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Abstract

Facial reduction, pioneered by Borwein and Wolkowicz, is a preprocessing method that is com-
monly used to obtain strict feasibility in the reformulated, reduced constraint system. The impor-
tance of strict feasibility is often addressed in the context of the convergence results for interior
point methods. Beyond the theoretical properties that the facial reduction conveys, we show that
facial reduction, not only limited to interior point methods, leads to strong numerical performances
in different classes of algorithms. In this thesis we study various consequences and the broad
applicability of facial reduction.

The thesis is organized in two parts. In the first part, we show the instabilities accompanied
by the absence of strict feasibility through the lens of facially reduced systems. In particular, we
exploit the implicit redundancies, revealed by each nontrivial facial reduction step, resulting in
the implicit loss of surjectivity. This leads to the two-step facial reduction and two novel related
notions of singularity. For the area of semidefinite programming, we use these singularities to
strengthen a known bound on the solution rank, the Barvinok-Pataki bound. For the area of
linear programming, we reveal degeneracies caused by the implicit redundancies. Furthermore, we
propose a preprocessing tool that uses the simplex method.

In the second part of this thesis, we continue with the semidefinite programs that do not have
strictly feasible points. We focus on the doubly-nonnegative relaxation of the binary quadratic
program and a semidefinite program with a nonlinear objective function. We closely work with
two classes of algorithms, the splitting method and the Gauss-Newton interior point method. We
elaborate on the advantages in building models from facial reduction. Moreover, we develop algo-
rithms for real-world problems including the quadratic assignment problem, the protein side-chain
positioning problem, and the key rate computation for quantum key distribution. Facial reduction
continues to play an important role for providing robust reformulated models in both the theoretical
and the practical aspects, resulting in successful numerical performances.
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Chapter 1

Introduction

Facial reduction (FR), first proposed by Borwein and Wolkowicz [21,22], is a preprocessing method
that is often used to obtain strict feasibility in the reformulated, reduced constraint system of
an optimization problem. The importance of strict feasibility is often addressed in the context
of interior point methods, generally for convergence results. Beyond the theoretical properties
that facial reduction conveys, we show that it leads to strong numerical performances in different
classes of algorithms, not only limited to interior point methods. In this thesis we study various
consequences and the broad applicability that FR accompanies.

In the first half of the thesis, we study interesting properties of the system produced by FR. We
focus on the constraint system represented as the intersection of an affine subspace and a closed
convex cone. The surjectivity of the linear map that restricts the feasible region is a standard
assumption in optimization problems. Although redundant equalities do not alter the feasible re-
gion, the absence of surjectivity results in numerical instability. Moreover, the surjectivity provides
the uniqueness of central paths in the convergence result for interior point methods. However,
when strict feasibility fails, the linear map that restricts the feasible region necessarily loses the
surjectivity in conjunction with the cone constraint. These redundancies are recognized in the lit-
erature. Nevertheless, the extensive implications have not yet been realized. In the addition to the
known notion of the singularity degree, the unrealized redundancies give rise to the novel defini-
tions on singularities that we name the max-singularity degree and the implicit problem singularity.
Furthermore, these singularities give rise to the two-step facial reduction algorithm.

In the absence of strict feasibility, we examine interesting properties that stem from these
singularities both in the areas of semidefinite programming and linear programming. In the area of
semidefinite programming, we understand the numerical difficulties through the lens of the facially
reduced system. We then use the new notions of singularity to improve the known bounds on the
rank of feasible points known as the Barvinok-Pataki bound. In the area of linear programming,
strict feasibility is seldom a concern. Albeit, the absence of strict feasibility causes difficulties when
the simplex and interior point methods are used. The implicit loss of surjectivity immediately results
in the degeneracy of each of the basic feasible solutions hence general computational efficiency of
the simplex method may be weakened. Furthermore, the lack of strict feasibility results in the
positive implicit problem singularities. This results in ill-conditioning and loss of precision, when
finding search directions of interior point methods. We propose a preprocessing method that we
can apply as an extension of the two-phase simplex method. Owing to the high accuracy that the
simplex method provides, we produce an accurate facially reduced system.
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In the second half of the thesis, we study the broad applicability of the facial reduction technique
that appears in various steps of applications. We show how the two seemingly different classes of
algorithms, the splitting method and the interior point method, can benefit from the FR approach.
We connect the splitting method to the doubly-nonnegative relaxation of the binary quadratic prob-
lems and provide a simple derivation for the doubly-nonnegative relaxation. FR provides a natural
splitting of variables that allows for an effective separation of the polyhedral and nonpolyhedral
subproblems. Furthermore, FR leads to the straightforward discovery of redundant constraints and
the prior knowledge of the dual optimal solutions. This leads to the development of a variant of
the Peaceman-Rachford splitting method. We apply our approach to the two real-world problems,
the protein side-chain positioning problem and the quadratic assignment problem. We exhibit
competitive numerical results accomplished by our reformulation technique as well as the choice of
algorithm.

We develop the (projected) Gauss-Newton interior point method for semidefinite programs that
are over the Hermitian matrices and have a nonlinear objective function. We derive this framework
by forming the nonlinear least squares problem that stems from the first-order optimality conditions.
We then apply our method to one of the challenging real-world problems that arises in quantum
information theory, the key rate computation of the quantum key distribution. This problem not
only fails to have a strictly feasible point, but also the objective function fails to be differentiable.
We overcome both difficulties by using the FR technique. In particular, we reformulate the objective
function to grant the differentiability via the FR technique, that is conventionally considered to
improve the property of the feasible region.

1.1 Background

We list the common notations used throughout in this thesis and describe the basic model of
interest.

1.1.1 Notations

We list some notations used in this thesis. We use these notations without further explanations in
later chapters.

We work with finite dimensional Euclidean spaces throughout this thesis. We let En denote
the n-dimensional Euclidean space. We list the spaces that we closely work with. Let Rn,Cn
denote the Euclidean vector space of n-coordinates over the real and complex space, respectively;
and we use superscripts to denote the dimensions, e.g., x ∈ Rn. We let Rm×n and Cm×n denote
the set of m-by-n real matrices and complex matrices, respectively. For X,Y ∈ Rm×n, let 〈X,Y 〉
denote the usual trace inner product of X and Y , trace(XTY ). Analogously, for X,Y ∈ Cm×n, we
let 〈X,Y 〉 = trace(X∗Y ), where X∗ denotes the conjugate transpose of the matrix X. We use the
notation

trace(XY ) = 〈X,Y 〉 = X • Y

interchangeably when X,Y are symmetric.

Given x ∈ Rn, we use subscripts to designate a particular element of x, i.e., we let xi denote
the i-th element of x. Similarly, for X ∈ Rm×n, we use Xi,j to denote the (i, j)-th element of X.
Given a vector or a matrix, we often adopt the MATLAB notation to extract partial elements. For

2



example, for x ∈ Rn and I ⊂ {1, . . . , n}, we let x(I) denote the subvector of x that correspond
to the index set I. For X ∈ Rm×n, we use X(:, I) to denote the submatrix of X for which the
columns correspond to the index set I. We let In be the n-by-n identity matrix and we omit the
subscript n when the dimension is clear. We let ei denote the i-th column of the identity matrix,
the standard unit basis element in Rn. We use the notation ēm to denote the all-ones vector of
the length m. When the length of the all-ones vector is clear, we omit the bar symbol (¯) and the
subscript, and simply use e.

We let Rn+ (Rn++, resp.) denote the nonnegative (positive, resp.) orthant of n-coordinates.
We let Sn and Hn denote the space of n-by-n symmetric matrices and n-by-n Hermitian matrices,
respectively, i.e.,

Sn := {X ∈ Rn×n : Xi,j = Xj,i, ∀i, j}, Hn := {X ∈ Cn×n : X∗i,j = Xj,i, ∀i, j}.

A matrix X ∈ Sn (or Hn) is called positive semidefinite if 〈x,Xx〉 ≥ 0 for all x ∈ Rn (or Cn).
The set of n-by-n positive semidefinite matrices is denoted by Sn+ (or Hn+) and we use the notation
X � 0 to denote the membership X ∈ Sn+ (or Hn+). A matrix X ∈ Sn (or Hn) is called positive
definite if 〈x,Xx〉 > 0 for all nonzero x ∈ Rn (or Cn). The set of n-by-n positive definite matrices
is denoted by Sn++ (or Hn++) and we use the notation X � 0 to denote the membership X ∈ Sn++

(or Hn++).

Given a matrix X, we use range(X) and null(X) to denote the range and the nullspace of X,
respectively. Given a matrix X ∈ Sn, we use λmin(X) (λmax(X), resp.) to denote the minimum
(maximum, resp.) eigenvalue of X. Given a matrix X ∈ Rn×n, we use diag(X) to denote the
vector consists of the diagonal entries of X. Given a vector x ∈ Rn, we let Diag(x) denote the
diagonal matrix with x placed along its diagonal entries. Given a positive integer m, we often use
the notation [m] to mean the set of positive integers {1, . . . ,m}. Given a collection of matrices
{Ai}mi=1, we let BlkDiag(A1, . . . , Am) denote the block diagonal matrix with the i-th diagonal
block Ai. Given a set S ⊆ En, we let S⊥ denote the orthogonal complement of S. Given a set
C ⊆ En, we use int(C) (resp. relint(C)) to denote the interior of C (resp. relative interior of C).

1.1.2 Basic Model

Let A be a surjective linear map from Sn to Rm and let b ∈ Rm. Given an affine subspace

L = {X ∈ Sn : A(X) = b},

a spectrahedron is defined as the intersection of L and the positive semidefinite cone, Sn+:

F = {X ∈ Sn+ : A(X) = b}. (1.1.1)

Throughout the thesis, we use m to denote the number of affine constraints in F . In this thesis,
we call a minimization problem over the spectrahedron F a semidefinite programming, SDP :

p∗ = min
X∈Sn

{f(X) : A(X) = b,X ∈ Sn+}, (1.1.2)

where f : Sn → R∪{+∞} is an extended convex function. We define the spectrahedron in Hn+ and
the SDP over Hn+ analogously.
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For the first half of this thesis, we focus on the feasible region (1.1.1) only. A point X ∈ F with
the property X ∈ Sn++ is called a strictly feasible point. We extensively study the properties that
the linear map A produces in the absence of strict feasibility. In addition, we study interesting
properties when F is reduced to a polyhedron in Rn+. For the second half of the thesis, we consider
the optimization problem (1.1.2). We study how the semidefinite program (1.1.2) is reformulated
after FR and how they fit into the two classes of the algorithms, the splitting method and the
interior point method.

1.2 Contributions and Organization

We summarize the contributions and the organization of this thesis. In Chapter 2 we present some
of the background in linear algebra, convex analysis, results in SDP, splitting methods and the
Gauss-Newton method needed in this thesis.

The main results are organized in two parts throughout Chapters 3, 4, 5 and 6. Part I concerns
the implicit loss of surjectivity. In Chapters 3 and 4, we elaborate on the constraint redundancies
that stem from the absence of strict feasibility. We focus on semidefinite programs in Chapter 3.
The contributions include

� the recognition of the implicit loss of surjectivity;

� the new notions of singularity (max-singularity degree and implicit problem singularity);

� the importance of the two-step facial reduction;

� a strengthened Barvinok-Pataki bound on SDP rank.

We focus on linear programs in Chapter 4. The contributions include

� the degeneracy of the individual basic feasible solution of a linear program;

� the development of preprocessing method that uses the simplex;

� a new perspective on the algorithmic difficulties of the simplex and interior methods in the
absence of strict feasibility.

In Part II, we study the broad applicability of the FR technique that appear in various contexts
of applications. In Chapter 5 we show the unified derivation for the doubly-nonnegative (DNN)
relaxation of the binary quadratic problems with the unit row-sum constraints. We then develop a
variant of the Peaceman-Rachford splitting method. The contributions include:

� We understand the structural properties embedded in the DNN relaxation of the binary
quadratic problem with the unit row-sum constraints;

� We derive the splitting method that uses information on the known elements of the dual
optimal solutions;

� We apply the developed framework to the two classes of real-world problems, the protein
side-chain positioning problem and the quadratic assignment problem.

4



In Chapter 6 we extend the Gauss-Newton interior point method that is applicable to SDP over
the Hermitian matrices with a differentiable nonlinear objective function. We apply the framework
to a challenging real-world problem, the key rate computation for quantum key distribution. We
recognize that the FR technique continues to play an important role in quantum information theory.
The contributions include:

� We recognize the FR that stems from the partial trace operator in quantum information
theory;

� We show that the FR is not only limit to improve properties on the feasible region. We can
use FR to improve properties of the objective function;

� We develop the Gauss-Newton interior point method for SDPs over the Hermitian matrices
with a differentiable nonlinear objective function.

In Chapter 7 we make conclusions and list interesting open problems and future works.

FR, as a preprocessing tool, serves as a medium for delivering strong numerical performances of
many different classes of algorithms. We see the interplay between FR and the simplex method, the
splitting methods, the interior point methods. Walking through this thesis, we recognize various
circumstances that FR takes place. The FR process can be done using many approaches:

1. Solve an auxiliary system directly for FR (Section 2.3.2);

2. Use the simplex method for FR in linear programs (Section 4.2.2);

3. Exploit the data structure in the SDP relaxations for FR (Section 5.1);

4. Use the property that stems from the partial trace for FR (Section 6.3.1);

5. Use the FR technique to the objective function for differentiability (Section 6.3.2).
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Chapter 2

Preliminaries

We now present some of the background in linear algebra, convex analysis, results in SDP, splitting
methods and the Gauss-Newton method needed in this thesis. In Section 2.1 we provide basic
notions in linear algebra and various maps used in this thesis. In Section 2.2, we introduce basic
notions of convex analysis and some related results. In Section 2.3 we present interesting results in
semidefinite programming with emphasis on facial reduction. In Section 2.4 we present algorithms
that are used in this thesis including the Peaceman-Rachford splitting method and the Gauss-
Newton method.

2.1 Linear Algebra

Let D,R be vector spaces with its underlying scalar field F . A function T : D → R is called linear
if it satisfies

T (αx+ βy) = αT (x) + βT (y),

for all x, y ∈ D and α, β ∈ F . Let D,R be inner product spaces. Given a linear map T : D → R,
the adjoint of T , denoted by T ∗, is the unique linear map from R to D satisfying

〈T (x), y〉 = 〈x, T ∗(y)〉, ∀x ∈ D, y ∈ R. (2.1.1)

Adjoints provide flexibility when working with two spaces through linear maps that include duality
concepts. We make an extensive use of the adjoint equation (2.1.1).

In this thesis, we closely work with three inner product spaces, Rn, Sn and Hn. We note that Hn
is a vector space when the scalar field F is chosen to be R. However Hn is not a vector space if the

underlying scalar field is C since the scalar multiplication is not closed; for example,

[
1 0
0 1

]
∈ H2,

but i ·
[
1 0
0 1

]
=

[
i 0
0 i

]
6∈ H2. Throughout this thesis, we work with vector spaces defined over the

scalar field R.

We define inner products for the spaces Rn,Sn,Cn and Cn×n. We equip the space Rn with the
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standard inner product 〈·, ·〉Rn : Rn × Rn → R

〈x, y〉Rn =
n∑
i=1

xiyi.

We equip the space Sn with the standard trace inner product 〈·, ·〉Sn : Sn × Sn → R

〈X,Y 〉Sn = trace(XY )

and the induced norm is ‖X‖F =
√

trace(XX). Given a matrix X ∈ Cm×n, we use the notation
<(X) and =(X) for the real part of X and the imaginary part of X, respectively. We endow the
space Cn with the inner product 〈·, ·〉Cn : Cn × Cn → R defined by

〈x, y〉Cn := <(x∗y) = <(x)T <(y) + =(x)T =(y).

We equip the space Cn×n with the inner product 〈·, ·〉Cn×n : Cn×n × Cn×n → R defined by

〈X,Y 〉Cn×n := <(〈X,Y 〉) = trace
(
<(X)T <(Y )

)
+ trace

(
=(X)T =(Y )

)
. (2.1.2)

The induced norm is ‖X‖F =
√

trace(X∗X). For two Hermitian matrices X,Y , we always have
trace(XY ) ∈ R. For the set of Hermitian matrices, we have the inner product 〈·, ·〉 : Hn ×Hn → R
that is evaluated as

〈X,Y 〉Hn = trace(XY ).

The triangular number, t(n), is defined as t(n) =
(
n+1

2

)
= n(n + 1)/2. The dimension of Sn,

dim(Sn), is t(n) as there are only t(n) basis elements needed to span the upper triangular n-by-n
matrices. The dimension of Hn is n2 as there are real and imaginary parts of the off-diagonal
elements. The dimension of Cn×n over R is 2n2; the first n2 results from the real part and the
remaining n2 results from the imaginary part.

We let vec denote the usual vectorization map that stacks the columns of a real matrix into a
single vector. We use Tupper : Rn×n → Rt(n−1) to define the vectorization mapping of the strict
upper triangular part of a real matrix M . We often work with isometric mappings in this thesis.
For example, we define svec : Sn → Rt(n) by

svec(M) =

(
diag(M)√

2 Tupper(M)

)
.

We define the mapping Hvec, analogously:

Hvec : Hn → Rn
2
, Hvec(M) =

 diag(M)√
2 Tupper(<(M))√
2 Tupper(=(M))

 .

We define the mapping Cvec : Cm×n → R2mn by

Cvec(M) =

(
vec(<(M))
vec(=(M))

)
.
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We often use the following two matrix factorizations. Let X ∈ Sn+. Then X has a representation

X = QDQT , for some Q orthogonal, D ∈ Sn+. (2.1.3)

The factorization (2.1.3) is the standard spectral decomposition of X. A matrix X with rank(X) = r
has a compact spectral decomposition

X = QDQT =
[
U V

] [D̂ 0
0 0

] [
U V

]T
= UD̂UT ,

where Q =
[
U V

]
and D̂ ∈ Sr++. An analogous factorization follows for X ∈ Hn+.

Given a matrix X ∈ Rm×n, a QR decomposition of X is a factorization of the form

XΠ = QR, where Π is a permutation matrix1, Q ∈ Rm×m orthogonal, R ∈ Rm×n upper triangular.

The QR decompositions have important properties listed below, see [76, Section 5.4.1]:

1. range(X) = range (Q(:, 1 : rank(X));

2. The last m− rank(X) rows of R are 0.

Due to these two properties, the QR decomposition provides a robust numerical tool for determining
the rank of the matrix X.

2.2 Convex Analysis Background and Positive Semidefinite Ma-
trices

In this section we present some background in convex analysis.

Let En denote the n-dimensional Euclidean space. A set C ⊆ En is convex if,

∀x, y ∈ C, λ ∈ [0, 1] =⇒ λx+ (1− λ)y ∈ C. (2.2.1)

Let D ⊆ En be a convex set. A function f : D → R ∪ {+∞} is convex if it satisfies

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), ∀x, y ∈ D, λ ∈ [0, 1]. (2.2.2)

If x /∈ D, we define f(x) = +∞. Given a function f : D → R ∪ {+∞}, the subdifferential of f at
x ∈ En, denoted by ∂f(x), is the set

∂f(x) = {s ∈ En : f(y) ≥ f(x) + 〈s, y − x〉, ∀y ∈ D}.

The inequality in the definition of ∂f(x) is often called the subgradient inequality.

A cone K ⊆ En is a set of points that satisfies

K = {αx : x ∈ K, α ∈ R+}.
1Π is also for sparse R.
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A cone K ⊆ En is pointed if x ∈ K and −x ∈ K imply x = 0. The dual cone of K, denoted by K∗,
is the set of points

K∗ = {y ∈ En : 〈x, y〉 ≥ 0, ∀x ∈ K}.

A cone K ⊆ En is called self-dual if K = K∗. In this thesis, we closely work with the cones Rn+, Sn+
and Hn+; they are convex, closed, pointed, self-dual and have nonempty interior. Given a convex
set C ⊆ En, the normal cone to C at x̄ ∈ C is

NC(x̄) = {s ∈ En : 〈s, x− x̄〉 ≤ 0, ∀x ∈ C}.

We list important definitions related to the faces of Sn+. The definitions related to faces of Sn+
naturally generalize to the ones of Hn+.

Definition 2.2.1. Let K ⊆ En be a closed convex cone.

1. (face) A convex cone F is a face of K (denoted F �K) if,

for x, y ∈ K with {λx+ (1− λ)y : λ ∈ (0, 1)} ⊆ F, we have x, y ∈ F.

2. (minimal face) The minimal face of C ⊆ K, face(C,K), is the intersection of all faces of K
containing C.

3. (exposed face, exposing vector) A face F is exposed if it is the intersection of K and a hyper-
plane. In other words, F admits the representation

F = K ∩ z⊥, for some z ∈ K∗.

The vector z is called an exposing vector of F .

Given a convex set C ⊆ En, a point x ∈ C is called an extreme point if, for all y, z ∈ C,
x = 1

2(y + z) implies x = y = z. Every extreme point is itself a face and it has the dimension 0.

Faces of Rn+ display simple representations. If F � Rn+, then there exists an index set I ⊆
{1, . . . , n} such that

F = {x ∈ Rn+ : xi = 0, i ∈ I}.

The exposing vector for the face F is any vector z ∈ Rn+ such that supp(z) = {1, . . . , n} \ I.

Below is a well-known characterization for the face of Sn+.

Proposition 2.2.2. (Characterization of faces of Sn+) Let F ⊆ Sn+ be a closed convex cone.

Let X̂ ∈ relint(F ) and rank(X̂) = r with the spectral decomposition

X̂ =
[
P Q

] [D 0
0 0

] [
P Q

]T
.

Then the following are equivalent:

1. F � Sn+;

2. F = {Y ∈ Sn+ : range(Y ) ⊂ range(X̂)};
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3. F = {Y ∈ Sn+ : null(Y ) ⊃ null(X̂)};

4. F = PSr+P T ;

5. F = Sn+ ∩ (QQT )⊥.

Lemma 2.2.3 provides important properties of faces of Sn+.

Lemma 2.2.3. 1. Sn+ is facially exposed, i.e., every face F of Sn+ has a representation

F = Sn+ ∩ Z⊥, for some Z ∈ (Sn+)∗ = Sn+.

2. A face F � Sn+ can be characterized by a point in its relative interior. For X̂ ∈ relint(F ), we
have

F = {X � 0 : range(X) ⊆ range(X̂)} and relint(F ) = {X � 0 : range(X) = range(X̂)}.

Item 1 of Lemma 2.2.3 provides the existence of the object that a facial reduction algorithm
tries to find; see Section 2.3.2. The implication of Item 2 of Lemma 2.2.3 is that, an element in
the relative interior of a face F characterizes the face (see [38, Proposition 2.2.5] or [139, Corollary
18.1.2]). An alternative characterization for Item 2 of Lemma 2.2.3 is presented in [144]; an element
of maximum rank in the face of Sn+ characterizes the face.

We list properties of the positive semidefinite matrices that we use in subsequent chapters.

Fact 2.2.4. Let X,Y ∈ Sn+. Then the following hold.

1. 〈X,Y 〉 = 0 ⇐⇒ XY = 0.

2. range(X) + range(Y ) = range(X + Y ).

3. [X,Y � 0 and X + Y = 0] =⇒ [X = Y = 0].

The followng is a well-known test for failure of positive semidefiniteness of a matrix, and follows
from having a negative definite 2× 2 principal minor.

Fact 2.2.5. A matrix X ∈ Sn with the element ‘0’ on the i-th diagonal is not positive semidefinite
if the i-th row or column of X contain a nonzero element.

2.3 Interesting Results in Semidefinite Programming

In this section we provide some preliminary results in the area of semidefinite programming. We
first present the basic framework for semidefinite programming in Section 2.3.1. In Section 2.3.2,
we present some known results on facial reduction.
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2.3.1 Results in Semidefinite Programming

For simplicity, we discuss semidefinite programming over the space of real symmetric matrices.
Analogous arguments follow for the Hermitian matrices. For given matrices Ai ∈ Sn for i ∈ [m],
we define the linear transformation A : Sn → Rm by

(A(X))i = 〈Ai, X〉, for i ∈ [m].

Let b ∈ Rm be given and we define an affine set L := {X ∈ Sn : A(X) = b}. A spectrahedron is
defined as the intersection of L and the positive semidefinite cone:

F = {X ∈ Sn+ : A(X) = b ∈ Rm}. (2.3.1)

In this thesis, we call minimizing an extended convex function f : Sn → R ∪ {+∞} over a spectra-
hedron a semidefinite programming (SDP):

p∗ = inf
X∈Sn

{ f(X) : A(X) = b, X � 0 }. (2.3.2)

If the objective function is linear, i.e., f(X) = 〈C,X〉, C ∈ Sn, then we obtain the standard primal-
dual pair of SDP:

(P)

p∗ = inf
X∈Sn

〈C,X〉
subject to A(X) = b

X � 0

(D)
d∗ = sup

y∈Rm
〈b, y〉

subject to A∗(y) � C.
(2.3.3)

We have that weak-duality d∗ ≤ p∗ always holds for the primal-dual pair (2.3.3). And moreover,

〈C,X〉 ≥ 〈b, y〉, for all X feasible to (P), y feasible to (D).

The well-known duality results for LP do not extend completely to SDP in general. For the
primal-dual pair (2.3.3), even if the value p∗ is finite, that does not necessarily mean that p∗ = d∗

or d∗ is attained by a point y feasible for (D). There are instances where: the primal-dual pair
has infinite gap between p∗ and d∗ ([50, Example 2.3.1]), instances that have positive but finite
duality gap ([50, Example 2.3.2]), and instances that have zero duality but an optimal value is not
attained ([50, Example 2.3.3]). However, under the property of strict feasibility, we can establish
strong duality for the pair (2.3.3).

Definition 2.3.1 (strict feasibility). We say that the constraint system of (P) is strictly feasible
if there exists a positive definite matrix X (X � 0) that satisfies A(X) = b. The constraint system
of (D) is strictly feasible if there exists y ∈ Rm such that A∗(y) ≺ C.

Strict feasibility is generally referred as the Slater condition.

Definition 2.3.2 (strong duality for (P)). Suppose that p∗ is finite and strict feasibility holds
for (P), then

1. the primal optimal value and dual optimal value are equal (i.e., p∗ = d∗); and

2. the dual optimal value d∗ is attained (i.e., there exists y ∈ Rm feasible to (D) such that
d∗ = 〈b, y〉).
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Strong duality for (D) holds analogously. Note that the dual of the dual is the primal. In
addition, note that the converse implication of Definition 2.3.2 is false. Even when the primal and
the dual optimal values are finite and attained, the Slater condition can fail; see [151, Example
2.19]. There are numerous instances where strict feasibility fails and we cannot expect strong
duality to hold for these instances. Throughout this thesis we see interesting outcomes carried by
the absence of strict feasibility. In Section 2.3.2, we present the preprocessing scheme called facial
reduction that helps avoid these issues. Given an instance of (P) that lacks strict feasibility, the
facial reduction scheme forms an equivalent problem in a smaller dimensional space so that the
reformulated problem possesses strictly feasible points.

We now present a constraint qualification that is closely related to the stability of solutions.

Definition 2.3.3 (Mangasarian-Fromovitz). The Mangarasian-Fromovitz constraint qualification
(MFCQ) holds for (P) if the two conditions below hold:

1. There is a strictly feasible point to (P); and

2. The linear map A is surjective.

The MFCQ is a stronger condition than the Slater condition. The additional requirement,
Item 2, is important for establishing the stability of the equality system. If the linear map A fails
to be surjective, then there always exists a perturbation to the right-hand-side b ∈ Rm that renders
the equality A(X) = b inconsistent. Such perturbations are easily detected by the use of a QR
decomposition of a matrix representation of A. We can rephrase Item 2 of Definition 2.3.3 and we
often refer to these alternatives in Chapters 3 and 4:

1. No redundant equalities in the feasible system A(X) = b;

2. The matrix representation of the linear map A is full-row rank, i.e., the rank is equal to m.

Item 1 of Definition 2.3.3 (Slater condition) cannot be weakened while still maintaining stability.
Even when A is given surjective, the lack of strict feasibility implicitly makes A lose surjectivity.
In particular, in Section 2.3.2, we observe that the lack of strict feasibility inevitably causes A to
forfeit surjectivity in conjuction with the cone constraint X ∈ Sn+. We discuss the consequences of
this observation throughout Chapters 3 and 4.

2.3.2 Facial Reduction and Singularity Degree

In this section we provide some well-known results on facial reduction and its related definitions.
We discuss the goal of facial reduction and the number of steps of the facial reduction algorithm
for SDP. We then discuss facial reduction for LPs.

Why We Perform Facial Reduction Facial reduction, FR, is a useful preprocessing framework
for acquiring a model with strict feasibility. First introduced by Borwein and Wolkowicz [21, 22]
in the 80’s, facial reduction appears in many places in the literature e.g., [129, 133, 135, 146]. The
most attractive by-product of FR is the stability of the reformulated model. Facial reduction has
proven successful in many applications, especially those that arise from SDP relaxations of hard
combinatorial optimization problems [27,28,48,79,93,123,166]. It is particularly useful when solving
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a class of problems that bear common and special structures as it avoids the need for performing
FR repeatedly.

We first present an important lemma.

Lemma 2.3.4. (Theorem of the alternative) [50, Theorem 3.1.3] For the feasible constraint sys-
tem (2.3.1), exactly one of the following statements holds:

1. There exists X � 0 such that A(X) = b (strict feasibility holds),

2. There exists y ∈ Rm such that

A∗(y) ∈ Sn+ \ {0} , 〈b, y〉 = 0. (2.3.4)

Lemma 2.3.4 plays a central role in facial reduction algorithms. We emphasize that whenever
a spectrahedron fails to have a strictly feasible point, there always exists y ∈ Rm that certifies the
lack of strict feasibility. We make extensive use of the auxiliary system (2.3.4) in this thesis.

Facial reduction for F is a process of identifying the minimal face of Sn+ containing the feasible
set F . In other words, the FR process tries to find face(F ,Sn+), where F is given in (2.3.1) (see
Figure 2.3.1 for a graphical representation.). Since Sn+ is facially exposed (see Lemma 2.2.3), the

Figure 2.3.1: An exposing vector that exposes the minimal face containing F

process can be characterized as revealing an exposing vector for face(F ,Sn+). Below, we present a
pseudo-code for the FR algorithm. More details can be found in [22,50,134,144].

Algorithm 2.3.1 Pseudo-Code for Facial Reduction Algorithm for Spectrahedron

Require: data (A, b) for spectrahedon F = {X ∈ Sn+ : A(X) = b}, r = n
1: while there exists a solution y satisfying A∗(y) ∈ Sr+ \ {0}, 〈b, y〉 = 0 do
2: Find a nonzero exposing vector Z, i.e., face(F , Sr+) ⊆ Sr+ ∩ Z⊥
3: Compute a full column rank matrix V such that range(V ) = null(Z)
4: Set A ← AV (·) = A(V (·)V T ), r ← rank(V )
5: end while

Finding an exposing vector Z in Algorithm 2.3.1 is generally done by identifying a solution to
the auxiliary system (2.3.4). More specifically, 0 6= Z = A∗(y) � 0 in (2.3.4) serves as an exposing
vector, i.e.,

for all X feasible to F , 0 = 〈b, y〉 = 〈A(X), y〉 = 〈X,A∗(y)〉 =⇒ range(X) ⊆ null(A∗(y)).
(2.3.5)
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Namely, the nonzero exposing vector A∗(y) confines the range of feasible points and it gives rise to
line 3 in Algorithm 2.3.1. Every feasible solution X lies in the hyperplane normal to A∗(y). The
implication in (2.3.5) follows from Item 1 of Fact 2.2.4.

Since the exposing vector Z = A∗(y) confines the range of the feasible points, we can capture
all feasible points in the congruence

V RV T ∈ Sn+, where R ∈ Sr+ for some r ≤ n and range(V ) = null(Z). (2.3.6)

We immediately reduce the dimension of the unknown variable X at each iteration. Instead of

working with the cone Sn+, FR allows us to work with a much smaller cone Sn−rank(Z)
+ .

We define terminologies related to the exposing vector and V that appear in (2.3.6).

Definition 2.3.5. Let Z be an exposing vector for a face F , i.e., F ⊆ Sn+ ∩Z⊥. Let V be a matrix
that satisfies

for all X ∈ F, we have X = V RV T , for some R � 0.

1. The exposing vector Z is called maximal if it is of the highest rank over all exposing vectors.

2. We call the matrix V a facial range vector for F .

3. A facial range vector with the minimum number of columns is called a minimal facial range
vector.

Let V ∈ Rn×r be a minimal facial range vector for F and

face(F , Sn+) = V Sr+V T .

Then the spectrahedron F has the following alternative representation

F := {X ∈ Sn : A(X) = b,X ∈ Sn+} = {V RV T ∈ Sn : A(V RV T ) = b, R ∈ Sr+}. (2.3.7)

Furthermore, we obtain an equivalent reformulation for (P) in (2.3.3):

p∗ = inf
X
{〈C,X〉 : A(X) = b,X ∈ Sn+}

= inf
R
{〈C, V RV T 〉 : A(V RV T ) = b, R ∈ Sr+}

= inf
R
{〈V TCV,R〉 : AV (R) = b, R ∈ Sr+},

(2.3.8)

where AV (·) = A(V (·)V T ). We also note that there exists a strictly feasible R̂ ∈ Sr++ such that
the equality AV (R) = b holds. Thus, Slater’s condition (Definition 2.3.1) holds for the problem

inf
R
{〈V TCV,R〉 : AV (R) = b, R ∈ Sr+}. (2.3.9)

Hence we can establish strong duality (Definition 2.3.2) for (2.3.9).

We often choose facial range vectors V with orthonormal columns. We utilize the simplifications
that the orthonormal columns provide; in Section 5.2.4 we use the property V TV = I to obtain
the projection subroutine of the splitting method; in Section 6.3.2 we use the orthonormality to
perform FR applied to the objective function. It is known that every FR step results in at least one
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equality constraint becoming redundant, see e.g., [144, Section 3.5]. That is, the reduced map AV
is no longer surjective after FR, thus indicating an implicit singularity. We revisit this important
property of FR and provide a short proof in Chapters 3 and 4.

Length of Facial Reduction Algorithm The FR process in Algorithm 2.3.1 does not nec-
essarily end in one iteration. The number of FR iterations have a natural upper bound n. The
minimum number of FR iterations has a special terminology along with important properties.

Definition 2.3.6 (Singularity degree). [145,146] Given a spectrahedron F , the singularity degree
of F , denoted by sd(F), is the smallest number of facial reduction steps needed for identifying the
minimal face of Sn+ containing F .

The singularity degree,2 first proposed by Sturm [146], has connections to backward error
bounds. A recent development on forward error bounds using singularity degree is given in [144,145].
They argue that a higher singularity degree correlates with a worse error bound and irregular
convergence.

It is known that the length, number of iterations, of the FR algorithm is the shortest, least, if
we choose exposing vectors in

relint ({A∗(y) : A∗(y) � 0, 〈b, y〉 = 0}) .

In other words, a shortest FR algorithm can be achieved by finding a maximum rank solution A∗(y)
of the system (2.3.4) at every iteration.

It is known that the singularity degree admits a tighter upper bound than n.

Fact 2.3.7. [144,145] Let F be a nonempty spectrahedron such that F 6= {0}. Then the singularity
degree of F satisfies the following bound:

sd(F) ≤ min{n− 1,m}.

The original proof for the bound Fact 2.3.7 is nontrvial. We revisit Fact 2.3.7 and provide a
considerably simplified proof in Section 3.2 (Corollary 3.2.9) in conjuction with the Barvinok-Pataki
bound.

There are different techniques for FR known in the literature. Steps for FR can be done by
simply observing the structure of the data matrices Ai ∈ Sn. If one of the constraints has the form

Ai � 0, trace(AiX) = 0, for some i, (2.3.10)

then Ai itself is an exposing vector. The sieve facial reduction method [167] uses this idea. FR that
uses the elementary operations and rotations of the data is proposed in [119]. FR can also be
performed by exploiting special structure of the problem, and there are many successful applications
of this type e.g., [27, 28,48,79,123,166].

2 [146] uses the terminologies, the level of singularity or the degree of singularity.

15



2.3.3 Facial Reduction in Linear Programming, LP

In this section we discuss FR applied to the class of LPs. The ideas above for FR for SDP naturally
apply to LP by changing the partial order from the cone Sn+ to the nonnegative orthant Rn+. However
detailed descriptions of FR for LP rarely appear in the literature. We provide the details on how
the facial range vector and exposing vector are formed for the class of LP.

In this section we let
F := {x ∈ Rn : Ax = b, x ≥ 0},

where A ∈ Rm×n is a matrix with linearly independent rows. The action of FR on the set F has a
simple interpretation:

detect variables that are fixed at 0.

We describe how the set F is represented after FR. Suppose that strict feasibility fails for F . Then
Lemma 2.3.4 implies that there must exist a nonzero 0 6= z = AT y, y ∈ Rm, satisfying

〈x, z〉 = 〈x,AT y〉 = 〈Ax, y〉 = 〈b, y〉 = 0, ∀x ∈ F . (2.3.11)

Hence, every x ∈ F is perpendicular to the nonnegative vector AT y:

AT y =
m∑
i=1

yiai = z =

(
z+ > 0

0

)
, z+ ∈ Rsz , sz < n.

We call this vector z = AT y an exposing vector for F , and let the cardinality of its support

be sz = |{i : zi > 0}|. Then z =
sz∑
j=1

ztjetj , where tj is in increasing order. We now have

0 = 〈z, x〉 and x, z ∈ Rn+ =⇒ xizi = 0, ∀i,

i.e., the positive elements in z fix the corresponding elements in x to zero. Then x =
n−sz∑
j=1

xsjesj ,

where sj is in a increasing order. We define the matrix with unit vectors for columns

V =
[
es1 es2 . . . esn−sz

]
= In(:, supp(z)c) ∈ Rn×(n−sz).

Then, as we obtained an equivalent representation for the spectrahedron in (2.3.7), we similarly
have

F = {x ∈ Rn+ : Ax = b} = {x = V v ∈ Rn : AV v = b, v ∈ Rn−sz+ }. (2.3.12)

We call this matrix V ∈ Rn×(n−sz) a facial range vector ; see Definition 2.3.5. The facial range vector
confines the range that every feasible x can have. We use the identification (2.3.12) throughout
Chapter 4. The operation AV has a simple interpretation. The role of the facial range vector V is
to discard the elements of variable of x (or the columns of the matrix A) that are identically 0 in
the set F . Similar to the SDP case, the system (2.3.12) also contains redundant equalities and we
derive important consequences in Chapter 4.

FR for LP exhibits some attractive properties that FR for SDP does not have. One such prop-
erty concerns the singularity degree. We recall that the singularity degree for a spectrahedron can
exceed one. However, for LPs, it is known that FR can be done in one iteration, i.e., sd(F) ≤ 1;
see [50, Theorem 4.4.1]. This is due to the fact that the image A(Rn+) is a polyhedron. Thus, A(Rn+)
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is facially exposed. Therefore, face(b, A(Rn+)), the minimal face of A(Rn+) containing b, is exposed.

Another nice property of FR for LP follows from the sparsity pattern of the data matrix A.
Maintaining the sparsity is important for solving LPs with large sizes. We recall that the FR for
SDP alters the linear map A by

(AV )i = (A(V (·)V T ))i = 〈V TAiV , ·〉.

That is, the data matrix Ai is replaced by the matrix V TAiV , where V is a facial range vector.
This multiplication generally changes the sparsity pattern of the data matrix. Furthermore, if
V is chosen to be dense, it renders the data matrix V TAiV dense. Unlike FR for SDPs, the
FR performed on LPs does not alter the sparsity pattern of the data matrix A other than deleting
columns and rows.

2.4 Algorithms

We now present some preliminary discussions on the two classes of algorithms that are presented
and discussed in Part II of this thesis. In Section 2.4.1 we introduce splitting methods that arise in
problems with two linearly related variables. We place a particular interest on the SDP relaxations
of hard combinatorial optimization problems. These relaxations do not have strictly feasible points
and this brings the need for FR. The splitting method provides a convenient framework for cap-
turing the natural variable splitting provided by the FR. In Section 2.4.2, we introduce the Guass-
Newton method and its applications for finding optimal primal-dual solution pair for SDP. The
Gauss-Newton method provides a useful framework for handling the overdetermined nonlinear sys-
tem that originates from the complementarity condition of the optimal primal-dual pair. Moreover,
the Gauss-Newton method provides a stable computation for the search directions and avoids the
need for using the symmetrization that often appear in the interior point methods for SDP.

2.4.1 Splitting Methods

Splitting methods allow effective ways to distribute constraints that are difficult to engage simul-
taneously. Let X ⊆ RnA ,Y ⊆ RnB be well-understood closed convex sets and let f : RnA → R,
g : RnB → R be convex functions. Let A ∈ Rm×nA , B ∈ Rm×nB . Suppose that we are given a
problem of the form

min
x,y
{f(x) + g(y) : Ax+By = b, x ∈ X , y ∈ Y}. (2.4.1)

The two variables in (2.4.1) are linked by the linear equation Ax + By = b. The augmented
Lagrangian, LA, of (2.4.1) is

LA(x, y, z) := f(x) + g(y) + 〈z,Ax+By − b〉+
1

2
‖Ax+By − b‖22.
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Splitting methods solve (2.4.1) by the following sequence of iterations (with some modifications if
needed):

xk+1 = min
x∈X
LA(x, yk, zk) (x-subproblem)

yk+1 = min
y∈Y
LA(xk+1, y, zk) (y-subproblem)

zk+1 = zk + α
(
Axk+1 +Byk+1 − b

)
(dual update with steplength α).

(2.4.2)

The update rules (2.4.2) are called by the alternating direction method of multipliers, ADMM, [71].
The solutions for the x- and y-subproblems can often be found analytically; and this promotes the
general efficiency of the algorithm.

There are many applications that are posed in the form (2.4.1) in the literature, e.g., finding a
common point in the intersection of two sets and `1-regularization. Many applications of this type
can be found in [11,24,72] and the references therein. In this thesis, we place a particular interest on
a beautiful application of splitting methods that stems from FR. Recall the intermediate problem
from (2.3.8):

min
R
{〈C, V RV T 〉 : A(V RV T ) = b, R ∈ Sr+}.

By assigning Y = V RV T to the constraint set, we obtain the equivalent problem below:

min
R,Y
{〈C, Y 〉 : A(Y ) = b, R ∈ Sr+, Y = V RV T }.

We then obtain a problem with two variables where their relation is connected by a linear equa-
tion Y = V RV T . Thus, (2.4.2) immediately applies. We may add additional constraints to the
variables R and Y that are generally difficult to engage at the same time. Successful applications
include [28,79,123]. We discuss the application of this type throughout Chapter 5.

2.4.2 The Gauss-Newton Method and Perturbed Optimality Conditions

The Gauss-Newton method (e.g., see [43, Chapter 10]) is commonly used for minimizing a sum
of squares of nonlinear functions. One of the main advantages of the Gauss-Newton method over
the traditional Newton method is that it does not require second-order derivatives of the functions
when computing search directions. Let c : Rn → Rm be a continuous vector-valued function and
we let ci : Rn → R be the i-th component of the function c. Suppose that we wish to solve the
following nonlinear least squares problem:

min
x
f(x) :=

1

2

m∑
i=1

(ci(x))2 . (2.4.3)

Let Jx be the Jacobian of c evaluated at a point x ∈ Rn. Using the chain rule and the product
rule, we obtain the first and the second order derivatives of f :

∇f(x) = JTx c(x) and ∇2f(x) = JTx Jx +
m∑
i=1

ci(x) · ∇2ci(x).

The traditional Newton’s method uses the exact Hessian ∇2f(x) for computing the Newton search
direction −(∇2f(x))−1∇f(x). The Guass-Newton method exploits the fact that we expect the
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values |ci(x)| to be small near a optimum, and we therefore discard the second-order derivatives
from the Hessian ∇f2(x). We get an approximate Hessian JTx Jx and the Gauss-Newton search
direction as follows:

∆x = −(JTx Jx)−1JTx c(x).

This is equivalent to finding a least squares solution to the overdetermined linear system

Jx∆x = c(x).

The algorithm proceeds with the update x← x+ α∆x, where α is a properly chosen steplength.

An important application of the Gauss-Newton method is for finding solutions satisfying the
first-order optimality conditions of semidefinite programs. This approach is proposed by [77,99] and
motivated by the fact that the optimality conditions for an SDP form an overdetermined, bi-linear
system. Solving the optimality conditions can be posed in the framework of the Gauss-Newton
method. We proceed with the SDP with the linear objective function:

min
X
{〈C,X〉 : A(X) = b, X � 0}.

We first note that many interior-point based methods try to solve the optimality conditions by
solving a sequence of perturbed problems while driving a perturbation (barrier) parameter µ ↓ 0.
The usual approach is to add a barrier term µ log det(X) to the Lagrangian, i.e.,

Bµ(X, y) := 〈C,X〉+ 〈y,A(X)− b〉 − µ log det(X).

We obtain perturbed optimality conditions with positive barrier parameter µ as follows. After
differentiating the barrier function Bµ(X, y) with respect to X, we obtain the term µX−1. We
set Z = µX−1, which serves as the dual variable associated with X. Multiplying by X on both
sides, we get the equation XZ −µI = 0, perturbed complementary slackness. Hence, the perturbed
optimality conditions are

dual feasibility (∇xBµ = 0) F dµ (X, y, Z) := C +A∗(y)− Z = 0

primal feasibility (∇yBµ = 0) F pµ(X) := A(X)− b = 0
perturbed complementary slackness F cµ(X,Z) := XZ − µI = 0.

(2.4.4)

Here, the parameter µ gives a measure of the duality gap.

