
ABSTRACT 

Title of Document: AUTONOMOUS TARGET RECOGNITION 
AND LOCALIZATION FOR MANIPULATOR 
SAMPLING TASKS 

  
 Michael Pearson Naylor, M.S., 2006 
  
Directed By: Assistant Professor Ella Atkins 

Department of Aerospace Engineering 
 

Future exploration missions will require autonomous robotic operations to minimize 

overhead on human operators.  Autonomous manipulation in unknown environments 

requires target identification and tracking from initial discovery through grasp and 

stow sequences.  Even with a supervisor in the loop, automating target identification 

and localization processes significantly lowers operator workload and data throughput 

requirements. 

This thesis introduces the Autonomous Vision Application for Target 

Acquisition and Ranging (AVATAR), a software system capable of recognizing 

appropriate targets and determining their locations for manipulator retrieval tasks.  

AVATAR utilizes an RGB color filter to segment possible sampling or tracking 

targets, applies geometric-based matching constraints, and performs stereo 

triangulation to determine absolute 3-D target position. 

Neutral buoyancy and 1-G tests verify AVATAR capabilities over a diverse 

matrix of targets and visual environments as well as camera and manipulator 

configurations.  AVATAR repeatably and reliably recognizes targets and provides 

real-time position data sufficiently accurate for autonomous sampling.  
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Chapter 1 Introduction 

Increased levels of robotic system autonomy will enable scientific exploration in 

previously unreachable destinations.  This thesis focuses on the acquisition and 

tracking of sampling targets for a dexterous robotic manipulator using a computer 

vision system.  The system developed for this thesis is designed for an autonomous 

underwater vehicle (AUV) operating at a depth of 5000m where untethered human 

teleoperation is impossible.  Although targeted for an AUV, the system is 

generalizable to other operations underwater, in space, or on planetary surfaces. 

1.1 Motivation 

Reliable and capable autonomous robotic systems are in great demand for exploration 

in harsh, inaccessible environments. Development of such systems will allow for 

greater scientific return on missions where ground support, communications, and 

operator workload are prohibitive in terms of cost and factors such as time delay or 

communication bandwidth constraints.  Enhanced robotic perception of the 

environment is a key enabler to reduced human interaction. Tasks utilizing robotic 

manipulators are notorious for the strain placed on human operators, both mentally 

and physically. Lack of sufficient camera views during teleoperation, hand strain 

from long-term use of hand controllers, and mental stress associated with difficult 

teleoperation tasks are all challenges that can be mitigated through effective 

automation.   

A robotic manipulator, SAMURAI, the Sub-sea Arctic Manipulator for 
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Underwater Retrieval and Autonomous Interventions, is being developed at the 

University of Maryland’s Space Systems Laboratory (SSL) as a combined research 

effort with Woods Hole Oceanographic Institution (WHOI) for NASA’s Astrobiology 

Science and Technology for Exploring Planets (ASTEP) program. The manipulator 

will be attached to an AUV under development at WHOI and used for autonomous 

sampling missions at a depth of 5000m in the Arctic Ocean.  This mission must be 

conducted with full autonomy due to shifting ice sheets that make a continuous high-

speed communications tether infeasible.   Because of their versatility and presence as 

a primary science instrument, mission organizers chose a stereovision system as the 

perceptive means for locating sampling targets. 

The culmination of the ASTEP project is a field expedition to the Gakkel 

Ridge in the ice-covered Eastern Arctic Basin shown in Figure 1-1.  Located in this 

area is evidence of hydrothermal activity found during the joint US-German AMORE 

2001 icebreaker expedition.  This environment is one of the last truly unexplored 

regions on Earth due to its inaccessibility under the icecap.  The unknown and harsh 

Gakkel characteristics provide a realistic and productive terrestrial environment with 

analogue to space exploration missions.  Most closely matched is a proposed mission 

to explore the oceanic aspects of Europa, requiring fully autonomous under-ice 

operation made even more difficult than Gakkel by the absence of a capable manned 

surface ship. 
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Figure 1-1: Map of the east Arctic and Gakkel Ridge (Picture from [1]) 

WHOI’s JAGUAR AUV, shown through a CAD depiction in Figure 1-2, will be 

fitted with the SAMURAI manipulator, shown in Figure 1-3, to perform the desired 

undersea sampling tasks.  Undersea manipulation has in the past exclusively been 

performed via teleoperation, except for simple low degree of freedom (DOF) 

grappling activities.  From the science perspective, exploration of Gakkel has the 

potential to identify new life forms and vastly improve our understanding of undersea 

geology.  From the engineering perspective, this mission will deploy the first fully 

autonomous undersea dexterous (6-DOF) manipulator, along with the first real-time 

undersea visual sampling target recognition system, the product from research 

described in this thesis.  The culmination of the project will be the manipulator-AUV 

system, completely untethered, operating at 5000m depths. 
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The major requirements and constraints dictating system development are: 

• Necessity of full autonomy due to depth and shifting ice sheets on the surface 

• Near real-time target tracking to account for small target motion and/or AUV 

perturbations with frequency limited by the strobe light recharge cycle  

• Simplicity of software architecture and vision algorithms to facilitate future 

research regardless of software familiarity or computer vision background 

• Mission success defined by successfully sampling biological or geological 

target(s) 

 

To perform the autonomous sampling tasks, an accurate sensory system must be 

present on the vehicle.  A calibrated stereo camera pair will be affixed to the AUV to 

locate and extract sampling targets, representing them in an AUV body frame from 

which the manipulator end effector has known offset and attitude.  This thesis 

develops and tests the stereovision system known as AVATAR, the Autonomous 

Vision Application for Target Acquisition and Ranging. 

 

Figure 1-2: CAD model of JAGUAR from I-DEAS 
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Figure 1-3: SAMURAI Robotic Manipulator 

1.2 Problem Statement 

The goal of this thesis is to develop and verify in a hardware-based test environment a 

computer vision system capable of autonomously determining accurate real-world 

positions of targets for manipulator sampling tasks. This task is made more 

challenging than traditional factory automation tasks by a variety of factors.  First, 

poor lighting conditions in the deep-sea environment require substantial image pre-

processing and filtering.  Also, targets may be mobile and their precise visual 

characteristics and locations are unknown a priori.  A stereovision system must be 

calibrated and rigorously tested within an evolving software architecture able to 

satisfy all goals associated with the autonomous sampling tasks for the ASTEP 

mission. The software should be sufficiently flexible to function with different 
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camera setups, in vastly different environments, and with a wide array of targets.  

Additionally, the vision system should be independent of manipulator kinematic 

configuration so it can provide valid data when combined with any robotic arm. 

1.3 Approach 

The goal of successful autonomous undersea sampling relies heavily upon 

economical use of available computing power via efficient and correct algorithms for 

perception, planning, and control.  Three computers will be present on the JAGUAR-

SAMURAI vehicle:  the WHOI AUV computer, the SAMURAI Data Management 

Unit (DMU), and the vision computer where AVATAR resides.  Each of these 

computers has specific real-time constraints in which it must perform critical tasks.  

Figure 1-4 shows a UML component diagram of the relevant system hardware, and 

Figure 1-5 is a CAD representation of the AUV with attached manipulator and 

cameras. 

 

Figure 1-4: System Component Diagram 
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Figure 1-5: System CAD Model 

Vision Computer 

The vision computer contains two primary software modules.  The first is the vision 

system software (AVATAR) that performs image acquisition, target filtering, and 

target extraction and 3-D localization tasks in sequence.  The second is an interface to 

AVATAR known as the Target Acquisition Unit, or TAU.  AVATAR applies a series 

of algorithms to a pair of raw images to extract 3-D positions of the targets: 

• Lighting and color correction, dependent on environment 

• Color based pixel-by-pixel filter dependent on sampling target type 

• Feature data extraction, also dependent on target type 

• Matching of features for stereo correspondence 

• Triangulation of 3-D target coordinates 
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Given data acquisition and processing overhead, AVATAR has a frequency of 1Hz in 

a laboratory environment with ample lighting.  During AUV operations, image 

acquisition frequency will be limited by the recharge cycle of the strobe, about 2.5 

seconds, so lighting becomes the limiting factor for target updates.  TAU is designed 

to remove all external interface considerations from AVATAR and ensure that 

changes in the rest of the system do not propagate through AVATAR, and vice-versa.  

The different implementations of TAU provide both front-end and back-end 

interfaces with AVATAR, as well as simulation modes that require no vision-related 

hardware.  Communication between the DMU and the vision computer is achieved 

through the back-end TAU interface located on the vision computer. 

Data Management Unit (DMU) 

The DMU houses all software for real-time control of SAMURAI as well as the task 

and motion planners that select from the suite of identified sampling targets and 

maneuver the vehicle and manipulator to collect each sample.  At predetermined 

points in the ASTEP mission, while the AUV is located on the ocean floor, the DMU 

takes control from the WHOI computer.  Based on data received from the vision 

computer, through a local TAU front-end interface, as well as prior knowledge of 

possible sampling sites, the DMU will drive the AUV to an appropriate position to 

attempt target sampling tasks.  The DMU operates at a frequency of 125Hz, which 

sets the update rates for all trajectories and relevant data loggers. 

WHOI Computer 

JAGUAR is based on an earlier version of a similar WHOI AUV called SeaBED [2], 
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the software for which will be ported to JAGUAR.  The WHOI AUV computer 

consists of two main parts, a mission execution script, written in Perl, and the main 

AUV control code and device drivers written in C, which communicate via sockets.  

