𝑖, 4)= ℎ(𝑖, 17) 0.415 10.85 0.475 10.52 

ℎ(𝑖, 5)= ℎ(𝑖, 16) 0.47 9.57 0.5 10 

ℎ(𝑖, 6)= ℎ(𝑖, 15) 0.525 8.5 0.525 9.52 



50 

 

ℎ(𝑖, 7)= ℎ(𝑖, 14) 0.58 7.75 0.55 9 

ℎ(𝑖, 8)= ℎ(𝑖, 13) 0.63 7.14 0.575 8.69 

ℎ(𝑖, 9)= ℎ(𝑖, 12) 0.695 6.5 0.6 8.33 

ℎ(𝑖, 10)= ℎ(𝑖, 11) 0.75 6.4 0.625 8 

 

  

(a) (b) 

 

 

(c) (d) 

Figure 5-10: Segmentation of each slice to partitions (a) 2D view (top), (b) 2D view (side) (c) 

3D view(back),(d) 3D view(front) 
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Figure 5-11: Adaptive scanning speed based on the normal distance to the previous layer 

 

 

 

 

 
 

(a) (b) 

Figure 5-12: Variation of scanning speed in toolpath for (a) 90° bent pipe, (b) 45 ° double 

bent-pipe 
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Figure 5-13 presents the simulation of the toolpath at various stages. It shows the change in the 

positioner orientation during the deposition to build the overhang structures without support 

structures. During the deposition using positioner tilt, ∅ is the tilt angle of the 𝐸1, and it is used for 

the positioning of each layer, and it is kept constant for the entire layer of the deposition. The 

toolpath simulation video is provided as a supplementary file.  

  

(a) (b) 

 

(c) 

Figure 5-13: Toolpath simulation for building 45° bent pipe 

 

 



53 

 

5.4 Results and Discussion  

 

Figure 5-14(a) and Figure 5-14(b) present the photographic view of the 90° and 45° bent pipes 

respectively. The bent pipe structures are subjected to detailed geometrical, density, 

microstructural, and mechanical characterizations towards the qualification of the built parts to 

enter the additive manufacturing market. This section reports on comprehensive geometrical and 

material characterizations of the bent pipes. 

  

(a) (b) 

Figure 5-14: Photographic view of (a) 90° bent pipe, (b) double 45° bent pipe 

 

 

5.4.1 Geometrical Analysis  

 

CAD-to-part comparisons of the built bent pipe structures are performed. Figure 5-15(a) presents 

the dimensional deviation between the CAD and built component of the double 45° bent pipe. The 

average deviation ranges from +0.5 mm to -0.5 mm. This indicates a good match between the built 

geometry and the input CAD model. The maximum deviation at the top surface can be due to the 
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surface waviness of the top layers. In addition, sections are taken at two different locations along 

the height of the bent pipe as shown in Figure 5-15(b). The sections are taken from the bottom and 

top regions to understand the profile of the bent pipe in the vertical region of the pipe. The least 

squares fitting method is used to fit circles to the extracted cross-section [102] as shown in Figure 

5-15(c). The root-mean-square roundness deviation (𝛥 𝑅𝑟𝑚𝑠) [100-101] is used to find the 

deviation of the points from the nominal circle as shown in Equation 5-8, where Rl is the Euclidean 

distance of each point belonging to the extracted point cloud to the center of the least square circle 

and 𝑅𝑙𝑠 is the radius of the least square circle, and  ΔRl  is defined using Equation 5-9. 

Δ Rrms = √
1

2𝜋
∫ ∆𝑅𝑙

2𝑑𝜃
2𝜋

0

 5-8 

∆𝑅𝑙 = |𝑅𝑝 − 𝑅𝑙𝑠| 5-9 

The radius of the fitted least square circles, Root Square Mean Error (RSME) of the fitting and 

roundness deviation from the reference least square circles for the 45° pipe are shown in Table 5-2 

. The extracted point cloud is fitted to a circular profile using the least square circle fitting method, 

and the radius of the profiles is 25.47 mm, and 25.39 mm at the bottom, and top sections, 

respectively. 𝛥 𝑅𝑟𝑚𝑠 values of 0.14 mm and 0.05 mm in section 1 and section 2, respectively show 

the dimensional stability of the built bent pipes.  

Table 5-2:Roundness deviation from the reference least square circles for 45° bent pipe 

Section  Radius of the fitted least 

square circles (mm) 

RSME (mm) 

𝛥 𝑅𝑟𝑚𝑠(𝑚𝑚) 

1  25.47 0.293 0.14 

2  25.39 0.172 0.05 
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(a) 

 

 

(b) (c) 

Figure 5-15: Geometrical analysis of 45° bent pipe (a) CAD to part comparison, (b) Fitted 

least square circle (c)cross-section at top and bottom region 

 

Similarly, the CAD to the part comparison of the 90° bent pipe shows that the average deviation 

ranges from +0.5 mm to -0.5 mm as seen in Figure 5-16(a). It can be seen in both cases that the 

positive shift in the deviation is more significant, which can be primarily due to the outward flow 

of the melt pool during the deposition process. However, a deviation of 1-2 mm is seen at localized 

points. The higher deviation is mainly seen at the top layers of the outer curve and regions of higher 

curvature radius, which can be due to higher melt-pool flow and dynamics in these regions. 
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Sections are taken from the top, and bottom regions to analyze the cross-section along the build 

direction, as shown in Figure 5-16(b). The radius of the fitted least square circles, RSME of the 

fitting and roundness deviation from the reference least square circles for the 90° pipe are shown 

in Table 5-3. The generated point cloud is fitted to a circular profile using the least square circle 

fitting method, and the radius of the circle is 25.15 mm, and 25.45 mm at the bottom, and top 

regions, respectively. 𝛥 𝑅𝑟𝑚𝑠 values of 0.07 mm and 0.09 mm at section 1 and section 2, 

respectively indicate the dimensional stability of the built bent pipes.  

 

 

(a) (b) 

Figure 5-16: Geometrical analysis of 90° bent pipe (a) CAD to part comparison (b)cross-

section at top and bottom region 

Table 5-3:Roundness deviation from the reference least square circles for 90° bent pipe 

Section  Radius of the fitted least square 

circle (mm) 

RSME (Least Square 

fitting Error)  

(mm) 

𝜟 𝑹𝒓𝒎𝒔(𝑚𝑚) 

1  25.46 0.251 0.07 

2  25.48 0.266 0.09 
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The wall thickness of the printed parts is extracted from the acquired point clouds, as shown in 

Figure 5-17(a). Once the cross-section of the point cloud is extracted, the statistical outlier 

technique is used to denoising the point cloud data and the result are shown in Figure 5-17(b). The 

width of each section is then calculated using the Euclidean distance between the curves. The 

average wall thickness of 2.2 ± 0.2 mm and 1.8 ± 0.3 mm is calculated for the outer curve and 

inner curve, respectively. The slightly higher wall thickness for the outer circle can be due to the 

lower scanning speed used for depositing the outer region of the pipe. It can be noted that the 

variation in the wall thickness between the outer curve and inner curve is not significant, indicating 

good dimensional stability. 

 

 

(a) (b) 

Figure 5-17: Wall thickness of the bent pipe (a) scanned model (b) profile 

5.4.2 Density analysis  

 

 Figure 5-18 presents the section of the bent pipe indicating the location of extracted pieces 

(segment 1 and segment 10) for density, microstructure, and microhardness analysis. Segment 1 

and segment 10 are printed with higher scanning speed and lower scanning speed, respectively. 

Figure 5-19 presents the optical microscopy images of the mirror-polished samples to analyze the 

presence of defects. It is observed that bent pipe sections are crack-free on the micro-scale, with 
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few micro-pores at isolated locations. The micro-pores are a combination of gas porosity and lack 

of fusion porosity. The primary reasons for gas porosity can be the pores inside the feedstock 

powder used for deposition and gas entrapment during the deposition [105]. On the other hand, 

the lack of fusion porosity results from incomplete consolidation at a few locations [105]. A 

comparison of the images indicates that a higher fraction of lack of fusion pores is observed in 

segment 1 of the bent pipe, which is built using a higher scanning speed. This can be due to the 

reduction in the laser energy density (LED), which is a ratio between laser power and the product 

of scanning speed and beam diameter.  A reduction in LED can lead to incomplete material 

consolidation leading to more fraction of the lack of fusion pores. In order to quantify the above, 

the Archimedes density analysis was carried out by extracting samples along the cross-section of 

the bent pipe. The measured density values range from 7.75 -7.81 g/cc, and the relative density of 

the samples was > 98% for all the sections. The relative density of the sample extracted from 

segments 10 and 1 is 98.11% and 98.89%, respectively. Further, CT analysis of the samples was 

performed at two selected segments, as shown in Figure 5-20(a) and Figure 5-20(b).  Micro-scale 

pores are seen at random locations, and the results support the Archimedes results indicating higher 

relative density for both samples. 
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Figure 5-18: Location of extracted pieces for density, microstructure, and microhardness 

analysis 

 

  

 
 

(a) (b) 

Figure 5-19: Optical microscopy images of (a) segment 10 (b) segment 1 
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(a) 

(b) 

Figure 5-20:CT-scan data of Segment 10 and Segment 1 (a) 3D pore distribution (b) pore size 
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5.4.3 Microstructure  

 

Figure 5-21 (a) and Figure 5-21(b) present the microstructure of segment 10 and segment 1 (refer 

to Figure 5-18), respectively, at the middle layers. The morphology of the microstructure during 

LDED is primarily a function of the extent of constitutional undercooling, which is mainly linked 

to the solidification velocity (R) and the temperature gradient (G). Equations 5-10 and 5-11 

indicate the effect of process parameters and material properties on G and R, where T, T0, β, P, K, 

and Vs are the liquidus temperature, substrate temperature, laser absorption coefficient of the 

material, laser power, thermal conductivity, and scanning speed, respectively. θ is the angle 

between Vs vector’s direction and the normal vector of the solid-liquid interface at the tail of the 

melt pool [32].  

𝐺 =
2𝐾 (𝑇 − 𝑇𝑂)2

𝛽𝑃
 

5-10 

𝑅 = 𝑉𝑠 cos 𝜃 5-11 

Figure 5-21 shows the microstructure of samples extracted from segments 1 and 10, which are 

mainly cellular. In the LDED-built samples,  the cellular microstructure is usually formed as a 

result of higher values of G/R [106].  However, from the measurement on the sample extracted 

from segment 10 (Figure 5-21(a)), the cell’s sizes are in the range of 6-8 µm, while for the segment 

1 (Figure 5-21(b)) the cell size value ranges from 2-5 µm, proving the finer microstructure for the 

latter. This can be due to higher values of scanning speed used for deposition in segment 1, which 

resulted in notably higher R values based on Equation 5-11 . Moreover, the higher scanning speed 

increases G × R, which is the cooling rate of the segment [69]. Therefore, at the same process 

parameters, by increasing the scanning speed, it is expected to see finer microstructures such as 

those of segment 1 (Figure 5-21 (b)) [107].  
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(a) (b) 

Figure 5-21:  Microstructure of (a) Segment 10 (b) Segment 1 

 

 

5.4.4 Microhardness 

 

Micro-hardness values were examined along segments 10 and 1 to evaluate the mechanical 

properties through the different segments using the experimental setup explained in section 3.6.3. 

Figure 5-22(a) and Figure 5-22(b) present the indentation along segments 10 and 1, respectively. 

To have a comprehensive analysis, the three indentations were taken along a single line, and the 

average value along each line was calculated. Figure 5-22(c) presents the average hardness 

measured along the section, and it is seen that the microhardness values of segment 1, which ranges 

from 188 to 203 HV, are found to be higher than segment 10, which ranges from 163 to 179 HV. 

The higher microhardness values for segment 1 as compared to segment 10 are mainly due to the 

finer microstructure. This is mainly due to the inverse relationship between the microstructure (cell 

size in the present case) and microhardness values as per the Halls-Petch relationship. The cell 

boundaries impede the dislocation motion, which provides a  strengthening effect to the material 
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[108].Thus, the presence of more cell boundaries for finer cellular structure leads to increased 

strengthening effects, which consequently leads to higher values of microhardness at segment 1.  