In order to employ the Gauss-Newton method for an optimal triple (X, y, Z) for the primal-dual
pair, we construct a real-valued function pµ that plays the role of f in (2.4.3). Given a fixed µ > 0,
the function pµ is constructed as a sum of squares of nonlinear functions,

pµ(X, y, Z) =
1

2
‖F dµ (X, y, Z)‖2F +

1

2
‖F pµ(X)‖22 +

1

2
‖F cµ(X,Z)‖2F .

We emphasize that the system (2.4.4) is overdetermined due to the complementarity XZ − µI;
the product of two symmetric matrices is not symmetric in general3. Therefore, we cannot apply
the Newton’s method directly to the system (2.4.4), since the linearization of (2.4.4) yields an
overdetermined system, i.e., not a square system.

The function pµ plays the role of f in (2.4.3). We then apply the Gauss-Newton method to

3This does not occur in linear programs since the product of two diagonal matrices remains diagonal.
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solve the nonlinear least squares problem min
X,y,Z

pµ(X, y, Z), while µ ↓ 0. The search direction dGN

is obtained by solving the over-determined linear system

F ′µ(X, y, Z)dGN = −Fµ(X, y, Z), (2.4.5)

where F ′µ is the Jacobian of Fµ =
[
F dµ ;F pµ ;F cµ

]
.

We obtain the Gauss-Newton direction, dGN , as the least squares solution

dGN = −
(
F ′µ(X, y, Z)

)†
Fµ(X, y, Z),

where ·† denotes the Moore-Penrose generalized inverse. In other words, the Gauss-Newton direc-
tion is the least squares solution of the linearization F ′µdGN = −Fµ. In practice, we do not compute
the inverse explicitly. Owing to a full column rank assumption, the Gauss-Newton direction is a
descent direction (see [43,99]), since

〈∇pµ, dGN〉 =
〈

(F ′µ)∗Fµ,−
(
(F ′µ)∗F ′µ

)−1
(F ′µ)∗Fµ

〉
< 0. (2.4.6)

The inequality follows from the fact that −
(
(F ′µ)∗F ′µ

)−1
is negative definite.

Instead of solving the system (2.4.5) for the direction dGN = (∆X,∆y,∆Z), we may attempt to
solve a smaller system by making variable substitutions or a reduced representation of equalities.
In implementations, the steplengths α are made to maintain (sufficient) positive definiteness of the
variables X,Z.

The vector-valued function Fµ(X, y, Z) has the domain and range in different spaces due to
the complementarity condition XZ = µI. There are many techniques available in the literature to
overcome this issue [2,87,121,158,165]. Successful search directions are proposed by applying the
symmetrized similarity transformation HP to the complementarity equation:

HP (M) = PMP−1 + P−TMP T .

The well-known choices for P in the literature are: P = I (AHO), P = Z
1
2 (HKM) and P =(

X
1
2ZX

1
2

) 1
4
X−

1
2 (NT). We note that the Gauss-Newton approach does not require these sym-

metrization steps.
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Part I

On the Implicit Loss of Surjectivity
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Chapter 3

Two-Step Facial Reduction and
Implicit Loss of Surjectivity

This chapter is directly motivated by the fact:

At least one linear constraint becomes redundant after each step of FR.

Although these redundancies are recognized in the literature, extensive implications have not yet
been realized. We examine interesting properties that stem from these redundancies in both
SDP and LP. In particular, each nontrivial step of FR reveals the implicit loss of surjectivity
in the linear constraints. In this chapter, we elaborate on these redundancies in SDP. They give
rise to two novel definitions of singularities and we discuss interesting consequences. The redundan-
cies carried by the lack of strict feasibility highlights the importance of the two-step facial reduction
algorithm. Furthermore, the redundancies together with the new notions of singularity produce a
strengthened Barvinok-Pataki bound.

Pathological behaviours of SDP in the absence of strict feasibility are recognized in the litera-
ture by many researchers. For example, Sturm [146] introduces the measure singularity degree and
relates it to the forward and backward error bounds with respect to F and shows the bad conver-
gence behaviour under a high singularity degree. Sremac et al., [145] further relate the singularity
degree to obtain a lower bound the forward error. Drusvyatskiy et al., [49] show the slow conver-
gence rate of the alternating projection under a high singularity degree. Pataki et al., [119,130] use
elementary matrix operations and rotations to understand the pathologies that arise in SDP. We
understand a source of difficulty under the absence of strict feasibility by using structural proper-
ties accompanied by facially reduced system. We provide a comprehensible interpretation and we
achieve this by using simple linear algebra.

Contributions and Outline The contribution of this chapter is threefold:

1. We introduce new notions of singularities and highlight the importance of the two-step facial
reduction.

2. We use the facially reduced system of the standard spectrahedron to understand the numerical
difficulties in the absence of strict feasibility.
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3. We use the new notions of singularities to improve the Barvinok-Pataki bound.

This chapter is organized as follows. In Section 3.1 we introduce the two-step facial reduction
and present new related notions. In Section 3.2 we use the new notions of singularity to improve
the Barvinok-Pataki bound [8,128].

3.1 The Two-Step Facial Reduction Algorithm

In this section we introduce the two-step facial reduction and address its importance. We recall
from (2.3.8) that after FR, the feasible set F is reduced to, with generally r < n,{

R ∈ Sr+ : 〈V TAiV,R〉 = bi, i ∈ [m]
}
. (3.1.1)

We observe the equalities that remain in the facially reduced system. That some redundant con-
straints arise after each step of FR algorithm is proved using the property null(A∗) ( null(A∗V ),
where V is a facial range vector; see e.g., [144]. We now provide a simpler proof using simple
arguments from linear algebra.

Lemma 3.1.1. Suppose that the exposing vector Z = A∗y 6= 0 in an iteration of FR. Then at least
one linear equality constraint becomes redundant.

Proof. (Implicit redundancies in spectrahedra) Let 0 6= Z = A∗(y) be the exposing vector satisfying
the auxiliary system (2.3.4). Let V ∈ Rn×r be a facial range vector satisfying null(A∗(y)) =
range(V ). As A∗(y)V = 0, we see that

V TA∗(y)V =

m∑
i=1

yiV
TAiV = 0. (3.1.2)

After the reduction the constraints have the equivalent form trace(V TAiV R) = bi, ∀i. Since y ∈ Rm
is a nonzero vector, the matrices in {V TAiV }i=1,...,m ⊆ Sr are not linearly independent.

Lemma 3.1.1 immediately implies that the FR process reveals the implicit loss of surjuctivity of
the linear map A that defines the feasible set F . Even when the complete FR is performed in the
sense that the reformulated system has a strictly feasible point, failure to remove the redundant
equalities leaves the system ill-posed. Hence, after each iteration of FR, redundant equalities
should be removed. This gives rise to the two-step facial reduction. Let m̄ be the cardinality of a
maximal linearly independent subset of {V TAiV }mi=1, where V is a facial range vector. Let

Pm̄ : Rm → Rm̄

be the simple projection that chooses a maximal linearly independent members in the set{V TAiV }mi=1.
Then we obtain the following:

{X ∈ Sn+ : A(X) = b} = {X = V RV T : Pm̄AV (R) = Pm̄b, R � 0}. (3.1.3)

We elaborate on the importance of this projection by relating it to the distance to infeasibility in
Section 3.1.1 below. Algorithm 2.3.1 and (3.1.3) give rise to Algorithm 3.1.1, the two-step facial
reduction algorithm. We illustrate Algorithm 3.1.1 in Examples 3.2.12 and 3.2.13.
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Algorithm 3.1.1 The Two-Step Facial Reduction

Require: data (A, b) for spectrahedron F = {X ∈ Sn+ : A(X) = b}, set r = n
1: while there exists a solution y satisfying A∗(y) ∈ Sr+ \ {0}, 〈b, y〉 = 0 do
2: step 1
3: Find a nonzero exposing vector Z, i.e., face(F , Sr+) ⊆ Sr+ ∩ Z⊥
4: Compute a full column rank matrix V such that range(V ) = null(Z)
5: step 2
6: Obtain a projection Pm̄ that identifies maximal linearly independent data in {V TAiV }i
7: Set A ← Pm̄A(V (·)V T ), b← Pm̄b, r ← rank(V )
8: end while

We now recall the notion of singularity degree, the smallest number of FR steps (see Defi-
nition 2.3.6). We can obtain the smallest number of FR steps by finding an exposing vector Z
of maximum rank at every iteration in Algorithm 3.1.1. We also recall that the implicit redun-
dant constraints are induced by the vector y satisfying the auxiliary system (2.3.4); see the proof
of Lemma 3.1.1. Namely, any vector y that satisfies (2.3.4) induces redundant equalities. This
observation gives rise to two novel and related notions of singularity degree.

Definition 3.1.2. Let {R � 0 : Pm̄AV (R) = Pm̄b ∈ Rm̄} be the facially reduced system of F that
satisfies the MFCQ.

1. The max-singularity degree of F , denoted maxsd(F), is the largest number of nontrivial facial
reduction iterations for finding the minimal face, face(F , Sn+).

2. The implicit problem singularity, denoted ips(F), is the number of implicit redundant equal-
ities in F , i.e., ips(F) = m− m̄.

It is clear that maxsd(F) ≤ ips(F) since every solution y to the auxiliary system (2.3.4) yields
at least one redundant constraint. With these new definitions, we conclude the following relations.

Proposition 3.1.3. Given a spectrahedron F , it holds that

sd(F) ≤maxsd(F) ≤ ips(F). (3.1.4)

Various relations hold with the inequalities (3.1.4). We show in Example 3.2.12 below that the
inequalities (3.1.4) can hold as equality. In Section 5.5, we show that sd,maxsd and ips are three
different notions and their values can be very different, i.e., the equalities in (3.1.4) can be strict.

The implicit redundancies in the facially reduced system were first recognized from the SDP
relaxation for the quadratic assignment problem [166] in the 90’s. Surprisingly, after FR all the
constraints other than a portion of the so-called gangster constraints became redundant. Additional
constraints are added to the SDP relaxation and some structured redundancies are recognized by
forming the dual of the dual and a facial range vector. These implicit redundancies are understood
as arising from special structural properties embedded in this particular class of instances, rather
than properties found in an arbitrary spectrahedron.

The implicit redundancies of the equality system A(X) = b are recognized using Lemma 3.1.1.
The discovery of the redundancies is not only limited to the system represented in the standard trace
inner product form. In Section 5.1 we realize the redundancies by using the embedded structure
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of the problems. In Section 6.3 we recognize the redundancies of the constraint represented in the
sum of matrix congruences.

3.1.1 Instability Originating from Implicit Redundancies in Equality Constraints

In this section we examine numerical difficulties that arise when complete FR is not performed.
Instability issues arising in the absence of strict feasibility are known in the literature, e.g., [50,
145, 146]. We aim to study this instability through the lens of FR and linear algebra. We place a
particular interest on the instabilities that stem from the implicit loss of surjectivity of the linear
map A in conjunction with the cone Sn+. We relate to the notion of the distance to infeasibility to
the facially reduced system.

The distance to infeasibility, pioneered for cone optimization by Renegar, is a measure of the
smallest perturbations of the data of a problem that renders the problem infeasible. In our setting,
we can use the following simplification of the distance to infeasibility from [136] by restricting the
perturbations to b, i.e., we can force infeasibility using only perturbations in b;

dist(b,F = ∅) := inf
{
‖b− b̃‖ : {X : A(X) = b̃, X ∈ Sn+} = ∅

}
.

Many interesting bounds, condition numbers, are shown in [136,137] for LP under the assumption
that the distance to infeasibility is positive and known.

Computing the distance to infeasibility is a challenging task, see e.g., [56,131]. It is known that
a positive distance to infeasibility of F implies that strict feasibility holds for F ; see e.g., [63, 64].
The contrapositive of this statement is that, if strict feasibility fails for F , then the distance to
infeasibility is 0. We revisit this statement with the facially reduced system (2.3.12). We provide
an elementary proof that there is an arbitrarily small perturbation for the data vector b of F that
yields the set F infeasible, i.e., dist(b,F = ∅) = 0. Furthermore, we provide an explicit perturbation
that renders the set F empty and show how it is related to the implicit redundancies.

Suppose that F fails strict feasibility. Recall the representation (2.3.12) for F . Let Â and ÂV
be the matrices that represent the isometric realizations of A and AV , respectively, i.e.,

Â =

 svec(A1)T

...
svec(Am)T

 ∈ Rm×t(n), ÂV =

 svec(V TA1V )T

...
svec(V TAmV )T

 ∈ Rm×t(r).
Let ÂV = Q̂R̂ be a QR decomposition of ÂV , where Q̂ ∈ Rm×m orthogonal, R̂ ∈ Rm×t(r) upper

triangular. We write Q̂ =
[
Q̂1 Q̂2

]
so that range(Q̂1) = range(ÂV )1. Then, by the orthogonality

of Q̂, we have

A(X) = Â svec(X) = ÂV svec(R) = b ⇐⇒ Q̂T Â svec(X) = R̂ svec(R) = Q̂T b. (3.1.5)

Since ÂV is a rank deficient matrix (see Lemma 3.1.1), the upper triangular matrix R̂ is of the form

R̂ =

[
R̄
0

]
∈ Rm×t(r) and R̄ ∈ Rrank(ÂV )×t(r) with nonzero diagonal. (3.1.6)

1We may assume that the columns of ÂV and the entries of svec(R) are permuted accordingly to satisfy

range(Q̂1) = range(ÂV ).
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Since b ∈ range(ÂV ), the last m− rank(ÂV ) entries of Q̂T b are 0, i.e.,

Q̂T b =

(
Q̂T1 b

Q̂T2 b

)
=

(
Q̂T1 b

0

)
.

Here, if the facial range vector V completely characterizes face(F ,Sn+), then the implicit problem

singularity of F is equal to m− rank(ÂV ). Consequently, the unrealized implicit loss of surjectivity
produces the system [

R̄
0

]
svec(R) =

(
Q̂T1 b

0

)
, R � 0. (3.1.7)

Any perturbation on the last m−rank(ÂV ) equations in (3.1.7) that cuases the system inconsistency
renders the system (3.1.7) infeasible while maintaining the dimension of relint(F). Namely, large
value for ips(F) = m− rank(ÂV ) is a good measure of the ill-posedness of a problem. For instance,

replacing the right-hand-side vector in (3.1.7) by

(
Q̂T1 b
φ

)
with any nonzero vector φ renders (3.1.7)

infeasible. Replacing the data matrix in (3.1.7) by

[
R̄
Φ

]
for which Φ contains a row svec(T )T with

positive definite T also renders (3.1.7) infeasible.

We now present a class of perturbations to b that maintains the feasibility of the set F as well
as a special perturbation to b that forces F to be infeasible. Such perturbations can be found using
linear combinations of the columns of Q̂1 or Q̂2, respectively. We relate this observation to the
solution of the auxiliary system (2.3.4) in the proof of Proposition 3.1.4 below.

Proposition 3.1.4. Suppose that strict feasibility fails for F and let F have the representation

F = {X � 0 : A(X) = b} = {V RV T : ÂV svec(R) = b, R � 0}.

Then the following hold.

1. For all ∆b ∈ range(ÂV ) with sufficiently small norm, the set {X ∈ Sn+ : A(X) = b + ∆b} is
feasible.

2. Let ȳ be a solution to the auxiliary system (2.3.4). Then perturbing the right-hand-side vec-
tor b of F in the direction ȳ makes the system F infeasible. In other words, the distance to
infeasibility of F is 0, i.e., dist(b,F = ∅) = 0.

Proof. Let ∆b be any perturbation in range(ÂV ). Let Q̂R̂ = ÂV be a QR decomposition of ÂV . In

particular, let R̂ follow the form (3.1.6) and Q̂ =
[
Q̂1 Q̂2

]
so that range(Q̂1) = range(ÂV ). Then

A(X) = ÂV svec(R) = b+ ε∆b ∈ Rm

⇐⇒ R̂ svec(R) = Q̂T b+ εQ̂T∆b ∈ Rm

⇐⇒ R̄ svec(R) = Q̂T1 b+ εQ̂T1 ∆b ∈ Rrank(ÂV ).

(3.1.8)

The last equivalence holds since A(X) = b and ∆b ∈ range(ÂV ) = range(Q̂1). Since the system
R̄ svec(R) = Q̂T1 b satisfies the MFCQ, the distance to infeasibility of this system is positive. Thus,

the perturbed system {R � 0 : R̄ svec(R) = Q̂T1 b+ εQ̂T1 ∆b} remains feasible. Therefore, by (3.1.8),
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perturbing b along the direction ∆b ∈ range(ÂV ) maintains the feasibility and this concludes the
proof for Item 1.

For Item 2 we present a perturbation ∆b to b that renders F infeasible. By (3.1.2), we have a
nonzero vector ȳ ∈ Rm that satisfies (2.3.4). Then we have

ȳ ∈ null
(

(ÂV )T
)

= range(ÂV )⊥ = range(Q̂2) =⇒ ȳ = Q̂2ū for some nonzero ū. (3.1.9)

We recall Farkas’ lemma:

{y ∈ Rm : A∗(y) � 0, 〈b, y〉 < 0} 6= ∅ =⇒ F = ∅.

Now, for any ε > 0, setting ∆bε = −εȳ yields

A∗(ȳ) � 0, 〈b, ȳ〉 = 0 =⇒ A∗(ȳ) � 0, 〈b+ ∆bε, ȳ〉 < 0. (3.1.10)

Hence, by letting ε→ 0+, we see that the distance to infeasibility, dist(b,F = ∅), is equal to 0.

We note that the instability discussed in this section essentially originates from the observation
made in Lemma 3.1.1, i.e., redundant equalities arise in the facially reduced system. Facially
reduced system allows us to exploit the root of potential instability when the right-hand-side vector
b is perturbed. As shown in (3.1.9), the redundancies that originate from the loss of surjectivity
precisely give rise to the perturbation to b that renders infeasibility. Moreover, the certificate
vector y of the system (2.3.4) is indeed in the range of Q̂2 that originates from these redundancies.
Although the distance to infeasibility is 0 in the absence of strict feasibility, Proposition 3.1.4
suggests that a carefully chosen perturbation of b does not have an impact on the feasibility of F .

The distance to infeasibility directly impacts the measure of well-posedness of the problem,
[63, 64, 137]. Given the pair d = (A, b) of the data for an instance (P), the condition measure of
(P) is defined by

C(d) :=
‖d‖

inf{‖∆d‖ : d+ ∆d yields (P) infeasible}
.

The value C(d) is a measure of well-posedness of the problem (P). Since dist(b,F = ∅) = 0, we
have C(d) =∞. Namely, when strict feasibility fails for (P), the problem is ill-posed.

How to Remove the Redundant Constraints Let M ∈ Rm×n be a given matrix. We sum-
marize some available methods for extracting a maximal linearly independent subset of columns
of M . (We apply that to MT and rows below.)

The first method uses a rank-revealing QR decomposition2. Let MI(:, π) = QR be a QR
decomposition such that π is a permutation vector, Q is an orthogonal matrix and R is an upper
triangular matrix with a non-increasing diagonal in absolute value. The matrix I(:, π) permutes
the columns of M . If M has linearly independent columns, then the matrix R contains zeros on
its diagonal. Let r be the number of the nonzero diagonal entries of R. Then, π(1 : r) returns the
subset of columns indices of M that are linearly independent. Another available method makes use
of artificial variables [39, Box 8.2]. It constructs

[
I MT

]
and set the initial basis matrix to be the

first m columns. Then it performs a variant of the two-phase simplex method to drive the initial

2An implementation can be found at https://www.mathworks.com/matlabcentral/fileexchange/77437
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basic variables out of the basis one by one. When such an operation is not applicable, a linearly
dependent row of MT is detected. Computational improvements of this method are made in [4].
An alternative numerical method for assessing the rank deficiency is presented in [32,142].

One of the standard assumptions in SDP is the surjectivity of A. Hence, we may use the
aforementioned methods above to remove redundant constraints as a part of the preprocessing
phase. To find redundant equalities in AV (R) = b after the first step of FR, we form the isometric
realization of the equalities, i.e., 〈V TAiV,R〉 = svec(V TAiV )T svec(R), ∀i ∈ [m]. We then form
the matrix

ÂV =

 svec(V TA1V )T

...
svec(V TAmV )T


and find linearly dependent rows of ÂV by applying one of the aforementioned methods. We include
a graphical illustration of the two-step FR process; see Figure 3.1.1. The i-th row of matrix Â is
svec(Ai)

T below:

Figure 3.1.1: A graphical illustration of the two-step FR

3.2 A Strengthened Barvinok Pataki Bound

In this section we introduce the Barvinok-Pataki bound and how the singularity notions from
Section 3.1 give rise to a strengthened Barvinok-Pataki bound. We tighten this bound by adding
information from the implicit problem singularity and max-singularity degree of the spectrahedron.
We see that this new bound depends not only on the number of affine constraints but also on
the geometry and stability of the spectrahedron; see Theorem 3.2.7. We first provide some known
results on Barvinok-Pataki bound.

Theorem 3.2.1 ([128, Theorem 2.1]). Suppose that X ∈ F , where F is a face of the feasible set
of (2.3.2). Let d = dimF , r = rankX. Then

t(r) ≤ m+ d. (3.2.1)

Theorem 3.2.2 ([8, Theorem 1.1]). Let L ⊂ Sn be an affine manifold such that the intersection
F = Sn+ ∩ L 6= ∅ and codimL ≤ t(r + 1) − 1 for some nonnegative integer r. Then there exists
X ∈ F such that rankX ≤ r.

Theorem 3.2.3 ([8, Theorem 1.2]). Let r > 0, n ≥ r + 2. Let L ⊂ Sn be an affine manifold such
that the intersection F = Sn+ ∩ L 6= ∅ and bounded, and codimL = t(r + 1), for some nonnegative
integer r. Then there exists X ∈ F such that rankX ≤ r.
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Remark 3.2.4. Theorems 3.2.1 to 3.2.3 all concern bounds on the rank of a feasible point of a
spectrahedron. We continue with some remarks for the three theorems above.

Given the number of constraints, Theorem 3.2.1 gives an upper bound on the rank of a solution.
The most well-known application of Theorem 3.2.1 is the case of extreme points. An extreme
point X of a convex set C is a point that cannot be expressed as a convex combination of any
two distinct points in C. The minimal face containing an extreme point X is 0-dimensional, i.e.,
dim(face({X})) = 0. From (3.2.1), we conclude that

t(rank(X)) ≤ m, for all extreme points X ∈ F . (3.2.2)

Theorem 3.2.2 is a consequence of [10, Theorem 1.3] (see also [9, Section IV.10.3]), and can be
interpreted as follows. For the feasible constraint system of (2.3.2), there is a solution X such that

its rank is bounded by
⌊√

8m+1−1
2

⌋
. We may obtain an equivalent bound by defining the smallest

r ∈ N satisfying
(
r+2

2

)
> m. Therefore if we have

(
r+2

2

)
− 1 ≥ m, where m is the number of linearly

independent constraints, we obtain the statement in Theorem 3.2.2.

Theorem 3.2.3 is stated for a bounded spectrahedron. Suppose that we are given a triple (r,m, n),
where r is an upper bound on the target rank; m =

(
r+2

2

)
is the number of linearly independent

constraints; and the embedding space Sn satisfies n ≥ r + 2 ≥ 3. Then there exists a point X ∈ F
such that rank(X) ≤ r.

In this thesis we refer to the Barvinok-Pataki bound as given in (3.2.2) and in the following.

Theorem 3.2.5. (Barvinok-Pataki bound [8, 128]) Every extreme point X ∈ F satisfies

t(rank(X)) ≤ m.

The Barvinok-Pataki bound [8, 128] guarantees the existence of a feasible point X of rank r
satisfying t(r) ≤ m. In other words, the rank of extreme points only depends on the number of
affine constraints.

The Barvinok-Pataki bound shows its importance in many areas of applications. In partic-
ular, the Barvinok-Pataki bound provides targets on rank when low-rank solutions are desired.
Low rank targets are used in splitting methods when using nonconvex, low rank, projections onto
the SDP cone, e.g., [123]. Furthermore, having a low rank target provides efficiency in low rank
SDP algorithms where the nonlinear formulation X ← V V T is used, e.g., [25, 26, 80]. Low rank
optimal solutions arising in SDP relaxations, e.g., [5, 101, 158], and the references therein. Appli-
cations that arise in the SDP relaxations of protein folding problems, rank three solutions for the
Gram matrices are essential since molecules exist in three-dimensional space, e.g., [110]. Rank-
one solutions to semidefinite relaxations, liftings, of many nonconvex combinatorial optimization
problems are of particular importance, as they guarantee that the global optimum has been found,
e.g., [6, 28, 79]. Further applications include the psd-rank and related notions in [58], trust-region
subproblems [107], and optimal power flow problems [115,120].

3.2.1 The Improved Barvinok-Pataki Bound

In this section we tighten the Barvinok-Pataki bound by employing the max singularity degree and
implicit problem singularity; see Definition 3.1.2. This is motivated by the dimension reduction
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property of FR and the redundancies in the equality constraint system. We first show that the
rank of feasible points are unchanged after facial reduction.

Lemma 3.2.6. Let V ∈ Rn×r be a minimal facial range vector containing a convex set C, i.e.,
V Sr+V T ⊇ C. Then, for R ∈ Sr+ and V RV T ∈ C, we have rank(V RV T ) = rank(R).

Proof. Suppose that rank(R) = r̂ ≤ r. Then R has the spectral decomposition R =
r∑
i=1

λixix
T
i ,

where some eigenvalues λi are possibly 0. Then we have

V RV T =
r∑
i=1

λiV xi(V xi)
T .

Let Xr =
[
x1 · · · xr

]
and consider the equation

[
V x1 · · · V xr

]
a = V Xra = 0 for a ∈ Rr.

Then we have
V TV Xra = 0 =⇒ Xra = 0 =⇒ a = 0.

That is, {V xi}ri=1 is a set of linearly independent vectors. Since V RV T is the sum of r̂ number of
rank one matrices that are linearly independent, we conclude rank(V RV T ) = rank(R).

Given a facially reduced SDP with the variable in the congruence V RV T and R ∈ Sr+, we
have rank(V RV T ) = rank(R), when V is a minimal facial range vector with orthonormal columns.
Namely, the solution rank of the original SDP is completely determined by the solution rank of
the facially reduced problem. Using Fact 2.3.7 and Lemma 3.1.1, we show a tighter upper bound
on rank.

Theorem 3.2.7. (A strengthened Barvinok-Pataki bound) Suppose that the singularity degree
of the nonempty spectrahedron F satisfies sd(F) > 0. Then every extreme point X ∈ F with
r = rank(X) satisfies

t(r) ≤ min {t(n−maxsd(F)), m− ips(F)} .

Proof. We note that every feasible point of F is in the cone Ṽ Sn−q+ Ṽ T , for some facial range

vector Ṽ ∈ Rn×(n−q) and q ≥ maxsd(F). That is, every feasible point can be embedded in the

cone Sn−maxsd(F)
+ . Hence every X ∈ F satisfies rank(X) ≤ m−maxsd(F). Since t is monotonic

over the positive real line, t(rank(X)) ≤ t(n−maxsd(F)) follows.

We recall Proposition 3.1.3. We immediately have

m− ips(F) ≤ m−maxsd(F) ≤ m− sd(F).

Then the upper bound m− ips(F) of t(r) follows from Theorem 3.2.5 and Lemma 3.2.6.

3.2.2 Immediate Consequences and Examples

We provide immediate consequences of Theorem 3.2.7. Corollary 3.2.8 below explicitly shows that
the singularities improve the bound on rank in Theorem 3.2.5.
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Corollary 3.2.8. Let sd(F) > 0. Then every extreme point X to (2.3.1) satisfies

rank(X) ≤

⌊√
1 + 8 min {t(n−maxsd(F)), m− ips(F)} − 1

2

⌋
.

Proof. This follows from the definition of the triangular number and the integrality of the rank
function.

We recall Fact 2.3.7 ([144, 145]), an upper bound on the singularity degree, sd(F) ≤ m. We
extend Fact 2.3.7 by using the strengthened Barvinok-Pataki bound, Theorem 3.2.7.

Corollary 3.2.9. For the spectrahedron F , the followings holds:

sd(F) ≤maxsd(F) ≤ ips(F) ≤ m−max{ t(rank(X)) : extreme point X of F } ≤ m.

Proof. Let X be any extreme point of F . Then Theorem 3.2.7 provides

t(rank(X)) ≤ m− ips(F) =⇒ ips(F) ≤ m− t(rank(X)). (3.2.3)

Since (3.2.3) holds for any extreme point X, we obtain

ips(F) ≤ m−max{ t(rank(X)) : extreme point X of F }.

By Proposition 3.1.3, we obtain

sd(F) ≤maxsd(F) ≤ ips(F) ≤ m−max{ t(rank(X)) : extreme point X of F }.

An analogous result of Theorem 3.2.7 follows for spectrahedra in Hn+. The triangular num-
ber, t(r) in Theorem 3.2.5, originates from the dimension of face(F ,Sn+). We recall from Section 2.1
that the dimension of Hn is n2. Thus, the analogous result of the Barvinok-Pataki bound for the
spectrahedron in Hn+ is

(rank(X))2 ≤ m =⇒ rank(X) ≤ b
√
mc, 3 (3.2.4)

where X is any extreme point of F ⊆ Hn+; see [107, Theorem 5.1]. The strengthened bound,
Theorem 3.2.7, immediately extends to the Hermitian case. Thus, we obtain Corollary 3.2.10
below.

Corollary 3.2.10. Let F be a spectrahedron in Hn+. Then for all extreme point X ∈ F , it holds
that

(rank(X))2 ≤ min
{

(n−maxsd(F))2, m− ips(F)
}
.

Remark 3.2.11 below discusses the attainment in the upper bound min{t(n−maxsd(F)),m−
ips(F)}, i.e., how the minimizer of min{t(n − maxsd(F)),m − ips(F)} is determined by the
relationships among m,n,maxsd(F) and ips(F). We include the relation for interest.

3Theorem 3.2.5 gives rise to the bound rank(X) ≤
⌊√

8m+1−1
2

⌋
. Since b

√
mc ≤

⌊√
8m+1−1

2

⌋
, a spectrahedron

in Hn+ gives rise to a tighter bound on the rank than a spectrahedron in Sn+.
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Remark 3.2.11. Let F be a spectahedron with sd(F) > 0. Then the following relation holds:

min{t(n−maxsd(F)),m− ips(F)}

=

{
t(n−maxsd(F)), if

∣∣n−maxsd(F) + 1
2

∣∣ ≤√1
4 + 2m− 2 ips(F),

m− ips(F), otherwise.

Proof. We let s = maxsd(F) and i = ips(F) for simplicity. Then, we have

t(n− s) ≤ m− i ⇐⇒ s2 − (2n+ 1)s+ (n2 + n− 2m+ 2i) ≤ 0.

Let q(s) := s2− (2n+ 1)s+ (n2 + n− 2m+ 2i). Then the root formula of the quadratic q(s) yields(
(2n+ 1)±

√
1 + 8m− 8i

)
/2. Thus, q(s) ≤ 0 when |n−s+ 1

2 | ≤
√

1
4 + 2m− 2i and the statement

follows.

We give an elementary example to illustrate the advantage of the new improved Barvinok-Pataki
bound. That is, when the singularities are known, we have a tighter upper bound on the rank of a
solution.

Example 3.2.12. Consider the spectrahedron F = {X ∈ S4
+ : trace(AiX) = bi, i = 1, 2, 3} with

the data

A1 =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , A2 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 , A3 =


0 0 0 1
0 0 0 0
0 0 1 0
1 0 0 0

 , b =

1
0
0

 .

The Barvinok-Pataki bound, Theorem 3.2.5, gives the bound rank(X) ≤ 2, for all feasible points
X ∈ F . We now see that the knowledge of the singularity degree tightens the rank bound.

We obtain an exposing vector by solving the auxiliary system (2.3.4) for y ∈ R3:

A∗(y) =


y1 0 0 y3

0 0 0 0
0 0 y3 0
y3 0 0 y2

 ∈ S4
+ \ {0}, bT y = y1 = 0.

By Fact 2.2.5, we see that y1 = 0 =⇒ y3 = 0. Hence, Diag([0; 0; 0; 1]) is a maximum rank exposing
vector and we complete the first round of FRwith the facial range vector

V1 =


1 0 0
0 1 0
0 0 1
0 0 0

 . (3.2.5)

The second constraint becomes redundant. We now have the new data

V T
1 A1V1 =

1 0 0
0 0 0
0 0 0

 , V T
1 A3V1 =

0 0 0
0 0 0
0 0 1

 ,
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and proceed to the next iteration for FR. By solving the auxiliary system (2.3.4) we obtain

V2 =

1 0
0 1
0 0

 and V T
2 V

T
1 A1V1V2 =

[
1 0
0 0

]
, (3.2.6)

and the third constraint becomes redundant. We note that X̄ =

[
1 0
0 1

]
is a Slater point and the

FR algorithm terminates. The FR algorithm terminated with two iterations, i.e., sd(F) = 2. It is
also clear that maxsd(F) = 2. Since F has 3 equality constraints and 1 equality constraint remains
in the facially reduced system, ips(F) = 3− 1 = 2.

We apply Theorem 3.2.7 to F . Since t(n−maxsd(F)) = t(4−2) = 3 and m−ips(F) = 3−2 = 1,
we conclude that every extreme point X of F satisfies t(rank(X)) ≤ 1. The only rank satisfying
this bound is rank(X) = 1. The point Diag([1; 0; 0; 0]) certifies the existence of a rank 1 solution.

We remark that the algorithm in [119] provides a means of evaluating ranks of feasible points in
an SDP. This is done using elementary row operations and rotations to the data to reveal special
structure. More specifically, the data matrices A2 and A3 in Example 3.2.12 can be viewed as in
special forms introduced in [119] and hence we can restrict every feasible point X in 0⊕ S2

+. Thus
every point X ∈ F has rank at most 2.

We now provide an elementary example that the strengthened Barvinok-Pataki bound on the
optimal set can be tighter than the one on the feasible set.

Example 3.2.13. We now apply Theorem 3.2.7 to provide useful information on the rank of the
optimal solution of an SDP. With A1, A2, A3 defined in Example 3.2.12, we define additional data
matrices

A4 =


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 , A5 =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , C =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 0

 , b =


1
0
0
0
0

 .

Consider the following SDP

p∗ = min
X

trace(CX)

s.t. trace(AiX) = bi, i = 1, . . . , 5
X ∈ S4

+.

(3.2.7)

In order to compute the singularity degree of the feasible region F to (3.2.7) we consider the auxiliary
system (2.3.4)

A∗(y) =


y1 y5 0 y3

y5 0 y4 0
0 y4 y3 0
y3 0 0 y2

 ∈ S4
+ \ {0}, bT y = y1 = 0.

By Fact 2.2.5, we have y1 = 0 =⇒ y5 = y3 = 0 =⇒ y4 = 0. Thus, Diag([0; 0; 0; 1]) is a maximum
rank exposing vector and we complete the first round of FRwith the facial range vector V1 defined
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in (3.2.5). The second constraint becomes redundant and we proceed to the next FR step with

V T
1 A1V1 =

1 0 0
0 0 0
0 0 0

 , V T
1 A3V1 =

0 0 0
0 0 0
0 0 1

 ,

V T
1 A4V1 =

0 0 0
0 0 1
0 1 0

 , V T
1 A5V1 =

0 1 0
1 0 0
0 0 0

 .
Then a maximum rank exposing vector to the facially reduced spectrahedron may be chosen with
Diag([0; 0; 1]) and hence we obtain the facial range vector V2 from (3.2.6). The third and the fourth
constraints become redundant and we are left with

V T
2 V

T
1 A1V1V2 =

[
1 0
0 0

]
, V T

2 V
T

1 A5V1V2 =

[
0 1
1 0

]
.

It is clear that X̄ = I2 is feasible and positive definite. Thus we again have sd(F) = maxsd(F) = 2
and ips(F) = 3.

After FR, we obtain the following facially reduced SDP

p∗ = min
X

[
0 0
0 1

]
•X

s.t.

[
1 0
0 0

]
•X = 1,

[
0 1
1 0

]
•X = 0

X ∈ S2
+.

(3.2.8)

The optimal value p∗ to (3.2.8) (and (3.2.7)) is 0. We now consider the singularity degree of the
optimal set

F∗ := F ∩ {X ∈ S4 : trace(CX) = p∗ = 0}.

By a similar approach we obtain that sd(F∗) = maxsd(F∗) = 3 and ips(F∗) = 5. We note
that t(n − sd(F∗)) = t(4 − 3) = 1 and (m + 1) − sd(F∗) = 1. Thus every extreme points X∗ of
the optimal set F∗ holds rank(X∗) ≤ 1. Therefore all extreme points of the optimal set are rank 1.
The point X∗ = Diag([1; 0; 0; 0]) meets the bound.

An Application to the SDP Relaxation of the Minimum Bisection Problem The strength-
ened Barvinok-Pataki bound, Theorem 3.2.7, provides a tighter bound on the rank to the SDP
relaxation of the minimum bisection problem. The improved bound on the rank can be used when a
nonlinear algorithm for solving SDP using low-rank factorization X ← V V T is used; see [25,26,80].

Let G = (V,E) be a simple undirected graph. Let W represent the weight each edge E of G,
i.e., Wi,j is the weight on the edge (i, j) ∈ E. Let |V | = 2k = n. The minimum partition problem
is to find a vertex partition V = V1 ∪ V2 such that |V1| = |V2| = k. The SDP relaxation for the
minimum bisection problem (see [25, Section 4.3]) is

min

{
1

4
〈Diag(We)−W,X〉 : diag(X) = e, eTXe = 0, X ∈ Sn+

}
. (3.2.9)

The data of the objective function is called the Laplacian matrix. We note that the feasible region
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of (3.2.9) and the feasible region of the SDP relaxation of the max-cut problem [73] only differ by
the constraint eTXe = 0.4 From the constraint of (3.2.9), we obtain a trivial exposing vector, i.e.,

0 = eTXe = trace(eTXe) = trace(eeTX).

This FR approach is observed in (2.3.10). A minimal facial range vector is V =

[
In−1

−eT
]
, and V R̂V T

with R̂ = n
n−1In−1− 1

n−1ee
T is a point in the relative interior of the feasible set. Hence sd,maxsd

of the feasible set of (3.2.9) are one. Moreover, ips is also one.

We now use this information to obtain a tighter bound on rank for some selected value of n.
The number of affine constraints in (3.2.9) is m = n + 1 = 2k + 1. Let X ∈ Sn+1

+ be an extreme
point. Then the Barvinok-Pataki bound (Theorem 3.2.5) yields

r1 = rank(X) ≤

⌊√
1 + 8(n+ 1)− 1

2

⌋
,

whereas the strengthened Barvinok-Pataki bound (Corollary 3.2.8) yields

r2 = rank(X) ≤
⌊√

1 + 8 · n− 1

2

⌋
.

Indeed, we obtain tighter bounds on the rank of extreme points for some n. In the table below, we
display some n’s such that r1 and r2 yield different bounds on the rank.

n = 2k 2 14 20 44 54 90 104 152 170 230 252 324 350 434 464 560 594

r1 2 5 6 9 10 13 14 17 18 21 22 25 26 29 30 33 34
r2 1 4 5 8 9 12 13 16 17 20 21 24 25 28 29 32 33

3.2.3 A Sufficient Condition for Strict Feasibility

We revisit the statement Theorem 3.2.7; the absence of strict feasibility means that every extreme
point X of F satisfies t(rank(X)) ≤ m− 1. The contrapositive of this statement gives a sufficient
condition for the strict feasibility. Here we provide a proof of the contrapositive of Theorem 3.2.7,
independent of the results established in this chapter.

Theorem 3.2.14. If there exists an extreme point X such that t(rank(X)) = m, then strict feasi-
bility holds for F .

Proof. Let X be an extreme point that satisfies t(rank(X)) = m. By the compact spectral decom-
position, we have X = V RV T with rank(R) = r, and

bi = 〈Ai, X〉 = 〈Ai, V RV T 〉 = 〈V TAiV,R〉, ∀i ∈ [m].

We argue that the set of matrices {V TAiV }mi=1 spans Srank(X).

We note that the cardinality of the set {V TAiV }mi=1 is m = t(r). Hence, we are left with showing
the linear independence. Suppose to the contrary that the matrices in the set {V TAiV }mi=1 are not

4The constraint eTXe = d, for some d ∈ N, is used when a general graph partition problem [95] is considered.
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linearly independent. Then the linear system

{W ∈ Sr : 〈V TAiV,W 〉 = 0, i ∈ [m]}

contains a nonzero solution E. Since R ∈ Sr++, for a sufficiently small ε > 0, we get

R± εE � 0, 〈V TAiV,R± εE〉 = 0, ∀i ∈ [m].

We note that R = 1
2(R+ εE) + 1

2(R− εE) and R is an extreme point of F . Thus

R = R+
1

2
εE =⇒ E = 0.

Hence this proves the linear independence of the set {V TAiV }mi=1.

We now use contradiction to show that there does not exist a vector y that solves the auxiliary
system (2.3.4). Suppose such a y exists. Then,

0 = 〈b, y〉 = 〈A(X), y〉 = 〈X,A∗(y)〉 = 〈V RV T ,A∗(y)〉 = 〈R, V TA∗(y)V 〉 =

〈
R,

m∑
i=1

yiV
TAiV

〉
.

It is clear that V TA∗(y)V =
∑m

i=1 yiV
TAiV � 0. Since y is nonzero and {V TAiV }mi=1 has

linearly independent matrices, V TA∗(y)V is not a zero matrix. Since R is positive definite,〈
R,
∑m

i=1 yiV
TAiV

〉
> 0. This yields a contradiction.

An extreme point of a spectrahedron F , with the property t(rank(X)) = m, may not be found
depending on the given number of affine constraints, since the triangular numbers evaluated at
integers do not generate all integers. For example, when m = 5, a point X such that t(rank(X)) = 5
does not exist. However, this sufficient condition is appealing when applied to the class of LP since
this phenomenon does not occur when Sn+ is replaced by Rn+. In Chapter 4 below, we discuss
this sufficient condition applied to LP in detail. Furthermore, we present an interesting algorithm
related to it.
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Chapter 4

Degeneracy in Linear Programming

The simplex method [41] and the interior point method are the most popular algorithms for solving
linear programs. Unlike general conic programs, linear programs with a finite optimal value do
not require strict feasibility in order to establish strong duality. Hence strict feasibility is seldom a
concern. In this chapter, we discuss that the degeneracy that arises from lack of strict feasibility
necessarily causes difficulties in both simplex and interior point methods.

Degeneracy could result in cycling. There are many anti-cycling rules, see e.g., [19,42,66,84,148]
and the references therein. However, techniques for the resolution of degeneracy often result in
stalling [18,35,117,140], i.e., result in taking a large number of iterations before leaving a degenerate
point and can even fail to leave with current techniques [84]. Degeneracies are known to cause
numerical issues when interior point methods are used, e.g., [83]. For example, degeneracy can
result in singularity of the Jacobian of the optimality conditions, and thus also result in ill-posedness
and loss of accuracy [77].

Continuing with the discussion made in Section 3.1.1, the facially reduced system reveals the
implicit loss of surjectivity of the linear map of the equality constraint system. In particular, we
show that the absence of strict feasibility implies that every basic feasible solution is degenerate.
We prove the results using facial reduction and simple linear algebra. Furthermore, we include
an efficient preprocessing method that can be performed as a direct extension of phase-I of the
two-phase simplex method. We show that this can be used to avoid the loss of precision for many
classical problems in the literature.

Contributions and Outline The contribution of this chapter is twofold:

1. We discuss the implicit loss of surjectivity tailored to the class of linear programs in the
absence of strict feasibility.

� We show that every basic feasible solution of a standard linear program is degenerate.

� We discuss the various consequences of implicit redundancies for the simplex and interior
point methods.

2. We propose and illustrate an efficient preprocessing scheme that can be performed as an
extension of phase-I of the two-phase simplex method. This technique allows for eliminating
variables fixed at 0, and thus regularizing and simplifying the LP.
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This chapter is organized as follows. In Section 4.1 we discuss notions of degeneracy, the main
result and immediate corollaries. In Section 4.2 we present an efficient preprocessing method that
can be used as an extension of phase-I of the two-phase simplex method. In Section 4.3 we discuss
the results in Sections 4.1 and 4.2 and make connections to the known results in the literature. In
Section 4.4 we present numerical results that display the importance of the preprocessing for linear
programs.

4.1 Lack of Strict Feasibility and Degeneracy

We first list some analogous results for SDP in Section 3.1 tailored to LP. We recall, from Sec-
tion 2.3.3, that the feasible set F has the reduced representation

F = {x ∈ Rn+ : Ax = b} = {x = V v : AV v = b, v ≥ 0} , (4.1.1)

where V is a facial range vector. We let

I0 := { i : xi = 0, ∀x ∈ F } and I+ := {1, . . . , n} \ I0.

We choose V to be a submatrix of the identity matrix In, i.e., V = In(:, I+). The action of V is to
identify variables that are fixed at 0. We call the variable xi, with i ∈ I0, an exposed variable or a
variable fixed at 0.

If F fails strict feasibility, the theorem of the alternative, Lemma 2.3.4, gives rise to a certificate
vector y that yields implicit redundant constraints. For completeness we include an elementary
proof tailored to LP as well.

Lemma 4.1.1. Suppose that F does not have a strictly feasible point. Then, at least one linear
constraint becomes redundant after each step of FR.

Proof. (Implicit redundancies in polyhedra) Let z = AT y be the exposing vector satisfying the
auxiliary system (2.3.4) with Sn+ replaced by Rn+ and A∗(y) replaced by AT y. And let V be a facial
range vector induced by z. Then

0 = V T z = V TAT y = (AV )T y. (4.1.2)

Since y ∈ Rm is a nonzero vector, AV contains a linearly dependent row.

We now list three important definitions related to a feasible region in standard form.

Definition 4.1.2. Let B ⊂ {1, . . . , n}, |B| = m, be a given index set.

1. A point x ∈ F is called a basic feasible solution, BFS, if A(:,B) is nonsingular and xi = 0,
for all i ∈ {1, . . . , n} \ B.