The mission script vs. controller split was implemented to help separate the low-level 

data acquisition and control tasks from the higher-level mission planning and goal 

tasks [2].  The vehicle control loop runs at 10Hz, while all core navigation data is 

logged at 5Hz.  Due to limitation with the strobe charging time, the maximum rate 

images can be acquired and written to the hard drive is 2.5s.   

1.4 Contributions 

The applied computer vision contributions from this thesis of direct relevance to the 

ASTEP mission are: 

• Development of computer vision algorithms to extract 3-D positions of 

desired sampling or tracking targets 

• Design of software to perform autonomous target extraction and provide 

robust public interfaces for laboratory testing in addition to autonomous 

operations 

• Validation of software through comprehensive use of unit testing and 

integration within a system utilizing daily builds with continuous integration 

• Rigorous laboratory testing of stereo vision algorithms and software with the 

Ranger manipulator in 1-G and underwater environments to prove target 

localization capabilities and software stability 

• Implementation of a visual servo controller that tracks both manipulator and 
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sampling target to reduce sensitivity to camera calibration errors and external 

disturbances  

• Additional testing with low-light and color attenuated images with realistic 

targets in preparation for the transition to AUV operations 

1.5 Thesis Structure 

This thesis overviews the research efforts of the SSL-WHOI team to develop the 

ASTEP AUV system, then focuses on the computer vision and software design 

specifics that comprise the research component of this thesis.  To provide initial 

background, Chapter two reviews key aspects of computer vision related to this 

research, as well as providing insight into other contemporary computer vision 

systems.  Chapter three describes the computer vision algorithms integrated into the 

final AVATAR system, ranging from calibration and target recognition algorithms to 

visual servoing.  Chapter four focuses on the software design and implementation of 

the entire vision system, also describing the tools and evaluation methods used to 

validate the software.  Chapter five discusses the test design and implementation for 

AVATAR, including the hardware, testing environments, assumptions and limitations 

associated with both the vision-related and manipulator hardware.  The test results are 

discussed in Chapter six, and finally conclusions and future work are presented in 

Chapter seven. 
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Chapter 2 Computer Vision Background 

State of the art stereovision systems are capable of accurately characterizing three-

dimensional environments given accurate calibration and image processing 

algorithms tuned to the environment and task to be accomplished.  Many elegant 

domain-specific solutions have been developed, yet creation of a fully-functional, 

generalized stereo system is still far from realization.  Most stereo systems require 

four major modules: calibration, feature extraction, stereo correspondence, and 3-D 

reconstruction.  The complexity of each module depends on a priori knowledge of 

physical parameters of the system, uniqueness of targets in the field of view, object 

motion and variance over time, and lighting conditions.  Accepted approaches to each 

of these problems will be discussed in this chapter to provide background and 

motivation for the vision algorithms selected in this work.   

 Many of the algorithms discussed throughout this chapter come from existing 

software libraries.  Software implemented in MATLAB makes heavy use of both the 

Camera Calibration Toolbox [3] as well as the built-in Image Processing Toolkit.  

Algorithms implemented in C and C++ make use of the Open Computer Vision 

Library [4] (OpenCV) for image handling as well as other core tasks.  Lighting 

correction background research is courtesy of Dr. Hanumant Singh at WHOI who 

also provided access to a MATLAB lighting correction algorithm and a library of 

uncorrected, raw images from various SeaBED cruises. 
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2.1 Camera Calibration and Camera Model 

The primary factor that determines the overall accuracy of a stereo system is system 

calibration accuracy.  Full calibration of a stereo system requires precise 

characterization of two parameter sets: intrinsic and extrinsic.  Intrinsic calibration 

refers to determination of internal properties of each camera, including focal length 

and piercing point, while extrinsic calibration refers to the physical relationship of the 

left camera to the right camera, a rotation matrix  that rotationally aligns the left 

camera with respect to the right camera, and a translation vector  that describes 

the Cartesian difference between the cameras. 

RR
L

L
R t

Knowledge of both intrinsic and extrinsic parameters enables unambiguous 

calculation of 3-D coordinates for any matched points.  The calibration procedure and 

camera model utilized for this research are from the Camera Calibration Toolbox for 

MATLAB [3], which is based on the work of Heikkilä and Silvén [5].  The first step 

of the calibration procedure is acquiring synchronized sets of “checkerboard images” 

(i.e. images with a fully visible checkerboard pattern).  After the user provides data 

on the size and dimensions of the pattern, the software attempts to extract all corner 

points of the pattern in each image, with the user supplying the outside corners as 

well as an initial guess for distortion.  Once the checkerboard patterns have been 

recorded, the main calibration algorithm runs a non-linear least squares gradient 

descent algorithm to optimize all of the parameters.  After this intrinsic calibration 

has been applied to both cameras, the extrinsic parameters can be determined via the 

correspondence between checkerboard patterns in the synchronized images. 
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The final aspect of calibration related to this research is the determination of 

the camera-manipulator registration, also known as hand-eye calibration [6][7], 

between the manipulator and the vision system.  For a successful grasp, the 

manipulator controller requires object position data to be provided in a known frame 

of reference, which an arbitrarily positioned vision system does not provide.  For the 

calculated 3-D target positions to be useful, they must first be transformed into the 

manipulator frame of reference.   

Intrinsic Calibration 

The intrinsic parameters used in [3] consist of: 

•  , the two-dimensional focal length in millimeters ⎥
⎦

⎤
⎢
⎣

⎡
=

y

x
c f

f
f

•  , the principal point (center of image) expressed in pixels ⎥
⎦

⎤
⎢
⎣

⎡
=

y

x
c c

c
c

• cα , the skew coefficient (angle between image x-axis and y-axis) 

• , a vector of five numbers describing both radial and tangential distortion ck

The focal distance  is a vector with two elements  and  that represent a unique 

value in mm expressed in units of horizontal and vertical pixels.  If the camera has 

square pixels in the CCD array, these two values should be very close.  On the other 

hand, if the pixel elements on the CCD are rectangular, the ratio of  to  will not 

be close to 1 – this is referred to as the “aspect ratio”.  Since this model takes into 

account the variation in horizontal and vertical pixel size, it can handle the general 

case of non-square pixels.  The principal point  defines the position of the camera 

cf xf yf

yf yf

cc
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center in pixels, which is used when performing transformations between image plane 

and real world coordinates.  The skew coefficient cα  is the angle between the x and y 

pixel axes, and by including this value in the camera model, the case where an image 

has non-rectangular pixels can be handled.  The vector of distortion coefficients  

contains the coefficients used in a 6th order non-linear distortion model known as the 

“Plumb Bob” model developed by Brown in 1966 [8].  

ck

Extrinsic Calibration 

The extrinsic parameters of a stereo system describe the relative position and 

orientation of the cameras – for this research the extrinsic calibration is defined as the 

translation and rotation of the right camera with respect to the left camera.  Once 

again using the Camera Calibration Toolbox for MATLAB, these values can be 

computed with knowledge of the intrinsic parameters and corresponding images of 

checkerboard patterns.  With previous knowledge of the intrinsic parameters 

combined with the entire set of point matches of corners of checkerboards, the 

MATLAB toolbox will output the set of all calculated translations and rotations while 

determining the overall translation vector  and rotation vector L
R t ω , as defined by 

the Rodrigues Rotation Formula [9].  The rotation matrix  can then be calculated 

using the rodrigues function provided in the toolbox. 

RR
L

Camera-Manipulator Registration 

Many methods exist to uniquely determine the transformation between a manipulator 

frame of reference and the camera system frame of reference [6][7].  Without an 

14 
 
 



accurate transformation, the data acquired from the vision system will be useless, 

although implementing a visual servo controller can help alleviate problems with 

inaccuracies [10][11].  As with all transformations in 3-D space, the camera-

manipulator relationship is defined by a rotation and translation of one coordinate 

system onto another. 

 Most literature focuses on placement of the camera system at the wrist of the 

manipulator as this allows the cameras to move with the same degrees of freedom as 

the manipulator [6][7].  In this research, the situation is slightly different as it is 

desirable for the cameras to sense the full manipulator workspace at all times, rather 

than strictly view the area immediately ahead of the manipulator end effector.  Since 

the cameras are fixed relative to the robot base, the desired transformation is thus 

between camera frame and manipulator base frame.  This transformation is calculated 

through a process of tracking corresponding points known in both camera frame and 

robot base frame, and performing an algorithm on a set of corresponding points to 

extract the rotation and translation.  These corresponding points are obtained by 

having the vision system track a distinct object on the manipulator, while recording 

the vision frame coordinates from the stereo analysis and robot base frame 

coordinates determined from encoder telemetry.  The algorithm implemented for this 

research is discussed in Section 3.1.2. 

