
ABSTRACT

Title of Document: AUTONOMOUS TARGET RECOGNITION
AND LOCALIZATION FOR MANIPULATOR
SAMPLING TASKS

 Michael Pearson Naylor, M.S., 2006

Directed By: Assistant Professor Ella Atkins

Department of Aerospace Engineering

Future exploration missions will require autonomous robotic operations to minimize

overhead on human operators. Autonomous manipulation in unknown environments

requires target identification and tracking from initial discovery through grasp and

stow sequences. Even with a supervisor in the loop, automating target identification

and localization processes significantly lowers operator workload and data throughput

requirements.

This thesis introduces the Autonomous Vision Application for Target

Acquisition and Ranging (AVATAR), a software system capable of recognizing

appropriate targets and determining their locations for manipulator retrieval tasks.

AVATAR utilizes an RGB color filter to segment possible sampling or tracking

targets, applies geometric-based matching constraints, and performs stereo

triangulation to determine absolute 3-D target position.

Neutral buoyancy and 1-G tests verify AVATAR capabilities over a diverse

matrix of targets and visual environments as well as camera and manipulator

configurations. AVATAR repeatably and reliably recognizes targets and provides

real-time position data sufficiently accurate for autonomous sampling.

AUTONOMOUS TARGET RECOGNITION AND LOCALIZATION FOR

MANIPULATOR SAMPLING TASKS

By

Michael Pearson Naylor

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of
Master of Science

2006

Advisory Committee:
Assistant Professor Ella Atkins, Chair / Advisor
Associate Professor David Akin
Assistant Professor Sean Humbert

© Copyright by
Michael Pearson Naylor

University of Maryland at College Park
2006

Acknowledgements

First I would like to thank all of the faculty, staff and other students at the Space

Systems Laboratory that have provided their help and support over the last few years.

Thanks goes to my advisor, Dr. Ella Atkins, for her help and guidance during my

years as both an undergraduate and a graduate student. To Dr David Akin and Dr.

Sean Humbert for providing great feedback on my research as well as possible

avenues for future application of the software.

 Many thanks to Stephen Roderick, without whom more than half of this thesis

would have been impossible. He patiently provided countless hours of assistance

whenever necessary.

To all the graduate students at SSL – thanks! Emily, you have had to put up

with me almost continuously for the last 4 years. Nick, lets raise a cheer to the now

infamous Ducky Video. And to the other students, past and present, thanks for the

discussions, assistance and side projects throughout the years. To the number 32!

A special thanks goes to Dr. Hanumant Singh from Woods Hole

Oceanographic Institution for not only providing me with underwater imagery from

his SeaBED AUV, but also giving me the opportunity to work at WHOI for a summer

as well as take part in a SeaBED cruise in Puerto Rico.

Finally, I want to recognize all my family and friends who have supported me

through over 20 years of being a student, without them all of this would have been

impossible.

Thanks everybody!

ii

 Table of Contents

Acknowledgements.. ii

Table of Contents ... iii

List of Figures .. vi

List of Tables.. viii

List of Abbreviations .. ix

CHAPTER 1 INTRODUCTION... 1

1.1 Motivation.. 1

1.2 Problem Statement.. 5

1.3 Approach ... 6

1.4 Contributions... 9

1.5 Thesis Structure .. 10

CHAPTER 2 COMPUTER VISION BACKGROUND.................................... 11

2.1 Camera Calibration and Camera Model.. 12

2.2 Lighting Correction .. 15

2.3 Feature Extraction.. 17
2.3.1 Edge Detection.. 18
2.3.2 Intensity Based Segmentation... 20

2.4 Stereo Correspondence... 24
2.4.1 Point and Feature Correlation ... 24
2.4.2 Epipolar Geometry.. 27
2.4.3 Image Rectification... 29
2.4.4 3-D Reconstruction ... 31

CHAPTER 3 VISION ALGORITHMS ... 32

3.1 Calibration... 32
3.1.1 Camera Intrinsic and Extrinsic Calibration... 32
3.1.2 Camera-Manipulator Registration .. 33

3.2 Lighting Correction .. 36
3.2.1 Frame-Averaging .. 37
3.2.2 Lighting Pattern Estimation .. 38

3.3 Feature Extraction.. 42
3.3.1 Filter Creation ... 43
3.3.2 Application of the Color Filter.. 45
3.3.3 Feature Extraction... 47

iii

3.4 Stereo Correspondence... 53
3.4.1 Feature Matching .. 53
3.4.2 3-D Reconstruction for Target Position.. 58

3.5 Visual Servoing.. 60
3.5.1 Visual Servo Algorithm .. 60
3.5.2 Minor Visual Servo Functions .. 63

3.6 Management of anomalies, occlusions, and poor visibility conditions. 65
3.6.1 Poor Visibility... 65
3.6.2 Occluded Targets .. 66

CHAPTER 4 SOFTWARE DESIGN AND IMPLEMENTATION 68

4.1 System Architecture.. 68
4.1.1 DMU Sub-Architecture... 69
4.1.2 Vision System Modules .. 72

4.2 AVATAR ... 73
4.2.1 Common.. 74
4.2.2 Acquire.. 75
4.2.3 Analyze ... 79
4.2.4 Config ... 82

4.3 TAU .. 84
4.3.1 VisionInterface.. 84
4.3.2 TAUNet... 85
4.3.3 TAUUnit ... 87
4.3.4 TAUGUI ... 87

4.4 Visual Servo Controller.. 88
4.4.1 Visual Servo Software Integration.. 89
4.4.2 Visual Servo Control Law .. 91

4.5 Software Utilities... 94
4.5.1 Custom Utilities .. 94
4.5.2 Software Engineering Tools ... 98

CHAPTER 5 EXPERIMENTAL PLATFORM AND TEST PLAN 106

5.1 Vision Hardware ... 106
5.1.1 Stereo Cameras ... 106
5.1.2 Camera Placement .. 108
5.1.3 Housings and Mountings .. 109
5.1.4 Transition to Deep-Sea Configurations .. 111

5.2 Ranger Manipulator System.. 113
5.2.1 Manipulator Configuration ... 113
5.2.2 Ranger Computer Architecture and Interface 117
5.2.3 Observed end effector positioning accuracy and resolution 118

iv
5.3 Test Sequence .. 119

5.3.1 Camera and Manipulator Calibrations .. 119
5.3.2 System-Level Testing with a Visually Distinct Object......................... 121
5.3.3 Evolution to Repeatable, Accurate Target Identification and Tracking 122
5.3.4 Visual Servo Testing... 124

CHAPTER 6 TEST RESULTS ... 125

6.1 Ranger Tests with Low Resolution Cameras 125
6.1.1 Calibration Parameters.. 125
6.1.2 Vision System Accuracy... 126
6.1.3 Vision System Precision ... 127
6.1.4 Overall System Behavior .. 130

6.2 1-G Ranger Tests with High-Resolution Cameras............................... 131
6.2.1 Calibration Data .. 132
6.2.2 Automated Registration .. 132
6.2.3 Visual Servo Experiments... 135

6.3 Increased Target Realism... 138
6.3.1 Laboratory Tests ... 138
6.3.2 Underwater Imagery ... 144

CHAPTER 7 CONCLUSIONS AND FUTURE WORK................................ 147

7.1 Conclusions.. 147
7.1.1 Vision Algorithms... 147
7.1.2 Software Structure .. 148
7.1.3 Sampling Tasks... 148

7.2 Future Work.. 149
7.2.1 Computer Vision... 150
7.2.2 Software Architecture ... 151
7.2.3 ASTEP Manipulator.. 151

Appendix A Relationship Between Essential and Fundamental Matrices with
Camera Calibration Parameters .. 153
Appendix B Derivation of the Registration Algorithm ... 154
Appendix C Full Algorithm for Extracting Feature Geometric Data................... 158
Appendix D CAD Drawings for the Internal Camera Mounts 161
Appendix E Results from IEEM Tracking .. 164

Bibliography ... 166

v

List of Figures

Figure 1-1: Map of the east Arctic and Gakkel Ridge (Picture from [1])..................... 3
Figure 1-2: CAD model of JAGUAR from I-DEAS .. 4
Figure 1-3: SAMURAI Robotic Manipulator... 5
Figure 1-4: System Component Diagram ... 6
Figure 1-5: System CAD Model ... 7
Figure 2-1: Low-light image corrected by WHOI lighting algorithm [12] 16
Figure 2-2: BG Bayer Pattern ... 17
Figure 2-3: Sample edge detection performed using MATLAB 19
Figure 2-4: Original grayscale and B/W thresholded images with highlighted

histogram... 21
Figure 2-5: Result of different texture-based segmentation algorithms [23].............. 22
Figure 2-6: Output from OpenCV corner detection algorithm 27
Figure 2-7: Epipolar geometry of a stereo camera system ... 28
Figure 2-8: Geometric representation of rectified images .. 29
Figure 2-9: Rectified images from a calibrated camera pair....................................... 30
Figure 3-1: Algorithm to determine camera-manipulator registration 36
Figure 3-2: Algorithm to determine frame-average correction ratios......................... 38
Figure 3-3: Algorithm for extracting lighting correction data 40
Figure 3-4: Algorithm for creating a lighting pattern template image........................ 41
Figure 3-5: Side-by-side comparison of an image corrected for the lighting pattern. 42
Figure 3-6: Algorithm for extracting feature ratio values... 44
Figure 3-7: Sample plots showing Red/Blue ratio data for rubber ducky target (left)

and uncorrected sand dollar (right) ... 45
Figure 3-8: Algorithm for RGB ratio color filter.. 46
Figure 3-9: RGB ratio filtering process .. 47
Figure 3-10: Algorithms used to extract feature raw data .. 49
Figure 3-11: Perimeter points of feature shown in sample feature match 50
Figure 3-12: Ineffective filter of Ranger’s IEEM and end effector 51
Figure 3-13: Algorithm for extracting feature geometric properties 53
Figure 3-14: Algorithm to calculate feature shape vectors... 54
Figure 3-15: Algorithm to match features by shape estimates 55
Figure 3-16: Algorithm to create a geometric based possible match list.................... 57
Figure 3-17: Sample correlated images used for geometric match testing................. 58
Figure 3-18: Algorithm to calculate 3-D target position via stereo triangulation....... 59
Figure 3-19: Algorithm for arm motion through visual servo 63
Figure 4-1: Overview of AUV system architecture.. 68
Figure 4-2: DMU Software Architecture UML Diagram... 71
Figure 4-3: Vision System Overview ... 73
Figure 4-4: UML Class Diagram of the AVATAR Acquire Module......................... 75
Figure 4-5: UML Class Diagram for AVATAR Analyze Module 80
Figure 4-6: TAUTUI Interface to AVATAR.. 88
Figure 4-7: Visual Servo Controller State Machine ... 90
Figure 4-8: Ranger Control Loop ... 92

vi

Figure 4-9: Open-Loop Visual Servo Diagram .. 93
Figure 4-10: filtergui program in the process of creating a target filter 98
Figure 4-11: Colored output of gcov results for each specific file 102
Figure 5-1: Cameras used for AVATAR testing .. 107
Figure 5-2: DeepSea SSC-5000 Camera Housing .. 110
Figure 5-3: Internal Camera Mount Assembled and Disassembled 111
Figure 5-4: SSL Manipulator Test Frame Attached to WHOI Sled 112
Figure 5-5: D-H Parameters and Frame Assignments of the Ranger Manipulator... 115
Figure 5-6: Inverse kinematics flowchart for the Ranger manipulator [53]. 116
Figure 5-7: Ranger configurations in 1-G and neutral buoyancy 122
Figure 5-8: Images of Deep Water Sampling Target Fields 123
Figure 5-9: Ranger and AVATAR configuration for visual servo testing................ 124
Figure 6-1: Difference in Z reconstruction due to single pixel error 129
Figure 6-2: Ranger successfully grabbing a target in both testing environments..... 131
Figure 6-3: Upper Arm Joint Angles During Visual Servo Simulation.................... 136
Figure 6-4: Wrist Joint Angles During Visual Servo Simulation 137
Figure 6-5: Cartesian position and orientation during visual servo simulation 137
Figure 6-6: Blue vs. Green ratio data for light laboratory targets............................. 139
Figure 6-7: Red vs. Blue ratio data for light laboratory targets. 140
Figure 6-8: Red vs. Green ratio data for light laboratory targets.............................. 140
Figure 6-9: Realistic targets easily segmented in lighted laboratory environment... 141
Figure 6-10: Blue vs. Green ratio data for dark laboratory targets. 142
Figure 6-11: Red vs. Blue ratio data for dark laboratory targets. 142
Figure 6-12: Red vs. Green ratio data for dark laboratory targets. 143
Figure 6-13: Some targets extracted in darkened laboratory environment............... 144
Figure 6-14: Red vs. Blue ratio data for sand dollar images. 145
Figure 6-15: Red vs. Green ratio data for sand dollar images. 145
Figure 6-16: Sand dollar targets extracted from color attenuated image.................. 146

vii

List of Tables

Table 3-1: List of Feature Shape Points.. 50
Table 6-1: Camera calibration data for Sony camera testing.................................... 125
Table 6-2: Target Acquisition System Accuracy Data ... 127
Table 6-3: Vision System Precision Data ... 128
Table 6-4: Calibration data for testing with Scorpion cameras 132
Table 6-5: Vision System Precision with High Resolution Cameras 134
Table 6-6: Hand-Eye Registration Precision Results.. 134
Table 6-7: Difference of Arm Telemetry and Transformed Vision Coordinates 135

viii

List of Abbreviations

ASTEP – Astrobiology Science and Technology for Exploring Planets
AUV – Autonomous Underwater Vehicle
AVATAR – Autonomous Vision Application for Target Acquisition and Ranging
CAD – Computer Aided Design
CCD – Charge-Coupled Device
DMU – Data Management Unit
DOF – Degree of Freedom
FOV - Field of View
GUI – Graphical User Interface
HSV(I) – Hue-Saturation-Value (or Intensity)
IEEM – Interchangeable End Effector Mechanism
JAGUAR – Just Another Great Underwater Autonomous Robot
LED – Light Emitting Diode
NASA – National Air and Space Administration
OpenCV – Open Computer Vision Library
PD – Proportional-Derivative
RGB – Red-Green-Blue
ROV – Remotely Operated Vehicle
SAMURAI – Sub-sea Arctic Manipulator for Underwater Retrieval and Autonomous
Interventions
SEW – Shoulder-Elbow-Wrist
SIP – Stereo Image Pair
SSL – Space System Laboratory
STL – Standard Template Library
TAU – Target Acquisition Unit
TUI – Text User Interface
UML – Unified Modeling Language
XML – eXtensible Markup Language
WHOI – Woods Hole Oceanographic Institution

ix

Chapter 1 Introduction

Increased levels of robotic system autonomy will enable scientific exploration in

previously unreachable destinations. This thesis focuses on the acquisition and

tracking of sampling targets for a dexterous robotic manipulator using a computer

vision system. The system developed for this thesis is designed for an autonomous

underwater vehicle (AUV) operating at a depth of 5000m where untethered human

teleoperation is impossible. Although targeted for an AUV, the system is

generalizable to other operations underwater, in space, or on planetary surfaces.

1.1 Motivation

Reliable and capable autonomous robotic systems are in great demand for exploration

in harsh, inaccessible environments. Development of such systems will allow for

greater scientific return on missions where ground support, communications, and

operator workload are prohibitive in terms of cost and factors such as time delay or

communication bandwidth constraints. Enhanced robotic perception of the

environment is a key enabler to reduced human interaction. Tasks utilizing robotic

manipulators are notorious for the strain placed on human operators, both mentally

and physically. Lack of sufficient camera views during teleoperation, hand strain

from long-term use of hand controllers, and mental stress associated with difficult

teleoperation tasks are all challenges that can be mitigated through effective

automation.

A robotic manipulator, SAMURAI, the Sub-sea Arctic Manipulator for

1

Underwater Retrieval and Autonomous Interventions, is being developed at the

University of Maryland’s Space Systems Laboratory (SSL) as a combined research

effort with Woods Hole Oceanographic Institution (WHOI) for NASA’s Astrobiology

Science and Technology for Exploring Planets (ASTEP) program. The manipulator

will be attached to an AUV under development at WHOI and used for autonomous

sampling missions at a depth of 5000m in the Arctic Ocean. This mission must be

conducted with full autonomy due to shifting ice sheets that make a continuous high-

speed communications tether infeasible. Because of their versatility and presence as

a primary science instrument, mission organizers chose a stereovision system as the

perceptive means for locating sampling targets.

The culmination of the ASTEP project is a field expedition to the Gakkel

Ridge in the ice-covered Eastern Arctic Basin shown in Figure 1-1. Located in this

area is evidence of hydrothermal activity found during the joint US-German AMORE

2001 icebreaker expedition. This environment is one of the last truly unexplored

regions on Earth due to its inaccessibility under the icecap. The unknown and harsh

Gakkel characteristics provide a realistic and productive terrestrial environment with

analogue to space exploration missions. Most closely matched is a proposed mission

to explore the oceanic aspects of Europa, requiring fully autonomous under-ice

operation made even more difficult than Gakkel by the absence of a capable manned

surface ship.

2

Figure 1-1: Map of the east Arctic and Gakkel Ridge (Picture from [1])

WHOI’s JAGUAR AUV, shown through a CAD depiction in Figure 1-2, will be

fitted with the SAMURAI manipulator, shown in Figure 1-3, to perform the desired

undersea sampling tasks. Undersea manipulation has in the past exclusively been

performed via teleoperation, except for simple low degree of freedom (DOF)

grappling activities. From the science perspective, exploration of Gakkel has the

potential to identify new life forms and vastly improve our understanding of undersea

geology. From the engineering perspective, this mission will deploy the first fully

autonomous undersea dexterous (6-DOF) manipulator, along with the first real-time

undersea visual sampling target recognition system, the product from research

described in this thesis. The culmination of the project will be the manipulator-AUV

system, completely untethered, operating at 5000m depths.

3

The major requirements and constraints dictating system development are:

• Necessity of full autonomy due to depth and shifting ice sheets on the surface

• Near real-time target tracking to account for small target motion and/or AUV

perturbations with frequency limited by the strobe light recharge cycle

• Simplicity of software architecture and vision algorithms to facilitate future

research regardless of software familiarity or computer vision background

• Mission success defined by successfully sampling biological or geological

target(s)

To perform the autonomous sampling tasks, an accurate sensory system must be

present on the vehicle. A calibrated stereo camera pair will be affixed to the AUV to

locate and extract sampling targets, representing them in an AUV body frame from

which the manipulator end effector has known offset and attitude. This thesis

develops and tests the stereovision system known as AVATAR, the Autonomous

Vision Application for Target Acquisition and Ranging.

Figure 1-2: CAD model of JAGUAR from I-DEAS

4

Figure 1-3: SAMURAI Robotic Manipulator

1.2 Problem Statement

The goal of this thesis is to develop and verify in a hardware-based test environment a

computer vision system capable of autonomously determining accurate real-world

positions of targets for manipulator sampling tasks. This task is made more

challenging than traditional factory automation tasks by a variety of factors. First,

poor lighting conditions in the deep-sea environment require substantial image pre-

processing and filtering. Also, targets may be mobile and their precise visual

characteristics and locations are unknown a priori. A stereovision system must be

calibrated and rigorously tested within an evolving software architecture able to

satisfy all goals associated with the autonomous sampling tasks for the ASTEP

mission. The software should be sufficiently flexible to function with different

5

camera setups, in vastly different environments, and with a wide array of targets.

Additionally, the vision system should be independent of manipulator kinematic

configuration so it can provide valid data when combined with any robotic arm.

1.3 Approach

The goal of successful autonomous undersea sampling relies heavily upon

economical use of available computing power via efficient and correct algorithms for

perception, planning, and control. Three computers will be present on the JAGUAR-

SAMURAI vehicle: the WHOI AUV computer, the SAMURAI Data Management

Unit (DMU), and the vision computer where AVATAR resides. Each of these

computers has specific real-time constraints in which it must perform critical tasks.

Figure 1-4 shows a UML component diagram of the relevant system hardware, and

Figure 1-5 is a CAD representation of the AUV with attached manipulator and

cameras.

Figure 1-4: System Component Diagram

6

Figure 1-5: System CAD Model

Vision Computer

The vision computer contains two primary software modules. The first is the vision

system software (AVATAR) that performs image acquisition, target filtering, and

target extraction and 3-D localization tasks in sequence. The second is an interface to

AVATAR known as the Target Acquisition Unit, or TAU. AVATAR applies a series

of algorithms to a pair of raw images to extract 3-D positions of the targets:

• Lighting and color correction, dependent on environment

• Color based pixel-by-pixel filter dependent on sampling target type

• Feature data extraction, also dependent on target type

• Matching of features for stereo correspondence

• Triangulation of 3-D target coordinates

7

Given data acquisition and processing overhead, AVATAR has a frequency of 1Hz in

a laboratory environment with ample lighting. During AUV operations, image

acquisition frequency will be limited by the recharge cycle of the strobe, about 2.5

seconds, so lighting becomes the limiting factor for target updates. TAU is designed

to remove all external interface considerations from AVATAR and ensure that

changes in the rest of the system do not propagate through AVATAR, and vice-versa.

The different implementations of TAU provide both front-end and back-end

interfaces with AVATAR, as well as simulation modes that require no vision-related

hardware. Communication between the DMU and the vision computer is achieved

through the back-end TAU interface located on the vision computer.

Data Management Unit (DMU)

The DMU houses all software for real-time control of SAMURAI as well as the task

and motion planners that select from the suite of identified sampling targets and

maneuver the vehicle and manipulator to collect each sample. At predetermined

points in the ASTEP mission, while the AUV is located on the ocean floor, the DMU

takes control from the WHOI computer. Based on data received from the vision

computer, through a local TAU front-end interface, as well as prior knowledge of

possible sampling sites, the DMU will drive the AUV to an appropriate position to

attempt target sampling tasks. The DMU operates at a frequency of 125Hz, which

sets the update rates for all trajectories and relevant data loggers.

WHOI Computer

JAGUAR is based on an earlier version of a similar WHOI AUV called SeaBED [2],

8

the software for which will be ported to JAGUAR. The WHOI AUV computer

consists of two main parts, a mission execution script, written in Perl, and the main

AUV control code and device drivers written in C, which communicate via sockets.

The mission script vs. controller split was implemented to help separate the low-level

data acquisition and control tasks from the higher-level mission planning and goal

tasks [2]. The vehicle control loop runs at 10Hz, while all core navigation data is

logged at 5Hz. Due to limitation with the strobe charging time, the maximum rate

images can be acquired and written to the hard drive is 2.5s.

1.4 Contributions

The applied computer vision contributions from this thesis of direct relevance to the

ASTEP mission are:

• Development of computer vision algorithms to extract 3-D positions of

desired sampling or tracking targets

• Design of software to perform autonomous target extraction and provide

robust public interfaces for laboratory testing in addition to autonomous

operations

• Validation of software through comprehensive use of unit testing and

integration within a system utilizing daily builds with continuous integration

• Rigorous laboratory testing of stereo vision algorithms and software with the

Ranger manipulator in 1-G and underwater environments to prove target

localization capabilities and software stability

• Implementation of a visual servo controller that tracks both manipulator and

9

sampling target to reduce sensitivity to camera calibration errors and external

disturbances

• Additional testing with low-light and color attenuated images with realistic

targets in preparation for the transition to AUV operations

1.5 Thesis Structure

This thesis overviews the research efforts of the SSL-WHOI team to develop the

ASTEP AUV system, then focuses on the computer vision and software design

specifics that comprise the research component of this thesis. To provide initial

background, Chapter two reviews key aspects of computer vision related to this

research, as well as providing insight into other contemporary computer vision

systems. Chapter three describes the computer vision algorithms integrated into the

final AVATAR system, ranging from calibration and target recognition algorithms to

visual servoing. Chapter four focuses on the software design and implementation of

the entire vision system, also describing the tools and evaluation methods used to

validate the software. Chapter five discusses the test design and implementation for

AVATAR, including the hardware, testing environments, assumptions and limitations

associated with both the vision-related and manipulator hardware. The test results are

discussed in Chapter six, and finally conclusions and future work are presented in

Chapter seven.

10

Chapter 2 Computer Vision Background

State of the art stereovision systems are capable of accurately characterizing three-

dimensional environments given accurate calibration and image processing

algorithms tuned to the environment and task to be accomplished. Many elegant

domain-specific solutions have been developed, yet creation of a fully-functional,

generalized stereo system is still far from realization. Most stereo systems require

four major modules: calibration, feature extraction, stereo correspondence, and 3-D

reconstruction. The complexity of each module depends on a priori knowledge of

physical parameters of the system, uniqueness of targets in the field of view, object

motion and variance over time, and lighting conditions. Accepted approaches to each

of these problems will be discussed in this chapter to provide background and

motivation for the vision algorithms selected in this work.