  

 

(a) 

 

(b) 

  

(c) 

Figure 5-22: Microhardness (a) indentations along segment 10 (b) indentations along segment 

1 (c) average values along the segment 
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5.5 Conclusion  
 

The present work focused on the development of process methodology to encounter the 

challenges involved in the development of complex-shaped near-net-shape tubular components 

using LDED-PF processes. The developed methodology is validated by building the part, and a 

comparison with the CAD model shows minimal roundness deviation at different sections. The 

built bent pipes show density >98% with the presence of few micropores at isolated locations. 

The microstructure is mainly cellular, and the average microhardness for regions built with 

lower scanning speed and higher scanning speed is 170 HV and 193 HV, respectively. Thus, the 

built tubular structures are dense with good dimensional stability without significant variation 

in the microstructure and mechanical properties between different segments of the tubular 

geometry. 

The subsequent chapter will discuss process monitoring, workpiece localization and point cloud 

segmentation and deep learning for defect detection of LDED-PF parts.  
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6 Process monitoring, Workpiece localization and Point cloud segmentation 

and deep learning for defect detection of LDED-PF parts  
 

6.1 Introduction  

 

This chapter outlines the development of a novel in-situ monitoring software platform that can be 

used for the surface anomaly detection of LDED-PF parts using machine learning techniques. 

Despite the existing methods in the literature, this technique has shown high robustness and high 

confidence in defect detection regardless of the geometry, and varied density of point clouds. First, 

a novel method is developed to calibrate the laser line scanner with respect to the robotic end-

effector with the sub 0.5 mm accuracy. Subsequently, 2D surface profiles obtained from the 

LDED-PF built part surface using the laser scanner are stitched together to create an accurate 3D 

point cloud representation. Further, the point cloud data is processed, and defect detection is 

carried out using unsupervised learning and supervised (deep) learning techniques. The overall 

accuracy and mean IoU of 91.3 % and 83.3 % are achieved, respectively. The study paves the way 

for the development of automatic tool path generation for the LDED-PF process to build high-

quality components. 

6.2 Literature review  

 

LDED-PF has several advantages such as material design freedom, higher build rate, ability to 

build large-size components [109] and superior material properties [110]. Despite the promising 

quality of the parts manufactured using the LDED-PF process, defects may occur during the 

manufacturing process. It is important to identify such defects and take measures to avoid them. 

The major defects of the LDED-PF include porosity, change in the chemical composition of the 

material due to segregation and loss of all oying elements, and geometric deviations. Among them, 

one of the major challenges in the direct deployment of LDED-PF components for real-life 
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applications is the geometric defects in the LDED-PF parts. The major reasons for geometrical 

defects in LDED-PF are provided below: 

a) Heat accumulation and residual stresses  

 

Deviations in dimensional accuracy in different layers are mainly due to heat accumulation; 

thermal stress generated due to rapid heating and cooling cycles [111]. Scanning strategies used 

for LDED-PF plays an important role in determining the heat accumulation during LDED. 

Researchers have investigated the effect of different scanning strategies on the dimensional 

accuracy and properties of LDED-PF built components [112]. For instance, one of the major 

effects of the scanning strategy is the built-up that happens at and around edges of turn points due 

to deceleration of the kinematics system, as shown in Figure 6-1[110-111].  Zheng et al. [115] 

studied the effect of different scanning strategies on the final dimensional accuracy of the LDED-

PF parts. It was concluded that the spiral and circular strategies are suitable for cylindrical shapes. 

However, the smaller circles or spirals introduce high acceleration to the machine axis and affect 

the accuracy of the motion system, which eventually can cause build-up errors. The correlation of 

different scanning strategies such as zigzag, unidirectional, and offset are also studied and their 

effect on the dimensional accuracy was investigated [116].  
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Figure 6-1: Build-up of the material around the corners in a LDED-PF part 

 

b) Non-uniform scanning speed  

 

Speed profile change during the deposition can cause over deposition in those areas as shown in 

Figure 6-1. During the deposition in corners and turns, the laser orientation changes suddenly 

between the successive points, causing a reduction in the scanning speed, which will increase the 

powder fed per unit length, leading to oversized depositions.  Boisselier et al. [114] studied the 

effect of scanning speed variation and its effect on the dimensional accuracy of the LDED-PF 

geometry. They also found an experimental correlation between the track height and the scanning 

speed. The effect of the scanning speed variation in the final bead geometry is shown in Figure 

6-2, where the start and end points of the tracks in LDED-PF are also prone to acceleration and 

deceleration of the laser head, which leads to over deposition at start and end points of a single 

track as shown in Figure 6-3.  
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Figure 6-2: Effect of scanning speed variation in the geometry of the beads in LDED-PF[77] 

 Liu et al.[117] studied the effect of toolpath smoothing on the dimensional accuracy of LDED-PF 

parts. Although this technique can improve dimensional accuracy, they require extensive pre-

process planning, and they are highly dependent on scanning strategies. 

 

Figure 6-3: Effect of acceleration and deceleration of the deposition head on the start and end 

point of a single track 

c) Unstable working distance between the nozzle tip and the substrate  

 

Another source of inconsistency in the accuracy of the dimensions in LDED-PF can be related to 

inconsistent layer growth in contrast to the nominal layer height. This can lead to surface 

unevenness on the top layers, especially for thin-walled parts. When the layer growth is not equal 

to the nominal layer height, the laser and powder defocusing distance increases [118]. Based on 

the process parameters, the defocusing distance value can be negative or positive. In the LDED-

PF process, a slight difference usually exists on the top surface of the part [119]. This is mainly 
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due to fluctuation in the process parameters, or unevenness of the substrate. Once there are some 

height differences in the first layer, the difference will increase after each layer due to the 

accumulation of error. In the case of the positive defocusing distance (increasing the distance 

between the nozzle tip and the powder focus), this difference will become more and more and the 

layer growth will not be enough to compensate the theoretical layer height in each layer as shown 

in Figure 6-4(a). In case of negative defocusing distance, layer growth will be more than the 

theoretical layer height and energy density will be altered and the process will become unstable as 

shown in Figure 6-4(b) [120]. The proper alignment of the powder and laser will result in 

manufacturing a part with a flat top surface as shown in Figure 6-4(c).  

   

 

 

(a) (b) (c) 

Figure 6-4: Effect of (a) negative defocusing distance on the top surface evenness, (b) focused 

laser and powder top surface, (c) effect of positive defocusing distance on the top surface 

evenness  

 

Another source of inconsistency is the higher values of layer growth at the top layers as compared 

to the bottom layers due to the higher powder catchment efficiency at the top layers. This is mainly 

due to the preheating effect at the top layers resulting in larger melt pool dimensions at the top 

layers. This will lead to defocusing of the powder and laser, which will eventually cause the 

process failure [121].  
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6.2.1 In-situ monitoring and process control  

 

In-situ monitoring and process control are used to improve the quality of the parts and eliminate 

the defects generated during LDED-PF. These techniques allow the user to ensure the geometrical 

and structural quality (dense parts without internal defects such as pores and cracks) [122]. In-situ 

monitoring and process control are used to improve the quality of the parts and eliminate the 

defects generated during LDED-PF. These techniques allow the user to ensure the geometrical and 

structural quality (dense parts without internal defects such as pores and cracks)[123]. Contactless 

sensor-based techniques are mainly used for process monitoring in LDED-PF due to the high 

temperature involved during the process. The most commonly used contactless sensors for 

monitoring the melt pool (temperature, brightness and intensity) are thermal cameras, infrared 

sensors, and photodiodes [12][120-121]. Also, CMOS and CCD cameras are used both co-axially 

and off-axis to monitor the dimensions of the melt pool [123–127]. The off-axis configuration is 

direction-dependent, and it is normally used for monitoring the deposition of single tracks. This 

configuration permits the measurement of track height and track width. Whereas the co-axial 

configuration can be used to monitor and measure the track width. However, off-axis configuration 

may produce inconsistent measurement data depending on the orientation of the deposition head 

[127-128]. 

Laser line scanners show great potential for 3D surface quality assessment in LDED processes 

[133]. Compared to other vision techniques, they have a higher resolution, which allows the 

generation of accurate data without computationally extensive 3D reconstruction. The working 

principle of the laser line scanner in a robotic system is shown in Figure 6-5. The distance between 

the target and the camera is measured by the triangulation principle. The sensor consists of a laser 
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projector, which projects a laser strip onto the target surface and a light-receiving element 

(normally a CMOS camera) is used to detect the light emitted from the laser line to the surface.  

 

Figure 6-5: Working principle of laser profiler for 3D surface topography 

 

The deployment of a laser line scanner for process monitoring is reported by several researchers. 

Heralic et al. introduced the combination of the laser line scanner and CMOS camera for 

controlling the track geometry (track height and track width) [134]. Tang et al. proposed adaptive 

process parameter control within different layers based on the height measurement of the previous 

layer using a laser line scanner [135]. Iker et al. presented a solution to maintain a constant working 

distance during deposition based on the height measurement. Due to the harsh process environment 

during LDED-PF, the deposition was stopped during the process and the workpiece height was 

measured using a structured light laser scanner [132-133]. Ertveldt et al.[12] developed a platform 

for process monitoring and control of the LDED-PF process where intra-layer height measurement 

is carried out using a laser line scanner and the melt pool width is analysed using the coaxial CMOS 

camera. The authors aimed to use the melt pool and laser line scanner information in a machine 

learning platform to integrate it with the control algorithms for robust geometry prediction and 

control.  
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During LDED-PF, inconsistency with the predicted workpiece growth results in powder 

defocusing, which leads to a significant reduction in dimensional accuracy. It was shown that the 

quality is better when the powder focal plane is slightly above the laser focal plane [138]. In the 

uncontrolled LDED-PF process, a theoretical layer height lower than the actual growth is used to 

maintain the powder focus below the substrate. This will lead to constraints for part growth and 

building rate as well as lowering the catchment efficiency and increasing the powder wastage. 

CMOS and CCD cameras are widely used as economical solutions for relatively fast feedback to 

adjust the process parameters and thereby maintain the required height without stopping the 

process. However, they introduce complexity to the system as they often require calibration based 

on the process parameters. Therefore, a complementary solution is required to modify the 

deposition trajectory based on the actual height for the complex geometries. Chen et al. [139] 

developed an in-situ surface reconstruction software platform for a robotics system using Robot 

Operating System (ROS). The authors identified the surface defects of LDED-PF parts in-situ 

without stopping the process. Supervised and unsupervised machine learning techniques are used 

to identify the error regions on the deposition surface. Li et al. [140] used a stereovision system to 

obtain the surface topography of the LPBF parts. The cameras have overlapped views of the 

monitored surface and the pixels are converted to the point clouds using Digital Image correlation.   

García-Díaz et al.[141] introduced a real-time visualization platform using a laser line scanner 

(combination of a laser strip coupled to a CMOS detector) and near infra red camera. The laser 

line scanner was used to monitor the surface of the LDED-PF parts in real-time. ROS was also 

used for the integration of the sensors with the robotics system.  

6.2.2 Error quantification using machine learning  
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Statistical techniques are commonly used for surface quality assessment of AM built components. 

Being a multi-physics phenomenon, the underlying reasons for the defect formation in AM are 

complicated. Statistical techniques can provide prediction and modelling tools for error formation 

occurrence and characteristics, respectively.  Machine learning is an emerging technique for error 

and defect classification in AM technologies. The literature survey indicates that various machine 

learning models were employed to correlate the surface defects with the process parameters [142].  

one of the fast-growing approaches in material processing, especially for complex multi-physics 

processes such as welding [140-141], and AM for process monitoring and quality prediction [142-

143]. Deep learning techniques for 3D semantic segmentation have also shown promising results 

[147].  

Taherkhani et al. [85] developed a data-driven platform for defect detection of LPBF parts using 

the signal collected from a photo diode monitoring the melt pool. Ren et al. [148] applied 

Convolution Neural Network (CNN) technique for minimizing the surface deviation resulting from 

the residual stress and distortion. The model was used to predict the best scanning strategy for the 

next layer to avoid surface errors.  Chen et al. [139] applied a combination of unsupervised learning 

and supervised learning to identify the surface errors in the LDED-PF process. Statistical features 

of the error regions are extracted and identified in unsupervised learning as the input for supervised 

learning, which used 73 samples. Ogoke et al. [149] presented a deep reinforcement learning 

framework to control the LPBF process to maintain the melt pool dimensions in real-time by 

controlling laser power and scanning speed.  
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6.2.3 Deep learning for point clouds  

 

Applying deep learning techniques to segment point cloud data is a challenging task. Some of the 

challenges are [150] :  

a) Irregularity in the distribution of the points. The irregularity in the distribution of the points 

across the different areas of the target surface leads to some areas having dense points, while 

other areas having sparse points. 

b) Lack of structure in the point cloud: Point clouds are not structured on regular grid-like 2D 

images. Point to point distance is different for each point and the points are scanned 

independently.  

c) Lack of order in the point cloud: Point clouds are a series of points represented in XYZ usually 

stored as a list. However, the order that the data has been stored, does not match the order of 

the object representation.  