2.2 Lighting Correction 

One of the major concerns when dealing with high-depth imagery is the lack of 

ambient light.  Given tetherless AUV power restrictions, intense floodlights cannot be 
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used to illuminate the entire scene.  Instead, low-power strobes or LED arrays are the 

sole source of illumination.  In such cases, lighting correction algorithms can be 

applied to make a dark image with high color attenuation appear as it would in ample 

light.  An example is illustrated in Figure 2-1, a WHOI SeaBED image of the ocean 

floor populated by sea urchins.   
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a) Uncorrected image b) Corrected image
Figure 2-1: Low-light image corrected by WHOI lighting algorithm [12] 

pplication of such algorithms is absolutely necessary when human scientists analyze 

he images if the true color of targets is of importance.  However, when performing 

omputerized analysis to extract color-based features while using high bit-depth 

ameras, the benefit of lighting correction algorithms is not as clear.  The first 

orrection algorithm described was developed at WHOI and utilizes extensive 

nowledge of the cameras and water chemistry to extremely accurately correct for 

ight attenuation [12].  Unfortunately, this algorithm operates with a calculation time 

f approximately 10s in MATLAB, which renders it useless for near real-time 

pplications.  Other algorithms exist that attempt to correct for color attenuation with 

aster methods, but the quality of results tend to decrease rapidly as the algorithm 
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becomes simpler and quicker. 

Other important factors for color correction are the process by which an image 

is recorded and how the CCD array is constructed.  Most digital cameras contain a 

Bayer pattern mosaic of photosensors to allow a single chip to record true color 

images.  A Bayer pattern refers to the layout of photosensors on the CCD chip.  For 

many scientific cameras, such as the Point Grey Scorpions used in this research, the 

raw imagery must first be converted from the grayscale Bayer image into an RGB 

image using one of a variety of algorithms.  OpenCV implements many different 

methods of Bayer pattern correction for all different patterns of sensors.  Figure 2-2 

below shows the common BG pattern, as shown in the on-line documentation for 

OpenCV [13]. 

 

Figure 2-2: BG Bayer Pattern 

2.3 Feature Extraction 

The next major step in a stereo system is to extract distinguishing features from each 

image.  Edge, shape, texture and color are factors that can be used to extract features 
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from a raw image.   In many cases, a combination of methods is required to 

accurately segment each feature.  For instance, an edge detector might be applied to 

the image before a shape detection algorithm is used to determine which remaining 

features correspond to a desired shape.  In other algorithms, such as texture matching, 

an initial color filter can substantially limit the feature search space to decrease 

processing time.  Four methods are discussed below in greater detail: edge detection, 

Hough transforms, color based segmentation, and Eigenspace identification.  The 

method used for this research is color based segmentation due to its intuitive nature, 

simplicity of implementation, and immediate successes during initial testing. 

2.3.1 Edge Detection 

Edge detection algorithms have been developed and refined over the past 30 years, 

providing a mature toolset for image feature extraction [15].  There are two main 

approaches to edge detection: template matching and differential gradient.  All 

routines, however, calculate a local intensity gradient and, based on the magnitude of 

that calculation, determine whether or not a specific pixel is part of an edge.  The 

Canny edge detector is one of the most widely applied algorithms, but there are many 

others including the Sobel, Roberts and Prewitt methods [16].  The base behind all 

edge detection algorithms is the application of convolution masks – anywhere from 

just two masks, x and y, up to 12 for more complicated template matching detectors 

[15]. 

Most simple algorithms apply convolution masks that detect edges of a 

specific orientation, while more complicated strategies apply larger or multiple masks 
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to determine multi-orientation edges.  The more robust edge detection algorithms are 

correspondingly more computationally intensive.  For the general case where targets 

have unknown shape or orientation, many operators are required to segment full 

targets.  In applications similar to this research, where near real-time execution is the 

goal, anything but the most simplistic algorithm is infeasible [15].  Figure 2-3 shows 

sample output from one of MATLAB’s edge detection routines. 

 

Figure 2-3: Sample edge detection performed using MATLAB 

Many problems are immediately recognizable from this output.  First, only the white 

sand dollar target has a completely formed boundary, and all the other targets would 

need to have additional processing to complete the shape.  Also, reflections caused by 

lighting and sand texture show up as boundaries.  Further processing is required to 

complete broken edges, remove linear edges and calculate all position data about the 

detected features.  Algorithms exist to perform these necessary operations, such as 

variations on the Hough transform [17] used to locate different shapes in images, or 

the Euler spiral [18], but these only complicate the software. 
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2.3.2 Intensity Based Segmentation 

Similar to edge detection, color based segmentation algorithms range from simple to 

complex.  A simple algorithm, such as the one used for this research, examines the 

color properties at a single pixel location, while more complicated algorithms may 

take into account neighboring pixels, patterns, and textures.  Similarly to edge 

detection methods, all but the simplest algorithms are orders of magnitude more 

complex than what can be used for real-time or near real-time applications.  First, 

basic histogram segmentation will be detailed, followed by a more complicated 

texture-based method and finally the Eigenspace identification method. 

Histogram Segmentation 

Especially when applied to binary or grayscale images, histogram segmentation is an 

extremely simple, yet effective, tool for extracting features.  In such images, 

foreground objects tend to lie in a different section of the image histogram from the 

background, thus selection of an optimal threshold value is fairly straightforward 

[17].  Figure 2-4 shows an example of a grayscale image with a threshold applied 

between the two peaks in the histogram.  The highlighted portion of the histogram 

represents foreground values.  This method works well when the grayscale values of 

foreground features and the background are sufficiently different to be segmented in 

this manner, but when dealing with color images containing many different 

foreground and background entities, more complicated methods must be used to 

accurately extract desired features. 
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Figure 2-4: Original grayscale and B/W thresholded images with highlighted histogram  

 Multi-channel histogram segmentation is the extension of grayscale histogram 

segmentation and can achieve much better results in complex color images.  

Thresholding in this manner can be applied in either RGB or hue, saturation and 

value (or intensity) (HSV(I)) color-spaces.  Depending on the visual properties of 

objects and the image background, working in one space or the other, or possible 

both, has benefits.  RGB histograms tend to have little easily accessible data other 

than the fact that, as overall magnitude of a specific pixel increases, the RGB values 

also tend to increase.  On the other hand, hue-oriented algorithms create much greater 

dispersion of peaks and separation of image regions while there is also the possibility 

of using a single value, hue, for segmentation.  However, using a hue-oriented color 

scheme requires that each pixel be converted to another color-space, which can cause 

a large number of calculations when performed each iteration, although algorithms do 

exist to facilitate this conversion [19][20].   
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Texture-based Segmentation 

When the single-pixel color data present in an image is not sufficient to effectively 

segment features of interest, the inclusion of texture-based segmentation methods can 

greatly increase the ability of an algorithm to distinguish desired objects.  Texture 

segmentation algorithms can look at a wide array of information such as brightness 

ranges, spatial frequencies, and orientations [19].  Each texture type has many 

algorithms designed for extracting and labeling regions within an image, from simple 

thresholding through involved frequency domain analyses.  Accurately segmenting a 

complex image into different regions quickly becomes a complicated algorithm, 

either in terms of mathematical understanding or computational complexity.   

 Despite the complexity issues, there are many successful applications of 

texture-based segmentation methods.  Figure 2-5 shows example output from three 

different texture-based segmentation algorithms, as discussed in [21], with results 

also from [22][23].  

 

Figure 2-5: Result of different texture-based segmentation algorithms [23] 

Eigenspace Identification 

One final algorithm is used to ensure that, once a feature has been successfully 

segmented, the feature is actually what the algorithm is supposed to be locating, 
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regardless of size or orientation.  There are many appearance-based algorithms, and 

one of the foremost is the Eigenspace Identification method [16][24].  This method 

consists of a learning algorithm applied over a set of existing images prior to an 

identification algorithm applied to new images.   

 The learning algorithm must be applied to an initial set of images containing 

the object in all desired recognizable poses, where the object is easily segmented from 

the background.  If the object translates between successive images, or if lighting 

conditions change, the initial learning stage can become quite complicated, requiring 

an abundant amount of computing resources to analyze and store the learned data. 

 Each image must be represented as a vector, formed by scanning the image 

top to bottom and left to right and placing the results in a vector of length N2.  By 

transforming an image into this representation, vector math can be utilized for more 

complicated image-based calculations, such as using the dot product for image 

correlation.  Once all images have been converted to vectors, the learning algorithm 

continues by finding the average vector between all the images, creating a covariance 

matrix, computing the Eigenvalues and associated Eigenvectors and then finally 

calculating Eigenspace points for each image and storing the discrete Eigenspace 

curve as the representation of the segmented object. 

 Application of this data set to new images to recognize a desired object first 

requires all possible objects to be accurately segmented from the background before 

application of similar vector and Eigenspace calculations are applied to each object 

and a search performed within the library of data.  All these steps must be performed 

after feature segmentation, and a search through a comprehensive library of possible 
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objects can be quite computationally complex.  This project requires real-time object 

identification, so object recognition, particularly given uncertainty in object shape, 

etc., benefits more from compact and efficient strategies than from more 

comprehensive and elegant approaches such as Eigenspace Identification that require 

a prohibitive search over a database that may or may not accurately depict the objects 

to be sampled.   

2.4 Stereo Correspondence 

Use of a stereo camera system rather than a single camera requires identification of 

common features in the two cameras’ image planes.  Once features have been 

segmented within each corresponding image, they must be matched, initially on an 

overall feature level, and then through detailed corresponding points assigned to each 

feature that enable accurate 3-D object reconstruction.  An overview of stereo 

correlation strategies is provided below, followed by a discussion of strategies to 

further increase accuracy and effectiveness of the algorithms, specifically use of 

Epipolar geometric constraints and the rectification process. 