 Many of the algorithms discussed throughout this chapter come from existing

software libraries. Software implemented in MATLAB makes heavy use of both the

Camera Calibration Toolbox [3] as well as the built-in Image Processing Toolkit.

Algorithms implemented in C and C++ make use of the Open Computer Vision

Library [4] (OpenCV) for image handling as well as other core tasks. Lighting

correction background research is courtesy of Dr. Hanumant Singh at WHOI who

also provided access to a MATLAB lighting correction algorithm and a library of

uncorrected, raw images from various SeaBED cruises.

11

2.1 Camera Calibration and Camera Model

The primary factor that determines the overall accuracy of a stereo system is system

calibration accuracy. Full calibration of a stereo system requires precise

characterization of two parameter sets: intrinsic and extrinsic. Intrinsic calibration

refers to determination of internal properties of each camera, including focal length

and piercing point, while extrinsic calibration refers to the physical relationship of the

left camera to the right camera, a rotation matrix that rotationally aligns the left

camera with respect to the right camera, and a translation vector that describes

the Cartesian difference between the cameras.

RR
L

L
R t

Knowledge of both intrinsic and extrinsic parameters enables unambiguous

calculation of 3-D coordinates for any matched points. The calibration procedure and

camera model utilized for this research are from the Camera Calibration Toolbox for

MATLAB [3], which is based on the work of Heikkilä and Silvén [5]. The first step

of the calibration procedure is acquiring synchronized sets of “checkerboard images”

(i.e. images with a fully visible checkerboard pattern). After the user provides data

on the size and dimensions of the pattern, the software attempts to extract all corner

points of the pattern in each image, with the user supplying the outside corners as

well as an initial guess for distortion. Once the checkerboard patterns have been

recorded, the main calibration algorithm runs a non-linear least squares gradient

descent algorithm to optimize all of the parameters. After this intrinsic calibration

has been applied to both cameras, the extrinsic parameters can be determined via the

correspondence between checkerboard patterns in the synchronized images.

12

The final aspect of calibration related to this research is the determination of

the camera-manipulator registration, also known as hand-eye calibration [6][7],

between the manipulator and the vision system. For a successful grasp, the

manipulator controller requires object position data to be provided in a known frame

of reference, which an arbitrarily positioned vision system does not provide. For the

calculated 3-D target positions to be useful, they must first be transformed into the

manipulator frame of reference.

Intrinsic Calibration

The intrinsic parameters used in [3] consist of:

• , the two-dimensional focal length in millimeters ⎥
⎦

⎤
⎢
⎣

⎡
=

y

x
c f

f
f

• , the principal point (center of image) expressed in pixels ⎥
⎦

⎤
⎢
⎣

⎡
=

y

x
c c

c
c

• cα , the skew coefficient (angle between image x-axis and y-axis)

• , a vector of five numbers describing both radial and tangential distortion ck

The focal distance is a vector with two elements and that represent a unique

value in mm expressed in units of horizontal and vertical pixels. If the camera has

square pixels in the CCD array, these two values should be very close. On the other

hand, if the pixel elements on the CCD are rectangular, the ratio of to will not

be close to 1 – this is referred to as the “aspect ratio”. Since this model takes into

account the variation in horizontal and vertical pixel size, it can handle the general

case of non-square pixels. The principal point defines the position of the camera

cf xf yf

yf yf

cc

13

center in pixels, which is used when performing transformations between image plane

and real world coordinates. The skew coefficient cα is the angle between the x and y

pixel axes, and by including this value in the camera model, the case where an image

has non-rectangular pixels can be handled. The vector of distortion coefficients

contains the coefficients used in a 6th order non-linear distortion model known as the

“Plumb Bob” model developed by Brown in 1966 [8].

ck

Extrinsic Calibration

The extrinsic parameters of a stereo system describe the relative position and

orientation of the cameras – for this research the extrinsic calibration is defined as the

translation and rotation of the right camera with respect to the left camera. Once

again using the Camera Calibration Toolbox for MATLAB, these values can be

computed with knowledge of the intrinsic parameters and corresponding images of

checkerboard patterns. With previous knowledge of the intrinsic parameters

combined with the entire set of point matches of corners of checkerboards, the

MATLAB toolbox will output the set of all calculated translations and rotations while

determining the overall translation vector and rotation vector L
R t ω , as defined by

the Rodrigues Rotation Formula [9]. The rotation matrix can then be calculated

using the rodrigues function provided in the toolbox.

RR
L

Camera-Manipulator Registration

Many methods exist to uniquely determine the transformation between a manipulator

frame of reference and the camera system frame of reference [6][7]. Without an

14

accurate transformation, the data acquired from the vision system will be useless,

although implementing a visual servo controller can help alleviate problems with

inaccuracies [10][11]. As with all transformations in 3-D space, the camera-

manipulator relationship is defined by a rotation and translation of one coordinate

system onto another.

 Most literature focuses on placement of the camera system at the wrist of the

manipulator as this allows the cameras to move with the same degrees of freedom as

the manipulator [6][7]. In this research, the situation is slightly different as it is

desirable for the cameras to sense the full manipulator workspace at all times, rather

than strictly view the area immediately ahead of the manipulator end effector. Since

the cameras are fixed relative to the robot base, the desired transformation is thus

between camera frame and manipulator base frame. This transformation is calculated

through a process of tracking corresponding points known in both camera frame and

robot base frame, and performing an algorithm on a set of corresponding points to

extract the rotation and translation. These corresponding points are obtained by

having the vision system track a distinct object on the manipulator, while recording

the vision frame coordinates from the stereo analysis and robot base frame

coordinates determined from encoder telemetry. The algorithm implemented for this

research is discussed in Section 3.1.2.

2.2 Lighting Correction

One of the major concerns when dealing with high-depth imagery is the lack of

ambient light. Given tetherless AUV power restrictions, intense floodlights cannot be

15

used to illuminate the entire scene. Instead, low-power strobes or LED arrays are the

sole source of illumination. In such cases, lighting correction algorithms can be

applied to make a dark image with high color attenuation appear as it would in ample

light. An example is illustrated in Figure 2-1, a WHOI SeaBED image of the ocean

floor populated by sea urchins.

A

t

c

c

c

k

l

o

a

f

a) Uncorrected image b) Corrected image
Figure 2-1: Low-light image corrected by WHOI lighting algorithm [12]

pplication of such algorithms is absolutely necessary when human scientists analyze

he images if the true color of targets is of importance. However, when performing

omputerized analysis to extract color-based features while using high bit-depth

ameras, the benefit of lighting correction algorithms is not as clear. The first

orrection algorithm described was developed at WHOI and utilizes extensive

nowledge of the cameras and water chemistry to extremely accurately correct for

ight attenuation [12]. Unfortunately, this algorithm operates with a calculation time

f approximately 10s in MATLAB, which renders it useless for near real-time

pplications. Other algorithms exist that attempt to correct for color attenuation with

aster methods, but the quality of results tend to decrease rapidly as the algorithm

16

becomes simpler and quicker.

Other important factors for color correction are the process by which an image

is recorded and how the CCD array is constructed. Most digital cameras contain a

Bayer pattern mosaic of photosensors to allow a single chip to record true color

images. A Bayer pattern refers to the layout of photosensors on the CCD chip. For

many scientific cameras, such as the Point Grey Scorpions used in this research, the

raw imagery must first be converted from the grayscale Bayer image into an RGB

image using one of a variety of algorithms. OpenCV implements many different

methods of Bayer pattern correction for all different patterns of sensors. Figure 2-2

below shows the common BG pattern, as shown in the on-line documentation for

OpenCV [13].

Figure 2-2: BG Bayer Pattern

2.3 Feature Extraction

The next major step in a stereo system is to extract distinguishing features from each

image. Edge, shape, texture and color are factors that can be used to extract features

17

from a raw image. In many cases, a combination of methods is required to

accurately segment each feature. For instance, an edge detector might be applied to

the image before a shape detection algorithm is used to determine which remaining

features correspond to a desired shape. In other algorithms, such as texture matching,

an initial color filter can substantially limit the feature search space to decrease

processing time. Four methods are discussed below in greater detail: edge detection,

Hough transforms, color based segmentation, and Eigenspace identification. The

method used for this research is color based segmentation due to its intuitive nature,

simplicity of implementation, and immediate successes during initial testing.

2.3.1 Edge Detection

Edge detection algorithms have been developed and refined over the past 30 years,

providing a mature toolset for image feature extraction [15]. There are two main

approaches to edge detection: template matching and differential gradient. All

routines, however, calculate a local intensity gradient and, based on the magnitude of

that calculation, determine whether or not a specific pixel is part of an edge. The

Canny edge detector is one of the most widely applied algorithms, but there are many

others including the Sobel, Roberts and Prewitt methods [16]. The base behind all

edge detection algorithms is the application of convolution masks – anywhere from

just two masks, x and y, up to 12 for more complicated template matching detectors

[15].

Most simple algorithms apply convolution masks that detect edges of a

specific orientation, while more complicated strategies apply larger or multiple masks

18

to determine multi-orientation edges. The more robust edge detection algorithms are

correspondingly more computationally intensive. For the general case where targets

have unknown shape or orientation, many operators are required to segment full

targets. In applications similar to this research, where near real-time execution is the

goal, anything but the most simplistic algorithm is infeasible [15]. Figure 2-3 shows

sample output from one of MATLAB’s edge detection routines.

Figure 2-3: Sample edge detection performed using MATLAB

Many problems are immediately recognizable from this output. First, only the white

sand dollar target has a completely formed boundary, and all the other targets would

need to have additional processing to complete the shape. Also, reflections caused by

lighting and sand texture show up as boundaries. Further processing is required to

complete broken edges, remove linear edges and calculate all position data about the

detected features. Algorithms exist to perform these necessary operations, such as

variations on the Hough transform [17] used to locate different shapes in images, or

the Euler spiral [18], but these only complicate the software.

19

2.3.2 Intensity Based Segmentation

Similar to edge detection, color based segmentation algorithms range from simple to

complex. A simple algorithm, such as the one used for this research, examines the

color properties at a single pixel location, while more complicated algorithms may

take into account neighboring pixels, patterns, and textures. Similarly to edge

detection methods, all but the simplest algorithms are orders of magnitude more

complex than what can be used for real-time or near real-time applications. First,

basic histogram segmentation will be detailed, followed by a more complicated

texture-based method and finally the Eigenspace identification method.

Histogram Segmentation

Especially when applied to binary or grayscale images, histogram segmentation is an

extremely simple, yet effective, tool for extracting features. In such images,

foreground objects tend to lie in a different section of the image histogram from the

background, thus selection of an optimal threshold value is fairly straightforward

[17]. Figure 2-4 shows an example of a grayscale image with a threshold applied

between the two peaks in the histogram. The highlighted portion of the histogram

represents foreground values. This method works well when the grayscale values of

foreground features and the background are sufficiently different to be segmented in

this manner, but when dealing with color images containing many different

foreground and background entities, more complicated methods must be used to

accurately extract desired features.

20

Figure 2-4: Original grayscale and B/W thresholded images with highlighted histogram

 Multi-channel histogram segmentation is the extension of grayscale histogram

segmentation and can achieve much better results in complex color images.

Thresholding in this manner can be applied in either RGB or hue, saturation and

value (or intensity) (HSV(I)) color-spaces. Depending on the visual properties of

objects and the image background, working in one space or the other, or possible

both, has benefits. RGB histograms tend to have little easily accessible data other

than the fact that, as overall magnitude of a specific pixel increases, the RGB values

also tend to increase. On the other hand, hue-oriented algorithms create much greater

dispersion of peaks and separation of image regions while there is also the possibility

of using a single value, hue, for segmentation. However, using a hue-oriented color

scheme requires that each pixel be converted to another color-space, which can cause

a large number of calculations when performed each iteration, although algorithms do

exist to facilitate this conversion [19][20].

21

Texture-based Segmentation

When the single-pixel color data present in an image is not sufficient to effectively

segment features of interest, the inclusion of texture-based segmentation methods can

greatly increase the ability of an algorithm to distinguish desired objects. Texture

segmentation algorithms can look at a wide array of information such as brightness

ranges, spatial frequencies, and orientations [19]. Each texture type has many

algorithms designed for extracting and labeling regions within an image, from simple

thresholding through involved frequency domain analyses. Accurately segmenting a

complex image into different regions quickly becomes a complicated algorithm,

either in terms of mathematical understanding or computational complexity.

 Despite the complexity issues, there are many successful applications of

texture-based segmentation methods. Figure 2-5 shows example output from three

different texture-based segmentation algorithms, as discussed in [21], with results

also from [22][23].

Figure 2-5: Result of different texture-based segmentation algorithms [23]

Eigenspace Identification

One final algorithm is used to ensure that, once a feature has been successfully

segmented, the feature is actually what the algorithm is supposed to be locating,

22

regardless of size or orientation. There are many appearance-based algorithms, and

one of the foremost is the Eigenspace Identification method [16][24]. This method

consists of a learning algorithm applied over a set of existing images prior to an

identification algorithm applied to new images.

 The learning algorithm must be applied to an initial set of images containing

the object in all desired recognizable poses, where the object is easily segmented from

the background. If the object translates between successive images, or if lighting

conditions change, the initial learning stage can become quite complicated, requiring

an abundant amount of computing resources to analyze and store the learned data.

 Each image must be represented as a vector, formed by scanning the image

top to bottom and left to right and placing the results in a vector of length N2. By

transforming an image into this representation, vector math can be utilized for more

complicated image-based calculations, such as using the dot product for image

correlation. Once all images have been converted to vectors, the learning algorithm

continues by finding the average vector between all the images, creating a covariance

matrix, computing the Eigenvalues and associated Eigenvectors and then finally

calculating Eigenspace points for each image and storing the discrete Eigenspace

curve as the representation of the segmented object.

 Application of this data set to new images to recognize a desired object first

requires all possible objects to be accurately segmented from the background before

application of similar vector and Eigenspace calculations are applied to each object

and a search performed within the library of data. All these steps must be performed

after feature segmentation, and a search through a comprehensive library of possible

23

objects can be quite computationally complex. This project requires real-time object

identification, so object recognition, particularly given uncertainty in object shape,

etc., benefits more from compact and efficient strategies than from more

comprehensive and elegant approaches such as Eigenspace Identification that require

a prohibitive search over a database that may or may not accurately depict the objects

to be sampled.

2.4 Stereo Correspondence

Use of a stereo camera system rather than a single camera requires identification of

common features in the two cameras’ image planes. Once features have been

segmented within each corresponding image, they must be matched, initially on an

overall feature level, and then through detailed corresponding points assigned to each

feature that enable accurate 3-D object reconstruction. An overview of stereo

correlation strategies is provided below, followed by a discussion of strategies to

further increase accuracy and effectiveness of the algorithms, specifically use of

Epipolar geometric constraints and the rectification process.

2.4.1 Point and Feature Correlation

The correlation process is composed of two main steps – feature correlation and point

correlation. Feature correlation matches overall features between images while point

correlation operates at the sub-feature level to accurately determine which points

within a feature correspond to points in the other image’s matched feature.

24

Feature Correlation

Feature-based correlation restricts the correspondence problem to a select few

features extracted from an image. Unconstrained matching algorithms can become

quite complicated, involving algorithms such as Eigenspace Identification described

above, or any other weighting function designed to calculate a numerical value that

represents each different feature. For example, a weighting function might include

pixel area, various moments of the feature, and color measurements.

 There are two main types of constraints that can be applied to sets of features

to assist in the matching process: geometric and analytical [16]. Geometric

constraints, such as Epipolar geometry, discussed below, greatly limit possible feature

matches based solely on geometric knowledge from the camera setup. Analytical

constraints are logic-based constraints such as the uniqueness constraint stating that

each feature can only have one match and the continuity constraint that disparity must

vary continuously throughout the image, barring odd scene geometry and occluded

features.

 If constraints are not placed on the matching algorithm, problems can arise

when attempting 3-D reconstruction. Most notably is a scene with multiple objects

with the exact same size, color and geometry. A weighting function could return

values that result in incorrect matches since the features “look” exactly the same.

However, by placing appropriate constraints on the system, many of these results can

be eliminated from the start.

25

Point Correlation

A similar problem to that of feature matching is extracting points of interest within

these features or in the general case an entire image, then successfully matching these

points with one another. Without correct matches between these points, accurate

matching of features is meaningless for further 3-D analysis. Most existing

algorithms match points by determining the brightness pattern of the target pixel and

its neighborhood with the other image in an attempt to find a similar pattern [19].

The initial points can be selected from a variety of algorithms that find points of

interest based on available data, such as edges or corner features.

 The most common points extracted from images are corner points. These

points are located throughout complex scenes, either as geometric corners, such as on

a building, or simple corners in patterns of intensities. Fortunately, these patterns

remain visible in subsequent images, thus act as good choices for object tracking [16].

Based on image data of the neighborhood surrounding these corner points, similar

algorithms can be used to match these points across corresponding images, or on a

smaller scale, between already matched features. Figure 2-6 shows an example image

after being run through one of OpenCV’s corner detection algorithms. A small circle

marks each detected corner.

26

Figure 2-6: Output from OpenCV corner detection algorithm

 In the general case where numerous points are matched between images, a

general depth map can be generated showing approximate distances to any point in

the overlapping camera fields of view. Ideally when working with a single target

feature, extraction and matching of points encompassing the entire feature provides

data relating size and distance of the object to whatever degree necessary. More

details on 3-D reconstruction are presented below in Section 2.4.4.

2.4.2 Epipolar Geometry

The geometry of stereo is known as epipolar geometry. Once calculated, the epipolar

geometry of a system will map a point in one image to a line in the corresponding

image. The outcome is essentially that the search for corresponding points and/or

features is limited to a search along a known line rather than through the entire image.

Figure 2-7 shows the epipolar geometry of a stereo system.

27

Figure 2-7: Epipolar geometry of a stereo camera system

 Point P, the target point in each image, along with the origins of each camera,

Ol and Or, form the epipolar plane. The intersection of this plane with each of the

image planes form a line known as an epipolar line, shown in blue. Each point in an

image only has a single epipolar line traveling through it, except for the point known

as the epipole, at which all epipolar lines intersect. The epipoles are denoted by el

and er in Figure 2-7. As point P moves along the vector leading to Or it stays in the

same epipolar plane and the image coordinates in the right image remain constant, but

in the left image the point slides along the epipolar line.

 With knowledge of the intrinsic and extrinsic parameters of the stereo system

from calibration, the Fundamental and Essential matrices of the system can be

calculated to help determine geometric correspondence between the two images. The

28

Fundamental matrix relates pixel coordinate points between images and the Essential

matrix relates camera coordinate points. As such, the Essential matrix is based solely

on the extrinsic parameters of the system, while the Fundamental matrix is based on

both extrinsic and intrinsic parameters, and is related to the Essential matrix by

multiplications of the intrinsic parameter matrices of each camera. Appendix A

shows the equations relating calibration parameters to the Essential and Fundamental

matrices as well as the epipolar geometry.

2.4.3 Image Rectification

To perform general 3-D reconstruction of an entire scene it is useful to have all the

epipolar lines of an image be collinear – in other words, the point correspondence

problem is reduced even further to a simple search along a single scanline, as show in

Figure 2-8. The gray boxes represent the rectified images, with the blue segments as

the transformed epipolar lines parallel to the baseline.

Figure 2-8: Geometric representation of rectified images

29

This effect is achieved by rotating the left camera so that the epipole goes to infinity

along the horizontal axis, followed by rotating the right camera by the same amount

(to recover original geometry) and then finally rotating the right camera again by the

rotation matrix associated with the extrinsic parameters of the system. Once this

has been completed, it may be necessary to adjust the scale in both camera reference

frames.

RL
R

 Image rectification is possible regardless of the initial orientation and relative

position of the cameras, assuming they do, in fact, share significant image overlap.

Figure 2-9 shows example rectified images. Marked on the image are example

epipolar lines showing how points anywhere in the scene of the left image lie upon

the same scanline in the right image. By applying these geometric constraints to the

pair of images, the matching problem becomes much easier, although the preparation

becomes much more complicated.

Figure 2-9: Rectified images from a calibrated camera pair

30

2.4.4 3-D Reconstruction

The ultimate goal of any stereoscopic system is some form of 3-D reconstruction,

whether it is of the entire scene or localization of a single object. The ability to

uniquely determine a 3-D position of image points is dependent on the knowledge of

the intrinsic and extrinsic parameters of the system. There are three applicable cases

of 3-D reconstruction. First, if both intrinsic and extrinsic parameters are known, any

point in the scene can be determined unambiguously in all three dimensions by

triangulation. Second, if only the intrinsic parameters are known, then reconstruction

is possible up to an unknown scaling factor. The final case is if only the pixel

correspondences are known, leading to reconstruction up to an unknown, global

projective transformation [16]. The focus of this thesis is on the ability to absolutely

determine three-dimensional coordinates in the first case, where all calibration

parameters are presumed known.

Once an algorithm designed to calculate the 3-D position of a point or scene

reaches the final triangulation step, the rest of the process is straightforward. The

first step is to convert pixel coordinates into camera coordinates using the intrinsic

parameters of the system. Once both left and right camera points are known in

camera frame, the extrinsic parameters are applied to determine actual 3-D target

position.

31

Chapter 3 Vision Algorithms

This chapter will describe and illustrate the algorithms that were implemented within

the AVATAR software package in the order that they are used within the system.

The first section will describe calibration and the camera-manipulator registration,

followed by a discussion of feature segmentation and data extraction. Stereo

correspondence procedures are described that enable feature matching between

synchronized images with stereo triangulation for 3-D reconstruction. A visual servo

controller is described next, followed by a section on management of anomalies and

other problems that may arise.

3.1 Calibration

One of the most essential aspects of a computer vision system is to maintain an

accurate set of calibration parameters. As described generally in Chapter 2, three

main phases of calibration must be completed to accurately identify and sample

targets from stereo camera feedback. First is the intrinsic calibration of each camera.

The second step is determining the geometry of the camera system (extrinsic

calibration). Finally, registration between the vision system and robotic manipulator

must be performed to determine the transformation between vision system and

manipulator base frame.

3.1.1 Camera Intrinsic and Extrinsic Calibration

The first calibration step is to mathematically estimate intrinsic camera parameters

based on the correlation of unique features between 2-D image plane coordinates and

32

known 3-D world coordinates. As is standard practice in the vision community, a

planar checkerboard pattern is used to provide a matrix of readily distinguished

corner features. The checkerboard is presented to each camera at a series of different

orientations and positions to provide a three-dimensional set of points for calibration.

For accurate calibration, the size of each checkerboard box must be known and must

be consistent across the calibration pattern. To identify the best intrinsic parameter

set for each camera, a least squares gradient descent search minimizes re-projection

error from 2-D to 3-D coordinates. It has been shown that the intrinsic parameter set

can be accurately estimated with a minimum of five checkerboard images. For more

information on this algorithm see [3][5], and for implementation details see

[14][25][26]. Using the Matlab Camera Calibration Toolbox [3] and the results from

intrinsic calibration, the extrinsic parameters of the stereo system can be determined

based on the correlation of the calibration points between the two cameras. For this

extrinsic calibration, synchronized stereo images with the same visible checkerboard

pattern are required.

3.1.2 Camera-Manipulator Registration

The final calibration step is to determine the 3-D coordinate transformation between

the vision system and manipulator base frame [14]. The algorithm implemented in

this work operates on corresponding lists of n points from the vision (camera) and

manipulator base frames, and respectively. Figure 3-1 shows the algorithm

utilized to compute the transformation matrix that translates 3-D coordinates

from stereo camera frame V to manipulator base frame M. First, the point cloud

PV PM

TM
V

33

center positions and are calculated by averaging all points. Next, each point

list is normalized by the center to align both point clouds about the same center point.

The rotation matrix is assigned to the identity matrix then computed through

iteration.

CV CM

RM
V

 Within the iterative loop, a series of rotations about single axes are applied to

align the two point clouds. In each iteration, sequential rotations about the x-axis, y-

axis, and then the z-axis are applied. Intuitively, this algorithm is iteratively applying

rotations to “reverse” the point set rotation so that the “unrotated” point sets are as

close to coincident as possible. The formulation presented here is based on multiple

Z-Y-X Euler angle rotations [27]. First, the algorithm determines the angle γ in the

Y-Z plane by which each point was rotated to reach its current position. The

derivation for each case is shown in Appendix B Assuming the magnitudes of

corresponding points are the same and using , the results from

these equations can be used to determine the sum of the squares of the magnitudes.

Finally, by dividing these two results, the cosine and sine values can be calculated,

and an initial rotation matrix can be formed. This rotation is then applied to the set of

points from the vision frame, and the algorithm continues to the next rotation.