The above-mentioned properties of the point clouds are very challenging for deep learning 

techniques, especially CNN. Specific libraries have been developed for segmentation of point 

cloud data based on two techniques: 

a) 2D projection networks: Many networks have been developed to leverage the power of CNNs 

to project 3D point clouds to 2D images for object detection. However, geometric features and 

details may be lost during the transformation. The model achieves good accuracy on 

segmentation, but they are computationally expensive [147–149].  

b) Point-based networks including: PointNet[154], PointNet++ [155].: The fundamental idea of 

PointNet is learning a spatial encoding for each point followed by aggregation of all individual 

point features to a global point cloud registration. PointNet based works show good results on 
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smaller point clouds, but they cannot directly process and segment point clouds due to memory 

and computational cost.   

The comprehensive literature review section provides the baseline for new research opportunities 

to improve the efficiency and productivity of LDED-PF. LDED-PF normally suffers from the lack 

of dimensional accuracy and surface quality, however, in-situ surface quality assessment and 

automatic toolpath generation may provide remedies to overcome the challenges. Laser surface 

scanning proves to be one of the techniques that can be used for in-situ monitoring of surface 

defects generated during LDED-PF. However, the current techniques for surface quality 

assessment of LDED-PF parts suffer from technological gaps such as: 

a) The in-situ monitoring techniques reported in the literature mainly uses intermittent surface 

quality assessment, where the process is stopped for scanning after deposition of a few layers, 

which is followed by process planning for improving the dimensional accuracy.  

b) Point cloud pre-processing techniques are time-consuming, and they introduce delays and 

latencies into the surface quality assessment. 

c) Previous efforts on the deployment of laser scanning for quality assurance of the LEDD-PF 

mainly focus on simple planar geometries, where the main advantages of LDED-PF such as 5-

axis deposition and free-form manufacturing are not challenged. 

The literature indicates that the proposed objectives are original and may develop a reliable 

platform to address some of the current quality challenges of LDED.  
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6.3 Software architecture  

 

A Lab-VIEW-based software platform is developed for communication between the robot 

controller through TCP/IP protocol using the FANUC’s PCDK (PC Developer’s toolkit) to retrieve 

the position, velocity, and status of the robotic arm in real-time. It is also connected to the laser 

profiler using Ethernet/IP. A 3D point cloud of the printed LDED-PF parts can be generated using 

the position of the laser scanner frame during the scan and the laser scanner profile coordinates, 

which are both acquired and processed by the LabVIEW interface. The software architecture is 

shown in Figure 6-6.  

 

Figure 6-6: Software Architecture 

6.4 Workpiece localization  

 

The localization of the workpiece in the robot base frame is the first step for in-situ surface quality 

assessment of LDED components built using a robotic system. The transformation between the 

laser sensor frame and the robot 6th axis frame is required. The procedure of finding the geometric 

relationship of the laser profiler sensor frame and the robot 6th axis frame is known as the hand-

eye calibration method [156]. This method tries to estimate the homogenous transformation matrix 
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between the robot 6th axis frame and the laser scanner sensor that is mounted on the robot 6th axis 

with an offset.  

To perform the hand-eye calibration, it is necessary to locate a fixed object in the robot world 

coordinate system. In this research, a calibration sphere with a diameter of 25.4 mm is used as a 

fixed point with the coordinates of 𝑃𝑙 = [ 𝑥𝐿 , 𝑦𝐿 , 𝑧𝐿 , 1]𝑇 . 𝑇𝑅𝐹1 and 𝑇𝑅𝐹2 are the transformation 

matrices between the robot global fixed coordinate system and the robot 6th axis frame, 

respectively as shown in Figure 6-7. TFS is the 4×4 transformation matrix between the robot 6th 

axis coordinate system and the laser profiler sensor coordinate system and it is assumed to be 

constant, if the sensor is rigidly mounted on the robot 6th axis. Therefore, the hand-eye calibration 

technique can be formulated as shown in Equation 6-1 [157].   

𝑇𝑅𝐹1 𝑇𝐹𝑆𝑃𝐿1
= 𝑇𝑅𝐹2𝑇𝐹𝑆𝑃𝐿2

 6-1 

where, 𝑃𝐿1
 and 𝑃𝐿2

 are the center of the calibration sphere in the laser profiler sensor frame in the 

first and second configuration of the robot as sown in Figure 6-7(a) and Figure 6-7(b) respectively. 

Therefore, the 𝑇𝐹𝑆 is the only unknown in Equation 6-1 .  

Equation 6-1 can be alternatively written as Equation 6-2 by multiplying both sides of Equation 

6-1 by 𝑇𝑅𝐹2
−1  and 𝑃𝐿1

−1.  

 

𝐴𝑇𝐹𝑆 = 𝑇𝐹𝑆𝐵 6-2 

where, 𝐴 = 𝑇𝑅𝐹2
−1  𝑇𝑅𝐹1 and 𝐵 = 𝑃𝐿2

 𝑃𝐿1
−1.  

6-2 can be simplified to 𝐴𝑋 = 𝑋𝐵 , where 𝑋 =  𝑇𝐹𝑆. In the literature, different techniques are 

presented to solve the 𝐴𝑋 = 𝑋𝐵. One of the most practical techniques used in industry is called a 

two-stage technique. This technique solves 6-2 by decomposing it into two consecutive parts. 
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Initially, the rotation matrix between the robot 6th axis frame and the laser profiles sensor frame is 

estimated. In the second part, the translation matrix between the robot 6th axis frame and the laser 

profiler sensor is estimated.  

 

 

(a) (b) 

Figure 6-7 :Schematic representation of hand-eye calibration steps for the Fanuc M-20iA 

robot and laser profiler sensor (a) robot in a first known kinematic position (b) robot in the 

second known kinematic position 

  

6.4.1 Calculation of center of calibration sphere in laser scanner coordinate system 

 

6-2can be re-written as Equation 6-3 where 𝑃𝑅 is the center of the calibration sphere in the robot 

world coordinate system; 𝑅𝑅𝐹 and𝑡𝑅𝐹 𝑎re the rotation and translation matrix of between the robot 

world coordinate system and the flange coordinate system, respectively; 𝑅𝐹𝑆 and 𝑡𝐹𝑆 are the 

rotation and translation matrix between the robot 6th axis and the laser scanner frame, respectively; 

𝑃𝑙 is the center of calibration sphere in the laser scanner frame.  
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[
𝑃𝑅

1
] = [

𝑅𝑅𝐹 𝑡𝑅𝐹

0 1
] [

𝑅𝐹𝑆 𝑡𝐹𝑆

0 1
] [

𝑃𝑙

1
] 6-3 

First, the center of the calibration sphere in the laser scanner frame is calculated. When a laser 

stripe is projected to the sphere surface, a 2D profile can be obtained from the laser scanner as 

shown in Figure 6-8(a) and Figure 6-8(b). The obtained curve is shown in Figure 6-8(c). A circle 

is fitted to the arc using the least square method and the center and the radius of the circle is 

calculated. The calculated center is denoted as 𝑆𝑥 and 𝑆𝑧. Further, the calculated radius of the fitted 

circle is used to find the value 𝑆𝑦 as shown in Figure 6-8(b) (refer to Equation 6-4), where  𝑅𝑠 is 

the radius of the calibration sphere, and 𝑟 is the radius of the circle fitted to the profile obtained 

from the laser scanner. 

𝑆𝑦 = ±√𝑅𝑠
2 − 𝑟2 

 

6-4 

 
 

 

(a) (b) (c) 

Figure 6-8: (a) Laser scanner stripe on the calibration sphere, (b) Calculation of center of 

calibration sphere, (c) fitted circle to the projected laser stripe 

 

6.4.2 Calculation of rotation matrix component  

 

For two consecutive profile measurements, Equation 6-3 can be rewritten as Equation 6-5.  
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𝑅𝑅𝐹
𝑘 . 𝑅𝐹𝑆

𝑘 . 𝑃𝐿
𝑘 + 𝑅𝑅𝐹

𝑘 . 𝑡𝐹𝑆
𝐾 + 𝑡𝑅𝐹

𝑘

= 𝑅𝑅𝐹
𝑘+1. 𝑅𝐹𝑆

𝑘+1. 𝑃𝐿
𝑘+1 + 𝑅𝑅𝐹

𝑘+1. 𝑡𝐹𝑆
𝑘+1 + 𝑡𝑅𝐹

𝑘+1 

 

6-5 

 

If the orientation of the robot 6th axis frame is unchanged during the two consecutive profile 

measurements, Equation 6-5can be re-written as Equation 6-6.  

𝑹𝑭𝑺. [𝑃𝐿
𝑘 − 𝑃𝐿

𝑘+1] = [𝑅𝑅𝐹]
−1. [𝑡𝑅𝐹

𝑘+1 − 𝑡𝑅𝐹
𝑘 ] 

 

6-6 

 

If we consider that 𝐷 = [𝑃𝐿
𝑘 − 𝑃𝐿

𝑘+1] and 𝐸 = [𝑅𝑅𝐹]
−1. [𝑡𝑅𝐹

𝑘+1 − 𝑡𝑅𝐹
𝑘 ], Equation 6-6 can be re-

written as Equation 6-7.  

𝑅𝐹𝑆. 𝐷 = 𝐸 

 

6-7 

 

𝑅𝐹𝑆 is a 3×3 matrix and 𝐷 and  𝐸  are 3 ×2 matrices. Since 𝐷 and  𝐸 are not square matrices,  

𝑅𝐹𝑆 can be estimated using the Singular Value Decomposition (SVD) of the 𝐷𝐸𝑇 and using its 

right (𝑉) and left (𝑈) values as shown in Equation 6-8.  

𝑅𝐹𝑆 = 𝑉𝑈𝑇 

 

6-8 

 

It has to be noted that the two profile measurements for this step do not provide the required 

accuracy, and thus, eight measurements are needed to improve the accuracy.  

6.4.3 Calculation of translation matrix component  

 

In the second step of the two-stage solution, the translation between the two consecutive robot 

poses will be kept constant, when the profile measurement is taking place. Therefore Equation 6-9, 

is substituted in  Equation 6-5 to obtain Equation 6-10.  

𝑡𝑅𝐹
𝑘 = 𝑡𝑅𝐹

𝑘+1 

 

6-9 
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[𝑅𝑅𝐹
𝑘 − 𝑅𝑅𝐹

𝑘+1]. 𝒕𝑭𝑺= [𝑅𝑅𝐹
𝑘+1. 𝑅𝐹𝑆. 𝑃𝐿

𝑘+1-𝑅𝑅𝐹
𝑘 . 𝑅𝐹𝑆. 𝑃𝐿

𝑘] 6-10 

 

If 𝐴 = [𝑅𝑅𝐹
𝑘 − 𝑅𝑅𝐹

𝑘+1] and [𝐵 = 𝑅𝑅𝐹
𝑘+1. 𝑅𝐹𝑆. 𝑃𝐿

𝑘+1-𝑅𝑅𝐹
𝑘 . 𝑅𝐹𝑆. 𝑃𝐿

𝑘], Equation 6-10 can be re-written 

as a system of the linear equation as shown in Equation 6-11.  

𝐴𝑥 = 𝐵 6-11 

Further, Equation 6-11is solved to calculate 𝒕𝑭𝑺.  

6.4.4 Validation of hand-eye calibration 

 

Once the position and orientation of the laser sensor frame were obtained, it was provided to the 

robot controller as a tool frame. Then the surface of the calibration sphere (𝐷 = 25.4 𝑚𝑚) was 

scanned in three different robot positions. The point cloud obtained from each measurement was 

fitted to a sphere using the least square technique and the center and the radius of the fitted sphere 

were calculated. Figure 6-9 shows the validation process and the spheres fitted to the point clouds. 