2. A basic feasible solution x ∈ F is nondegenerate if xi > 0, for all i ∈ B.

3. A basic feasible solution x ∈ F is degenerate if xi = 0, for some i ∈ B.
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It is well-known that the simplex method iterates from a BFS to a BFS. It is clear, from the
definition, that every BFS has at most m positive entries.

We now present the main result Theorem 4.1.3 of this section.

Theorem 4.1.3. Suppose that strict feasibility of F fails. Then every basic feasible solution of F
is degenerate.

We provide two proofs. First proof utilizes an algebraic approach by using the definition of the
BFS. The second proof is inspired by a geometric approach by using extreme points. Both proofs
rely heavily on Lemma 3.1.1. In Section 4.1.1 we include immediate corollaries of the main result
and interesting discussions.

An Algebraic Proof of Theorem 4.1.3 via the Definition of BFS

Proof. Since there is no strictly feasible point in F , there exists a facial range vector V , and as
in (2.3.12) we have

F = {x = V v ∈ Rn : AV v = b, v ∈ Rn−sz+ }.

By Lemma 3.1.1, AV has at least one redundant row. By permuting the columns of A, we may
assume that the facial range vector V is of the form

V =

[
Ir
0

]
and r = n− sz.

We partition the index set {1, . . . , n} as

{1, . . . , n} = I+ ∪ I0, where I+ = {1, . . . , r} and I0 = {r + 1, . . . , n}.

Then we have A =
[
A(:, I+) A(:, I0)

]
. Let x̄ ∈ F be a BFS with a basis B, i.e.,

B ⊂ {1, . . . , n}, |B| = m, det(A(:,B)) 6= 0, and A(:,B)x̄(B) = b.

Suppose B ⊆ I+. We note, by Lemma 3.1.1 again, that A(:, I+) = AV has redundant rows, i.e.,
rank(A(:, I+)) < m. Hence x̄ must include a basic variable in I0 and this concludes that every
BFS is degenerate.

A Geometric Proof of Theorem 4.1.3 using Extreme Points We now provide an alterna-
tive proof of Theorem 4.1.3. We aim to provide a geometric point of view. We first present Corol-
lary 4.1.4 below as a corollary of Theorem 3.2.1 ([128, Theorem 2.1]). The arguments in [128, The-
orem 2.1] can be altered to work with the polyhedral set and we include a proof for completeness.

Corollary 4.1.4. Suppose that x ∈ F , where F is a face of the set F . Let d = dimF . Then the
number of nonzero entries of x ∈ F is at most m+ d.

Proof. Let x ∈ F and let r be the number positive entries in x. Let x̄ ∈ Rr be the vector
obtained by discarding the 0 entries in x. This is readily given by the following matrix-vector
multiplication x̄ = I(supp(x), :)x, where supp(x) is the support of x, the set of indices {i : xi > 0}.
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Let Ā ∈ Rm×r be the matrix after removing the columns of A that are not in the support of x, i.e.,
Ā = A(:, supp(x)). We note that x̄ is a particular solution to the system Āz = b and x̄ > 0.

Suppose to the contrary that r > m + d. Since r −m > d, there exists at least d + 1 linearly
independent vectors, say v1, . . . , vd+1 ∈ Rr, satisfying Āvi = 0, ∀i = 1, . . . , d + 1. For each
i ∈ {1, . . . , d+ 1} and for ε ∈ R, we define

vi,+ := x̄+ εvi, vi,− := x̄− εvi,
xi,+ := I(:, supp(x)) (x̄+ εvi) , xi,− := I(:, supp(x)) (x̄− εvi) .

For a sufficiently small ε, we have xi,+, xi,− ∈ F . We note that x = 1
2(xi,+ + xi,−), ∀i. Hence, by

the definition of face, xi,+ ∈ F, ∀i. Therefore, F contains vectors {xi,+}i=1,...,d+1 ∪ {x} that are
affinely independent and hence dim(F ) ≥ d+ 1.

An extreme point is itself a face and the dimension of this face is 0. Hence, we obtain Corol-
lary 4.1.5 by writing Corollary 4.1.4 through the lens of extreme points.

Corollary 4.1.5. Every extreme point x ∈ F has at most m positive entries.

We now restate the main result of this paper Theorem 4.1.3 in the language of extreme points
and number of rows of A.

Theorem 4.1.6. Suppose that strict feasibility of F fails. Then every extreme point x ∈ F has at
most m− 1 positive entries.

Proof. Since strict feasibility fails for F , we have F = {x = V v ∈ Rn : AV v = b, v ∈ Rn−sz+ };
see (2.3.12). From Lemma 3.1.1, we note that at least one equality in AV v = b is redundant. Let
Pm̄AV v = Pm̄b be the system obtained after removing redundant rows of AV ; see (3.1.3). Then,
by Corollary 4.1.5, every extreme point of the set {v ∈ Rn−sz+ : Pm̄AV v = Pm̄b} has at most m− 1
nonzero entries. Hence, the statement follows.

4.1.1 Immediate Consequences and Examples

In this section we elaborate Theorem 4.1.3 and Theorem 4.1.6 and their immediate consequences.
Theorem 4.1.3 and Theorem 4.1.6 are equivalent owing to the well-known characterization [82,
Theorem 2.21]:

x ∈ F is a basic feasible solution ⇐⇒ x ∈ F is an extreme point.

We highlight that Theorem 4.1.3 and Theorem 4.1.6 do not merely state the existence of a single
degenerate BFS. They prove that every BFS is degenerate. Developing a pivot rule that prevents
the simplex method from visiting degenerate points is not possible as it can never stay away from
the degeneracies when strict feasibility fails.

Examples, Contrapositive and Converse We now present some immediate corollaries of
Theorem 4.1.3 and provide related examples. We first provide an example that illustrates Theo-
rem 4.1.3. That is, when strict feasibility fails, all BFSs are degenerate.
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Example 4.1.7. Consider F with the data

A =

[
1 1 3 5 2
0 1 2 −2 2

]
and b =

(
1
1

)
.

Consider the vector y =

(
1
−1

)
. Then

AT y =
(
1 0 1 7 0

)T
and bT y = 0.

Hence, Lemma 2.3.4 certifies that F does not contain a strictly feasible point. There are exactly six

feasible bases in F ; the BFS associated with B = {{1, 2}, {2, 3}, {2, 4}} is x =
(
0 1 0 0 0

)T
and the BFS associated with B ∈ {{1, 5}, {3, 5}, {4, 5}} is x =

(
0 0 0 0 1

2

)T
. Clearly, all BFSs

are degenerate.

Below, we obtain an interesting statement by writing the contrapositive of Theorem 4.1.3.
Similarly, we provide Example 4.1.9 below to illustrate Corollary 4.1.8.

Corollary 4.1.8. If there exists a nondegenerate basic feasible solution, then there exists a strictly
feasible point in F .

Example 4.1.9. Consider F with the data

A =

[
1 0 −2 3 −4
0 −1 −2 3 1

]
and b =

(
1
1

)
.

The system F has exactly four feasible bases; the BFS associated with B ∈ {{1, 4}, {2, 4}, {4, 5}}
is x =

(
0 0 0 1/3 0

)T
and the BFS associated with B = {1, 5} is x =

(
5 0 0 0 1

)T
. We

note that the BFS associated with B = {1, 5} is nondegenerate. As Corollary 4.1.8 states, the

system F has a strictly feasible point, and it is verified by the point 1
10

(
4 1 1 4 1

)T
.

Corollary 4.1.8 provides a useful check for strict feasibility when the simplex method is used.
If there is any simplex iteration that yields a nondegenerate BFS, then it is useful to record the
occurrence. We emphasize that recording the occurrence of a nondegenerate iteration is inexpensive
and the occurrence gives a certificate of the stability of the instance. We revisit Corollary 4.1.8 in
Section 4.2.1 below and present an efficient algorithm for obtaining a strictly feasible point from a
nondegenerate BFS.

We exhibit Example 4.1.10 below to show that the converse of Theorem 4.1.3 and Theorem 4.1.6
is not true. In other words, there is an instance that holds strict feasibility and every BFS is
degenerate.

Example 4.1.10. Consider F with the data

A =

[
1 0 2 0 −2
1 −3 2 1 −2

]
and b =

(
1
1

)
.

F has exactly four feasible bases and all of them are degenerate; the BFS associated with B ∈
{{1, 2}, {1, 4}} is x =

(
1 0 0 0 0

)T
and the the BFS associated with B ∈ {{2, 3}, {3, 4}} is

x =
(
0 0 1/2 0 0

)T
. However, F contains a strictly feasible point 1

10

(
1 1 5.5 3 1

)T
.
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The assignment problem also serves as an example for showing that the converse of Theo-
rem 4.1.3 and Theorem 4.1.6 is not true. For the assignment problem of the order n, the feasible
set can be considered to be the doubly stochastic matrices. The extreme points are the permutation
matrices by the Birkhoff-Neumann theorem [17,153]. Therefore, each extreme point has exactly n
positive elements while there are m = 2n− 1 linearly independent constraints.

Degree of Degeneracy and Two Types of Degeneracy We now further discuss the effects
of the implicit redundancies of F in the absence of strict feasibility.

Definition 4.1.11. Given a basic feasible solution x̄ ∈ F , we let the degree of degeneracy of x̄ be
the number of 0’s among its basic variables.

By exploiting the facially reduced system we can estimate how degenerate the BFSs of F are.
Items 2 and 3 of Corollary 4.1.12 below are closely related to the implicit problem singularity.

Corollary 4.1.12. Suppose that strict feasibility fails for F and let F have the facial range vector
representation (4.1.1). Recall the set of indices I0 = {i ∈ {1, . . . , n} : xi = 0, ∀x ∈ F}. Let x̄ ∈ F
be a basic feasible solution with basis B. Then, the followings hold.

1. The basis B has an nonempty intersection with I0, i.e., I0 ∩ B 6= ∅;

2. The degree of degeneracy of x̄ is at least m − rank(AV ). In other words, the degree of
degeneracy of x̄ is lower bounded by ips(F);

3. At least m− rank(AV ) number of basic indices of x̄ are contained in I0.

Proof. Let x̄ ∈ F be a BFS and let B be a basis for x̄. Item 1 follows from the proof of Theorem 4.1.3
and the definition of the set I0 . For Item 2, we note that A(:,B) contains m linearly indepen-
dent columns. The matrix A(:,B) can contain at most rank(AV ) number of columns from AV .
Thus, x̄(B) must contain at least m − rank(AV ) number of zeros. Item 3 is a direct consequence
of Item 1 and Item 2.

Item 1 of Corollary 4.1.12 implies that when degeneracy occurs in the absence of strict feasibility,
some basic indices must come from I0. Hence there are two types of degeneracy that can occur;
a degenerate basic variable has two distinct origins, I0 and I+. This relates to the work [68]
in the sense that it distinguishes degenerate LPs in two types. An LP instance is called primal
weak degenerate, if the instance has a degenerate BFS, but the dual optimal set is bounded; this
relates to Example 4.1.10. An LP instance is called primal strong degenerate, if the instance has
a degenerate BFS, and the dual optimal set is unbounded; this relates to Example 4.1.7. The
instability under the primal strong degeneracy is shown in [68] by introducing a perturbation to b
that yields divergent primal objective values.

Items 2 and 3 of Corollary 4.1.12 provide the minimum number of elements of I0 each BFS must
contain. The more implicit redundant equalities the system F contains, the more degenerate basic
variables from I0 are discovered. We illustrate this graphically in Figure 4.1.1 below. We emphasize
that the ips(F) lower bounds the degree of degeneracy of every BFS of F .
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Figure 4.1.1: A graphical illustration of the relationship between the implicit redundancies and the
degree of degeneracy: the BFSs of the system on the right-hand-side have a greater lower bound
on the degree of degeneracy than the system on the left-hand-side.

The arguments used for Corollary 4.1.12 are rather algebraic. The geometric argument used
in the proof of Theorem 4.1.6 also provides a similar result for Corollary 4.1.12. For any extreme
point x ∈ F , the number of nonzero elements of x, | supp(x)|, satisfies

| supp(x)| ≤ m− ips(F) =⇒ ips(F) ≤ m− | supp(x)|.

Since this holds for all extreme points of F , an analogous result of Corollary 3.2.9 follows for the
polyhedron F :

sd(F) ≤maxsd(F) ≤ ips(F) ≤ d̂ := min
BFSx ∈ F

{degree of degeneracy of x}. (4.1.3)

The shortest FR steps for the polyhedron F , sd(F), is at most 1, thus the inequality sd(F) ≤ d̂ does
not provide useful information. However, the relation (4.1.3) provides two meaningful consequences
related to maxsd(F) and ips(F):

1. The inequality maxsd(F) ≤ d̂ implies that the number of nontrivial FR steps can never
exceed the degree of degeneracy of a least degenerate BFS of F ;

2. The inequality ips(F) ≤ d̂ shows that it is useful to record the minimum degree of degen-
eracy observed throughout the simplex iterations. This gives an estimate for the number of
implicitly redundant equalities of F .

If F contains a nondegenerate BFS, we get d̂ = 0 in (4.1.3). Hence, sd(F) = maxsd(F) =
ips(F) = 0 and it provides an alternative way to view Corollary 4.1.8. We comment that evaluating
and recording the degree of degeneracy of a BFS are not expensive operations.

The loss of surjectivity provides a method for checking if there is an unrealized exposed variable
in a special case. The following special case is of interest.

Proposition 4.1.13. Let E be a set of indices containing some exposed variables of F . If rank(A) =
rank(A(:, Ec)), there is an exposed variable that is not contained in E.

Proof. Let I be the set of indices of all exposed variables. By Lemma 4.1.1 implies rank(A(:, Ic)) <
rank(A). If rank(A) = rank(A(:, Ec)), it means that E ( I.
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4.2 Efficient Preprocessing for Facial Reduction and Strict Feasi-
bility

In this section we present an efficient preprocessing method for producing a facially reduced system.
In Section 4.2.1 we discuss how to compute a strictly feasible point using a nondegenerate BFS and
its variant. In Section 4.2.2 we present an algorithm for testing strict feasibility and finding an
accurate exposing vector.

4.2.1 Towards a Strictly Feasible Point from a Nondegenerate BFS

By Corollary 4.1.8, the existence1 of a nondegenerate BFS guarantees the existence of a strictly
feasible point. In this section, we propose an algorithm for acquiring a Slater point from a nondegen-
erate BFS and include a generalization. The argument is this section also provides a constructive
proof of Corollary 4.1.8.

Let x̄ ∈ F be a nondegenerate BFS. Without loss of generality, we assume that the basic
variables x̄B of x̄ are located at the last m entries of x̄. We fix a positive scalar γ̂ ∈ (0, 1) and
an index j ∈ {1, . . . , n − m}. For some α ≥ 0, we consider the simplex method ratio test type
inequality

γ̂x̄B + α(AB)−1Aj ≥ 0. (4.2.1)

Since x̄B > 0, γ̂ > 0, there exists a positive α that maintains the inequality (4.2.1). Let

α∗ = min
{

1, max{α ∈ R+ : γ̂x̄B − α(AB)−1Aj ≥ 0}
}
. (4.2.2)

Then we decompose
γ̂x̄B =

(
γ̂x̄B − α∗(AB)−1Aj

)
+ α∗(AB)−1Aj

and observe
b = ABx̄B

= (1− γ̂)ABx̄B + γ̂ABx̄B
= (1− γ̂)ABx̄B +AB

(
γ̂x̄B − α∗(AB)−1Aj + α∗(AB)−1Aj

)
= AB(x̄B − α∗(AB)−1Aj) + α∗Aj .

If we set xj = α∗ > 0 and replace x̄B by x̄B−α∗(AB)−1Aj , then we have increased the cardinality of
the positive entries of a solution. We note that x̄B − α∗(AB)−1Aj only has strictly positive entries
since it is a sum of positive vector and a nonnegative vector;

x̄B − α∗(AB)−1Aj = (1− γ̂)x̄B︸ ︷︷ ︸
positive

+ γ̂x̄B − α∗(AB)−1Aj︸ ︷︷ ︸
nonnegative

.

We can continuously increase the number of positive entries of a solution one by one for each
j ∈ {1, . . . , n −m}. Moreover we can achieve this by a compact vectorized operation. The main
idea is that we can choose γ̂ in (4.2.1) independently for each j ∈ {1, . . . , n − m}. Let γj be a

1Determining the existence of a degenerate BFS is an NP-complete problem; see [34].
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positive real number such that 0 < γ :=
∑n−m

j=1 γj < 1. Then, we have

x̄B = (1− γ)x̄B + γx̄B = (1− γ)x̄B +

n−m∑
j=1

γj x̄B.

We set an auxiliary matrix

Θ =
[
γ1x̄B · · · γn−mx̄B

]
− (AB)−1A(:, 1 : n−m) ∈ Rm×(n−m)

and perform (4.2.2) on each column j of Θ to obtain the vector θ∗:

θ∗j :=

{
max(Θ(:, j)) if max(Θ(:, j)) ≤ 1,

1 otherwise.

Then the point [
θ∗

x̄B − (AB)−1A(:, 1 : n−m)θ∗

]
is a strictly feasible point to F . Hence, this operation provides a constructive proof of Corol-
lary 4.1.8.

We now extend the aforementioned procedure for obtaining a strictly feasible point using any
feasible solution x̄ ∈ F such that the submatrix A(:, supp(x̄)) is full-row rank. We partition x̄ ∈ F
as follows

x̄ =

x̄B1x̄B2
x̄N

 , where supp(x̄) = B1 ∪ B2, rank(A(:,B1)) = m, and N = {1, . . . , n} \ supp(x̄).

(4.2.3)
We partition A using the same partition B1 ∪ B2 ∪N :

[
AB1 AB2 AN

]
x̄ = b ⇐⇒

[
AB1 AN

](x̄B1
x̄N

)
= b̄ := b−AB2 x̄B2 .

Then we can apply the aforementioned procedure to the system

[
AB1 AN

](x̄B1
x̄N

)
= b̄

and distribute positive weights to x̄N using x̄B1 . Finally, we find a strictly feasible point to F . This
process is summarized in Algorithm 4.2.1. Furthermore, Algorithm 4.2.1 provides a constructive
proof for Proposition 4.2.1 below.

Proposition 4.2.1. Let x ∈ F be a solution such that rank (A(:, supp(x))) = m. Then, F has a
strictly feasible point.

4.2.2 Towards an Exposing Vector: Phase I Part B and Strict Feasibility Testing

We now present an efficient preprocessing procedure for detecting identically 0 variables, construct-
ing exposing vectors and the facially reduced LP, i.e., given a BFS x̄, we solve special subproblems
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Algorithm 4.2.1 Compute a Slater Point

Require: Given A ∈ Rm×n, x ∈ F partitioned as in (4.2.3).

1: Choose any γ ∈ R|N |++ such that
∑|N |

j=1 γj < 1.
2: Compute

Θ =
[
xB1 · · · xB1

]
Diag(γ)−A−1

B1AN .

3: Compute θ∗ ∈ R|N |++, where for each j ∈ {1, . . . , |N |},

θ∗j :=

{
max(Θ(:, j)) if max(Θ(:, j)) ≤ 1,

1 otherwise.

4: Set x =

xB1 − (AB1)−1AN θ
∗

xB2
θ∗

.

using the simplex method with the initial point x̄. By the end of the process, we obtain either

1. a certificate y that produces an exposing vector AT y (Slater condition fails), or

2. a strictly feasible point (Slater condition holds).

The process has two applications. First, since the only requirement of this process is the BFS,
the procedure can be used as an extension of the phase-I of the two-phase simplex method to obtain
the equivalent facially reduced problem that satisfies strict feasibility. Second, the procedure can
be used as a post-optimum diagnosis. By recording a BFS with the smallest degree of degeneracy,
we can improve tests for stability.

We now describe the proposed preprocessing method. Let B be a degenerate initial basis of F
and let x̄ be the BFS associated with B. Without loss of generality, we assume that basic variables
are located at the first m entries of x̄. Let d be the degree of degeneracy of x̄. We further assume
that the degenerate basic variables are located at the first d entries of x̄. We let B0 := {1, . . . , d}.
We consider the following problem:

p∗i = max
x
{xi : Ax = b, x ≥ 0}, i ∈ B0. (4.2.4)

For simplicity, we let i = 1. We solve (4.2.4) using the simplex method from the initial BFS x̄.
That is, we do not need to repeat the typical phase-I of the two-phase simplex method in order
to find an initial feasible basis. The optimal value p∗1 of (4.2.4) is clearly lower bounded by 0. We
consider two cases below:

1. Suppose that p∗1 > 0. Then, the variable x1 is not an identically 0 variable, i.e., 1 /∈ I0.

2. Suppose that p∗1 = 0. Then, the variable x1 is a variable fixed at 0, i.e., 1 ∈ I0. Let B∗ be an
optimal basis for (4.2.4). Then we have

y∗ = A(:,B∗)−T e1, 〈b, y∗〉 = 0 and AT y∗ ≥ e1, (4.2.5)

46



where the e1 is the first column of the identity matrix in the space of appropriate dimension.
We note that the dual optimal solution y∗ in (4.2.5) produces a solution to the auxiliary
system (2.3.4). Therefore, we obtain a nontrivial exposing vector since AT y∗ is not the zero
vector. Clearly, the first variable x1 is exposed by AT y∗ since the first element of AT y∗ is
positive. Furthermore, if | supp(AT y∗)| > 1, then we find additional variables other than x1

that are identically 0 in the feasible set.

Let {yj} be a collection of the certificates that are obtained from solving (4.2.4) with the index 1
replaced by i ∈ B0 = {1, . . . , d}. Then y◦ =

∑
j y

j is also a certificate, i.e.,

AT y◦ =
∑
j

AT yj ≥ 0, AT y◦ 6= 0, and 〈b, y◦〉 =
∑
j

〈b, yj〉 = 0,

and we obtain a nontrivial exposing vector AT y◦ for the system F . We can now delete the identified
identically zero variables along with the corresponding columns of A. We then find and delete
redundant rows to obtain a smaller LP. By summarizing the two cases above, we obtain an efficient
preprocessing method Algorithm 4.2.2.

The following allows for simplifications in Algorithm 4.2.2.

Lemma 4.2.2. Let B be an initial basis containing the index i for the problem (4.2.4). Then the
index i always remains in the basis throughout the iterations.

Proof. Without loss of generality, we let i = 1. We argue that 1 is not chosen to leave the basis.
Let y∗ = (ATB)−1cB and Ā = A−1

B A. Suppose that the reduced cost at the index j is positive. Then

0 < c̄j = cj −ATj y∗ = −ATj y∗ = −ATj (ATB)−1e1 = −Ā1j .

Since Ā1j < 0, the index 1 is not chosen to leave the basis B.

The following special case is of interest; no simplex pivoting steps are required to determine
strict feasibility when the degree of degeneracy of a BFS is one.

Theorem 4.2.3. (preprocessing for degree of degeneracy 1) Given a basis B, let x̄ be the BFSwith
the degree of degeneracy exactly one. Let N = {1, . . . , n} \ B and let y∗ = (ATB)−1cB. Then strict
feasibility fails for F if, and only if, y∗ satisfies ATN y

∗ ≥ 0.

Proof. Let x̄ be a degenerate BFS associated with the basis B. Without loss of generality, we
assume 1 ∈ B and 1 is the degenerate index. We consider the problem

p∗1 = max{x1 : Ax = b, x ≥ 0}.

We note that 〈b, y∗〉 = 0 since 〈b, y∗〉 is identical to the current objective value ‘0’. The backward
direction is clear by Lemma 2.3.4. Now suppose that strict feasibility fails. Suppose to the contrary
that ATN y

∗ ≥ 0 fails. Then there exists j such that ATj y
∗ < 0, j ∈ N . Note that, by Lemma 4.2.2,

that 1 is not chosen to leave the basis. Thus, there is an index k 6= 1, k ∈ B that leaves the basis.
Since all other basic variables are positive, we obtain a positive step length and we improve the
objective value, which yields a contradiction to p∗1 = 0.
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Algorithm 4.2.2 Preprocessing Phase I Part B; Towards Strict Feasibility

Require: A BFS x̄ with corresponding basis B; set B0 = {i ∈ B : x̄i = 0}
1: Initialize: x◦ = x̄, y◦ = 0 ∈ Rm, J0 = ∅, B∗ ← B0

2: while B0 6= ∅ and B∗ 6= ∅ do
3: Pick i ∈ B0; starting from the initial BFS x̄, solve for primal-dual optima x∗, y∗

x∗ = argmaxx{xi : Ax = b, x ≥ 0}, p∗ = x∗i = bT y∗

4: S ← supp(x∗)
5: B∗ ← degenerate basic indices for x∗

6: if B0 6= ∅ and B∗ 6= ∅ then
7: if p∗ = 0 (strict feasibility fails) then
8: Use dual certificate y∗ to satisfy (2.3.4)
9: y◦ ← y◦ + y∗

10: J0 ← J0 ∪ (supp(AT y∗) ∩ B)
11: B0 ← B0 \ {S ∪ J0}
12: else
13: B0 ← B0 \ S
14: end if
15: Choose γ ∈ (0, 1) and set x◦ ← γx◦ + (1− γ)x∗

16: end if
17: end while
18: if J0 6= ∅ then
19: z◦ = AT y◦ (exposing vector)
20: R ← redundant row indices of A (:, supp(z◦)c)
21: A← A(Rc, supp(z◦)c), b← b(Rc)
22: else
23: Run Algorithm 4.2.1 with x◦ and det(AB) 6= 0 (use x∗ and B∗, if B∗ = ∅)
24: end if
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Upon termination of Algorithm 4.2.2, we can always determine whether the system F has a
strictly feasible point or not. Algorithm 4.2.2 terminates in a finite number of iterations since we
remove at least one element from the set B0 at each iteration. We emphasize that we do not need
to solve the auxiliary LPs for all i ∈ {1, . . . , n}. We solve (4.2.4) only for the degenerate basic
indices of the predetermined basis B. However, upon termination of Algorithm 4.2.2, it is possible
that we have not obtained face(F ,Rn+), the minimal face containing F . Although the complete
FR for LP can be completed in one iteration, one step termination is possible only when we find
a solution y of (2.3.4) so that AT y is in the relative interior of the conjugate face of face(F ,Rn+).
In this case, we can rerun Algorithm 4.2.2 with the facially reduced system. For finding an initial
basis for the second trial, we may use the efficient basis recovery scheme, e.g., see [159, Chapter 7].

One of the nice features of Algorithm 4.2.2 is that we do not need to search for a new initial
basis for each iteration; the initial basis B remains the same. Therefore, our approach can be
directly employed after the standard phase-I of the two-phase simplex method.

We do not need a lot of pivoting steps to determine if p∗i is zero or positive. If p∗i = 0, the initial
B is indeed a basis that gives the optimal value. However the dual feasibility may not be obtained
immediately2. Thus, there may be additional pivoting steps required to obtain dual feasibility.
However, since the optimal value is obtained at B, we do not expect that the optimal basis search
to be time-consuming. We recall from Lemma 4.2.2 that the index i in (4.2.4) never leaves the
basis. For the case p∗i ∈ (0,∞), the optimal value p∗i does not need to be found. Hence once a
basis that gives a positive support on i is found, we can terminate the maximization problem in
Algorithm 4.2.2 immediately and concern x◦ only. In the case of p∗i = ∞, we can perform the
following operation. Let Bc be A basis that indicates p∗i =∞ and let j be an entering variable that
indicates the unboundedness. Then by setting

x◦(j)← 1, x◦(Bc)← xBc −A−1
BcAj and x◦(({j} ∪ Bc)c) = 0,

we obtain a feasible solution x◦ that yields a positive objective value.

We often get an exposing vector that reveals more than one element in the set I0 from
solving (4.2.4). Without loss of generality, let p∗1 = 0 in (4.2.4) and let y∗ be a dual feasi-
ble solution. Suppose AT y∗ = e1, i.e., AT y∗ only reveals exactly one exposed variable. Then
y∗ ∈ null(A(:, 2 : n)T ). Since the number of columns of the data matrix A is often significantly
greater than the number of rows, y∗ ∈ null(A(:, 2 : n)T ) often implies that y∗ = 0. If y∗ = 0, we
cannot obtain AT y∗ = e1.

When we have an instance of large size and a BFS with a very large degree of degeneracy,
we may adopt parallel computing for Algorithm 4.2.2 in order to reduce the total computation
time. We note again that the initial basis remains the same throughout the iterations. Hence,
solving (4.2.4) for individual i ∈ B0 can be performed independently. In fact, parallel computing
can be used to obtain a strictly feasible solution in Algorithm 4.2.1 as well; the weight vector γ can
be chosen independently for each j ∈ N .

2If we have a nondegenerate initial basis, then the dual feasibility is immediately obtained. However, our initial
basis is degenerate.
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4.3 Discussions

In this section we discuss the main result in Section 4.1 and make connections to new results and
known results in the literature.

Distance to Infeasibility The argument on the distance to infeasibility discussed in Propo-
sition 3.1.4 naturally holds for the class of LP. Moreover, the vector ∆b = y that satisfies the
auxiliary system (2.3.4) is a perturbation that makes the set F empty; see (3.1.10). We omit the
proof3. We illustrate Proposition 4.3.1 in Section 4.4.1.4 below.

Proposition 4.3.1. Suppose that strict feasibility fails for F and let F have the representa-
tion (2.3.12). Then the following hold.

1. For all ∆b ∈ range(AV ) with sufficiently small norm, the set {x ∈ Rn+ : Ax = b + ∆b} is
feasible.

2. The distance to infeasibility of F is 0, i.e., dist(b,F = ∅) = 0.

We recall that the existence of one nondegenerate BFS certifies the MFCQ to be satisfied; see
Corollary 4.1.8. In fact, given any feasible instance, we can perturb the data to generate an instance
containing a nondegenerate BFS. Let B be any feasible basis to F and let AB be the basis matrix.
Then,

Ax = b ⇐⇒ A−1
B Ax = A−1

B b ∈ Rm+ .

Adding any perturbation ξ to A−1
B b that yields A−1

B b+ ξ ∈ Rm++ generates a feasible set containing
a strictly feasible point. We relate this observation to the ε-perturbation method proposed by
Charnes (see e.g., [35, 118].). The ε-perturbation refers to replacing the right-hand-side vector b
by b+ ξ, where ξ = (ε, ε2, . . . , εm)T for any sufficiently small ε > 0. This special perturbation gives
rise to a remarkable property; every BFS of the perturbed set is nondegenearate4. When every
BFS is nondegenerate, the simplex algorithm makes a nontrivial progress at every iteration. As a
consequence, when strict feasibility fails, the distance to infeasibility and the distance to a ‘nice’
problem are both 0.

Applications to Known Characterizations for Strict Feasibility There are some known
characterizations for strict feasibility of F . Using these characterizations we can obtain extensions
of Theorem 4.1.3, Theorem 4.1.6, and corollary 4.1.8.

The dual (D) of (P) is

(D) max
y,s

{
bT y : AT y + s = c, s ≥ 0

}
. (4.3.1)

It is known that strict feasibility fails for F if, and only if, the set of optimal solutions for the dual
(D) is unbounded; see e.g., [159, Theorem 2.3] and [67]. Then Corollary 4.3.2 follows.

Corollary 4.3.2. 1. Suppose that the set of optimal solutions for the dual (D) is unbounded.
Then every basic feasible solution to F is degenerate.

3The proof in Proposition 3.1.4 directly applies by replacing ÂV with AV , and (3.1.2) with (4.1.2).
4This property is also known as the primal-nondegeneracy.
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2. Suppose that there exists a nondegenerate basic feasible solution to F . Then the set of optimal
solutions for the dual (D) is bounded.

The implication of Item 2 of Corollary 4.3.2 is interesting; any nondegenerate BFS (if it exists)
provides the information on the dual optimal set.

It is known that strict feasibility holds for F if, and only if, b ∈ relint(A(Rn+)); see e.g., [50,
Proposition 4.4.1]. Then if one finds a set of indices I ⊂ {1, . . . , n} such that A(:, I) is nonsingular
and A(:, I)z = b has a solution z with positive entries, then b ∈ relint(A(Rn+)).

The implicit redundancies relate to some constraint qualifications that arise in optimization
problems. It is clear that an instance that has no Slater point fails to satisfy MFCQ, i.e., Item 1
of Definition 2.3.3 fails. It is interesting that Item 2 of Definition 2.3.3 must fail implicitly in the
absence of strict feasibility. Furthermore, the implicit redundancies immediately imply that the
linear independence constraint qualification (LICQ) must fail at every BFS of F . A comprehensive
sensitivity analysis on parametric programming [60] contains the derivatives of optimal solutions
and optimal values with respect to the parameters. Most of the results are established under the
LICQ assumption in order to use the invertibility of the Jacobian matrix containing the gradients
of the active constraints.

Applications to Obtain a Strictly Complementary Primal-Dual Solution We present
an application of Algorithm 4.2.1 for computing a strictly complementary primal-dual optimal
solution.

Let (x∗, y∗, s∗) be an optimal triple for the standard primal-dual LP pair. Let B∗ ∪ N ∗ =
{1, . . . , n} be the strict complementary partition of the primal-dual optimal pair. The existence of
such a partition is guaranteed by the Goldman-Tucker theorem [74] and the partition B∗ ∪ N ∗ is
unique. We can use Algorithm 4.2.1 to obtain the strict complementary solution for the two cases:

1. Let x∗ be a nondegenerate (optimal) BFS. Then, supp(s∗) = N ∗ and supp(x∗) can be
extended to complete B∗;

2. Let x∗ be an optimal solution such that A(:, supp(x∗)) is full-row rank. Then, supp(s∗) = N ∗
and supp(x∗) can be extended to complete B∗.

Suppose that we are given a primal-dual optimal solution (x∗, y∗, s∗) of the form

[
AB AJ AN

]xBxJ
xN

 = b, where rank(AB) = m,

xBxJ
xN

 >
=
=

0
0
0

 and

sBsJ
sN

 =
=
>

0
0
0

 .

(4.3.2)
We claim that N ∗ = supp(s∗). That is, the support of the current dual optimal solution s∗ is
maximal and hence we obtain the strict complementary partition for free. We rewrite the system
Ax = b of (4.3.2) as

[
AB1 AB2 AJ

]xB1xB2
xJ

 = b, where AB =
[
AB1 AB2

]
, xB =

(
xB1
xB2

)
and rank(AB1) = m.
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Then, by replacing the data in Algorithm 4.2.1 by

N ← J , A← A(:,B1 ∪ B2 ∪N ), x← x∗,

we can endow positive weights to xJ while maintaining the primal feasibility. Since we maintain
the feasibility of the primal-dual solution without violating the complementarity, we maintain the
optimality.

Lack of Strict Feasibility and Interior Point Methods The discussion of degeneracy is
usually paired with the simplex methods. The degeneracy does not seem to be a serious concern
for the interior point methods and this is supported by the limited number of literature that link
degeneracy and interior point methods. The available literatures [83,97] discuss the ill-conditioning
that can occur depending on the degeneracy status of an optimal point. Below, we elaborate on a
new perspective on the ill-conditioning that arise in the interior point methods.

Many interior point algorithms are derived from the optimality conditions (KKT conditions)
using the primal (P) and the dual (D). Let (xc, yc, sc) be the current iterate for the primal-dual
pair. The search direction is computed by solving the Newton equation 0n×n AT I

A 0m×m 0m×n
Diag(sc) 0n×m Diag(xc)

∆x
∆y
∆s

 = −

rdrp
rc

 , (4.3.3)

where rd, rp, rc are the residuals of the dual feasibility, primal feasibility and complementarity,
respectively. And many practical interior point methods use block variable elimination and find
the search direction ∆y by solving the so-called normal equation, a square system

ADcA
T∆y = r̄, where Dc = Diag(xc) Diag(sc)

−1 (4.3.4)

and r̄ ∈ Rm is some residual; see e.g., [159, Chapter 11]. It is known that (4.3.4) often becomes ill-
conditioned near an optimum and it is the main difficulty that arises in implementing interior point
methods. The ill-conditioning of the matrix ADcA

T under the degeneracy is discussed in [83, 97]
in terms of the lack of nice positive diagonal elements of Dc.

5 This relates to our results in the
sense that all vertices that form the optimal face of (P) are also degenerate in the absence of strict
feasibility. Moreover, we show that the ill-conditioning of the matrix ADcA

T not only originates
from the columns of A chosen by Dc but also from the rows of A in the absence of strict feasibility.
In particular, a large ips is a good indicator of the ill-conditioning.

We partition the matrix A =

[
Pm̄AV AI0
RAV RI0

]
, where [AI0 ;RI0 ] corresponds to the submatrix

of A associated with the index set I0. The submatrix RAV refers to the rows of A that are
implicitly redundant due the lack of strict feasibility. Let (x∗, y∗, s∗) be an optimal triple and we
let D∗ = Diag(x∗) Diag(s∗)−1. As xc → x∗, i.e., as the iterates get closer to the feasible set F , we

5We note that the action of Dc is to scale the columns of A.
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observe the limiting behaviour ADcA
T → AD∗AT below:

ADcA
T =

[
Pm̄AV AI0
RAV RI0

]
Diag(xc) Diag(sc)

−1

[
Pm̄AV AI0
RAV RI0

]T
→ AD∗AT =

[
Pm̄AV AI0
RAV RI0

] [
D∗AV 0

0 0

] [
Pm̄AV AI0
RAV RI0

]T
=

[
(Pm̄AV )D∗AV (Pm̄AV )T (Pm̄AV )D∗AVR

T
AV

RAVD
∗
AV (Pm̄AV )T RAVD

∗
AVR

T
AV

]
.

whereD∗AV is the submatrix ofD∗ with the diagonal associated with I+. We recall from Lemma 3.1.1
that the rows of RAV are linear combinations of the rows of Pm̄AV . Therefore, the more implicit
redundant constraints F has, the more ‘0’ singular values AD∗AT has, i.e., ill-conditioned.

The self-dual embedding [162] is a popular formulation of the primal-dual LP pair used for an
interior point method. An attractive feature of the self-dual embedding is that a feasible initial
iterate in the interior of the cone is analytically given. The success of the self-dual embedding
technique is supported by the strong performances of solvers such as MOSEK and SeDuMi. Hence,
the lack of strict feasibility does not appear to be a concern at first glance. However, under the
lack of strict feasibility, we show that we still encounter the ill-conditioning when we look for search
directions. For instance, [162, equation (17)] displays the equation as a part of computing the
search direction (dx; dy):[

XkSk −XkAT

AXk 0

](
(Xk)−1dx

dy

)
=

(
γµke−Xksk

0

)
−
[
Xkc −Xk c̄
−b b̄

](
dτ
dθ

)
.

Here, Xk = Diag(xk) and Sk = Diag(sk), where xk, sk are the current primal-dual iterate. It
then uses the back-solve steps to complete the remaining components of the search direction. For

simplicity, we set the right-hand-side of the system to be

(
r1

r2

)
. By expanding the first block

equation, we obtain

(XkSk)(Xk)−1dx −XkATdy = r1 ⇐⇒ (Xk)−1dx = (XkSk)−1r1 + (XkSk)−1XkATdy.

We then substitute the equality above into the second block equation, i.e.,

AXk(Xk)−1dx = r2 ⇐⇒ AXk
[
(XkSk)−1r1 + (XkSk)−1XkATdy

]
= r2

⇐⇒ AXk(XkSk)−1XkATdy = r2 −AXk(XkSk)−1r1

⇐⇒ AXk(Sk)−1ATdy = r2 −AXk(XkSk)−1r1.

Hence, computing the search direction involves the normal matrix AXk(Sk)−1AT that appear
in (4.3.4), and this matrix becomes very ill-conditioned as we get close to the feasible region with
no strictly feasible point.

Lack of Strict Feasibility in the Dual We consider the facial reduction for the dual (D);
see (4.3.1). We denote the feasible set of the dual (D) by

FD := {(y, s) ∈ Rm ⊕ Rn+ : AT y + s = c} =

{
(y, s) ∈ Rm ⊕ Rn+ :

[
AT I

](y
s

)
= c

}
. (4.3.5)
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The facial reduction arguments applied to the dual are parallel to the ones given in Section 2.3.2.
Hence, we provide a short derivation for the facially reduced system for FD. We also conclude that
the absence of strict feasibility for FD implies the dual degeneracy at all BFSs.

The following lemma is the theorem of the alternative applied to the set FD.

Lemma 4.3.3. [38, Theorem 3.3.10](theorem of the alternative in dual form) Let FD in (4.3.5)
be feasible. Then, exactly one of the following statements holds:

1. There exists (y, s) ∈ Rm ⊕ Rn++ with AT y + s = c, i.e., strict feasibility holds for FD;

2. There exists w ∈ Rn such that

0 6= w ∈ Rn+, Aw = 0 and 〈c, w〉 = 0. (4.3.6)

We recall that the vector AT y in (2.3.11) is an exposing vector to the set F . Similarly, the
solution vector w to the auxiliary system (4.3.6) plays the role of an exposing vector for FD:

∀(y, s) ∈ FD, it holds 〈w, s〉 = 〈w, c−AT y〉 = 〈c, w〉 − 〈Aw, y〉 = 0− 〈0, y〉 = 0. (4.3.7)

We let
Iw = {1, . . . , n} \ supp(w), U = In(:, Iw) and sw = | supp(w)|. (4.3.8)

Then, the facially reduced system of FD from (4.3.5) appears{
(y, u) ∈ Rm ⊕ Rn−sw+ :

[
AT U

](y
u

)
= c

}
. (4.3.9)

The notion of degeneracy in Definition 4.1.2 naturally extends to an arbitrary polyhedron P ⊆
Rn, e.g., see [15, Section 2]. A point p in P is called a basic solution if there are n linearly
independent active constraints at p. In addition, if there are more than n active constraints at
the point p ∈ P , then the point p is called degenerate. Using this definition of the degeneracy,
we now show that the absence of strict feasibility of FD implies that every basic solution of FD is
degenerate.

We show that the facially reduced system in (4.3.9) contains a redundant constraint. Let w be
a solution to the system (4.3.6), i.e., w is an exposing vector for FD. Then we have[

A
UT

]
w =

[
Aw
UTw

]
=

[
0m

0n−sw

]
. (4.3.10)

In other words, there is a nontrivial row combination of
[
AT U

]
that yields the 0 vector, i.e.,

there exists a redundant row in
[
AT U

]
. Hence, the facially reduced system contains a redundant

constraint. The redundancy immediately implies the dual degeneracy; for any basic solution of FD,

there always exists an implicit redundant equality in
[
AT I

](y
s

)
= c.

A popular method for rewriting an instance with a free variable xi ∈ R into the primal standard
form is to write xi into the difference of two nonnegative variables, i.e.,

xi = x+
i − x

−
i with x+

i , x
−
i ≥ 0.
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This equivalent transformation does not seem to cause any difficulties at first glance; at least
the primal simplex method does not consider both x+

i and x−i as basic variables simultaneously
in order to form a (nonsingular) basis matrix. Moreover, a method for computing an element-
wise positive starting point for an interior point method that uses this type of decomposition is
introduced in [106]. However, this equivalent transformation has a significant consequence to the
dual program. For any K ≥ max{x+

i , x
−
i }, we can maintain the equality

xi = x+
i − x

−
i = (x+

i +K)− (x−i +K).

Thus, the primal optimal set is unbounded. This implies that the dual feasible region of the
reformulated primal does not have a strictly feasible point. Consequently, the results established
for the primal apply to the dual; (i) this decomposition forces all BFSs of the dual (D) to be
degenerate; (ii) the equality system for the dual feasibility contains implicit redundancies and thus
the Newton equation (4.3.3) becomes very ill-conditioned near an optimum.

4.4 Numerical Experiments

We now provide empirical evidences that FR is indeed a useful preprocessing tool for reducing the
size of problems as well as for improving the conditioning. We do this first for interior point methods
and then for simplex methods. In particular, this provides empirical evidence that lack of strict
feasibility brings out implicit singularity. We use three different solvers in our tests6: (i) linprog
from MATLAB7; (ii) SDPT3 8; and (iii) MOSEK 9. MATLAB version 2021a is used to access all
the solvers for the tests, and we use their default settings for stopping criteria.

4.4.1 Empirics with Interior Point Methods

In this section we compare the behaviour for finding near-optimal points with instances that do
and do not satisfy strict feasibility. More specifically, given a near optimal primal-dual point
(x∗, s∗) ∈ Rn++ ⊕ Rn++ obtained from an interior point solver, we observe the condition number,
i.e., the ratio of largest to smallest eigenvalues of the normal matrix at (x∗, s∗):

κ
(
AD∗AT

)
, where D∗ = Diag(x∗) Diag(s∗)−1. (4.4.1)

There is a comprehensive survey [83] that concerns problems caused by degeneracies when an
interior point method is chosen for LPs. The survey [83] addresses the effect of degeneracy on the
convergence of interior point methods and numerical performance, etc. We show that instances
that do not have strictly feasible points tend to have significantly larger condition numbers of the
normal equation near the optimum. We also present a numerical experiment on perturbations of
the right-hand-side vector b.

6All the numerical tests are performed using MATLAB version 2021a on Dell XPS 8940 with 11th Gen Intel(R)
Core(TM) i5-11400 @ 2.60GHz 2.60 GHz with 32 Gigabyte memory.

7https://www.mathworks.com/. Version 9.10.0.1669831 (R2021a) Update 2.
8https://www.math.cmu.edu/~reha/sdpt3.html, version SDPT3 4.0, [149]
9https://www.mosek.com/. Version 8.0.0.60.
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4.4.1.1 Generating LPs without Strict Feasibility

Given m,n, r ∈ N, we construct the data A ∈ Rm×n and b ∈ Rm to satisfy (2.3.4) with r as the
dimension of the relative interior of F , relint(F).

1. Pick any 0 6= y ∈ Rm. Let

{y}⊥ = span{ai}m−1
i=1 (= null(yT )).

We let R ∈ R(m−1)×r be a random matrix, and get

A1 :=
[
a1 . . . am−1

]
R ∈ Rm×r, AT1 y = 0 ∈ Rr.