2.4.1 Point and Feature Correlation 

The correlation process is composed of two main steps – feature correlation and point 

correlation.  Feature correlation matches overall features between images while point 

correlation operates at the sub-feature level to accurately determine which points 

within a feature correspond to points in the other image’s matched feature. 
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Feature Correlation 

Feature-based correlation restricts the correspondence problem to a select few 

features extracted from an image.  Unconstrained matching algorithms can become 

quite complicated, involving algorithms such as Eigenspace Identification described 

above, or any other weighting function designed to calculate a numerical value that 

represents each different feature.  For example, a weighting function might include 

pixel area, various moments of the feature, and color measurements.   

 There are two main types of constraints that can be applied to sets of features 

to assist in the matching process: geometric and analytical [16].  Geometric 

constraints, such as Epipolar geometry, discussed below, greatly limit possible feature 

matches based solely on geometric knowledge from the camera setup.  Analytical 

constraints are logic-based constraints such as the uniqueness constraint stating that 

each feature can only have one match and the continuity constraint that disparity must 

vary continuously throughout the image, barring odd scene geometry and occluded 

features. 

 If constraints are not placed on the matching algorithm, problems can arise 

when attempting 3-D reconstruction.  Most notably is a scene with multiple objects 

with the exact same size, color and geometry.  A weighting function could return 

values that result in incorrect matches since the features “look” exactly the same. 

However, by placing appropriate constraints on the system, many of these results can 

be eliminated from the start. 
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Point Correlation 

A similar problem to that of feature matching is extracting points of interest within 

these features or in the general case an entire image, then successfully matching these 

points with one another.  Without correct matches between these points, accurate 

matching of features is meaningless for further 3-D analysis.  Most existing 

algorithms match points by determining the brightness pattern of the target pixel and 

its neighborhood with the other image in an attempt to find a similar pattern [19].  

The initial points can be selected from a variety of algorithms that find points of 

interest based on available data, such as edges or corner features.  

 The most common points extracted from images are corner points.  These 

points are located throughout complex scenes, either as geometric corners, such as on 

a building, or simple corners in patterns of intensities.  Fortunately, these patterns 

remain visible in subsequent images, thus act as good choices for object tracking [16].  

Based on image data of the neighborhood surrounding these corner points, similar 

algorithms can be used to match these points across corresponding images, or on a 

smaller scale, between already matched features. Figure 2-6 shows an example image 

after being run through one of OpenCV’s corner detection algorithms.  A small circle 

marks each detected corner. 
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Figure 2-6: Output from OpenCV corner detection algorithm 

 In the general case where numerous points are matched between images, a 

general depth map can be generated showing approximate distances to any point in 

the overlapping camera fields of view.  Ideally when working with a single target 

feature, extraction and matching of points encompassing the entire feature provides 

data relating size and distance of the object to whatever degree necessary.  More 

details on 3-D reconstruction are presented below in Section 2.4.4. 

2.4.2 Epipolar Geometry 

The geometry of stereo is known as epipolar geometry.  Once calculated, the epipolar 

geometry of a system will map a point in one image to a line in the corresponding 

image.  The outcome is essentially that the search for corresponding points and/or 

features is limited to a search along a known line rather than through the entire image.  

Figure 2-7 shows the epipolar geometry of a stereo system. 
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Figure 2-7: Epipolar geometry of a stereo camera system 

 Point P, the target point in each image, along with the origins of each camera, 

Ol and Or, form the epipolar plane.  The intersection of this plane with each of the 

image planes form a line known as an epipolar line, shown in blue.  Each point in an 

image only has a single epipolar line traveling through it, except for the point known 

as the epipole, at which all epipolar lines intersect.  The epipoles are denoted by el 

and er in Figure 2-7.  As point P moves along the vector leading to Or it stays in the 

same epipolar plane and the image coordinates in the right image remain constant, but 

in the left image the point slides along the epipolar line. 

 With knowledge of the intrinsic and extrinsic parameters of the stereo system 

from calibration, the Fundamental and Essential matrices of the system can be 

calculated to help determine geometric correspondence between the two images.  The 
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Fundamental matrix relates pixel coordinate points between images and the Essential 

matrix relates camera coordinate points.  As such, the Essential matrix is based solely 

on the extrinsic parameters of the system, while the Fundamental matrix is based on 

both extrinsic and intrinsic parameters, and is related to the Essential matrix by 

multiplications of the intrinsic parameter matrices of each camera.  Appendix A 

shows the equations relating calibration parameters to the Essential and Fundamental 

matrices as well as the epipolar geometry. 

2.4.3 Image Rectification 

To perform general 3-D reconstruction of an entire scene it is useful to have all the 

epipolar lines of an image be collinear – in other words, the point correspondence 

problem is reduced even further to a simple search along a single scanline, as show in 

Figure 2-8.  The gray boxes represent the rectified images, with the blue segments as 

the transformed epipolar lines parallel to the baseline. 

 

Figure 2-8: Geometric representation of rectified images 
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This effect is achieved by rotating the left camera so that the epipole goes to infinity 

along the horizontal axis, followed by rotating the right camera by the same amount 

(to recover original geometry) and then finally rotating the right camera again by the 

rotation matrix  associated with the extrinsic parameters of the system.  Once this 

has been completed, it may be necessary to adjust the scale in both camera reference 

frames.   

RL
R

 Image rectification is possible regardless of the initial orientation and relative 

position of the cameras, assuming they do, in fact, share significant image overlap.  

Figure 2-9 shows example rectified images.  Marked on the image are example 

epipolar lines showing how points anywhere in the scene of the left image lie upon 

the same scanline in the right image.  By applying these geometric constraints to the 

pair of images, the matching problem becomes much easier, although the preparation 

becomes much more complicated. 

 

 

Figure 2-9: Rectified images from a calibrated camera pair 
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2.4.4 3-D Reconstruction 

The ultimate goal of any stereoscopic system is some form of 3-D reconstruction, 

whether it is of the entire scene or localization of a single object.  The ability to 

uniquely determine a 3-D position of image points is dependent on the knowledge of 

the intrinsic and extrinsic parameters of the system.  There are three applicable cases 

of 3-D reconstruction.  First, if both intrinsic and extrinsic parameters are known, any 

point in the scene can be determined unambiguously in all three dimensions by 

triangulation.  Second, if only the intrinsic parameters are known, then reconstruction 

is possible up to an unknown scaling factor.  The final case is if only the pixel 

correspondences are known, leading to reconstruction up to an unknown, global 

projective transformation [16].   The focus of this thesis is on the ability to absolutely 

determine three-dimensional coordinates in the first case, where all calibration 

parameters are presumed known. 

Once an algorithm designed to calculate the 3-D position of a point or scene 

reaches the final triangulation step, the rest of the process is straightforward.   The 

first step is to convert pixel coordinates into camera coordinates using the intrinsic 

parameters of the system.  Once both left and right camera points are known in 

camera frame, the extrinsic parameters are applied to determine actual 3-D target 

position. 
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Chapter 3 Vision Algorithms 

This chapter will describe and illustrate the algorithms that were implemented within 

the AVATAR software package in the order that they are used within the system.  

The first section will describe calibration and the camera-manipulator registration, 

followed by a discussion of feature segmentation and data extraction.  Stereo 

correspondence procedures are described that enable feature matching between 

synchronized images with stereo triangulation for 3-D reconstruction.  A visual servo 

controller is described next, followed by a section on management of anomalies and 

other problems that may arise. 

3.1 Calibration 

One of the most essential aspects of a computer vision system is to maintain an 

accurate set of calibration parameters.  As described generally in Chapter 2, three 

main phases of calibration must be completed to accurately identify and sample 

targets from stereo camera feedback.  First is the intrinsic calibration of each camera.  

The second step is determining the geometry of the camera system (extrinsic 

calibration).  Finally, registration between the vision system and robotic manipulator 

must be performed to determine the transformation between vision system and 

manipulator base frame. 

3.1.1 Camera Intrinsic and Extrinsic Calibration 

The first calibration step is to mathematically estimate intrinsic camera parameters 

based on the correlation of unique features between 2-D image plane coordinates and 

32 
 
 



known 3-D world coordinates.  As is standard practice in the vision community, a 

planar checkerboard pattern is used to provide a matrix of readily distinguished 

corner features.  The checkerboard is presented to each camera at a series of different 

orientations and positions to provide a three-dimensional set of points for calibration.   

For accurate calibration, the size of each checkerboard box must be known and must 

be consistent across the calibration pattern.  To identify the best intrinsic parameter 

set for each camera, a least squares gradient descent search minimizes re-projection 

error from 2-D to 3-D coordinates.  It has been shown that the intrinsic parameter set 

can be accurately estimated with a minimum of five checkerboard images.  For more 

information on this algorithm see [3][5], and for implementation details see 

[14][25][26].  Using the Matlab Camera Calibration Toolbox [3] and the results from 

intrinsic calibration, the extrinsic parameters of the stereo system can be determined 

based on the correlation of the calibration points between the two cameras.  For this 

extrinsic calibration, synchronized stereo images with the same visible checkerboard 

pattern are required. 

3.1.2 Camera-Manipulator Registration 

The final calibration step is to determine the 3-D coordinate transformation between 

the vision system and manipulator base frame [14].  The algorithm implemented in 

this work operates on corresponding lists of n points from the vision (camera) and 

manipulator base frames,  and  respectively.  Figure 3-1 shows the algorithm 

utilized to compute the transformation matrix  that translates 3-D coordinates 

from stereo camera frame V to manipulator base frame M.  First, the point cloud 

PV PM

TM
V
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center positions  and are calculated by averaging all points.  Next, each point 

list is normalized by the center to align both point clouds about the same center point.  