Table 6-1 shows the standard deviation of the sphere coordinates (𝑆𝑥, 𝑆𝑦 𝑎𝑛𝑑 𝑆𝑧) and the radius of 

the sphere (𝑅𝑠). These results show a good accuracy (sub 1mm) in workpiece localization, and it 

verifies that the robot can be used for in-situ surface reconstruction of LDED-PF parts.  
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Robot Position and Orientation 

X 918.10 W 89.96 

Y 577.43 P 18.95 

Z -365.45 R 89.89 

 

Robot Position and Orientation  

X 872.72 W -90.10 

Y -150.46 P -18.89 

Z -4.93 

 

R -89.89 

 

Robot Position and Orientation  

X 896.76 W 91.749 

Y 363.52 P -71.281 

Z 105.54 

 

R 88.392 

 

Figure 6-9: Validation of the hand-eye calibration technique 

Table 6-1: Standard deviation of center and radius of the fitted sphere to the point clouds 

Coordinates 𝑆𝑋(𝑚𝑚) 𝑆𝑦(𝑚𝑚) 𝑆𝑍(𝑚𝑚) 𝑅𝑠(𝑚𝑚) 

Standard deviation of 

measurements 

0.752 0.568 0.452 0.389 

6.5 Surface quality assessment using point cloud processing  

The geometrical deviations in LDED-PF made parts can be categorized as three main groups: 1) 

Normal surface, 2) Convex surface and 3) Concave surface as shown in Figure 6-10. In this 

research, the areas that potentially contain these surface defects are isolated initially and they are 

automatically annotated as defects. The annotated data is then used for defect detection using a 

deep learning algorithm.  
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(a) (b) (c) 

Figure 6-10(a) example of normal surface, (b) example of concave surface, (c) example of the 

convex surface 

6.6 Point cloud pre-processing  

Once the surface profile point cloud is transformed, it needs to be pre-processed, filtered, and 

segmented. The point cloud pre-processing algorithm flowchart is shown in Figure 6-11.  

 

Figure 6-11: Point cloud pre-processing algorithm flowchart 

Figure 6-12 (a) shows a typical specimen built using LDED-PF. The raw point cloud from the 

sensor contains the substrate and other objects including fixtures as shown in Figure 6-12(b). The 

user frame of the robotic system is defined in a way that the height of the substrate in the active 
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user frame is zero in the active tool frame coordinate system. It is critical to isolate the target 

surface from the substrate to be able to identify the geometrical defects. The M-estimator SAmple 

Consensus (MSAC) algorithm is used to remove the substrate from the point cloud using statistical 

outlier removal [158]. MSAC uses repeated sub sampling to divide the data into inliers and outliers. 

Inliers are the data whose distribution can be explained by the model parameters. In the point cloud 

and substrate case, the inliers are the points that can fit into a plane. The substrate is considered to 

be a plane and any other data points are considered as outliers that do not fit the model. The raw 

point cloud also includes the noise (as shown in Figure 6-12(c)) that is caused by the steep vertical 

walls that cannot be properly captured due to the physical limitations of the scanner, and the 

reflection of the deposited surface. The expected height of the deposited layer can be estimated 

using the layer height resulting from a set of process parameters. The average height of the points 

in the point cloud and their standard deviation are used for statistical outlier removal. The noise 

removal algorithm iterates through the points and removes the sparse points that do not belong to 

the target deposition surface out of the range as shown in Equation 6-12.  

ℎ𝑚𝑎𝑥 , ℎ𝑚𝑖𝑛 = 𝑀𝑒𝑎𝑛(𝑃𝐶𝑧) ± 𝛽𝜎𝑃𝐶𝑧
 6-12 

where, 𝑃𝐶𝑧 is the height of each point in the point cloud, 𝜎𝑃𝐶𝑧
 is the standard deviation of 𝑃𝐶𝑧 , 𝛽 

is experimentally estimated using different datasets and its value is set to 5 based on the 

experiments and ℎ𝑚𝑎𝑥  𝑎𝑛𝑑  ℎ𝑚𝑖𝑛 are the z value of the maximum and minimum points in the point 

cloud, respectively. 
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(a) (b) 

  

(c) (d) 

Figure 6-12: (a) Printed LDED-PF sample, (b) Raw point cloud obtained from the 

sensor, (c) processed point cloud after substrate removal, (d) clean point cloud 

6.7 Point cloud segmentation  

 

After the substrate removal and point cloud denoising, a plane is fitted to the point cloud using the 

total least squares (TLS) method [159]. The principle of the TLS method is shown in Figure 6-13. 

The point cloud data is stored in a N×3, where N is the number of points in the point cloud. The 

normal vector of the best-fitted plane using TLS is found using Equation 6-13.  
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𝑀 = 𝑈𝐷𝑉𝑇 6-13 

        

Where 𝑀 is the N×3 point cloud matrix and U, D and V are the Right, Bottom and Left components 

of the Singular value decomposition, respectively. The corresponding left singular vector is the 

normal vector of the best fitting plane.  

 

Figure 6-13: Principal of Total Lease Square (TLS) surface fitting 

After finding the plane using TLS, the plane equation can be written as Equation 6-14:    

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0 6-14 

For each point of the obtained point cloud, the Euclidean distance from the reference plane can 

be calculated as shown in Equation 6-15:  

|𝑙𝑃𝑖
| =

𝑎𝑃𝑥𝑖
+ 𝑏𝑃𝑦𝑖

+ 𝑐𝑃𝑧𝑖

√𝑎2 + 𝑏2 + 𝑐2
 

6-15 

where, 𝑖 is the index of the points in the point cloud, and 𝑙𝑃𝑖
 is the calculated Euclidean distance 

from that point to the fitted reference plane.  
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The direction of the 𝑙𝑃𝑖
 can be found using the Normal vector of the plane calculated as presented 

in Equation 6-16:  

𝑁 = 
[𝑎, 𝑏, 𝑐]

√𝑎2 + 𝑏2 + 𝑐2
 

6-16 

Based on the value of 𝑙𝑝, the point clouds are divided into 3 subclasses (refer to Figure 6-14) as 

follows:  

a) Points with deviation higher than the +𝑙∗ from the fitted reference plane are grouped as a 

convex class (Equation  6-17): 

𝑃𝑐𝑜𝑛𝑣𝑒𝑥 = {𝑝𝑖 ∈ 𝑃𝐶 | 𝑙𝑝𝑖 >  +𝑙∗} 6-17 

where, 𝑙∗ = 
1

2
× 𝑙𝑎𝑦𝑒𝑟 ℎ𝑒𝑖𝑔ℎ𝑡 

b) Points with deviation lower than the −𝑙∗from the fitted reference plane are grouped as a 

concave class (Equation 6-18): 

 

𝑃𝑐𝑜𝑛𝑐𝑎𝑣𝑒 = {𝑝𝑖 ∈ 𝑃𝐶 | 𝑙𝑝𝑖 <  −𝑙∗} 6-18 

where, 𝑙− = − 
1

2
× 𝑙𝑎𝑦𝑒𝑟 ℎ𝑒𝑖𝑔ℎ𝑡 

c) Points with deviation higher than −𝑙∗ and lower than +𝑙∗ from the fitted reference plane 

are grouped as a normal class (Equation 6-19): 

𝑃𝑛𝑜𝑟𝑚𝑎𝑙 = {𝑝𝑖 ∈ 𝑃𝐶 |−𝑙∗ <  𝑙𝑝𝑖 < +𝑙∗ } 6-19 
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Figure 6-14: Classification of surface defects based on the Euclidean distance from the fitted 

reference plane 

 

 
 

(a) (b) 

  

(c) (d) 
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(e) (f) 

Figure 6-15: (a) TLS plane fitted to the point cloud, (b) point cloud segmentation, convex 

region, (c) point cloud segmentation, concave region (d) point cloud segmentation, normal 

region, (e) Defect region segmentation, Convex, (f) Defect region segmentation, Concave  

The fitted reference plane overlaid on its reference point cloud is shown in Figure 6-15(a).  The 

convex, concave regions of the point cloud are shown in Figure 6-15(b) and Figure 6-15(c), 

respectively. Once the convex, concave, and normal regions of the point cloud are found, a density-

based clustering algorithm following the minimum Euclidean distance between points from 

different clusters is used to segment the point cloud into clusters (DBSCAN (Density-based spatial 

clustering of applications with noise)). The DBSCAN cluster extraction algorithm [160] is selected 

due to its efficiency and capability to find clusters with random shapes and dimensions from a 

large set of points. The two main hyperparameters for the DBSCAN algorithm are 𝜀 (the distance 

measure that will be used to locate the neighbourhood of any point) and 𝑚𝑖𝑛𝑃𝑡(the minimum 

number of points required for a region to be considered as a cluster). 

6.8 Results  

 

The results of the DBSCAN clustering method for a sample part is shown in Figure 6-15(e) and 

Figure 6-15(f). The performance of this clustering technique was measured using Equation 6-20.  
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Table 6-2 presents the per cluster accuracy of the clustering technique for different classes of the 

surface.  

𝑃𝑒𝑟 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑙𝑎𝑏𝑒𝑙𝑠 

𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑒𝑖𝑐𝑡𝑖𝑜𝑛𝑠 
 

6-20 

Table 6-2.Results of per cluster accuracy 

 Concave  Convex  Normal  

Per cluster accuracy  81% 87% 88% 

Thus, it can be seen that the statistical techniques (used in 4.6) for defect segmentation and 

clustering shows promising results.  However, the threshold distance and other input hyper-

parameters need to be dynamically modified using experiments for the algorithm to provide robust 

results. This also requires a lot of domain knowledge. The following are the advantages of this 

approach: 

a) Good accuracy of classification especially for normal and convex regions. 

b) Very quick inference time (~60 µs). 

c) No training data is required.  

The drawbacks of this approach include: 

a) Performs poorly on point clouds with varying densities. Since the point clouds acquired from 

the LDED-PF parts are obtained using different scanning speeds, the point cloud density can 

vary.  

b) Does not perform well on non-planar geometries and thin-wall geometries. 

c) Introducing new defect classes such as wavy will require a lot of domain knowledge. 
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d) Clustering hyper parameters need to be tuned for different geometries with different 

dimensions.  

6.9 Classification of defects in LDED-PF using Semantic Segmentation  

 

6.9.1 Using RandLANet for Segmentation of the point clouds  

 

The clustering algorithm (presented in section 6.6) is used for automatic annotation of the point 

clouds to be processed by the 3D semantic segmentation network. The 3D semantic segmentation 

aims at finding the different defects in the 3D point clouds and classifying each defect into a pre-

defined class.  

Although the statistical outlier technique and clustering using the DBSCAN are very robust, they 

are highly dependent on the part size and point clouds, and the threshold distance needs to be 

adjusted for different sizes. Thus, it cannot be used as a robust and rapid technique for surface 

error identification in LDED-PF. Despite the limitation of deep learning for point cloud 

segmentation, RandLANet is capable of processing large point clouds directly in a short time using 

random sampling and local feature aggregation. The random down-sampling techniques used in 

RandLANet is a key enabler for processing large point clouds since it lowers the computational 

time and cost as compared to the other computationally extensive sampling techniques. While 

random sampling can discard the key information of the point clouds, especially the sparse points, 

the local feature aggregation technique can capture the complicated local features over smaller 

point sets. In each layer of RandLANet, the large point clouds are down sampled significantly 

using random sampling and it is still capable of retaining important features for segmentation. The 

process of random down sampling and local feature aggregation used in RandLANet is shown in 

Figure 6-16.  
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Figure 6-16: Efficient random down sampling and local feature aggregation in RandLANet 
[161] 

The local feature aggregation includes the following units:   

 

1- Local Spatial encoding (LocSE) 

2- Attentive pooling  

3- Dialated residual block 

6.9.2 Local Spatial Encoding  

 

The local spatial encoding unit embeds the x, y, and z coordinates of all neighbor points, therefor 

the corresponding point features are aware of their relative spatial positions.  

The LocSE includes the following units:  

6.9.2.1 Finding Neighbor points 

 

The neighbor points of the jth point are generated using K-nearest neighbors (KNN) algorithm 

based on the point-wise Euclidean distance.  