2. Pick any v̂ ∈ Rr++ and set b = A1v̂. We note that yTA1 = 0 and 〈b, y〉 = 0.

3. Pick any matrix A2 ∈ Rm×(n−r) satisfying (yTA2)i 6= 0, ∀i. If there exists i such that
(yTA2)i < 0, then change the sign of the i-th column of A2 so that we conclude

(AT2 y) ∈ Rn−r++ .

4. We define the matrix A =
[
A1 A2

]
∈ Rm×n. Then {x ∈ Rn+ : Ax = b} is a polyhedron with

a feasible point x̂ = [v̂; 0] having r number of positives. The vector y is a solution for the
system (2.3.4)

0 � z = AT y =

(
AT1 y = 0
AT2 y > 0

)
, bT y = 0.

We then randomly permute the columns of A to avoid the zeros always being at the bottom
of the feasible variables x.

For the empirics, we construct the objective function cTx of (P) as follows. We choose any
s̄ ∈ Rn++, ȳ ∈ Rm and set c = AT ȳ+ s̄. Then we have the data for the primal-dual pair of LPs and
the primal fails strict feasibility:

(P(A,b,c)) min{ cTx : Ax = b, x ≥ 0 } and (D(A,b,c)) max{ bT y : AT y + s = c, s ≥ 0 }.

We note that by choosing s̄ ∈ Rn++, the dual problem (D(A,b,c)) has a strictly feasible point. In
order to generate instances with strictly feasible points, we maintain the same data A, c used for
the pair (P(A,b,c)) and (D(A,b,c)). We only redefine the right-hand-side vector by b̄ = Ax◦, where
x◦ ∈ Rn++:

(P̄(A,b̄,c)) min{ cTx : Ax = b̄, x ≥ 0 } and (D̄(A,b̄,c)) max{ b̄T y : AT y + s = c, s ≥ 0 }.

The facially reduced instances of (P(A,b,c)) are denoted by (P(AFR,bFR,cFR)). They are obtained by
discarding the variables that are identically 0 in the feasible set F and the redundant constraints.
In other words, the affine constraints of (P(AFR,bFR,cFR)) are of the form (3.1.3).

4.4.1.2 Condition Numbers

In order to illustrate the differences in condition numbers of the normal matrices, we solve the three
families of instances: (i) (P(A,b,c)), strictly feasible fails; (ii) (P̄(A,b̄,c)), strictly feasible holds; (iii)
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(P(AFR,bFR,cFR)), facially reduced instances of (P(A,b,c)).
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Figure 4.4.1: Performance profile on κ
(
AD∗AT

)
with(out) strict feasibility near optimum; various

solvers

In Figure 4.4.1 we use a performance profile [47,78] to observe the overall behaviour on different
families of instances using the three solvers. The performance profile provides a useful graphical
comparison for solver performances. Figure 4.4.1 displays the performance profile on the condition
numbers of the normal matrix AD∗AT near optimal points from different solvers. We generate 100
instances for each family that have dim(relint(F)) ∈ [300, 1350]. The instance sizes are fixed with
(m,n) = (500, 1500). The vertical axis in Figure 4.4.1 represents the statistics of the performance
ratio on κ

(
AD∗AT

)
, the condition number of normal matrix near optimum (x∗, s∗); see (4.4.1).

Roughly speaking, the vertical axis represents the probability of achieving a performance ratio
within a factor of f among all methods used. We used the lower the better statistics. The details
of the performance ratio are discussed in [47, 78]. The solid lines in Figure 4.4.1 represent the
performance of the instances (P(A,b,c)) that fail strict feasibility. They show that the condition
numbers of the normal matrices near optima are significantly higher when strict feasibility fails.
That is, when strict feasibility fails for F , the matrix AD∗AT is more ill-conditioned and it is difficult
to obtain search directions of high accuracy. We also observe that facially reduced instances yield
smaller condition numbers near optima. We note that the instances (P(A,b,c)) and (P(AFR,bFR,cFR))
are equivalent.

4.4.1.3 Stopping Criteria

We now use the three solvers to observe the accuracy of the first-order optimality conditions (KKT
conditions) and the running times, for the instances (P(A,b,c)) and (P(AFR,bFR,cFR)), see Table 4.4.1.
We test the average performance of 10 instances of the size (n,m, r) = (3000, 500, 2000). The
headers used in Table 4.4.1 provide the following. Given solver outputs (x∗, y∗, s∗), the header
‘KKT’ exhibits the average of the triple consisting of the primal feasibility, dual feasibility and
complementarity;

KKT =

(
‖Ax∗ − b‖

1 + ‖b‖
,
‖AT y∗ + s∗ − c‖

1 + ‖c‖
,
〈x∗, s∗〉
n

)
.

The headers ‘iter’ and ‘time’ in Table 4.4.1 refer to the average of the number of iterations and the
running time in seconds, respectively.
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Non-Facially Reduced System Facially Reduced System

linprog
KKT (2.44e-15, 2.05e-12, 3.18e-09) (5.85e-16, 4.74e-16, 9.22e-09)
iter 22.30 17.90
time 2.34 0.81

SDPT3
KKT (8.11e-10, 7.55e-12, 5.65e-02) (1.43e-11, 3.67e-16, 4.38e-06)
iter 25.50 19.30
time 1.73 0.70

mosek
KKT (7.52e-09, 1.80e-15, 3.27e-06) (3.85e-09, 3.69e-16, 1.19e-06)
iter 40.30 10.20
time 1.40 0.35

Table 4.4.1: Average of KKT conditions, iterations and time of (non)-facially reduced problems

From Table 4.4.1 we observe that facially reduced instances provide significant improvement
in first-order optimality conditions, the number of iterations and the running times for all solvers
in general. We note that the instances (P(A,b,c)) and (P(AFR,bFR,cFR)) are equivalent. Hence, our
empirics show that performing facial reduction as a preprocessing step not only improves the solver
running time but also the quality of solutions.

4.4.1.4 Distance to Infeasibility

In this section we present empirics that illustrate the impact of perturbations of the right-hand-
side b when strict feasibility fails. We recall, from Proposition 4.3.1, that there exists an arbitrarily
small perturbation of the right-hand-side vector b that renders the problem infeasible. Meanwhile,
a carefully chosen perturbation to b does not force the infeasibility.

We follow the steps in Section 4.4.1.1 to generate instances of the order (n,m) = (1000, 200) and
r = relint(F) = 900. The objective function cTx is chosen as presented in Section 4.4.1.1. For the
fixed (n,m, r), we generate 10 instances and observe the average performance of these instances as
we gradually increase the magnitude of the perturbation. We recall the matrix AV from (2.3.12).
We use two types of perturbations for b;

∆b, where ∆b ∈ range(AV )⊥, ∆b̄, where ∆b̄ ∈ range(AV ).

We choose ∆b to be the vector y that satisfies (2.3.4). For ∆b̄, we choose AV d, where d ∈ Rr is a
randomly chosen vector. As we increase ε > 0, we observe the performance of the two families of
the systems

Ax = bε := b− ε∆b and Ax = b̄ε := b− ε∆b̄.

We use the interior point method from MATLAB’s linprog for the test. Figure 4.4.2 contains the
average of the first-order optimality conditions evaluated at the solver outputs (x∗, y∗, s∗) of these
instances; primal feasibility, dual feasibility and the complementarity.

The horizontal axis of Figure 4.4.2 indicates the degree of the perturbation imposed on the right-
hand-side vector b, ε‖∆b‖ and ε‖∆b̄‖. The vertical axis indicates the individual component of the
first-order optimality. From Figure 4.4.2, we observe that the KKT conditions with the perturbation
∆b̄ display a steady performance regardless of the perturbation degree; see the markers ◦,�,4 with
the dotted lines. In contrast, the markers •,�,N in Figure 4.4.2 exhibit the performance of the
instances that are perturbed with ∆b and they display a different performance. In particular, we
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Figure 4.4.2: Changes in the first-order optimality conditions as the perturbation of b increases

see that the relative primal feasibility ‖Ax∗ − bε‖/(1 + ‖bε‖), marked with •, consistently increases
as the perturbation magnitude ε‖∆b‖ increases when strict feasibility fails for F .

4.4.1.5 Empirics on Singular Values maxsd and ips

We show that, in the absence of strict feasibility, the ill-conditioning of the matrix ADcA
T not only

originates form Dc but also originates from the rows of A. We exhibit that the number of small
singular values (in the relative sense) of the normal matrix is closely related to the maxsd and ips.
Hence, a large ips is a good indicator for ill-conditioning.

We generated instances with different settings for maxsd = 1, 5 and 10. We recall the genera-
tion for the vector y and A2 in Section 4.4.1.1. For generating and instance with maxsd > 1, we
generated Yc = BlkDiag(y1, . . . , ymaxsd) ∈ Rm×maxsd and A2 = BlkDiag(A1

2, . . . , A
maxsd
2 ) of ap-

propriate dimension in order to produce the exposing vector AT2
∑maxsd

j=1 Yc(:, j) ≥ 0. Each column
of Yc serves as a vector satisfying (2.3.4).

Let σmax(AD∗AT ) be the maximum singular value of AD∗AT . We count the number of singular
values of AD∗AT that are smaller than 10−8 · σmax(AD∗AT ). In Table 4.4.2 below, we report the
cardinality of

Σ0 := {i : σi(AD
∗AT ) < σmax(AD∗AT )}.

We test the average performance on the 20 instances of the fixed size (n,m, r) = (3000, 500, 2000).
We display the average number of |Σ0|. We see from Table 4.4.2 a larger maxsd and ips value

maxsd = 1 maxsd = 5 maxsd = 10
linprog |Σ0| 4.10 8.65 13.10
SDPT3 |Σ0| 4.75 8.00 34.65
MOSEK |Σ0| 6.45 12.35 14.50

Table 4.4.2: # (rel.) small singular values of AD∗AT near optimum; average over 20 instances

produce a greater number of small singular values. When there is a significant number of redundant
constraints, it is more difficult to obtain a good search direction due to a large number of relatively
small singular values.
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4.4.2 Empirics with Simplex Method and Problems where Strict Feasibility
Fails

In this section we compare the behaviour of the dual simplex method with instances that have
strictly feasible points and instances that do not. We also observe the degeneracy issues that arise
in the instances from NETLIB10.

4.4.2.1 Generating Dual LPs without Strict Feasibility

We first show how to generate an instance for the dual feasible set FD that fails strict feasibility.
The construction is similar to the one in Section 4.4.1.1. We generate a degenerate problem by
constructing a consistent auxiliary system (4.3.6). Given m,n, r ∈ N, we construct A ∈ Rm×n and
c ∈ Rn that satisfy (4.3.6) with dim(relint(FD)) = m+ r.

1. Pick any 0 6= w ∈ Rn+ with | supp(w)| = n− r. Let

{w}⊥ = span{di}n−1
i=1 ⊂ R

n
(
= null(wT )

)
.

We let D ∈ R(n−1)×n be the matrix where its rows consist of {dTi }
n−1
i=1 . We let R ∈ Rm×(n−1)

be a random matrix and we set A = RD. We note that Aw = 0.

2. Pick s ∈ Rn+ so that

si =

{
0 if i ∈ supp(w)
positive if i /∈ supp(w).

We note that 〈w, s〉 = 0 holds.

3. Pick y ∈ Rm and set c = AT y + s. We note that 〈c, w〉 = 0 holds.

For the empirics, we construct the objective function bT y of (D) by choosing a vector x̂ ∈ Rn++ and
setting b = Ax̂.

4.4.2.2 Empirics on the Number of Degenerate Iterations

In this section we test how the lack of strict feasibility affects the performance of the dual simplex
method. We choose MOSEK for our tests since MOSEK reports the percentage of degenerate
iterations as a part of the solver report. MOSEK reports the quantity ‘DEGITER(%)’, the ratio
of degenerate iterations.

Given a set FD and a point (y, s) ∈ relint(FD) ⊆ Rm ⊕ Rn+, let r be the number of positive
entries of s, i.e., r = | supp(s)|. In our tests, we gradually increase r for fixed n,m and generate
instances for FD as described in Section 4.4.2.1. We then observe the behaviour of the dual simplex
method. Table 4.4.3 contains the results. In Table 4.4.3, a smaller value for the header (r/n)%
means that there are more entries of s that are identically 0 in the set FD; and the value 0% means
that strict feasibility holds. For each triple (n,m, r), we generated 10 instances and we report the
average of ‘DEGITER(%)’ of these instances.

10https://www.netlib.org/lp/
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100%− (r/n)%
40 30 20 10 0

(n,m)

(1000, 250) 36.62 10.18 0.01 0.02 0.00
(2000, 500) 39.72 18.28 0.07 0.15 0.01
(3000, 750) 25.99 10.66 0.32 0.75 0.02
(4000, 1000) 29.78 18.25 0.25 0.53 0.02

Table 4.4.3: Average of the ratio of degenerate iterations

We recall Theorem 4.1.3: lack of strict feasibility implies that all BFSs are degenerate. How-
ever, we observe more, i.e., from Table 4.4.3, the frequency of degenerate iterations increases as r
decreases. In other words, higher degeneracy of the set FD yields more degenerate iterations when
the dual simplex method is used.

4.4.2.3 NETLIB Problems; Perturbations; Stability

We now illustrate the lack of strict feasibility on instances in the NETLIB11 data set. We use the
following 67 instances that are in the standard form at this link:

25fv47 adlittle∗ afiro agg∗ agg2∗ agg3∗ bandm∗ beaconfd∗ blend bnl1∗

bnl2∗ brandy∗ cre a∗ cre b∗ cre c∗ cre d∗ d2q06c∗ degen2∗ degen3∗ e226∗

fffff800∗ israel lotfi maros r7 nug05 nug06 nug07 nug08 nug12 nug15
nug20 osa 07∗ osa 14∗ qap12 qap15 qap8 sc105∗ sc205∗ sc50a∗ sc50b∗

scagr25 scagr7 scfxm1∗ scfxm2∗ scfxm3∗ scorpion∗ scrs8∗ scsd1 scsd6 scsd8
sctap1 sctap2 sctap3 share1b share2b ship04l∗ ship04s∗ ship08l∗ ship08s∗ ship12l∗

ship12s∗ stocfor1 stocfor2 stocfor3 truss wood1p∗ woodw∗

The only preprocessing performed to these instances is removing the redundant rows of the data
matrix A. For each instance, a BFS is obtained by solving the problem minx{〈e, x〉 : x ∈ F} using
MOSEK. We use this BFS to set the initial BFS x̄ described at the beginning of Algorithm 4.2.2.
We then use Algorithm 4.2.2 to determine if strict feasibility holds or not.

That the feasible linear conic programs has strictly feasible points is generic is shown in [52].
However, there are many real-life instances that do not seem to possess this property.12 Surprisingly,
the Slater condition fails for 37 out of these 67 instances; the instances that fail strict feasibility
are marked with the asterisk ∗ in the list above. This has interesting implications for both the
interior point and simplex methods. The standard interior point method stopping criteria become
complicated by the unbounded dual optimal set. For the primal simplex method, every iteration
will always visit degenerate BFSs. Therefore preprocessing to eliminate the variables fixed at 0 is
important. In addition, in order to motivate robust optimization, it is shown in e.g., [13, 14] that
optimal solutions of many of the NETLIB instances are extremely sensitive to perturbations in the
data. We now see this to be the case, and we show that FR regularizes the problem and avoids
this instability.

We first use the instance degen3 in order to illustrate the consequence of lack of strict feasibility.
The data matrix A after removing two redundant rows is 1501-by-2604. After FR, we obtain the
constraint matrix Pm̄AV of size 1226-by-1648. This implies that 2604 − 1648 = 956 number of
variables are identically 0 on the feasible set. Furthermore, ips(F) = 275 equality constraints
are implicitly redundant. By Item 2 of Corollary 4.1.12, without FR, the minimum degree of

11https://www.netlib.org/lp/
12This also continues to hold in the applications that we see in Chapters 5 and 6.
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degeneracy of all BFSs is at least 275. Namely, the length of the basis is 1501 and every basis
contains at least 275 degenerate indices.

We now illustrate that FR gives a more robust model with respect to data perturbations using
the instance brandy. Let (A, b) be the data after removing the redundant equalities constraints.
Let (Pm̄AV,Pm̄b) be the data for the facially reduced system. The data matrices A and Pm̄AV
have the sizes 193-by-303 and 155-by-260, respectively13. We set the perturbation scalars εA = εb =
10−9. We construct a random perturbation matrix Φ, ‖Φ‖F = ‖A‖F + 1, and random perturbation
vector φ, ‖φ‖2 = ‖b‖2 + 1. We then solve the problem

p̃∗ = max{〈c, x〉 : (A+ εAΦ)x = b+ εbφ, x ≥ 0}.

For the facially reduced system, we use the identical perturbation data Φ, φ and discard the
rows and columns of (A, b) found from FR. That is, we use the perturbations Pm̄ΦV and Pm̄φ to
the facially reduced system after the scaling ‖Pm̄ΦV ‖F = ‖Pm̄AV ‖F +1 and ‖Pm̄φ‖2 = ‖Pm̄b‖2 +1.
We then solve

max{〈V T c, v〉 : (Pm̄AV + εAPm̄ΦV )v = Pm̄b+ εbPm̄φ, v ≥ 0}.

In this way, we maintain the identical perturbation structure for the original system and the facially
reduced system. We also generate a transportation problem and use the aforementioned pertur-
bations. We note that the transportation problems have Slater points but are known to be highly
degenerate. The size of the data generated is 49-by-600.

In the experiment, we tested the instances using 100 different perturbation settings. We ran-
domly generated perturbations Φ, φ with the density set at 0.1. We used MOSEK simplex with
the setting ‘MSK OPTIMIZER FREE SIMPLEX’. In Table 4.4.4, the headers εA and εb refer
to the scalars used for perturbations as described above. The headers (A, b), (Pm̄AV,Pm̄b) and
(Atrans, btrans) refer to the non-facially reduced system, the facially reduced system and the trans-
portation problems, with the perturbations. The integral values in the table indicate the number
of times that the solver outputs PRIMAL AND DUAL FEASIBLE. Let p∗ be the optimal value
for the unperturbed instance brandy, and let p̃∗ be the optimal value of a perturbed instance of
brandy. The non-integral values in the table indicate the average relative difference in the opti-
mal values between p∗ and p̃∗. The relative difference is computed using the formula |p∗−p̃∗|

2|p∗+p̃∗| . For
example, the first entry 11 in Table 4.4.4 means that 100−11 out of 100 perturbed instances yield
infeasibility or unknown status, i.e., only 11 solved successfully. The entry 4.938e-02 next to 11
indicates the average of |p

∗−p̃∗|
2|p∗+p̃∗| on those 11 instances. We see in columns (A, b) and (Pm̄AV,Pm̄b)

εA εb (A, b) (Pm̄AV,Pm̄b) (Atrans, btrans)

1.0e-09 0 ( 11 , 4.938e-02 ) ( 97 , 6.705e-03 ) 100
0 1.0e-09 ( 27 , 2.470e-10 ) ( 100 , 2.208e-10 ) 100

1.0e-09 1.0e-09 ( 11 , 1.339e-01 ) ( 96 , 8.719e-03 ) 100

Table 4.4.4: Number of successful results out of 100 perturbed instances using simplex method on
the instance brandy and transportation problem

in Table 4.4.4 demonstrate that the facially reduced problems are more immune to data perturba-

13This also means that, without FR, every BFShas at least 38 degenerate basic variables. At least 19.69 percent
of basic variables are always degenerate.
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tions; the number of successfully solved perturbed instances are significantly larger and the optimal
values under the perturbations are less influenced. The last column indicates that although the
instance may have many degenerate BFSs, having a strictly feasible point is important in terms
of perturbations in data, i.e., this emphasizes the difference between the two types of degeneracy.

4.4.2.4 Preprocessing for LP and Beyond

Our preprocessing method, Algorithm 4.2.2, is also applicable to different classes of problems that
have polyhedral feasible regions, e.g., the standard quadratic program [61,157]

min
x

{
xTQx+ qTx+ γ : Ax = b, x ≥ 0

}
,

where Q ∈ Sn, q ∈ Rn and γ ∈ R. Moreover, our proposed approach is also applicable to the
LP relaxation of a mixed integer programming (MIP). The popularity of the MIP has grown due
to its ability to integrate situations that arise in real-life problems. For instance, an MIP with
binary variables (0 or 1) can model decisions that arise in real life situations; a variable equal to 1
may indicate ‘open the gate’, and 0 for ‘close the gate’14. The integer restrictions on the variables
lead to the nonconvex constraint set and hence solving an MIP is considered a challenging task.
The branch-and-bound is a popular method for handling an MIP and it requires solving many
subproblems that contain the originally given constraints. As a presolving step, we can also employ
Algorithm 4.2.2 in order to detect fixed variables via LP relaxation. As a case study, we use
the instance named acc-tight5 from MIPLIB15, the mixed integer programming library. The
instance is given in the form

min
x
{cTx : Aeqx = beq, Aineqx ≤ bineq, ` ≤ x ≤ u, x integer}

and we transform the instance into the standard form (4.1.1) by adding slack variables. The instance
acc-tight5 contains binary variables, i.e., ` = 0, u = e. With Algorithm 4.2.2, we detect 670
variables are that fixed at 0 from the LP relaxation in the standard form. Interpreting this into
the original form, 168 out of 670 correspond to the lower bounds that are fixed at 0; 602 out of
670 correspond to the slack variables associated with Aineqx ≤ bineq that are fixed at 0, i.e., 602
inequality constraints are implicitly equality constraints.

4.4.3 Concluding Remarks

Throughout Section 4.4 we have shown that fail to eliminate the variables fixed at 0, i.e., lack
of strict feasibility, gives rise to implicit problem singularity and this helps explain the numerical
difficulties that arise. There are related works [62, 147] that aim to identify inequality constraints
that are implicitly equality constraints. Our work relates in the sense that identifying the variables
fixed 0 is the process for finding always active constraints within the nonnegativity x ≥ 0. However,
the theoretical consequences of having identically 0 variables do not seem to appear broadly in the
literature.

14We also see this binary decision problem through the lens of DNN relaxation in Chapter 5. More specifically,
we consider the case where 1 indicates the membership inclusion to a set whereas 0 indicates the exclusion.

15https://miplib.zib.de
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An essential step for almost all algorithms for LP is preprocessing. There are many preprocess-
ing methods for achieving problem reduction by observing the structure of the data; see e.g., [94].
One part of preprocessing is identifying fixed variables. However, identifying variables fixed at 0,
facial reduction, has not been actively done due to expense and accuracy problems. Among many
advantages of our approach, we point out the accuracy of the exposing vector that our approach
produces. The exposing vector that we obtain from the simplex method is accurate within machine
accuracy. Interior point methods can be used to identify some exposed variables; [133] produces
exposing vectors by using the self-dual embedding; [32] identifies variables fixed at 0 by constructing
a merit function that consists of the first-order optimality conditions. As pointed out in [38, 133],
the exposing vector that we obtain from the interior point type methods are approximate. The
difficulties that arise in the approaches using an interior point method is addressed through the
numerical experiment in [133] for the classes of SDP and this continues to hold true for the case
of LP.

We investigated the main numerical difficulties that arise with the interior point and simplex
methods. For interior point methods, we displayed the importance of strict feasibility using con-
dition numbers and relationships with distance to infeasibility. We also shed light on the main
difficulties that arose with the implicit redundant constraints and used the QR decomposition to
show how these difficulties come into play. This also relates to the implicit problem singularity, ips.
A larger ips means that there is a higher chance of inducing an infeasible problem under perturba-
tions. A large number of degenerate BFSs is believed to cause difficulties for the simplex method.
We have shown that the settings for having many identically 0 variables in the dual program yield
many degenerate iterations. That the ips provides a lower bound on the degree of degeneracy
of all BFSs adds importance of exploiting the implicit redundancies. We also have shown that
many NETLIB instances fail strict feasibility and used selected instances to show the effect of this
degeneracy. Moreover, the facially reduced problems are seen to be more robust with respect to
data perturbations.

Although degeneracy is a well-known subject, to the best of our knowledge, the relation-
ships between degeneracy and stability are rarely discussed. We showed that the degeneracy at a
BFS provides useful information on the robustness of the LP; the least degenerate BFS provides
an upper bound on the number of implicitly redundant equalities of the set F . We note that
an F that contains a large number of implicit redundancies is more susceptible to be ill-posed.
We have also provided an important modelling perspective on the usual treatment of free variables
in the literature, i.e., a free variable xi is generally replaced by the difference of two nonnegative
variables, xi ← x+

i − x
−
i . We have shown that this decomposition results in the absence of strict

feasibility for the dual. Consequently, this results in the ill-posed dual problem. Furthermore,
all BFSs observed from the dual simplex method are degenerate and the Newton equation of the
interior point methods is ill-conditioned near an optimal point.
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Part II

Broad Application of Facial Reduction
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Chapter 5

A Restricted Dual PRSM and its
Applications to DNN Relaxation of
Binary Quadratic Program

A binary quadratic problem, BQP, is a class of optimization problems with a quadratic objective
function and variables restricted to be either 0 or 1. Many real-life applications of hard combina-
torial optimization problems are posed as BQPs with additions of some affine constraints. Special
instances of BQPs include the protein side-chain positioning problem [27], the quadratic assign-
ment problem [166] and the minimum-cut problem [108]. Solving a BQP is NP-hard in general
and hence many methods based on heuristics and branch-and-bound are proposed. We approach
the problem via SDP and DNN relaxations.

A recent work by Oliveira et al., [123] uses the alternating direction method of multipliers
(ADMM) to solve the SDP (and DNN) relaxation of the quadratic assignment problem, QAP.
The SDP relaxation of the QAP fails strict feasibility; see [166]. Thus FR is invited and this allows
for a variable substitution of the form Y = V RV T , where R � 0; see Section 2.3.2. Meanwhile,
the SDP relaxation contains a set of constraints that fixes some elements of V RV T to be 0 or 1.
The DNN relaxation is a stronger relaxation than the SDP relaxation. Simply put, the DNN
relaxation of the BQP contains polyhedral constraints of the type 0 ≤ (V RV T )i,j ≤ 1, for all i, j.
These polyhedral constraints in conjunction with the cone constraint, R � 0, are difficult to satisfy
simultaneously. The FR grants a natural splitting of variables and the ADMM framework provides
an effective technique for handling these constraints individually; numerically hard problems are
divided into simpler subproblems. The approach [123] provides the basic principle of the splitting
method for solving facially reduced SDP relaxations and the numerical experiments show great
success.

In this chapter we focus on the DNN relaxations of binary quadratic problems that have a
special affine constraint that we name the unit row-sum constraint. We provide a simple derivation
of the DNN relaxation via a direct lifting. Moreoever, we exploit the embedded structures for this
class of problems. The FR leads to the discovery of the implicit redundant constraints and a prior
knowledge on the dual optimal solutions. Continuing with the variable splitting provided by the
ADMM framework by Oliveira et al., [123], we rather use the (customized) Peaceman-Rachford
splitting method to work with the DNN relaxations.
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Contributions and Outline The contribution of this chapter is threefold.

1. We introduce the structural properties embedded in the DNN relaxation of the binary quadratic
problems with the unit row-sum constraint.

2. We introduce a variant of the Peaceman-Rachford splitting method that uses known dual
optimal elements, and we study the derivation.

3. We discuss the DNN relaxations of two classes of binary quadratic problems: the protein
side-chain positioning problem, and the quadratic assignment problem.

This chapter is organized as follows. In Section 5.1 we introduce a simple derivation for the
DNN relaxation of the binary quadratic problem with the unit row-sum constraint. We provide
common properties of the DNN relaxation of the BQP. In particular, we show that there are
known elements in the set of the dual optimal solutions of the DNN relaxation. In Section 5.2 we
provide the derivation of the Peaceman-Rachford splitting method via the Lagrangian dual. We
then derive a variant PRSM, a restricted dual Peaceman-Rachford splitting method (rPRSM),
by adding information of the known optimal dual elements. Finally we apply our framework to two
classes of DNN relaxations of real-world BQPs: the side-chain positioning problem (Section 5.3),
and the quadratic assignment problem (Section 5.4). We derive the sd, maxsd and ips of these
two applications in Section 5.5.

5.1 DNN Relaxation of Binary Quadratic Program

In this section we provide a unified derivation for the DNN relaxation for binary quadratic problems
with the unit row-sum constraint. The derivation of the SDP relaxation of BQP is presented using
Lagrangian duality in e.g., see [38,166]. We provide a much simplified derivation that uses a direct
lifting with essential constraints.

We define the unit row-sum constraint as follows. We let

n0 :=

p∑
i=1

mi, where m1, . . . ,mp are given positive integers.

We define the 0-1 matrix

Au = BlkDiag(ēTm1
, ēTm2

, · · · , ēTmp) =


ēTm1

0 0 · · · 0
0 ēTm2

0 · · · 0
...

...
...

...
...

0 0 0 0 ēTmp

 ∈ Rp×n0 . (5.1.1)

Here, ēmi is the vector of all ones of the length mi. Let x be a vector in {0, 1}n0 . We call the
equality

Aux = ēp

the unit row-sum constraint. Any constraint matrix that has exactly one ‘1’ in each column can be
represented using the matrix Au, up to permutation. Many applications of combinatorial optimiza-
tion problems contain the unit row-sum constraint. For instance, given a collection of p sets with
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mi members in each set, choosing exactly one representative from each set can be formulated using
the unit row-sum constraint. The protein side-chain positioning problem [27] directly fits into this
setting. The quadratic assignment problem [166] and the minimum-cut problem [108] contain the
unit row-sum constraints with the addition of special linear constraints.

Let Q ∈ Sn0 be given. We define the binary quadratic problem (BQP) with the unit row-sum
constraint as

(BQP)

p∗BQP = min
x

xTQx

subject to Aux = e
x ∈ {0, 1}n0 .

(5.1.2)

The problem (5.1.2) is NP-hard in general and hence many non-polynomial time algorithms are
proposed, e.g., heuristic based method and branch-and-bound. We approach the problem via
SDP and DNN relaxations. The SDP relaxation is one of the most well-known approaches that
avoids the difficulties arising from the NP-hardness of the model (5.1.2).

We obtain the SDP relaxation in two steps. The first step employs the lifting of the variable x ∈
Rn0 to a higher dimensional space, e.g., [150]. We lift a vector in Rn0 to a matrix in Sn0+1

+ as follows:

Yx =

[
1
x

] [
1
x

]T
=

[
1 xT

x xxT

]
∈ Sn0+1

+ . (5.1.3)

For the SDP relaxation, we index the rows and columns starting from 0, i.e., the row and column
indices are {0, 1, 2, . . . , n0}. For a fixed x, the matrix Yx has the rank one since every column of Yx
is a scalar multiple of the column vector [1;x]. Let Q̂ = BlkDiag(0, Q). The objective function has
a simple formulation

〈x,Qx〉 =

〈[
0 0
0 Q

]
,

[
1
x

] [
1
x

]T〉
=
〈
Q̂, Yx

〉
.

We now see how the lifting acts on the unit row-sum constraint. We begin by following the
series of the implications below:

Aux = e ∈ Rp
=⇒ ATuAux = ATu e = e ∈ Rn0

=⇒ (ATuAu − I)x = e− x
=⇒ (ATuAu − I)xxT = exT − xxT (multiplication by xT )
=⇒ trace(ATuAu − I)xxT = trace(exT − xxT ) = 0 (since x ∈ {0, 1}n0).

(5.1.4)

We note that ATuAu− I and xxT are nonnegative matrices. From (5.1.4), we see that the elements
of xxT that correspond to supp(ATuAu − I) must be to 0.

We now employ a mapping the so-called gangster operator to complete the constraint trans-
formation. Given a set of matrix indices J ⊆ {0, . . . , n0} × {0, . . . , n0}, we define the gangster
operator

GJ : Sn0+1 → R|J | by GJ (Y ) = YJ , (5.1.5)

where YJ is the vectorization of the submatrix of Y that chooses the elements in the index set J .
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By abuse of notation,1 we also consider the gangster operator from Sn0+1 to Sn0+1 to mean

GJ : Sn0+1 → Sn0+1, (GJ )i,j =

{
Yi,j if (i, j) or (j, i) ∈ J ,
0 otherwise.

Taking (5.1.4) into account, we set J ⊆ {0, . . . , n0} × {0, . . . , n0} to be

J = {(0, 0)} ∪ supp(BlkDiag(0, ATuAu − I)). (5.1.6)

Then we obtain the gangster constraint[
(ATuAu − I) ◦ xxT = 0 and Yx(0, 0) = 1

]
=⇒ GJ (Yx) = e0e

T
0 =: E00. (5.1.7)

The term gangster refers to the action of the constraint; GJ (Y ) sets many elements of Y associated
with J to be zero (shoots holes in the matrix).

The second step of deriving the SDP relaxation is simple. We recall that the rank-one restriction
on the lifted variable Yx. We simply discard that rank constraint on Yx and work with general
positive semidefinite matrices. Finally, we obtain the SDP relaxation of the model (5.1.2):

p∗SDP = min
Y

〈Q̂, Y 〉
subject to GJ (Y ) = E00

Y � 0.

(5.1.8)

We emphasize that the model (5.1.8) accompanies interesting advantages over the model (5.1.2). By
relaxing the rank-one constraint on the variable, we now obtain a convex feasible region. Another
important property of the transformation is that the objective function 〈Q̂, Y 〉 is now linear in Y .
The data matrix Q in (5.1.2) is often indefinite. Hence, even though the feasible region of (5.1.2) was
convex, solving (5.1.2) is NP-hard, see e.g., [126]. However, since (5.1.8) is a relaxation of (5.1.2),
it is possible to encounter the discrepancy p∗BQP > p∗SDP . We call this quantity p∗BQP − p∗SDP , a
relaxation gap.

The SDP relaxation (5.1.8) does not possess a strictly feasible point. One way to see this is as
follows:

Aux = e ⇐⇒
[
−e Au

](1
x

)
= 0 =⇒

[
−e Au

]T [−e Au
](1

x

)(
1
x

)T
= 0. (5.1.9)

Since
K :=

[
−e Au

]T [−e Au
]
∈ Sn0+1

+ \ {0}, (5.1.10)

the matrix K serves as an exposing vector for the feasible set of (5.1.8)2. Hence, (5.1.9) proves
that strict feasibility always fails for (5.1.8).

In order to obtain a model with a strictly feasible point, we find the minimal face that contains
the feasible set. Because the SDP relaxations originate from specific applications in general, we
usually obtain exposing vectors analytically by exploiting the problem structures rather than solving

1This may result in the loss of surjectivity of the mapping GJ . However, we later derive robust iterate update
rules and this instability does not come into play in our algorithm.

2This property holds for arbitrary data matrix A and right-hand-side vector b. Alternatively, we cannot find n0

linearly independent feasible points in the ground set, see [150].
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the auxiliary system (2.3.4) numerically. The embedded structure removes the need for computing
the facial range vector repeatedly.

Once we identify the minimal face of Sn0+1
+ that contains the feasible set, we may replace the

variable Y with V RV T , where V ∈ R(n0+1)×r is a minimal facial range vector with orthonormal
columns:

p∗SDP = min
R
{〈Q̂, V RV T 〉 : GJ (V RV T ) = E00, R ∈ Sr+}. (5.1.11)

As pointed out earlier, simultaneously engaging the two constraints, GJ (V RV T ) = E00 and R � 0,
is complicated. Assigning Y = V RV T to (5.1.11) helps avoid this complication:

p∗SDP = min
R,Y
{〈Q̂, Y 〉 : GJ (Y ) = E00, Y = V RV T , R ∈ Sr+}. (5.1.12)

Many applications of this type can be found in the literature [27,28,48,79,108,123,166].

5.1.1 Embedded Properties of SDP Relaxations of Binary Quadratic Programs

In this section we present common structures that are embedded within the SDP relaxation of
(BQP). We take advantage of these structures and apply those properties to the two classes of
SDP relaxations of binary quadratic programs, SCP and QAP in Sections 5.3 and 5.4.

We first partition Y below in order to capture the special structures that arise in the SDP relaxations
of (BQP):

Y =


1 Y T

10 Y T
20 · · · Y T

p0

Y10 Y11 Y12 · · · Y1p
...

...
...

...
...

Yp0 Yp1 Yp2 · · · Ypp

 ∈ Sn0+1, (5.1.13)

where
Yii ∈ Smi , Yij ∈ Rmi×mj , Yi0 ∈ Rmi , ∀i, j ∈ {1, . . . , p}.

With the partition (5.1.13) of Y , we obtain Theorem 5.1.1 below.

Theorem 5.1.1. Let V be a facial range vector that satisfies range(V ) ⊆ null(K) with K given
in (5.1.10). Suppose that Y and R satisfy

Y ∈ Sn0+1, R ∈ Sn0+1−p
+ with Y = V RV T , GJ (Y ) = E00.

Then the following hold.

1. The first column of Y is equal to the diagonal of Y ;

2. trace(Yi,i) = 1, for all i ∈ {1, . . . , p}.

Proof. We let ēt denote the all ones vector of length t. We recall that range(V ) ⊆ null(K) =
null

([
−ēp Au

])
. Hence we have[

−ēp Au
]
Y =

[
−ēp Au

]
V RV T = 0RV T = 0. (5.1.14)

We then exploit the structure of
[
−ēp Au

]
Y .
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We use Y col `
ij to denote the `-th column of the (i, j)-th block of Y and Yi0,` to denote the

`-th coordinate of the vector Yi0 ∈ Rmi . Then expanding
[
−ēp Au

]
Y with the block representa-

tion (5.1.13) yields [
−ēp Au

]
Y =

[
a0 A1 · · · Ap

]
∈ Rp×(n0+1),

where

a0 =


−1 + ēTm1

Y10

−1 + ēTm2
Y20

...
−1 + ēTmpYp0

 ∈ Rp, (5.1.15)

and, for each i ∈ {1, . . . , p},

Ai =



−Yi0,1 + ēTm1
Y col 1

1i −Yi0,2 + ēTm1
Y col 2

1i · · · −Yi0,mi + ēTm1
Y colmi

1i
...

...
. . .

...

−Yi0,1 + ēTmjY
col 1
ji −Yi0,2 + ēTmjY

col 2
ji · · · −Yi0,mi + ēTmjY

colmi
ji

...
...

. . .
...

−Yi0,1 + ēTmpY
col 1
pi −Yi0,2 + ēTmpY

col 2
pi · · · −Yi0,mi + ēTmpY

colmi
pi


∈ Rp×mi .

By (5.1.14), we have Ai = 0, ∀i ∈ {1, . . . , p}. Thus, for each i ∈ {1, . . . , p}, the i-th row Ai yields

Yi0,` = ēTmiY
col `
ii , ` ∈ {1, . . . ,mi}.

Since GJ (Y ) = E00 holds, we obtain

diag(Yii) = Yi0, ∀i ∈ {1, . . . , p}.

Therefore, we conclude that the first column and the diagonal of Y are identical and it completes
the proof for Item 1.

By (5.1.14), we have the vector a0 from (5.1.15) is 0. Thus, 1 = ēTmiYi0, for all i = 1, . . . , p. By
Item 1, we obtain

1 = ēTmiYi0 = trace(Yi,i), ∀i ∈ {1, . . . , p}.

Hence, it completes the proof for Item 2.

We often call the indices for the first column, the first row and the diagonal elements of Y the
arrow indices since the positioning of these elements resembles an arrow shape; see Figure 5.1.1.

The same properties are known to hold from the SDP relaxations of the QAP [166] and the

Figure 5.1.1: Arrow indices; the first (0-th) row and column and the diagonal elements

SCP problem [27] via the use of the Lagrangian dual. We rather obtain these properties through the
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direct lifting. We note that the properties in Theorem 5.1.1 correspond to the implicit redundancies
revealed by FR. Item 2 of Theorem 5.1.1 gives rise to an additional property on the variable R
of (5.1.12).

Corollary 5.1.2. Let (R, Y ) be a solution to (5.1.12). Then we have tr(R) = 1 + p.

Proof. By Item 2 of Theorem 5.1.1, each diagonal block of Y satisfies trace(Yi,i) = 1. Hence,
Y = V RV T yields

1 + p = tr(Y ) = tr(V RV T ) = tr(RV TV ) = tr(R),

where the last equality holds since V TV = I.

5.1.2 Doubly-Nonnegative Relaxation

In this section we introduce the doubly-nonnegative (DNN) relaxation of the model (5.1.2) and
its related properties.

A cone K ⊆ Sn is called a doubly-nonnegative cone if

K = Sn+ ∩ {X ∈ Sn : Xi,j ≥ 0, ∀i, j}.

We note that variables in the ground set of (BQP) are in {0, 1}n0 . Hence, with Yx from the lifting
process (5.1.3), we note that

Yx ∈ {Y ∈ Sn0+1 : 0 ≤ Yi,j ≤ 1, ∀i, j}.

That is, we may restrict the lifted variable to the doubly-nonnegative cone, Sn0+1
+ ∩R(n0+1)×(n0+1)

+ .
This gives rise to the doubly-nonnegative relaxation (DNN):

(DNN)

p∗DNN = minR,Y 〈Q̂, Y 〉
subject to GJ (Y ) = E00

Y = V RV T

R � 0
0 ≤ Y ≤ 1.

(5.1.16)

Clearly the doubly-nonnegative cone, Sn+ ∩ Rn×n+ , is a proper subset of the positive semidefinite
cone, Sn+. Hence, the DNN relaxation is a tighter relaxation of (BQP) than the SDP relaxation.
As a consequence, we obtain

p∗BQP ≥ p∗DNN ≥ p∗SDP .

We show in our numerical experiment that the inequality p∗DNN ≥ p∗SDP can be strict. In fact, the
DNN relaxation often provides a significantly strengthened lower bound.

We note that the model (5.1.16) is not entirely stable. We can immediately observe that the
gangster mapping GJ is not surjective as noted above; the equality Y = V RV T can be eliminated;
and the lower and upper bounds on the elements of Y associated with the gangster index set J are
redundant. However, we develop a splitting method below with robust updates that avoid these
instabilities. In fact, there is an additional set of redundant constraints to the model (5.1.16) as
we see in Proposition 5.1.3 below.
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Proposition 5.1.3. The polyhedral constraints on the arrow indices are redundant. In other words,
the inequalities

Yi,j ∈ [0, 1], ∀i, j such that i · j = 0 or i = j,

are redundant constraints to (5.1.16).

Proof. Since Y is positive semidefinite, all the diagonal elements of Y must be at least 0. In
addition, we recall from Item 2 of Theorem 5.1.1 that trace(Yii) = 1. Thus, each diagonal element
of Y is at most 1. By Item 1 of Theorem 5.1.1, the diagonal of Y is equal to the first row and first
column of Y . Hence, it follows that the polyhedral constraint on the first row and first column are
also redundant.

Proposition 5.1.3 suggests that we may discard some of the polyhedral constraints, e.g., the
ones dealing with the arrow indices. This observation leads to Theorem 5.1.4 that shows that some
elements of the optimal dual solution are known.

Theorem 5.1.4. Let (R∗, Y ∗) be an optimal solution pair for (5.1.16) and let

ZA :=
{
Z ∈ Sn0+1 : Zi,i = −Q̂i,i, Z0,i = Z0,i = −Q̂0,i, i = 1, . . . , n0

}
.

Then there exists a dual multiplier Z∗ associated with the constraint Y = V RV T such that Z∗ ∈ ZA
and (R∗, Y ∗, Z∗) solves (5.1.16).

Proof. We define

YA = {Y : GJ (Y ) = E00, Yi,j ∈ [0, 1], ∀i, j such that i · j 6= 0, i 6= j} .

That is, YA ⊇ Y is obtained after removing the redundant polyhedral constraints associated with
the arrow indices of Y ; see Proposition 5.1.3. Then (5.1.16) is equivalent to

minR,Y 〈Q̂, Y 〉
subject to Y = V RV T

R ∈ Sr+
Y ∈ YA.

(5.1.17)

Let (R∗, Y ∗, Z∗) be an optimal primal-dual solution for (5.1.17), where Z∗ is the dual multiplier
associated with the equality Y = V RV T . Then, by the first-order optimality conditions, we have

0 ∈ −V TZ∗V +NSr+(R∗), (5.1.18a)

0 ∈ Q̂+ Z∗ +NYA(Y ∗), (5.1.18b)

Y ∗ = V R∗V T , R∗ ∈ Sr+, Y ∗ ∈ YA. (5.1.18c)

By the definition of the normal cone, we have

0 ∈ Q̂+ Z∗ +NYA(Y ∗) ⇐⇒ 〈Y − Y ∗, Q̂+ Z∗〉 ≥ 0, ∀Y ∈ YA.
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Since the diagonal and the first column and row of Y ∈ YA except for the first element are
unconstrained, as are all the redundant gangster positions, we see that

(Q̂+ Z∗)i,j = 0,∀i, j such that i · j = 0 or i = j.

This implies that Z∗ ∈ ZA and proves the statement.

Theorem 5.1.4 raises the following question; how do we utilize the prior knowledge of the
elements in the dual optimal solution? Theorem 5.1.4 motivates the development of a variant of
the splitting method. We introduce a splitting method that takes advantage of this information in
Section 5.2.3 below. We comment that there is an effective method for handling the DNN relaxation
by majorizing the augmented Lagrangian of the dual problem [161]. However, engaging the known
dual elements for this method is not yet available.

We now complete the model by including the two redundant constraints from Corollary 5.1.2
and Proposition 5.1.3. We define the two sets

R = {R ∈ Sr : R ∈ Sr+, trace(R) = 1 + p},
Y = {Y ∈ Sn0+1 : GJ (Y ) = E00, 0 ≤ Y ≤ 1}. (5.1.19)

We then obtain the DNN relaxation

p∗DNN = min
R,Y

〈Q̂, Y 〉

subject to R ∈ R
Y ∈ Y
Y = V RV T .