The rotation matrix  is assigned to the identity matrix then computed through 

iteration. 

CV CM

RM
V

 Within the iterative loop, a series of rotations about single axes are applied to 

align the two point clouds.  In each iteration, sequential rotations about the x-axis, y-

axis, and then the z-axis are applied.  Intuitively, this algorithm is iteratively applying 

rotations to “reverse” the point set rotation so that the “unrotated” point sets are as 

close to coincident as possible.  The formulation presented here is based on multiple 

Z-Y-X Euler angle rotations [27].  First, the algorithm determines the angle γ in the 

Y-Z plane by which each point was rotated to reach its current position.  The 

derivation for each case is shown in Appendix B  Assuming the magnitudes of 

corresponding points are the same and using , the results from 

these equations can be used to determine the sum of the squares of the magnitudes.  

Finally, by dividing these two results, the cosine and sine values can be calculated, 

and an initial rotation matrix can be formed.  This rotation is then applied to the set of 

points from the vision frame, and the algorithm continues to the next rotation. 

1cossin 22 =+ γγ

 Once the iterative loop finishes, a final  rotation matrix is now available to 

use in calculating the translation between the two frames, .  This rotation is 

applied to the list of points in the vision frame, and then the average displacement 

between all corresponding points between the manipulator base frame and rotated 

vision frame is calculated and used for the translation.  Results from implementation 
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with the Ranger manipulator are provided in Section 6.2.2. 
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Figure 3-1: Algorithm to determine camera-manipulator registration 

3.2 Lighting Correction 

Once an image has been acquired, it may need to be corrected for adverse lighting 
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conditions.  At depth, color data is significantly lost when the scene is lit with a low 

intensity strobe or LED array.  When color is important for analysis, images can be 

restored to their true color as described in Chapter 2, but depending on the application 

this may be unnecessary.  Non-uniform lighting is also an issue.  Especially with 

strobe lights, the location at which the light is focused is much more illuminated than 

surrounding areas.  The light magnitude decrease radially outward from the focus 

location is nonlinear, requiring an algorithm to correct for the intensity pattern 

associated with a specific light source.   

All lighting correction algorithms discussed below, aside from the WHOI 

algorithm, consist of an offline data extraction process, which determines scaling 

factors and exponential coefficients that are then applied during system operation.  

This procedure is valid under the assumption that lighting conditions will remain 

invariant between dives given consistent cameras, lights, and mounting configuration. 

3.2.1 Frame-Averaging 

The lighting correction algorithm developed in this work is a simple frame-averaging 

strategy that creates linear correction factors that can be applied in real-time.  This 

solution is motivated by a more accurate but computationally-intensive algorithm 

developed and validated by WHOI [12].  This algorithm is performed offline and 

requires a set of images where both raw imagery and imagery corrected by the WHOI 

algorithm is available. 

Figure 3-2 shows the process for calculating the frame average correction 

coefficients.  Two sets of images are input: a set of uncorrected raw images and the 
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corresponding set of images that have already been corrected by the WHOI 

algorithm.  First, pixel intensities I(i,j) for each RGB channel are summed across each 

image.  Next, the ratio for each channel of corrected to uncorrected value is computed 

and stored in variables  and .  These ratios are applied to each channel at 

every pixel in a new, uncorrected image to get a color-corrected image.  An example 

undersea image correction is shown in Figure 3-5 on page 42.  This correction 

strategy requires only one multiplication per pixel, minimizing real-time 

computational overhead. 
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Figure 3-2: Algorithm to determine frame-average correction ratios 

3.2.2 Lighting Pattern Estimation 

To increase the quality of baseline results from the frame-averaging algorithm, this 

strategy was augmented to account for the non-uniform lighting pattern generated by 

the strobe.  This correction provides greater contrast in target features relative to their 
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background thus facilitates cleaner target extraction. 

 The first step of this algorithm is to compare pixel magnitudes near the center 

of the projected lighting pattern with the magnitude of a pixel of similar visual 

properties in a more distant portion of the image.  This process provides data relating 

changes in pixel intensity, presumed from light attenuation, with distance from the 

center of the lighting pattern.  Images used in this research tend to have the lighting 

pattern centered on the image center, but the correction algorithm is based solely on 

pixel distance from a predetermined point, which could be located anywhere in the 

image depending on the light source.   A MATLAB function was written to facilitate 

point extraction and lighting change calculation, as shown in Figure 3-3 below.  The 

function first loads a raw image in a Bayer pattern, converts the image into a 3-

channel RGB format, then displays the result and requests user-input for point 

matches.  For this work, it is assumed that despite poor lighting conditions, the user 

can still identify similarly-colored light and dark objects, although prior to correction 

most vision algorithms would be unable to autonomously provide such data. 
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rgbImage = BayerCorrect(rawImage) 

display(rgbImage) 

User selects n point matches:  and  lightp darkp

do i = 1 to n 
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end do 

end GetLightingData 

Figure 3-3: Algorithm for extracting lighting correction data 

In Figure 3-3, the p objects represent sets of data relevant to a single pixel – red, blue 

and green value in addition to x and y pixel location.  The local R, G, and B vectors 

have length equal to the number of points selected by the user and store the ratio of 

light to dark value for each color. Finally, the d object stores pixel distance from the 

center of the image,  and , except for the case where the center of the image is 

not the center of the lighting pattern and a different set of values would be used. 

xo yo

 Once this set of data has been calculated, an exponential curve is fit to the data 

using Microsoft Excel.  Data from each color channel is separately analyzed, and a 

coefficient and exponent are determined for each.  Each curve fit equation is based 

solely on pixel distance d[i] from the center of the light source projection, so a 
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template image is created with the exponential calculations already performed to 

reduce the number of calculations during execution time.   

Figure 3-4 below shows the process for creating the image containing the 

lighting correction template.  I represents the size of images to be processed, d is the 

distance measurement calculated at each position with o being the light source focus, 

R, G and B are matrices that hold the correction ratios.  Combining R, G and B into a 

single 3-channel image provides the correction pattern.  Parameters c and e used in 

the exponential calculations are output from the exponential curve fit based on the 

data from Figure 3-3. 
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end do 

Figure 3-4: Algorithm for creating a lighting pattern template image 

To apply the result of Figure 3-4, the real-time software must simply perform a 

multiplication for each channels (RGB) of each pixel to adjust the uncorrected image 

with the lighting correction pattern.  Figure 3-5 shows the results from application of 

the color and lighting correction algorithms described in this section.  The WHOI 
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algorithm image is considered as “truth” but as mentioned earlier, the execution time 

to perform the correction is prohibitive to real-time operation.  For AVATAR, simply 

using the lighting pattern correction is sufficient to provide consistent data across the 

entire image, which is essential to target segmentation.  The frame averaging 

correction makes the images more visually appealing to an observer, but a linear 

change in RGB intensity does nothing to increase effectiveness of the color filter 

described in the following section. 
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 (a)               (b)           (c)          (d
Figure 3-5: Side-by-side comparison of an image corrected for the lighting pattern.   

(a) Uncorrected, (b) WHOI algorithm [12], (c) frame averaging, (d) frame averaging with 
lighting pattern estimation 

.3 Feature Extraction 

s discussed in Section 2.3, numerous methods have been developed to extract 

eatures from an image.  For this research, a basic RGB based color filter is applied to 

egment targets of a specific color.  This is most closely related to the histogram 

ilters, yet by using a combination of all three channels, choosing specific ranges on 

he image histograms may not produce consistent results across channels.  The main 

ssues to address with this algorithm are inconsistent lighting due to shadows or 

ncorrected lighting variations, and identification of targets with a color that closely 

atches the background. 

 For initial development, only the first problem was handled – creation of an 
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algorithm that deals with lighting changes.   The developed filtering algorithm 

distinguishes targets from ratios of red, green and blue values for each pixel in 

addition to the magnitude of each.  Intuitively, this approach removes the effects of 

overall brightness disparity through the use of ratios -- while the brightness of all 

colors may be changing, the relative amount of red vs. blue, blue vs. green, or green 

vs. red will remain relatively constant.  A similar effect could be achieved by 

converting each pixel into a hue-based format, a potential future improvement, as 

would be the use of multiple methods [17][20].   

3.3.1 Filter Creation  

Prior to application of a filter, the base values for a desired target must be determined.   

A MATLAB function was created to simplify the filter creation process.  An ideal 

filter would separate the image into two groups: pixels that are part of a desired target 

and pixels that are either background or part of an undesired target.  This program 

allows the user to select sets of points from both groups and then plot the appropriate 

filter values.  Through the plots of the different filter values, appropriate ranges can 

be extracted to successfully perform target extraction on other images.  Figure 3-6 

shows pseudocode for this function.  
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end do 

Figure 3-6: Algorithm for extracting feature ratio values 

This function is applied to both the desired sampling target as well as any competing 

targets with similar visual properties.  By plotting the output ratio data from both sets, 

stored in vectors RvG, RvB, and BvG, with respect to the overall magnitude at each 

point, M, appropriate filter values are easily extracted.  Figure 3-7 shows an example 

plot from this program with the range of values for sampling target and background 

clearly separated for a chromatically-distinctive target, a yellow rubber ducky, and a 

less clear distinction for a sand dollar from an image similar to Figure 3-5 on page 42.  