1cossin 22 =+ γγ

 Once the iterative loop finishes, a final rotation matrix is now available to

use in calculating the translation between the two frames, . This rotation is

applied to the list of points in the vision frame, and then the average displacement

between all corresponding points between the manipulator base frame and rotated

vision frame is calculated and used for the translation. Results from implementation

RM
V

V
M t

34

with the Ranger manipulator are provided in Section 6.2.2.

Initialize point clouds][],[nn MV PP

Compute point cloud centers:
n

i
C

n

i
C

n

i

M

M

n

i

V

V
∑∑

== == 11
][

,
][PP

Compute normalized point cloud coordinates: CC MMMVVV
−=−= PPPP ,

Initialize rotation matrix:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

100
010
001

RM
V

do to maxIterations 1=i

 ∑
=

+=
n

j

MVMV
V zjzjyjyjm

1

2].[].[].[].[cos PPPPγ

 ()∑
=

+−=
n

j

MVMV
V zjyjyjzjm

1

2].[].[].[].[sin PPPPγ

 () ()22222 sincos γγ VVV mmm +=

 2

2

2

2 sinsin,coscos
V

V

V

V

m
m

m
m γγγγ ==

PP
VV

M
V

M
V

R

RRR

R

γ

γ

γ

γγ
γγ

=

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=
cossin0
sincos0
001

∑
=

+=
n

j

MVMV
V xjxjzjzjm

1

2].[].[].[].[cos PPPPβ

 ()∑
=

+−=
n

j

MVMV
V xjzjzjxjm

1

2].[].[].[].[sin PPPPβ

 () ()22222 sincos ββ VVV mmm +=

35

2

2

2

2 sinsin,coscos
V

V

V

V

m
m

m
m ββββ ==

RRR

R

M
V

M
V β

β

ββ

ββ

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=

cos0sin
010

sin0cos

PP
VV

Rβ=

∑
=

+=
n

j

MVMV
V yjyjxjxjm

1

2].[].[].[].[cos PPPPα

 ()∑
=

+−=
n

j

MVMV
V yjxjxjyjm

1

2].[].[].[].[sin PPPPα

 () ()22222 sincos αα VVV mmm +=

2

2

2

2 sinsin,coscos
V

V

V

V

m
m

m
m αααα ==

RRR

R

M
V

M
V α

α αα
αα

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=

100
0cossin
0sincos

PP
VV

Rα=

end do

n

ii
n

i

VM
V

M

V
M

∑
=

−
= 1

][][PRP
t

⎥
⎦

⎤
⎢
⎣

⎡
=

10
V

MM
VM

V
R

T
t

Figure 3-1: Algorithm to determine camera-manipulator registration

3.2 Lighting Correction

Once an image has been acquired, it may need to be corrected for adverse lighting

36

conditions. At depth, color data is significantly lost when the scene is lit with a low

intensity strobe or LED array. When color is important for analysis, images can be

restored to their true color as described in Chapter 2, but depending on the application

this may be unnecessary. Non-uniform lighting is also an issue. Especially with

strobe lights, the location at which the light is focused is much more illuminated than

surrounding areas. The light magnitude decrease radially outward from the focus

location is nonlinear, requiring an algorithm to correct for the intensity pattern

associated with a specific light source.

All lighting correction algorithms discussed below, aside from the WHOI

algorithm, consist of an offline data extraction process, which determines scaling

factors and exponential coefficients that are then applied during system operation.

This procedure is valid under the assumption that lighting conditions will remain

invariant between dives given consistent cameras, lights, and mounting configuration.

3.2.1 Frame-Averaging

The lighting correction algorithm developed in this work is a simple frame-averaging

strategy that creates linear correction factors that can be applied in real-time. This

solution is motivated by a more accurate but computationally-intensive algorithm

developed and validated by WHOI [12]. This algorithm is performed offline and

requires a set of images where both raw imagery and imagery corrected by the WHOI

algorithm is available.

Figure 3-2 shows the process for calculating the frame average correction

coefficients. Two sets of images are input: a set of uncorrected raw images and the

37

corresponding set of images that have already been corrected by the WHOI

algorithm. First, pixel intensities I(i,j) for each RGB channel are summed across each

image. Next, the ratio for each channel of corrected to uncorrected value is computed

and stored in variables and . These ratios are applied to each channel at

every pixel in a new, uncorrected image to get a color-corrected image. An example

undersea image correction is shown in Figure 3-5 on page 42. This correction

strategy requires only one multiplication per pixel, minimizing real-time

computational overhead.

fixfix GR , fixB

do to 1=i widthI

 do 1=j to heightI

bluejiBB
greenjiGG
redjiRR

rawrawraw

rawrawraw

rawrawraw

).,(
).,(
).,(

I
I
I

+=
+=
+=

bluejiBB
greenjiGG
redjiRR

correctedcorrectedcorrected

correctedcorrectedcorrected

correctedcorrectedcorrected

).,(
).,(
).,(

I
I
I

+=
+=
+=

 end do

end do

raw

cor
fix R

R
R = ,

raw

cor
fix G

G
G = ,

raw

cor
fix B

B
B =

Figure 3-2: Algorithm to determine frame-average correction ratios

3.2.2 Lighting Pattern Estimation

To increase the quality of baseline results from the frame-averaging algorithm, this

strategy was augmented to account for the non-uniform lighting pattern generated by

the strobe. This correction provides greater contrast in target features relative to their

38

background thus facilitates cleaner target extraction.

 The first step of this algorithm is to compare pixel magnitudes near the center

of the projected lighting pattern with the magnitude of a pixel of similar visual

properties in a more distant portion of the image. This process provides data relating

changes in pixel intensity, presumed from light attenuation, with distance from the

center of the lighting pattern. Images used in this research tend to have the lighting

pattern centered on the image center, but the correction algorithm is based solely on

pixel distance from a predetermined point, which could be located anywhere in the

image depending on the light source. A MATLAB function was written to facilitate

point extraction and lighting change calculation, as shown in Figure 3-3 below. The

function first loads a raw image in a Bayer pattern, converts the image into a 3-

channel RGB format, then displays the result and requests user-input for point

matches. For this work, it is assumed that despite poor lighting conditions, the user

can still identify similarly-colored light and dark objects, although prior to correction

most vision algorithms would be unable to autonomously provide such data.

39

rgbImage = BayerCorrect(rawImage)

display(rgbImage)

User selects n point matches: and lightp darkp

do i = 1 to n

redi
redi

i
dark

light

].[
].[

][
p
p

R =

greeni
greeni

i
dark

light

].[
].[

][
p
p

G =

bluei
bluei

i
dark

light

].[
].[

][
p
p

B =

22)].[()].[(][ydarkxdark oyioxii −+−= ppd

end do

end GetLightingData

Figure 3-3: Algorithm for extracting lighting correction data

In Figure 3-3, the p objects represent sets of data relevant to a single pixel – red, blue

and green value in addition to x and y pixel location. The local R, G, and B vectors

have length equal to the number of points selected by the user and store the ratio of

light to dark value for each color. Finally, the d object stores pixel distance from the

center of the image, and , except for the case where the center of the image is

not the center of the lighting pattern and a different set of values would be used.

xo yo

 Once this set of data has been calculated, an exponential curve is fit to the data

using Microsoft Excel. Data from each color channel is separately analyzed, and a

coefficient and exponent are determined for each. Each curve fit equation is based

solely on pixel distance d[i] from the center of the light source projection, so a

40

template image is created with the exponential calculations already performed to

reduce the number of calculations during execution time.

Figure 3-4 below shows the process for creating the image containing the

lighting correction template. I represents the size of images to be processed, d is the

distance measurement calculated at each position with o being the light source focus,

R, G and B are matrices that hold the correction ratios. Combining R, G and B into a

single 3-channel image provides the correction pattern. Parameters c and e used in

the exponential calculations are output from the exponential curve fit based on the

data from Figure 3-3.

do to 1=i widthI

 do 1=j to heightI

 22
),()()(yxji ojoid −+−=

),(

),(

),(

),(

),(

),(

jiblue

jigreen

jired

d
blueji

d
greenji

d
redji

e

e

e

e

e

e

cB

cG

cR

=

=

=

 end do

end do

Figure 3-4: Algorithm for creating a lighting pattern template image

To apply the result of Figure 3-4, the real-time software must simply perform a

multiplication for each channels (RGB) of each pixel to adjust the uncorrected image

with the lighting correction pattern. Figure 3-5 shows the results from application of

the color and lighting correction algorithms described in this section. The WHOI

41

algorithm image is considered as “truth” but as mentioned earlier, the execution time

to perform the correction is prohibitive to real-time operation. For AVATAR, simply

using the lighting pattern correction is sufficient to provide consistent data across the

entire image, which is essential to target segmentation. The frame averaging

correction makes the images more visually appealing to an observer, but a linear

change in RGB intensity does nothing to increase effectiveness of the color filter

described in the following section.

)

3

A

f

s

f

t

i

u

m

 (a) (b) (c) (d
Figure 3-5: Side-by-side comparison of an image corrected for the lighting pattern.

(a) Uncorrected, (b) WHOI algorithm [12], (c) frame averaging, (d) frame averaging with
lighting pattern estimation

.3 Feature Extraction

s discussed in Section 2.3, numerous methods have been developed to extract

eatures from an image. For this research, a basic RGB based color filter is applied to

egment targets of a specific color. This is most closely related to the histogram

ilters, yet by using a combination of all three channels, choosing specific ranges on

he image histograms may not produce consistent results across channels. The main

ssues to address with this algorithm are inconsistent lighting due to shadows or

ncorrected lighting variations, and identification of targets with a color that closely

atches the background.

 For initial development, only the first problem was handled – creation of an

42

algorithm that deals with lighting changes. The developed filtering algorithm

distinguishes targets from ratios of red, green and blue values for each pixel in

addition to the magnitude of each. Intuitively, this approach removes the effects of

overall brightness disparity through the use of ratios -- while the brightness of all

colors may be changing, the relative amount of red vs. blue, blue vs. green, or green

vs. red will remain relatively constant. A similar effect could be achieved by

converting each pixel into a hue-based format, a potential future improvement, as

would be the use of multiple methods [17][20].

3.3.1 Filter Creation

Prior to application of a filter, the base values for a desired target must be determined.

A MATLAB function was created to simplify the filter creation process. An ideal

filter would separate the image into two groups: pixels that are part of a desired target

and pixels that are either background or part of an undesired target. This program

allows the user to select sets of points from both groups and then plot the appropriate

filter values. Through the plots of the different filter values, appropriate ranges can

be extracted to successfully perform target extraction on other images. Figure 3-6

shows pseudocode for this function.

43

Display RGB image

User selects image points: n],...,1[np

do to 1=i n

 blueigreeniredii].[].[].[][pppM ++=

greeni
redii

].[
].[][

p
pRvG =

greeni
blueii

bluei
redii

].[
].[][

].[
].[][

p
pBvG

p
pRvB

=

=

end do

Figure 3-6: Algorithm for extracting feature ratio values

This function is applied to both the desired sampling target as well as any competing

targets with similar visual properties. By plotting the output ratio data from both sets,

stored in vectors RvG, RvB, and BvG, with respect to the overall magnitude at each

point, M, appropriate filter values are easily extracted. Figure 3-7 shows an example

plot from this program with the range of values for sampling target and background

clearly separated for a chromatically-distinctive target, a yellow rubber ducky, and a

less clear distinction for a sand dollar from an image similar to Figure 3-5 on page 42.

Use of the magnitude data is only necessary when there are similarities in color data

corresponding with variations in magnitude.

44

Figure 3-7: Sample plots showing Red/Blue ratio data for rubber ducky target (left) and

uncorrected sand dollar (right)

3.3.2 Application of the Color Filter

Once ranges of values have been selected, application of the filtering algorithm is

straightforward. The algorithm compares pixel RGB ratio data with the values set for

the filter, and if they fit within the target range they are unchanged, otherwise they are

set to 0. Figure 3-8 shows this process. Increased accuracy, at the risk of increased

complexity, can be achieved by including the magnitude measurement either as a

maximum/minimum similar to the ratio ranges, or by providing multiple ratio

maximum/minimum values depending on the overall magnitude.

45

do to 1=i widthI

 do 1=j to heightI

greenji
redjiRvGpixel].,[

].,[
I
I

=

blueji
redjiRvBpixel].,[

].,[
I
I

=

greenji
bluejiBvGpixel].,[

].,[
I
I

=

 if maxmin RvGRvGRvG pixel ≤≤ AND

 maxmin RvBRvBRvB pixel ≤≤ AND

 maxmin BvGBvGBvG pixel ≤≤ then

],[],[jiji II =

 else

 0],[=jiI

 end if

 end do

end do

Figure 3-8: Algorithm for RGB ratio color filter

Upon successful completion of the color-based portion of the feature extraction

algorithm, the resulting image contains a thresholded image where only “good” target

points remain. After the entire image is thresholded, an erode operation [13][19] is

applied to remove stray noise pixels and incomplete features. Since this process

reduces the quality of remaining features of interest, a Feature-AND operation [19] is

then applied to restore these features to their full quality. The Feature-AND process

performs a basic AND operation between two images, but restores any connecting

pixels that may only appear in one image. Thus, small features will be removed

46

through the erosion process and larger features, which remain after erosion, will be

restored to their original state.

Although this erosion and restoration process is optional, it allows the color

filter to be significantly more liberal in the filter maximum and minimum values, with

the positive result that features of interest are more complete, but the negative result

that more false positives and noise remain in the image. By implementing the erode-

and-restore algorithm, the features of interest will remain at higher quality and

unwanted features will be removed. Unfortunately, as with the other optional

algorithms, this adds complexity and computations to the algorithm, reducing the

overall frequency with which the vision analysis can operate. Figure 3-9 shows

images at each stage of the filtering process.

)

3

T

f

a

r

a

 (a) (b) (c) (d
Figure 3-9: RGB ratio filtering process

(a) start with lighting-corrected RGB image, (b) filter based on RGB ratio values, (c) erode to
remove noise and (d) restore with feature AND operation (Original image courtesy WHOI)

.3.3 Feature Extraction

he next portion of the algorithm is designed to operate on the lighting and color

iltered images to determine location and size of all remaining features. The

lgorithm for extracting feature size and location from a filtered image consists of a

ecursive search process that calculates any desired target data useful for later

lgorithms. The search process begins at the top-left corner of the filtered image and

47

searches from left to right, top to bottom for pixels that remained “on” after the

filtering algorithm is executed. Upon reaching a first “on” pixel, the local minimum X

value associated with the global minimum Y value is recorded, and the algorithm

initiates a search to record the locations of all connecting pixels. If the pixel area of

the remaining features fit within a specified threshold, the recorded list of pixel values

representing each entire feature is used for further calculations including centroid,

area and aspect ratio. Figure 3-10 shows the two basic functions associated with the

feature information extraction algorithm.

Function DoImageFeatureSearch

0=snumFeature

do to 1=i widthI

 do 1=j to heightI

 if)0,0,0(],[≠jiI then

 1+= snumFeaturesnumFeature

 =][snumFeatureF CheckConnectedPixels(ji,)

 end if

 end do

end do

end Function

Function CheckConnectedPixels

if then)0,0,0(],[≠jiI

 .add(f ji,)

)0,0,0(],[=jiI

 .add(CheckConnectedPixels(f ji ,1+)

 .add(CheckConnectedPixels(f 1,1 −+ ji)

 .add(CheckConnectedPixels(f 1, −ji)

48

 .add(CheckConnectedPixels(f 1,1 −− ji)

 .add(CheckConnectedPixels(f ji ,1−)

 .add(CheckConnectedPixels(f 1,1 +− ji)

 .add(CheckConnectedPixels(f 1, +ji)

 .add(CheckConnectedPixels(f 1,1 ++ ji)

end if

return f
end Function

Figure 3-10: Algorithms used to extract feature raw data

The first function, DoImageFeatureSearch searches the image until finding a non-

black pixel in RGB format (i.e.,)0,0,0(],[≠jiI). After an “on” pixel is found, the

recursive procedure described in the CheckConnectedPixels function begins. This

function checks the value of an input pixel and if non-zero adds the pixel location to a

list. This operation is repeated on all eight neighboring (adjacent) pixels. By setting

all three channels to zero after recording each identified location with non-zero initial

value, the function ensures that no pixel will be counted twice. On return, the f vector

contains ordered pairs for all pixel locations within the current feature.

DoImageFeatureSearch retains a list of all possible features within F.

 Implementation of these feature extraction functions is realized in C++ using

the Standard Template Library, or STL [28]. By storing the pixel locations as an STL

vector, inherent STL functions can be used to operate on the data. For instance, the

feature area can be calculated by calling the “.size()” member function. STL iterators

are used to iterate through each list of feature points with functions to determine

aspect ratio and other relevant information.

49

 The data set for each feature is produced from a few simple calculations.

First, a single loop through all the data points is performed to identify boundary

points around the image edges. Eight edge points of the feature are recorded, which

consist of all perturbations of local and global maximum and minimum X and Y

values. Table 3-1 shows a list of the eight points and Figure 3-11 visually shows each

point on a sample set of matched targets, from the feature matching algorithm

detailed in Section 3.4.1.

Table 3-1: List of Feature Shape Points

Point
Number

Local/Global
X

Max/Min
X

Local/Global
Y

Max/Min
Y

 Notation in
Figure 3-13

1 Local Minimum Global Minimum),(, topYropl YX
2 Local Maximum Global Minimum),(, topYropr YX
3 Global Maximum Local Minimum),(, Xrtopr YX
4 Global Maximum Local Maximum),(, Xrbotr YX
5 Local Maximum Global Maximum),(, botYbotr YX
6 Local Minimum Global Maximum),(, botYbotl YX
7 Global Minimum Local Maximum),(, Xlbotl YX
8 Global Minimum Local Minimum),(, Xltopl YX

Figure 3-11: Perimeter points of feature shown in sample feature match

Once the boundary points have been determined, aspect ratio is calculated based on

50

the global bounding box of the feature. The ratio of feature area to bounding box area

is also calculated, and henceforth referred to as the area ratio. The area ratio gives the

software an idea of feature “density”. For instance, a feature generated by connected

noise pixels can have a significant area, but will usually be far from solid. Figure

3-12 is an example using Ranger’s parallel jaw end effector. An ineffective filter for

the Ranger Interchangeable End Effector Mechanism (IEEM) has left much of the

jaw still visible. Although the remaining pixels do not form a solid feature, they are

still identified as a feature due to connectivity.

Figure 3-12: Ineffective filter of Ranger’s IEEM and end effector

 After compiling feature data, another filter is applied based on the feature’s

image plane geometric properties. Feature area, aspect ratio, and area ratio are used

to determine whether or not the recently-discovered feature is a correct match for the

target the vision system is attempting to identify. Figure 3-13 shows the computation

of 2-D feature geometric properties. Definitions for each of the X and Y variables and

related subscripts are present in Table 3-1. The totalX and totalY variables are sums

of all point locations used in the calculation of the centroid, (Cx, Cy). The total

number of pixels is denoted by size(f), where f is the list of feature point pixel

51

locations determined from the algorithm in Figure 3-10.

do to size(f) 1=i

yitotalYtotalY
xitotalXtotalX

].[
].[

f
f

+=
+=

 if then 1==i

yiY
yiY

xiX
xiX

top

bot

l

r

].[
].[
].[
].[

f
f
f
f

=
=
=
=

 else

 if then rXxi >].[f

yiY
yiY

xiX

Xrtop

Xrbot

r

].[
].[

].[

,

,

f
f

f

=

=
=

 else if rXxi ==].[f then

 if then XrbotYyi ,].[>f

 yiY Xrbot].[, f=

 end if

 if XrtopYyi ,].[<f then

 yiY Xrtop].[, f=

 end if

 end if

/* Similar calculations for other parameters, full algorithm in Appendix C */

 end if

end do

)(fsize
totalXCx = ,

)(fsize
totalYC y =

topbot

lr

YY
XX

oaspectRati
−
−

=

))((topbotlr YYXXboxArea −−=

52

boxArea
sizeareaRatio)(f

=

Figure 3-13: Algorithm for extracting feature geometric properties

3.4 Stereo Correspondence

Once a list of extracted features is available, the next step is to match features to

establish proper correspondence between stereo images. This will eventually enable

3-D position determination for targets within the camera frame of reference.

3.4.1 Feature Matching

As described in Chapter 2, many algorithms exist for autonomously matching features

and points between corresponding images [29][30][31][32]. When practical, most

algorithms require human interaction to improve accuracy [33]. For this application,

human interaction is not feasible except for offline algorithm tuning. Different

matching algorithms comparing size, shape and geometric properties of the system

were applied in different phases of this research. The first algorithm is based solely

upon feature properties, only eliminating geometric impossibilities from the list of

possible matches. The second algorithm inverts this process, initially creating a list

of geometric possibilities, based upon Epipolar constraints, and then uses feature

properties as a sanity check to ensure the features are visually similar.

 The shape-based algorithm begins by using the nine interest points from each

feature – eight points around the edge of the features, as shown in Figure 3-11, and

the centroid. By determining the unit vector and magnitude from each of the nine

points to every other point, a mathematical “shape” is calculated which can be used to

53

compare feature sets. Figure 3-14 shows the algorithm used to calculate the set of

shape vectors. Although this procedure performs redundant calculations, this

procedure retains matching code simplicity.

do to 9 1=i

 do 1=j to 9

 if ji ≠ then

 22])[].[()].[].[(]][[jyixjxiji ppppM −+−=

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
=

]][[
].[].[,

]][[
].[].[]][[

ji
yjyi

ji
xjxiji

M
pp

M
ppS

 else

)0,0(]][[

0]][[
=
=

ji
ji

S
M

 end if

 end do

end do

Figure 3-14: Algorithm to calculate feature shape vectors

The p variables represent the sets of nine points associated with a single feature. M

and S store the calculated data for magnitude and shape, respectively. Each image

will have a set of p vectors with size equal to the number of discovered features in

that image. By minimizing the differences between feature descriptors from

corresponding images, targets with the same shape and orientation will be matched

correctly between paired images with this comparison of relative position between

external points and the centroid. It is important to note that relying on this orientation

data requires the assumption that the camera image planes are nearly parallel. Figure

3-15 shows the basic process for the shape-based feature matching.

54

]}[],...,1[{

]}[],...,1[{

rightrrright

leftllleft

n

n

ppP

ppP

=

=

do to 1=i leftn

 FindBestMatch() =][iBM rightleft i PP],[

end do

HandleRepeatMatches(BM)

Figure 3-15: Algorithm to match features by shape estimates

The Pleft and Pright variables contain the sets of feature points and related shape and

magnitude values, M and S, calculated in Figure 3-14. BM stores the minimum error

value match between a feature from the left image and the set of features from the

right image, as determined by the FindBestMatch function. The FindBestMatch

function determines the best match by minimizing differences in the respective M and

S data. In addition to using shape data, the algorithm applies a single geometric

constraint – the X value of the centroid in the left image must be greater than the X

value in the right image. In other words, the feature must be in front of the cameras.

Even after applying minimization of error data, if identical targets are placed within

the same field of view, mismatches can occur. In the case that multiple features from

the left image are matched with the same feature in the right image, the

HandleRepeatMatches routine determines which has a lower error and voids the other

matches.

 To simplify the feature matching process and eliminate impossible geometric

matches, a new algorithm was developed that primarily utilizes geometric parameters

to create a list of possible matches. Feature shape properties are then required only to

“break ties” in cases where multiple possible matches are available. Due to the

55

reliance on the more selective epipolar constraints, the complexity of the matching

algorithm significantly decreases in addition to becoming more accurate. In target

fields where all targets have significant pixel area and there is minimal overlap, it is

almost impossible to have multiple match cases after making some intelligent

assumptions, thus increasing the constraints already imposed by epipolar geometry.

 Epipolar geometry constrains features to match along a single line within a

corresponding image in a calibrated stereo system. By making assumptions on

minimum and maximum distance from the cameras, this line through the full image

can be reduced to a short segment. Distance assumptions are valid since target area

will be too large or small if too close or far from the cameras, respectively. These

constraints are met by translating feature coordinates in an original image to a limited

search box in the corresponding image. The parameters of the box are defined such

that a realistic segment of the epipolar line in contained within the box, but also, r to

account for calibration errors, a region around the line is also searched for possible

matches. This algorithm represents a significant simplification to the research

presented in [30]. Figure 3-17 shows a populated target field with all targets

correctly, matched using this set of assumptions. Figure 3-16 summarizes this

matching process.

56

do to 1=i leftn

 do 1=j to rightn

yjyidy

xjxidx

rightleft

rightleft

].[].[

].[].[

PP

PP

−=

−=

 if maxmin dxdxdx << &&

 maxmin dydydy << then

]})[],[({].[jiaddi rightleft PPPM

 end if

 end do

 if then)1][(>isize PM

 HandleRepeatMatches()][iPM

 end if

end do

Figure 3-16: Algorithm to create a geometric based possible match list

The output of this routine is the list of possible matches . If a possible match

between left feature i and right feature

],[jiPM

j exists, then that value of the matrix

will be non-zero. The four values of and form the box

around possible target positions based on geometry. Usually the data will not

contain multiple matches for each feature. However, if repeat matches do occur, the

shape-based error minimization routine can be applied to determine the “better”

match based on shape.