6.9.2.2 Relative Point Position Encoding  

 

For each of the nearest K points {𝑝𝑗
1, … , 𝑝𝑗

𝑘, … , 𝑃𝑗
𝐾  } of the center point 𝑝𝑗, the relative point 

position is explicitly encoded as Equation 6-21.  
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𝑟𝑗
𝑘 = 𝑀𝐿𝑃(𝑝𝑗 ⋃  𝑝𝑗

𝑘 ⋃ (𝑝𝑗 − 𝑝𝑗
𝑘)⋃ ‖𝑝𝑗 − 𝑝𝑗

𝑘‖) 6-21 

 

Where 𝑝𝑗 and 𝑝𝑗
𝑘 are the coordinates of each point, ‖ . ‖ is the Euclidean distance operator and ⋃ 

is the concatenation operator. 𝑟𝑗
𝑘 is encoded from redundant points and this helps the network to 

learn local features and acheive the required performance.  

6.9.2.3 Point Feature Augmentation  

 

The relative point positions 𝑟𝑗
𝑘, For every neighboring point 𝑝𝑗

𝑘, are concatenated with its point 

features 𝑓𝑗
𝑘 to find the feature vector 𝒇𝒋

𝒌̂.  

6.9.3 Attentive Pooling  

 

The attentive pooling MLP is used to find the aggregation of  the set of neighboring point features 

𝑭𝒋̂. The typical min/max pooling used in [162] and [155] to integrate the neighbor features, results 

in the information being lost. Inspired by [163], the attentive pooling include the following steps:  

6.9.3.1 Computing Attention Scores  

 

A shared function 𝑔() is developed to learn a attention score for every feature. 𝑔() includes a 

shared MLP and softmax as shown in Equation 6-22.  

𝑠𝑖
𝑘 = 𝑔(𝑓𝑗

𝑘.𝑊)         6-22 

Where, W is the weights of the shared MLP and 𝒇̂𝒋
𝒌 is a local feature.  

6.9.3.2 Weighted Sum:  
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The attention scores can be subsequently used as a soft mask to select the most important features. 

The weighed sum of the features is shown in Equation 6-23. 

𝑓𝑗 = ∑ (𝑓𝑗
𝑘. 𝑠𝑗

𝑘)𝐾
𝑘=1   6-23 

where 𝑓𝑗 is the informative feature vector. 

After the LocSE and Attentive pooling function, the original  point cloud P, for its jth point, 𝑝𝑗, the 

geomatical features of is K nearest neighbors are aggregated to generate the feature vector 𝑓𝑗.  

6.9.4 Dilated Residual Block  

 

Large point clouds are down sampled substantially using random sampling; therefore, it is required 

to increase the receptive fields of every point to preserve the geometric details of the original point 

cloud. In general, the local feature aggregation, effectively reserves the complex geometrical 

features by explicitly considering neighbor geometries and increasing the receptive fields. The 

modules include only feed forward MLPs and therefore it is computationally efficient.  

6.10 Implementation  

 

The total number of 284 samples were built using random LDED-PF process parameters in the 

process window range specified in Table 3-2.  Some of the built parts are shown in Figure 6-17. 

The scanning strategies for each sample were randomly selected from the scanning strategies 

templates to randomize the surface features.  

The result of the 3D semantic segmentation for surface defect detection of LDED-PF parts is 

classified into three classes as presented in Figure 6-10. 
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Figure 6-17: Examples of LDED-PF parts printed for surface defect detection using deep 

learning 

The detailed architecture of the RandLA-Net (shown in Figure 6-18) is explained below. 

 

Figure 6-18: The architecture of RandLA-Net: US: Up-sampling, (N,p): number of points and 

coordinates, LFA: Local Feature Aggregation, RS: Random Sampling, MLP: Multi-Layer-

Perceptron, FC: Fully Connected Layer. DP: Dropout  
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a) Network Input 

The input is a point cloud acquired from the LDED-PF parts with the size of 𝑁 × 𝑃𝑖𝑛 , where 

N is the number of points and 𝑃𝑖𝑛 is the 3D coordinates of each point. The Poisson disc 

sampling algorithm [164] is used to down sample the point cloud to the same size for inputting 

them into the network. Poisson disc sampling produces points that are tightly packed, but not 

closer to each other than a specified minimum distance. The minimum distance and the number 

of points is the input for this algorithm.  

b) Encoding Layers  

Four encoding layers are stacked to reduce the size of the point cloud and increase the per-

point feature dimension. The point cloud is down sampled by ¼ after each layer and the per-

point feature dimension are increased by 4 to retain more information. Each encoding layer 

includes a random sampling and local feature aggregation module. 

c) Decoding Layers 

Four decoding layers are stacked after the encoding layers. In each layer of the decoder, K 

nearest neighbors (KNN) is used to find the nearest neighbour point for each query point. The 

Euclidean distance is used for the KNN algorithm. The k nearest neighbors of a point is found 

using the Euclidean distance fusion as shown in Equation 6-24 [165].  

𝑑𝑖𝑠𝑡((𝑥1, 𝑦1, 𝑧1), (𝑥2, 𝑦2, 𝑧2) ) =

√(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 + (𝑧1 − 𝑧2)22
          

                                         6-24 

  

For the given value of k by the user, the algorithm finds the k-nearest neighbors of the point 

and it assigns the class label to the input data with the largest probability.  
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After up sampling the point feature set, up sampled features are added by encoding layers. The 

MLP is then used for the concatenation of feature sets.  

d) Final Label Prediction 

The label of each point in the point cloud is calculated using shared fully connected layers. The 

dropout ratio of 0.5 is used. 

e) Network Output  

The output of the network is per point label with a size of N×𝒏𝒄𝒍𝒂𝒔𝒔, where 𝒏𝒄𝒍𝒂𝒔𝒔, is the number 

of classes.  

6.11 Implementation  

 

The RandLANet architecture implementation in Open3D [166] based on the Tensorflow library 

was adopted for training and validation. A fixed number of points are sampled (~12,000 points) 

from each sample point cloud as input. All experiments are performed using NVIDIA RTX A5000 

GPU.  

Hyperparameters of the network (shown in Table 6-3) were selected by experimental and grid 

search techniques for optimization.  

Table 6-3:RandLANet Hyperparameters 

RandLANet Hyperparameters 

Learning rate 0.01 and decreased by 5% after each epoch 

Gird size   0.01 

&num; Epochs  250 

Batch size  32 

K nearest point for local encoding  48 
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The performance of the network is evaluated using the k-fold cross-validation technique. In k-fold 

validation, the data is split evenly in k folds in which, k-1 folds are used for training of the data 

and one remaining fold is used for validation of the network performance. The mean intersection 

over union (mIoU) and overall accuracy (OA) are used as evaluation performance criteria. To 

calculate the mIoU, the bounding box for the ground truth label and predicted bounding box from 

the model are required.  

The data obtained from scanning the experiment LDED-PF parts are split into the training and 

validation set by the ratio of 8:2.  

The segmentation results fall into one of the following cases: 

a) True Positive (TP): Model prediction is a positive sample point, and actual point label is a 

positive sample point as well. 

b) False Positive (FP): Model prediction is a positive sample point, and the actual label is a 

negative sample.  

c) True Negative (TN): Model predicts a negative sample point, and the actual label is a 

negative example as well.  

d) False Negative (FN): Model predicts a negative sample point, but the actual label in a 

positive sample.  

The IoU definition is the ratio of the intersection of the union of predicted value and actual value 

as shown in Equation 6-25 [167].  

𝐼𝑜𝑈 =  
𝑇𝑃

𝐹𝑃 + 𝐹𝑁 + 𝑇𝑃
 

6-25 

IoU is calculated based on the class and after each class calculates its IoU, the average IoU of all 

classes (mIoU) can be calculated.  
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Overall accuracy (OA) is defined as the percentage of the points that are classified correctly as 

shown in Equation 6-26.  

𝑂𝐴= 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 

6-26 

 

6.12 Results and Discussion  

 

The average overall accuracy and average mIoU result of the 5-fold cross-validation of the 

RandLA-Net on the 3D point cloud dataset of the LDED-PF parts are shown in Figure 6-19 and 

Figure 6-20, respectively. The 5-fold cross-validation shuffles the dataset randomly and splits the 

data into k (5) groups. For each group, the group is divided into training and validation data and 

the model is fitted to the training data and tested on the validation data. Importantly, each 

observation in the data sample is assigned to an individual group, this means that each sample is 

given the opportunity to be used in the validation data set one time and to be used to train the 

model k-1(4) times.  

The average overall accuracy and average mIoU accuracy values are shown in Table 6-4.  

 

Figure 6-19: Average overall accuracy for 5 folds 
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Figure 6-20: Average mIoU accuracy for 5 folds 

 

Table 6-4: Individual class overall average accuracy 

Class  Overall accuracy   IoU  

Normal  95.1% 89.4% 

Convex 89.6% 81.4% 

Concave 88.3% 79.3% 

 

The accuracy result shows good performance of the network overall on the normal and convex 

surfaces. However, the model struggles to detect the concave surface. Since the concave surfaces 

are mainly global features, they are the hardest to be detected by the DBSCAN clustering 

algorithm, and the RandLANet model. Comparing the point cloud data obtained from the surface 

of the LDED-PF part to the desired CAD geometry and increasing the training dataset will be the 

solutions to increase the convex and concave surface detection.  
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Ground Truth RandLA-Net Model 

Predection 

Original point cloud with the 

deviation from the reference 

plane  

Figure 6-21: Comparison of the Ground truth (GT) with the prediction of the RandLA-Net. 

Red: Convex surface, Blue: Concave surface, Green: Normal surface  
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The qualitative result of the RandLA-Net on the validation split of our dataset is shown in Figure 

6-21.  

6.13 Summary 

In the present work, a platform for deep-learning-based in-situ surface anomaly detection in 

LDED-PF was developed. The following conclusions can be drawn from the work: 

1. The hand-eye calibration is implemented to calibrate the laser scanner sensor to reconstruct the 

surface of the printed geometries. Sub 0.5-millimetre accuracy is obtained for the hand-eye 

calibration, which can be effectively used for evaluating and addressing the surface quality 

issues during the LDED-PF process.  

2. The output of the statistical analysis method is annotated and fed into a deep neural network 

called RandLA-Net and the average overall accuracy of 91.3% and mean IoU of 83.3% are 

achieved.   

3. The methodology for defect detection can be used for immediately pausing the process in case 

of surface defect detection and preventing further quality deterioration leading to unpredictable 

failures.  

The next chapter will discuss intermittent adaptive trajectory planning for geometric defect 

correction in robotic laser directed energy deposition-based additive manufacturing. 
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7 Intermittent Adaptive Trajectory Planning for Geometric Defect 

Correction in Robotic Laser Directed Energy Deposition-based Additive 

Manufacturing 
 

7.1 Introduction  

 

In this chapter, development of an adaptive tool path trajectory platform to correct the dimensional 

inaccuracies in-situ to build high-quality components using LDED-PF is carried out. The study 

deploys a laser line scanner to scan the part after the deposition of the definite number of layers 

followed by detection of concave, convex, and flat surfaces using deep learning. Further, the 

developed adaptive trajectory planning algorithm is deployed by using three different strategies to 

control material deposition on concave, convex, and flat surfaces. The material deposition is 

controlled by using adaptive scanning speed, and a combination of laser on-off and scanning speed. 

Subsequently, the built geometries are subjected to geometric, microstructure, and mechanical 

characterizations. It is observed that the deviation of the part was reduced by 30% , and 27.5% 

using adaptive scanning speed, and a combination of laser and scanning speed, respectively. The 

structures built using the three strategies show some micropores at isolated locations. However, 

solidification cracks are observed at few regions on samples built with laser control. The 

microstructure is mainly cellular under all conditions with a similar average microhardness of ~ 

210 HV. The study provides an integrated and comprehensive approach for building high-quality 

components using LDED-PF with minimal dimensional deviation from the original CAD model.  