Use of the magnitude data is only necessary when there are similarities in color data 

corresponding with variations in magnitude. 
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Figure 3-7: Sample plots showing Red/Blue ratio data for rubber ducky target (left) and 

uncorrected sand dollar (right) 

3.3.2 Application of the Color Filter 

Once ranges of values have been selected, application of the filtering algorithm is 

straightforward.  The algorithm compares pixel RGB ratio data with the values set for 

the filter, and if they fit within the target range they are unchanged, otherwise they are 

set to 0.  Figure 3-8 shows this process.  Increased accuracy, at the risk of increased 

complexity, can be achieved by including the magnitude measurement either as a 

maximum/minimum similar to the ratio ranges, or by providing multiple ratio 

maximum/minimum values depending on the overall magnitude. 
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do to  1=i widthI

 do 1=j to  heightI
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end do 

Figure 3-8: Algorithm for RGB ratio color filter 

Upon successful completion of the color-based portion of the feature extraction 

algorithm, the resulting image contains a thresholded image where only “good” target 

points remain.  After the entire image is thresholded, an erode operation [13][19] is 

applied to remove stray noise pixels and incomplete features.  Since this process 

reduces the quality of remaining features of interest, a Feature-AND operation [19] is 

then applied to restore these features to their full quality.  The Feature-AND process 

performs a basic AND operation between two images, but restores any connecting 

pixels that may only appear in one image.  Thus, small features will be removed 
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through the erosion process and larger features, which remain after erosion, will be 

restored to their original state. 

Although this erosion and restoration process is optional, it allows the color 

filter to be significantly more liberal in the filter maximum and minimum values, with 

the positive result that features of interest are more complete, but the negative result 

that more false positives and noise remain in the image.  By implementing the erode-

and-restore algorithm, the features of interest will remain at higher quality and 

unwanted features will be removed.  Unfortunately, as with the other optional 

algorithms, this adds complexity and computations to the algorithm, reducing the 

overall frequency with which the vision analysis can operate.  Figure 3-9 shows 

images at each stage of the filtering process. 
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 (a)               (b)           (c)          (d
Figure 3-9: RGB ratio filtering process 

(a)  start with lighting-corrected RGB image, (b) filter based on RGB ratio values,  (c) erode to 
remove noise and (d) restore with feature AND operation (Original image courtesy WHOI) 

.3.3 Feature Extraction 

he next portion of the algorithm is designed to operate on the lighting and color 

iltered images to determine location and size of all remaining features.  The 

lgorithm for extracting feature size and location from a filtered image consists of a 

ecursive search process that calculates any desired target data useful for later 

lgorithms.  The search process begins at the top-left corner of the filtered image and 
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searches from left to right, top to bottom for pixels that remained “on” after the 

filtering algorithm is executed. Upon reaching a first “on” pixel, the local minimum X 

value associated with the global minimum Y value is recorded, and the algorithm 

initiates a search to record the locations of all connecting pixels.  If the pixel area of 

the remaining features fit within a specified threshold, the recorded list of pixel values 

representing each entire feature is used for further calculations including centroid, 

area and aspect ratio.  Figure 3-10 shows the two basic functions associated with the 

feature information extraction algorithm. 

Function DoImageFeatureSearch 

0=snumFeature  

do to  1=i widthI

 do 1=j to  heightI

  if )0,0,0(],[ ≠jiI  then 

   1+= snumFeaturesnumFeature  

    =][ snumFeatureF CheckConnectedPixels( ji, ) 

   end if 

 end do 

end do 

end Function 

 

Function CheckConnectedPixels 

if  then )0,0,0(],[ ≠jiI

 .add(f ji, ) 

  )0,0,0(],[ =jiI

 .add(CheckConnectedPixels(f ji ,1+ ) 

 .add(CheckConnectedPixels(f 1,1 −+ ji ) 

 .add(CheckConnectedPixels(f 1, −ji ) 
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 .add(CheckConnectedPixels(f 1,1 −− ji ) 

 .add(CheckConnectedPixels(f ji ,1− ) 

 .add(CheckConnectedPixels(f 1,1 +− ji ) 

 .add(CheckConnectedPixels(f 1, +ji ) 

 .add(CheckConnectedPixels(f 1,1 ++ ji ) 

end if 

return  f
end Function 

Figure 3-10: Algorithms used to extract feature raw data 

The first function, DoImageFeatureSearch searches the image until finding a non-

black pixel in RGB format (i.e., )0,0,0(],[ ≠jiI ).  After an “on” pixel is found, the 

recursive procedure described in the CheckConnectedPixels function begins.  This 

function checks the value of an input pixel and if non-zero adds the pixel location to a 

list.  This operation is repeated on all eight neighboring (adjacent) pixels.  By setting 

all three channels to zero after recording each identified location with non-zero initial 

value, the function ensures that no pixel will be counted twice.  On return, the f vector 

contains ordered pairs for all pixel locations within the current feature.  

DoImageFeatureSearch retains a list of all possible features within F. 

 Implementation of these feature extraction functions is realized in C++ using 

the Standard Template Library, or STL [28].  By storing the pixel locations as an STL 

vector, inherent STL functions can be used to operate on the data.  For instance, the 

feature area can be calculated by calling the “.size()” member function.  STL iterators 

are used to iterate through each list of feature points with functions to determine 

aspect ratio and other relevant information. 
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 The data set for each feature is produced from a few simple calculations.  

First, a single loop through all the data points is performed to identify boundary 

points around the image edges.  Eight edge points of the feature are recorded, which 

consist of all perturbations of local and global maximum and minimum X and Y 

values.  Table 3-1 shows a list of the eight points and Figure 3-11 visually shows each 

point on a sample set of matched targets, from the feature matching algorithm 

detailed in Section 3.4.1. 

Table 3-1: List of Feature Shape Points 

Point 
Number 

Local/Global 
X 

Max/Min 
X 

Local/Global 
Y 

Max/Min 
Y 

 Notation in 
Figure 3-13 

1 Local Minimum Global Minimum   ),( , topYropl YX
2 Local Maximum Global Minimum   ),( , topYropr YX
3 Global Maximum Local Minimum   ),( , Xrtopr YX
4 Global Maximum Local Maximum   ),( , Xrbotr YX
5 Local Maximum Global Maximum   ),( , botYbotr YX
6 Local Minimum Global Maximum   ),( , botYbotl YX
7 Global Minimum Local Maximum   ),( , Xlbotl YX
8 Global Minimum Local Minimum   ),( , Xltopl YX

 

 

Figure 3-11: Perimeter points of feature shown in sample feature match 

Once the boundary points have been determined, aspect ratio is calculated based on 
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the global bounding box of the feature.  The ratio of feature area to bounding box area 

is also calculated, and henceforth referred to as the area ratio.  The area ratio gives the 

software an idea of feature “density”.  For instance, a feature generated by connected 

noise pixels can have a significant area, but will usually be far from solid.  Figure 

3-12 is an example using Ranger’s parallel jaw end effector.  An ineffective filter for 

the Ranger Interchangeable End Effector Mechanism (IEEM) has left much of the 

jaw still visible.  Although the remaining pixels do not form a solid feature, they are 

still identified as a feature due to connectivity. 

 

Figure 3-12: Ineffective filter of Ranger’s IEEM and end effector 

 After compiling feature data, another filter is applied based on the feature’s 

image plane geometric properties.  Feature area, aspect ratio, and area ratio are used 

to determine whether or not the recently-discovered feature is a correct match for the 

target the vision system is attempting to identify.  Figure 3-13 shows the computation 

of 2-D feature geometric properties.  Definitions for each of the X and Y variables and 

related subscripts are present in Table 3-1.  The totalX and totalY variables are sums 

of all point locations used in the calculation of the centroid, (Cx, Cy).  The total 

number of pixels is denoted by size(f), where f is the list of feature point pixel 
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locations determined from the algorithm in Figure 3-10. 
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Figure 3-13: Algorithm for extracting feature geometric properties 

3.4 Stereo Correspondence 

Once a list of extracted features is available, the next step is to match features to 

establish proper correspondence between stereo images.  This will eventually enable 

3-D position determination for targets within the camera frame of reference. 

3.4.1 Feature Matching 

As described in Chapter 2, many algorithms exist for autonomously matching features 

and points between corresponding images [29][30][31][32].  When practical, most 

algorithms require human interaction to improve accuracy [33].  For this application, 

human interaction is not feasible except for offline algorithm tuning.  Different 

matching algorithms comparing size, shape and geometric properties of the system 

were applied in different phases of this research.  The first algorithm is based solely 

upon feature properties, only eliminating geometric impossibilities from the list of 

possible matches.  The second algorithm inverts this process, initially creating a list 

of geometric possibilities, based upon Epipolar constraints, and then uses feature 

properties as a sanity check to ensure the features are visually similar. 