PM

minmaxmin ,, dydxdx maxdy

PM

57

Figure 3-17: Sample correlated images used for geometric match testing

3.4.2 3-D Reconstruction for Target Position

 The final step of the stereo correspondence process is to triangulate target

position. Similar to the calibration process, a stereo triangulation algorithm from the

MATLAB calibration toolbox [3] was converted into C code for seamless integration

with the rest of the target acquisition system. Figure 3-18 shows the stereo

triangulation process, where initial pixel coordinates are represented by and

while output vision-frame coordinates are designated by

leftx rightx

XL and XR for left and

right camera locations, respectively.

58

normalize),(rightleft xx

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

1
left

l

x
X ,

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

1
right

r

x
X

l
R
L XRu ⋅=

L
RR

L

L
R

rr
L
R

ll

rl

rL
R

L
R

rll

L
R

rrL
R

rr

rrrll

XLRXR

XXXL

ZXRX

ZXX
DD
NNZ

DD
NNZ

uXuXXXNN

uXXXuXNN

uXXXXXDD

t

t

tt

tt

+=

+=

−=

=

==

⋅⋅−⋅⋅=

⋅⋅−⋅⋅=

⋅−⋅⋅=

)(

)21(
2
1

)(2

1

2,1
))(())((2

))(())((1

)())((2

Figure 3-18: Algorithm to calculate 3-D target position via stereo triangulation

The first step of the algorithm is the normalize function [3]. This function applies the

intrinsic camera calibration parameters to the initial image plane coordinates. The

next step is to build a homogenous coordinate vector by adding a third dimension, the

1. The remainder of the algorithm triangulates the initial rays, and , in 3D

space. The extrinsic parameters of the system also appear in this algorithm, shown as

, or the transpose , and the translation vector .

lX rX

RR
L RL

R L
R t

Implementation of this algorithm exists in two forms. The first method

calculates a 3-D position for all of the externally matched points determined in the

shape calculation. The second method determines target position solely from the

pixel values calculated for the centroid of the feature in both images. Using all points

59

will reduce error from a single point, but in the case where the image planes of the

cameras are not aligned, these external points will not match. By using only the

centroid, testing has shown that accurate localization is still possible, but the position

is much more sensitive to single pixel error. Both methods were implemented during

tests of the vision system with Ranger.

3.5 Visual Servoing

Uncertainties in calibration due to even slight camera misalignment can result in poor

target sampling success. Research has been done that shows inclusion of visual target

data within a simple control loop, often referred to as visual servoing, can overcome

errors that arise from calibration uncertainties or errors, even if the initial calibration

is extremely inaccurate [10][11]. To successfully implement visual servoing, the

vision system must be able to identify and track both the manipulator end effector and

the desired sampling target.

3.5.1 Visual Servo Algorithm

The goal of the visual servo algorithm is to alleviate inaccuracies in manipulator-

camera relative positions due to calibration errors. Instead of triangulating the

position of just the sampling target, the vision system must now also recognize a

target on the manipulator. To be of use to the manipulator controller, the coordinates

must be transformed into a frame of reference that the manipulator recognizes. For

this algorithm it is assumed that the procedure discussed in Section 3.1.2, the camera-

manipulator registration, has already been performed and these values are known.

The vision system must now “track” both targets through subsequent analyses to

60

make sure all data is consistent. By commanding the manipulator to move towards

the sampling target, in terms of what the cameras are seeing, and repeating until the

distance is zero, inaccuracies within the stereo system calibration and camera-

manipulator registration can be ignored and successful sampling can still occur.

 The visual servoing algorithm is shown in Figure 3-19. The first step of the

algorithm is to acquire positions of possible manipulator and sampling targets from

the vision system. Once the targets have been acquired and their positions calculated,

the software must choose the correct targets if multiple candidates exist. After the

targets have been selected and verified, the third step of Figure 3-19 is reached.

Subsequently, all p variables represent 3-D locations of targets. The leading

superscript denotes the coordinate frame – v for vision, 0 for manipulator base and T

for manipulator tool frame, while the trailing subscript defines target type. By default

all measurements are made by the vision system, but if that is not the case a second

subscript indicates the measurement device, such as telem for arm telemetry. The

rotation matrix and translation vector are the result of the hand-eye

calibration (camera-manipulator registration). However, the manipulator controller

provides the rotation matrix so that the vision system does not require knowledge

of manipulator pose in addition to tool position. The tool vector is the

translation from where the vision system measures the arm position and the actual

tool tip. During tests with Ranger, was the vector from the IEEM to the tip of

the parallel jaw grippers.

RO
V visiont0

R0
T

tool
T p

tool
T p

 Together this data enables calculation of tool tip position in the manipulator

61

base frame based on the coordinates originally measured by the vision system. First,

the rotation from vision to base frame is applied to the vision frame coordinates of the

arm target. Next, the translation from the location of the vision frame origin to

manipulator base frame origin must be added. The final step is to transform the last

offset of the end-effector, from vision target to tip of tool, into base frame coordinates

and add that to the previous result. Once this step has been accomplished, arm

telemetry is used to ensure the visual estimate is reasonable.

 Once a consistent arm position is verified, the base frame coordinates of the

sampling target are calculated in the same manner as the manipulator vision target

except with no additional tool offset. Finally, a base frame motion vector is

calculated to drive the manipulator toward its target grasp state.

 This motion vector is scaled down to match a maximum move distance for

safe operation of the manipulator. If the calculated motion vector is less than the

maximum move value, the following arm motion is the final move. If at any point the

vision system loses track of either target, the system will stop moving until either the

target is recognized once again, a timeout is reached, or an operator kills the process.

As the manipulator approaches the target, it is likely that partial or total occlusion of

the target will occur. Without full knowledge of end effector and manipulator design,

purposely omitted from the vision software to ensure portability, it would be

impossible to account for occlusion from these sources. If the target is completely

stationary, its position could be assumed constant if lost, but this may not be valid. A

more in-depth analysis of target occlusion is located in Section 3.6.2.

62

GetNewVisionData() sample
V

arm
V pp ,

CheckForValidVisonData() sample
V

arm
V pp ,

tool
T

Tcameraarm
V

Vtool pRtpRp 0000 ++=

CheckVisionMeasurement() telemtooltool ,
00 , pp

camerasample
V

Vsample tpRp 000 +=

toolsamplesample ppe 000 −=

if lastmotion d>p0 then

 end VisualServo

else if max
0 dmotion >p then

max

0

d
K motion

s

p
=

else

 1=sK

end if

s

sample
motion K

e
e

0
0 =

MoveManipulator() motione0

Figure 3-19: Algorithm for arm motion through visual servo

3.5.2 Minor Visual Servo Functions

Target Identification

For the visual servo algorithm to function properly, the system must be capable of

recognizing multiple target types. Target identification in this manner is simple –

multiple target filters are performed on the initial images to extract both types of

visual targets, sampling vs. manipulator. With correct target identification, this

63

procedure is sufficient. In Figure 3-19 this is handled by the GetNewVisionData

function. This performs the appropriate feature extraction and matching algorithms to

populate the respective p variables with data describing the sampling and manipulator

targets. At this stage of development, no calculations are performed to select which

targets are correct, thus the system relies on unique identification of one sampling and

one manipulator target.

Target Tracking

Implementation of the visual servo controller introduces the requirement that the

selected sampling and arm targets recognized over a sequence of images are

equivalent. In Figure 3-19 this is denoted the CheckForValidVisonData function.

This function validates that observed motion between frames is consistent with

expectations. In the case of a stationary target, there should be no significant motion,

and, in the case of a slowly moving target, such as the arm, the perceived motion

should match projected estimates. All our targets were presumed stationary during

test sequences. Also, due to the slow update rate of the vision system, constrained

both by AUV electrical power and processing considerations to approximately 1 Hz,

it is impossible to track fast moving targets. However, in future work it may be

possible to add a Kalman filter to propagate arm motion at intermediate time points.

 If only single targets for each of the sampling and manipulator targets are

found, they are trivially matched over an image sequence. With multiple targets, the

algorithm selects the target with position closest to the previously used target.

64

3.6 Management of anomalies, occlusions, and poor visibility conditions

When operating in a fully autonomous setting, a system must be capable of handling

off-nominal situations that may arise. To date, the AVATAR vision system has

focused on baseline implementation and validation, but some problematic anomaly

scenarios have been enumerated for which we suggest potential strategies for robust

autonomous management. For the underwater sampling mission, likely challenges

will take the form of poor visibility caused by silt or hydrothermal vent fluid, target

occlusion, and misinterpretation of the image data resulting in target recognition or

localization anomalies.

3.6.1 Poor Visibility

Although deep-sea visibility is typically excellent, poor visibility conditions could be

encountered due to two major sources: the vehicle or manipulator agitating the ocean

floor and causing silt to rise, or from the black smoke emitted by the hydrothermal

vents. To handle the case where the AUV or manipulator causes silt to rise due to

impact with the ocean floor, the system need only wait a short period of time for the

silt to settle. Videos recorded during dives of the WHOI ROV Jason II show that it is

a common occurrence for the manipulator, while being teleoperated, to collide with

the soil and cause temporary visibility problems. However, after only a few seconds

of remaining motionless, the agitated silt settles and visibility returns to normal. In

terms of the vision algorithm, this means that it must be able to recognize when the

quality of the image has decreased due to visibility degradation, possibly also through

feedback from the manipulator, and initiate a wait sequence until image quality has

65

been restored.

 The second case is where visibility is reduced due to occlusion from

hydrothermal vent fluid. Hydrothermal vents or “black smokers” excrete high

temperature fluids that will cloud camera views. The interaction of ocean floor

currents with vent fluid is perhaps the most likely long-term poor visibility scenario

that could compromise sampling efforts. These currents can spread the fluid while it

is still rising, and downstream of the vent visibility can be quite poor. This problem

can be managed by moving upstream of the vent to another possible sampling area.

Although such maneuvers are dictated by autonomy software outside the scope of this

thesis, the vision system must be able to recognize and alert this autonomy software

when the camera visibility becomes poor, ideally also classifying the poor visibility

conditions as due to fluid or silt.

3.6.2 Occluded Targets

The other major problem that must be handled is target occlusion due to either the

manipulator blocking key portions of the camera field of view, or sampling site

topography causing occlusion of desired targets. Having full view of the desired

sampling target in both cameras is vital to accurate 3-D localization and successful

target retrieval. Prior to field trials with the final system, these issues must be dealt

with to ensure simple target occlusion does not cause mission failure.

 There are currently two methods to deal with target occlusion as a result of the

manipulator entering the camera field of view. Depending on overall accuracy of the

system calibration and confidence that the target and AUV base are truly stationary, a

66

single snapshot of the visual target data with the manipulator stowed out of the

camera views is sufficient to fully specify the target location open-loop. If this

“dead-reckoning” operational paradigm is sufficient, then manipulator occlusion

during the sampling process can be ignored.

 Alternatively, if regular data updates are required, either for a visual servo

system or because of a slow moving target or drifting AUV, then active steps must be

taken to prevent occlusion by the manipulator. Research is underway at SSL for

autonomous obstacle avoidance with a manipulator [34]. By creating virtual

obstacles for manipulator poses that would block visibility for the cameras, and then

avoiding these poses, it may be ensured that target occlusion will not occur.

 If the manipulator is not blocking the camera view yet targets are still visible

in only a single camera view, then it is likely that something within the sampling site

is occluding targets for one of the cameras. Then, if there are no other targets can be

successfully retrieved while in this position, the AUV must move to another sampling

location where target occlusion does not occur.

67

Chapter 4 Software Design and Implementation

4.1 System Architecture

The ASTEP system consists of the AUV and its computer, the manipulator and its

computer (DMU), and the vision system cameras plus computer. These systems are

supported by the sensors, actuators, and auxiliary equipment (e.g., strobe lights,

batteries, etc.) to enable robust autonomous deep-sea operation. Figure 4-1 shows the

layout of the key computers and related hardware on the AUV. The DMU computer

interfaces with both the vision computer that connects with the cameras, and the

WHOI computer that controls the AUV.

Figure 4-1: Overview of AUV system architecture

First, the sub-architecture of the DMU computer will be analyzed to develop the

relationship between all three systems (vision, manipulator and AUV). Next, the

modules of the vision computer and its protocols will be broken down into greater

68

detail

Two different architectural components are of major importance to this

research. First is the structure internal to the vision system. This module (AVATAR)

includes both vision analysis methods/software as well as all the interfaces to control

and retrieve data from the cameras. The second modules (TAU) developed to isolate

AUV and manipulator specifics from vision algorithms are the software and data

structures that interface the vision system with the external vehicle. Two such

system-specific interfaces are discussed: a lab-based implementation for the Ranger

manipulator and an implementation that will enable future field trials with the

SAMURAI-AUV system.

4.1.1 DMU Sub-Architecture

For testing and field trials, the vision-based target acquisition system will exist as one

of many modules within a larger vehicle-wide software system. For this thesis,

testing of AVATAR takes place within the scope of the Ranger manipulator system

architecture. When the NASA-ASTEP mission comes to fruition, the vision system

will be implemented as part of the larger-scale SSL-WHOI SAMURAI-AUV

software system.

Ranger Software Architecture

When tested with the Ranger manipulator, the vision system is interfaced through the

Data Management Unit, or DMU. The DMU is the primary computer for Ranger,

executing all safety, control and interface algorithms necessary for operating the

manipulator. Traditionally, Ranger has been teleoperated through a control station

69

that receives commands from hand controllers. To operate Ranger autonomously, a

trajectory file must be loaded into the Ranger control station. For vision-based

sampling tasks, a special trajectory software module capable of communicating with

TAU through a DMU object was implemented to perform as a visual servo controller.

 As shown in Figure 4-2, the system controller is the top-level DMU module.

The system controller can manage multiple arm controllers, where each arm

controller manages a single manipulator. For the Ranger implementation of the

DMU, the note inside the system controller can be ignored, as it is only relevant for

the ASTEP mission with SAMURAI. Within the arm controller are three methods of

moving the manipulator hardware: runtime trajectories, incremental joint-by-joint

commands, and a resolved rate controller that utilizes hand controllers. Each of these

types of controllers is based on implementations of the manipulator’s inverse and

forward kinematics for calculating joint angle changes based either on desired

Cartesian position and orientation or iterative joint trajectories. The runtime

trajectories are different from the other two methods, as they run based on a file that

may contain a series of waypoints in either Cartesian or joint space. At 125Hz the

specified controller will calculate the new joint angles and apply them to the

manipulator.

The vision system interfaces through a special trajectory item communicated

through TAU during the system control loop. The visual servo trajectory

implementation uses other, more traditional trajectory controllers (joint-by-joint or

Cartesian) within itself to determine incremental joint angles for the arm based on the

desired motion calculated by the vision system. By using Ranger’s communication

70

protocols within TAU, implementation of TAU within the Ranger DMU structure

was straightforward.

Figure 4-2: DMU Software Architecture UML Diagram

ASTEP Software Architecture

Due to the modularity of the TAU interface, future missions with the SAMURAI

manipulator will be conducted with essentially the same vision software as with

Ranger, with the additional capabilities present in the system controller note in Figure

4-2. In addition to manipulator kinematic and hardware specifics, the main difference

71

is the presence of an autonomy engine on top of the DMU. This module must issue

the supervisory directives a human operator initiates with the Ranger manipulator

based on knowledge of manipulator and vision system data, such as deciding upon a

specific target in the manipulator workspace or realizing that no targets are reachable

and thus AUV motion is necessary.

4.1.2 Vision System Modules

The operational version of the target acquisition software is split into two main

modules, the primary AVATAR system responsible for converting raw images to

target coordinates and TAU, the software that provides the link between AVATAR

and other systems including the manipulator, AUV, and human user for lab-based

tests. The AVATAR/TAU separation of functionality was created to isolate changes

in the computer vision and image processing from perpetuating outside of AVATAR,

and vice versa assure that the operation of AVATAR is not affected by external

changes in system architecture, communication protocols, and AUV/manipulator

hardware and software systems. Figure 4-3 shows a high level diagram of the vision

system implemented in this thesis. The arrows imply knowledge; for instance, the

Analyze module has knowledge of Common, but not vice versa. A typical target

acquisition cycle consists of the DMU requesting an analysis via TAUUnit, the

implementation of TAU on the DMU. TAUNet, the TAU implementation on the

vision computer, handles this request by invoking AVATAR through an instance of

VisionInterface, a class that implements and initializes AVATAR specifically

for use through TAU. Once AVATAR has completed the analysis, the data is relayed

72

back to the DMU through VisionInterface and TAUNet and finally to

TAUUnit. Section 4.2 discusses each of the modules from Figure 4-3 in greater

detail.

Figure 4-3: Vision System Overview

4.2 AVATAR

AVATAR is an object-oriented software product designed to be modular and reliable

for fully autonomous operation. Many open-source software tools were utilized to

aid in this effort, as described below in Section 4.5.2. The final AVATAR release

73

contains four major modules – Acquire, Analyze, Common, and Config.

 The Common and Config modules hold support classes that are used

throughout the rest of AVATAR. Common handles the storage and general

manipulation of images, while Config reads system configuration, making sure the

proper values are set and storing modified configurations as needed. Acquire

handles the acquisition of images from the cameras and stores images in memory for

future use. Analyze encapsulates all image processing and computer vision

algorithms necessary to accurately identify and calculate desired target positions.

4.2.1 Common

The Common module contains the low-level building blocks for AVATAR,

encapsulated in the StereoImagePair class. Each StereoImagePair, or

SIP, may contain a pair of OpenCV images or a pair of virtual “images” mapped to

raw memory associated with acquiring images over a camera bus. The SIP class

allows a corresponding pair of images to be transmitted anywhere in the system

without requiring additional overhead to keep track of left vs. right image. In

addition to the SIP class, the Common module also houses the

StereoImagePairFileIO class used to read and write images from a hard disk.

 Apart from providing the framework for storing the images, Common also

houses utility functions used throughout AVATAR. The image-related functions

handle swapping endian values for 16-bit images in cases where this is necessary.

Also included is the function for converting a Bayer pattern image to RGB format.

The last utility functions create and manage the system-wide logger, log4cpp.

74

4.2.2 Acquire

The Acquire module is split into five classes, four related to acquiring a SIP and

one containing the custom driver for firewire cameras. All classes that perform image

acquisition are derived from the AcquireStereoImagePair class.

AcquireStereoImagePair contains the basic functions required for the

spectrum of acquire methods, while the derived classes, AcquireSIPFirewire,

AcquireSIPFileLoader and RawDataAcquire implement the specific

algorithms for acquiring images from different sources. The final class is the

AvatarCameras class, providing access to camera hardware over a firewire bus.

Figure 4-4 shows a UML diagram of the classes in the Acquire module describing

important functions and objects.

Figure 4-4: UML Class Diagram of the AVATAR Acquire Module

 The AcquireStereoImagePair class functions enable unique

identification of each set of acquired images in addition to storing the association to

the SIP that receives acquired images and performs all initializations general to each

75

of the derived classes. Two values, group number and member number, identify each

subsequent set of acquired images. Member number is incremented every cycle.

Although group size can be set, group number is incremented only when a system

configuration change occurs. Thus, when either the member number reaches the

group size, or a configuration change occurs, the group number is incremented and

the member number is reset. The default group size is 99,999 for file naming

purposes; five digits are reserved in the current naming scheme.

 AcquireSIPFileLoader is a legacy class that reads data from stored 8-

bit image files, e.g., jpg or bmp, rather than acquiring real-time image data. This is a

relatively simple class that interfaces with Common’s

StereoImagePairFileIO class to load a corresponding pair of images at each

iteration. Since current system hardware includes 16-bit cameras and 16-bit images,

this class remains unused except when performing past test cases, although

implementation with an 8-bit camera system would require this class.

 The RawDataAcquire class replaces the AcquireSIPFileLoader

class in the new system. This class can handle raw images of any bit-depth as

specified by the configuration file. However, it only supports raw images, which in

this case are binary files containing only the image data. The current file naming

scheme for raw files contain all information required to reconstruct the correct image

size and bit-depth from the raw memory block. This acquire method is used for

recreating a previous test from raw data and the system log file. See Section 4.3 for a

detailed explanation on how the recreation is performed.

Once the raw data is in memory, further manipulation is required based on the

76

raw data format. Currently there are two possible transformations that must occur,

both of which are contained in the Common utility functions. The first is the endian

swap, necessary only if the system to which the cameras are connected has a different

byte order than the firewire cameras. The second is the Bayer pattern correction used

if the cameras store images in a grayscale Bayer pattern rather than a three channel

RGB image (recall the definition of Bayer pattern from Section 2.2).

 AcquireSIPFirewire is the final derived class for acquiring images. It

contains an AvatarCameras object that handles image acquisition from the

hardware. This is the most significant difference from the RawDataAcquire class.

The other major difference to AcquireSIPFirewire is that it allows the user to

dynamically adjust camera physical properties, e.g. exposure or white balance, to

account for changing light conditions, environment changes, etc.

 The AvatarCameras class is most complex module within the Acquire

module, as it has to interface with the kernel modules, camera hardware, and the rest

of the Acquire framework. The idea behind this class was to create a wrapper

driver for libdc1394, described in Section 4.5, to make the library more suitable for

autonomous operations while keeping the AcquireSIPFirewire class as simple

as possible. To accomplish this, the AvatarCameras class must be able to perform

two main tasks – provide a configuration interface to the cameras and store

corresponding images from the camera pair into memory.

 Each firewire camera has different features the user can customize, so the

current feature set, enumerated in the CameraHardwareConfig structure, is the

set of features the Point Grey Scorpion cameras use for hardware testing. Although

77

this diminishes software portability to a certain degree, the ASTEP target mission will

only use the Scorpion cameras. libdc1394 can handle a much larger set of camera

features, so in future work the programmer must add additional features to the

configuration set as required and make the corresponding changes to the software.

 The implementation of libdc1394 for initializing and taking images with the

cameras is the most complicated portion of the Acquire module. The first step of

the initialization process is to locate all cameras on the bus, then attempt to match the

camera hardware ID values with those specified in the configuration file. It is critical

that the left and right cameras are properly identified or else the stereo calculations

will be incorrect. Once the cameras are correctly identified, they are initialized for

the type of images recorded – a DMA format 7 capture.

There are a few pitfalls that must be avoided when locating the cameras. The

two major problems come from the firewire bus after hot-plugging the cameras or

restarting the computer to which the cameras are attached. If the initialization

procedure attempts to locate the cameras before the firewire bus has settled after a

camera hot-plug then an error will occur, but this is easily avoided by reattempting

camera location after a small pause. The greater problem occurs only on machines

running Timesys6, the real-time operating system to be used for the ASTEP vision

computer and DMU. For an unknown reason, frequently the kernel improperly

recognizes the cameras. The current fix for this problem is to reset the bus a given

number of times then assume there actually are no cameras. To date, this method has

worked flawlessly for finding cameras given that they are properly attached to the

computer.

78

 Once the initialization of the cameras is successful, the remainder of the

libdc1394 interface is straightforward. The grabRawImagePair function used to

perform the image grab must ping the cameras then copy the appropriate memory

buffer for use in the rest of the target acquisition system. If both cameras record

images, expected at this point in the process, error checking can be safely ignored and

execution continues uninterrupted. However, if one or both of the cameras fails to

acquire an image, the reason must be discovered before the process can continue.

The only such problem encountered thus far has involved intermittent (loose cable)

firewire connection between cameras and computer after initialization. Such a

problem cannot be fixed via software necessitating reliable connections for ASTEP.

4.2.3 Analyze

The Analyze module contains all classes that perform image processing actions. A

single class, AnalyzeStereoImagePair, performs the target acquisition

analysis. AnalyzeStereoImagePair also coordinates each subsequent

processing step, keeps track of all discovered features, performs feature matching

between images, calculates the final target coordinates, and stores the data for

retrieval from a TAU process. The system is set up such that an RGB SIP is

necessary for an analysis to occur and targets to be located. Figure 4-5 shows the

Analyze module class diagram.

79

Figure 4-5: UML Class Diagram for AVATAR Analyze Module

The Analyze structure originated as a set series of image processing algorithms,

implemented in classes derived from the ProcessStereoImagePair class,

which involves receiving a SIP as input and providing another SIP as output.