(5.1.20)

Solving the model (5.1.20) using the splitting method is convenient in three ways. First, the
variables R and Y are linearly related by Y = V RV T . This linear relation connects the two different
sets R and Y and allows us to focus on the two sets individually. In addition, we will see later that
this linear relation allows us to obtain convenient projection formulae for solving the subproblems
of the splitting methods.

Secondly, splitting the variables allows us to handle the constraints that are difficult to han-
dle together. The model (5.1.20) can be solved by using a standard solver by incorporating the
element-wise nonnegativity on Y through cutting planes [27]. However, this approach becomes
more computationally challenging as the number of cutting planes increases. By considering the
sets R and Y individually, we can avoid the complications that arise from considering the intersec-
tion of the two sets; the polyhedral constraint on Y and the cone constraint on R are very expensive
to engage at the same time.

Lastly, we can include redundant constraints safely. A model that possesses redundant linear
constraints brings out instability issues as we observed throughout Part I. For instance, when an
interior point method is used, having redundant constraints in the model damages the model quality
with regard to stability. The observed redundancies to the model (5.1.20) are a result of considering
the variables R and Y together. However, these constraints are not redundant with respect to the
set R and Y individually in our subproblems. From Proposition 5.1.3, we observed that the
polyhedral constraint on the arrow positions of Y are redundant. However, when considering Y as
a member of the set Y, these are not redundant constraints. From Corollary 5.1.2, we observed
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that trace(R) = 1 + p is a redundant constraint. However, R being positive semidefinite does not
by itself imply that the trace of R is equal to 1 + p.

We conclude this section with the first-order optimality conditions of the DNN relaxation (5.1.20):

0 ∈ −V TZ∗V +NR(R∗), (5.1.21a)

0 ∈ Q̂+ Z∗ +NY(Y ∗), (5.1.21b)

Y ∗ = V R∗V T , R∗ ∈ Sr+, Y ∗ ∈ Y. (5.1.21c)

By the definition of normal cone, we obtain the following equivalent optimality condition that we
can evaluate with ease. The proof of Proposition 5.1.5 follows from [90, Proposition 5.3.3].

Proposition 5.1.5 (characterization of optimality for (5.1.20)). The primal-dual triple (R, Y, Z)
is optimal for (5.1.20) if, and only if, (5.1.21) holds if, and only if,

R = PR(R+ V TZV ), Y = PY(Y − Q̂− Z), Y = V RV T . (5.1.22)

5.2 A Derivation of the Restricted Dual PRSM

In this section we display a detailed derivation of the Peaceman-Rachford splitting method (PRSM)
via Lagrangian dual. In particular, we start the derivation from the Peaceman-Rachford scheme
from the monotone operator theory. By examining the derivation closely, we provide a variant of
the PRSM that utilizes the known elements of the dual multipliers. [72, Chapter 6] points out
that the Peaceman-Rachford splitting method is often faster than the Douglas-Rachford splitting
method when it converges.

Let f : RnA → R and g : RnB → R be convex functions, and let A ∈ Rm×nA , B ∈ Rm×nB and
b ∈ Rm be the given data. Let X ⊆ RnA and Y ⊆ RnB be closed convex sets. We focus on the
problem

min
x,y

f(x) + g(y) subject to Ax+By = b, x ∈ X , y ∈ Y. (5.2.1)

The two variables x and y are constrained in X and Y, respectively, and they are tied by the
linear equality. The splitting method provides an effective means of solving the model (5.2.1).
For example, as we observed in Section 5.1, the cone constraint and the polyhedral constraints
in the DNN relaxation (5.1.20) are difficult to engage simultaneously. Algorithm 5.2.1 is known
as the Peaceman-Rachford splitting method (PRSM) applied to (5.2.1). Algorithm 5.2.1 can be
summarized as follows: alternate minimization of variables x and y interlaced by the dual variable
z update.

Algorithm 5.2.1 does not necessarily guarantee the convergence to the optimal solution. The
convergence guarantee is available under a more restrictive setting such as the uniform monotonicity
of one of the underlying monotone operators or uniform convexity of one of functions f or g; see [11].
A recent work [85] shows that if we use an under-relaxation parameter γ ∈ (0, 1) in the dual update,
the iterates converge to an optimal solution strictly. Algorithm 5.2.2 below is the strictly contractive
Peaceman-Rachford splitting method for (5.2.1).
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Algorithm 5.2.1 Peaceman-Rachford Splitting Method for (5.2.1)

Require: Initial Iterates y0, z0, β ∈ R++

while stopping criteria are not satisfied do
xk+1 = minx∈X LA(x, yk, zk) (x-subproblem)

zk+ 1
2 = zk + β

(
Axk+1 +Byk − b

)
(intermediate dual update).

yk+1 = miny∈Y LA(xk+1, y, zk+ 1
2 ) (y-subproblem)

zk+1 = zk+ 1
2 + β

(
Axk+1 +Byk+1 − b

)
(dual update ).

k ← k + 1
end while

Algorithm 5.2.2 Strictly Contractive Peaceman-Rachford Splitting Method for (5.2.1) [85]

Require: Initial Iterates y0, z0, β ∈ R++, γ ∈ (0, 1)
while stopping criteria are not satisfied do
xk+1 = minx∈X LA(x, yk, zk) (x-subproblem)

zk+ 1
2 = zk + γβ

(
Axk+1 +Byk − b

)
(intermediate dual update).

yk+1 = miny∈Y LA(xk+1, y, zk+ 1
2 ) (y-subproblem)

zk+1 = zk+ 1
2 + γβ

(
Axk+1 +Byk+1 − b

)
(dual update).

k ← k + 1
end while

5.2.1 Preliminaries on Monotone Operator Theory

In this section we present basic definitions related to the monotone operator theory that we use for
our derivations. We use Id to denote the identity operator. We work in finite dimensional Hilbert
spaces.

Definition 5.2.1. Let X be a Hilbert space. Let A be a set-valued mapping from X to 2X , where 2X

is a power set of X, i.e., the collection of subsets of X.

1. A graph of A is a set of points

gra A := {(x, x∗) ∈ X ×X : x∗ ∈ A x}.
2. A set-valued operator A is called monotone, if

〈x− y, x∗ − y∗〉 ≥ 0, ∀(x, x∗), (y, y∗) ∈ gra A .

3. Given a monotone operator A : X ⇒ X, the resolvent operator is defined by

JA := (Id +A )−1.

4. The reflection operator of the monotone operator A is defined by

reflA := 2JA − Id .

5. The set of fixed points of the monotone operator A is defined by

Fix(A ) = {x ∈ X : A x = x}.
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We consider the following inclusion problem; finding a zero of the sum of two monotone opera-
tors.

Problem 5.2.2. (Monotone inclusion problem) Let X be a Hilbert space and let A ,B : X ⇒ X
be monotone operators. The monotone inclusion problem is to

find x ∈ X such that 0 ∈ A x+ Bx.

The Peaceman-Rachford (PR) method [132] tries to find a fixed point of reflB reflA , the com-
position of two reflection operators, via the iterate update regulated by

wk+1 = reflB ◦ reflA (wk) for k ∈ N. (5.2.2)

It is important to note that the solution set of Problem 5.2.2 has the following characterization (see
[11, Proposition 26.1].):

{x ∈ X : 0 ∈ A x+ Bx} = JA (Fix(reflB reflA )) . (5.2.3)

We emphasize that finding a fixed point of reflB ◦ reflA does not yield a solution to Problem 5.2.2;
the solution to Problem 5.2.2 is found by mapping a point in Fix(reflB reflA ) by the resolvent JA .

Problem 5.2.2 has a beautiful application to the problem of finding a minimizer of f(x) + g(x),
the sum of two convex functions. We replace the operators in Problem 5.2.2 by

A ← ∂f and B ← ∂g,

Then, we can use Fermat’s rule (see [11, Theorem 16.2].) to find a minimizer of f(x) + g(x):

find x ∈ X such that 0 ∈ ∂f(x) + ∂g(x). (5.2.4)

We assume that a solution that solves (5.2.4) exists in the subsequent sections. Minimizing the sum
of two convex functions appears in numerous applications, e.g., see [11, 24, 72] and the references
therein.

Finally, we arrive at an alternative interpretation of the PR method for (5.2.4):

wk+1 = refl∂g ◦ refl∂f (wk) = (2J∂g − Id) ◦ (2J∂f − Id)(wk). (5.2.5)

Once the iteration sequence (5.2.5) finds a fixed point of the operator refl∂g refl∂f , the solution of the
problem (5.2.4) is found by evaluating J∂f (wk+1); see (5.2.3). Throughout Sections 5.2.2 and 5.2.3
below, we show how the iteration sequence (5.2.5) gives rise to the use of prior knowledge on some
elements of the dual optimal solutions.

5.2.2 PR Algorithm Applied to Dual Problem

In this section we see how the PR algorithm gives rise to the splitting method in Algorithm 5.2.1.
A reader who is familiar with the derivation may skip this section and go to Section 5.2.3. That
the PRSM can be derived using the dual formulation is known in the literature; the method can
be viewed as the PR algorithm by using the Fenchel conjugate, e.g., see [20,53,65,113]. We aim to
include a detailed self-contained derivation tailored to our setting via Lagrangian duality. We closely
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follow some steps displayed in [54, 65]. This derivation directly leads to the clear interpretation of
the restricted dual PRSM.

Suppose that we want to solve the problem of the form (5.2.1). By relating the linear constraint
with Lagrange multiplier z, we get the Lagrangian of (5.2.1) for x ∈ X , y ∈ Y as follows:

L(x, y; z) = f(x) + g(y) + 〈z,Ax+By − b〉.

We split the Lagragian above into

L(x, y; z) = Lf (x; z) + Lg(y; z), where Lf (x; z) := f(x) + 〈z,Ax〉, Lg(y; z) := g(y) + 〈z,By − b〉.

Then, the Lagrangian dual problem of (5.2.1) is

max
z

{
min

x∈X ,y∈Y
L(x, y; z)

}
= max

z

{
min

x∈X ,y∈Y
Lf (x; z) + Lg(y; z)

}
. (5.2.6)

We emphasize that the dual functional is separable into the two terms associated with x and y,
respectively. This splitting initiates the two minimization problems that appear in Algorithm 5.2.1.
We define

d̂f (z) := min
x∈X
Lf (x; z) and d̂g(z) := min

y∈Y
Lg(y; z).

We assume that the minimizers of d̂f and d̂g are attained; this is true if X and Y are compact. The

functions d̂f and d̂g are concave functions since they are point-wise minimum of concave functions
with respect to z. We let

df (z) = −d̂f (z) and dg(z) = −d̂g(z).

The dual problem (5.2.6) is equivalent to minimizing the sum of two convex functions:

min
z
df (z) + dg(z). (5.2.7)

Let β > 0. The dual problem (5.2.7) is also equivalent to minz βdf (z) + βdg(z), i.e., the minimizer
is invariant under the positive scalar multiple β. And, the multiplier gives rise to the parameter β
that appear in the augmented Lagarangian LA in Algorithm 5.2.1. For simplicity, we let β = 1 in
the derivation.

The subdifferentials are monotone operators [90, Proposition 6.1.1]. The subdifferential of a
proper, convex, lower-semi-continuous function is maximal [138]. Hence we apply the PR algorithm
to the problem

find z ∈ Rm such that 0 ∈ ∂df (z) + ∂dg(z)

and employ the Peaceman-Rachford update rule (5.2.2)

wk+1 = refl∂dg ◦ refl∂df (wk). (5.2.8)

We break the update (5.2.8) into two steps:

wk+ 1
2 = refl∂df (wk), wk+1 = refl∂dg(w

k+ 1
2 ).

The sequence {wk} is the governing sequence of the problem (5.2.6). The uncoupling of the two steps
gives rise to two auxiliary problems and these appear as the two subproblems in Algorithm 5.2.1.
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We proceed with the derivation by expanding the terms that appear in (5.2.8). We let zk =
J∂df (wk). Then, by the definition of the reflection operator, we have

wk+ 1
2 = refl∂df (wk) = (2J∂df − Id)wk = 2zk − wk = zk + (zk − wk). (5.2.9)

Now, by the definition of the resolvent operator, we obtain the following relation:

zk = J∂df (wk) ⇐⇒ wk ∈ (∂df + Id)zk

⇐⇒ wk ∈ zk + ∂dfz
k

⇐⇒ wk = zk + pk, for some pk ∈ ∂df (zk).

(5.2.10)

We emphasize that the equality zk = J∂df (wk) indeed allows us to find a point in the solution set

of the problem (5.2.4); see (5.2.3). Let pk = −Axk ∈ ∂df (zk), where xk ∈ argmin
x∈X

Lf (x; zk). Thus,

we may replace the first half of the iteration wk+ 1
2 = refl∂df (wk) by

xk = argmin
x∈X

Lf (x; zk), wk = zk −Axk, and wk+ 1
2 = zk +Axk. (5.2.11)

We now obtain an alternative representation of the remaining iteration wk+1 = refl∂dg(w
k+ 1

2 ).

By setting zk+ 1
2 = J∂dg(w

k+ 1
2 ), we follow the expansion made in (5.2.9):

wk+1 = refl∂dg(w
k+ 1

2 ) = zk+ 1
2 + (zk+ 1

2 − wk+ 1
2 ).

We let yk+ 1
2 = argmin

y∈Y
Lg(y; zk+ 1

2 ) and obtain −(Byk+ 1
2 − b) ∈ ∂dg(z

k+ 1
2 ). Then, zk+ 1

2 =

J∂dg(w
k+ 1

2 ) gives rise to the relations below:

yk+ 1
2 = argmin

y∈Y
Lg(y; zk+ 1

2 ), wk+ 1
2 = zk+ 1

2 − (Byk+ 1
2 − b) and wk+1 = zk+ 1

2 +
(
Byk+ 1

2 − b
)
.

(5.2.12)

We combine (5.2.11) and (5.2.12), and produce an alternative representation of (5.2.8):

xk = argminx∈X Lf (x; zk) (5.2.13a)

zk = wk +Axk (5.2.13b)

wk+ 1
2 = zk +Axk (5.2.13c)

yk+ 1
2 = argminy∈Y Lg(y; zk+ 1

2 ) (5.2.13d)

zk+ 1
2 = wk+ 1

2 + (Byk+ 1
2 − b) (5.2.13e)

wk+1 = zk+ 1
2 + (Byk+ 1

2 − b). (5.2.13f)

We now eliminate the governing sequence, the iterates wk+ 1
2 and wk+1 from (5.2.13). We then
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rewrite (5.2.13c) and (5.2.13e) as below:

zk = wk +Axk by (5.2.13b)

= wk − (Byk−
1
2 − b) + (Byk−

1
2 − b) +Axk

= zk−
1
2 +Axk +Byk−

1
2 − b by (5.2.13f)

and
zk+ 1

2 = wk+ 1
2 + (Byk+ 1

2 − b) by (5.2.13e)

= wk+ 1
2 −Axk +Axk + (Byk+ 1

2 − b)
= zk +Axk +Byk+ 1

2 − b by (5.2.12).

Using the relation zk = zk−
1
2 +Axk +Byk−

1
2 − b, we can rewrite (5.2.13a):

xk = argmin
x∈X

Lf (x; zk)

⇐⇒ 0 ∈ ∂f(xk) +AT zk + ∂iX (xk)

= ∂f(xk) +AT
(
zk−

1
2 + (Axk +Byk−

1
2 − b)

)
+ ∂iX (xk)

⇐⇒ 0 ∈ ∂f(xk) +AT zk−
1
2 +AT (Axk +Byk−

1
2 − b) + ∂iX (xk)

⇐⇒ xk = argminx∈X f(x) + 〈zk−
1
2 , Ax〉+ 1

2‖Ax+Byk−
1
2 − b‖22

⇐⇒ xk = argminx∈X f(x) + 〈zk−
1
2 , Ax+Bzk−

1
2 − b〉+ 1

2‖Ax+Byk−
1
2 − b‖22

⇐⇒ xk = argminx∈X LA(x, yk−
1
2 ; zk−

1
2 ).

Here, ∂iX (xk) is the subdifferential of the indicator function, i, with respect to X at xk. Similarly,

using the relation zk+ 1
2 = zk +Axk +Byk+ 1

2 − b, we rewrite (5.2.13d):

yk+ 1
2 = argmin

y∈Y
Lg(y; zk+ 1

2 )

⇐⇒ 0 ∈ ∂g(yk+ 1
2 ) +BT zk+ 1

2 + ∂iY(yk+ 1
2 )

= ∂g(yk+ 1
2 ) +BT

(
zk + (Axk +Byk+ 1

2 − b)
)

+ ∂iY(yk+ 1
2 )

⇐⇒ 0 ∈ ∂g(yk+ 1
2 ) +BT zk +BT (Axk +Byk+ 1

2 − b) + ∂iY(yk+ 1
2 )

⇐⇒ yk+ 1
2 = argminy∈Y g(y) + 〈zk, By〉+ 1

2‖Ax
k +By − b‖22

⇐⇒ yk+ 1
2 = argminy∈Y g(y) + 〈zk, Axk +By − b〉+ 1

2‖Ax
k +By − b‖22

⇐⇒ yk+ 1
2 = argminy∈Y LA(xk, y; zk).

Hence, we obtain the update rules as seen in Algorithm 5.2.1.

5.2.3 PRSM with Known Dual Elements in the Solution

In this section we present the derivation for a variant of the PRSM that utilizes the information
of the known elements of the dual optimal solutions. We follow the arguments in Section 5.2.2 to
derive rPRSM, the restricted dual PRSM , Algorithm 5.2.3. We aim to realize rPRSM by the
composition of the dual problem (5.2.6) with a special affine map.

Let z̄∗ be a dual optimal solution of the problem (5.2.1). Suppose that we have an element-wise
partial knowledge on the dual optimal solution of the problem (5.2.1). In other words, there is a
subset I∗ of {1, . . . ,m}, and the elements z̄∗(I∗) are known in advance. We can take advantage of
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this information by projecting the dual iterates zk, zk+ 1
2 in Algorithm 5.2.2 onto the set

Z∗ := {z ∈ Rm : zi = z̄∗i , i ∈ I∗}.

We define the projection

P0 : Rm → Rm by (P0(z))i =

{
0 i ∈ I∗,
zi otherwise.

With the projection P0 and by setting the initial dual iterate z0 ∈ Z∗, we maintain the dual iterates
zk, zk+ 1

2 in the set Z∗ as shown in Algorithm 5.2.3. The convergence of Algorithm 5.2.3 is shown

Algorithm 5.2.3 A Restricted Dual Strictly Contractive PRSM (rPRSM) for (5.2.1)

Require: Initial iterates y0, z0 ∈ Z∗, β ∈ R++, γ ∈ (0, 1)
while stopping criteria are not satisfied do
xk+1 = minx∈X LA(x, yk, zk) (x-subproblem)

zk+ 1
2 = zk + γβP0

(
Axk+1 +Byk − b

)
(intermediate dual update).

yk+1 = miny∈Y LA(xk+1, y, zk+ 1
2 ) (y-subproblem)

zk+1 = zk+ 1
2 + γβP0

(
Axk+1 +Byk+1 − b

)
(dual update).

k ← k + 1
end while

in the class of the DNN relaxation of the quadratic assignment problem (QAP) [79, Theorem 3.2]
via the general convergence theory of semi-proximal strictly contractive PRSM [81, 109].

We note that the dual problem (5.2.6) is equivalent to

max
z

{
min

x∈X ,y∈Y
L(x, y; z)

}
= max

z : zi=z̄∗i , i∈I∗

{
min

x∈X ,y∈Y
L(x, y; z)

}
.

We define a diagonal matrix D ∈ Sm and a vector d ∈ Rm

Di,i =

{
0 if i ∈ I∗,
1 otherwise,

and di =

{
z̄∗i if i ∈ I∗,
0 otherwise.

(5.2.14)

Then, fixing some elements of the dual variable can be realized by

{z : zi = z̄∗i , i ∈ I∗} = {Dz + d : z ∈ Rm} (5.2.15)

Hence, the dual problem (5.2.6) is equivalent to

max
z

{
min

x∈X ,y∈Y
L(x, y;Dz + d)

}
. (5.2.16)

We now follow the derivation displayed throughout Section 5.2.2 with the problem (5.2.16). By
chain rule [139, Theorem 23.9], we consider Problem 5.2.2 (monotone inclusion problem) with the
replacement A ← D∂df (Dz + d) and B ← D∂dg(Dz + d):

find z ∈ Rm such that 0 ∈ D∂df (Dz + d) +D∂dg(Dz + d).
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As in (5.2.10), we pick pk ∈ D∂df (zk) and set pk = D(−Axk), where xk ∈ argminx∈X Lf (x, zk).
They yield

xk = argmin
x∈X

Lf (x; zk), wk = zk −DAxk, and wk+ 1
2 = zk +DAxk.

Similarly, we have −D(Byk+ 1
2 − b) ∈ D∂dg(zk+ 1

2 ), where yk+ 1
2 ∈ argminy∈Y Lg(y, zk+ 1

2 ). Hence,
we obtain

yk+ 1
2 = argmin

y∈Y
Lg(y; zk+ 1

2 ), wk+ 1
2 = zk+ 1

2 −D(Byk+ 1
2 − b) and wk+1 = zk+ 1

2 +D
(
Byk+ 1

2 − b
)
.

We again eliminate the governing sequence wk. The elimination produces the update of the form

zk+ 1
2 = zk +D

(
Axk +Byk−

1
2 − b

)
and zk+1 = zk+ 1

2 +D
(
Axk+1 +Byk+ 1

2 − b
)
. (5.2.17)

We recall that D fixes the coordinates in I∗ to be 0. Hence, the primal residuals in (5.2.17) have
no contribution on the elements associated with I∗.

We set the initial dual variable z0 ∈ Rm with the property z0
i = z̄∗i , for i ∈ I∗. We define the

projection

P0 : Rm → Rm by (P0(z))i =

{
0 i ∈ I∗,
zi otherwise.

Then the dual updates are governed by the projection as shown in Algorithm 5.2.3.

5.2.4 A Restricted Dual PRSM for the DNN Relaxation

In this section we present implementation details of Algorithm 5.2.3 for the DNN relaxations of
(BQP) as well as a strategy for obtaining a valid lower bound to the problem. The augmented
Lagrangian for (5.1.20) with the Lagrange multiplier Z is

LA(R, Y, Z) = 〈Q̂, Y 〉+ 〈Z, Y − V RV T 〉+
β

2
‖Y − V RV T ‖2F ,

where β > 0 is a given parameter. The variables R and Y play the roles of x and y in Algo-
rithm 5.2.3, respectively. We obtain explicit update rules tailored to our problem.

For the R-subproblem, we follow the equalities

Rk+1 = argmin
R∈R

LA(R, Y k, Zk)

= argmin
R∈R

−〈Zk, V RV T 〉+ β
2 ‖Y

k − V RV T ‖2F
= argmin

R∈R

β
2 ‖Y

k − V RV T + 1
βZ

k‖2F
= argmin

R∈R

β
2 ‖R− V

T (Y k + 1
βZ

k)V ‖2F
= PR(V T (Y k + 1

βZ
k)V ),

where the fourth equality follows from the choice of the facial range vector V , namely, V TV = I.
Thus, the R-subproblem reduces to a projection problem. We now show how to perform the
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projection PR(WR), where WR is a given matrix. Let WR = UΛUT be a spectral decomposition
of WR. Then

PR(WR) = U Diag(P∆(diag(Λ)))UT ,

where P∆(diag(Λ)) denotes the projection of diag(Λ) onto the simplex Λ = {λ ∈ Rn0+1−p
+ : λT e =

p + 1}. The projection P∆(diag(Λ)) can be performed efficiently, e.g., see [37]. The R-update
reduces to the projection of the vector consists of the positive eigenvalues of V T (Y k + 1

βZ
k)V onto

the simplex ∆.

We now obtain the explicit formula for the Y -subproblem. We again complete the square as
seen in the R-subproblem:

Y k+1 = argmin
Y ∈Y

LA(Rk+1, Y k, Zk+ 1
2 )

= argmin
Y ∈Y

〈Q̂, Y 〉+ 〈Zk+ 1
2 , Y − V Rk+1V T 〉+ β

2 ‖Y − V R
k+1V T ‖2F

= argmin
Y ∈Y

β
2

∥∥∥Y − (V Rk+1V T − 1
β (Q̂+ Zk+ 1

2 )
)∥∥∥2

F

= PY
(
V Rk+1V T − 1

β (Q̂+ Zk+ 1
2 )
)
.

(5.2.18)

We again obtain a projection. Let WY = V Rk+1V T − 1
β (Q̂+ Zk+ 1

2 ). Then

PY(WY )i,j =


1 if i = j = 0,
0 if (i, j), (j, i) ∈ J \ (0, 0),
min {1,max{(WY )i,j , 0}} otherwise.

(5.2.19)

The formula (5.2.19) displays the computational efficiency of the projection (5.2.18). We highlight
again that this efficiency is the consequence of the variable splitting offered by the FR.

We now use Theorem 5.1.4 for the Z-update in Algorithm 5.2.3. The known elements of the
dual optimal solutions are the first row, the first column and the diagonal elements excluding
the (0, 0)-th element. Then, the projection for the Z-updates in Algorithm 5.2.3 follows:

P0 : Sn0+1 → Sn0+1, where

(P0(Z))i,j =

{
0, (i, j) ∈ {(i, j) : i = j, (0, j), (i, 0) for i, j = 1, . . . , n0},
Zi,j , otherwise.

The most time-consuming operation among R, Y, Z updates is the spectral decomposition that
appear in the R-update. The spectral decomposition of n-by-n matrix has the complexity O(n3).
We can impose additional constraints to the subproblems that appear in Algorithm 5.2.3 as long
as the computational resources allow.

Valid Lower Bound Computation We now discuss a strategy for obtaining a valid lower bound
to p∗BQP. Exact solutions of the DNN relaxation (5.1.16) provide lower bounds to (BQP). However,
we often terminate algorithms when the stopping criteria are met for a pre-defined tolerance and
we never set the tolerance to be exactly 0 in practice. A near optimal point Ỹ can result in

p∗DNN ≤ 〈Q̂, Ỹ 〉 and p∗BQP < 〈Q̂, Ỹ 〉
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and may not provide a valid lower bound to p∗BQP . Hence, we provide a method for obtaining a
valid lower bound to (BQP) by forming the dual of the DNN relaxation:

p∗DNN = min
R∈R,Y ∈Y

max
Z

{
〈Q̂, Y 〉+ 〈Z, Y − V RV T 〉

}
= max

Z
min

R∈R,Y ∈Y

{
〈Q̂, Y 〉+ 〈Z, Y − V RV T 〉

}
= max

Z

{
min
Y ∈Y
〈Q̂+ Z, Y 〉+ min

R∈R
〈Z,−V RV T 〉

}
= max

Z

{
min
Y ∈Y
〈Q̂+ Z, Y 〉+ min

R∈R
〈−V TZV,R〉

}
= max

Z

{
min
Y ∈Y
〈Q̂+ Z, Y 〉 − (1 + p)λmax(V TZV )

}
.

The second equality holds by [139, Corollary 28.2.2] and [139, Theorem 28.4] and the last equality
holds due to the Rayleigh’s principle. We define the dual functional

d(Z) := min
Y ∈Y
〈Q̂+ Z, Y 〉 − (1 + p)λmax(V TZV ). (5.2.20)

Then, for any Z̄ ∈ Sn0+1, d(Z̄) provides a valid lower bound to (BQP):

d(Z̄) ≤ p∗DNN ≤ p∗BQP . (5.2.21)

We note that evaluating (5.2.20) is inexpensive. It requires one eigen decomposition and the
remaining computational costs are negligible. We compute the lower bound d(Zk) at any dual
iterate Zk from Algorithm 5.2.3. We may use dd(Zk)e for a lower bound when p∗BQP is known to
be an integer.

5.3 Application to Protein Side-Chain Positioning Problem

The protein side-chain positioning, SCP problem is one of the most important subproblems of
the protein structure prediction problem. The applications of SCP problem extend to ligand
binding [103, 114] and protein-protein docking with backbone flexibility [116, 154]. A protein is
a macromolecule consisting of a long main chain backbone that provides a set of anchors for a
sequence of amino acid side-chains. The backbone is comprised of a repeating triplet of atoms
(nitrogen, carbon, carbon) with the central carbon atom being designated as the alpha carbon. An
amino acid side-chain is a smaller (1 to 18 atoms) side branch that is anchored to an alpha carbon.
The positions of the atoms in a side-chain can be established by knowing the 3D position of its
alpha carbon and the dihedral angles defined by atoms in the side-chain. The number of dihedral
angles varies from 1 to 4 depending on the length of the side-chain. This is true for 18 of the
20 amino acids with glycine and alanine being exceptions because their low atom counts preclude
dihedral angles.

It has been observed that the values of dihedral angles are not uniformly distributed. They tend
to form clusters with cluster centers that are equally separated (+60, 180, -60). Consequently, if
the dihedral angles are unknown, we at least have a reasonable estimate of their values by appealing
to these discretized values. With this strategy being applied, a side-chain with one dihedral angle
would have three possible sets of positions for its atoms. We refer to each set of atomic positions
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as a rotamer. A side-chain with two dihedral angles will have 3 times 3 or 9 different arrangements
of the atoms (i.e. 9 rotamers). Three dihedral angles will result in 27 rotamers and four dihedral
angles will give 81 rotamers.

In the SCP problem we are given a fixed backbone and a designation of the amino acid type for
each alpha carbon. To solve the problem it is required that each amino acid is assigned a particular
rotameric setting with the objective of avoiding any collisions with neighbouring amino acids that
are given their rotameric settings. Avoiding collisions will lower the overall energy of the protein
and, in fact, even with all possible collisions circumvented we want to have an energy evaluation
that is minimal.

The SCP problem has been proven to be NP-hard [1]. The nature of the SCP problem has
motivated the development of many heuristic based algorithms [7, 23, 30, 45, 141, 160] and many
of these approaches rely on the graph structure of the problem. Other approaches for solving
SCP problems have been proposed. These range from probabilistic approaches [91, 105, 143], in-
teger programming [3, 57, 96], to semidefinite programming [27, 36]. Our approach is based on
the SDP relaxation. Given a rotamer library, the SCP problem can be formulated as an binary
quadratic problem, BQP with the unit row-sum constraint. We then form the DNN relaxation
discussed throughout Section 5.1.

5.3.1 Problem Formulation as BQP and DNN Relaxation

We now present a mathematical formulation of the SCP problem as a BQP. We are given a
collection of disjoint sets Vi, i = 1, . . . , p. Each set Vi has mi members, |Vi| = mi, with total
n0 =

∑p
i=1mi and V = ∪pi=1Vi. We call each set Vi a rotamer set and its members are rotamers.

The protein side-chain positioning problem seeks to select exactly one rotamer vi from each set
Vi, in order to minimize the sum of the weights (energy) on the edges between chosen rotamers,
and the energy between each chosen rotamer and the backbone, see Figure 5.3.13. We denote the

alpha carbon

rotamer

possible conformation

Figure 5.3.1: A diagram of the protein side-chain positioning problem

edge weights between two distinct rotamers (nodes) u 6= v by the matrix entries Euv; while the
diagonal entries Euu denote the weight between the rotamer u and the backbone. This yields a
symmetric matrix E, where Euv = ∞ if both rotamers u, v are in the same set. We note that
the multiplication 0∞ = 0 when adding up the weights (energies). Alternatively, we can set these
weights to 0 and add a constraint to choose exactly one rotamer from each set, which is what we

3Vi indicates the i-th rotamer set and vji indicates the j-th candidate in the i-th rotamer set Vi.
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do. Thus each diagonal block of E, of size mi, can be assumed to be a diagonal matrix. We can
make this simplification without loss of generality since we are looking to only choose one rotamer
per set Vi.

We cast the settings for the SCP problem as the BQP over the indicator vector x:

min
x

∑
u,v
Euvxuxv

subject to
∑
u∈Vk

xu = 1, k = 1, . . . , p

x = (xu) ∈ {0, 1}n0 .

(5.3.1)

Then we can adopt the notation Au defined in (5.1.1) to model the unit row-sum constraint so
that the solutions choose exactly one rotamer for each set. We can rewrite the program (5.3.1) as
follows:

(BQPSCP )

p∗BQPSCP
:= min

x
xTEx

subject to Aux = ēp

x =
[
vT1 vT2 . . . vTp

]T ∈ {0, 1}n0

vi ∈ {0, 1}mi , i = 1, . . . , p.

(5.3.2)

Following the derivation in Section 5.1, we form the DNN relaxation for (BQPSCP ) in (5.3.2):

(DNN) p∗DNNSCP
= min

R,Y
{〈Ê, Y 〉 : Y = V RV T , R ∈ R, Y ∈ Y}, (5.3.3)

where Ê = BlkDiag(0, E) and R,Y defined in (5.1.19).

5.3.2 The Strengths of DNN Relaxation

In this section we provide numerical experiments with real-world data and discuss the strengths of
the DNN relaxation. We observe the useful aspects of the DNN relaxation through the numerical
experiments. The DNN relaxation provides a means of treating an ill-posed data matrix with
large positive values, hence we can avoid numerical instabilities. Moreover, we observe that the
DNN relaxation provides superior performance over the SDP relaxation.

5.3.2.1 Implementation Details

Energy Matrix Computation We give an outline for acquiring the energy matrix E in (5.3.2),
the data matrix in the objective. Our implementation relies on the usage of a Python script
executing as an extension of the UCSF Chimera4 application. A detailed implementation can be
found in [29, Chapter 7]. We used protein data files from the Protein Data Bank (PDB)5 to obtain
the coordinates of all atoms in the protein. To get the energy values required by the algorithm,
the native side chain conformations were replaced by rotamers extracted from a rotamer library
provided by the Dunbrack Laboratory [51].

Some approaches use an energy evaluation based on a piece-wise linear approximation of the
Lennard-Jones potential formula (e.g., [30,160]). Here, we use the Lennard-Jones potential formula,

4The UCSF Chimera software can be found in https://www.cgl.ucsf.edu/chimera/download.html.
5https://www.rcsb.org/
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which provides a more accurate energy value computation. In brief, the Lennard-Jones potential
formula engages the Euclidean distance between a pair of atoms with some parameters dependant
on the type of amino acids. A more detailed explanation of these energy computations can be
found in [29, Chapter 6-7]. We finally use a strategy (known as ‘dead end elimination’) to reduce
the size of the rotamer sets associated with each amino acid. The basic idea behind this strategy
is that a rotamer can be removed from its rotamer set if there is another rotamer in that set that
gives a better energy value regardless of the rotamer selections for the neighbouring amino acids.
Among various approaches for the dead end elimination, we followed the Goldstein’s criteria [75].

Let U be a side-chain conformation of a protein. The energy of the conformation U is

E(U) =

n0∑
i=1

Eself(ui) +

n0−1∑
i=1

n0∑
j=i+1

Epair(ui, uj),

where ui is a side-chain conformation of an amino acid, Eself(ui) is the energy corresponding to ui
and the backbone, and Epair(ui, uj) is the energy formed by ui and uj , a rotamer associated with
a neighbouring amino acid. In our formulation, we placed Eself(ui) along the diagonal of E and
Epair(ui, uj) on the appropriate off-diagonal positions of E as shown in Section 5.3.1.

Effective Removal of Collisions We typically observe some very large elements in E. This
is due to the collisions between rotamers and they are indicated by huge energy values Eij >> 0
that are often greater than 1010. These huge values occur due to a part of the Lennard-Jones
potential formula that involves the Euclidean distance between two distinct rotamers that goes to
the denominator of a fraction.

In general, having very large values in data is prone to numerical instabilities. If every nonzero
elements of E are large, the usual approach is to scale E to avoid large values. However, the matrix
E often has elements Ei,j that are more than 10 digits as well as elements that are 1 digit. When
there is a large discrepancy among the elements of E, scaling E would make the relatively small
values close to 0 and lead to loss of precision in the solution. However, this ill-posed data does not
take place as a problem in our implementation. Recall that we solve the Y -subproblem (5.2.18) as
follows:

Y k+1 = PY
(
GJ c

(
V Rk+1V T − 1

β
(Ê + Zk+ 1

2 )

))
= PY

(
GJ c

(
− 1

β
Ê +

[
V Rk+1V T − 1

β
Zk+ 1

2

]))
.

If there is a very large element (̂i, ĵ) in Ê = blkdiag(0, E), the projection PY sets the (̂i, ĵ)-
element of Y k+1 to 0; see (5.2.19). Hence, for those positions (̂i, ĵ) with very large energy values,
the constraint Yî,ĵ = 0 is implicitly imposed. We can interpret this as having implicit gangster
constraints on these elements. Consequently, the large elements do not contribute to the objective
value since Êî,ĵYî,ĵ = 0.

We can also take advantage of the large values in the data matrix to eliminate edges in the
graph and increase the size of the gangster indices.

Lemma 5.3.1. Suppose that x is feasible for the (BQPSCP) in (5.3.2), and let u = xTEx be its
objective value. Let NE =

∑
{ij:Eij<0}Eij and suppose that

Ei0j0 > u−NE , for some i0, j0
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holds. Then, for any optimal solution x∗ to (BQPSCP), we have x∗i0x
∗
j0

= 0.

Proof. Let x∗ be an optimal solution to (BQPSCP). Let U be the set of selected rotamers found
in the optimal solution x∗. We note that, for any set S, we have∑

(i,j)∈S

Ei,j =
∑

(i,j)∈S∩{(i,j):Ei,j≥0}

Ei,j +
∑

(i,j)∈S∩{(i,j):Ei,j<0}

Ei,j ≥ 0 +NE = NE .

Suppose to the contrary that x∗ satisfies x∗i0x
∗
j0

= 1, i.e., x∗i0 = x∗j0 = 1. Then we reach the following
contradiction:

p∗BQPSCP
= 〈x∗, Ex∗〉 = Ei0j0 +

Ei0j0 +
∑

(i,j)∈U\{(i0,j0)}

Ei,j

 ≥ Ei0j0 +NE > u.

Corollary 5.3.2. Let i0 be an index such that Ei0i0 > u − NE, where u and NE defined in
Lemma 5.3.1. Then, for any optimal solution x∗ to BQPSCP, we have

Yx∗ :=

(
1
x∗

)(
1
x∗

)T
∈
{
Y ∈ Sn0+1 : Y (:, i0) = 0, Y (i0, :) = 0

}
.

Proof. Let i0 be an index such that Ei0i0 > u−NE . Then x∗i0 = 0 by Lemma 5.3.1. We note that
Yx∗ is a positive semidefinite matrix. If a diagonal entry of a positive semidefinite is zero, then its
corresponding column and row must be 0; see Fact 2.2.5.

By Lemma 5.3.1 and Corollary 5.3.2, if we detect entries i0, j0 that has the property Ei0i0 >
u−NE , then we may strengthen the gangster constraint as follows:

J ← J ∪
{
Y ∈ Sn0+1 :

Y (i0, j0) = Y (j0, i0) = 0, for i0 6= j0 such that Ei0j0 > u−NE

Y (:, i0) = 0, Y (i0, :) = 0, for i0 such that Ei0i0 > u−NE

}
.

Upper Bound Computation We discuss two strategies for obtaining upper bounds to the
SCP problem. These strategies are derived from those presented in [27, 36] and we include them
here for completeness. We obtain upper bounds by finding feasible solutions to the original integer
model in (5.3.2). Let (Rout, Y out, Zout) be the output of the algorithm.

1. Let xapprox ∈ Rn0 be the second through to the last elements of the first column of Y out. Note
that 0 ≤ xapprox ≤ 1. Let S = {x ∈ {0, 1}n0 : Ax = ēp} be the feasible region of BQP. Then,
owing to the feasibility, the nearest feasible solution to (BQP) from xapprox can be found by
solving the following projection (see [27, Proposition 5.1]):

argminx
{
‖x− xapprox‖2 : x ∈ S

}
= argminx {〈x, xapprox〉 : x ∈ S} . (5.3.4)

2. The second approach is based on the Eckart-Young theorem, the best rank-one approximation
argument. Let Y out =

∑r
i=1 λiviv

T
i be the compact spectral decomposition, with λ1 ≥ λ2 ≥

· · · ≥ λr > 0. And by abuse of notation we set vi to be the vectors in Rn0 formed by

88



discarding the first element from vi. We now let use the most dominant eigen pair of Y out to
form xapprox, i.e., xapprox = λ1v1. We again obtain the nearest feasible solution to xapprox by
solving (5.3.4).

In fact, solving (5.3.4) does not require using any LP software; we can obtain the optimal
solution for (5.3.4) as follows. We partition xapprox into p subvectors of sizes mi = |Vi|, for i =
1, . . . , p. Let xi ∈ Rmi be the subvector of xapprox associated with i-th rotamer set Vi, i.e., xapprox =
[x1;x2; . . . ;xp]. We define x̂i ∈ Rmi as follows:

x̂ij =

{
1, if xij = max

`∈[mi]

{
xi`
}

0, otherwise.

If there is subvector x̂i with more than one 1 in its components, we pick only one 1 and set the
remaining to be 0. We then form x̂ = [x̂1; x̂2; . . . ; x̂p] ∈ Rn0 . It is clear that x̂ is feasible for (5.3.1).
We use x̂TEx̂ as an upper bound to the SCP problem.

Stopping Criteria We terminate rPRSM when either of the following conditions is satisfied.

1. Maximum number of iterations, denoted by “maxiter” is achieved.

2. For given tolerance ε, the following bound on the primal and dual residuals holds for mt

sequential times:

max
{
‖Y k − V RkV T ‖F , β‖Y k − Y k−1‖F

}
< ε.

3. Let {l1, . . . , lk} and {u1, . . . , uk} be sequences of lower and upper bounds discussed in (5.2.20)
and (5.3.4), respectively. Any of the lower bounds achieve the best upper bound, i.e.,

min{l1, . . . , lk} ≥ max{u1, . . . , uk}.

Parameter Settings We use the following parameters related to the implementation. For β
and γ, we choose

β = max{b0.5 · n0/pc, 1}, γ = 0.99.

The parameters related to stopping criteria are:

maxiter = min{105, p(n0 + 1) + 104}, ε = 10−10, mt = 100.

For the initial iterates for rPRSM, with ZA defined in Theorem 5.1.4, we use

Y 0 = 0, Z0 = PZA(Y 0).

5.3.2.2 Experiments with Real-World Data

We now provide numerical experiments using the selected instance from the Protein Data Bank6.
We select instances listed in [30] with proteins that have up to 300 amino acids. The following
list defines the column headers used in Table 5.3.1. We use the same headers to the additional
numerical experiments that are displayed in Appendix A.1.

6https://www.rcsb.org/
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1. name: instance name;

2. p: the number of amino acids;

3. n0: the total number of rotamers;

4. lbd: the lower bound obtained by running rPRSM;

5. ubd: the upper bound obtained by running rPRSM;

6. rel-gap: relative gap of each instance using rPRSM, where

relative gap := 2
|best feasible upper bound− best lower bound|
|best feasible upper bound + best lower bound + 1|

; (5.3.5)

7. iter: the number of iterations used by rPRSM with tolerance ε = 10−10;

8. time(sec): the running time (in seconds) used by rPRSM.

Problem Data Numerical Results Timing
# name p n0 lbd ubd rel-gap iter time(sec)
10 2IGD 50 126 -78.50608 -78.50608 5.39611e-15 500 19.43
20 1VQB 75 406 -96.94940 -96.94940 4.34568e-14 900 179.35
30 2ACY 84 580 -146.32254 -146.32254 1.06468e-14 7800 2610.24
40 2TGI 100 355 -14.03554 -14.03554 2.46249e-13 1300 136.30
50 2SAK 111 214 -239.86975 -239.86975 1.08995e-12 500 25.50
60 2CPL 132 819 -284.97180 -284.97180 9.75693e-15 5900 3292.98
70 1CV8 146 730 -213.13554 -213.13554 3.28738e-13 5600 2572.99
80 2ENG 162 867 82.01797 82.01797 1.33295e-13 14200 8274.48
90 1A7S 179 524 -239.78218 -239.78218 1.00542e-14 1200 314.57
100 1MRJ 208 1178 -295.13711 -295.13711 1.70740e-13 2300 2421.15
110 1EZM 239 1497 -217.36581 -217.36581 3.49620e-13 2300 3876.18
120 1SBP 256 1704 -271.08838 -271.08838 3.59996e-14 40000 609487.29
130 3PTE 284 2006 161.17216 161.17216 5.09815e-15 13500 250604.17

Table 5.3.1: Computational results on selected PDB instances

We observe from the last two columns of Table 5.3.1 that many instances are solved within
good relative gaps. In fact, most of the instances display relative gaps that are essentially 0. We
recall from (5.3.4) that we obtain the upper bounds via finding feasible solutions to (BQP). That
we have the relative gap essentially 0 grants us the attainment of the globally optimal solutions to
the SCP problem. Approaches involving heuristic algorithms do not provide a natural means of
certifying optimality, relying solely on a comparison of the rotameric solution with the so-called χ1

and χ2 angles from the PDB while ignoring optimality of the discretized solution. We highlight
that we provide not only the globally optimal solutions but also a way to certify their optimality.

A Tight Relaxation We illustrate the strengths of the DNN relaxation by comparing the op-
timal values of the DNN relaxation and the SDP relaxation. In our test, we selected five small
instances. As discussed above, some elements of the data E are typically very large due to the col-
lisions in rotamers, typically at least 10 digits. These cause numerical difficulties when a standard
interior point solver is used. Hence, in our test, we set the entries Ei,j = min{104, Ei,j}, ∀i, j, in
order to avoid the difficulties from having these large elements. We used the rPRSM algorithm
for DNN relaxation and used the SDPT3 for solving the SDP relaxation. The displayed val-
ues in Table 5.3.2 are the best lower bounds found from rPRSM and the optimal reported by
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problem # instance DNN relaxation SDP relaxation
1 1AIE -46.96 -2460.53
2 2ERL 55.33 -18241.26
3 1CBN -40.43 -22380.58
4 1RB9 -76.97 -23936.35
5 1BX7 16.96 -23965.88

Table 5.3.2: The solver optimal values of the DNN and SDP relaxations on selected instances

SDPT3. We observe in Table 5.3.2 that the DNN relaxation shows superior performances over
the SDP relaxations in the relaxation values; the DNN relaxation for the SCP problem provides
a much tighter relaxation than the SDP relaxation.