 The shape-based algorithm begins by using the nine interest points from each 

feature – eight points around the edge of the features, as shown in Figure 3-11, and 

the centroid.  By determining the unit vector and magnitude from each of the nine 

points to every other point, a mathematical “shape” is calculated which can be used to 
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compare feature sets.  Figure 3-14 shows the algorithm used to calculate the set of 

shape vectors.  Although this procedure performs redundant calculations, this 

procedure retains matching code simplicity. 

do  to 9 1=i

 do 1=j  to 9 

   if ji ≠  then 
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  end if 

 end do 

end do 

Figure 3-14: Algorithm to calculate feature shape vectors 

The p variables represent the sets of nine points associated with a single feature.  M 

and S store the calculated data for magnitude and shape, respectively.  Each image 

will have a set of p vectors with size equal to the number of discovered features in 

that image.  By minimizing the differences between feature descriptors from 

corresponding images, targets with the same shape and orientation will be matched 

correctly between paired images with this comparison of relative position between 

external points and the centroid.  It is important to note that relying on this orientation 

data requires the assumption that the camera image planes are nearly parallel.  Figure 

3-15 shows the basic process for the shape-based feature matching. 
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do  to  1=i leftn

  FindBestMatch( ) =][iBM rightleft i PP ],[

end do 

HandleRepeatMatches( BM ) 

Figure 3-15: Algorithm to match features by shape estimates 

The Pleft and Pright variables contain the sets of feature points and related shape and 

magnitude values, M and S, calculated in Figure 3-14.  BM stores the minimum error 

value match between a feature from the left image and the set of features from the 

right image, as determined by the FindBestMatch function.  The FindBestMatch 

function determines the best match by minimizing differences in the respective M and 

S data.  In addition to using shape data, the algorithm applies a single geometric 

constraint – the X value of the centroid in the left image must be greater than the X 

value in the right image.  In other words, the feature must be in front of the cameras.  

Even after applying minimization of error data, if identical targets are placed within 

the same field of view, mismatches can occur.  In the case that multiple features from 

the left image are matched with the same feature in the right image, the 

HandleRepeatMatches routine determines which has a lower error and voids the other 

matches.  

 To simplify the feature matching process and eliminate impossible geometric 

matches, a new algorithm was developed that primarily utilizes geometric parameters 

to create a list of possible matches.  Feature shape properties are then required only to 

“break ties” in cases where multiple possible matches are available.  Due to the 
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reliance on the more selective epipolar constraints, the complexity of the matching 

algorithm significantly decreases in addition to becoming more accurate.  In target 

fields where all targets have significant pixel area and there is minimal overlap, it is 

almost impossible to have multiple match cases after making some intelligent 

assumptions, thus increasing the constraints already imposed by epipolar geometry. 

 Epipolar geometry constrains features to match along a single line within a 

corresponding image in a calibrated stereo system.  By making assumptions on 

minimum and maximum distance from the cameras, this line through the full image 

can be reduced to a short segment.  Distance assumptions are valid since target area 

will be too large or small if too close or far from the cameras, respectively.  These 

constraints are met by translating feature coordinates in an original image to a limited 

search box in the corresponding image.  The parameters of the box are defined such 

that a realistic segment of the epipolar line in contained within the box, but also, r to 

account for calibration errors, a region around the line is also searched for possible 

matches.  This algorithm represents a significant simplification to the research 

presented in [30].  Figure 3-17 shows a populated target field with all targets 

correctly, matched using this set of assumptions.  Figure 3-16 summarizes this 

matching process. 
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do  to  1=i leftn

 do 1=j  to  rightn
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  HandleRepeatMatches( ) ][iPM

 end if 

end do 

Figure 3-16: Algorithm to create a geometric based possible match list 

The output of this routine is the list of possible matches .  If a possible match 

between left feature i  and right feature 

],[ jiPM

j  exists, then that value of the  matrix 

will be non-zero.  The four values of  and  form the box 

around possible target positions based on geometry.  Usually the  data will not 

contain multiple matches for each feature.  However, if repeat matches do occur, the 

shape-based error minimization routine can be applied to determine the “better” 

match based on shape. 

PM

minmaxmin ,, dydxdx maxdy

PM
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Figure 3-17: Sample correlated images used for geometric match testing 

3.4.2 3-D Reconstruction for Target Position 

 The final step of the stereo correspondence process is to triangulate target 

position.  Similar to the calibration process, a stereo triangulation algorithm from the 

MATLAB calibration toolbox [3] was converted into C code for seamless integration 

with the rest of the target acquisition system.  Figure 3-18 shows the stereo 

triangulation process, where initial pixel coordinates are represented by  and  

while output vision-frame coordinates are designated by 

leftx rightx

XL  and XR  for left and 

right camera locations, respectively. 
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Figure 3-18: Algorithm to calculate 3-D target position via stereo triangulation 

The first step of the algorithm is the normalize function [3].  This function applies the 

intrinsic camera calibration parameters to the initial image plane coordinates.  The 

next step is to build a homogenous coordinate vector by adding a third dimension, the 

1.  The remainder of the algorithm triangulates the initial rays,  and , in 3D 

space.  The extrinsic parameters of the system also appear in this algorithm, shown as 

, or the transpose , and the translation vector . 

lX rX

RR
L RL

R L
R t

Implementation of this algorithm exists in two forms.  The first method 

calculates a 3-D position for all of the externally matched points determined in the 

shape calculation.  The second method determines target position solely from the 

pixel values calculated for the centroid of the feature in both images.  Using all points 
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will reduce error from a single point, but in the case where the image planes of the 

cameras are not aligned, these external points will not match.  By using only the 

centroid, testing has shown that accurate localization is still possible, but the position 

is much more sensitive to single pixel error.  Both methods were implemented during 

tests of the vision system with Ranger.  

3.5 Visual Servoing 

Uncertainties in calibration due to even slight camera misalignment can result in poor 

target sampling success.  Research has been done that shows inclusion of visual target 

data within a simple control loop, often referred to as visual servoing, can overcome 

errors that arise from calibration uncertainties or errors, even if the initial calibration 

is extremely inaccurate [10][11].  To successfully implement visual servoing, the 

vision system must be able to identify and track both the manipulator end effector and 

the desired sampling target.   

3.5.1 Visual Servo Algorithm 

The goal of the visual servo algorithm is to alleviate inaccuracies in manipulator-

camera relative positions due to calibration errors.  Instead of triangulating the 

position of just the sampling target, the vision system must now also recognize a 

target on the manipulator.  To be of use to the manipulator controller, the coordinates 

must be transformed into a frame of reference that the manipulator recognizes.  For 

this algorithm it is assumed that the procedure discussed in Section 3.1.2, the camera-

manipulator registration, has already been performed and these values are known.  

The vision system must now “track” both targets through subsequent analyses to 
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make sure all data is consistent.  By commanding the manipulator to move towards 

the sampling target, in terms of what the cameras are seeing, and repeating until the 

distance is zero, inaccuracies within the stereo system calibration and camera-

manipulator registration can be ignored and successful sampling can still occur.  

 The visual servoing algorithm is shown in Figure 3-19.  The first step of the 

algorithm is to acquire positions of possible manipulator and sampling targets from 

the vision system.  Once the targets have been acquired and their positions calculated, 

the software must choose the correct targets if multiple candidates exist.  After the 

targets have been selected and verified, the third step of Figure 3-19 is reached.  

Subsequently, all p variables represent 3-D locations of targets.  The leading 

superscript denotes the coordinate frame – v for vision, 0 for manipulator base and T 

for manipulator tool frame, while the trailing subscript defines target type.  By default 

all measurements are made by the vision system, but if that is not the case a second 

subscript indicates the measurement device, such as telem for arm telemetry.  The 

rotation matrix  and translation vector  are the result of the hand-eye 

calibration (camera-manipulator registration).  However, the manipulator controller 

provides the rotation matrix  so that the vision system does not require knowledge 

of manipulator pose in addition to tool position.  The tool vector  is the 

translation from where the vision system measures the arm position and the actual 

tool tip.  During tests with Ranger,  was the vector from the IEEM to the tip of 

the parallel jaw grippers. 

RO
V visiont0

R0
T

tool
T p

tool
T p

 Together this data enables calculation of tool tip position in the manipulator 
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base frame based on the coordinates originally measured by the vision system.  First, 

the rotation from vision to base frame is applied to the vision frame coordinates of the 

arm target.  Next, the translation from the location of the vision frame origin to 

manipulator base frame origin must be added.  The final step is to transform the last 

offset of the end-effector, from vision target to tip of tool, into base frame coordinates 

and add that to the previous result.  Once this step has been accomplished, arm 

telemetry is used to ensure the visual estimate is reasonable. 

 Once a consistent arm position is verified, the base frame coordinates of the 

sampling target are calculated in the same manner as the manipulator vision target 

except with no additional tool offset.  Finally, a base frame motion vector is 

calculated to drive the manipulator toward its target grasp state.  

 This motion vector is scaled down to match a maximum move distance for 

safe operation of the manipulator.  If the calculated motion vector is less than the 

maximum move value, the following arm motion is the final move.  If at any point the 

vision system loses track of either target, the system will stop moving until either the 

target is recognized once again, a timeout is reached, or an operator kills the process.  

As the manipulator approaches the target, it is likely that partial or total occlusion of 

the target will occur.  Without full knowledge of end effector and manipulator design, 

purposely omitted from the vision software to ensure portability, it would be 

impossible to account for occlusion from these sources.  If the target is completely 

stationary, its position could be assumed constant if lost, but this may not be valid.  A 

more in-depth analysis of target occlusion is located in Section 3.6.2. 
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Figure 3-19: Algorithm for arm motion through visual servo 

3.5.2 Minor Visual Servo Functions 

Target Identification 

For the visual servo algorithm to function properly, the system must be capable of 

recognizing multiple target types.  Target identification in this manner is simple – 

multiple target filters are performed on the initial images to extract both types of 

visual targets, sampling vs. manipulator.  With correct target identification, this 
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procedure is sufficient.  In Figure 3-19 this is handled by the GetNewVisionData 

function.  This performs the appropriate feature extraction and matching algorithms to 

populate the respective p variables with data describing the sampling and manipulator 

targets.  At this stage of development, no calculations are performed to select which 

targets are correct, thus the system relies on unique identification of one sampling and 

one manipulator target. 