However, to decrease execution time by reducing number of calculations, certain

processing algorithms were not implemented depending on environment lighting and

the visual uniqueness of target from background. For instance, during laboratory

testing with the rubber ducky target, the order of processing start with the color filter

implemented in the SIPColorFilter and ImageColorFilter classes,

followed by feature extraction implemented in SIPFeatureLocator and

ImageFeatureLocator classes. This operational environment does not

necessitate the use of the color correction algorithm used for modifying images

acquired in low-light environments with a distinct lighting pattern, or the erosion with

feature-AND restoration required with visually nondescript target fields. In O-

80

notation [35] all the lighting correction and color filtering algorithms have complexity

O(mxn), where m is image height and n is image width, thus by leaving out

unnecessary algorithms, the overall complexity is substantially decreased. Testing

performed on an Intel Core-Duo Mac Mini running at 1.8GHz with 1GB RAM had an

average execution time of 1.22s for the Analyze routine without any form of

lighting correction. The addition of both lighting correction routines increased this

execution time to 1.36s. Not shown in Figure 4-5 is the flexibility to insert additional

image processing classes, such as a lighting correction class. The architecture is

designed to facilitate insertion, removal and modification of the

ProcessStereoImagePair derived classes, given careful analysis since

additional complexity may significantly increase execution time.

 The SIPColorFilter class, after being passed the appropriate SIP to

filter, sequentially performs the ImageColorFilter processing necessary for

each image, with separate filtering functions to handle 8-bit and 16-bit images.

Recall that the color filtering process was described above in Section 3.3.

 Following color filtering, the remaining image features must be extracted.

The SIPFeatureLocator class contains ImageFeatureLocator objects for

each of the right and left images, which can then extract the required data for the

feature matching process. Output from the SIPFeatureLocator class takes the

form of the SIPFeatureList class, STL vectors of required data for continued

analysis.

 The next step of the analysis is to correctly match extracted features between

images based on values from the feature locator process. Relative position matching

81

works through a recursive procedure that matches each feature in one image with

another feature in the second image. This matching process is handled within the

SIPFeatureMatcher class, capable of implementing a variety of matching

algorithms, but focusing on the geometric constraint algorithm detailed in Section

3.4.1. Output from the SIPFeatureMatcher class takes the form of a

matchedFeatureList, an STL container holding all relevant data.

 The final image processing task takes place in the

StereoCoordinateCalculator class, which calculates target coordinates

based on the intrinsic and extrinsic calibration parameters of the stereo vision system.

This procedure is based directly on the stereo_triangulation method from

[3] but is converted into C++. Details of this algorithm were provided in Section

3.4.2.

 Completion of the StereoCoordinateCalculator process populates a

VisionTargets object, part of the VisionInterface library, with all target

data needed external to AVATAR, such as 3-D position, centroid coordinates, and

object area. By providing sole access to AVATAR data through this

VisionTargets object, AVATAR is isolated from all other interfaces.

4.2.4 Config

Both Acquire and Analyze modules contain numerous parameters that must be

modified to reflect changes in the operating environment, target properties, and

camera systems. The Config module facilitates changing these parameters via an

external public interface. An XML configuration file contains all relative information

82

to completely fill the necessary values for the AVATAR system. The handling of the

XML files is mainly done using an SSL created XML Config tool based on TinyXml

[36], a small, easily configurable XML parsing tool, and Boost [37], a set of open-

source C++ libraries.

 The four configuration structures are CameraHardwareConfig,

TargetConfig, MatchConfig and StereoSystemConfig.

CameraHardwareConfig contains data about the properties of acquired images

(height and width in pixels, bit depth, channels, Bayer pattern flag, and endian swap

flag), camera hardware IDs, and initial values for the camera feature set including

flags for the use of automatic hardware modifications where applicable.

TargetConfig contains configuration values for the color filters and feature

locators as well as search window specifics, separated into multiple sections for

different target types. A future modification will implement multiple window

capabilities to enable focus of attention on multiple regions of interest. The

MatchConfig structure contains target geometric information and epipolar

constraints used during the feature matching process. StereoSystemConfig

contains all calibration values, intrinsic and extrinsic, necessary for the stereo

triangulation calculations. The specific values were discussed in Section 2.1.

 In addition to header files for configuration data structures, the Config

module also includes utility functions. These functions provide an interface for

reading and writing configuration files from either a file on disk or a string variable.

Due to conflicts with libdc1394 all XML and Boost code must be in separate libraries

from modules containing libdc1394-dependent code. The configuration utility

83

implementation is contained within the TAU interfaces, but it was also used widely

throughout AVATAR unit tests.

4.3 TAU

The Target Acquisition Unit, TAU, describes the collection of software used to

interface manipulator systems (and in the future the WHOI AUV computer) to

AVATAR. There are four levels of TAU software. First is the wrapping of

AVATAR into a single public interface, the VisionInterface class. The second

layer is the TAUNet application that provides network access to AVATAR through

the VisionInterface class. Nominal execution of TAUNet does not provide public

access to the vision system – another interface must be present to send the appropriate

messages to TAUNet. These interface programs are based on the TAUUnit class

that provides basic interface messages to TAUNet, useful for non-human control,

while derived classes can be outfitted with greater functionality, such as displaying

images in the TAUGUI implementation or simply saving images to the disk in the

TAUTUI implementation.

4.3.1 VisionInterface

The VisionInterface class consists of a generic header file with multiple

implementations, each for a different version of AVATAR’s Acquire methods. By

providing this standard interface, the higher levels of TAU can use any method

seamlessly. The two currently implemented versions of VisionInterface are

TAU_1394 and TAU_Raw, corresponding to AcquireSIPFirewire and

RawDataAcquire, respectively. This implementation with multiple source files

84

for the same class allows changing the object file used during linking rather than

modifying which class is used in the source and recompiling the entire class.

 The main differences between TAU_1394 and TAU_Raw stem from the fact

that TAU_1394 runs new analyses each cycle, whereas TAU_Raw must parse

previous tests’ log files, read their images, and reanalyze these images. Each method

has inherent difficulties. The initialization of the firewire cameras in TAU_1394 is

achieved as described above. On the other hand, TAU_Raw must parse large log files

and requires a great deal of preparation to ensure all images, log files and

configuration files exist and are in the correct directories prior to execution.

 Other the initialization, which only changes the method of acquiring images,

there are limited differences between the two classes, such as the method to change

the configuration. To make changes to both versions simultaneously, a single source

file contains code shared between both implementations, while the specific

TAU_xxx. file contains the functions that differ.

4.3.2 TAUNet

The TAUNet application provides a single program that executes continuously on the

vision computer, waiting to receive commands over the network to start/stop target

acquisition. TAUNet is the main program for executing the desired Vision Interface,

thus providing a back-end public interface to AVATAR over a network. To provide

access to the vision system, an implementation of the TAUUnit class that

communicates with TAUNet is discussed later in this section.

TAUNet utilizes Ranger’s communication protocol for all message handling

85

activities. A separate channel and set of messages were developed specific to TAU to

facilitate operation of the vision system. The actions required for nominal vision

system operation consist of starting or stopping a continuous search for targets,

performing a single “snapshot” of the current view to determine target locations, and

retrieving the target coordinates from the most recent analysis. If the designated task

is based on a single system configuration, these operations are all that are necessary

for the entire mission profile.

The remainder of the tasks performed by TAUNet provide capabilities for

more complicated sampling tasks. Still necessary for autonomous operations is the

ability to send a new configuration to the system. This provides the interface for

changing any aspect of the system – camera parameters if lighting is different than

expected, the image filter parameters to search for a different target type(s), or

modifications to the camera or stereo system properties, among others. In addition to

changing configuration is the ability to retrieve the current configuration, most useful

during supervised autonomy so the operator can determine what changes to make.

Finally, TAUNet can retrieve any desired set of images from AVATAR, such

as the original images, filtered images, or images marked with located and matched

features. To ease network load associated with transmitting large data streams,

images are converted to .jpg format since the human user views them rather than

precisely analyzed with vision algorithms. This compression step reduces image size

from 3MB for an 8-bit .bmp or close to 8MB for the 16-bit raw 3-channel image to

approximately 50kB for an 8-bit .jpg. OpenCV’s file saving only handles 8-bit

images at this time, so compressed 16-bit images are not available.

86

Although the current capabilities of TAUNet are limited to those discussed

here, the system is designed to facilitate extension. Further testing may identify the

need for immediate access to vision system internals, in which case real-time access

by the DMU or human user to more features will be an indispensable tool.

4.3.3 TAUUnit

The next level of interface to the vision system is the TAUUnit class. This class

provides message transmission (TX) and receiving (RX) capabilities to connect with

TAUNet. Where the TAUNet application must be executed locally on the computer

with either the cameras connected or previously recorded images, a TAUUnit class

can be created in any executable, such as the DMU, then invoked to send commands

or retrieve data from the vision system.

 In addition to providing the public interface to TAUNet, the TAUUnit class

also maintains a log of action execution timing information. For instance, if a

continuous search for targets is underway the system must ensure the target data

stored in the TAUUnit object is the most recent data. To allow this check,

TAUUnit stores the current iteration number of the vision system, the iteration of the

vision system when target data was last retrieved, as well as iterations for when the

configuration and images were last retrieved.

4.3.4 TAUGUI

The highest level of interface to the vision system is a subclass of TAUUnit, the

TAUUnit_GUI. There are two executable programs that instantiate this class:

TAUTUI, providing a text-based interface shown in Figure 4-6, and TAUGUI,

87

providing a wx-widgets GUI interface. The foremost difference between

TAUUnit_GUI and its base class is the re-implementation of the function for

handling receipt of an image from TAUNet. This subclass can be populated with

additional capabilities deemed necessary for human control of the vision system, thus

keeping the TAUUnit base class bereft of information superfluous for autonomous

control. The final implementation of the GUI is still under development, so all testing

was performed with a fully-functional TAUTUI.

Figure 4-6: TAUTUI Interface to AVATAR

4.4 Visual Servo Controller

Initial tests with the Ranger manipulator were performed “open loop” with respect to

the vision system: a target was visually located with respect to the manipulator base

frame, then the manipulator maneuvered its end effector to this position for sample

target acquisition. Such a procedure presumes highly accurate camera-manipulator

88

registration and minimal motion of the target relative to the AUV. In practice,

disturbances (e.g., currents) can induce motion of the AUV and/or target, and

registration parameters may not be sufficiently precise for reliable sampling.

To mitigate the effects of these error sources, AVATAR and the DMU were

augmented to support a visual servo controller for true “closed-loop” target

acquisition. In this paradigm, the vision system computes both the sampling target

position and a visually-distinct region near the manipulator wrist, thereby enabling

computation of the relative offset between the end effector and target in the same

(camera) reference frame. By using this offset as an error to be minimized over time,

the end effector can be collocated with the target in a truly closed-loop manner that

does not require accurate camera-manipulator registration.

4.4.1 Visual Servo Software Integration

Successful integration of the visual servo process requires substantial augmentation of

the vision system. Filtering for multiple target types requires target filters be specific

to a single target type to differentiate between similar features. Initial selection of the

primary targets for sampling and arm tracking is now required – the arm as detected

by AVATAR must correspond with telemetry data internal to the manipulator system,

while still allowing for errors introduced by the camera calibration and registration.

Previously temporal tracking was irrelevant as only a single snapshot of target data

from the vision system was utilized. Figure 4-7 shows the state machine for the

visual servo controller.

89

Figure 4-7: Visual Servo Controller State Machine

The visual servo controller begins in an initialize state waiting for its first set of data

from TAU. This data set must contain the location of both a sampling target and arm

target. The main execution cycle requests vision data, waits for it, calculates an

iterative move based on the target position relative to the manipulator, initiates this

move, and repeats until the error is below a specified threshold. This implementation

is not a fully closed-loop visual servo controller where the vision system is actively

tracking the arm and providing feedback at a sufficient frequency. Rather, it is more

of an iterative series of open-loop moves. For example, the estimate of arm and

sample target position takes approximately 1 second to accomplish, which will result

in calculation of a motion vector for the manipulator tool position with a given

magnitude (5cm during initial testing). This motion occurs over a specified period,

which happened to be 5 seconds during testing. Once this motion has stopped

another visual position estimate is performed. This entire cycle takes over 6 seconds

to complete. For the final AUV system, limited by the strobe refresh rate, the entire

90

process could be scaled to fit exactly within the given time constraints – vision

estimate plus manipulator motion time equals strobe recharge. A system with faster

frequency would provide no overall benefit.

Two states exist for waiting until manipulator motion is complete. ArmMoving

describes the state when the arm is moving towards the target, but the target is still

too far from the manipulator to sample. ArmSampling is the state when the

calculated manipulator position is within a specified distance from the sampling

target and must now execute motion required to physically capture the target. In the

case that errant target data is provided from TAU to enter the VisualServo state

(i.e. arm position estimate too far off or sampling target moved too much) then a new

set of data will be requested from TAU.

4.4.2 Visual Servo Control Law

Closed-Loop Control of Ranger Manipulator

A block diagram of Ranger’s inner control loop is shown in Figure 4-8. Initially, a

desired motion, , either a joint-space or Cartesian position or velocity vector, is

fed into the DMU. The DMU control loop operates at 125Hz, with each cycle

calculating a new set of desired joint angles, . These desired joint angles are

fed into each LPU, which generates commanded torque values,

desiredr

desiredq

commandedτ , for each

joint at 750Hz. The LPUs use a PD (proportional-derivative) control law based on

position and velocity data from the encoders. These commanded torques are sent to

motor controller boards to generate motor current values, . motori

91

 Motion of the manipulator is converted into joint angles by optical position

encoders. The actual joint angle values, , are utilized by both the LPU and

DMU to close the control loop. While the LPU requires the joint feedback at each

iteration, the DMU controller only uses the actual joint angles to generate the initial

set of desired joint positions through inverse kinematics. The DMU then bases all

subsequent desired joint position calculations on the previous iteration’s desired joint

position.

actualq

Figure 4-8: Ranger Control Loop

Integration of Visual Servo Data with Ranger Control System

Figure 4-9 shows how vision frame Cartesian position estimates of the manipulator

and sampling target, and , respectively, are combined with Ranger’s

telemetry data to determine a new arm position, . There are a few key

integration items of note for the system to function properly. The first is the

translation from to -- changing the manipulator reference point from the

visually distinct target to the tip of the end effector. The rotation matrix is

provided by the manipulator forward kinematics present within the DMU and is based

arm
V p sample

V p

servop0

armp0
toolp0

RT
0

92

on joint positions provided from the motor encoders. Knowledge of arm telemetry is

also required for the final calculation that transforms desired arm motion from

an iterative move into the Cartesian position , the input into Ranger’s control

system. Once has been commanded as a desired position, the visual servo

system pauses until the arm motion has completed.

motione0

servop0

servop0

Figure 4-9: Open-Loop Visual Servo Diagram

 The goal of the visual servo system is to drive the value to 0, which

would mean that and the sampling task could be completed. The value

 in Figure 4-9 is a scaling parameter to adjust the magnitude of arm motion based

on several factors. If is small then more iterations of the visual servo routine are

applied, which will more closely resemble a fully closed-loop controller, while

 results in a simple dead-reckoning attempt at sampling. To get the most

samplee0

sampletool pp 00 =

sK

sK

1=sK

93

benefit out of the vision data while maximizing periods of arm motion, should be

tuned so that the calculated motion can be safely executed prior to the next strobe

cycle. For example, with the manipulator stationary, the vision system acquires

images when the strobe flashes. Approximately 1s later position data is provided to

the manipulator, so motion should be scaled such that it is completed within the next

1.5s (assuming a 2.5s strobe recharge). Further testing of the system will dictate

appropriate values for in a fully-lit environment. The final value of is a

Cartesian position of the end effector tool tip, with orientation remaining constant

from previous telemetry. This value is then used as input to the DMU control loop,

recall from Figure 4-8.

sK

sK servop0

desiredr

4.5 Software Utilities

Two sets of software utilities provide a human interface to the vision system as well

as management and validation of the entire software suite. The first set is a collection

of custom utilities created within the AVATAR/TAU framework to allow for easy

integration with the firewire cameras, image acquisition during calibration, filter

creation, and other similar tasks. The second set of software engineering tools is used

for version control, integration of unit tests, defect tracking and other tasks to help

manage and validate the software as it is being developed.

4.5.1 Custom Utilities

A set of utility programs provide the ability to generate developmental data not

required by the vision system for deployed operation. These tools generate

94

configuration data that remains constant during application of the vision system to a

specific target area, or provide knowledge that enables the system to choose between

predefined configuration values. The rest of the tools provide the ability to test

specific aspects of the system without requiring the entire code-base to run unit tests,

such as testing that the firewire cameras are properly attached and the kernel driver is

functioning.

libdc1394 and Firewire Camera Custom Driver

This system utilizes the open-source libdc1394 library [38] to communicate with the

firewire-based Scorpion cameras. An interface driver was written to streamline the

libdc1394 functions with the specific Scorpion cameras used in the research, as well

as with the data storage methods. The implementation of this driver is within the

AvatarCameras class.

 The AvatarCameras driver allows certain configuration parameters to be

set through XML files, but all parameter values that will remain constant throughout

AVATAR tests are hard-coded in to minimize complexity. For instance, the

resolution and acquire methods, important for switching between different cameras,

or for using cameras with many pre-defined states, are set to constant values. Other

camera parameters, such as exposure and white-balance are set through configuration

variables. The underlying idea behind this driver-on-a-driver is to decouple the

involved aspects of the camera initialization process from the configuration of the

target acquisition system by the user.

95

Camera Interface Utilities

The Point Grey Scorpion cameras have the ability to automatically determine the

proper “feature set” to apply while recording images. This feature set consists of

values related to camera exposure, shutter time, white balance, etc. However, since

AVATAR heavily depends on consistent values and auto-adjust does not provide

sufficiently fast or repeatable value sets, applying a known feature set will ensure

repeatability between consecutive analyses. Problems can arise if the auto-adjust is

constantly altering values, such as during the light-dark pattern seen with a strobe

light; in some cases the white balance is mistuned such that the entire image is

discolored. To handle the selection of a camera feature set, a program was created to

record images until steady state values are reached by the automatic adjustment

ability, and then if the images are of good quality the feature set is stored for use with

the vision system.

Another utility facilitates proper testing and initialization of the vision system

through a set of programs used to acquire images directly from the cameras and save

them to disk. Both GUI and text-based programs provide critical functionality for

vision system development. A text-based image acquisition utility has been

developed to ensure that the cameras are functioning correctly with respect to the rest

of the computer hardware, permissions are set correctly on the devices, and the kernel

driver has successfully recognized and is communicating with the cameras. Since

this program is independent of AVATAR, TAU, and the rest of the AUV/DMU

software system, it can be run without the overhead associated with the full system.

96

Similarly, a standalone GUI-based utility serves as the main method for

acquiring calibration images. Since ensuring the entire checkerboard image is present

within the field of view of both cameras is necessary to the calibration procedure, this

program facilitates that process through real-time presentation of acquired images to

the user. Also, the GUI update of this program is useful in camera placement, as the

user can immediately ensure the cameras are placed in the desired position. Similar

to the text-based program, this program is independent from the remaining software

architecture, so it can execute on any computer given the appropriate Linux software.

Filter Creation Utility

To enable quick creation of color filters, a program was created to display an image

and allow the filter parameters to be adjusted in real-time. This filtergui

program is the counterpart to the MATLAB-based filter creation procedure discussed

in Section 3.3.1, but without the requirement of executing MATLAB. Via the

OpenCV Highgui interface, a previously recorded image is displayed with a set of

slider bars to adjust filter values. Through this interface, a user is able to immediately

examine output of the image filter when applied to a specified configuration.

However, when dealing with multiple similar target types or targets with similar

properties to the background the MATLAB analysis is a much more reliable tool

since it allows the user to extract exact values rather than continuously modify the

slider bars until the output appears correct. Figure 4-10 shows a screenshot of the

filtergui program in action.

97

Figure 4-10: filtergui program in the process of creating a target filter

4.5.2 Software Engineering Tools

To ensure proper software functionality, steps were taken to minimize novice

programming mistakes. Attention was given to const-correctness when dealing with

references (allowing values to be modified only if they should be modified), ensuring

zero memory leaks, proper use of inheritance and polymorphism of classes, and many

other common C++ issues where problems can easily arise [39][40]. Although

attempts were made to follow proper programming tactics within the software itself,

the use of external analytical tools can greatly increase the ability of a programmer to

create reliable code. Comprehensive documentation of the system, logging of

programmatic state and internal data during execution, frequent system-wide unit

testing and coverage analysis in addition to continuous integration are all built-in to

the SSL software system to further validate and accurately profile all software.

98

Documentation and Logging

For a software system to be useful to anyone besides the original programmer,

comprehensive documentation of the code is a must. In addition, the ability to track

bugs and other defects in a central database eases collaboration in a multi-

programmer environment. Another important aspect of documentation is data

logging during program execution, as this allows a programmer to track down bugs as

well as re-create a previous execution or state.

Writing software is hard. Writing software with sufficient, understandable

documentation thus allowing other programmers to easily interface with your

software is more difficult. Doxygen [41] is a tool that parses software to

automatically create legible, comprehensible documentation in the form of hyper-

linked html pages for on-line viewing or LaTeX files for off-line use. By

commenting the software in a specific manner, the programmer can almost

effortlessly oversee the creation of the Doxygen documentation. Doxygen is used

to provide explanations for files, classes, variables, functions, etc. as necessary

throughout the software system, in addition to providing longer, more detailed pages

describing in greater depth how to use different software modules, known problems

associated with the system, test results and anything else necessary for the continued

use and portability of the software.

In concert with Doxygen, which creates its own UML diagrams, Gentleware’s

Poseidon for UML tool [42] is frequently used to visually plan and describe object-

oriented software. Tracking down unwanted dependencies and other unforeseen

99

architecture mistakes is much easier with UML diagrams. Poseidon is compliant with

UML 2.0 and was used to create the diagrams used throughout this thesis.

 Creating useful execution logs assists experimenters in continued

development of products in addition to providing a useful tool for debugging and

fixing problems. Log4Cpp [43] is a tool that provides an easy-to-use interface with

valuable capabilities. It is also reputed to be efficient so it will not greatly affect

execution time. The system is set up on a priority basis allowing superfluous debug

messages to be ignored during actual runs, leaving only the most important messages

to be logged, or, during development periods, leaving all messages to be logged. A

simple flag set at the beginning of program execution determines the logging priority.

System-wide Unit Tests and Memory Profiling

One important consideration for large-scale software creation in a multi-programmer,

experimental laboratory setting is ensuring that the software will always perform as

desired. Providing a framework to allow unit tests at compile time, during a

daily/nightly build or any other time is necessary so that bugs or other unexpected

behaviors are caught before an actual test is run with hardware. Ensuring a large

percentage of code coverage as well as testing for memory leaks within the unit tests

further validates software for implementation.

CxxTest [44] is one of many unit test frameworks, and is the current tool used

system-wide at SSL. The first major use of unit testing is an assurance that after

changes have been made to a specific code section, the program will continue to

behave correctly, or, if it was incorrect before, it will exhibit correct behavior in the

100

future. By using the CxxTest selection of “assertions” the programmer can make sure

functions return correct mathematical values from a complex calculation or another

form of successful operation, in addition to testing whether the code behaved properly

when provided inaccurate, incompatible, or otherwise erroneous input. In essence, a

wide set of test cases better guarantees proper software execution during critical test

periods. When used in conjunction with gcov, described below, the programmer can

be confident that the software is thoroughly tested prior to final execution.

Test coverage programs are widely used throughout the software industry to

analyze programs. The two most important reasons to apply a test coverage analyzer

are to ensure not only that the majority of the software is validated in unit tests, but

also to provide output that gives the programmer the ability to focus on optimizing

the sections of code executed with the highest frequency. With the knowledge gained

from such a utility, a programmer can have much more confidence in their software.

 The software created for AVATAR, SAMURAI and other SSL projects now

utilizes the gcov [45] utility, which works in concert with GNU CC. After

integration into the build system, gcov automatically analyzes all software to provide

the coverage output mentioned above. However, a programmer cannot easily parse

the output provided by gcov, thus a shell script is used to sift through the gcov

output and create html output as part of the Doxygen documentation.

 A gcov results page is created that links all software modules that currently

have active results from testing. For each file, a results page similar to Figure 4-11 is

created to visually convey concise results of the coverage testing. The color-coded

results quickly display to the viewer the extent to which each source file is tested by

101

the unit test system, along with the test time and date and the architecture/OS of the

computer that ran the tests. A red highlight means less than 33% of the code is tested,

yellow means 33% - 66% while green means greater than 66% is tested. The names

of the source files in this list are links to a text file showing the source file with an

execution count at the beginning of each line. Through this output, a programmer can

ensure that all possible execution paths have been tested prior to deployment of the

system.

Figure 4-11: Colored output of gcov results for each specific file

A memory leak of any magnitude can have drastic consequences during

program execution that must last for hours, continuously performing operations while

slowly (or quickly) exhausting system memory. Large memory leaks will often have

more immediate consequences as they tend to cause program termination much

102

sooner. Detection of all memory leaks within a software system can be a daunting

task, especially if a programmer only has the source code available. Fortunately,

there are tools that can run on top of a program to alert the programmer of possible

memory leaks and provide line numbers and source files to help locate the offending

code. The Valgrind [46] memory profiler was used for the software associated with

this thesis.