5.4 Application to Quadratic Assignment Problem

The quadratic assignment problem, QAP, is one of the fundamental combinatorial optimization
problems in the field of operations research, and includes many important applications. It is
arguably one of the hardest of the NP-hard problems. The QAP models real-life problems such
as facility location. Suppose that we are given a set of n facilities and a set of n locations. For
each pair of locations (s, t) a distance Bst is specified, and for each pair of facilities (i, j) a weight
or flow Ai,j is specified, e.g., the amount of supplies transported between the two facilities. In
addition, there is a location (building) cost Cis for assigning a facility i to a specific location s. The
problem is to assign each facility to a distinct location with the goal of minimizing the sum over
all facility-location pairs of the distances between locations multiplied by the corresponding flows
between facilities, along with the sum of the location costs. This is formulated

min
π∈Λ

n∑
i=1

n∑
j=1

Ai,jBπ(i),π(j) +
n∑
i=1

Ci,π(i), (5.4.1)

where Λ is the set of all permutations of {1, . . . , n}.

Applications of the QAP include: scheduling, production, computer manufacture, and other
fields, see e.g., [55, 69, 86, 98, 152]. Moreover, many classical combinatorial optimization problems,
including the travelling salesman problem, maximum clique problem, and graph partitioning prob-
lem, can all be expressed as a QAP. For more information see e.g., [16,33,40,124,125]. There are
three main classes for method for solving the QAP; heuristic methods, branch-and-bound methods
and methods based on the SDP relaxations. Among many available methods for solving the QAP,
we focus on the last type of class.

5.4.1 Problem Formulation as BQP

We adopt the trace inner product reformulation of the QAP (5.4.1):

min
X∈Π
〈AXB − 2C,X〉, (5.4.2)

where A,B ∈ Sn, C ∈ Rn×n, and Π is the set of n-by-n permutation matrices. By the Birkhoff-
Neumann theorem [17,153], it is known that Π is equal to the set of extreme points of the doubly
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stochastic matrices. This leads to an alternative representation of the set Π

Π = De ∩ Bz,

where
De := {X ∈ Rn×n : Xe = e,XT e = e},
Bz := {X ∈ Rn×n : Xij ∈ {0, 1}, ∀i, j ∈ [n]}.

The characterization X ∈ Π = De ∩ Bz allows us to formulate the problem (5.4.2) as a BQP with
linear constraints. We note the characterizations

XT e = e ⇐⇒ eTXI = e ⇐⇒ (I ⊗ eT ) vec(X) = e;
Xe = e ⇐⇒ IXe = e ⇐⇒ (eT ⊗ I) vec(X) = e.

Hence, (5.4.2) is equivalent to

(BQPQAP)

p∗BQPQAP
= min

x
xT (BT ⊗A)x− 2 vec(C)Tx

subject to (I ⊗ eT )x = e
(eT ⊗ I)x = e

x ∈ {0, 1}n2
.

(5.4.3)

The QAP is a particular instance of BQP with the unit row-sum constraint and an additional
affine constraint. The data matrix I ⊗ eT is in the form of Au defined in (5.1.1) with p = n and
mi = n, for all i ∈ [p]. The additional set of constraints is (eT ⊗ I)x = e and it gives rise to an
additional set of gangster indices as we observe in the next section.

5.4.2 DNN Relaxation of QAP

We now derive the DNN relaxation of (BQPQAP). We follow the implications made in (5.1.4).
By regarding Au ← (I⊗eT ), we obtain the a set of gangster indices from the support of the matrix

ATuAu − I = (I ⊗ eT )T (I ⊗ eT )− I =
(
I ⊗ eeT

)
− I.

Similarly, Xe = e gives rise to a variant of the gangster constraint (5.1.7). By regarding Au ←
(eT ⊗ I), we obtain an additional set of gangster indices comprised of the support of the matrix

ATuAu − I = (eT ⊗ I)T (eT ⊗ I)− I =
(
eeT ⊗ I

)
− I.

Consequently, we have the following set of gangster indices for (BQPQAP):

JQ := supp
(
BlkDiag(1, I ⊗ eeT − I)

)
∪ supp

(
BlkDiag(1, eeT ⊗ I − I)

)
.

Given Y following the partition defined in (5.1.13), the action of gangster operator GJQ(Y ) = E00

can be described as follows in plain language; the first gangster set refers to setting the off-diagonal
elements of the diagonal blocks to be 0; and the second gangster set refers to setting the diagonal
elements of the off-diagonal blocks to be 0.

We follow the derivation discussed in Section 5.1. We now obtain an exposing vector for the
SDP relaxation of (BQPQAP). We recall from (5.1.9) that the linear map gives rise to an exposing
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vector. We let

H :=

[(
I ⊗ eT

)(
eT ⊗ I

)] ∈ R2n×n2
.

Then we have the linear equality Hx = e that allows us to form the exposing vector as introduced
in (5.1.9): [

−e H
]T [−e H

](1
x

)(
1
x

)T
= 0.

and we obtain the exposing vector

K =
[
−e H

]T [−e H
]

=

[
2n −2ēTn2

−2ēn2 HTH

]
=

[
2n −2ēTn2

−2ēn2 I ⊗ eeT + eeT ⊗ I

]
. (5.4.4)

The exposing vector K is in fact maximal, and it gives the minimal facial range vector V presented
in [166]:

V =

[
1 0
1
ne Ve ⊗ Ve

]
∈ R(n2+1)×((n−1)2−1), where Ve =

[
In−1

−eTn−1

]
∈ Rn×(n−1).

We replace V with a facial range vector with orthonormal columns. After the lifting, we obtain the
linear objective in Y :

〈AXB − 2C,X〉 = 〈LQ, Y 〉, where LQ =

[
0 − vec(C)T

− vec(C) B ⊗A

]
.

Finally, we obtain the DNN relaxation for (BQPQAP):

p∗DNNQAP
= min

R,Y

{
〈LQ, Y 〉 : GJQ(Y ) = E00, Y = V RV T , 0 ≤ Y ≤ 1, R � 0

}
. (5.4.5)

A strictly feasible point of (5.4.5) can be found by using the barycenter of the rank-one lifted
matrices of the ground set Π, e.g., see [166].

5.4.3 Numerical Experiment

We now present numerical results for Algorithm 5.2.3 using the real-world data from QAPLIB7. In
Section 5.4.3.1 we discuss the upper bounding strategies, list the stopping criteria and the parameter
settings. In Section 5.3.2.2 we exhibit the comparative performance between rPRSM and [123,
ADMM]. We aim to show that our proposed approach shows significant improvements on the
relative gaps.

5.4.3.1 Implementation Details

Upper Bound Computation Following the same approach from (5.3.4), given X̄ ∈ Rn×n, the
nearest permutation matrix X∗ from X̄ is found by solving

X∗ = argmin
X∈Π

‖X − X̄‖2F = argmin
X∈Π

−〈X̄,X〉. (5.4.6)

7http://coral.ise.lehigh.edu/data-sets/qaplib/qaplib-problem-instances-and-solutions/
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Any solution to the problem (5.4.6) yields a feasible solution to the original QAP, which gives a
valid upper bound p∗BQPQAP

. Since the permutation matrices are the extreme points of the set of

doubly stochastic matrices De, we reformulate the problem (5.4.6) as the LP

max
x∈Rn2

{
〈vec(X̄), x〉 : (In ⊗ eT )x = e, (eT ⊗ In)x = e, x ≥ 0

}
, (5.4.7)

and we solve (5.4.7) using a simplex method.

For the choice of X̄, [123] present two methods for obtaining upper bounds using a nearest
permutation matrix, identical to the ones discussed in the upper bound computation discussed in
Section 5.3.2.1. Inspired by the approximation algorithm in [73], we use an additional strategy
using a nearest permutation matrix. We let ξ be a random vector in Rr with elements in (0, 1),
and in decreasing order. We use ξ to perturb the eigenvalues λ1, . . . , λr and form X̄ for the upper
bound problem (5.4.7) so that:

vec(X̄) =

r∑
i=1

ξiλivi.

We repeat this max{1,min(3 ∗ dlog(n)e,ubest − lbest} number of times, where ‘ubest’ and ‘lbest’
refer to the best upper and lower bounds achieved during the rPRSM routine, respectively. We
update the current upper bound ‘ubest’ if a smaller upper bound is obtained by any of approaches
listed above.

Stopping Criteria We terminate the algorithm when at least one of the following list of stopping
condition is met. We adopt all stopping criteria used for the SCP problem listed in Section 5.3.2.1.
That is, we terminate the algorithm when maximum iteration is reached or the best lower bound
meets the best upper bound. We terminate the algorithm if the residual error is less than ε for the
mt consecutive times. Let {`1, . . . , `k} and {u1, . . . , uk} be sequences of lower and upper bounds
from (5.2.21), respectively. The lower (resp. upper) bounds do not change for m` (resp. mu)
sequential times. Finally, we terminate the algorithm when the KKT conditions given in Propo-
sition 5.1.5 are satisfied within a pre-defined tolerance ε > 0; for a predefined tolerance δ > 0, it
holds that

max
{
‖Rk − PR(Rk + V TZkV )‖F , ‖Y k− PY(Y k − LQ − Zk)‖F , ‖Y k− V RkV T ‖F

}
< δ.

Parameter Settings We set the parameter β = n
3 and the under-relaxation parameter γ = 0.9

for the dual variable update. We choose the initial iterates8

Y 0 =
1

n!

∑
X∈Π

(1; vec(X))(1; vec(X))T and Z0 = PZA(0).

For the parameters related to the stopping condition, we set maxiter = 40000, ε = 10−5, mt = 100,
and m` = mu = 100. We use the KKT condition stopping criterion for instances with n larger than
20 and we set the tolerance δ = 10−5 when it is used. We compute the lower and upper bounds
every 100 iterations.

8The formula for Y 0 is introduced in [166, Theorem 3.1].
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5.4.3.2 Experiments with Real-World Data

We now provide numerical experiments using selected instances from the QAPLIB9. We use the
instances with symmetric, integral data matrices A and B in the model (5.4.2). When A,B are
symmetric, p∗BQPQAP

is an even number. Hence, we add 1 when a lower bound obtained is an odd
number.

The below is the list of headers used in Table 5.4.110.

1. true-opt: global optimal value; marked with ∗ when unknown.

2. lbd: lower bound from rPRSM;

3. ubd: upper bound from rPRSM;

4. rel.gap: relative gap from rPRSM, with the formula (5.3.5)

5. rel.opt.gap: relative optimality gap from rPRSM using the known true optimal value and
the lower bound;

6. rel.gapA: relative gap from [123, ADMM] with tolerance ε = 10−5;

7. iter: number of iterations by rPRSM with tolerance ε = 10−5;

8. iterA: number of iterations from [123, ADMM] with tolerance ε = 10−5;

9. time: solver rPRSM time;

10. timeA: solver [123, ADMM] time.

Additional numerical experiments are displayed in Table A.2.1 and Table A.2.2 in Appendix A.2
and we use the same headers listed above.

We discuss the results exhibited in Table 5.4.1. 45 out of 46 instances are solved with relative
gaps just as good as the ones obtained by ADMM and these instances are marked with boldface
in Table 5.4.1.

9http://coral.ise.lehigh.edu/data-sets/qaplib/qaplib-problem-instances-and-solutions/
10All the numerical tests are performed using MATLAB version 2021a on Dell XPS 8940 with 11th Gen Intel(R)

Core(TM) i5-11400 @ 2.60GHz 2.60 GHz with 32 Gigabyte memory.

95

http://coral.ise.lehigh.edu/data-sets/qaplib/qaplib-problem-instances-and-solutions/
http://coral.ise.lehigh.edu/data-sets/qaplib/qaplib-problem-instances-and-solutions/


Problem Data Numerical Results Timing

# name true-opt lbd ubd rel.gap rel.opt.gap rel.gapA iter iterA time timeA

1 chr12a 9552 9548 9552 0.04 0.04 0.02 10900 24800 20.13 44.24
2 chr12b 9742 9742 9742 0 0 0.08 6500 26700 14.18 46.98
3 chr12c 11156 11156 11156 0 0 0 1100 19400 2.36 34.38
4 chr15a 9896 9896 9896 0 0 0.28 4400 30900 17.25 127.24
5 chr15b 7990 7990 7990 0 0 0.03 2000 20300 7.79 83.69
6 chr15c 9504 9504 9504 0 0 0.08 1100 20000 4.64 84.61
7 chr18a 11098 11098 11098 0 0 0.00 1100 20600 9.57 183.46
8 chr18b 1534 1534 1642 6.80 0 59.83 2372 12600 24.12 126.03
9 chr20a 2192 2192 2192 0 0 0.18 2300 33700 35.95 527.66
10 chr20b 2298 2298 2298 0 0 0 700 26200 11.80 436.49
11 chr20c 14142 14140 14142 0.01 0.01 0.15 35000 33700 578.68 522.53
12 els19 17212548 17208746 17212548 0.02 0.02 0.35 16200 40000 219.94 517.13
13 esc16a 68 64 68 6.02 6.02 37.74 1406 597 8.34 3.37
14 esc16b 292 290 294 1.37 0.69 6.66 557 399 3.14 2.21
15 esc16c 160 154 160 3.81 3.81 23.93 748 896 5.11 5.18
16 esc16d 16 14 18 24.24 12.90 87.50 891 659 5.93 3.86
17 esc16e 28 28 28 0 0 58.97 1500 556 8.68 3.23
18 esc16f 0 0 0 0 0 0 0 1 0.00 0.00
19 esc16g 26 26 26 0 0 17.86 300 695 1.76 4.01
20 esc16h 996 978 996 1.82 1.82 31.76 623 609 3.80 3.51
21 esc16i 14 12 14 14.81 14.81 88.89 10200 2044 58.18 11.46
22 esc16j 8 8 8 0 0 82.76 100 787 0.60 4.47
23 had12 1652 1652 1652 0 0 0 300 11600 0.63 21.90
24 had14 2724 2724 2724 0 0 0 400 20300 1.44 68.81
25 had16 3720 3720 3720 0 0 0 500 18100 3.13 99.30
26 had18 5358 5358 5358 0 0 0.02 1100 34700 11.01 339.89
27 had20 6922 6922 6922 0 0 0.13 1800 40000 30.69 655.85
28 nug12 578 568 616 8.10 1.74 24.13 4842 2884 11.91 5.79
29 nug14 1014 1012 1022 0.98 0.20 1.08 8087 19600 32.76 71.64
30 nug15 1150 1142 1268 10.45 0.70 16.33 6965 5812 34.93 27.47
31 nug16a 1610 1600 1610 0.62 0.62 0.62 10500 19300 69.99 117.93
32 nug16b 1240 1220 1258 3.07 1.63 25.41 7069 2347 43.61 13.46
33 nug17 1732 1708 1756 2.77 1.39 2.77 10500 6401 93.09 50.14
34 nug18 1930 1894 1990 4.94 1.88 12.84 10500 3988 116.48 40.33
35 nug20 2570 2508 2680 6.63 2.44 16.90 11000 2386 205.48 40.16
36 rou12 235528 235528 235528 0 0 0 4100 34200 10.27 70.42
37 rou15 354210 350218 360702 2.95 1.13 4.89 2596 3946 13.98 19.57
38 rou20 725522 695182 764912 9.55 4.27 14.93 5450 1538 96.64 26.80
39 scr12 31410 31410 31410 0 0 19.38 300 4268 0.74 8.16
40 scr15 51140 51140 51140 0 0 2.67 400 5489 1.97 24.69
41 scr20 110030 106804 132330 21.35 2.98 33.40 29200 9705 503.69 158.47
42 tai10a 135028 135028 135028 0 0 0.01 1300 21400 2.05 20.95
43 tai12a 224416 224416 224416 0 0 0 300 4300 0.62 7.74
44 tai15a 388214 377102 409004 8.12 2.90 9.03 2290 2245 12.45 11.17
45 tai17a 491812 476526 534328 11.44 3.16 16.25 3897 1399 33.83 11.62
46 tai20a 703482 671676 753334 11.46 4.63 19.03 3872 999 70.05 17.62

Table 5.4.1: QAPLIB instances of small size

We have found provably optimal solutions for the instances

chr12b chr12c chr15a chr15b chr15c chr18a chr20a chr20b esc16e esc16f esc16g
esc16j had12 had14 had16 had18 had20 rou12 scr12 scr15 tai10a tai12a.

We also observe from columns iter and iterA in Table 5.4.1 that rPRSM gives reduction in number
of iterations in many instances; 38 out of 46 instances use fewer or equal number of iterations using
rPRSM compared to ADMM. For rPRSM alone we observe that most of the instances show
good bounds with reasonable amount of time. Most of the instances are solved within a minute
using the machine described above.
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5.5 Implicit Problem Singularities of SCP and QAP

In this section we compute the three different singularity values and the strengthened Barvinok-
Pataki bound discussed in Chapter 3 for the SDP relaxations of the SCP problem and QAP. We
aim to show that the singularity degree, max-singularity degree and the implicit problem singularity
can take different values. The implicit redundant constraints in the SDP relaxation of the QAP are
first observed in the 90’s. The redundant constraints are found after finding an appropriate facial
range vector and they appear to be realized as a special property embedded in this particular class
of problem, rather than a property holds for an arbitrary spectrahedron.

We first realize the linear constraints of (5.3.3) as a set of constraints with the standard inner
product. We recall the partitions used for the block representation for the lifted matrix Y in (5.1.13).
There are four types of constraints involved. We group the constraint data matrices with the
notation Atype 1

i , Atype 2
i , Atype 3

i and Atype 4
i .

1. Type 1: The (0, 0)-th entry is equal to 1. This can be imposed by the equality Y00 = E00•Y =
1, i.e., Atype 1

1 = E00.

2. Type 2: The off-diagonal elements of the diagonal blocks are 0. These constraints can be
imposed by the equalities Atype 2

i • Y = 0, for i = 1, . . . ,
∑p

j=1 t(mj − 1), where {Atype 2
i }i is a

set of matrices

eke
T
` + e`e

T
k , for (k, `) ∈ supp(BlkDiag(0, ATuAu − I)) and k < `.

3. Type 3: The trace of the diagonal blocks are equal to 1. These constraints can be imposed
by the equalities Atype 3

i • Y = 1 for i = 1, . . . , p, where

Atype 3
i =

[
0 0Tn0

0n0 BlkDiag(0, . . . , Imi , . . . , 0)

]
.

4. Type 4: The 0-th row and column are equal to the diagonal. These constraints can be realized
by the equalities Atype 4

i • Y = 0, for i = 1, . . . , n0, where

Atype 4
i = 2eie

T
i − eieT0 − e0e

T
i .

Thus we have the set of equalities that are represented in the standard trace inner product form
(A(Y ))i = 〈Ai, Y 〉 = bi, ∀i.

We show that the singularity degree of the SCP is exactly one. We use the matrices Atype `,
` = 1, 2, 3, 4, above to form the exposing vector defined in (5.1.10):

KSCP :=
[
−e Au

]T [−e Au
]

= BlkDiag(p, Im1 , . . . , Imp)− e0ē
T
n0+1 − ēn0+1e

T
0 .

We verify that ȳ =
(
p ē∑p

j=1 t(mj−1) −ēp ēn0

)T
∈ R1+

∑p
j=1 t(mj−1)+p+n0 can be used to form

KSCP and satisfy the auxiliary system (2.3.4):

KSCP = A∗(ȳ) = Atype 1
1 · (p) +

∑p
j=1 t(mj−1)∑

i=1

Atype 2
i · (1) +

p∑
i=1

Atype 3
i · (−1) +

n0∑
i=1

Atype 4
i · (1)
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and

bT ȳ = 1 · (p) +

∑p
j=1 t(mj−1)∑

i=1

0 · (1) +

p∑
i=1

1 · (−1) +

n0∑
i=1

0 · (1) = p+ 0− p+ 0 = 0.

Hence, the singularity degree of the SDP relaxation of the SCP is 1. We recall, from Theorem 5.1.1,
that the type 3 and the type 4 constraints are redundant. Therefore, the implicit problem singularity
of the SCP is p+ n0.

We let F ⊆ Sn0+1
+ be the feasible region of SCP problem. We recall that face(F ,Sn0+1

+ ) ⊆
V Sn0+1−p

+ V T , where V is a minimal facial range vector for F . Hence, the maximum FR steps,
maxsd, is at most p. We show that maxsd(F) is lower bounded by p, and consequently implies
that maxsd(F) = p. We can decompose the exposing vector KSCP as follows. We decompose Au
into

Au =

p∑
i=1

Aiu, where Aiu = BlkDiag(0, · · · , ēmi︸︷︷︸
i−th block

, · · · , 0), ∀i ∈ [p].

Then, and we obtain

KSCP =
[
−ēp Au

]T [−ēp Au
]

=

p∑
i=1

[
−ei Aiu

]T [−ei Aiu
]
.

For each i = 1, . . . , p, we note that, Ki :=
[
−ei Aiu

]T [−ei Aiu
]

serves as an exposing vector. We
can choose appropriate coefficient vector ȳ to form each Ki

11. Therefore, maxsd(F) = p.

Without considering the FR, the usual Barvinok-Pataki bound, Theorem 3.2.5, gives the bound
on the rank r for which

t(r) ≤
p∑
j=1

t(mj − 1) + p+ n0 + 1.

The implicit problem singularity for SCP gives a much tighter bound on the rank r

t(r) ≤
p∑
j=1

t(mj − 1) + 1.

A similar argument follows for the QAP. The QAP also has the four types of constraints
used for the SCP problem above. The SDP relaxation for the QAP contains additional type of
constraints that sets the diagonal elements of the off-diagonal blocks to be 0. This gives rise to
n · t(n− 1) number of equality constraints. We call group these as the type 5 constraints and they
can be represented using the set of matrices {Atype 5

i }i of the form

BlkDiag
(
0, (eke

T
` + eke

T
` )⊗ In

)
, for k, ` ∈ [n], k < `.

We again find a vector ȳ that forms the exposing vector KQAP given in (5.4.4). With

ȳ =
(
2n ēn·t(n−1) −2ēn 2ēn2 ēn·t(n−1)

)T
,

11For instance, in order to form K1, we can choose the coefficients ȳ = [ȳ1; ȳ2; ȳ3; ȳ4] with ȳ1 = 1, ȳ2 =
[ēt(m1); 0∑p

j=2
t(mj−1)], ȳ

3 = e1 ∈ Rp and ȳ4 = [ēm1 ; 0∑p
j=2

mj
].
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we obtain

KQAP = Atype 1
1 · (2n) +

n·t(n−1)∑
i=1

Atype 2
i · (1) +

n∑
i=1

Atype 3
i · (−2) +

n2∑
i=1

Atype 4
i · (2) +

n·t(n−1)∑
i=1

Atype 5
i · (1)

and

bT ȳ = 1 · (2n) +

n·t(n−1)∑
i=1

0 · (1) +

n∑
i=1

1 · (−2) +

n2∑
i=1

0 · (−2) +

n·t(n−1)∑
i=1

0 · (1) = 2n+ 0− 2n+ 0 + 0 = 0.

Thus, the singularity degree of the SDP relaxation of the QAP is equal to 1; see also [50]. Since
the type 3 and 4 constraints become redundant after FR, the implicit problem singularity for
the QAP is n + n2. The size of the minimal facial range vector V is of the size (n2 + 1)-by-
((n − 1)2 + 1). Hence, the maxsd ≤ (n2 + 1) − [(n − 1)2 + 1] = 2n − 1. We can adopt the same
approach given in the SCP to obtain the partial exposing vectors, and we obtain maxsd ≥ n. We
also note that the original Barvinok-Pataki bound, Theorem 3.2.5, gives the rank bound t(r) ≤
1 + 2n · t(n − 1) + n + n2 = n3 + n + 1 and the strengthened bounds gives the improved bound
t(r) ≤ n3 − n2 + 1.
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Chapter 6

Gauss-Newton Interior Point Method
for Solving SDP with a Nonlinear
Objective

Optimization over Hn+ is essential in the area of quantum information theory. Many problems
can be posed as an optimization problem with the objective functions being the fidelity function,
the nuclear norm or the (relative) entropy functions; see e.g., [70, 104, 112, 155]. The arguments
in the quantum information theory are governed by the object called density matrix, a Hermitian
positive semidefinite matrix of the unit trace. Therefore, the SDP naturally takes place when these
problems are posed as an optimization problem. Furthermore, the FR plays a critical role with the
growing need for developing stable numerical methods in the quantum information theory. The
variables in these applications are defined over complex vector spaces and a direct application of
optimization algorithms developed over Sn+ is not available.

In this chapter, we propose the Gauss-Newton interior-point method framework for SDPs
over the Hermitian matrices with nonlinear objective functions. We then apply our proposed
framework to the real-world application that arises in the key rate computation for quantum key
distribution, QKD. The main goal of this application is to obtain a reliable lower bound to the
optimal value. However, the feasible region may fail to contain strictly feasible points resulting in
numerical instability. Moreover, the non-smoothness of the objective function adds difficulties. We
show that the FR technique serves perfectly for avoiding these difficulties and hence shows a great
promise for the growing need for stability in the area.

Contributions and Outline The contribution of this chapter is twofold.

1. We extend the existing Gauss-Newton framework [99,100] to solve a nonlinear SDP over the
Hermitian matrices.

2. We introduce a successful application of FR to the quantum key rate computation for quan-
tum key distribution.

This chapter is organized as follows. In Section 6.1 we introduce the general Gauss-Newton
framework for solving a SDP with a smooth nonlinear objective function over Hn+. In Section 6.2
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we introduce the properties of the particular application of interest, computing the key rate for
quantum key distribution. We explain the problem data and its related properties. In Section 6.3
we discuss our reformulation process via FR by using the properties of the model. The outcome
of the reformulations are: (i) the constraint set satisfies the MFCQ; (ii) the objective function is
differentiable over the interior of the positive semidefinite cone.

6.1 Gauss-Newton Method for Minimizing Nonlinear Objective
over Spectrahedron in Hn

+

We recall the Gauss-Newton framework for solving the linear SDP over a spectrahedron in Sn in-
troduced in Section 2.4.2. We extend this framework to problems with nonlinear objective function
over a spectrahedron in Hn. Let f : Hn → R ∪ {+∞} be a continuously differentiable convex
function. For a given set of matrices {Γi}mi=1, we let Γ : Hn → Rm be the mapping

(Γ(ρ))i = 〈Γi, ρ〉 = trace(Γiρ)1.

Let γ ∈ Rm. We focus on the feasible model

min
ρ

f(ρ)

subject to Γ(ρ) = γ
ρ ∈ Hn+.

(6.1.1)

In this section, we assume that the constraint system satisfies the MFCQ (Definition 2.3.3).

6.1.1 Optimality Conditions and Gauss-Newton Direction

The perturbed optimality conditions in (2.4.4) naturally extend to the model (6.1.1):

dual feasibility F dµ (ρ, y, Z) := ∇f(ρ) + Γ∗(y)− Z = 0

primal feasibility F pµ(ρ) := Γ(ρ)− γ = 0
perturbed complementary slackness F cµ(ρ, Z) := Zρ− µI = 0, ρ, Z � 0.

(6.1.2)

The dual feasibility condition of the linear SDP would render ∇f(ρ) a constant matrix. We note
that ∇f(ρ) does not necessarily remain as a constant term when f is not linear. For each µ > 0,
we put the individual optimality conditions together and rewrite them as

Fµ(ρ, y, Z) =

∇f(ρ) + Γ∗(y)− Z
Γ(ρ)− γ
Zρ− µI

 = 0, ρ, Z � 0. (6.1.3)

It is important to notice that the domain and the range of the equality system (6.1.3) are different.
This is a subtle difference that distinguishes SDP from LP. We note that the system (6.1.3) is
overdetermined since

Fµ : Hn × Rm ×Hn → Hn × Rm × Cn×n. (6.1.4)

1We use the symbols Γ and ρ rather than A and X in order to emphasize that we work with problems over Hn.
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That the system (6.1.3) is overdetermined stems from the fact that the product of two Hermitian
matrices is not Hermitian in general. That is, Z ∈ Hn and ρ ∈ Hn do not necessarily imply
Zρ ∈ Hn, resulting in Zρ − µI ∈ Cn×n in (6.1.4). Many approaches overcome this issue by using
the symmetrized similarity transformation, e.g., see [2, 121,165].

We define the linear maps

MZ : Hn → Cn×n by MZ(∆X) = Z(∆X),
Mρ : Hn → Cn×n by Mρ(∆X) = (∆X)ρ.

Then the linearization of (6.1.3) gives

F ′µdGN =

∇2f(ρ)∆ρ+ Γ∗(∆y)−∆Z
Γ(∆ρ)

Z∆ρ+ ∆Zρ

 =

∇2f(ρ) Γ∗ −I
Γ 0 0
MZ 0 Mρ

∆ρ
∆y
∆Z

 ≈ −Fµ. (6.1.5)

We obtain the Gauss-Newton direction, GN direction, dGN ∈ Hn×Rm×Hn by solving the system

(F ′µ)∗F ′µdGN = −(F ′µ)∗Fµ, (6.1.6)

where the adjoint (F ′µ)∗ is

(F ′µ)∗ =

∇2f(ρ) Γ∗ M∗Z
Γ 0 0
−I 0 M∗ρ

 .
The GN direction, dGN , requires solving the linear system (6.1.6) of the number of unknowns

2n2 + m. The adjoint (F ′µ)∗ contains the adjoints M∗Z and M∗ρ. We provide the expressions
for M∗Z and M∗ρ for those interested in solving (6.1.6) directly; see Lemmas B.1.1 and B.1.2 in
Appendix B.1. In Section 6.1.2 below, we strive to reduce the size of linear system by making block
variable eliminations.

6.1.2 Projected Gauss-Newton Method

The main computational step of interior point methods boils down to the search direction computa-
tion. The search directions are obtained by solving the linear system that stem from the optimality
conditions. Many practical interior point methods use block variable eliminations to reduce the
size of the linear system for computational efficiency, e.g., see [12, Chapter 3], [165]. We also adopt
a similar approach for computing the GN direction more efficiently.

We note that the system (6.1.5) has zero blocks and ∆Z has a closed form representation

∆Z = F dµ +∇2f(ρ)∆ρ+ Γ∗(∆y). (6.1.7)
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We use (6.1.7) to substitute the variable ∆Z that appear in (6.1.5). Then we have

(F p,cµ )′
(

∆ρ
∆y

)
=

[
Γ(∆ρ)

Z∆ρ+
(
∇2f(ρ)∆ρ+ Γ∗(∆y)

)
ρ

]
=

[
Γ

MZ +Mρ∇2f(ρ) MρΓ
∗

](
∆ρ
∆y

)
≈ −

[
F pµ

F cµ + F dµρ

]
.

(6.1.8)

Here, the superscripts p, c in (F p,cµ )′ indicate the primal feasibility and complementarity equations.
The reduced system (6.1.8) now has n2 +m number of unknowns rather than 2n2 +m.

We continue to reduce the size of the system by representing the equality Γ(ρ) = γ using a

null-space representation. Let {Ni}n
2−m
i=1 ⊆ Hn be the set of basis elements for ({Γi}mi=1)⊥. Define

the linear map N ∗ : Rn2−m → Hn by

N ∗(v) =
n2−m∑
i=1

viNi. (6.1.9)

Let ρ̂ be a particular solution to Γ(ρ) = γ. Then we have

{ρ ∈ Hn : Γ(ρ) = γ} =
{
ρ = N ∗v + ρ̂ ∈ Hn : v ∈ Rn2−m

}
. (6.1.10)

With the new representation for the primal feasibility, we can effectively isolate the primal variable ρ
and it leads us to a smaller system to solve.

Theorem 6.1.1. The second projected GN direction dGN =

(
∆v
∆y

)
∈ Rn2

can be fuond from the

least squares solution of[
ZN ∗(∆v) +∇2f(ρ)N ∗(∆v)ρ

]
+
[
Γ∗(∆y)ρ

]
= −F cµ − ZF pµ − (F dµ +∇2f(ρ)F pµ)ρ. (6.1.11)

Proof. By abuse of notation, we use F pµ to denote the equivalent primal feasibility equation from (6.1.10):

F pµ(ρ, v) = N ∗v + ρ̂− ρ.

Then the perturbed optimality conditions in (6.1.3) can be written

Fµ(ρ, v, y, Z) =

F dµF pµ
F cµ

 =

∇f(ρ) + Γ∗(y)− Z
N ∗(v) + ρ̂− ρ
Zρ− µI

 = 0, ρ, Z � 0. (6.1.12)

Linearizaing the system (6.1.12) at (ρ, v, y, Z) gives

F ′µdGN =

∇2f(ρ)∆ρ+ Γ∗(∆y)−∆Z
N ∗(∆v)−∆ρ
Z(∆ρ) + (∆Z)ρ

 ≈ −Fµ = −

F dµF pµ
F cµ

 . (6.1.13)
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The second block equation of (6.1.13) gives

∆ρ = N ∗(∆v) + F pµ . (6.1.14)

The first block equation of (6.1.13) gives

∆Z = F dµ +∇2f(ρ)∆ρ+ Γ∗(∆y) = F dµ +∇2f(ρ)
(
N ∗(∆v) + F pµ

)
+ Γ∗(∆y). (6.1.15)

We then substitute ∆ρ and ∆Z into the last block equation of (6.1.13):

−F cµ = Z(∆ρ) + (∆Z)ρ

= Z (N ∗(∆v) + F pµ) +
(
F dµ +∇2f(ρ) (N ∗(∆v) + F pµ) + Γ∗(∆y)

)
ρ

=
[
ZN ∗(∆v) +∇2f(ρ)N ∗(∆v)ρ

]
+ [Γ∗(∆y)ρ] +

[
ZF pµ +

(
F dµ +∇2f(ρ)F pµ

)
ρ
]
.

Rearranging the constant terms, we obtain (6.1.11).

Once we compute dGN from (6.1.11), we obtain the original search direction with the backsolve
steps to complete the remaining components; for recovering ∆ρ we use (6.1.14); for recovering ∆Z
we use (6.1.15) and (∆v,∆y). The steps for obtaining (∆ρ,∆y,∆Z) are summarized in lines 4, 5
and 6 of Algorithm 6.1.1.

Algorithm 6.1.1 Projected Gauss-Newton Interior Point Algorithm

1: Initialize: ρ̂ � 0, µ ∈ R++, η ∈ (0, 1), problem data for (6.1.1)
2: while stopping criteria is not met do
3: Obtain search direction
4: solve system (6.1.11) for (∆v,∆y)
5: backsolve (6.1.14) : ∆ρ = N ∗(∆v) + F pµ
6: backsolve (6.1.15) : ∆Z = F dµ +∇2f(ρ)(F pµ +N ∗(∆v)) + Γ∗(∆y)
7: Update iterate
8: choose steplength α
9: (ρ, y, Z)← (ρ, y, Z) + α(∆ρ,∆y,∆Z)

10: µ← 〈ρ, Z〉/n; µ← ηµ
11: end while

The block variable eliminations result in the reduction in the number of unknowns for solving
linear systems and we summarize the reduction below:

system (6.1.5) (6.1.8) (6.1.11)

# of unknowns 2n2 +m n2 +m n2

We emphasize that the backsolve steps, (6.1.14) and (6.1.15), are stable. The stopping criteria,
solving (6.1.11), choosing the steplength in Algorithm 6.1.1 are elaborated in Section 6.1.3 below.

6.1.3 Implementation Heuristics and Details

In this section we discuss some implementation details for Algorithm 6.1.1.

104



Step Lengths The step length α, in Line 8 of Algorithm 6.1.1, is chosen to maintain the vari-
ables ρ and Z sufficiently positive definite. We achieve this by line search with backtracking. We
can build a quadratic model of f at the current iterate ρc economically since we have the gradient
and Hessian evaluated at ρc in the search direction ∆ρc:

q(α) := f(ρc) + α〈∇f(ρc),∆ρc〉+
1

2
α2〈∆ρc,∇2f(ρc)∆ρc〉.

Then α∗ = argminα q(α) gives

α∗ = −〈∇f(ρc),∆ρc〉 /〈∆ρc,∇2f(ρc)∆ρc〉.

We note that α∗ is positive since GN direction is a descent direction (see (2.4.6)) and the objective
function is convex. In our implementation, we start backtracking from α∗ with the backtracking
parameter 0.97.

For the iteration where a full step, i.e., α = 1, is taken, subsequent iterations maintain the exact
primal feasibility (see also [159, page 12].).

Theorem 6.1.2. Let α be a steplength and consider the update

ρ+ ← ρ+ α∆ρ = ρ+ F pµ + αN ∗(∆v).

1. If a steplength one is taken (α = 1), then the new primal residual is exact, i.e.,

F pµ = N ∗(v+) + ρ̂− ρ+ = 0, where v+ = v + α∆v.

2. Suppose that the exact primal feasibility is achieved. Then the primal residual is exact through-
out the iterations regardless of the steplength.

Proof. Suppose that the steplength α = 1 is taken. Then the new primal residual (F dµ )+ is

(F dµ )+ = N ∗(v+) + ρ̂− ρ+

= N ∗(v + ∆v) + ρ̂− ρ− F pµ −N ∗(∆v)
= N ∗(v) + ρ̂− ρ− F pµ
= N ∗(v) + ρ̂− ρ−N ∗(v)− ρ̂+ ρ
= 0.

This shows Item 1. For Item 2, suppose that we reached the exact primal feasibility, i.e., F pµ = 0.
Then

ρ+ ← ρ+ α∆ρ = ρ+ α
(
F pµ +N ∗(∆v)

)
= ρ+ αN ∗(∆v) = 0,

where the last equality holds since

Γ(ρ+) = ΓV (ρ+ αN ∗(∆v)) = Γ(ρ) = γ.

Stopping Criteria Let ε > 0 be a pre-defined tolerance. We terminate the algorithm when
the optimality conditions are approximately satisfied within the given tolerance. If the algorithm
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computes lower and upper bounds of the optimal value throughout its execution, we may terminate
the algorithm when the gap between the best known lower and upper bounds is within ε. We denote
the residual of the right-hand-side in (6.1.11) by

φ = −F cµ − ZF pµ − (F dµ +∇2f(ρ)F pµ)ρ.

We define the denominator term by

denom = 1 +
1

2
min {‖ρ‖F + ‖Z‖F , |bestub|+ |bestlb|} ,

where bestub and bestlb denote the best upper and the lower bounds to the optimal value. Then,
for the tolerance ε, we terminate the algorithm when

1

denom
max {bestub− bestlb, ‖φ‖} < ε.

Finally a common way to terminate an algorithm is to impose restrictions on the running time,
i.e., setting an upper bound on the number of iterations.

Sparse Nullspace Representation for N ∗ in (6.1.9) With Hvec defined in Section 2.1, we let
Mr = γ be the matrix-vector representation of the system Γ(ρ) = γ, i.e.,

r = Hvec(ρ), M(i, :) = Hvec(Γi)
T , ∀i ∈ [m].

We permute the columns of M to obtain a matrix M̂ so that M̂ has a well-conditioned nonsingular
matrix B at the first m columns. We place the remaining columns of M from the (m + 1)-th
column of M̂ , i.e., M̂ =

[
B E

]
. Let P be a permutation matrix that permutes the columns of M

to form M̂ , i.e., M̂ = MP . Following the approach in [77], we construct the matrix N̂ =

[
B−1E
−I

]
.

Then each column of N̂ is a basis element of null(M̂) since

M̂N̂ =
[
B E

] [B−1E
−I

]
= B ·B−1E − E · I = 0.

We then choose
Ni = HMat(M̂(i, :)P T ), i = 1, . . . , n2 −m,

to be the data matrices for the mapping N ∗ in (6.1.9).

Matrix Representation of the System (6.1.11) Solving the linear system (6.1.11) using a
standard software requires the conventional matrix-vector representation, i.e., Ax = b. We now
provide the matrix representation for the system (6.1.11). We begin by rearranging the left-hand-
side of the system (6.1.11):[

ZN ∗(∆v) +∇2f(ρ)N ∗(∆v)ρ
]

+
[
Γ∗(∆y)ρ

]
=

[
Z

(∑
i

∆vi ·Ni

)
+∇2f(ρ)

(∑
i

∆vi ·Ni

)
ρ

]
+

[(∑
i

∆yi · Γi
)
ρ

]
=

∑
i

∆vi ·
(
ZNi +∇2f(ρ)Niρ

)
+
∑
i

∆yi · Γiρ.
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Using Cvec (see Section 2.1.) to the terms related to ∆v, we have the following matrix representa-
tion:

[
Cvec(ZN1 +∇2f(ρ)N1ρ) · · · Cvec(ZNn2−m +∇2f(ρ)Nn2−mρ)

] ∆v1
...

∆vn2−m

 .

Similarly, using Cvec to the terms related to ∆y, we get

[
Cvec(Γ1ρ) · · · Cvec(Γmρ)

]∆y1
...

∆ym

 .

Then the projected GN direction is obtained by[[
Cvec(ZNi +∇2f(ρ)Niρ)

]
i=1,...,n2−m

[
Cvec(Γiρ)

]
i=1,...,m

](∆v
∆y

)
= −Cvec

(
F cµ + ZF pµ + (F dµ +∇2f(ρ)F pµ)ρ

)
.

(6.1.16)

That the linearized system is over-determined yields the system (6.1.16) with the n2 number of
unknowns and the 2n2 number of equations.

Preconditioning In the course of solving the system (6.1.16), we use a diagonal preconditioning.
We use Jx = b to denote the linear system (6.1.16). For each i, we let di = ‖Jei‖2, where ei is the
i-th column of the identity matrix. We then scale the columns of J as J Diag(d)−1.2 We note that
this preconditioning does not require an excessive computational resource. It is known that this
column scaling provides the optimal Ω-condition number; see [44, Proposition 2.1].

6.2 Application to Key Rate Computation for QKD

Quantum key distribution, QKD is the art of distributing a shared secret between two parties
(traditionally known as Alice and Bob) over a public channel, e.g., see [122, Section 12.6.3]. Upon
the termination of a QKD protocol, the established secret can be used for a secure communication
between two parties. QKD is a quantum-resistant key establishment protocol, i.e., it is secure even
after the quantum computers become available. In the course of a particular QKD, a third party
(traditionally known as Eve) makes an appearance as an eavesdropper. The core of a security proof
of QKD protocol is to calculate the secret key rate, the secret key bits obtained per exchange of a
quantum signal. An analytic computation for the key rate is a challenging task. Fortunately, it has
been shown that the key rate calculation can be posed as a convex optimization problem; see [156].
A tight provable lower bound to this problem provides a tight reliable key rate. Hence, we resort
to find a provable lower bound to this convex optimization problem numerically.

The variables in the quantum information theory are governed by positive semidefinite matrices.
Hence, the problem naturally lies in the class of SDP over the Hermitian matrices. The convex

2In MATLAB command, this can be done (J/Diag(d))\b) ./d.
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optimization formulation for computing the key rate for QKD [156] is

min
ρ
{f(ρ) : Γ(ρ) = γ, ρ ∈ Hn+}, (6.2.1)

where f(ρ) is the composition of the quantum relative entropy function and the linear maps; we
explain the objective function in detail in 6.2.1 below. The feasible region of (6.2.1) is the standard
spectrahedon in Hn+. The variable ρ is called a density matrix, a positive semidefinite matrix with
the unit trace property trace(ρ) = 1.

The model (6.2.1) may not have a strictly feasible point. Moreover, the objective function f(ρ)
is not assumed to be differentiable. An approach [156] is proposed for avoiding these difficulties
by perturbing the variables using a small positive multiple of the identity matrix. Instead, we pre-
process the model so that the reformulated model satisfies the MFCQ, and the objective function
is differentiable at any positive definite matrix. This reformulation is greatly inspired by FR. We
aim to solve the robust reformulated model using the stable interior point method developed in
Section 6.1. We also provide an approach for computing provable lower bounds to the optimal
value of the problem.

6.2.1 The Problem

In this section we introduce the problem and its related properties. Every Hermitian matrix X has
the spectral decomposition

X = UΛU∗, for some unitary matrix U , and real diagonal matrix Λ.

Let Hn+ be the set of n-by-n Hermitian positive semidefinite matrices. For X = UΛU∗ ∈ Hn+, the
matrix extension of the log function is defined by

log(X) = log(UΛU∗) = U Diag(log(Λ1,1), . . . , log(Λn,n))U∗. (6.2.2)

See [88] for additional properties of the matrix logarithms.

Definition 6.2.1. ([155, Definition 5.18]) The quantum relative entropy function D : Hn+×Hn+ →
R+ ∪ {+∞} is defined by

D(σ||δ) =

{
trace(δ log δ)− trace(δ log σ) if range(δ) ∩ null(σ) = ∅,
∞ otherwise.

(6.2.3)

Here, log is the matrix logarithm. When range(δ)∩null(σ) = ∅, i.e., range(δ) ⊆ range(σ) holds,
the finite function value of D can be shown by using the eigenspace associated with 0 eigenvalues
of δ, σ. The function value D is nonnegative, and is equal to 0 if, and only if, δ = σ. An important
property of the quantum relative entropy function follows.

Proposition 6.2.2. ([122, Section 11.3]) The quantum relative entropy function is convex. Fur-
thermore, it is jointly convex.

A linear map T : Hn → Hk is called positive, if ρ ∈ Hn+ implies T (ρ) ∈ Hk+. We now define the
two positive maps G,Z that are parts of the objective function.
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Definition 6.2.3. The linear map G : Hn → Hk is defined as a sum of matrix products

G(·) :=
∑̀
j=1

Kj(·)K∗j , (6.2.4)

where Kj ∈ Ck×n,∀j ∈ [`] and
∑̀
j=1

KjK
∗
j � Ik.