7.2 Literature review  

 

Closed-loop controller development for maintaining the dimensional accuracy has been an active 

area of research in recent years [168]. Process parameters such as scanning speed and laser power 

can be adjusted in real-time based on feedback from various sensors such as melt pool dimensions, 



104 

 

temperature, and surface tomography data. Fathi et al. implemented an analytical technique to 

estimate the melt pool depth in LDED-PF process offline [127]. Jeon et al. [169] used an integrated 

infrared camera and laser line scanner to estimate the melt pool depth in the LDED-PF process 

online. Toyserkani et al. developed a closed-loop control system based on the image acquired from 

multiple CCD cameras and PID controller to adjust the laser power to achieve the uniform clad 

height [170]. Ding et al. developed a PID controller to adjust the laser power to achieve the uniform 

melt pool dimension in different directions [171]. The performance of the controller was verified 

by building a corner wall, where the nozzle slows down in the corner and results in material build-

up. A part was successfully built without the build-up using the PID controller.  

Although real-time melt pool monitoring techniques improve the LDED-PF process significantly, 

there are many studies on this topic. Moreover, they provide real-time feedback for the correction 

of local anomalies without considering the global dimensional inaccuracies. In contrast to sensing 

techniques of the melt pool and real-time control of the process, recently some researchers used 

intermittent scanning and dimensional control of LDED-PF. Heralic et al. used a combination of 

laser line scanner and melt pool monitoring system to extract the geometry of deposited layers and 

dimensions of the melt pool at the corresponding location to use the data in machine learning 

applications to control the process [134]. Gardemnia et al. [172] developed an intermittent 

controller to adjust the scanning speed based on the local height of previous layers. The process 

was stopped after each layer, the top surface was scanned using a structural light scanner and the 

scanning speed was adjusted accordingly in the next deposition layer. The work was extended to 

the development of a more comprehensive controller to scan the part after a certain number of 

layers are deposited, adjust the working distance, and regenerate the toolpath for the rest of the 

part based on the acquired height from the scan [136]. Chen et al. [139]used a combination of 
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unsupervised and supervised learning to cluster the surface defects in LDED-PF parts. They 

achieved over 90% of accuracy to predict the cluster labels using k-nearest neighbours (KNN). Xu 

et al. [173] developed an in-situ trajectory generation technique to compensate for the surface 

defects by filling the underfill areas up to the maximum height. They used an in-house developed 

software tool chain to generate the repair toolpath and they reported the similar material properties 

between the samples built with and without this dimension correction strategy. Qin et al. [174]used 

a laser line scanner to scan the surface of the parts built using LDED-PF. Least square and d 

projection techniques were used to denoise and process the resulting point cloud. After the defects 

were identified, repair toolpath generation was generated to fill the underfill areas. Wilson et al. 

[63] developed a semi-automatic technique to repair the turbine blade tips using laser scanning 

and the difference Boolean operation between the desired geometry and the scan data (converted 

to STL files using triangulation). Kono et al. [175] presented an adaptive layer height control 

technique to control the standoff distance without considering the surface topography of the 

previously deposited layer.  

Although the aforementioned dimension correction techniques improve the dimensional accuracy 

of built components, they suffer from various limitations. The techniques adopted in the literature 

do not consider the actual surface topography of the deposited layer during the correction. In 

addition, the techniques are based on CAD-based Boolean operation and reconstruction methods, 

which are computationally expensive. These techniques depend on the Boolean difference between 

the desired CAD data and the measured surface.  

Thus, there is a need to develop an adaptive tool path trajectory platform to correct the dimensional 

inaccuracies in-situ to build high-quality components using LDED-PF. Therefore, in this research, 

deep learning-based surface defect detection is extended using efficient adaptive trajectory 
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planning strategies such as adaptive scanning speed control (ASSC), and a combination of laser 

on-off and scanning speed control (ASSLC) techniques to improve the dimensional accuracy of 

the LDED-PF parts in-situ. The developed parts are subjected to geometrical, density, 

microstructure, and mechanical property investigations. 

7.3 Process parameters and specimen dimension 

 

The process parameters used for the experiments are shown in Table 7-1. Argon is used as carrier 

gas and shielding gas to carry the powder to the deposition zone and avoid melt pool oxidation, 

respectively. 

Table 7-1: Process parameters for LDED-PF process 

Process parameter  Value 

Powder feed rate  5 g/min 

Laser Power  700 Watts 

Reference Scanning Speed  10 mm/sec 

Laser spot diameter  1.2 mm 

Shielding gas flow rate 15 lpm 

Carrier gas flow rate 10 lpm 

 

Three different geometries were built to check the effect of the developed technique on the 

dimensional accuracy of the built parts. They are as follows: 

(a) A cuboid with theoretical dimensions of 30 mm in length and width and a height of 24 mm 

(b) A cylinder with a theoretical radius of 15 mm and height of 20 mm  

(c) An I-beam shape (as shown in  Figure 7-1) with a height of 12 mm  



107 

 

 
Figure 7-1: Dimensions of the I-beam (All dimensions are in mm) 

 

7.4 In-situ surface defect detection  

 

In this research, the deep learning-based method used in [176] is used to identify the surface 

anomalies in the LDED-PF parts. A laser profiler (Micro-Epsilon ScanCONTROL 2950-100/BL) 

is used to measure the surface topography of LDED-PF parts. The laser line scanner specification 

is shown in Table 7-2.  

Table 7-2: Specifications of the laser profiler 

Model ScanControl 2950-100 

Z-axis measuring range  265 mm 

X-axis measuring range 143.5 mm 

Measurement speed 2,000 Hz  

X-axis resolution 1,280 points per profile  

 

The laser line scanner is rigidly mounted on the 6th axis of the robot arm. Hand-eye calibration is 

performed to obtain the accurate position of the laser profiler with respect to the faceplate of the 

robot’s 6th axis. Once the position and orientation of the laser line scanner are found, the surface 

topography of the LDED parts can be obtained by transforming the point from the laser line profiler 
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coordinate system to the active user frame of the robot based on Equation 7-1, Where, 𝑇𝐿
𝐹 is the 

4 × 4 homogenous transformation matrix between the robot 6th axis frame to the deposition head 

frame (can be obtained from the robot controller), ), 𝑇𝑆
𝐹is the 4 × 4 homogenous transformation 

matrix between the scanner frame and the robot 6th axis frame (obtained using the technique 

describe in [9]) and 𝑇𝑆
𝐿 is the transformation matrix between the laser scanner frame and the 

deposition head frame as shown in Figure 7-2(a).  

 𝑇𝑆
𝐹 = 𝑇𝐿

𝐹 . 𝑇𝑆
𝐿 7-1 

Once the 𝑇𝐿
𝑆 is found, it is used to obtain the desired point cloud in the active tool frame (which is 

the deposition head frame) and active user frame (which is the work object frame) as shown in 

Figure 7-2(b) and Equation 7-2, where 𝑃𝑆 and 𝑃𝑈 are the scanned point in sensor and user frame 

coordinate system accordingly .  𝑇𝑆
𝑈 is the transformation matrix between the user frame and the 

scanner frame which can be found as shown in Figure 7-2(b) and Equation 7-3, where 𝑇𝑠
𝐿 is the 

transformation matrix between the scanner and deposition head frame, and 𝑇𝐿
𝑈 is the 

transformation between the deposition head frame and user frame which can be obtained from the 

robot controller.  

𝑃𝑈 = 𝑇𝑆
𝑈 . 𝑃𝑆 7-2 

 

𝑇𝑆
𝑈 = 𝑇𝐿

𝑈 . 𝑇𝑆
𝐿 7-3 
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(a) 

 

(b) 

Figure 7-2: (a)(b)Laser scanner frame, Deposition frame and Work object (user) frame 
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Once the acquired point cloud is transformed into the active user frame of the robot, the target 

surface of the LDED part will be removed using the RANSAC algorithm, the noise and steep 

vertical wall are removed using the statistical outlier removal, and the points are clustered into a 

concave, convex and normal point using the deep learning [9].  

7.5 Correction strategy  

 

This section provides an overview of the correction process strategies. Two different strategies are 

employed to correct the geometrical defects. (1) Adaptive intermittent toolpath generation based 

on controlling the laser and scanning speed (2) Adaptive intermittent repair toolpath generation 

based on the augmented map.  

The workflow of the correction strategies in both techniques is shown in Figure 7-3. First, the 

CAD model is decomposed to 𝑖 number of cycles. The toolpath is generated for each cycle. After 

the deposition of each cycle, the deposition process is stopped, and the laser line profiler scans the 

top surface of the deposited part. The surface defects and anomalies are detected using an in-house 

developed software platform for surface defect detection of parts built using LDED-PF [9]. Once 

the defect boundaries are detected, an augmented map is generated to label the defect regions and 

then the next layer toolpath will be generated in-situ and the adaptive scanning speed and laser 

actuations will be employed based on the real-time robot’s coordinates and their location will be 

labelled based on the generated map. Once the robot coordinate is labelled, based on the selected 

strategy, either the scanning speed will be changed to compensate for the error, or the laser will be 

turned off in the convex regions to stop the overgrowth. This process continues until the target 

surface meets the smoothness criteria of:  
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ℎ′ = ℎ∗(𝑃𝑧_𝑚𝑎𝑥 − 𝑃𝑧_𝑚𝑖𝑛) 7-4 

ere, 𝑃𝑧_𝑚𝑎𝑥 and 𝑃𝑧_𝑚𝑖𝑛 are the maximum and minimum height of the target surface and ℎ∗ is a 

coefficient that is selected based on the dimension and material. For SS316, ℎ∗ of 1mm resulted in 

acceptable surface conditions. 

Once the dimensionally acceptable surface target is obtained, the correction loop ends. It is 

possible that the deposition height after the deposition of layers (𝐻∗) exceeds the theoretically 

predicted height (𝐻). In this case, the number of layers in the consecutive group will be 

recalculated based on Equation 7-5, where 𝐻 is the desired height of the next deposition group, 𝐻∗ 

is the height of the current deposited group, and ℎ is the layer thickness.  

 𝑛 =
𝐻−𝐻∗

ℎ
 

 

7-5 

 

Figure 7-3: The schematic of the correction process 
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Figure 7-4: Surface defect detection process using deep learning 

 

7.6 Point cloud processing and repair toolpath generation  

 

In this section, the defect boundary extraction and repair toolpath generation algorithms are 

presented. The techniques to develop the repair toolpath are one of the main contributions of this 

research.  

7.7 Defect Boundary extraction  

Once the defect regions are identified, the boundary of each defect region must be identified. Many 

boundary detection algorithms can be employed. Among them, ConvexHull [177] is the most 

widely used algorithm. The convex hull of a typical convex region is shown in Figure 7-5(a). It 

can be noticed that the convex hull of the convex region is not an accurate representation of the 

convex region. Therefore, the ConcaveHull algorithm is explored [178]. ConcaveHull algorithm 

is a specific version of the  ConvexHull algorithm based on Jarvis March’s gift wrapping algorithm 

for ConvexHull [179]. In this research, a novel concave-hull algorithm based on the circumference 

circle of the boundary triangle is developed. Firstly, the Delaunay triangulation algorithm was 
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applied to the acquired point clouds to find the triangle meshes [180]. After the triangle meshes 

are obtained, the radius of the triangle circumcircle is found as shown in Figure 7-6. A threshold 

value is then used to determine if the triangle edges are boundary edges. If both neighbouring 

triangles are in shape, the edges are not the boundary edge.  

The radius of the circumcircle can be obtained using Equation 7-6, where a, b and c are the edges 

of the triangle and 𝐴𝑡 is the area of the triangle.  

𝑅 =
𝑎𝑏𝑐

4𝐴𝑡
 

7-6 

The generated contour using different threshold values is shown in Figure 7-5(b)-(d). It is noticed 

that the selection of the threshold value is very subjective. Therefore, a technique based on 

Minimum Spanning Tree (MST) [181] is developed to calculate the threshold value automatically. 

Based on the definition of MST, the MST of each concave and convex region is calculated, and 

the threshold value is calculated as shown in Equation 7-7, where ℎ𝑛is shown in Equation 7-8, 

where ln is the length of MST of the point cloud and n is the number of points in the point cloud. 

The robustness of 𝛼 selection based on the length of the MST is validated experimentally using 

extracted boundaries for different geometries with varied dimensions. On the contrary, the 

selection of constant 𝛼 results in inaccurate boundary estimation for different geometries with 

various dimensions. 