Continuous Integration and Defect Tracking

Amassing these software validation tools, but only infrequently using them, destroys

many of the benefits they provide. Another set of tools are applied at SSL to ensure

that all software is continuously integrated and validated after every change, while

supplying version control and correlated defect tracking.

 The open-source Subversion [47] tool is used to handle version control.

Subversion provides many benefits in a multi-programmer environment, such as

allowing each user to have a separate working copy to make individual changes, and

allowing a programmer to easily revert to a previous version of software or view

differences between two versions. With good server backups, Subversion’s code

repository also provides reliable software backup.

 Subversion can be coupled with Trac, a web-based software management and

defect tracking system [48]. Trac allows users to view a timeline of recent software

revisions to the Subversion repository, in addition to creating “tickets” to notify

another programmer, or themselves, of possible bugs in the system due to a recent

change that was made or a possible enhancement that would benefit the overall group.

103

 Also coupled with Subversion and Trac is the CruiseControl continuous

integration tool [49]. CruiseControl continuously performs entire system builds, with

the corresponding unit test cases, every time a programmer commits a software

revision to the Subversion repository. If no revisions were made, a mandatory daily

build is still performed to ensure system stability. This provides immediate feedback

on any problems that were caused by recent changes. Provided comprehensive

system-wide unit testing with a good percentage of coverage, successful builds

throughout the day can help ensure proper execution during tests, demonstrations, and

field-trials. This idea of, at minimum, a full daily build with test cases is a widely

accepted concept that provides immense benefits to system development [50].

Example Benefits of Software Engineering Tools

By looking at output logs from the build system, dating back seven months, the

benefits of the various tools implemented within the system are immediately evident.

Within the logs, 484 separate full-system builds and tests were performed in that time

period, although the total number is higher due to sparse periods when the

CruiseControl (continuous integration) software was offline. These logs show that 45

builds failed due to problems specifically with the AVATAR/TAU code, while nearly

4 out of 5 builds has some problem associated with it.

Out of these 45 failed builds due to the vision software there are only 7 actual

errors, but they were not fixed before the next build occurred. The trend of the build

errors is in the earlier dates the problems were associated more with problems relating

to cross-platform compiles or missing/undefined references while linking. The later

104

errors are due to the unit tests failing. This was happening because configuration files

and other parameters were being tuned during laboratory tests, which was causing

changes in software behavior that, in turn, caused changes in unit test system output.

The system output is checked with a reference file during the unit tests, so when the

output changes, the tests fail until an updated reference file is provided. In these

cases the tests were still performing as they should, but the programmer is alerted

because the output has changed, which could be a sign of larger problems.

An instance when Valgrind, the memory profiling tool, was especially useful

was during the transition from 8-bit to 16-bit images. At the time the software was

under development OpenCV did not handle saving and loading of 16-bit images to

the hard disk, so custom software was developed to facilitate these operations. These

changes were widespread throughout the system where any specific image handling

operations were occurring. Rather than OpenCV providing memory handling, it had

to be accomplished manually. A single omission of freeing dynamically allocated

memory caused system-wide failure during unit tests and would have been quite

difficult to immediately track down without the assistance of the tool. Similar

problems occurred during the transition from dynamically allocated arrays to STL

variables for storing data within the system. These problems caused significantly

smaller memory leaks (on the order of bytes rather than mega-bytes) and were not as

evident as the 8MB memory losses for each 16-bit RGB image. Once again, the use

of the memory profiler allowed the problems to be tracked down much more quickly,

as well as pointing them out prior to a runtime crash.

105

Chapter 5 Experimental Platform and Test Plan

Due to the extensive suite of software and hardware required to fully test and validate

the vision system, development of a proper test matrix is critical for success. This

chapter will focus on the major considerations taken into account during vision

system testing, including the vision hardware and manipulator systems, then

summarizes a test sequence aimed at comprehensive system evaluation and validation

within practical availability and functionality constraints.

5.1 Vision Hardware

The quality and performance of the vision system hardware is directly related to

successful system operation. Below, the two sets of cameras used during different

phases of testing will be discussed, including discussion of factors that influenced

specific camera choices. The next issue that arises during testing is where to place

the cameras to ensure maximum coverage of the target sampling area while taking

into consideration manipulator occlusion and stereo baseline factors. The final

subsection will describe the housings and mountings used for securing the cameras

during operation, including details regarding the transition to a deep-sea

configuration.

5.1.1 Stereo Cameras

Two sets of cameras were used during AVATAR testing. Initial tests were performed

using analog Sony XC-999 cameras. Due to poor image quality issues related to

these cameras, higher resolution cameras were purchased for the next phase of testing

106

– Point Grey Scorpion cameras that run on a firewire bus. Figure 5-1 shows the two

camera types.

Figure 5-1: Cameras used for AVATAR testing

 Left: Sony XC-999 Right: Point Grey Scorpion

 The first phase of testing used Sony XC-999 cameras because they were

readily available. While the availability of the cameras made their use convenient,

many issues caused problems. First, since the cameras are analog, they be routed

through a frame grabber board to be digitized for use within AVATAR. This

involves using proprietary drivers for the legacy frame grabber boards, thus being

limited to the Windows operating system. Also, the resolution for these cameras is

limited to 640x480 with 8-bit depth per channel. Finally, the age of the cameras has

resulted in significant degradation of image quality in many of the available cameras.

 Once the first phase of testing was completed with the Sony cameras, design

criteria were developed to ensure similar issues would not plague the next test phase.

The first criterion is that the cameras use a form of digital output, to avoid the need

for extra frame grabber hardware, and similarly have open-source drivers readily

available. Next, the cameras need to have 16-bit depth per channel to maximize the

data available in each image along with a dramatic increase in resolution. The

cameras must also be compact to fit within deep-sea-rated housings. Finally, perhaps

107

the most important constraint was on cost given the limited project budget.

 Based on these criteria, the decision was made to purchase Point Gray

Scorpion 14SO cameras [51]. These cameras receive power and transmit data over a

standard firewire cable, thus are capable of utilizing standard software tools on

different operating systems for image acquisition. These cameras have 1280x960

resolution with 16-bits per channel operating up to 19 frames per second (FPS). Each

image is stored in a Bayer pattern, meaning the CCD is organized with alternating

elements sensitive to different wavelengths of light (Section 2.2). The camera itself is

a compact 50x40x50mm in size but requires an attached external lens to focus light

onto the CCD.

 Computar model H3Z4512 lenses are attached to the Scorpion cameras. The

H3Z4512 are vari-focal cs-ir 4.5-12.5mm F1.2 TV lenses, and were recommended for

operation at ranges from 0.5 m up to 10 m. They must be manually adjusted for focus

and zoom. Figure 5-1 shows the Computar lens attached to the Scorpion camera.

5.1.2 Camera Placement

Camera placement covers two major issues – placement of the stereo pair of cameras

with respect to the manipulator and placement of the cameras relative to each other.

Placement with respect to the manipulator mainly concerns the ability to see the

target sampling area while limiting occlusion by the manipulator. Placement of the

two cameras relative to each other encompasses a multitude of issues related to

specific capabilities of the vision system.

The camera/lens combination was measured to have approximately a 75-

108

degree field of view (FOV) in air, but when placed underwater in a housing, the FOV

drops to approximately 55 degrees. This affects the range of possible baselines for

the stereo system. If an overlap of 75% is desired at a distance of 1m, a good range

for use with the Ranger dexterous manipulator, then the maximum baseline between

the cameras is limited to 0.26m. A large overlap is necessary to maximize the

possible sampling area, so keeping the cameras close is important.

After acquiring test images with the cameras placed as close as possible while

inside the deep-water housings, it is evident that the high resolution of the Scorpion

cameras provides sufficient pixel disparity to accurately locate features, even with the

shorter baseline. This result is somewhat surprising because earlier tests with the

Sony cameras indicated short camera baselines compromised localization accuracy.

A single pixel offset with the Sony camera test setup resulted in a nearly 10cm shift in

calculated target position during neutral buoyancy tests. With the minimum baseline

of 10cm, constrained by the underwater housings, a single pixel offset with a target

located at a distance of 1.2m is only 2cm. All testing was performed with this

baseline, as extending it will only increase accuracy of the system, until there is

insufficient image overlap.

5.1.3 Housings and Mountings

For underwater tests of the vision/manipulator system, waterproof housings are

necessary for the cameras and required computers. Due to the configuration of

Ranger during initial tests with the Sony cameras, additional housings were

unnecessary, as a Sony XC-999 pair was pre-mounted within the pressurized Ranger

109

vehicle with data communication lines to surface computers. However, for the next

phase of testing, housings needed to be procured for both cameras and computers.

The camera housings for the Scorpion cameras consist of two parts – a deep-water

pressure housing and the internal mount to secure the camera.

Deep-Sea Pressure Housings

Operating at great undersea depths requires high-strength pressure housings to

operate cameras at one atmosphere (surface) pressure. For the scope of this testing,

housings were purchased to withstand 3000m of pressure. This fulfilled requirements

for an initial deep-sea test phase that was not completed prior to the writing of this

thesis. The commercial-off-the-shelf (COTS) housings are model number SSC-5000

from DeepSea Power and Light [52], manufactured for one of their proprietary analog

cameras, but modified in-house to work with the firewire cabling and connectors

required for operations at depth. These housings consist of aluminum housings with

sapphire lenses, as shown in Figure 5-2. Models are available with depth ratings up

to 6000m, where titanium is used in lieu of aluminum.

Figure 5-2: DeepSea SSC-5000 Camera Housing

110

Internal Camera Mounts

Since the DeepSea camera housings are designed for use with a DeepSea camera,

custom internal mounts were constructed to secure the Scorpion cameras to the

housings. Delrin was used as the material for this mount to reduce electrical

interference with the cameras. A design was first made in I-DEAS after measuring

the external housings and cameras. Once a working CAD drawing was accepted, the

internal mounts were manufactured on a Bridgeport mill and Hardinge lathe. Figure

5-3 shows the internal camera mount assembly components, and Appendix D

contains the set of CAD drawings.

Figure 5-3: Internal Camera Mount Assembled and Disassembled

5.1.4 Transition to Deep-Sea Configurations

Plans were originally made for implementing the entire vision system on two deep-

sea platforms for open-water testing. The first platform was designed as a large test-

bed for both manipulator and vision systems. A frame around the test area was

planned for testing positions of the cameras with respect to the manipulator to

determine the most effective camera positions. The sampling/storage area resides on

either side of the manipulator rest position. These two areas were the main usable

111

workspace in this configuration. Figure 5-4 shows a picture of the manipulator test

frame attached to the WHOI sled.

Figure 5-4: SSL Manipulator Test Frame Attached to WHOI Sled

 The second underwater configuration is on WHOI’s JAGUAR AUV.

Interfacing a manipulator with an AUV is a daunting task, and placing cameras to

provide vision data in the manipulator workspace makes that task more difficult.

Working on an AUV requires meeting stringent weight and moment constraints as

well as ensuring that all cables or protrusions, such as camera housings, are located

and secured to avoid becoming entangled with the environment. Also, manipulator

occlusion of the camera field of view must be minimized and characterized prior to

deployment, particularly for visual servo operations where the manipulator and target

must both be visible throughout the motion sequence.

 Due to the large set of constraints on manipulator and camera position, there is

a small set of possible configurations when interfaced on the AUV. As neither the

AUV nor a mockup is currently available, simulated environments were created for

determining appropriate positions for the cameras with respect to the manipulator.

Initial data provided by CAD models and basic laboratory mockups provide a basis

112

for positioning the hardware when the AUV is available.

5.2 Ranger Manipulator System

The SSL’s Ranger manipulator was utilized for hardware testing in this research.

Ranger is a 10DOF manipulator with eight revolute joints and two torque-driven tool

drives. Kinematically, Ranger is segmented at the wrist into two four degree of

freedom sections for mathematical simplification.

5.2.1 Manipulator Configuration

Since Ranger has eight degrees of freedom rather than the traditional six, it has a

relatively complex mechanical and kinematic design, but it also possesses more

capabilities due to the redundant degrees of freedom. Much research has been

performed to analyze and characterize the additional manipulator capabilities

[53][54]. While the dexterous workspace of the manipulator increases substantially

given the extra degrees of freedom, singularities are more frequent but are also more

easily avoided. One of the key benefits is that 8DOFs provide an infinite number of

configurations for a given tool pose. The extra DOFs also allow the manipulator to

move while the tool position remains constant and enable smooth planar motions.

These additional degrees of freedom allow motions necessary for robust obstacle

avoidance, although obstacle avoidance was not emphasized in this work.

 The redundancy of the manipulator is controlled in two segments – a four

DOF upper arm segment and the four DOF wrist. The upper arm segment control is

in the form of the roll angle of the shoulder-elbow-wrist (SEW) plane. Through the

use of the SEW angle, the upper arm joint angles can be computed independent of the

113

wrist joint angles, while the arm still possesses an additional DOF for avoiding the

wrist singularity [53]. A more in-depth look at both singularity considerations and

manipulator kinematics is provided below.

Workspace

Fully extended, the Ranger manipulator has a reach of approximately 1.3 meters.

However, singularities exist in fully extended joint configurations. Additionally,

large, sometimes prohibitive, torques are required to hold the arm straight in 1-G

given its native neutral buoyancy design environment, further limiting the dexterous

manipulator workspace, defined as the volume of space the robot end effector can

reach in all orientations [27].

 Due to the redundant degrees of freedom, and the resulting capabilities to

avoid singularities, the dexterous workspace is almost as large as the reachable

workspace. By correctly orientating the SEW angle and prudent use of the skew

angle wrist, there are configurations that avoid nearly all singularities throughout the

reachable workspace. To-date, a full analysis of the dexterous workspace has not

been performed, so more quantitative workspace characterization is not possible.

Kinematics

The serial manipulator literature reveals that, except in research environments,

revolute manipulators with greater than six degrees of freedom have usually been

avoided due to increased complexity of hardware and the dramatic increase in

required kinematic analysis. Despite these facts, Ranger required extra DOFs to

avoid obstacles and singularities.

114

As with all serial manipulators, the forward kinematics are straightforward to

derive. Previous research on SEW kinematics with a seven DOF manipulator was

used to develop the forward kinematics of Ranger [55]. By building on this research,

and through the use of modified Denavit-Hartenberg (DH) notation [27], the forward

kinematics are fully developed in [53]. Figure 5-5 illustrates the D-H parameters and

link frame assignments for the 8DOF Ranger manipulator. This figure was provided

by Dr. Craig Carignan, which shows corrected values from the similar figure in [53].

Figure 5-5: D-H Parameters and Frame Assignments of the Ranger Manipulator

Inverse kinematic solutions are more difficult to compute. To simplify the analysis,

the manipulator is broken into two segments, joints 1-4 in the upper arm, and joints 5-

8 in the wrist. A different method is used to solve the inverse kinematics of each

section. Joints 1-4 use the Extended Jacobian Method based on the wrist location and

SEW angle. Joints 5-8 use the General Inverse Method that finds a locally optimal

solution for joint velocities specific wrist orientations and additional constraints

115

imposed by tool and forearm orientations [53][54]. The kinematic redundancies in

the skew wrist design cause additional singularities that prohibit the use of the

Extended Jacobian Method. Figure 5-6 shows a flow chart of how the 8-DOF inverse

kinematics of Ranger are solved, from [53].

Figure 5-6: Inverse kinematics flowchart for the Ranger manipulator [53].

Singularity Considerations

Similar to the kinematics problem, the singularities are decomposed into two separate

areas: upper arm and wrist. The traditional arm singularities that arise at workspace

boundaries can easily be avoided by preventing arm motion to these boundaries.

These singularities are known as external singularities. On the other hand, the

internal singularities, or singularities that arise within the usable workspace of the

manipulator due to loss of rank in Jacobian matrices during inverse kinematics, are an

important problem since not all of these singularities are intuitive.

116

 Based on the design of the arm, most of the upper arm internal singularities lie

within regions outside of the normal workspace. One occurs when the wrist lies

along the base frame z-axis, which happens when the arm is extended straight to the

side, a configuration that would not be commanded during nominal operation. The

only singularity that must be handled within the inverse kinematics solver is when the

shoulder pitch angle is zero, but by holding the shoulder roll angle fixed this problem

can be avoided.

Most wrist singularities result in loss of a single degree of freedom, which

only has the result of removing redundancy. However, another type of singularity

exists that causes loss of two degrees of freedom. An approach to such a singularity

is internally recognized by abnormally large commanded joint velocities and can only

be recognized in this manner [53]. The system is designed to automatically ignore

joint velocities above a specified threshold so the manipulator will halt. In this case,

a human teleoperator is needed to assist, or, under full autonomous control, an

algorithm would need to be developed to back out and re-plan the motion to avoid the

singularity.

5.2.2 Ranger Computer Architecture and Interface

Fortunately, the internal kinematic and control calculations are decoupled from the

vision system. The software architecture from Section 4.1.1 enumerates the available

methods to provide desired position data, which is then translated to Ranger motion.

Aside from hand controllers and direct joint-by-joint control through a user interface,

trajectory items can be created and used flexibly. For the vision system, this requires

117

a visual servo object to compute desired overall end effector motion then relies on

other trajectory planning functions based on inverse kinematics to calculate the

desired intermediate positions for smooth arm motions that avoid singularities [34].

5.2.3 Observed end effector positioning accuracy and resolution

Previous testing of Ranger was performed to characterize both static and dynamic

performance characteristics of the manipulator [56][57]. These tests were performed

in compliance with ANSI standards ANSI/RIA R15.05-1-1990 (R1999) for point-to-

point static performance characteristics and ANSI/RIA R15.05-2-1990 (R1999) for

path-related and dynamic performance characteristics. Results show Ranger is

statically accurate to about 2 cm, while having a static repeatability of about 0.5 mm

and a static compliance no worse than 0.4 mm/kg of applied force at maximum reach.

For path following, Ranger has an average Cartesian accuracy of 1 mm, a Cartesian

repeatability of 1 mm and a Cartesian path cornering radius of about 1 cm.

 In terms of this research, the most important number is the static accuracy

limited to 2 cm. Although gravity is one of the key causes of this error when

operating in 1-G, there are also significant errors in directions not parallel to the

gravity vector. This error adds uncertainty to the Ranger telemetry data, which is

used as a truth-value during the automated registration procedure. This additional

uncertainty will cause even more problems with a single snapshot, dead-reckoning

approach to target sampling. Implementation of the visual servo controller can

alleviate many of these issues by working directly with vision system data.

118

5.3 Test Sequence

Comprehensive testing of the fully integrated AVATAR system can be broken into

several distinct steps. As mentioned in Section 3.1, the first step is to develop a set of

calibration parameters for the stereo camera setup. Once this has been accomplished,

the camera-manipulator registration must be determined to provide the transformation

parameters between the vision reference frame and manipulator base frame. The next

step is to test the sampling capabilities of the entire system by placing a visually

distinct object in the camera FOV and manipulator workspace then performing a

sampling task. Hardware and software upgrades evolve the system toward higher

accuracy and more repeatable test results, enabling extension to more realistic targets.

The final step of testing is using the vision system to not only track the sampling

target, but also to track a distinct feature on the manipulator itself, enabling the visual

servo algorithm to specify manipulator motion.

5.3.1 Camera and Manipulator Calibrations

Although some vision systems operate with an uncalibrated system, performing a full

calibration can drastically reduce computational complexity while ensuring accurate

target localization up to calibration accuracy limits. Throughout testing, the

procedure for determining intrinsic and extrinsic parameters of the vision system

remained fairly constant, although slight modifications were made when migrating

from MATLAB to a C++ algorithm. The manipulator registration procedure evolved

over time, but was always mathematically based on an algorithm designed to

iteratively align two point clouds via estimation of a Z-Y-X Euler angle rotation

119

matrix (recall the algorithm from Section 3.1.2).

Vision System Calibration

Camera calibration throughout testing process has remained primarily a manual

process. Every time the relative position of cameras changed, a new extrinsic

calibration must be performed, but to be conservative an entire calibration was always

performed. The use of a checkerboard in numerous poses throughout the field of

view of both cameras requires human interaction both moving the checkerboard and

validating images. However, once the images have been acquired and validated, the

remainder of the calibration procedure is straightforward and can be handled

automatically. For some of the camera setups, other software developed at the SSL

for autonomously calibrating cameras [25] was used to determine the intrinsic

parameters of each camera. This software utilizes OpenCV functions that perform

the same tasks as described in [3]. However, the software does not currently perform

the extrinsic calibration procedure that to-date must be performed manually.

Camera-Manipulator Registration

Multiple procedures were developed to determine an accurate camera-manipulator

registration between the manipulator and camera system. Small errors, especially

with the rotation matrix, can cause large errors when applied to points at the

extremities of the manipulator workspace. Initially, the transformation was measured

with inaccurate measurement devices (rulers) and rotation assumed at approximate

angles. As testing commenced, this was immediately deemed insufficient.

 An initial procedure manually tracked points in both the vision frame and

120

manipulator frame and developed a transformation between the two using an early

version of the registration algorithm from Section 3.1.2. Concurrently, registration

was attained using a Faro Arm, a portable coordinate-measuring machine (CMM).

Since the CMM registration process was highly accurate, the software-based

registration system was temporarily abandoned.

 Given that the cameras might be perturbed relative to the manipulator frame

during deployment where no CMM is available, the method of determining points in

both vision and manipulator frames was subsequently revisited. With the higher

resolution Scorpion cameras and the improved algorithm described in Chapter 3, a

hand-eye registration was obtained autonomously for use in the final phases of testing

through use of Ranger’s trajectory generation system.

5.3.2 System-Level Testing with a Visually Distinct Object

Preliminary testing of an early version of the AVATAR software, coupled with the

Sony XC-999 cameras, was performed using a visually distinct sampling target, such

as the rubber duckys seen throughout this thesis. A series of tests were conducted in

both 1-G laboratory and neutral buoyancy underwater environments. Initial tests

performed in 1-G were designed to characterize the accuracy and precision of the

vision system with respect to the Ranger manipulator in its original configuration.

Sampling tests were performed with great success.

Transitioning to underwater testing introduces a necessity for multiple

SCUBA divers and deck crew, in addition to the manipulator operators, which greatly

increases the inherent overhead. Due to these factors, the scope of testing in the

121

neutral buoyancy tank was highly limited. Despite these issues, similar precision

tests were performed, in addition to the overall sampling task operational tests. In the

underwater tests, Ranger was operated in its extended wide-body configuration due to

concurrent testing that required the extended configuration. Figure 5-7 shows

Ranger’s configuration in both environments.

Figure 5-7: Ranger configurations in 1-G and neutral buoyancy

5.3.3 Evolution to Repeatable, Accurate Target Identification and Tracking

To increase accuracy and reliability of the vision system data, the transition was made

to the higher resolution Scorpion cameras. Also, by the start of these tests, significant

upgrades had been made to the AVATAR software. The major goals associated with

this phase of testing were to quantify the accuracy and precision of the vision system,

in addition to the ability to work with less distinct, more realistic sampling targets.

Figure 5-8 shows sample target fields taken with WHOI’s SeaBED AUV, processed

along with other target fields engineered for capture by the AVATAR system.

122

Figure 5-8: Images of Deep Water Sampling Target Fields

 Due to the lack of availability of hardware for underwater operations, testing

with the Scorpion cameras was performed only in a 1-G laboratory with the original

Ranger configuration. In addition to increased accuracy of the AVATAR data,

software upgrades enabled operation with the fully functional AVATAR software

described in Chapter 4. As described in Section 5.3.1, an automated hand-eye

registration process was also implemented, further narrowing the gap between current

capability and fully-autonomous operation. The automated registration procedure

computes the transformation between the manipulator base frame and the camera

frame of reference. Accuracy of this process determines manipulator accuracy when

sampling a target via the dead reckoning process. To facilitate transition to the visual

servo experiment, where a target on the arm must be tracked, the testing of the

automated registration also uses a target on the Ranger arm – the IEEM. The IEEM

is an easily recognizable gold object that lies after all degrees of freedom on the wrist.

Aside from the visual servo tests discussed in Section 5.3.4, tests focused on

identification and tracking of difficult targets rather than sampling. A series of future

tests will be needed to verify the integrated system once SAMURAI is operational.

123

5.3.4 Visual Servo Testing

The culmination of AVATAR testing is implementation of the visual servo procedure

to demonstrate the capability to sample a stationary or slowly moving target. Since

the design of a sampling end effector is outside of the scope of this research, these

visual servo tests are designed to validate the sampling procedure and software. To

this effect, sampling targets are not be “sampled” during these tests, instead the

location of the target as determined by the visual servo process will be demonstrated

by placement of a pointer end effector. Since successful sampling of a target requires

“sufficient” accuracy given a compliant end effector (with some tolerance for error),

placement of the pointer is potentially a more difficult task. Figure 5-9 shows the test

setup for visual servo demonstrations.