The matrix Kj often has more rows than columns, i.e., k > n. The linear map G of the from
in (6.2.4) often appears in quantum physics. Each element in {Kj}`j=1 is called a Kraus operator
and the map (6.2.4) is said to be in a Kraus representation. Any linear map in the form (6.2.4) has
the adjoint G∗(·) :=

∑
jK
∗
j (·)Kj .

Definition 6.2.4. The linear map Z : Hk → Hk is defined as a sum of matrix products

Z(·) :=
N∑
j=1

Zj(·)Z∗j , (6.2.5)

where Zj = Z2
j = Z∗j ∈ Hn, ∀j ∈ [N ] and

∑N
j=1 Zj = Ik.

The set {Zj}Nj=1 that follows the properties in Definition 6.2.4 is said to be a spectral resolution
of I. Given the linear maps G,Z, we define the objective f in (6.2.1) as the composition of G,Z
and the quantum relative entropy function D

f(ρ) := D(Z(G(ρ))||G(ρ)) = trace (G(ρ) log G(ρ)− G(ρ) logZ(G(ρ))) . (6.2.6)

The convexity of the quantum relative entropy function is preserved after the composition with the
linear maps G and Z. Finally, we obtain our model

p∗ = min
ρ

D(Z(G(ρ))||G(ρ)) (= f(ρ))

subject to Γ(ρ) = γ
ρ ∈ Hn+.

(6.2.7)

The function f is differentiable only when G(ρ) is positive definite. However, even when ρ is positive
definite, G(ρ) may fail to be positive definite. The gradient of f is not well-defined when the point
of differentiation is on the boundary of its domain. Hence we strategize to guarantee positive
definiteness of the arguments Z(G(ρ)),G(ρ) of (6.2.6) in Section 6.3 below.

6.2.2 Properties of G and Z

We now discuss some interesting properties of the maps G, Z and the objective function f . We note
that the term trace(G(ρ) logZ(G(ρ))) in (6.2.6) has two distinct components G(ρ) and Z(G(ρ)). We
exploit the properties of the map Z to rewrite this term as trace (Z(G(ρ)) logZ(G(ρ))). This allows
for symmetric components in each term in (6.2.6). Consequently, it leads us to adopt the idea of
FR to the objective function effectively.

Using
∑N

j=1 Zj = I, we can show that the map Z is a trace-preserving map, i.e., trace(δ) =

trace(Z(δ)). However, the map G is not trace-preserving since
∑`

j=1KjK
∗
j � I does not necessarily
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hold with equality. Not only the map Z is trace-preserving and but is also completely positive,
which makes Z a quantum channel.

Proposition 6.2.5. The map Z is a projection. Moreover, for δ ∈ Hk+,

trace (δ logZ(δ)) = trace (Z(δ) logZ(δ)) . (6.2.8)

Proof. For any i, we have

IZi =

 N∑
j=1

Zj

Zi = ZiZi +

 N∑
j 6=i

ZjZi

 =⇒

 N∑
j 6=i

ZjZi

 = 0 =⇒ ZiZj = 0,∀j 6= i.

Then Z = Z2 = Z∗ and hence Z is a projection. Since each Zj commutes with Z(δ), it holds
that Zj commutes with log(Z(δ)) by [88, Theorem 1.13]. Then by the linearity and cyclicity of the
trace, (6.2.8) holds; see also [111].

Owing to Proposition 6.2.5, we can represent the objective (6.2.6) with the symmetric compo-
nents:

f(ρ) := trace (G(ρ) log G(ρ)−Z(G(ρ)) logZ(G(ρ))) . (6.2.9)

This new alternative representation allows for simplified FR steps.

Lemma 6.2.6 below shows that the objective value of the problem is finite on the feasible set.

Lemma 6.2.6. Let X � 0. Then range(X) ⊆ range(Z(X)).

Proof. Let X be a positive semidefinite matrix with rank r and compact spectral decomposition

X =

r∑
i=1

λiuiu
∗
i . (6.2.10)

We only focus on the first term λ1u1u
∗
1:

Z(λ1u1u
∗
1) =

n∑
j=1

Zj(λ1u1u
∗
1)Z∗j =

n∑
j=1

λ1(Zju1)(Zju1)∗.

We note, from Item 2 of Fact 2.2.4, that

range (Z(λ1u1u
∗
1)) = range (λ1(Z1u1)(Z1u1)∗ + λ1(Z2u1)(Z2u1)∗ + · · ·+ λ1(Znu1)(Znu1)∗)

= range(Z1u1) + · · ·+ range(Znu1).

We also note that

u1 = Iu1 =

 n∑
j=1

Zj

u1 =

n∑
j=1

Zju1 ∈ range(Z1u1) + · · ·+ range(Znu1).

Hence,

range(λ1u1u
∗
1) = range(u1) ⊆ range(Z1u1) + · · ·+ range(Znu1) = range(Z(λ1u1u

∗
1)).
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We now consider the first two terms, λ1u1u
∗
1 + λ2u2u

∗
2, in X in (6.2.10). Similarly,

range(λ1u1u
∗
1) ⊆ range(Z(λ1u1u

∗
1)) and range(λ2u2u

∗
2) ⊆ range(Z(λ2u2u

∗
2)). (6.2.11)

Then

range(λ1u1u
∗
1 + λ2u2u

∗
2) = range(λ1u1u

∗
1) + range(λ2u2u

∗
2) by from Item 2 of Fact 2.2.4

⊆ range(Z(λ1u1u
∗
1)) + range(Z(λ2u2u

∗
2)) by (6.2.11)

= range(Z(λ1u1u
∗
1) + Z(λ2u2u

∗
2)) by from Item 2 of Fact 2.2.4

= range(Z(λ1u1u
∗
1 + λ2u2u

∗
2)) by linearity of Z.

This completes the proof (The induction steps are clear.).

A consequence of Lemma 6.2.6 is that

range(G(ρ)) ⊆ range(Z(G(ρ))) (6.2.12)

and the positive semidefiniteness of G(ρ),Z(G(ρ)) implies that they are simultaneously diagonaliz-
able. Furthermore, this property grants the finite objective values, see Definition 6.2.1.

We now obtain the formulae for the first and the second order derivatives of f . We assume
that G(ρ) is positive definite for now. Our reformulation process for guaranteeing G(ρ) � 0 follows
in Section 6.3 below. We do not need to further assume that Z(G(ρ)) is positive definite since
G(ρ) � 0 implies Z(G(ρ)) � 0 by Lemma 6.2.6.

Lemma 6.2.7. Let H : Hn → Hk be a positive linear map. Let ρ ∈ Hn+ be a point satisfying
H(ρ) ∈ Hk++. Define the composite function g : Hk+ → R by

g(ρ) = trace (H(ρ) logH(ρ)) .

Then the gradient of g at ρ is

∇g(ρ) = H∗ (logH(ρ)) +H∗(Ik),

and the Hessian of g at ρ acting on ∆ρ is

∇2g(ρ)(∆ρ) = H∗
(
log′H(ρ)(H(∆ρ))

)
.

Proof. For any differentiable function h, the first order approximation of trace(h(x)) is trace(h(x+
∆x)) ≈ trace(h(x) + h′(x)∆x). Hence we obtain

〈∇g(ρ),∆ρ〉
= trace

(
d
dρ (H(ρ) logH(ρ)) (∆ρ)

)
= trace

(
d
dρ (H(ρ)) (∆ρ) logH(ρ) +H(ρ) ddρ (logH(ρ)) (∆ρ)

)
by product rule

=
〈
d
dρ (H(ρ)) (∆ρ), logH(ρ)

〉
+
〈
H(ρ), ddρ (logH(ρ)) (∆ρ)

〉
by definition of trace inner product

= 〈H∆ρ, logH(ρ)〉+
〈(

d
dρ (logH(ρ))

)∗
H(ρ),∆ρ

〉
by definition of adjoint

= 〈∆ρ,H∗ (logH(ρ))〉+
〈(

d
dρ (logH(ρ))

)∗
H(ρ),∆ρ

〉
by definition of adjoint

= 〈∆ρ,H∗ (logH(ρ))〉+ 〈H∗(I),∆ρ〉
= 〈H∗ (logH(ρ)) +H∗(I),∆ρ〉 by linearity.
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The second last equality holds by the chain rule and the fact that the directional derivative of
matrix log at δ in the direction δ is

log′(δ)(δ) = log′(δ; δ) = I.

Similarly, the Hessian of g at ρ acting on ∆ρ is

∇2g(ρ)(∆ρ) =
d

dρ
H∗ (logH(ρ)) (∆ρ) = H∗ d

dρ
(logH(ρ)) (∆ρ) = H∗

(
log′H(ρ)

)
H(∆ρ).

With Lemma 6.2.7, we now obtain the derivatives of the objective function f in (6.2.9).

Corollary 6.2.8. Suppose that ρ ∈ Hn+ and G(ρ) ∈ Hk++. Then the gradient of f at ρ is

∇f(ρ) = G∗ (log G(ρ))− (Z ◦ G)∗ (logZ ◦ G(ρ)) + G∗(I)− (Z ◦ G)∗(I) (6.2.13)

The Hessian at ρ ∈ Hn+ acting on the direction ∆ρ ∈ Hn is

∇2f(ρ)(∆ρ) = G∗
(
[log′ G(ρ)(G∆ρ)]

)
− (Z ◦ G)∗

(
[log′(Z ◦ G)(ρ)((Z ◦ G)(∆ρ))]

)
. (6.2.14)

6.3 Reformulation of (QKD) via FR

In this section we reformulate (6.2.7) to obtain a model that satisfies the MFCQ and that grants
us the differentiability of the objective function. We begin by assigning δ = G(ρ) and σ = Z(G(ρ))
to (6.2.9) and rewrite the model (6.2.7) as below

min
ρ,δ,σ

trace(δ log δ − σ log σ)

subject to Γ(ρ) = γ
δ = G(ρ)
σ = Z(δ)
ρ ∈ Hn+, δ, σ ∈ Hk+.

(6.3.1)

We provide a brief summary of the reformulation process. The facial structure of Sn+ naturally
extends to Hn+ with the transpose sign (T ) in Proposition 2.2.2 replaced by the conjugate trans-
pose (∗); see [89]. We perform FR on the triple (ρ, δ, σ) and we let Vρ, Vδ, Vσ be the facial range
vectors for these variables. Then we have the variables (Rρ, Rδ, Rσ) of smaller orders as follows:

(VρRρV
∗
ρ , VδRδV

∗
δ , VσRσV

∗
σ ) ∈ VρH

nρ
+ V ∗ρ × VδH

nδ
+ V ∗δ × VσH

nσ
+ V ∗σ .

As a consequence, we obtain the property

Rρ � 0 =⇒ Rδ, Rσ � 0,

granting us the differentiability of the modified objective function. After making some algebraic
manipulations we get the desired model. The reformulations presented in this section are twofold:

1. We use the properties of the Kronecker product to derive exposing vectors analytically;
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2. We perform FR to the objective function in order to guarantee differentiability.

6.3.1 Facial Reduction on the Constraint Set

For FR on the constraint set, we first observe its structure. The equality constraints {ρ : Γ(ρ) = γ}
of the problem (6.3.1) are divided into two groups; the observational and reduced density operator
constraint sets, i.e., SO ∩ SR. The set of the observational constraints is given by

SO := {ρ � 0 : 〈PAs ⊗ PBt , ρ〉 = pst, ∀st},

where PAs ∈ HnA , PBt ∈ HnB , n = nAnB. Let {Θj}j form an orthonormal basis for HnA and let
ρA ∈ SnA+ be given. The reduced density operator constraints is given by

SR := {ρ � 0 : traceB(ρ) = ρA} =
{
ρ � 0 : 〈Θj ⊗ I, ρ〉 = 〈Θj , ρA〉, ∀j = 1, . . . , n2

A

}
.

These constraints originate from the partial trace. The partial trace is an operation that is often
used in the area of quantum information theory. Let HnA and HnB be two Hilbert spaces. Given a
composite system of A and B, the partial trace is used to evaluate the trace of only one component

of the composite system. Let {bj}
n2
B
j=1 be a set of orthonormal basis for HnB . Then the partial trace

over the system B is the map traceB : HnAnB → HnA defined by

traceB(ρAB) =
∑
j

(InA ⊗ b
∗
j )ρAB(InA ⊗ bj).

The action of the map traceB is often called ‘tracing out the system B’. It is known that the adjoint
of traceB is

trace∗B(W ) = W ⊗ InB .

We perform FR on the reduced density operator constraints that takes advantage of the Kro-
necker structure of the given data.

Theorem 6.3.1. Let range(P ) = range(ρA), P ∗P = I, and let V = P ⊗ I. Then

ρ ∈ SR =⇒ ρ = V RV ∗, for some R ∈ Hrank(ρA)·nB
+ .

Proof. If ρA is nonsingular, we choose V = I. We assume that rank(ρA) < nA. We may write ρA
using the spectral decomposition

ρA =
[
P Q

]
BlkDiag(D, 0)

[
P Q

]∗
, rank(D) = rank(ρA).

1. We recall that trace∗B(W ) = W ⊗ IB. Then ρ ∈ SR implies that

〈QQ∗ ⊗ InB , ρ〉 = 〈trace∗B(QQ∗), ρ〉 = 〈QQ∗, traceB(ρ)〉 = 〈W,ρA〉 = 0,

where the first two equalities hold by the property of the partial trace and the third equality
holds due to the definition of SR. Clearly, QQ∗⊗ InB serves as an exposing vector for SR and
it follows that P ⊗ InB is a facial range vector.

113



2. We now provide an alternative proof that directly uses the auxiliary system (2.3.4). Consider
ZΘ = QQ∗ � 0. Since {Θj}j forms a basis, there always exists a vector y such that ZΘ =∑

j yjΘj . Since the reduced density operator constraint holds 〈Θj , ρA〉 = θj , we obtain

〈θ, y〉 =
∑
j

yjθj =
∑
j

yj〈Θj , ρA〉 =

〈∑
j

yjΘj , ρA

〉
= ZΘρA = 0.

We recall the auxiliary system (2.3.4) in Lemma 2.3.4.

0 � ZΘ ⊗ InB =

∑
j

yjΘj

⊗ InB =
∑
j

yj (Θj ⊗ InB ) 6= 0, and 〈θ, y〉 = 0.

Hence, by Lemma 2.3.4, ZΘ ⊗ InB serves as an exposing vector for SR and P ⊗ I is a facial
range vector.

The facial range vector P ⊗ I computed in Theorem 6.3.1 is accurate within machine accuracy
since it requires one eigen decomposition.

6.3.2 Facial Reduction on the Objective

We now turn our attention to the objective function. The domain of the objective function is
possibly restricted to the boundary of the semidefinite cone. Even when the variable ρ is positive
definite, the matrices G(ρ) and Z(G(ρ)) can be singular. For instance, the matrix G(ρ) is always
singular when the cardinality of the set {Kj}`j=1 is 1 and k > n. In this case, the objective function
is not differentiable and the gradient formula in (6.1.2) is not applicable. Hence, the need arises
for guaranteeing the differentiability of the objective function. FR has been typically invited for
improving the quality of the feasible set as we have seen throughout this thesis. We show that
FR also provides an effective preprocessing tool for improving the characteristic of the objective
function.

We present a lemma that allows for a successful application of FR to the objective function.

Lemma 6.3.2. Let Y = V RV ∗, R � 0 be the compact spectral decomposition of a rank deficient
matrix Y with V ∗V = I. Then

trace(Y log Y ) = trace(R logR).

Proof. Let U =
[
V P

]
be a unitary matrix, where columns of P form an orthonormal basis for

the orthogonal complement of range(V ). Then Y = UDU∗, where D = BlkDiag(R, 0).

trace(Y log Y ) = trace(UDU∗U(logD)U∗) = trace(D logD) = trace(R logR),

where the first equality holds by the definition of the matrix extension of log function (see (6.2.2).)
and the last equality holds by 0 · log 0 = 0.

The following result is used to obtain the exposing vectors for the images under the maps G,Z.
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Lemma 6.3.3. Let C ⊆ Hn+ be a given convex set containing a positive definite matrix D. Let {Qi}ti=1 ⊆
Ck×n be a given set of matrices. Define the linear map T : Hn → Hk and the matrix V ∈ Ck×r
with orthonormal columns by

T (X) =
t∑
i=1

QiXQ
∗
i , and range(V ) = range

(
t∑
i=1

QiQ
∗
i

)
.

Then the minimal face of Hk+ containing the image T (C) is characterized by

face(T (C),Hk+) = VHr+V ∗.

Proof. We first note that T (C) ⊆ Hk+. LetW ∈ Hk+ be a maximal exposing vector for face(T (C),Hk+).
Then

〈W, T (C)〉 = 0 ⇐⇒ 〈W,Y 〉 = 0, ∀Y ∈ T (C)
⇐⇒ 〈T ∗(W ), X〉 = 0, ∀X ∈ C
⇐⇒ T ∗(W ) = 0, since D ∈ Hn++.

Since Q∗iWQi � 0, ∀i ∈ [t], we have Q∗iWQi = 0, ∀i ∈ [t], due to Item 3 of Fact 2.2.4. Thus,
range(W ) ⊆ null(Q∗i ),∀i. Therefore we obtain the minimal facial range vector V analytically as
follows:

range(V ) = null(W ) = range

(
t∑
i=1

QiQ
∗
i

)
.

Lemmas 6.3.2 and 6.3.3 imply that the FR for the equalities δ = G(ρ) and σ = Z(δ) can be
done in one step; we obtain the greatest reduction on the dimension of the image after one eigen
decomposition. This refers to the property of the positive map T defined in Lemma 6.3.3; the
image T (C) is facially exposed. We emphasize that the FR applied to the sum of congruences can
be performed within machine accuracy as it only requires a spectral decomposition.

We now elaborate on the step-by-step reformulation process that allows for a Slater point and
a differentiable objective function over the positive definite matrices. Let Vρ, Vδ, Vσ be facial range
vectors for the triple (ρ, δ, σ) satisfying the constraints in (6.3.1). Hence variables have the form

ρ = VρRρV
∗
ρ ∈ Hn+, Rρ ∈ H

nρ
+ , nρ ≤ n;

δ = VδRδV
∗
δ ∈ Hk+, Rδ ∈ Hkδ+ , kδ ≤ k;

σ = VσRσV
∗
σ ∈ Hk+, Rσ ∈ Hkσ+ , kσ ≤ k.

We define the linear maps

ΓV : Hnρ+ → Rm by ΓV (Rρ) = Γ(VρRρV
∗
ρ );

GV : Hnρ+ → Hk+ by GV (Rρ) = G(VρRρV
∗
ρ );

ZV : Hkδ+ → Hk+ by ZV (Rδ) = Z(VδRδV
∗
δ ).

Below is the summary of the computations for the facial range vectors Vρ, Vδ, Vσ.

1. We perform FR to {ρ ∈ Hn+ : Γ(ρ) = γ} to find Vρ ∈ Cn×nρ for face(Fρ,Hn+), minimal
face containing the feasible set. After FR, many of the linear equality constraints end up
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being redundant; see Lemma 3.1.1. Let Pm̄ be the projection that chooses the non-redundant
equalities. We discard the redundant equalities using Pm̄ and carry the well-conditioned
equality system

Fρ := {Rρ ∈ H
nρ
+ : Pm̄ΓVρ(Rρ) = Pm̄γ}.

2. We note that the facially reduced set Fρ has a strictly feasible point. We use Lemma 6.3.3
to Fδ := {GV (Rρ) ∈ Hk+ : Rρ ∈ Fρ} and obtain the facial range vector Vδ ∈ Ck×nρ

range(Vδ) = range(GV (I)).

We choose Vδ with orthornormal columns. We define

Fδ := {Rδ ∈ Hkδ+ : VδRδV
∗
δ = GV (Rρ), Rρ ∈ Fρ}.

We note that Fδ has a strictly feasible point.

3. We define
Fσ := {ZV (Rδ) ∈ Hk+ : Rδ ∈ Fδ}.

Applying Lemma 6.3.3 to the set Fσ, we obtain the matrix Vσ ∈ Ck×kδ . We choose Vσ with
orthornormal columns satisfying

range(Vσ) = range(ZV (I)).

After FR on δ, σ, we write the objective function in (6.3.1) using Lemma 6.3.2, followed by the
orthonormality of Vδ and Vσ:

trace(δ log δ − σ log σ) = trace (VδRδV
∗
δ log (VδRδV

∗
δ ))− trace (VδRδV

∗
δ log (VδRδV

∗
δ ))

= trace(Rδ logRδ)− trace(Rσ logRσ).

We highlight that, by Lemma 6.2.6, the order of Rδ and the order Rσ are not the same in general,
i.e., k ≥ kσ ≥ kδ. Moreover, range(Vσ) ⊇ range(Vδ). The FR performed on the variables δ, σ may
yield kδ < kσ. Hence the two trace operations for Rδ and Rσ are used individually.

Using the facial range vectors Vδ and Vδ, we define

Vδ(Rδ) := VδRδV
∗
δ and Vσ(Rσ) := VσRσV

∗
σ .

We rewrite (6.3.1) to obtain the model below.

min
Rρ,Rδ,Rσ

trace(Rδ logRδ)− trace(Rσ logRσ)

subject to Pm̄ΓV (Rρ) = Pm̄γ
Vδ(Rδ) = GV (Rρ)
Vσ(Rσ) = ZV (Rδ)

Rρ ∈ H
nρ
+ , Rδ ∈ Hkδ+ , Rσ ∈ H

kσ
+ .

(6.3.2)

In Theorem 6.3.4 and Theorem 6.3.5 below, we simplify the last two equalities (6.3.2) by ap-
propriate rotations.
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Theorem 6.3.4. Let Rρ ∈ H
nρ
+ and Rδ ∈ Hkδ+ . Define GUV (·) := V ∗δ GV (·)Vδ. Then

Vδ(Rδ) = GV (Rρ) ⇐⇒ Rδ = GUV (Rρ).

Proof. Let P be a matrix that completes a unitary matrix U =
[
Vδ P

]
. We rotate the equality

Vδ(Rδ) = GV (Rρ) to obtain
U∗Vδ(Rδ)U = U∗GV (Rρ)U. (6.3.3)

Since U∗Vδ =

[
Ikδ
0

]
, the left-hand-side of (6.3.3) is equal to

U∗Vδ(Rδ)U =

[
Rδ 0
0 0

]
.

Since the facial range vector Vδ holds range(Vδ) = range(GV (I)), we have P ∗GV = 0. Therefore the
right-hand-side of (6.3.3) becomes

U∗GV (Rρ)U =

[
V ∗δ
P ∗

]
GV (Rρ)

[
Vδ P

]
=

[
V ∗δ GV (Rρ)Vδ 0

0 0

]
=

[
GUV (Rρ) 0

0 0

]
.

A similar results follows for the constraint Vσ(Rσ) = ZV (Rδ).

Theorem 6.3.5. Let Rδ ∈ Hkδ+ and Rσ ∈ Hkσ+ . Define ZUV (·) := V ∗σZV (·)Vσ. Then

Vσ(Rσ) = ZV (Rδ) ⇐⇒ Rσ = ZUV (Rδ).

Proof. From the orthonormal matrix Vσ, we complete the unitary matrix U =
[
Vσ P

]
with a

matrix P . Then following the same steps in the proof of Theorem 6.3.4 gives the statement.

Theorems 6.3.4 and 6.3.5 result in the reductions of the number of linear equalities in (6.3.2).
We note that Vδ(Rδ) = GV (Rρ) ∈ Hk whereas Rδ = GUV (Rρ) ∈ Hkδ and kδ ≤ k. This is not a
surprise; these reductions correspond to the implicit redundancies of the equality system discussed
in Lemma 3.1.1. Consequently, we obtain the model below:

min
Rρ,Rδ,Rσ

trace(Rδ logRδ)− trace(Rσ logRσ)

subject to Pm̄ΓV (Rρ) = Pm̄γ
Rδ = GUV (Rρ)
Rσ = ZUV (Rδ)

Rρ ∈ H
nρ
+ , Rδ ∈ Hkδ+ , Rσ ∈ H

kσ
+ .

(6.3.4)

6.3.3 Final Model

We now present the main reformulated model with a simplified notation and the derivatives. We
define

Ĝ(·) := GUV (·) =
∑k

j=1(V ∗δ KjVρ)(·)(V ∗δ KjVρ)
∗,

Ẑ(·) := ZUV ◦ GUV (·) =
∑

i,j(VσZiKjVρ)(·)(VσZiKjVρ)
∗.
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We then write the last two equality constraints in (6.3.4) with

Rδ = Ĝ(Rρ), Rσ = Ẑ(Rρ).

For simplification, we relabel the variables as

ρ← Rρ, δ ← Rδ, σ ← Rσ.

Finally, substituting the variables into the objective function in (6.3.4), we obtain the final model
below:

p∗ = min
ρ

f(ρ) := trace
(
Ĝ(ρ) log Ĝ(ρ)

)
− trace

(
Ẑ(ρ) log Ẑ(ρ)

)
subject to Pm̄ΓV (ρ) = Pm̄γ ∈ Rm̄

ρ ∈ Hnρ+ .

(6.3.5)

We discuss some properties of the final model (6.3.5). We point out that the model structures of
(6.2.7) and (6.3.5) are the same; the objective functions are the compositions of quantum relative
entropy and linear maps, and the constraint sets are spectrahedra. We display these reductions in
the dimensions below:

original model (6.2.7) reformulated model (6.3.5)

variable ρ ∈ Hn+ ρ ∈ Hnρ+

constraint linear map Γ : Hn+ → Rm Pm̄ΓV : Hnρ+ → Rm̄

objective linear map G : Hn+ → Hk+ Ĝ : Hnρ+ → Hkδ+

objective linear map Z : Hk+ → Hk+ Ẑ : Hnρ+ → Hkσ+

Due to the FR and the rotations, nρ ≤ n and kδ ≤ kσ ≤ k. We also acquire the important property

ρ � 0 =⇒ Ĝ(ρ) � 0 =⇒ Ẑ(ρ) � 0. (6.3.6)

The implications (6.3.6) hold since relint(AC) = A relint(C), where C ⊆ En is a convex set and A :
En → Em is a linear map (see [139, Theorem 6.6].). Hence, having ρ � 0 allows the use of
Corollary 6.2.8 to the objective function in (6.3.5) as we see in Theorem 6.3.6 below; we highlight
that the implication (6.3.6) grants the differentiability of the objective function. Therefore, we can
use the Gauss-Newton interior point method developed in Section 6.1.

Theorem 6.3.6. Let ρ � 0. The gradient of f in (6.3.5) is

∇f(ρ) = Ĝ∗
(

log(Ĝ(ρ))
)
− Ẑ∗

(
log(Ẑ(ρ))

)
+ Ĝ∗(I)− Ẑ∗(I).

The Hessian in the direction ∆ρ is

∇2f(ρ)∆ρ = Ĝ∗
(

log′(Ĝ(ρ))(Ĝ(∆ρ))
)
− Ẑ∗

(
log′(Ẑ(ρ))(Ẑ(∆ρ))

)
.

We provide a summary of the reformulation presented throughout Section 6.2 and Section 6.3
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with the sequence below:

(6.2.7)
(1)−−→ (6.3.1)

(2)−−→ (6.3.2)
(3)−−→ (6.3.4)

(4)−−→ (6.3.5)

(1) variable substitutions;

(2) property of the map Z from Proposition 6.2.5 and FR;

(3) rotation of the constraints;

(4) substituting the constraint equalities back to the objective.

Although our reformulation is motivated by the use of interior point method, our reformulated
model can be used to improve numerical performances of different algorithms. In Section 6.3.5 we
show that the reformulated model indeed enhances the performance of the existing approach that
uses the Frank-Wolfe algorithm.

6.3.4 Dual and Bounding

Computing a valid lower bound to the optimal value p∗ is the main concern of (QKD). Suppose
that M bits are used in a QKD protocol. Suppose that ` is a number of bits that we can use among
M bits to establish a shared secret. The optimal value p∗ provides the information on the ratio
between M and `. Let φ be a lower bound to the optimal value of (QKD). Then φ ≤ `

M implies
φ ·M ≤ `. A valid lower bound φ provides the following information; given M bits, at least φ ·M
secure bits for establishing a secret key can be extracted. In this section we present how to obtain
upper and lower bounds to the optimal value p∗ of the model (6.3.5). Although acquiring a valid
lower bound to p∗ is sufficient, a good upper bound to p∗ provides the information on how close
the lower bound is to the optimal value.

Upper Bound Computation We obtain upper bounds by finding a feasible point. If we achieve
the zero primal residual, i.e., Pm̄ΓV (ρ̂) = Pm̄γ, for some ρ̂, then we evaluate the objective function
at ρ̂ to obtain an upper bound. Since our algorithm is an infeasible-start interior point method, the
primal residual is not always 0. In this case we project the current point ρc to the affine constraint
set, i.e.,

ρ̂ = ρc − (Pm̄ΓV )†(Pm̄ΓV (ρc)− Pm̄γ) = argminρ
{
‖ρ− ρc‖2 : Pm̄ΓV (ρ) = Pm̄γ

}
.

Here, † is the Moore-Penrose generalized inverse. If ρ̂ is positive semidefinite, we then obtain an
upper bound f(ρ̂) ≥ p∗.

In our numerical test, we obtain valid upper bounds starting in the early iterations. We obtain
exact primal feasibility resulting from taking step length of one as soon as possible resulting in the
zero primal residual. Subsequent iterations maintain zero primal residual (see Theorem 6.1.2.) and
we improve upper bounds every iteration.

Lower Bound Computation We obtain a valid lower bound by employing the duality theory.
An approach for computing lower bounds to (6.2.1) is proposed by [156] by using weak duality. They
obtain lower bounds by a two-stage implementation. They first obtain a near optimal solution found
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by the Frank-Wolfe method and then compute a lower bound by using the subgradient inequality
at a near optimal solution. The linearized problem originating from the subgradient inequality is
solved by CVX package and a lower bound is obtained by weak duality.

We first show that our construction of the dual, and the strong duality of our reformulated
model. For simplicity, we use ΓV (ρ) = γV to mean Pm̄ΓV (ρ) = Pm̄γ, i.e., we omit the projection Pm̄.

Theorem 6.3.7. Let L be the Lagrangian for (6.3.5), i.e., L(ρ, y) = f(ρ) + 〈y,ΓV (ρ)− γV 〉. Then
the Lagrangian dual of (6.3.5) is

d∗ = max
Z�0,y

(
min
ρ
L(ρ, y)− 〈Z, ρ〉

)
.

Furthermore, strong duality holds for (6.3.5), i.e., p∗ = d∗ and d∗ is attained for some (y, Z) ∈
Rm̄ ×Hnρ+ .

Proof. Strong duality holds due to the FR process, i.e., the model (6.3.5) has a strictly feasible
point.

We continue with the Lagrangian dual to (6.3.5) presented in Theorem 6.3.7. We note that
we maintain ρ � 0 throughout our execution. Hence we can evaluate the gradient ∇f(ρ) and the
following result follows.

Proposition 6.3.8. Consider the problem (6.3.5). Let ρc, yc be a primal-dual iterate. Let

Z̄ = ∇f(ρc) + Γ∗V (yc).

1. If Z̄ � 0, then a lower bound for problem (6.3.5) is

p∗ ≥ f(ρc) + 〈yc,ΓV (ρc)− γV 〉 − 〈ρc, Z̄〉.

2. Suppose that Z̄ 6� 0, i.e., λmin(Z̄) < 0 and there exists w such that Γ∗V (w) � 0. Let

ᾱ = argminα{α : Z̄ + αΓ∗V (w) � 0}. (6.3.7)

Then a lower bound to problem (6.3.5) is

p∗ ≥ f(ρc) + 〈yc,ΓV (ρc)− γV 〉 − 〈ρc, Z̄ + ᾱΓ∗V (w)〉.

Proof. Recall, from Theorem 6.3.7, that

p∗ = d∗ = max
Z�0,y

min
ρ�0
{f(ρ) + 〈y,ΓV (ρ)− γV 〉 − 〈Z, ρ〉}.

Let ρc � 0, yc be given. If ρc and yc give rise to Z̄ satisfying

Z̄ � 0, ∇f(ρc) + Γ∗V (yc)− Z̄ = 0,

then ρc = argminρ�0 L(ρ, yc)−〈Z̄, ρ〉. In other words, we found a dual feasible point that minimizes
the dual functional. Hence, we obtain the lower bound in Item 1.
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Given ρc, yc, we now suppose they give rise to Z̄ 6� 0. Suppose further that Γ∗V (w) � 0 for
some w. Then, there exists ᾱ > 0 such that Z̄ + Γ∗V (ᾱw) � 0. We choose ᾱ as given in (6.3.7).
We then see that yc and Z̄ + Γ∗V (ᾱw) minimize the dual functional since the first-order optimality
condition of the dual functional yields

∇f(ρc) + Γ∗V (yc + ᾱw)− Z = ∇f(ρc) + Γ∗V (yc) + Γ∗V (ᾱw)− Z = Z̄ + Γ∗V (ᾱw)− Z = 0.

Proposition 6.3.8 has the assumption Z̄ � 0 or the existence of w that yields Γ∗V (w) � 0. We
can always guarantee Γ∗V (w) � 0 for some w for (QKD). We recall that the feasible region of the
original model (6.2.1) has the unit trace property, trace(ρ) = 〈I, ρ〉 = 1. The unit trace property
is preserved after FR, since we choose V that has orthonormal columns, i.e., V ∗V = I. Hence, we
can set Γ∗V (w) = I, for some w. Thus we can always find dual feasible points that minimize the
dual functional efficiently; see Corollary 6.3.9.

Corollary 6.3.9. Let ρc � 0, yc be primal-dual iterate for the problem (6.3.5) and let Z̄ = ∇f(ρc)+
Γ∗V (yc). Then a lower bound to problem (6.3.5) is

p∗ ≥ f(ρc) + 〈yc,ΓV (ρc)− γV 〉 − 〈ρc, Ẑ〉,

where
Ẑ = Z̄ +

∣∣min{0, λmin(Z̄)}
∣∣ I.

6.3.5 Numerical Result

In this section we examine the comparative performance among three algorithms; the Gauss-Newton
method, the Frank-Wolfe method and cvxquad. The Gauss-Newton method refers to the algorithm
developed throughout this chapter. The Frank-Wolfe method refers to the algorithm developed
in [156] and cvxquad is developed in [59] that uses the semidefinite approximations of the matrix
logarithm. We use Table 6.3.1 to present detailed reports on some selected instances3.

For the instances corresponds to the DMCV protocol, we used the tolerance ε = 10−9 and the
tolerance ε = 10−12 was used for the remaining instances. The maximum number of iteration was
set to 80 for the Gauss-Newton method.

Problem Data Gauss-Newton Frank-Wolfe with FR Frank-Wolfe w/o FR cvxquad with FR
protocol parameter size gap time gap time gap time gap time
ebBB84 (0.50,0.05) (4,16) 5.98e-13 0.40 1.01e-04 92.49 1.17e-04 93.05 5.46e-01 214.02
ebBB84 (0.90,0.07) (4,16) 1.42e-12 0.20 2.71e-04 91.26 2.75e-04 94.49 7.39e-01 177.64
pmBB84 (0.50,0.05) (8,32) 5.51e-13 0.23 1.12e-04 1.38 6.47e-04 1.91 5.26e-01 158.64
pmBB84 (0.90,0.07) (8,32) 5.13e-13 0.17 7.31e-05 1.29 6.25e-04 38.65 6.84e-01 233.43
mdiBB84 (0.50,0.05) (48,96) 1.14e-12 1.09 4.99e-05 104.31 5.22e-04 134.05 1.82e-01 557.08
mdiBB84 (0.90,0.07) (48,96) 2.96e-13 0.96 2.04e-04 106.61 2.85e-03 126.62 4.57e-01 537.52
TFQKD (0.80,100.00,0.70) (12,24) 1.15e-12 0.79 2.60e-09 1.21 1.57e-03 124.48 n/a 0.01
TFQKD (0.90,200.00,0.70) (12,24) 1.04e-12 0.44 3.98e-09 1.13 1.68e-04 2.25 n/a 0.00
DMCV (10.00,60.00,0.05,0.35) (44,176) 2.71e-09 507.83 4.35e-06 467.41 3.57e-06 657.08 n/a 0.01
DMCV (11.00,120.00,0.05,0.35) (48,192) 3.24e-09 700.46 2.35e-06 194.62 2.15e-06 283.06 n/a 0.01
dprBB84 (1.00,0.08,30.00) (12,48) 4.92e-13 1.19 3.85e-06 96.74 9.43e-05 141.38 ?? 118.81
dprBB84 (2.00,0.14,30.00) (24,96) 1.04e-12 11.76 5.71e-06 17.66 5.38e-06 34.60 ?? 106.24
dprBB84 (3.00,0.10,30.00) (36,144) 4.96e-13 63.26 6.48e-04 7.38 2.08e-02 29.00 ?? 582.64
dprBB84 (4.00,0.12,30.00) (48,192) 3.80e-13 330.39 4.42e-05 13.78 9.79e-04 175.39 ?? 3303.23

Table 6.3.1: Numerical Report from Three Algorithms

3The instances are tested with MATLAB version 2021a using Dell PowerEdge R640 Two Intel Xeon Gold 6244
8-core 3.6 GHz (Cascade Lake) with 192 Gigabyte memory.
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In Table 6.3.1 Problem Data refers to the data used to generate the instances. Gauss-
Newton refers to the Gauss-Newton method. Frank-Wolfe refers to the Frank-Wolfe algorithm
used in [156] and we use ‘with FR (w/o FR, resp.)’ to indicate that the model is solved with
FR (without FR, resp.). The header cvxquad with FR refers to the algorithm provided by [59]
with FR reformulation. If a certain algorithm fails to give a reasonable answer within a reasonable
amount of time, we give a ‘??’ flag in the gap followed by the time taken to obtain the error
message. We use ‘n/a’ to indicate the instances for which cvxquad is not applicable due to the size
differences in the images under Ĝ and Ẑ due to FR.

The following provides details for the remaining headers in Table 6.3.1.

1. protocol: the protocol name; we refer to [92, Appendix C] for the details of the protocols;

2. parameter: the parameters used for testing; we refer to [92, Appendix C] for the ordering
of the parameters;

3. size: the size (n, k) of original problem; n, k are defined in (6.2.4);

4. gap: the relative gap between the bestub and bestlb;

bestub - bestlb

1 + |bestub|+|bestlb|
2

. (6.3.8)

5. time: time taken in seconds.

We make some discussions on the formula (6.3.8). The best upper bound from the Gauss-
Newton algorithm is used for all instances for ‘bestub’ in (6.3.8). The Gauss-Newton algorithm
computes the lower bounds as presented in Proposition 6.3.8. The Frank-Wolfe algorithm presented
in [156] obtains the lower bound by a linearization technique near the optimal. As presented in [59],
cvxquad uses the semidefinite approximations of the matrix logarithm. The lower bounds from
cvxquad can be larger than the theoretical optimal values. Therefore, we adopt the lower bound
strategy used in [156] for cvxquad.

We now discuss the results in Table 6.3.1. Comparing the two columns gap and time among
the different methods, we see that the Gauss-Newton method outperforms other algorithms in both
producing good relative gaps and the running time. For example, comparing Gauss-Newton and
Frank-Wolfe with FR, the gaps and running times from Gauss-Newton are competitive. There
are three instances that Gauss-Newton took longer time. We emphasize that the gap values with
Gauss-Newton illustrate much higher accuracy.

We now illustrate that the reformulation strategy via FR contributes to superior algorithmic
performances. For the columns Frank-Wolfe with FR and Frank-Wolfe w/o FR in Table 6.3.1,
the FR reformulation contributes to not only giving tighter gaps but also reducing the running time
significantly. We now consider the column corresponding to cvxquad with FR in Table 6.3.1. We
see that the algorithm fails (marked with ‘??’) with some instances due to the memory shortage.
Facial reduction indeed contributes to the reduction on the problem sizes. For example, for pmBB84
with the parameter setting (0.5, 0.05), we reduce the size (n,m) = (8, 21) to (nρ, m̄) = (4, 8); for
mdiBB84 with the parameter setting (0.5, 0.05), we reduce the size (n,m) = (48, 305) to (nρ, m̄) =
(12, 34).

We often get problems where the reduced density operator constraint yields the complete FR.
However, we should be aware of the cases where the exposing vector given by the reduced den-
sity operator provides the maximal exposing vector for the entire constraint set {ρ : Γ(ρ) = γ}.
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The approach [156] uses the perturbation in order to avoid the issues with the singular matrices.
More specifically, in order to evaluate the derivative, [156] perturbs the points by adding a small
multiple of the identity. Our FR approach removes the need for the perturbations owing to the
implications (6.3.6).
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Chapter 7

Conclusions and Open Questions

7.1 Conclusions

In this thesis we showed that facial reduction, FR, arises in many applicatins both as a result of
failure of strict feasibility, as well nonsmoothness in the objective function. We have shown how to
recognize where FR is needed and how to preprocess both SDP and DNN relaxations to obtain
regularized, simplified problems. In addition, FR and singularity degrees help in understanding
instabilities in models. Facial reduction, as a preprocessing mechanism, was introduced in various
forms. In the theoretical aspect, facial reduction resulted in enhancing the model qualities that
appear in various contexts of fields of study. We recognized diverse circumstances that implicit
redundancies emerge. In the practical aspect, facial reduction enhanced performances of many
different classes of algorithms such as the simplex method, the splitting methods and the interior
point methods. Below, we summarize this thesis categorized by topics.

Two-Step Facial Reduction and Implicit Loss of Surjectivity We addressed the impact
of the absence of strict feasibility in SDP and LP in the theoretical and computational aspects. In
addition to the known notion of singularity degree, we introduced two new notions of singularity: the
max-singularity degree, and the implicit problem singularity. We shed light on the main difficulties
that arose with the implicit redundant constraints. This led to the view of the two-step facial
reduction, and the discussion on the importance of removing implicit redundant constraints.

For the area of SDP, we observed the instability issues by exploiting the properties of FR with
respect to the affine subspace. The Barvinok-Pataki bound guarantees the existence of a point X
satisfying t(rank(X)) ≤ m. We improved this bound

t(r) ≤ min {t(n−maxsd(F)), m− ips(F)} ≤ m.

The knowledge of the strengthened bound can help obtain low rank solutions in many applications.
For example, the strengthened bound can be used for reducing the variable dimensions in nonlinear
methods for solving SDPs [25]. Having this knowledge can help with low rank projections on the
cone Sn+ that arise in the splitting methods such as ADMM or PRSM.

For the area of LP, we further made many interesting observations both in theoretical and
practical aspects. Even though strict feasibility is not a necessary assumption to establish strong
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duality, we emphasized that ensuring strict feasibility should be part of preprocessing for linear
programming, otherwise a problem may conceal implicit singularities. For the theory, we proved
using the implicit redundancies that every BFS is degenerate in the absence of strict feasibility.
Moreover, the implicit redundancies resulted in ill-conditioning in the system used for finding
search directions in interior point methods such as the self-dual embedding. We also developed
a preprocessing method for detecting variables fixed at 0, resulting in promoting stability. We
provided an efficient preprocessing step for FR that can be directly concatenated to the phase-I of
the two-phase simplex method. We have presented various numerical experiments that convey the
importance of preprocessing for strict feasibility. Our numerics for LP illustrated the instability
using the accuracy of optimality conditions as well as the effect of perturbations for the two most
popular classes of algorithms, i.e., the simplex and interior point methods. This was illustrated on
random problem, as well as instances from the NETLIB data set. The ill-conditioning arising from
lack of strict feasibility highlighted the fact that free variables are generally not treated properly
in the literature as splitting them into two results in making the dual ill-posed.

A Restricted Dual Peaceman-Rachford Splitting Method for Solving DNN Relaxation
of Binary Quadratic Problems We presented a straightforward derivation of the DNN relax-
ation of the binary quadratic problem, BQP, with the unit row-sum constraint. Given a BQP,
we derived a facially reduced SDP relaxation. We then identified some redundant constraints to
the SDP relaxation of the BQP to complete the DNN relaxation. We also exploited the set of
dual optimal multipliers to obtain prior knowledge and provided customized dual updates in the
algorithm.

The FR provided a natural splitting of the variables and the splitting method was an excellent
fit for employing splitting methods. Given constraints that are difficult to engage simultaneously,
we distributed the constraints into two simpler subproblems to solve them efficiently. The splitting
of the subproblems led to incorporating redundant constraints to the model that are not redundant
in the individual subproblems.

The natural splitting provided by FR together with the known dual optimal elements led us to
developing the restricted dual Peaceman-Rachford splitting method. We derived the algorithm by
making connection to the monotone operator theory. Using this variant of splitting method, we
exhibited numerical experiments with the two classes of NP-hard real-world problems, the protein
side-chain positioning problem and the quadratic assignment problem. We illustrated the efficiency
of our approach with the numerical experiments.

Gauss-Newton Framework for Solving Nonlinear SDP over Hermitian matrices We
presented an interior point method framework for solving a SDP over the set of Hermitian matrices.
We used the Gauss-Newton method for finding the points satisfying the first-order optimality
conditions by forming the over-determined nonlinear least squares problem. We exploited the
structure of the Jacobian system and reduced the computation cost for finding the search directions
followed by the stable back substitution steps.

We then applied the framework to a robust numerical method for finding provable lower bounds
for the convex optimization problem for computing the key rate for the QKD in the presence of
an eavesdropper. We used the novel FR technique for not only applicable to the constraint set but
also to the objective function. This is is done by regularizing the constraint set and the objective
function. The conventional FR is performed in order to improve the characteristics of the constraint
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set. We showed that the FR technique can be extended to improve the feature of the objective
function, e.g., differentiability.

This led to a robust numerical method for finding provable lower bounds for the key rate com-
putation for QKD. Our empirical evidence illustrated significant improvements in solver running
time and accuracy over previous methods. Our approach showed a competitive numerical perfor-
mances that outperforms the available methods in the literature. We solved many problems close
to machine accuracy and provide a theoretically provable accurate lower bounds.