𝛼 =
1

ℎ𝑛
 

7-7 

ℎ𝑛 = √
𝑙𝑛
𝑛

 

 

7-8 
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(a) (b) (c) (d) 

Figure 7-5:  Resulting boundary using (a) ConvexHull algorithm, ConcaveHull with the alpha 

value of (b)20, (c)10, (d)1.5 

 

 

Figure 7-6. Circumcircle of the triangle 
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7.8 Binary map generation  

 

Once the contours of defect regions are obtained, an iterative ray casting algorithm is developed 

to generate the binary map of the deposited layer [182]. Firstly, a grid of size with the resolution 

of 0.3 mm in both x and y directions (100×100 for a cube with length of 30 mm) is generated as 

shown in  Figure 7-7(a). Secondly, for each pixel in the grid, a label is assigned based on the 

location of the pixel in respect to the convex and concave boundaries.  For example, as shown in 

Figure 7-7(a), for 𝑖 = 3, 𝑗 = 3, 𝑃𝑖,𝑗  is inside the defect boundary, therefor, a defect label 

(depending on the boundary defect type) will be assigned to (𝑖, 𝑗) pixel. The algorithm used to 

decide whether the point is inside or outside of the defect polygons is shown in Figure 7-8.  

  

(a) (b) 

Figure 7-7:(a) Ray tracing to determine the position of points in the layer, (b) developed map 
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Figure 7-8: Flowchart of ray tracing algorithm 
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The result of the binary map generation process is shown in Figure 7-7(b). The acquired map will 

be used to control the trajectory of the robot in the consecutive layers to compensate for geometric 

deviations.  

7.9 Augmented Map generation  

 

Once the contour of the defect regions is identified using the map generation process, a more 

accurate map, including the local height of each pixel in the grid is required to achieve a better 

level of control. In this section, the process of augmented map generation is presented. The 

flowchart for generating an augmented map is presented in Figure 7-9 (a). The generated 

augmented map is shown in Figure 7-9 (b).  

 

 

(a) (b) 

Figure 7-9:(a) Flowchart of augmented map generation algorithm, (b) An example of 

generated augmented map 

Firstly, for each pixel in the grid, the radius search is performed to find all the points within the 

specified radius from the pixel.After radius searchthe k-nearest points to the pixel center points are 

selected. Once all the k-nearest points to the pixel center point are found, a plane is fitted to the 
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point cloud using TLS method. After finding the plane, the equation of the plane can be written as 

Equation 7-9. Once the palne is found, the distance of k-nearest point to the pixel center point P 

(𝑃𝑥𝑖
, 𝑃𝑦𝑖

, 𝑃𝑧𝑖
) to the reference palne is found using Equation 7-10, where ℎ𝑛 is the calculated 

Euclidean distace from each point to the fitted reference plane.  

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0 7-9 

 

ℎ𝑛 =
𝑎𝑃𝑥𝑛

+ 𝑏𝑃𝑦𝑛 + 𝑐𝑃𝑧𝑛

√𝑎2 + 𝑏2 + 𝑐2
 

7-10 

Once ℎ𝑛 is found for each k-nearest point to the pixel center point, the average distance of the 

pixel from the fitted reference palne (ℎ𝑃) can be estimated using Equation 7-11.  

ℎ𝑃 =
ℎ1 + ℎ2 + ⋯+ ℎ𝑘

𝑘
 

7-11 

 

7.10 Adaptive laser and speed control (ASSLC) 

 

In ASSLC, once the map is generated and the correction layer trajectory is loaded into the robot.  

Once the robot position hits the convex boundaries, the laser will be turned off as shown in Figure 

7-10.  Once the robot hits the concave regions, the scanning speed will be decreased according to 

the augmented map output. The scanning speed in the normal region (𝑣𝑛𝑜𝑟𝑚𝑎𝑙) remains constant 

and in the concave region (𝑣𝑐𝑜𝑛𝑐𝑎𝑣𝑒,𝑖) will be adjusted based on Equation 7-12:  

𝑣𝑐𝑜𝑛𝑐𝑎𝑣𝑒,𝑖 = 𝑣𝑐𝑜𝑛𝑐𝑎𝑣𝑒_𝑠𝑒𝑡 + 𝑐𝑐𝑣ℎ𝑝𝑖 7-12 

 

Where, 𝑣𝑐𝑜𝑛𝑐𝑎𝑣𝑒_𝑠𝑒𝑡 is the set point scanning speed for the concave region, c is the constant value 

obtained by experiments and ℎ𝑝𝑖 is the output of the augmented map at the specified location. For 

the process parameters in this study, 𝑣𝑐𝑜𝑛𝑐𝑎𝑣𝑒_𝑠𝑒𝑡 is set to 5 mm/sec, and the constant value of 𝑐𝑐𝑣 
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is defined as shown in Equation 7-13, where 𝑙𝑣_𝑚𝑖𝑛 is a experimental based parameter defined by 

user, corresponding to the maximum deviation for which minimum speed is to be applied as shown 

in Figure 7-12. 

𝑐𝑐𝑣 =
𝑣𝑛𝑜𝑟𝑚𝑎𝑙 − 𝑣𝑐𝑜𝑛𝑐𝑎𝑣𝑒_𝑠𝑒𝑡

𝑙𝑣_𝑚𝑖𝑛
 7-13 

If the scanning speed deviation for a certain deviation is excessive, the growth of the part might 

change more than requirement to reach the target height. , Therefore, the minimum scanning speed 

is defined to avoid over deposition in concave regions as shown in Equation 7-14.  

 
Figure 7-10: Flowchart of the correction algorithm using laser and scanning speed control 

 

𝑣𝑐𝑜𝑛𝑐𝑎𝑣𝑒,𝑖 = 𝑣𝑚𝑖𝑛, 𝑖𝑓 𝑣𝑐𝑜𝑛𝑐𝑎𝑣𝑒,𝑖 < 𝑣𝑚𝑖𝑛 7-14 

 

7.10.1 Adaptive scanning speed control (ASSC) 

 

In this technique, once the map and augmented map are generated, the correction layer trajectory 

will be generated and sent to the robot controller. Once the robot hits the convex and concave 

regions the scanning speed will be adjusted based on which region the robot is depositing in and 
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the value of the augmented map at that exact position. The flowchart of the correction process 

adopted in ASSC is shown in Figure 7-11.   

 

Figure 7-11: Flowchart of the algorithm for adaptive scanning speed 

 

Since the binary map and augmented map are both obtained, different setpoint values can be used 

for concave and convex regions as shown in Figure 7-12. Different set point values are used for 

normal, convex, and concave regions. These values depend on the layer height and other process 

parameters. The maximum deviation in the positive direction determines the maximum scanning 

speed. The slope of each correction curve is determined using the maximum deviation from the 

reference plane in both positive and negative directions, and 𝑣𝑚𝑎𝑥 and  𝑣𝑚𝑖𝑛 respectively. If the 

speed change is more than is required to reach the target height, it might adversely affect the 

process, therefor 𝑣𝑚𝑎𝑥 and  𝑣𝑚𝑖𝑛 are applied to ensure that process stays in the stable region. The 

scanning speed remains unchanged if the deviation from the reference plane is within ±𝑙/2, where 

𝑙 is the layer height. The velocity of each point in the convex region (𝑣𝑐𝑜𝑛𝑣𝑒𝑥,𝑖) can be obtained 
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using Equation 7-15, where 𝑐𝑐𝑥 is the experimental user-defined parameter obtained using 

Equation 7-16. The maximum allowable scanning speed is obtained using experiments and if the 

outcome of Equation 7-15 is greater than the maximum allowable scanning speed, it will be set as 

the maximum scanning speed as shown in Equation 7-17.  

𝑣𝑐𝑜𝑛𝑣𝑒𝑥,𝑖 = 𝑣𝑐𝑜𝑛𝑣𝑒𝑥_𝑠𝑒𝑡 + 𝑐𝑐𝑥ℎ𝑝𝑖 7-15 

𝑐𝑐𝑥 =
𝑣𝑐𝑜𝑛𝑣𝑒𝑥_𝑠𝑒𝑡 − 𝑣𝑛𝑜𝑟𝑚𝑎𝑙

𝑙𝑣_𝑚𝑎𝑥
 7-16 

𝑣𝑐𝑜𝑛𝑣𝑒𝑥,𝑖 = 𝑣𝑚𝑎𝑥 , 𝑖𝑓 𝑣𝑚𝑎𝑥,𝑖 > 𝑣𝑚𝑎𝑥 7-17 

 

 

Figure 7-12: Schematics of scanning speed control based on the points offset from the 

reference plane 
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7.10.2 Correction Toolpath generation  

 

Once the layer map and augmented map are generated, the correction layer trajectory at the desired 

height is generated using ModuleWorks (MW)’s template CAM software. Once the correction 

layer trajectory is generated, it is loaded into the robot controller using TCP/IP communication 

and the correction process starts. Once the trajectory is executed, the TCP position is acquired each 

8 msec and it is checked versus the generated map and augmented map and the scanning speed or 

laser status is updated according to the selected correction strategy. The input to the trajectory 

planning kernel is the desired height at which the correction layer is required, stepover, raster 

orientation, and scanning strategy as shown in Figure 7-13. The stepover is kept equal to the 

original trajectory and the raster orientation is selected based on the latest deposition layer strategy. 

 

Figure 7-13: Correction trajectory (a) Raster orientation of 90°, (b) Raster orientation of 0° 
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7.11 Results and discussion  

 

7.11.1 Dimensional accuracy  

 

A series of experiments were conducted to evaluate the performance of the developed technique 

to increase the dimensional accuracy of the LDED-PF parts. For each part, after each cycle, the 

deposition is paused, the surface topography of the previously deposited cycles is acquired using 

the laser line scanner, the surface defects are identified, if the peak to valley difference is more 

than a layer height, the correction toolpath is generated, and the correction process continues until 

the peak to valley distance is less than a nominal layer height. The number of cycles and number 

of layers in each cycle for the three geometries are shown in Table 7-3.  

Table 7-3: Cycle parameters for the three geometries 

Part Number of cycles Number of layers in 

each cycle 

Cube 3 8 

Cylinder 4 5 

I-beam 2 6 

 

The toolpath for each part was not optimized in this research, therefore, a significant deviation in 

dimensional accuracy was expected as shown in Figure 7-14(a). The dimensional deviations in 

this component are mainly due to acceleration and deceleration of the robotic system at the end of 

each line segment, which increases the laser interaction time with the powder and causes local 

over-growth regions in the turns and corners.  These deviations have a compound effect and will 

be accumulated during each successive layer, therefore after a few layers, a saddle shape is created.  

Figure 7-14(b) and Figure 7-14(c) show the part built using ASSLC and ASSC. respectively. Both 
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techniques resulted in enhancement of the dimensional accuracy, but the surface topography and 

volumes measurement studies show that the deployment of only ASSC results in better 

dimensional accuracy.  

Table 7-4: Volume comparison of the built parts by different strategies 

Strategy  Volume (𝑚𝑚3) Difference from original (𝑚𝑚3) 

Original  21,600 0 

Without dimension correction  15,018 -6,582 

With Dimension correction; Laser and 

adaptive scanning speed  

20,980 -620 

 

With Dimension Correction; Adaptive 

scanning speed  

21,720 +120 
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(a) (b) (c) 

Figure 7-14: Comparison of built LDED-PF parts (a) without control (b) ASSLC (c) ASSC 

The theoretical volume of the cuboid, volume correction after implementing techniques and the 

volume before applying any correction technique is shown in Table 7-4. The volume calculation 

is performed using the integral of the grid points obtained in the augmented map generation process 

over the volume. As shown in Table 7-4, the dimension correction using ASSC results in less error 

than the nominal desired volume. The positive direction of the built part can be justified by the 

near-net shape nature of the LDED-PF process 
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7.11.2 Geometrical analysis 

 

The cross-section extracted from the acquired point clouds in the XZ direction for the cuboid built 

without correction is shown in Figure 7-15(a). Figure 7-15(b) shows the final layer of each cycle 

just before the deposition of correction layers, and Figure 7-15(c) shows the cross-section extracted 

from the point clouds in XZ direction after correction layer deposition. The height deviation from 

the desired height in Figure 7-15(a) is corrected by adding subsequent correcting layers in Figure 

7-15(b). Figure 7-15(c) shows the flat surface acquired after the adaptive scanning speed is used 

to correct the local defect and surface unevenness in Figure 7-15(b).  