Figure 5-9: Ranger and AVATAR configuration for visual servo testing

124

Chapter 6 Test Results

6.1 Ranger Tests with Low Resolution Cameras

The first series of tests were performed with the system consisting of Sony XC-999

cameras in both 1-G and underwater environments and with two configurations of the

Ranger manipulator. Testing in both environments was performed to determine

whether the system was capable of retrieving a target with unique color properties

from the background. In both environments data was recorded on the precision of the

vision system. During 1-G testing, accuracy data, with respect to Ranger’s internal

telemetry, was also recorded.

6.1.1 Calibration Parameters

Table 6-1: Camera calibration data for Sony camera testing

Intrinsic xf (mm) +/- yf (mm) +/- xc (px) +/- yc (px) +/-
1-G Left 358.46 0.53 358.52 0.52 311.06 0.88 240.13 0.85
1-G Right 358.00 0.52 357.55 0.52 311.78 0.87 230.42 0.84
Underwater Left 477.42 0.36 478.57 0.35 315.16 0.75 244.41 0.72
Underwater Right 478.57 0.36 476.91 0.35 305.49 0.75 236.31 0.72

Extrinsic
(underwater)

Rotation (rad) xω yω
zω

 -0.010 0.026 0.026

Translation (mm) xt yt
zt

 -49.29 -0.41 2.38

Table 6-1 shows calibration data for this phase of testing, as calculated using [3]. The

intrinsic parameters are shown for both test setups, the 1-G testing with head-

mounted cameras and underwater testing using Ranger’s boresight cameras.

125

Extrinsic calibration is only provided for the underwater tests, as the other data was

not properly saved. The uncertainty values for the extrinsic parameters are also

unknown.

6.1.2 Vision System Accuracy

During 1-G testing, an effort was made to produce an initial accuracy characterization

of the target acquisition system. The concept was to use the manipulator as a

measurement tool since its positioning accuracy was expected to be at least an order

of magnitude greater than that of the vision system. A target was fixed to the wrist of

the manipulator and moved to 11 different static locations within the workspace of

the manipulator and within the FOV of the vision system. Position data for the target

from the target acquisition system was collected as well as manipulator pose data at

each of the 11 locations. Target position data was then derived from the manipulator

data, based on registration between target and manipulator, and compared with the

data from the target acquisition system.

Table 6-2 summarizes the results. Of the eleven trials, errors ranged from 3.8-

8.0cm with an average error of 5.3cm. Note that the negative X-axis for the

coordinate frame used for this data corresponds to distance (range) from the camera.

126

Table 6-2: Target Acquisition System Accuracy Data

 Target Acquisition System Vehicle Telemetry
Test
Number

X(m) Y(m) Z(m) X(m) Y(m) Z(m) Difference(cm)

1 -0.605 0.108 -0.190 -0.614 0.123 -0.143 5.1
2 -0.501 -0.006 0.007 -0.487 0.000 0.049 4.5
3 -0.481 0.014 -0.382 -0.497 0.019 -0.348 3.8
4 -0.647 -0.022 -0.286 -0.674 0.009 -0.230 7.0
5 -0.628 0.014 -0.072 -0.625 0.030 -0.019 5.6
6 -0.717 -0.001 0.054 -0.704 0.022 0.129 8.0
7 -0.732 0.015 -0.113 -0.728 0.035 -0.040 7.5
8 -0.626 -0.003 -0.173 -0.637 0.004 -0.130 4.5
9 -0.518 -0.088 -0.171 -0.540 -0.078 -0.136 4.3
10 -0.558 -0.186 0.021 -0.555 -0.177 0.062 4.2
11 -0.450 -0.143 -0.234 -0.481 -0.147 -0.209 4.0

The minimum error is 3.8cm, maximum error is 8.0cm, and average error is

5.3cm with a standard deviation of 1.5cm. There are at least two significant sources

of error. One source is the poor registration between the vision system and the

manipulator coordinate frames for the 1-G testing. Even small rotational errors cause

significant positioning error at extended distances from the cameras, which is evident

in tests six and seven. Additionally, as discussed in Section 5.2.3, Ranger has a static

positioning accuracy of 2cm [56] that impacts accuracy as well.

6.1.3 Vision System Precision

Without an external measurement system it is difficult to obtain the accuracy data

presented previously, however, precision of the vision system is easily measured. In

both testing environments a large set of images were acquired with a stationary target

(500 in 1-G testing and 80 in neutral buoyancy). As shown in Table 6-3, results from

1-G testing showed a much more precise system due to better camera quality.

127

Table 6-3: Vision System Precision Data

Environment # Points σ x (cm) σ y (cm) σ z (cm) magnitude
1-G 9 0.27 0.28 0.57 0.69
Underwater 9 0.58 0.36 3.91 3.97
Underwater 1 0.71 0.37 4.79 4.86 (Centroid)
Underwater 1 0.48 0.31 0.28 0.64 (Selective)

Figure 6-1 shows the neutral buoyancy data. These plots show that in cases where

only the centroid was used, the averages jump consistently between three levels,

marked as black lines. This is because the triangulation algorithm is, for rotationally

aligned cameras, based mainly on horizontal shift in pixel location of matching

points. As the amount of horizontal shift for the centroid between left and right

images varies discretely, so does the calculated depth. However, on each of these

levels the calculated positions are proximate. The final row in Table 6-3 shows that

only selecting a single level for the centroid-only data results in similar standard

deviation as the 1-G case. Conversely, when all nine points are used, the standard

deviation drops significantly, yet the values are spread further apart than on the

discrete levels associated with the centroid-only calculation.

128

Figure 6-1: Difference in Z reconstruction due to single pixel error

During testing, the centroid-only method was utilized, but all values were monitored

so that only results from the correct level were sent to the manipulator. Removing all

data points from the incorrect levels, the standard deviation reduces to 2.80mm in the

Z direction.

The calculated target position jumped between those discrete levels during

neutral buoyancy testing because of the dramatic increase in manipulator size. Due to

workspace limitations, the target was placed approximately three times as far from

the vision system: 1450mm in neutral buoyancy and only 500mm in 1-G. This

caused the target pixel area to reduce significantly, thus the fixed-size boundary

blending between target and background occupied a much larger percentage of

feature size. In neutral buoyancy, the target filled an area of only 12x12 pixels while

in 1-G it filled an area of 25x25 pixels. The boundary blending adds 2-3 pixels around

the border on all sides of the target – a much more substantial percentage of the more

129

distant neutral buoyancy target. This results in less predictable filter output, which

causes the triangulated location to vary more significantly. When the target was

placed at approximately the same distances in 1-G and underwater environments the

results were similarly promising; this indicates the underwater environment itself did

not impact vision system precision.

6.1.4 Overall System Behavior

Despite vision system inaccuracies, autonomous sampling sequences were quite

effective in practice. Out of approximately 30 test runs in the 1-G environment, only

two were unsuccessful in grasping the target. The first failure occurred when running

Ranger in a different mode such that the tool offset from the end-effecter was

ignored. This caused Ranger to attempt a grab 37cm away from the duck target. The

second failure resulted in improper target acquisition by the vision system. In an

attempt to acquire live footage, the video feed from the left camera was split into a

video recording system. Unfortunately this reduced the quality of the feed and made

the left image much darker than that recorded by the right camera. The difference in

brightness between the two images caused the filters to incorrectly select and match

corresponding points, resulting in an incorrect object position estimate. Other tests in

a variety of lighting conditions were successful so long as both left and right images

had similar brightness.

Neutral buoyancy testing was successful considering the dramatic increase in

manipulator size and increase in target distance from the vision system. After

performing the accurate registration process with the portable CMM and constraining

130

the target localization to the appropriate level of calculation, successful target

retrieval occurred for one out of seven tries. In each case where the target was missed,

the manipulator was systematically too close in the depth dimension hitting the target

but not grasping it with the end-effecter. Small errors in the rotation aspect of the

vision system to manipulator registration are suspected to have caused this error.

Figure 6-2 shows successful tests in both environments, the 1-G view from the vision

system itself, and the neutral buoyancy view from an external camera on the left

Ranger arm (the right arm is grabbing the target).

Figure 6-2: Ranger successfully grabbing a target in both testing environments

6.2 1-G Ranger Tests with High-Resolution Cameras

The first set of results will focus on the automated hand-eye registration process

developed as a step toward fully autonomous operation. The registration procedure is

performed multiple times with different sets of original points to demonstrate the

precision of the algorithm. After the registration parameters have been chosen, they

are used to transform a set of independently recorded points from vision frame into

manipulator frame to evaluate accuracy between the two sets.

 The second set of results describes the outcome of visual servo experiments.

131

This compares the difference between attempting a target grab based on dead-

reckoning from an initial snapshot from the hand-eye transformation with results

from the implemented visual servo controller.

6.2.1 Calibration Data

Table 6-4 shows the calibration data used for this phase of testing. The intrinsic

parameters of focal length and principle point are shown in the upper rows, while the

extrinsic parameters are shown below.

Table 6-4: Calibration data for testing with Scorpion cameras

Intrinsic xf (mm) +/- yf (mm) +/- xc (px) +/- yc (px) +/-
Left Camera 1049.13 0.67 1050.38 0.68 712.28 1.13 564.45 1.18
Right Camera 1047.20 0.67 1048.66 0.69 702.74 1.22 561.13 1.16

Extrinsic

Rotation (rad) xω +/- yω +/- zω +/-
 0.002 0.001 0.003 0.001 0.047 0.000

Translation (mm) t x +/- yt +/- zt +/-
 -106.53 0.08 -2.58 0.07 0.82 0.29

6.2.2 Automated Registration

As with the testing with the lower resolution Sony cameras, vision system precision

and accuracy were evaluated to characterize the overall system. Since the Ranger

IEEM is used as the target during the automated registration process, the same target

is used throughout the rest of the vision system tests.

Precision evaluation is performed with two procedures. First, the precision of

the vision system is calculated based on numerous sets of static images to ensure

132

consistent results. Second, the automated registration procedure is repeated three

times with two different sets of points to illustrate the precision of the overall

algorithm. The accuracy measurements are based on data relating perceived arm

position with instantaneous arm telemetry. By taking a random set of points within

the manipulator workspace and applying the hand-eye registration transformation on

the vision data, the difference between this result and the arm telemetry will portray

relative accuracy of the system.

Precision

During automated registration testing, data was recorded for seven random

points within the Ranger workspace at distance magnitudes ranging from 0.65m to

0.95m from the cameras. A 3-D reconstruction from fresh images was performed at

each point five distinct times then analyzed for repeatability. Table 6-5 shows the

results from this experiment in the form of standard deviation for all three dimensions

and the corresponding magnitude. The substantial improvement from the earlier

system is evident, as the maximum standard deviation magnitude over all three

dimensions is less than 4mm. The seventh point is not listed as all five analyses

resulted in the same 3-D reconstruction. Another test was performed with two rubber

duck targets placed approximately 2.5m from the cameras. Thirty tests were

performed, and in every case the pixel centroids were measured at precisely the same

value, thus there was zero change in reconstructed position.

133

Table 6-5: Vision System Precision with High Resolution Cameras

σ x (cm) σ y (cm) σ z (cm) magnitude
0.13 0.14 0.27 0.33
0.10 0.05 0.36 0.38
0.03 0.13 0.26 0.29
0.01 0.09 0.24 0.26
0.01 0.07 0.29 0.30
0.00 0.04 0.01 0.05

Based on this data we can be confident that AVATAR itself will provide extremely

consistent results. The next task is to demonstrate that when combined with Ranger

to determine hand-eye registration, results are once again consistent. Two different

sets of points within the workspace were chosen for this experiment. For each set,

three iterations of the registration procedure are performed. Test results summarized

in Table 6-6 show excellent precision for this process. Each of the Euler angles has

error less than 0.005 radians, while the overall magnitude of the standard deviation

for the translation vector is slightly more than 5mm. This indicates that vision system

precision is maintained through the registration process.

Table 6-6: Hand-Eye Registration Precision Results

Euler Angles
σ α (rad) σ β (rad) σ γ (rad)
0.0049 0.0042 0.0024

Translation Vector
σ x (cm) σ y (cm) σ z (cm) magnitude
0.33 0.23 0.33 0.52

Accuracy

With automated hand-eye registration, the transformation can be applied to the

random points used to determine vision system precision. When each of these points

134

was recorded, the arm telemetry at that point was also logged. By transforming the

vision data into the arm frame of reference, the relative accuracy between

transformed data and arm telemetry data can be calculated. Table 6-7 shows a

summary of standard deviation and maximum offset results from these

transformations. The complete data sets from these tests is presented in Appendix E.

Table 6-7: Difference of Arm Telemetry and Transformed Vision Coordinates

Standard Deviation of Offsets
σ x (cm) σ y (cm) σ z (cm) magnitude
0.28 0.92 0.34 1.02
Max Offsets
x(cm) y(cm) z(cm) magnitude
1.02 2.87 1.37 3.34

These results show that the updated system performs substantially better than the

earlier system, but there is still potential for improvement. Multiple sources of error

factor into these calculations, thus the relative accuracy achieved here is encouraging.

However, this error is still appreciable, motivating use of the visual servo algorithm.

6.2.3 Visual Servo Experiments

In addition to automating some of the more difficult processes, the ability to deal with

unforeseen inaccuracies in camera calibration and hand-eye registration parameters is

an important feature of a fully autonomous system. To mitigate such errors through

feedback, a visual servo system was implemented to track both the manipulator and

target. Aside from showing successful completion of a sampling task, results from

the visual servo test illustrate the difference between what visual servoing and dead

reckoning with a single data snapshot, in the “open loop” procedure used for Section

135

6.1 tests.

 Initial tests to validate the software implementation were performed in

simulation mode, where arm telemetry is purely mathematical and a user provides

vision data. The data recorded from these tests show smooth trajectories with each

step moving closer to the target. In these tests, the system exhibits the ability to

handle small-magnitude changes in manipulator or sampling target position. Figure

6-3, Figure 6-4, and Figure 6-5 show plots of upper arm and wrist joint angles as well

as Cartesian position and orientation for a simulated sampling task.

Figure 6-3: Upper Arm Joint Angles During Visual Servo Simulation

136

Figure 6-4: Wrist Joint Angles During Visual Servo Simulation

Figure 6-5: Cartesian position and orientation during visual servo simulation

 Although the code appears to function properly in simulation, there have been

many issues in getting it to work with the Ranger manipulator. Initial testing was

successful – the manipulator would approach the position of the target and stop at the

137

desired position. However, on one test an error arose where the arm drew too much

current when approaching a singularity and the power supply turned off. Further

modifications to the software appeared to take care of this issue, but another test on

the manipulator ran into the same power supply issue. Until this can be resolved, it

will be impossible to perform more testing with Ranger.

With only a few initial test runs utilizing the visual servo system, the

manipulator appeared to be within the same accuracy as the dead-reckoning tests with

the earlier system. Until the final system is fully debugged and exhaustive testing can

be performed, a decision on whether or not the visual servo routine provides clear

benefits to the sampling capabilities cannot be made.

6.3 Increased Target Realism

The final set of tests was aimed to evaluate AVATAR performance when transitioned

from the laboratory to a real-world environment where targets cannot be designed

specifically for the task at hand. Based on both deep-water color attenuated imagery

from WHOI, as well as cluttered target fields created specifically to stress the

AVATAR algorithms, output from the initial stages of the vision system is shown

with desired sampling targets extracted for further processing.

6.3.1 Laboratory Tests

A sample target field was created within view of the Scorpion camera pair. The

targets in the simulated sampling field consist of different rocks, as well as a starfish

and sand dollar. Feature extraction tests are performed with both lights on and lights

off to simulate a dark environment. Using a combination of the MATLAB filter

138

creation process and the filtergui program, separate filters were created for both cases.

In the lights on case, the focus was on extracting the rock targets, while in the lights

off case, an attempt was made to extract whatever targets were distinguishable.

 Output from the MATLAB filter creation program is displayed in Figure 6-6,

Figure 6-7 and Figure 6-8. The target range of data versus unwanted data has a

clearly distinguishable separation, which translates to clear image filtering

parameters. As shown in Figure 6-9, the filtering process easily segments desired

targets for further analysis. No further image processing is necessary for successful

localization in these tests.

Figure 6-6: Blue vs. Green ratio data for light laboratory targets.

139

Figure 6-7: Red vs. Blue ratio data for light laboratory targets.

Figure 6-8: Red vs. Green ratio data for light laboratory targets.

140

Figure 6-9: Realistic targets easily segmented in lighted laboratory environment.

 Once the lights are turned off, the difficulty of the filtering process greatly

increases. The MATLAB data from these tests, shown in Figure 6-10, Figure 6-11

and Figure 6-12, is still somewhat separated into two distinct clusters, although the

targets areas now overlap significantly. The data is now separated more by a

diagonal line rather than a distinct horizontal line, which requires a more complicated

filter that accounts for varying ratio data versus RGB magnitude.

141

Figure 6-10: Blue vs. Green ratio data for dark laboratory targets.

Figure 6-11: Red vs. Blue ratio data for dark laboratory targets.

142

Figure 6-12: Red vs. Green ratio data for dark laboratory targets.

To achieve adequate results, a feature AND operator was applied to eroded versions

of the original image to restore degraded features. Without the extra steps to erode

and restore the image, it would have been impossible to extract usable feature data as

much of the background remained in the processed image. Figure 6-13 shows the

results from this test – the original image is dark, so the results were changed to

binary values to clearly delineate the segmented features. In this test, the starfish, a

single rock, and the sand dollar were all extracted with sufficient quality for further

processing. Edges of the background image used to simulate sand also appear, but

would be ignored through aspect ratio constraints. Also, note that the lead weights in

the background also appear due to their similar color properties.

143

Figure 6-13: Some targets extracted in darkened laboratory environment.

6.3.2 Underwater Imagery

With full color correction applied to the raw WHOI imagery, any clearly distinct

objects can be easily segmented. The focus of this test is to show that without full

color correction, or even application of the simple frame averaging algorithm, targets

can be cleanly extracted from the color attenuated images. At first, the feature

extraction did not function suitably, as the difference in lighting from the center of the

image to the edges drastically changed the RGB values at each pixel, due to the

already attenuated data. By applying the lighting correction algorithm, discussed in

Section 3.2.2, a more homogenous image is created that provides much more useful

results from the filtering process.

Once again, the MATLAB filter creation algorithm was applied to the raw

imagery to estimate good values for the filter process. Figure 6-14 and Figure 6-15

shows these results; due to the color attenuation, the Blue vs. Green chart is useless.

144

Figure 6-14: Red vs. Blue ratio data for sand dollar images.

Figure 6-15: Red vs. Green ratio data for sand dollar images.

145

These plots are similar to the low-light results from the lab tests, but the lighting

correction creates sufficient distinction to extract the majority of the sand dollars.

Figure 6-16 shows the lighting corrected image and extracted features side by side.

Figure 6-16: Sand dollar targets extracted from color attenuated image

146

Chapter 7 Conclusions and Future Work

7.1 Conclusions

This thesis describes the development and implementation of a fully autonomous

vision system used to provide 3-D localization of sampling targets for a robotic

manipulator. Three major focus areas are pursued: the development of the vision

algorithms to perform feature segmentation and 3-D reconstruction, design of a

logical, modular software structure, and finally hardware integration with a robotic

manipulator and subsequent sampling tests. The overall system is capable of visually

tracking both sampling targets and the manipulator, providing position data in the

correct frame of reference to allow the manipulator to accurately approach a sampling

target.

7.1.1 Vision Algorithms

The current set of vision algorithms provide the necessary capabilities to sample

targets with sufficiently distinct color properties. Although the algorithms remain

quite simple from a mathematical standpoint, this simplicity minimizes computational

complexity and facilitates intuitive understanding, which is important in an

environment where not everyone is fluent in the most recent computer vision

algorithms.

 The initial feature filter algorithm is performed by calculating the ratios of

RGB pixel channels with one another and comparing with a desired range of values.

This is essentially mapping a specific section of the RGB histogram to a feature of

147

interest. Any feature remaining in the image is extracted by a recursive procedure to

locate and record all connected neighbor pixels, then geometric properties about the

feature are evaluated to ensure compliance with the desired target. Once features

have been extracted from a corresponding pair of images, they are matched with an

algorithm that capitalizes on epipolar constraint and assumes a realistic and practical

field of view. The 3-D target position can then be calculated through knowledge of

the intrinsic and extrinsic parameters of the camera pair.

7.1.2 Software Structure

The software is split into two main modules: AVATAR, the computer vision system,

and TAU, the public interface used to access AVATAR. This packaging allows a

programmer to make local changes without propagation through other software

systems. This modular structure is used down to the lowest level to ensure only

required coupling occurs.

 The use of external software management and validation tools allows the

programmer to have greater confidence in the reliability of the software. Continuous

integration and comprehensive unit testing quickly alerts the programmer to

anomalies that may not immediately be recognized otherwise. Use of a memory

profiling tool helps track down and reduce unforeseen memory leaks that can cause

major problems hours into operation. Although 100% reliability is tough to

guarantee, the use of additional tools can enable tested software to approach this goal.

7.1.3 Sampling Tasks

The success of sampling trials shows that the current system is capable of

148

autonomously sampling a desired target from within the manipulator’s workspace.

Testing with an earlier version of the system demonstrates that a less-capable version

was able to successfully retrieve targets in both 1-G and underwater environments.

With an increase in camera quality as well as software functionality and reliability,

subsequent accuracy and precision data show much improved operational

dependability of the overall system. Many of the tasks, aside from the initial

calibration of the cameras and creation of the target filters, are completely

autonomous. Finally, the implementation of the visual servo controller shows that

even with little care taken in creating an extremely accurate camera calibration, and a

fully autonomous procedure used for hand-eye calibration, the manipulator will

successfully sample targets within its dexterous workspace.

7.2 Future Work

While the AVATAR system provides the capabilities necessary to autonomously

sample a target, there are numerous avenues for future work. The modular nature of

the software design allows quick and easy integration of new algorithms or other

modifications, facilitating extension. Three main areas of possible future work will

be discussed. First, implementing more complex, capable, or accurate computer

vision algorithms could improve performance and flexibility. The second avenues for

future upgrade are enhancements to the overall software architecture and ways to

make the software run smoother and become more user-friendly. The final section

will examine necessary changes for the transition from the 8DOF Ranger manipulator

to the 6DOF SAMURAI manipulator.

149

7.2.1 Computer Vision

The major vision-related area that will benefit from future work is feature

segmentation. There are many algorithms capable of performing quick and accurate

feature extraction. By implementing multiple methods that complement the current

color-based scheme, a user would be able to select the most capable algorithm for

each target class.

Two approaches to this goal can be pursued. Complicated vision algorithms

with the most accuracy, determining target type, in addition to pose, target motion

and other quantities, are far from being used for real-time operations. On the other

hand, through simplifying existing algorithm or researching faster algorithms

potentially inspired by existing complex approaches, one might reduce execution time

down to a reasonable level for real-time control.

Another useful enhancement would be researching methods of matching

features extracted from one image, based on color data, with grayscale features in the

other image. Most real-time computer vision applications use grayscale imagery

since the one data channel can be analyzed more quickly than can multi-color data.

Also, many underwater systems have one color camera and one grayscale camera, as

color provides visually attractive pictures while the grayscale cameras have higher bit

depth thus provide more data of use to scientists.

For moving targets and manipulator tracking, implementation of Kalman

filters would provide a much more capable framework for ensuring desired outcomes.

The current method assumes the most recent values are truth, providing no noise

rejection capability.

150

Another possible avenue for research would be creating a 3-D map of the visible

scene. This would enable obstacle detection and avoidance by the manipulator, an

important capability for an autonomous manipulator sampling system operating in a

complex 3-D environment (e.g., a hydrothermal vent mound with multiple chimney

deposits).

7.2.2 Software Architecture

Although the software has been tested thoroughly, one issue that was never

approached is profiling the software to determine bottlenecks to target for increased

code and/or algorithmic efficiency, in turn yielding increased execution frequency.

By apply a profiling tool, such as gprof [58], such areas could easily be discovered

and possibly alleviated of extraneous code.

 Due to the parallel nature of processing two images simultaneously, moving to

a multi-threaded process structure also has can increase execution efficiency,

particularly with multi-core or multi-CPU processing capability. Although useful for

future applications, these upgrades were not pursued for this research. AVATAR

execution frequency is limited by the JAGUAR strobe (1-2.5 sec flash interval) more

than code overhead.

7.2.3 ASTEP Manipulator

One of the most important aspects of future work that will arise when SAMURAI is

completed is the integration of AVATAR and TAU with the new manipulator.