7.2 Future Directions and Open Questions

7.2.1 Preprocessing for LP

The dual simplex method is a popular choice for solving linear programs. We also have seen that
the failure of dual strict feasibility results in degeneracy problems. And redundant constraints have
been shown in the literature to poorly affect algorithms [46]. Identifying redundant constraints is
a nontrivial operation [31]. This motivates doing FR on both the primal and the dual problems. A
few questions arise. Is it better to perform FR on the dual first than the primal? If the first use of
Algorithm 4.2.2 does not guarantee strict feasibility on F , do we continue with FR applied to the
dual and focus on the primal again? That is, do we alternate the preprocessing steps between the
primal and the dual? What is the best approach for guaranteeing the primal-dual strict feasibility?

Algorithm 4.2.2 is an extension of the usual phase-I of the two-phase simplex method. Hence,
it would be beneficial to catch information for FR during this phase as well. Can phase-I of the
two-phase simplex method reveal anything about strict feasibility or an exposing vector?

After FR done to the dual problem (i.e., identified slack variables that are fixed at 0), we noticed
in (4.3.10) that there is a set of constraints that become redundant. These redundant equalities take
place among the inequality constraints that are implicitly equality constraints, i.e., the inequalities
that correspond to supp(w); see (4.3.8). Once we discard the redundant constraints, some equality
constraints remain in the dual system. These remaining constraints lead some primal variables to
be free. This is interesting since FR to the primal does not alter the structure of the dual constraint
system. Hence, careful analysis on these relationships is necessary.

Many LP instances contain various forms of constraints, e.g., inequality constraints, bounded
variables, free variables and so on. Although we can transform these instances into the standard
form equivalently, it would be interesting to make the process more efficient to directly work with
instances with various forms of constraints. In Appendix B.2, we outline the process illustrated in
Algorithm 4.2.2 applicable to a general feasible region in the form

H :=

x =
(
x1;x2;x3;x4

)
∈ Rn :

Aeqx = beq, Aineqx ≤ bineq

ˆ̀≤ x1, x2 ≤ û
¯̀≤ x3 ≤ ū, x4 free

 , (7.2.1)

where the data dimensions are Aeq ∈ Rmeq×n, Aineq ∈ Rmineq×n, ˆ̀∈ Rnx1 , û ∈ Rnx2 and ¯̀, ū ∈ Rnx3 .
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7.2.2 Preprocessing for SDP

We saw throughout this thesis that facial reduction is a successful process that gives both the stabil-
ity and the reduction on the problem size. Facial reduction for many of the successful applications
is achieved by exploiting analytic expressions of exposing vector tailored to problem structure.
However, FR for an arbitrary spectrahedron can be expensive. In such cases, we generally rely
on available interior point method software to solve the auxiliary problem (2.3.4). Computing a
reliable exposing vector within machine accuracy is a challenging task, see e.g., [134, Section 4.5]
and [38, Section 4.4]. Nevertheless, it would be interesting to introduce a general framework for
the FR algorithm tailored to compute exposing vectors.

Let P ∈ Sn++ and α > 1. Consider the following problem motivated by (2.3.4):

(PFR ) p∗FR := min
y
{〈b, y〉 : A∗y � 0, 〈P,A∗y〉 = α} . (7.2.2)

The dual (DFR ) of (PFR ) is

(DFR ) d∗FR := max
λ,W
{αλ : A(W ) + λA(P ) = b, W � 0} . (7.2.3)

Then the Guass-Newton method can be used to solve the primal-dual pair (7.2.2) and (7.2.3). We
include some properties of the primal-dual pair and outline the Gauss-Newton framework tailored
for this pair in Appendix B.3.

For an instance where strict feasibility is known to fail, we may consider solving the alternative
problem below:

max
y
{trace(A∗(y)) : 〈b, y〉 = 0,A∗(y) � 0}. (7.2.4)

We note that (7.2.4) promotes high rank for the exposing vector, which is a desirable property. We
also note that we do not need to include the hyperplane 〈P,A∗y〉 = α to (7.2.4) that appears in
(7.2.2) that is used to prevent the zero exposing vector.

We discussed the implicit problem singularity, ips, for the primal feasible set F by counting
the number of implicit redundant equality constraints. The dual feasible set

FD = {C −A∗(y) ∈ Sn+ : y ∈ Rm}

is in a conic form, and hence the counting the number of equality constraints does not seem to
directly apply to FD. Hence, it raises the following question; how do we define an analogue of ips
for FD? We can rewrite the dual feasible set using a null-space representation

FD = {X ∈ Sn+ : N (X) = d}, for some linear map N : Sn → Rn−m, d ∈ Rn−m,

and cast the discussion of the implicit redundant constraints to the equality system N (X) = d.
However, an in-depth discussion on the analogue of ips tailored to the dual feasible set FD is
necessary for the future development in this area.

The use of simplex method for preprocessing for LP led us to the reliable computation of an
exposing vector. There is a generalized definition of the basic feasible solution for spectrahedra and
a simplex-type method that can be applied to the SDP has been proposed, see [102,127,163,164].
It would be interesting to extend the simplex-type preprocessing method to SDP to resolve the
accuracy issues carried by the interior point methods and to use it for strict feasibility testing.
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7.2.3 Singularities on SDP and DNN Relaxations

We have observed that many SDP relaxations of hard combinatorial problems are known to fail
strict feasibility. When solving the relaxations, low rank solutions are desired as they provide
better approximations for the underlying problem. With the new strengthened bound, we obtain
an immediate improvement for these classes of problems. This observation leads to an interesting
question. Does it help to model a problem that has large implicit problem singularities or large
max-singularity degree so that this results in low rank optimal solutions?

For two closed convex cones K1,K2, the equality below holds:

(K1 ∩ K2)∗ = cl(K∗1 +K∗2).

If one of the cones is polyhedral, the relation below holds:

(K1 ∩ K2)∗ = K∗1 +K∗2.

We recall that the exposing vector Z = A∗(y) for F is a member of the dual cone (Sn+)∗. We let
sd(SDP) (sd(DNN), resp.) denote the singularity degree of the SDP problems (DNN problems,
resp.). Since (Sn+)∗ ⊆ (Sn+)∗+(Rn×n+ )∗, we conclude that any exposing vector for SDP is an exposing
vector for DNN and thus

maxsd(DNN) ≤maxsd(SDP).

How different are the ips, sd for problems with the DNN cone rather than the Sn+?

We recall Lemma 5.3.1, Corollary 5.3.2 and their implications. Adding one equality constraint
(optimal plane) sets many of the elements of the variable Y to be 0, i.e., many of the inequalities
of the type 0 ≤ Yi,j ≤ 1 become redundant. We also have seen in Example 3.2.13 that adding the
optimal plane gives rise to a tighter bound on the rank of an optimal solution. This observation
raises an interesting question. Does adding the optimal plane help achieving low rank optimal
solutions since the optimal set contains a very large implicit problem singularities?

7.2.4 Extension of the Gauss-Newton Framework to Various Constraints

We have developed the Gauss-Newton interior point method for solving key rate computation for
quantum key distribution. We developed the algorithm that is applicable to the standard spectre-
hedron. While our framework covers many interesting QKD protocols, there are scenarios where
inequality constraints are needed, e.g., [70]. Hence, the need arises for extending our framework
to the models that contain additional inequality constraints. It is interesting and important to
address possible numerical instabilities introduced by those inequality constraints.
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[82] B. Guenin, J. Könemann, and L. Tunçel. A Gentle Introduction to Optimization. Cambridge
University Press, 2014. 40
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Appendix A

Supplementary Numerics

A.1 Numerical Results on SCP

Problem Data Numerical Results Timing
# name p n0 lbd ubd rel-gap iter time(sec)
1 1AIE 26 34 -46.95892 -46.95892 1.04802e-15 200 0.10
2 2ERL 34 103 55.33285 55.33284 1.17985e-12 200 5.85
3 1CBN 37 112 -40.42751 -40.42751 1.68402e-14 300 7.77
4 1RB9 41 105 -76.96501 -76.96501 7.11964e-13 1000 26.39
5 1BX7 41 99 16.96026 16.96026 5.21525e-12 300 7.25
6 2FDN 42 51 -59.43091 -59.43092 3.71094e-14 200 0.04
7 1MOF 46 94 -79.05580 -79.05580 3.52629e-12 200 4.03
8 1CTF 47 74 -97.18893 -97.18893 4.64633e-13 200 2.81
9 1NKD 50 199 -51.78466 -51.78466 4.40639e-12 2680 192.65
10 2IGD 50 126 -78.50608 -78.50608 5.39611e-15 500 14.67
11 2SN3 53 112 -5.56818 -5.56818 6.73872e-13 700 16.77
12 1MSI 54 112 -87.46958 -87.46958 1.72043e-13 700 19.39
13 1AHO 54 140 24.66925 24.66925 4.19224e-14 1500 56.22
14 1COR 60 131 15.58314 15.58314 4.58637e-12 1000 32.31
15 1CTJ 61 258 -103.32705 -103.32705 1.64217e-12 1872 162.80
16 1RZL 65 121 17.26470 17.26470 1.22992e-11 2468 68.52
17 1TIF 66 614 -155.17859 -155.17859 4.69196e-14 1000 350.89
18 1BDO 69 221 -136.29933 -136.29933 8.93377e-15 1000 75.06
19 1OPD 70 112 -139.64632 -139.64632 1.18233e-13 300 5.98
20 1VQB 75 406 -96.94940 -96.94940 4.34568e-14 900 147.36
21 1IUZ 75 221 -150.88238 -150.88238 1.25791e-14 3200 227.45
22 1ABA 76 376 -137.59962 -137.59963 9.05546e-15 600 88.43
23 1FNA 76 131 -172.01313 -172.01313 3.64100e-14 800 23.32
24 1CYO 78 220 -75.36668 -75.36668 1.36739e-14 700 48.50
25 1FUS 79 302 -4.66627 -4.66627 1.11145e-12 3000 312.35
26 2MCM 80 123 -135.14024 -135.14024 8.30816e-13 400 10.30
27 1SVY 80 147 -141.92437 -141.92437 6.21219e-13 400 14.51
28 1A68 81 424 -178.12555 -178.12555 2.54581e-15 1500 249.80
29 1YCC 84 223 -79.21270 -79.21270 2.11079e-12 955 66.26
30 2ACY 84 580 -146.32254 -146.32254 1.06468e-14 7800 2175.04
31 1BM8 85 687 -119.54537 -119.54537 2.02428e-14 1300 509.88
32 1BKF 89 339 -170.80514 -170.80514 1.60935e-14 1000 117.73
33 3CYR 91 137 -144.06405 -144.06405 2.48290e-12 1900 52.09
34 3VUB 92 544 -229.38312 -229.38312 7.41813e-16 1400 349.67
35 1JER 96 462 -120.78401 -120.78400 1.15131e-12 3232 633.90
36 2HBG 97 275 -178.42210 -178.42210 2.70839e-13 500 42.98
37 1POA 97 470 278.08280 278.08280 2.02964e-12 5463 1099.55
38 1C52 99 256 -223.31096 -223.31096 2.41281e-15 2700 203.46
39 2A0B 99 642 -161.45228 -161.45228 1.75494e-16 5200 1800.90
40 2TGI 100 355 -14.03554 -14.03554 2.46249e-13 1300 153.95

Table A.1.1: Computation results on selected PDB instances up to 100 amino acids
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Problem Data Numerical Results Timing
# name p n0 lbd ubd rel-gap iter time(sec)
41 3NUL 101 285 -154.87542 -154.87542 1.28046e-15 2300 307.34
42 1WHI 101 298 -247.13457 -247.13457 6.94375e-14 1500 199.52
43 1PDO 104 453 -188.29848 -188.29848 9.10541e-12 5754 1456.33
44 3LZT 105 530 -48.81821 -48.81821 8.48591e-13 1100 300.50
45 1DHN 105 519 -133.77464 -133.77464 1.35468e-13 2000 535.83
46 1KUH 106 580 -155.56590 -155.56590 2.18536e-15 2296 743.57
47 1ECA 108 655 -169.74717 -169.74717 1.66944e-16 25200 12563.89
48 1BFG 108 410 -191.73261 -191.73262 8.54577e-14 900 210.84
49 1RIE 108 930 -117.91809 -117.91809 1.57208e-14 20200 17809.01
50 2SAK 111 214 -239.86975 -239.86975 1.08995e-12 500 37.26
51 1BGF 112 1180 -239.65571 -239.65571 1.52549e-13 56400 71503.54
52 2END 118 707 -8.22833 -8.22833 1.08596e-12 16100 8511.24
53 2SNS 119 634 620.86546 620.86546 1.79304e-14 6900 3082.12
54 1BD8 121 347 -219.12419 -219.12419 9.42666e-12 4970 760.81
55 1NPK 122 709 -205.56059 -205.56059 6.77231e-13 59075 31212.37
56 1A6M 124 613 -55.41007 -55.41008 4.93096e-14 22800 7608.82
57 2RN2 127 830 -198.37189 -198.37189 1.41057e-13 6073 4053.13
58 1RCF 130 733 -86.59895 -86.59775 1.38011e-05 100000 56927.20
59 1LCL 131 1246 -217.16433 -217.16433 2.53317e-14 3800 4821.11
60 2CPL 132 819 -284.97180 -284.97180 9.75693e-15 5900 3329.39
61 1VHH 133 844 -21.33604 -21.33604 3.59566e-14 3200 1843.96
62 1BJ7 135 917 -64.37915 -64.37915 5.69493e-14 11300 8946.94
63 119L 136 970 -234.21535 -234.21535 8.01617e-14 34200 30890.87
64 1RA9 136 1018 -185.07235 -185.07235 5.13076e-14 4400 4839.16
65 1L58 137 962 -285.60167 -285.60167 1.31131e-14 15600 13812.60
66 2ILK 142 708 -121.02712 -121.02712 1.82770e-13 4700 2750.13
67 1KOE 144 710 -13.87537 -13.87537 1.27269e-11 4124 2490.08
68 1HA1 146 538 -213.93793 -213.93793 1.44469e-13 3700 1229.31
69 1CEX 146 415 174.95279 174.95279 2.40438e-11 11447 2426.49
70 1CV8 146 730 -213.13554 -213.13554 3.28738e-13 5600 3442.13
71 153L 149 846 -170.13061 -170.13061 3.03488e-13 2100 1554.46
72 1BS9 150 935 103.16569 103.16569 1.31052e-13 2500 1736.57
73 2PTH 151 1198 -190.97344 -190.97344 1.39085e-13 1900 2233.17
74 1XNB 151 1233 -147.30040 -147.30040 2.69217e-15 13300 16562.76
75 1AQB 152 713 29.24537 29.24537 9.30418e-14 39300 17795.39
76 1LBU 152 1225 38.14603 38.14603 1.91397e-13 9900 11673.18
77 1KID 153 653 -351.91160 -351.91160 2.90337e-15 6600 2607.24
78 1CHD 154 489 -164.21510 -164.21510 3.27846e-14 19300 4097.50
79 1AMM 158 1480 -288.62671 -288.62671 2.75245e-15 3300 5793.13
80 2ENG 162 867 82.01797 82.01797 1.33295e-13 14200 8284.65
81 1G3P 165 921 -70.30769 -70.30769 6.66312e-14 7000 4469.99
82 1THV 167 902 5.12749 5.12749 4.63732e-12 4200 2637.88
83 1PPN 170 1259 -56.69346 -56.69346 1.23365e-13 11589 14139.22
84 1IAB 173 775 321.20652 321.20652 2.04964e-14 26500 13017.74
85 1DIN 175 1110 -264.73564 -264.73548 5.84356e-07 100000 93357.26
86 2AYH 176 1269 8428.18154 6089367.83709 1.99447e+00 100000 135879.29
87 1ZIN 177 853 -353.00431 -353.00431 3.18384e-14 23800 13742.52
88 1BYI 177 818 -242.78881 -242.78881 2.33646e-14 2400 1298.65
89 2BAA 178 1165 -43.77265 -43.77265 1.95480e-12 4600 4785.88
90 1A7S 179 524 -239.78218 -239.78218 1.00542e-14 1200 284.88
91 1WAB 183 1063 -317.46713 -317.46713 9.40337e-14 8500 7357.75
92 1MUN 185 1047 -378.01261 -378.01261 1.15635e-14 9500 7883.00
93 1LST 192 946 -244.76861 -244.76861 1.28627e-14 32300 21374.44
94 1GCI 194 1052 -205.63185 -205.63185 2.79899e-14 10300 8885.03
95 3CLA 198 857 -26.72768 -26.72768 9.89051e-14 3900 2287.99

Table A.1.2: Computation results on selected PDB instances up to 200 amino acids
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Problem Data Numerical Results Timing
# name p n0 lbd ubd rel-gap iter time(sec)
96 1AL3 201 1077 119.66598 119.66598 3.39407e-14 12500 10188.87
97 1ARB 202 1466 -61.52823 -61.52823 3.41363e-14 8900 14632.82
98 1XJO 202 776 -171.92443 -171.92443 8.24179e-15 3700 1455.50
99 1NLS 203 1060 -297.73578 -297.73578 5.33677e-15 2500 1976.08
100 1MRJ 208 1178 -295.13711 -295.13711 1.70740e-13 2300 2149.63
101 1OAA 208 854 -317.83422 -317.83422 1.44174e-12 3842 1823.52
102 2DRI 210 906 -398.45564 -398.45564 2.56465e-15 6200 3225.99
103 2CBA 223 1018 -86.52145 -86.52145 5.34000e-14 3400 2407.24
104 2POR 224 1304 -83.22221 -83.22221 5.55044e-14 6700 8044.39
105 3SEB 224 1412 77.15838 77.15852 1.84867e-06 100000 137194.81
106 1MLA 227 1322 -484.10542 -484.10542 1.68910e-14 62900 75257.79
107 1DCS 232 1170 -342.68600 -342.68600 1.39133e-14 8000 7459.07
108 1AKO 234 1387 -244.65691 -244.65691 1.18251e-14 7400 9809.00
109 1PDA 239 891 -423.50226 -423.50226 4.96037e-15 9100 4520.68
110 1EZM 239 1497 -217.36581 -217.36581 3.49620e-13 2300 3919.92
111 1C3D 243 1679 -400.69876 -400.69876 1.04846e-14 22100 134094.53
112 1RHS 244 1973 -341.20443 -341.20443 1.41400e-14 7300 62136.57
113 8ABP 245 1743 -273.90715 -273.90716 2.27865e-15 9000 59868.98
114 1CVL 246 910 -537.04249 -537.04249 2.11494e-16 14800 7522.51
115 1RYC 248 1831 -202.60568 -202.60568 4.81378e-14 15200 84674.22
116 1MRP 248 1648 -350.97062 -350.97062 1.39088e-14 11000 34303.23
117 1IXH 252 1134 -289.75241 -289.75241 4.11267e-14 1300 1087.30
118 1FNC 253 1940 -310.60999 -310.60999 6.54656e-13 34321 292924.91
119 1TCA 255 1062 -422.15387 -422.15387 4.24994e-14 8700 6424.87
120 1SBP 256 1704 -271.08838 -271.08838 3.59996e-14 40000 156330.60
121 2CTC 264 1536 -213.88596 -213.88596 2.17419e-14 15100 43642.85
122 1PGS 265 2190 -16.14049 -16.14049 2.28785e-12 21300 269611.15
123 1MSK 271 1798 -162.51007 -162.50978 1.77573e-06 100000 771330.61
124 1BG6 271 784 -452.62383 -452.62383 3.13620e-15 12700 4935.11
125 1ARU 271 939 -314.40612 -314.40589 7.15908e-07 100000 53858.54
126 1A8E 274 1096 -249.85499 -249.85499 3.58741e-14 96500 78746.74
127 1AXN 278 2343 -300.34291 -300.34291 7.55789e-15 12500 207625.02
128 1TAG 279 1330 -253.22167 -253.22167 1.68029e-14 4300 5038.43
129 1ADS 280 1560 733.91439 733.91440 1.39319e-13 18273 65301.22
130 3PTE 284 2006 161.17216 161.17216 5.09815e-15 13500 59169.60
131 1CEM 292 2400 -24.20196 -24.20196 3.85446e-14 7000 47701.70

Table A.1.3: Computation results on selected PDB instances up to 300 amino acids
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A.2 Numerical Results on QAP

Problem Data Numerical Results Timing

# name true-opt lbd ubd rel.gap rel.opt.gap rel.gapA iter iterA time timeA

47 chr22a 6156 6156 6156 0 0 0.02 4700 40000 120.34 937.29
48 chr22b 6194 6194 6194 0 0 0.11 6900 39300 184.47 965.52
49 chr25a 3796 3796 3796 0 0 0 3300 35600 155.01 1380.29
50 esc32a 130 104 168 46.89 22.13 106.07 9100 18200 1404.41 2591.16
51 esc32b 168 132 200 40.84 23.92 83.00 12000 4000 1875.72 573.07
52 esc32c 642 616 644 4.44 4.13 27.43 5400 1700 881.03 256.19
53 esc32d 200 192 208 7.98 4.07 54.37 4300 1400 670.15 202.91
54 esc32e 2 2 20 156.52 0 141.18 10700 3000 1653.70 435.27
55 esc32g 6 6 6 0 0 26.67 400 900 63.96 135.61
56 esc32h 438 426 448 5.03 2.77 33.46 12300 11300 1895.42 1638.85
57 kra30a 88900 86838 94750 8.71 2.35 16.50 9900 3700 1110.91 404.34
58 kra30b 91420 87858 100200 13.13 3.97 27.87 12800 4900 1461.35 537.19
59 kra32 88700 85776 92800 7.87 3.35 35.29 11100 4100 1720.85 626.41
60 nug21 2438 2382 2546 6.65 2.32 12.36 10500 5600 245.97 116.02
61 nug22 3596 3530 3678 4.11 1.85 12.76 11100 7400 296.19 195.65
62 nug24 3488 3402 3744 9.57 2.50 16.25 10800 4300 412.96 160.04
63 nug25 3744 3626 3798 4.63 3.20 15.37 11600 7500 528.03 343.50
64 nug27 5234 5130 5364 4.46 2.01 17.08 11000 8400 756.87 552.20
65 nug28 5166 5026 5466 8.39 2.75 18.55 10900 7200 854.10 536.63
66 nug30 6124 5950 6530 9.29 2.88 19.83 13000 8800 1424.95 908.56
67 ste36a 9526 9260 10204 9.70 2.83 42.28 24200 27300 7469.48 7694.55
68 ste36b 15852 15668 18770 18.01 1.17 82.03 25800 40000 7770.51 11593.78
69 ste36c 8239110 8134756 8302154 2.04 1.27 36.15 40000 40000 11854.97 11466.03
70 tai25a 1167256 1096658 1264590 14.22 6.24 20.56 1900 800 86.44 33.82
71 tai30a 1818146 1706872 1970990 14.36 6.31 15.21 4700 1400 514.10 143.77
72 tai35a 2422002 2216648 2672342 18.64 8.85 22.34 3000 1500 760.22 353.29
73 tai40a 3139370 2843314 3461270 19.60 9.90 23.43 5700 2200 2928.65 1118.45
74 tho30 149936 143576 166336 14.69 4.33 24.33 18300 7400 2016.71 803.19
75 tho40* 240516 226522 256890 12.56 5.99 26.25 16400 12200 8052.26 6229.43

Table A.2.1: QAPLIB instances of medium size

Problem Data Numerical Results Timing

# name true-opt lbd ubd rel.gap rel.opt.gap rel.gapA iter iterA time timeA

76 esc64a 116 98 210 72.49 16.74 75.71 1100 1200 8837.48 9706.63
77 sko42 15812 15336 16270 5.91 3.06 17.24 11500 10700 7532.99 7039.99
78 sko49 23386 22654 24246 6.79 3.18 16.59 18900 16900 31388.90 27587.39
79 sko56 34458 33390 36598 9.17 3.15 16.60 13100 15100 46346.63 53804.58
80 sko64 48498 47022 50316 6.77 3.09 15.54 14300 21100 113747.66 164377.85
81 tai50a 4938796 4390982 5467512 21.84 11.74 25.79 2300 3300 4252.22 6026.14
82 tai60a 7205962 6326350 7915088 22.31 13.00 26.03 3400 5100 18191.52 26989.50
83 tai64c 1855928 1811366 1901250 4.84 2.43 38.79 2500 2400 20382.20 19268.53
84 wil50 48816 48126 50382 4.58 1.42 9.38 10100 11000 19151.38 20487.55

Table A.2.2: QAPLIB instances of large size
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Appendix B

Supplementary Proofs and Notes

B.1 The Adjoints of Mρ and MZ

We present an explicit representation of the linearized system for (6.1.3). We first present some
preliminary results regarding the adjoint.

We define some mappings that are used in this section. We define the symmetrization linear
map, S, as S(M) = (M + M∗)/2. The skew-symmetrization linear map, SK, is SK(M) = (M −
M∗)/2. Any matrix M ∈ Cn×n can be decomposed by

M =
1

2
(M +M∗) +

1

2
(M −M∗) = S(M) + SK(M).

Lemma B.1.1 (adjoint ofW(R) := WR). Given W ∈ Cn×n, define the (left matrix multiplication)
linear map W : Cn×n → Cn×n by W(R) = WR. Then the adjoint W∗ : Cn×n → Cn×n is defined by

W∗(M) = <(W )T<(M) + =(W )T =(M) + i
(
<(W )T =(M)−=(W )T<(M)

)
. (B.1.1)

If W ∈ Hn and W : Hn → Cn×n, then the adjoint W∗ : Cn×n → Hn is defined by

W∗(M) = S [<(W )<(M)−=(W )=(M)] + iSK [=(W )<(M) + <(W )=(M)] . (B.1.2)

Proof. Let M ∈ Cn×n. By (2.1.2), we have

〈W(R),M〉 = <(〈W(R),M〉) = trace
(
<(W(R))T <(M)

)
+ trace

(
=(W(R))T =(M)

)
. (B.1.3)

We note that

W(R) = WR = (<(W ) + i=(W ))(<(R) + i=(R))
= <(W )<(R)−=(W )=(R) + i<(W )=(R) + i=(W )<(R).

Hence, the first term in (B.1.3) becomes

〈<(W(R)),<(M)〉 = 〈<(W )<(R)−=(W )=(R),<(M)〉
= trace

(
<(R)T<(W )T <(M)

)
− trace

(
=(R)T =(W )T <(M)

)
=

〈
<(R),<(W )T <(M)

〉
−
〈
=(R),=(W )T <(M)

〉
,
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and the second term in (B.1.3) follows similarly:

〈=(W(R)),=(M)〉 = 〈<(W )=(R) + =(W )<(R),=(M)〉
= trace

(
=(R)T<(W )T =(M)

)
+ trace

(
<(R)T =(W )T =(M)

)
=

〈
=(R),<(W )T =(M)

〉
+
〈
<(R),=(W )T =(M)

〉
.

Thus, by linearity, we have〈
<(R),<(W )T <(M) + =(W )T =(M)

〉
+
〈
=(R),−=(W )T <(M) + <(W )T =(M)

〉
. (B.1.4)

By (2.1.2),
<(W∗(M)) = <(W )T <(M) + =(W )T =(M)
=(W∗(M)) = <(W )T =(M)−=(W )T <(M),

and (B.1.1) follows.

Now suppose that W is a linear map from Hn and let R ∈ Hn. Then

<(W ),<(W(R)) ∈ Sn, and =(W ),=(W(R)) ∈ Snskew.

Let M ∈ Cn×n. We note that

〈<(R),<(W )T <(M)〉 = 〈<(R),<(W )<(M)〉 since <(W ) ∈ Sn
= 〈<(R),<(M)T <(W )T 〉 since <(R) ∈ Sn,

and
〈<(R),=(W )T =(M)〉 = −〈<(R),=(W )=(M)〉 since =(W ) ∈ Snskew

= −〈<(R),=(M)T =(W )T 〉 since <(R) ∈ Sn.

Hence the first term in (B.1.4) is equal to〈
<(R),<(W )T <(M) + =(W )T =(M)

〉
= 〈<(R),S (<(W )<(M)−=(W )=(M))〉 .

Now for the second term in (B.1.4), we observe that〈
=(R),−=(W )T <(M)

〉
= 〈=(R),=(W )<(M)〉 since =(W ) ∈ Snskew

=
〈
=(R),−<(W )T =(M)T

〉
since =(R) ∈ Snskew,

and 〈
=(R),<(W )T =(M)

〉
= 〈=(R),<(W )<(M)〉 since <(W ) ∈ Sn
=

〈
=(R),−<(M)T <(W )T

〉
since =(R) ∈ Snskew.

Hence the second term in (B.1.4) is equal to〈
=(R),−=(W )T <(M) + <(W )T =(M)

〉
= 〈=(R),SK (=(W )<(M) + <(W )=(M))〉 .

Lemma B.1.2 (adjoint of ρ(S) = Sρ). Given ρ ∈ Cn×n, define the (right matrix multiplication)
linear map ρ : Cn×n → Cn×n by ρ(S) = Sρ. Then the adjoint ρ∗ : Cn×n → Cn×n is defined by

ρ∗(M) = <(M)<(ρ)T + =(M)=(ρ)T + i
(
−<(M)=(ρ)T + =(M)<(ρ)T

)
. (B.1.5)
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If ρ ∈ Hn and ρ : Hn → Cn×n, then the adjoint ρ∗ : Cn×n → Hn is defined by

ρ∗(M) = S [<(M)<(ρ)−=(M)=(ρ)] + iSK [<(M)=(ρ) + =(M)<(ρ)] . (B.1.6)

B.2 FR for a General Polyhedral Set

In this section we provide the auxiliary system for computing an exposing vector of the set H
defined in (7.2.1) and outline the FR process for H. We introduce nonnegative slack variables
sineq ∈ R

mineq

+ , s1 ∈ R
nx1
+ , s2 ∈ R

nx2
+ , s3, s4 ∈ R

nx3
+ to transform the constraints in (7.2.1) as below:

Aeqx = beq, Aineqx+ sineq = bineq, x1 − s1 = ˆ̀, x2 + s2 = û, x3 − s3 = ¯̀, x3 + s4 = ū.

We can represent these equalities in a compact form

L :=
{

(x; s) : Ā(x; s) = b̄, x = (x1;x2;x3;x4), s = (sineq; s1; s2; s3; s4)
}
,

where

Ā :=

x1 x2 x3 x4 sineq s1 s2 s3 s4


[ Aeq ]
[ Aineq ] I
I −I

I I
I −I
I I

, b̄ :=



beq

bineq

ˆ̀

û
¯̀

ū

 ∈ R
meq+mineq+nx1+nx2+2nx3 .

We let
K := Rn ⊕ Rmineq

+ ⊕ Rnx1+ ⊕ Rnx2+ ⊕ Rnx3+ ⊕ Rnx3+ .

Then
H fails strict feasibility ⇐⇒ L ∩ int(K) = ∅.

Then by the hyperplance separation theorem (see [50, Section 3.1]) we can deduce that there exists
a vector y such that

ĀT y ∈ K∗ \ {0}, 〈b̄, y〉 = 0, y = (yeq; yineq; y1; y2; y3; y4). (B.2.1)

We restate the system (B.2.1) as below:

Aeq
T yeq +Aineq

T yineq +


0
−y1

y2

−y3 + y4

 = 0n,

〈beq, yeq〉+ 〈bineq, yineq〉+ 〈−ˆ̀, y1〉+ 〈û, y2〉+ 〈−¯̀, y3〉+ 〈ū, y4〉 = 0,

yeq free, (yineq; y1; y2; y3; y4) ∈ Rmineq+nx1+nx2+2nx3
+ \ {0}.

(B.2.2)

We note that the system (B.2.2) is a generalization of the system (2.3.4) (after reducing to a
polyhedral cone) and the system (4.3.6) in Lemma 4.3.3. For some i, where i is an index associated
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with slack variables, we solve the subproblem of the type

p∗i = max{si : (x; s) ∈ L ∩ K},

where p∗i indicates if si is a variable fixed at 0 or not. If p∗i = 0, the dual feasibility provides a
solution of the system (B.2.2) and thus provides an exposing vector for H, a certificate indicating
failure of strict feasibility.

B.3 The FR Algorithm via GN Method

We first observe some properties of the primal-dual pair (7.2.2) and (7.2.3). The role of P � 0
in (7.2.2) is to prevent the solution exposing vector A∗(y) from being 0. It is unclear if strong
duality holds for the primal-dual pair. We show in Lemma B.3.1 that there always exists P � 0 so
that (7.2.3) holds the Slater constraint qualification.

Lemma B.3.1. Let F be feasible. Then the followings hold.

1. There exists P � 0 that leads (DFR ) contain a Slater point.

2. If {Ai}mi=1 contains a positive definite or negative definite matrix, the Slater condition holds
for (PFR ).

Proof. 1. Let W̄ � 0 be any feasible point to F . Let

W̄ =
[
V U

] [DV 0
0 0

] [
V U

]T
be the spectral decomposition of W̄ . We let T̄ = UDUU

T � 0, where DU � 0. Consider
Ŵ = 2W̄ + 2T̄ and P = 2T̄ + W̄ . Clearly, both Ŵ and P are positive definite. We note that

A(Ŵ )− 1 · A(P ) = A(Ŵ − P ) = A(W̄ ) = b.

Hence, (7.2.3) contains a strictly feasible point.

2. Without loss of generality, letA1 be positive definite. Then choosing ȳ = (α/〈A1, P 〉, 0, . . . , 0)T

gives the desired property. If A1 is negative definite, we may replace 〈A1, X〉 = b1 with
〈−A1, X〉 = −b1 and apply the above.

A consequence of Item 1 of Lemma B.3.1 us that p∗FR = d∗FR = 0 and the exposing vector A∗(y)
is attained. Item 2 of Lemma B.3.1 is applicable to the case where the variables are restricted to
be a density matrix. In this case, we have the strong duality for both the primal and the dual.

In addition to the stopping conditions discussed in Section 6.1.3, we can include additional
conditions for early termination. Suppose that the dual feasibility is achieved with a positive dual
objective value. Then the primal objective value is never 0 hence it certifies that F has a strictly
feasible point. Similarly, if the primal feasibility is achieved with a negative primal objective value,
then the problem is infeasible. In this case, the vector A∗(y) provides a certificate of infeasibility.
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Optimality Conditions We subtract the slack variable S ∈ Sn+ to (7.2.2) and obtain the per-
turbed optimality conditions the primal-dual pair (PFR ) and (DFR ), with W,S � 0, µ > 0:

0 = Fµ(y, λ,W ) =


F dµ
F p,1µ

F p,2µ

F cµ

 =

A(W ) + λA(P )− b dual feasibility
trace(A∗y)− α primal feasibility 1
A∗y − S primal feasibility 2
WS − µI complementary slackness.

(B.3.1)

We may substitute equality A∗(y) = S into the complementarity equation. However, the interior
point method requires A∗(y) to be positive definite, and A∗y � 0 might not be possible depending
on the data given. Hence, we work with (B.3.1) directly without eliminating primal feasibility 1
(A∗(y)− S).

Jacobian System We obtain the null-space representations for the dual feasibility

F dµ (W,λ) = A(W ) + λA(P )− b =

[
NW
Nλ

]
v +

[
Ŵ

λ̂

]
−
[
W
λ

]
=

[
F d,1µ

F d,2µ

]
(dual feasibility 1)
(dual feasibility 2)

as well as for the primal feasibility[
F p,1µ

F p,2µ

]
=

[
trace(PA∗(y))− α

A∗y − S

]
=

[
Ny
NS

]
u+

[
ŷ

Ŝ

]
−
[
y
S

]
(primal feasibility 1)
(primal feasibility 2).

Consequently, the perturbed optimality conditions become

0 =


F d,1µ

F d,2µ

F p,1µ

F p,2µ

F cµ

 =


NW v + Ŵ −W
Nλv + λ̂− λ
Nyu+ ŷ − y
NSu+ Ŝ − S
WS − µI

 . (B.3.2)

We obtain the Gauss-Newton search direction by solving the system

F ′µdGN =


NW∆v −∆W
Nλ∆v −∆λ
Ny∆u−∆y
NS∆u−∆S

∆WS +W (∆S)

 = −


F d,1µ

F d,2µ

F p,1µ

F p,2µ

F cµ

 .

Projected Gauss-Newton Direction We note that the first four blocks give

∆W = NW∆v + F d,1µ , ∆λ = Nλ∆v + F d,2µ , ∆y = Ny∆u+ F p,1µ , ∆S = NS∆u+ F p,2µ . (B.3.3)
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We use (∆W,∆S) to make substitutions into the last block

(F cµ)′dGN = ∆W (S) +W (∆S)

= (NW∆v + F d,1µ )S +W (NS∆u+ F p,2µ )

= (NW∆v)S + (F d,1µ )S +W (NS∆u) +WF p,2µ

= −F cµ.

Rearranging the terms, we solve the following system

(NW∆v)S +W (NS∆u) = −F cµ − (F d,1µ )S −W (F p,2µ ). (B.3.4)

and backsolve to complete the remaining components for (∆W,∆λ,∆y,∆S) using (∆v,∆u); see
(B.3.3). We then update the iterate with these directions

y ← y + αy∆y, λ← λ+ αλ∆λ, W ←W + αW∆W, S ← S + αS∆S.

The stepsizes αy, αλ, αW , αS are chosen to maintain sufficient positive definiteness of W and S.
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Index

Y col `
ij , 71

(D), 11
(P), 11
∗, conjugate transpose, 2, 112
Au, 67, 97
Bµ(X, y), barrier function, 19
E, energy matrix, 86
E00 := e0e

T
0 , 69

Fµ, 20
I, identity matrix, 3
In, identity matrix, 3
JA, resolvent of A, 76
LQ, 93
Pm̄ : Rm → Rm̄, 23
Pm̄AV , 61, 62
Pm̄b, 62
SR, 113
X � 0, X positive semidefinite, 3
[m] = {1, . . . ,m}, 3
BlkDiag, 3, 67, 97
Cvec, 7, 106
Diag, 3
Fix, set of fixed points, 76
Γ : Hn → Rm, 101
Hvec, isometric vectorization Hn → Rn2

, 7
Id, identity operator, 76
Π, set of permutation matrices, 91
Σ0 := {i : σi(AD

∗AT ) < σmax(AD∗AT )}, 59
Tupper, vectorization of strict upper triangular

part, 7
ēm, all-ones vector of length m, 3, 67
•, 2, 34, 97
diag, 3
dist(b,F = ∅), distance to infeasibility, 25
face(C,K), 9
gra, graph, 76
Â, 25
ÂV , 25
Q̂ = BlkDiag(0, Q), 68

=(X), imaginary part of X, 6
ips, implicit problem singularity, 23
vec, 7
λmax, maximum eigenvalue, 3
λmin, minimum eigenvalue, 3
Cm×n, 2
Cn, 2
Hn, space of n× n Hermitian matrices, 3
Hn+, set of Hermitian positive semidefinite ma-

trices, 3
Rn, 2
Rm×n, 2
Rn+, the nonnegative orthant, 3
Rn++, the positive orthant, 3
Sn, the space of n× n symmetric matrices, 3
Sn+, set of real positive semidefinite matrices, 3
maxsd, max-singularity degree, 23
null(X), 3
⊥, orthogonal complement, 3
range(X), 3
rank−1 constraint, 69
<(X), real part of X, 6
refl, reflection operator, 76
relint, relative interior, 3, 51
sd, singularity degree, 15
SK, skew-symmetrization linear map, 144
supp, support, 40, 69
svec, isometric vectorization Sn → Rt(n), 7, 28
S, symmetrization linear map, 144
traceB, 113
�, face, 9
d(Z), 84
e, all-ones vector, 3
ei, i-th column of the identity matrix, 3
iX , indicator function w.r.t. X , 80
m, 3
mi, 85
n0, total number of rotamers, 86
p∗BQPSCP

, 86
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p∗DNNSCP
, 86

p∗DNN, optimal value of DNN relaxation, 86
sw, cardinality of support of exposing vector for

FD, 54
sz, cardinality of support of exposing vector for

F , 16
En, n-dimensional Euclidean space, 2, 8
A, 11
AV (·) = A(V (·)V T ), 13, 14
B0, 46, 48
Bz, 91
C(·), condition measure, 27
De, 91
FD, dual feasible set, 54
G, 108
GUV (·) := V ∗δ GV (·)Vδ, 117
I0, 38, 46
Ic, 38
JQ, gangster index for QAP , 92
K∗, dual cone of K, 9
LA, augmented Lagrangian, 17, 82
Lf , 78
Lg, 78
N ∗, null-basis mapping, 103
P0, 82, 83
R, 74, 86
U , set of selected rotamers, 87, 88
V = ∪pi=1Vi, 85
Vδ, facial range vector for δ, 116
Vσ, facial range vector for σ, 116
Vi, 85
Y, 74, 86
Z, 109
Z∗, 80
ZUV (·) := V ∗σZV (·)Vσ, 117
(D), dual of (P), 50, 54
ADMM, alternating direction method of multi-

pliers, 18, 66
BQPQAP, 92
BQPSCP, 86
BQP, binary quadratic problem, 68
DNN, doubly nonnegative relaxation, 84, 86
IQP, integer quadratic problem, 84
MFCQ, Mangarasian-Fromovitz CQ , 12, 101
PRSM, Peaceman-Rachford splitting method,

75, 78
SCP, side-chain positioning, 84, 85

SDP, semidefinite programming, 3, 11
rPRSM, restricted dual PRSM, 80

adjoint, 6, 109, 110
adjoint equation, 6, 13, 16, 36, 113
arrow indices, 71–73
augmented Lagrangian, LA, 17, 82
auxiliary system, 13

barrier function, Bµ(X, y), 19
Barvinok-Pataki bound, 28, 29, 39
basic feasible solution, BFS, 38
basic solution, 54
binary quadratic problem, BQP, 66, 68, 85

cardinality of support of exposing vector for F ,
sz, 16

cardinality of support of exposing vector for FD,
sw, 54

collisions, 87
compact spectral decomposition, 8
condition measure, C(·), 27
cone, 8

doubly nonnegative, 72
dual, 9
nonnegative, 3
positive semidefinite, 3

conjugate transpose, ∗, 2, 112
constraint qualification

linear independence, 51
Mangarasian-Fromovitz, 12
Slater, 11

convex, 8
function, 8
set, 8

convex function, 8
convex set, 8

dead end elimination, 87
decomposition

compact spectral decomposition, 8
QR decomposition, 8
spectral decomposition, 8

degenerate, 38, 54
primal strong, 42
primal weak, 42

degree of degeneracy, 42, 49, 61
density matrix, 100, 108
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distance to infeasibility, 23, 25
doubly-nonnegative cone, 72
doubly-nonnegative relaxation (DNN), 72
dual cone of K, K∗, 9
dual feasible set, FD, 54
dual of (P), (D), 50, 54

energy matrix, E, 86
exposed face, 9
exposed variable, 38
exposing vector, 9, 13, 16

maximal, 14
extreme point, 9, 29, 35, 40

face, 40
face, �, 9
facial range vector, 14, 16, 38, 69, 115
facial reduction

two-step, 23
fixed at 0, 16, 38

gangster constraint, 69
gangster operator, 68
Gauss-Newton direction, dGN , 19, 20, 102, 148
Gauss-Newton method, 18
graph, gra, 76

Hermitian, 3, 31, 101

identity operator, Id, 76
imaginary part of X, =(X), 6
implicit problem singularity, ips, 23, 35, 53, 97
inner product
〈X,Y 〉Cn×n , 6
〈X,Y 〉Cn , 6
〈X,Y 〉Hn , 6
〈X,Y 〉Rn , 6
〈X,Y 〉Sn , 6

interior, int, 3
isometric vectorization

Hvec, 7
svec, 7

Kraus operator, 109
Kraus representation, 109

linear, 6
linprog, 55

Mangarasian-Fromovitz CQ , MFCQ , 12

matrix extension of the log, 108
max-singularity degree, maxsd, 23
maximal exposing vector, 14
minimal face, 9
minimal facial range vector, 14
monotone, 76
monotone operator theory, 75
MOSEK, 55

Newton search direction, 18
nondegenerate, 38
normal cone, 9, 74
normal cone to C, NC , 9

observational constraints, 113
optimal value of DNN relaxation, p∗DNN, 72, 86
orthogonal, 3

partial trace, 113
Peaceman-Rachford splitting method, PRSM,

75, 78
performance profile, 57
perturbed complementary slackness, 19
pointed, 9
positive map, 108
positive semidefinite matrix, 3
power set, 76
protein side-chain positioning problem, 85

QR decomposition, 8, 25, 27
quadratic assignment problem, QAP, 91
quantum channel, 110
Quantum key distribution, QKD , 107
quantum relative entropy, 108

real part of X, <(X), 6
reduced density operator constraints, 113
reflection operator, refl, 76
relative interior, relint, 3, 51
relaxation gap, 69
resolvent, 76
resolvent of A, JA, 76
restricted dual PRSM, rPRSM, 80

SDPT3, 55, 91
self-dual, 9
semidefinite programming, SDP, 3, 11
set of selected rotamers, U , 87, 88
side-chain positioning, SCP, 84, 85
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sieve facial reduction method, 15
singularity

implicit problem singularity, 23
max-singularity degree, 23
singularity degree, 23

singularity degree, sd, 15
skew-symmetrization linear map, SK, 144
Slater condition, 11
spectrahedron, 3, 11
spectral decomposition, 8, 83, 108
spectral resolution of I, 109
stalling, 37
strict feasibility, 11
strictly feasible, 4, 11
strong duality, 11
subdifferential, 8
subproblem

R-subproblem, 82
Y -subproblem, 83
x-subproblem, 75
y-subproblem, 75

support, supp, 40
symmetrization linear map, S, 144

trace-preserving, 109
triangular number, t(n), 7
two-step facial reduction, 23

unit row-sum, 66–68, 86
unit row-sum constraint, 67
unit trace, 108, 121

vectorization of strict upper triangular part, Tupper,
7

weak-duality, 11
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