   

(a) (b) (c) 

Figure 7-15: Cross section extracted from the point cloud in XZ plane of the cuboid (a): Without 

correction, (b) before correction layers are deposited, (c) after deposition of correction layers  

 

The results of correction process for every geometry using different correction techniques are 

shown in Figure 7-16.  
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(a) (b) (c) 

Figure 7-16: The results of correction processes on final geometry of the components 

 

The resulting process map for each correction layer for the cuboid, cylinder and I-beam are 

shown in  Figure 7-17, Figure 7-18 and Figure 7-19 respectively.  
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Before correction 

 
 

After the first 

correction layer 

 
 

After the second 

correction layer 

  

After the third 

correction layer 

  

 (a) (b) 

Figure 7-17: Correction progress in one correction group using (a) ASSC (b) ASSLC 
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Before 

correction 

  

After the first 

correction layer 

  

After the second 

correction layer 

  

 (a) (b) 

Figure 7-18: Correction progress in one correction group using (a) ASSC (b) ASSLC 
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Before 

correction 

  

After the first 

correction layer 

  

After the 

second 

correction layer 

  
 (a) (b) 

Figure 7-19: Correction progress in one correction group using (a) ASSC (b) ASSLC 
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7.11.3 Melt-pool 

 

The melt-pool morphology of the built components in the XZ plane with and without correction 

techniques was investigated using optical microscopy. Figure 7-20(a), (b) and (c) shows the melt-

pool images of the cross-section without correction, correction using controlling laser and scanning 

speed, and correction using scanning speed control, respectively. The layer boundaries are 

highlighted using red dotted lines. The curvature of the melt-pool at the corner is clearly visible 

under all conditions which are typically seen in LDED due to the effect of acceleration/ 

deceleration effects from the deposition strategies. The deposition starts and stops at the edges 

resulting in a slightly higher deposition at the edges. In addition, the over deposition at the edges 

can result in reduced stand-off distance at the edges, resulting in higher laser energy density. This 

leads to higher catchment and relatively higher deposition at the edges. This results in the melt-

pool curvature from the edges to the central region of the part. A comparison between samples 

built using different control schemes indicates that the melt-pool curvature is higher in the samples 

built without correction. This is mainly due to the continuous accumulation of heat during 

deposition and the accumulation of the geometrical errors from each layer to the final built part. 

However, it is observed that the curvature of the melt-pool is reduced significantly with the 

application of correction strategies. This is mainly due to the controlled heat input used with the 

control schemes which aids to regulate the accumulation of geometrical error. This is in line with 

the observations from the geometrical analysis presented in the previous section.   
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(a) (b) 

 
(c) 

Figure 7-20: Cross section of the parts in XZ plane: (a) Without correction, (b) with ASSLC 

(b) with ASSC 

7.11.4 Density  

 

The density analysis is performed using Archimedes density analysis, optical microscopy, and CT 

scan. The Archimedes density analysis of the sample indicates a density of 7.88 -7.92 g/cc for all 

the samples indicating that the density of the samples is not significantly affected by the application 

of correction. Figure 7-21 presents the cross-section images of the samples built without correction 
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and with the application of the correction strategy. The presence of micro-pores is observed along 

the cross-section. The pores are mainly circular indicating the presence of gas porosity in the 

samples. However, a few lack of fusion pores are also observed at isolated locations due to 

incomplete melting and solidification. CT analysis is performed on cylindrical samples extracted 

from the cuboid built with and without correction as shown in Figure 7-22. The CT analysis 

supports the Archimedes results indicating the presence of only a few micropores at isolated 

locations along the volume. It indicates a similar pore size spectrum for all the samples. It may 

also be noted that the number of pores is observed to be higher for ASSLC samples, which are 

majorly dominated by a lack of fusion pores. 

  

(a) (b) 

 

(c) 

Figure 7-21: Optical microscopy of cross section of the parts: (a)Without correction, (b) 

ASSLC, (c) ASSC 
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(a) (b) 

 
(c) 

Figure 7-22: CT analysis of samples (a) without correction, (b) with ASSLC (c) with ASSC 

7.12 Microstructure  

 

Figure 7-23 presents the microstructure of the samples built with different control schemes. 

Microstructural investigation of the sample indicates cellular growth for all the samples. The 

microstructural evolution is a function of the G/R value and higher values of G/R during LDED 

promote the formation of cellular grains. The fine nature of the cellular growth observed at all 

conditions can be due to the faster cooling rates observed in LDED. A comparison of the cell size 

indicates that samples built using ASSLC have slightly lower cell sizes (3 – 4 µm) at some 

locations, with cell sizes majorly ranging from 4 – 5 µm at several locations. The localized lower 

cell size in some regions as compared to other samples can be mainly due to the laser turn-off and 
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on, which can increase the thermal gradient, leading to higher cooling rates (G × R). The average 

cell size of samples built using ASSC and without control is 4 - 6 µm. Thus, it can be seen that the 

average cell size is not significantly influenced by the control schemes used in the present work. 

Due to the varying working distance in convex, concave and normal regions, the laser spot size for 

those regions will be varied, however, the laser has a depth of focus which within, the laser beam 

diameter is constant. In the regions with deviations of beyond the depth of focus, the change in 

laser spot size can change the energy density and therefor, temperature gradients and material 

properties, eventually leading to anisotropic properties. Therefor it is recommended to use post 

heat treatment to achieve isotropic material properties[183] .  

  
(a) (b) 

 
(c) 

Figure 7-23: Microstructure: (a)Without correction, (b) with ASSLC (c) with ASSC 
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7.13 Microhardness 

 

Figure 7-24 presents the microhardness plot of the samples using different control schemes. It is 

observed that the strategy using ASSLC shows slightly higher micro-hardness values at certain 

locations along the cross-section as compared to the other samples. This is in line with the 

microstructural observations. The slightly higher hardness in a few regions can be due to relatively 

finer grain structure at regions subjected to higher cooling rates due to laser on and off.  However, 

a comparison of the average microhardness indicates a significant overlap in the hardness of the 

material showing that the control strategies do not have a significant impact on the hardness of the 

built samples. The microhardness measurement experimental setup is outlined in section 3.6.3.  

 

  
(a) (b) 

 
 

(c) (d) 

Figure 7-24: (a) Cross section of the surface where the hardness tests are conducted (b) 

hardness indent points (c) Hardness profiles, (d) average hardness comparison 
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7.14 Conclusion  

 

The present work reports a novel intermittent adaptive dimension correction technique for LDED-

PF parts. The developed technique uses the output of a deep learning defect detection platform to 

identify the geometric defect regions. This is followed by the extraction of the optimum boundary 

of defect regions using alpha-shape ConcaveHull and Minimum Spanning Tree (MST) algorithms. 

Subsequently, the correction layer trajectory is generated based on the height deviation using two 

techniques: Adaptive scanning speed control (ASSC) and Adaptive scanning speed and laser 

control (ASSLC) based on the last layer surface topography. ASSC and ASSLC methods improve 

the dimensional accuracy by 30% and 27.5%, respectively. Porosity, microstructure, and hardness 

tests were used to find the characteristics of the repaired components. The parts built using ASSLC 

and ASSC show good density, fine cellular growth, and similar microhardness values. It was also 

observed that the microstructure and mechanical properties of the corrected samples are similar to 

the samples built without correction. This indicates that the developed control algorithms can be 

used to improve the geometrical accuracy of LDED-PF built parts without altering the material 

properties significantly.   

 

 

 

 

 

 



138 

 

8 Conclusions and Future Work 
 

The wide deployment of LDED-PF made parts for various engineering applications is challenged 

by the dimensional accuracy and its ability to built complex-shape components. This thesis 

considered the most used geometries such as thin walls and bulk geometries for adaptive trajectory 

planning. The work comprehends and contributes to the existing understanding on the trajectory 

planning of the LDED-PF process using offline and online techniques for the overhang wall and 

bulk structures, respectively with improved dimensional accuracy and geometric stability. On the 

basis of the research work, the following general conclusions can be drawn: 

1. The offline adaptive trajectory planning algorithm for LDED-PF of thin-wall hemispherical 

dome structure used an adaptive tilt angle to avoid the collision between the nozzle and 

previously built material, while keeping in mind that the tilt angle cannot exceed the maximum 

overhang angle. The study provides an insight on to the deployment of collision detection 

technique to build complex overhang components. The proposed methodology avoids 

partitioning of the component and the deployment of computationally expensive algorithms to 

manufacture overhang dome structures using LDED-PF. The study showed the application of 

the technique to build dome structures with good geometric accuracy, density, and material 

properties. The study will pave a way for fabricating thin-walled storage tanks for various 

engineering applications. 

2. The offline adaptive trajectory planning for bent pipe structures contributes to the existing 

literature through the development of an algorithm that uses adaptive slicing and adaptive 

scanning speed technique, at the same time facilitating the non-parallel deposition of material, 

and the substrate tilting permits the manufacturing of parts without support structures. The 

study also shows the development of deposition strategy by varying scanning speed that can 
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be used to build complex shape components without significant impact on density, 

microstructure, and mechanical properties. The results show the efficiency and robustness of 

the toolpath planning engine and its capability to build complex and dimensionally accurate 

components with varying overhang angles. The developed methodology has great potential to 

be applied to other AM processes such as laser hot-wire DED, wire-arc additive manufacturing, 

fused deposition modelling, electron beam DED, etc. to build self-supporting complex-shaped 

tubular geometries for various engineering applications. 

3. A framework for defect detection was developed using deep learning to detect the surface 

defects during the build, which aids to prevent accumulation of geometric error during 

manufacturing. The hand-eye calibration is implemented to calibrate the laser scanner sensor 

to reconstruct the surface of the printed geometries with sub millimetre accuracy. Surface 

features are separated and annotated using DBSCAN algorithm and fed into a deep neural 

network called RandLA-Net and the overall accuracy of 91.3% is achieved. The framework 

for defect detection can be used for immediately pausing the process in case of surface defect 

detection and preventing further quality deterioration leading to unpredictable failures.  

4. The defect-detection platform was further extended to the development of an automatic repair 

toolpath, which will identify the defect region, acquire defect boundaries automatically and 

compensate those defect regions by generating the repair strategies until the desired surface 

quality is achieved. The correction layer trajectory is generated based on the height deviation 

using two techniques: Adaptive scanning speed control (ASSC) and Adaptive scanning speed 

and laser control (ASSLC) based on the last layer surface topography. The adoption of ASSC 

and ASSLC methods improved the dimensional accuracy of the parts, while the microstructure 

and mechanical properties of the corrected samples are similar to the samples built without 
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correction. ASSC and ASSLC methods improve the dimensional accuracy by 30% and 27.5%, 

respectively. The online adaptive trajectory algorithms can be used to improve the geometrical 

accuracy of LDED-PF built parts without altering the material properties significantly.   

8.1 Future Work 

The following works can be planned for the future: 

1. Offline adaptive trajectory planning for geometries with overhang features based on collision 

detection can be further extended to the evaluation of different particle size distribution, and 

material systems on the overhang geometries. In addition, the evaluation of structural integrity 

and the evolution of the microstructure of the fabricated dome component can also be carried 

out in the future works.  

2. In case of offline adaptive trajectory planning for geometries with overhang features based on 

adaptive slicing, further analysis can be performed to improve the dimensional accuracy. The 

dimensional accuracy can be further improved by including in-situ laser scanning-based 

adaptive tool path generation. The in-situ laser scanning-based adaptive tool path generation 

allows quantifying the dimensional deviations after depositing a few layers. In addition to the 

scanning speed variation based on geometry used in the present work, the scanning speed 

variation considering the dimensional deviations can also be included. 

3. Although the accuracy of the deep neural network competes with the state-of-the-art mIoU and 

overall accuracy, it can be further increased by increasing the number of training samples in 

the dataset. Implementing other defect types such as wavy surface defects, pores etc. in the 

deep learning framework can be a future plan. Instead of fitting the plane to the acquired point 

cloud from the as-built part, the reference surface can be generated by slicing the CAD model, 
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which can be used to compare the surface deviation to the reference plane acquired from the 

CAD data.  

4. The online adaptive trajectory planning can be extended to non-planar geometries and 

components with overhang parts. The future work will also include the development of 

algorithms to optimize the repair toolpath generation and number of measurements to improve 

the efficiency of the inspection process, while maintaining the dimension accuracy. The study 

also will be extended to a hybrid process which in a subtractive operation will be employed if 

the dimensional deviation is beyond repair using the LDED repair toolpath.  
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