Ranger’s kinematic calculator automatically enables the arm to move smoothly and

reliably throughout the workspace. Without the SEW and additional wrist degree of

151

freedom, SAMURAI will not be able to achieve smooth planar motion, instead

constrained to a single configuration for a given tool position and pose. The absence

of redundancy will make singularity avoidance a greater issue, as well as avoidance

of obstacles within the immediate workspace. Due to these factors, a reliable system

must be developed for robustly planning obstacle-free and singularity-free paths from

the current manipulator position to the desired manipulator sampling position.

 Another crucial issue that will arise once integration with SAMURAI and

JAGUAR occurs is the problem of camera occlusion by the manipulator. Space is

extremely limited on an AUV so there are few camera positions where they could

obtain a complete, overlapping view of the manipulator workspace. With any of

these mounting options the manipulator will block parts of the camera view during its

transit to the sampling target, potentially motivating a hybrid control scheme that

actively switches between dead reckoning and visual servoing modes based on

occlusion constraints.

152

Appendix A Relationship Between Essential and Fundamental

Matrices with Camera Calibration Parameters

The Essential matrix E is defined as:

RE xt
∆

= where is skew-symmetric matrix of 3-D translation vector and xt R is the

rotation matrix from extrinsic calibration

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

100
0

cot

yy

xxx

cf
cff

K
α

The Camera matrix K contains the calibration parameters in the form:

For homogenous image points and : rp lp

0=l
T

r Epp is the defining equation for the essential matrix

is the camera matrix of intrinsic parameters

1−= l
T

r EKKF

To find epipolar lines for a point in the left image or for a point in the right image:

r
T

l

lr

F

F

pl

pl

=

=

The epipoles (the intersection of all epipolar lines in an image) satisfy:

0

0

=

=

F

F
T

r

l

e

e

153

Appendix B Derivation of the Registration Algorithm

The equation for a general transformation is given by:

 0
101

0
1 tpRp +=

Assuming pure planar rotation about x-axis this equation may be described by:

γγ
γγ

γγ
γγ

cossin
sincos

cossin0
sincos0
001

001

001

01

1

1

1

0

0

0

1

1

1

zyz
zyy

xx

t
t
t

z
y
x

z
y
x

z

y

x

+=
−=

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Solving for γcos and γsin from the equation yields: 1y

0

01 sin
cos

y
zy γ

γ
+

=

0

10 cos
sin

z
yy −

=
γ

γ

Substituting the expression for γcos into the equation for : 1z

() 1001
2

0
2

0

01
2

010
2

0

0

01
001

sin

0sinsin

sin
sin

zyzyzy

yzzyzy

y
zy

zyz

+−=+

=−++

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
+=

γ

γγ

γ
γ

Similarly substituting for γsin gives:

() 1010
2

0
2

0

10
2

010
2

0

0
0

10
01

cos

0coscos

cos
cos

zzyyzy

zzzyyy

z
z

yy
yz

+=+

=−+−

+
−

=

γ

γγ

γ
γ

154

The values of () γsin2
0

2
0 zy + and () γcos2

0
2

0 zy + are computed by the registration

algorithm, yielding the transformation due to x-axis rotation.

Next, assuming pure planar rotation about the y-axis, the transformation equation

may be described by:

ββ

ββ

ββ

ββ

cossin

sincos

cos0sin
010

sin0cos

001

01

001

1

1

1

0

0

0

1

1

1

zxz
yy

zxx

t
t
t

z
y
x

z
y
x

z

y

x

+−=
=

+=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Solving for βcos and βsin from the equation yields: 1x

0

01 sin
cos

x
zx β

β
−

=

0

01 cos
sin

z
xx β

β
−

=

Substituting this expression for βcos into the equation for : 1z

() 1010
2

0
2

0

2
010

2
010

0

01
001

sin

sinsin

sin
sin

zxxzzx

zxzxzx

x
zx

zxz

−=+

−+−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+−=

β

ββ

β
β

Similarly substituting for βsin gives:

155

() 1010
2

0
2

0

2
0

2
01010

0
0

01
01

cos

coscos

cos
cos

xxzzzx

zxxxzz

z
z

xx
xz

+=+

++−=

+
−

−=

β

ββ

β
β

The values () βsin2
0

2
0 zx + and () βcos2

0
2

0 zx + then enable the registration

algorithm to describe the transformation due to a y-axis rotation.

Finally, assuming pure planar rotation about the z-axis, the transformation equation

may be described by:

01

001

001

1

1

1

0

0

0

1

1

1

cossin
sincos

100
0cossin
0sincos

zz
yxy
yxx

t
t
t

z
y
x

z
y
x

z

y

x

=
+=
−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

αα
αα

αα
αα

Solving for αcos and αsin from the equation yields: 1x

0

01 sin
cos

x
yx α

α
+

=

0

10 cos
sin

y
xx −

=
α

α

Substituting this expression for αcos into the equation for : 1y

() 1010
2

0
2

0

2
010

2
010

0

01
001

sin

sinsin

sin
sin

xyyxyx

yxyxyx

x
yx

yxy

−=+

++=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
+=

α

αα

α
α

156

Similarly substituting for αsin :

() 1010
2

0
2

0

2
0

2
01010

0
0

10
01

cos

coscos

cos
cos

yyxxyx

zxxxyy

y
y

xx
xy

+=+

++−=

+
−

=

α

αα

α
α

The values () αsin2
0

2
0 yx + and () αcos2

0
2

0 yx + then enable the registration

algorithm to compute the transformation resulting from a z-axis rotation.

157

Appendix C Full Algorithm for Extracting Feature Geometric Data

do to size(f) 1=i

yitotalYtotalY
xitotalXtotalX

].[
].[

f
f

+=
+=

 if then 1==i

yiY
yiY

xiX
xiX

top

bot

l

r

].[
].[
].[
].[

f
f
f
f

=
=
=
=

 else

 if then rXxi >].[f

yiY
yiY

xiX

Xrtop

Xrbot

r

].[
].[

].[

,

,

f
f

f

=

=
=

 else if rXxi ==].[f then

 if then XrbotYyi ,].[>f

 yiY Xrbot].[, f=

 end if

 if XrtopYyi ,].[<f then

 yiY Xrtop].[, f=

 end if

 end if

 if lXxi <].[f then

yiY
yiY

xiX

Xltop

Xlbot

l

].[
].[

].[

,

,

f
f

f

=

=
=

 else if lXxi ==].[f then

 if then XlbotYyi ,].[>f

158

 yiY Xlbot].[, f=

 end if

 if XltopYyi ,].[<f then

 yiY Xltop].[, f=

 end if

 end if

 if then botYyi >].[f

xiX
xiX

yiY

Ybl

Ybr

bot

].[
].[

].[

,

,

f
f

f

=

=
=

 else if botYyi ==].[f then

 if then YbrXxi ,].[>f

 xiX Ybr].[, f=

 end if

 if YblXxi ,].[<f then

 xiX Ybl].[, f=

 end if

 end if

 if topYyi <].[f then

xiX
xiX

yiY

Ytl

Ytr

top

].[
].[

].[

,

,

f
f

f

=

=

=

 else if topYyi ==].[f then

 if then YtrXxi ,].[>f

 xiX Ytr].[, f=

 end if

 if YtlXxi ,].[<f then

 xiX Ytl].[, f=

159

 end if

 end if

 end if

end do

)(fsize
totalXCx = ,

)(fsize
totalYC y =

topbot

lr

YY
XX

oaspectRati
−
−

=

))((topbotlr YYXXboxArea −−=

boxArea
sizeareaRatio)(f

=

160

Appendix D CAD Drawings for the Internal Camera Mounts

161

162

163

Appendix E Results from IEEM Tracking

Transformed Cartesian
Measured Vision Measured Arm Difference Difference
x (cm) y (cm) z (cm) x (cm) y (cm) z (cm) x (cm) y (cm) z (cm) (cm)
-51.75 -41.61 13.59 -51.63 -41.27 14.72 0.12 0.34 1.13 1.19
-51.82 -41.36 13.60 -51.63 -41.27 14.72 0.19 0.09 1.13 1.15
-51.82 -41.36 13.60 -51.63 -41.27 14.72 0.19 0.09 1.13 1.15
-51.60 -40.97 13.35 -51.63 -41.27 14.72 -0.03 -0.30 1.37 1.41
-51.60 -40.97 13.35 -51.63 -41.27 14.72 -0.03 -0.30 1.37 1.41
-52.30 -40.99 -5.22 -52.19 -41.64 -4.36 0.11 -0.65 0.86 1.09
-52.77 -41.65 -5.00 -52.19 -41.64 -4.36 0.58 0.01 0.64 0.87
-52.77 -41.65 -5.00 -52.19 -41.64 -4.36 0.58 0.01 0.64 0.87
-52.80 -41.64 -5.00 -52.19 -41.64 -4.36 0.61 0.00 0.64 0.89
-52.77 -41.65 -5.00 -52.19 -41.64 -4.36 0.58 0.01 0.64 0.87
-55.50 -52.54 -4.86 -55.22 -52.99 -4.47 0.27 -0.45 0.40 0.66
-55.30 -51.93 -4.93 -55.22 -52.99 -4.47 0.08 -1.06 0.46 1.16
-55.30 -51.93 -4.93 -55.22 -52.99 -4.47 0.08 -1.06 0.46 1.16
-55.30 -51.93 -4.93 -55.22 -52.99 -4.47 0.08 -1.06 0.46 1.16
-55.30 -51.93 -4.93 -55.22 -52.99 -4.47 0.08 -1.06 0.46 1.16
-55.11 -53.15 -16.43 -54.33 -55.49 -15.99 0.78 -2.35 0.44 2.51
-54.87 -52.62 -16.40 -54.33 -55.49 -15.99 0.54 -2.87 0.41 2.95
-54.87 -52.62 -16.40 -54.33 -55.49 -15.99 0.54 -2.87 0.41 2.95
-54.87 -52.62 -16.40 -54.33 -55.49 -15.99 0.54 -2.87 0.41 2.95
-54.87 -52.62 -16.40 -54.33 -55.49 -15.99 0.54 -2.87 0.41 2.95
-62.00 -57.97 -19.61 -60.98 -58.20 -19.53 1.02 -0.24 0.09 1.05
-61.65 -57.37 -19.64 -60.98 -58.20 -19.53 0.67 -0.83 0.11 1.07
-61.63 -57.43 -19.64 -60.98 -58.20 -19.53 0.65 -0.78 0.12 1.02
-61.65 -57.37 -19.64 -60.98 -58.20 -19.53 0.67 -0.83 0.11 1.07
-61.63 -57.43 -19.64 -60.98 -58.20 -19.53 0.65 -0.78 0.12 1.02
-66.63 -59.50 5.72 -66.35 -60.75 6.15 0.27 -1.26 0.43 1.35
-66.68 -59.41 5.71 -66.35 -60.75 6.15 0.33 -1.34 0.43 1.44
-66.68 -59.41 5.71 -66.35 -60.75 6.15 0.33 -1.34 0.43 1.44
-66.68 -59.41 5.71 -66.35 -60.75 6.15 0.33 -1.34 0.43 1.44
-66.68 -59.41 5.71 -66.35 -60.75 6.15 0.33 -1.34 0.43 1.44
-62.97 -45.85 5.12 -62.22 -47.50 5.96 0.75 -1.66 0.84 2.00
-62.97 -45.85 5.12 -62.22 -47.50 5.96 0.75 -1.66 0.84 2.00
-62.97 -45.85 5.12 -62.22 -47.50 5.96 0.75 -1.66 0.84 2.00
-62.97 -45.85 5.12 -62.22 -47.50 5.96 0.75 -1.66 0.84 2.00
-62.97 -45.85 5.12 -62.22 -47.50 5.96 0.75 -1.66 0.84 2.00

164

 Trial 1-1 Trial 1-2 Trial 1-3 Trial 2-1 Trial 2-2 Trial 2-3
α (rad) -2.322 -2.336 -2.332 -2.331 -2.334 -2.333
β (rad) 1.577 1.575 1.573 1.566 1.568 1.570
γ (rad) 0.012 0.013 0.013 0.017 0.017 0.017
x (m) -0.22861 -0.21913 -0.22217 -0.22265 -0.22061 -0.22068
y (m) 0.20837 0.20358 0.20511 0.203 0.20201 0.20307
z (m) -0.1223 -0.12402 -0.12584 -0.13054 -0.12965 -0.12841

165

Bibliography

[1] NOAA News Online (Story 1081),
http://www.noaanews.noaa.gov/stories/s1081.htm (version current 30 November
2006)

[2] H. Singh, R. Armstrong, F. Gilbes, R. Eustice, C. Roman, O. Pizarro, J. Torres,
Imaging Coral I: Imaging Coral Habitats with the SeaBED AUV, The Journal for
Subserface Sensing Technologies and Applications, pp. 25-42, vol 5, no 1, 2004.

[3] Camera Calibration Toolbox for MATLAB,
http://www.vision.caltech.edu/bouguetj/calib_doc/ (version current 19 November,
2006)

[4] Open Computer Vision Library, http://sourceforge.net/projects/opencvlibrary/
(version current 29 November 2006)

[5] J. Heilkkilä, O. Silvén. A four-step camera calibration procedure with implicit
image correction. IEEE Computer Vision and Pattern Recognition Conference,
San Juan, Puerto Rico, 1997.

[6] Y. Shiu and S. Ahmad, Calibration of Wrist-Mounted Robotic Sensors by Solving
Homogeneous Transform Equations of the Form AX = XB, IEEE Trans. On
Robotics and Automation, Vol 5 No 1, Feb 1989.

[7] Y. Motai and A. Kosaka, SmartView: Hand-Eye Robotic Calibration for Active
Viewpoint Generation and Object Grasping, Proc. of IEEE Int. Conference on
Robotics & Automation, May 2001.

[8] D.C. Brown, Decentering Distortion of Lenses. Photometric Engineering, pp.
444-462, Vol. 32, No. 3, 1996.

[9] Belongie, Serge, “Rodrigues’ Rotation Formula,” From MathWorld – A Wolfram
Web Resources, created by Eric W. Weisstein.
http://mathworld.wolfram.com/RodriguesRotationForumula.html (version current
7 December 2006)

[10] G. Hager, WC Chang and A.S. Morse, Robot Feedback Control Based on
Stereo Vision: Towards Calibration-Free Hand-Eye Coordination. Proceedings
of IEEE Intl. Conference on Robotics and Automation, San Diego, Ca, May 8-13,
1994.

[11] G. Hager, A Modular System for Robust Position Using Feedback from Stereo
Vision. IEEE Transactions on Robotics and Automation, August 1997.

[12] H. Singh, A. Can, R. Eustice, S. Lerner, N. McPhee, O. Pizarro, C. Roman,
SeaBED AUV Offers New Platform for High-Resolution Imaging, EOS,
Transactions of the AGU, vol 85, no 31, pp 289,294-295, August 2004.

[13] OpenCV Documentation,
http://www.cse.iitb.ac.in/~sharat/current/cs687/opencv/ (version current 20
November 2006).

[14] M. Naylor, N. Scott, E. Atkins and S. Roderick, Toward Autonomous
Sampling and Servicing with the Ranger Dexterous Manipulator. AIAA
Infotech@Aerospace Conference. Crystal City, VA, September 2005.

[15] E.R. Davies, Machine Vision: Theories, Algorithms, Practicalities 2nd Edition.

166

Academic Press, San Diego, 1997.
[16] E. Trucco and A. Verri, Introductory Techniques for 3-D Computer Vision.

Prentice Hall, Upper Saddle River, NJ, 1998.
[17] M. Nixon and A. Aguado, Feature Extraction & Image Processing. Newnes,

Oxford, Great Britain, 2002.
[18] B. Kimia, I. Frankel, A. Popescu, Euler Spiral for Shape Completion,

International Journal of Computer Vision, Vol. 54, 2003.
[19] J. Russ. The Image Processing Handbook. CRC Press, Boca Raton, Florida,

1992.
[20] K. Plataniotis and A. Venetsanopoulos, Color Image Processing and

Applications. Springer, New York, 2000.
[21] M. Galun, E. Sharon, R. Basri and A. Brandt. Texture Segmentation by

Multiscale Aggregation of Filter Responses and Shape Elements. Proc. IEEE Intl.
Conference on Computer Vision, 716-723, 2003.

[22] E. Sharon, A. Brandt and R. Basri, Segmentation and boundary detection
using multiscale intensity measurements. CVPR, I:469-476, 2001.

[23] J. Malik, S. Belongie, T.K. Leung, and J. Shi. Contour and texture analysis
for image segmentation. International Journal of Computer Vision, 43(1):7-27,
2001.

[24] S. Nayar, S. Nene and H. Murase, Subspace Methods for Robot Vision. IEEE
Transactions on Robotics and Automation, October 1996.

[25] M. Stolen, Rover Vision Localization System. Space Systems Laboratory
internal document #06-007, 2006.

[26] J. Smithanik, Optimal Vision-Based Position Estimation of an Underwater
Space Simulation Robot. Masters Thesis, University of Maryland, College Park,
2004.

[27] J. Craig, Introduction to Robotics Mechanics and Control, Third Edition.
Pearson Prentice Hall, Upper Saddle River, NJ. 2005.

[28] D. Musser, G. Derge and A. Saini, STL Tutorial and Reference Guide, Second
Edition. Addison-Wesley, Boston. 2001.

[29] D. Scharstein and R. Szeliski, A Taxonomy and Evaluation of Dense Two-
Frame Stereo Correspondence Algorithms. International Journal of Computer
Vision, Vol. 47, April 2002.

[30] T. Kanade and M. Okutomi, A Stereo Matching Algorithm with an Adaptive
Window: Theory and Experiment. IEEE Transactions on Pattern Analysis and
Machine Intelligence, September 1994.

[31] A. Yezzi and S. Soatto, Stereoscopic Segmentation. International Journal of
Computer Vision, Vol. 53, July 2003.

[32] S.B. Kang and R. Szeliski, Extracting View-Dependent Depth Maps from a
Collection of Images. International Journal of Computer Vision, Vol. 58, July
2004.

[33] C. Sayers, Remote Control Robotics. Springer, New York, 1999.
[34] N. Scott, Preventing Camera Occlusion for Visually-Guided Manipulators

using a Line-Based Obstacle Avoidance Technique. Master’s Thesis, University
of Maryland, College Park, In Progress.

[35] R. Dechter, Constraint Processing, Morgan Kaufmann Publishers, San
167

Francisco, 2003.
[36] TinyXml Main Page, http://www.grinninglizard.com/tinyxml/ (version current

19 November 2006).
[37] Boost C++ Libraries, http://boost.org/ (version current 19 November 2006).
[38] libdc1394: The Linux API for IEEE1394 / Firewire cameras,

http://damien.douxchamps.net/ieee1394/libdc1394/ (version current 19 November
2006).

[39] T. Cargill, C++ Programming Style. Addison-Wesley, Reading,
Massachusetts.1992.

[40] S. Meyers, More Effective C++. Addison-Wesley, Boston. 1996.
[41] Doxygen, http://www.stack.nl/~dimitri/doxygen/ (version current 19

November 2006).
[42] Gentleware – model to business: UML tools and services,

http://www.gentleware.com/ (version current 30 November 2006).
[43] Log for C++, http://log4cpp.sourceforge.net/ (version current 30 November

2006).
[44] CxxTest, http://cxxtest.sourceforge.net/ (version current 19 November 2006).
[45] Using and Porting the GNU Compiler Collection (GCC): Gcov,

http://gcc.gnu.org/onlinedocs/gcc-3.0/gcc_8.html (version current 19 November
2006).

[46] Valgrind Home, http://valgrind.org/ (version current 30 November 2006).
[47] Subversion, http://subversion.tigris.org/ (version current 30 November 2006).
[48] The Trac Project, http://trac.edgewall.org/ (version current 30 November

2006).
[49] CruiseControl Home, http://cruisecontrol.sourceforge.net/ (version current 30

November 2006).
[50] S. McConnel, Rapid Development: Taming Wild Software Schedules.

Microsoft Press, Redmond, WA, 1996.
[51] Point Grey Research Inc. – Home, http://www.ptgrey.com/ (version current 19

November 2006).
[52] Underwater Lights and Cameras by DeepSea Power & Light,

http://www.deepsea.com/ (version current 19 November 2006).
[53] C. Carignan and R. Howard, A Partitioned Redundancy Management Scheme

for an Eight-Joint Revolute Manipulator. Journal of Robotic Systems, 17(9):453-
468, September 2000.

[54] C. Carignan and R. Howard, A Skew-Axis Design for a 4-Joint Revolute Wrist.
Proc. IEEE Int. Conf. on Robotics and Automation, Washington, 3636-3642, May
2002.

[55] K. Kreutz-Delgado, M. Long and H. Seraji, Kinematic Analysis of 7 DOF
Manipulators. International Journal of Robotics Research, Vol. 11, No. 5, 1992,
pp. 469-481.

[56] S. Roderick or W. Smith, DT21-0039 Test Report: Ranger Static Performance
Measurements, Space Systems Laboratory internal document #06-005.

[57] S. Roderick or W. Smith, DT21-0041 Test Report: Ranger Dynamic
Performance Measurements, Space Systems Laboratory internal document #06-
006.

168

[58] GNU gprof, http://www.gnu.org/software/binutils/manual/gprof-
2.9.1/gprof.html (version current 20 November 2006)

169

	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation
	Problem Statement
	Approach
	Vision Computer
	Data Management Unit (DMU)
	WHOI Computer

	Contributions
	Thesis Structure

	Computer Vision Background
	Camera Calibration and Camera Model
	Intrinsic Calibration
	Extrinsic Calibration
	Camera-Manipulator Registration

	Lighting Correction
	Feature Extraction
	Edge Detection
	Intensity Based Segmentation
	Histogram Segmentation
	Texture-based Segmentation
	Eigenspace Identification

	Stereo Correspondence
	Point and Feature Correlation
	Feature Correlation
	Point Correlation

	Epipolar Geometry
	Image Rectification
	3-D Reconstruction

	Vision Algorithms
	Calibration
	Camera Intrinsic and Extrinsic Calibration
	Camera-Manipulator Registration

	Lighting Correction
	Frame-Averaging
	Lighting Pattern Estimation

	Feature Extraction
	Filter Creation
	Application of the Color Filter
	Feature Extraction

	Stereo Correspondence
	Feature Matching
	3-D Reconstruction for Target Position

	Visual Servoing
	Visual Servo Algorithm
	Minor Visual Servo Functions
	Target Identification
	Target Tracking

	Management of anomalies, occlusions, and poor visibility con
	Poor Visibility
	Occluded Targets

	Software Design and Implementation
	System Architecture
	DMU Sub-Architecture
	Ranger Software Architecture
	ASTEP Software Architecture

	Vision System Modules

	AVATAR
	Common
	Acquire
	Analyze
	Config

	TAU
	VisionInterface
	TAUNet
	TAUUnit
	TAUGUI

	Visual Servo Controller
	Visual Servo Software Integration
	Visual Servo Control Law
	Closed-Loop Control of Ranger Manipulator
	Integration of Visual Servo Data with Ranger Control System

	Software Utilities
	Custom Utilities
	libdc1394 and Firewire Camera Custom Driver
	Camera Interface Utilities
	Filter Creation Utility

	Software Engineering Tools
	Documentation and Logging
	System-wide Unit Tests and Memory Profiling
	Continuous Integration and Defect Tracking
	Example Benefits of Software Engineering Tools

	Experimental Platform and Test Plan
	Vision Hardware
	Stereo Cameras
	Camera Placement
	Housings and Mountings
	Deep-Sea Pressure Housings
	Internal Camera Mounts

	Transition to Deep-Sea Configurations

	Ranger Manipulator System
	Manipulator Configuration
	Workspace
	Kinematics
	Singularity Considerations

	Ranger Computer Architecture and Interface
	Observed end effector positioning accuracy and resolution

	Test Sequence
	Camera and Manipulator Calibrations
	Vision System Calibration
	Camera-Manipulator Registration

	System-Level Testing with a Visually Distinct Object
	Evolution to Repeatable, Accurate Target Identification and
	Visual Servo Testing

	Test Results
	Ranger Tests with Low Resolution Cameras
	Calibration Parameters
	Vision System Accuracy
	Vision System Precision
	Overall System Behavior

	1-G Ranger Tests with High-Resolution Cameras
	Calibration Data
	Automated Registration
	Precision
	Accuracy

	Visual Servo Experiments

	Increased Target Realism
	Laboratory Tests
	Underwater Imagery

	Conclusions and Future Work
	Conclusions
	Vision Algorithms
	Software Structure
	Sampling Tasks

	Future Work
	Computer Vision
	Software Architecture
	ASTEP Manipulator
	Relationship Between Essential and Fundamental Matrices with
	Derivation of the Registration Algorithm
	Full Algorithm for Extracting Feature Geometric Data
	CAD Drawings for the Internal Camera Mounts
	Results from IEEM Tracking

	Bibliography