Target Tracking 

Implementation of the visual servo controller introduces the requirement that the 

selected sampling and arm targets recognized over a sequence of images are 

equivalent.  In Figure 3-19 this is denoted the CheckForValidVisonData function.  

This function validates that observed motion between frames is consistent with 

expectations.  In the case of a stationary target, there should be no significant motion, 

and, in the case of a slowly moving target, such as the arm, the perceived motion 

should match projected estimates.  All our targets were presumed stationary during 

test sequences.  Also, due to the slow update rate of the vision system, constrained 

both by AUV electrical power and processing considerations to approximately 1 Hz, 

it is impossible to track fast moving targets.  However, in future work it may be 

possible to add a Kalman filter to propagate arm motion at intermediate time points.    

 If only single targets for each of the sampling and manipulator targets are 

found, they are trivially matched over an image sequence.  With multiple targets, the 

algorithm selects the target with position closest to the previously used target. 
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3.6 Management of anomalies, occlusions, and poor visibility conditions 

When operating in a fully autonomous setting, a system must be capable of handling 

off-nominal situations that may arise.  To date, the AVATAR vision system has 

focused on baseline implementation and validation, but some problematic anomaly 

scenarios have been enumerated for which we suggest potential strategies for robust 

autonomous management.  For the underwater sampling mission, likely challenges 

will take the form of poor visibility caused by silt or hydrothermal vent fluid, target 

occlusion, and misinterpretation of the image data resulting in target recognition or 

localization anomalies.   

3.6.1 Poor Visibility 

Although deep-sea visibility is typically excellent, poor visibility conditions could be 

encountered due to two major sources: the vehicle or manipulator agitating the ocean 

floor and causing silt to rise, or from the black smoke emitted by the hydrothermal 

vents.  To handle the case where the AUV or manipulator causes silt to rise due to 

impact with the ocean floor, the system need only wait a short period of time for the 

silt to settle.  Videos recorded during dives of the WHOI ROV Jason II show that it is 

a common occurrence for the manipulator, while being teleoperated, to collide with 

the soil and cause temporary visibility problems.  However, after only a few seconds 

of remaining motionless, the agitated silt settles and visibility returns to normal.  In 

terms of the vision algorithm, this means that it must be able to recognize when the 

quality of the image has decreased due to visibility degradation, possibly also through 

feedback from the manipulator, and initiate a wait sequence until image quality has 
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been restored. 

 The second case is where visibility is reduced due to occlusion from 

hydrothermal vent fluid.  Hydrothermal vents or “black smokers” excrete high 

temperature fluids that will cloud camera views.  The interaction of ocean floor 

currents with vent fluid is perhaps the most likely long-term poor visibility scenario 

that could compromise sampling efforts.  These currents can spread the fluid while it 

is still rising, and downstream of the vent visibility can be quite poor.  This problem 

can be managed by moving upstream of the vent to another possible sampling area.  

Although such maneuvers are dictated by autonomy software outside the scope of this 

thesis, the vision system must be able to recognize and alert this autonomy software 

when the camera visibility becomes poor, ideally also classifying the poor visibility 

conditions as due to fluid or silt.  

3.6.2 Occluded Targets 

The other major problem that must be handled is target occlusion due to either the 

manipulator blocking key portions of the camera field of view, or sampling site 

topography causing occlusion of desired targets.  Having full view of the desired 

sampling target in both cameras is vital to accurate 3-D localization and successful 

target retrieval.  Prior to field trials with the final system, these issues must be dealt 

with to ensure simple target occlusion does not cause mission failure. 

 There are currently two methods to deal with target occlusion as a result of the 

manipulator entering the camera field of view.  Depending on overall accuracy of the 

system calibration and confidence that the target and AUV base are truly stationary, a 
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single snapshot of the visual target data with the manipulator stowed out of the 

camera views is sufficient to fully specify the target location open-loop.  If this 

“dead-reckoning” operational paradigm is sufficient, then manipulator occlusion 

during the sampling process can be ignored. 

 Alternatively, if regular data updates are required, either for a visual servo 

system or because of a slow moving target or drifting AUV, then active steps must be 

taken to prevent occlusion by the manipulator.  Research is underway at SSL for 

autonomous obstacle avoidance with a manipulator [34].  By creating virtual 

obstacles for manipulator poses that would block visibility for the cameras, and then 

avoiding these poses, it may be ensured that target occlusion will not occur.   

 If the manipulator is not blocking the camera view yet targets are still visible 

in only a single camera view, then it is likely that something within the sampling site 

is occluding targets for one of the cameras.  Then, if there are no other targets can be 

successfully retrieved while in this position, the AUV must move to another sampling 

location where target occlusion does not occur.  
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Chapter 4 Software Design and Implementation 

4.1 System Architecture 

The ASTEP system consists of the AUV and its computer, the manipulator and its 

computer (DMU), and the vision system cameras plus computer.  These systems are 

supported by the sensors, actuators, and auxiliary equipment (e.g., strobe lights, 

batteries, etc.) to enable robust autonomous deep-sea operation.  Figure 4-1 shows the 

layout of the key computers and related hardware on the AUV.  The DMU computer 

interfaces with both the vision computer that connects with the cameras, and the 

WHOI computer that controls the AUV. 

 

Figure 4-1: Overview of AUV system architecture 

First, the sub-architecture of the DMU computer will be analyzed to develop the 

relationship between all three systems (vision, manipulator and AUV).  Next, the 

modules of the vision computer and its protocols will be broken down into greater 
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detail  

Two different architectural components are of major importance to this 

research.  First is the structure internal to the vision system.  This module (AVATAR) 

includes both vision analysis methods/software as well as all the interfaces to control 

and retrieve data from the cameras.  The second modules (TAU) developed to isolate 

AUV and manipulator specifics from vision algorithms are the software and data 

structures that interface the vision system with the external vehicle.  Two such 

system-specific interfaces are discussed:  a lab-based implementation for the Ranger 

manipulator and an implementation that will enable future field trials with the 

SAMURAI-AUV system. 

4.1.1 DMU Sub-Architecture 

For testing and field trials, the vision-based target acquisition system will exist as one 

of many modules within a larger vehicle-wide software system.  For this thesis, 

testing of AVATAR takes place within the scope of the Ranger manipulator system 

architecture.  When the NASA-ASTEP mission comes to fruition, the vision system 

will be implemented as part of the larger-scale SSL-WHOI SAMURAI-AUV 

software system. 

Ranger Software Architecture 

When tested with the Ranger manipulator, the vision system is interfaced through the 

Data Management Unit, or DMU.  The DMU is the primary computer for Ranger, 

executing all safety, control and interface algorithms necessary for operating the 

manipulator.  Traditionally, Ranger has been teleoperated through a control station 
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that receives commands from hand controllers.  To operate Ranger autonomously, a 

trajectory file must be loaded into the Ranger control station.  For vision-based 

sampling tasks, a special trajectory software module capable of communicating with 

TAU through a DMU object was implemented to perform as a visual servo controller.  

 As shown in Figure 4-2, the system controller is the top-level DMU module.  

The system controller can manage multiple arm controllers, where each arm 

controller manages a single manipulator.  For the Ranger implementation of the 

DMU, the note inside the system controller can be ignored, as it is only relevant for 

the ASTEP mission with SAMURAI.  Within the arm controller are three methods of 

moving the manipulator hardware: runtime trajectories, incremental joint-by-joint 

commands, and a resolved rate controller that utilizes hand controllers. Each of these 

types of controllers is based on implementations of the manipulator’s inverse and 

forward kinematics for calculating joint angle changes based either on desired 

Cartesian position and orientation or iterative joint trajectories.  The runtime 

trajectories are different from the other two methods, as they run based on a file that 

may contain a series of waypoints in either Cartesian or joint space.  At 125Hz the 

specified controller will calculate the new joint angles and apply them to the 

manipulator. 

The vision system interfaces through a special trajectory item communicated 

through TAU during the system control loop.  The visual servo trajectory 

implementation uses other, more traditional trajectory controllers (joint-by-joint or 

Cartesian) within itself to determine incremental joint angles for the arm based on the 

desired motion calculated by the vision system.  By using Ranger’s communication 
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protocols within TAU, implementation of TAU within the Ranger DMU structure 

was straightforward.  

 

Figure 4-2: DMU Software Architecture UML Diagram 

ASTEP Software Architecture 

Due to the modularity of the TAU interface, future missions with the SAMURAI 

manipulator will be conducted with essentially the same vision software as with 

Ranger, with the additional capabilities present in the system controller note in Figure 

4-2.  In addition to manipulator kinematic and hardware specifics, the main difference 
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is the presence of an autonomy engine on top of the DMU.  This module must issue 

the supervisory directives a human operator initiates with the Ranger manipulator 

based on knowledge of manipulator and vision system data, such as deciding upon a 

specific target in the manipulator workspace or realizing that no targets are reachable 

and thus AUV motion is necessary.   

4.1.2 Vision System Modules 

The operational version of the target acquisition software is split into two main 

modules, the primary AVATAR system responsible for converting raw images to 

target coordinates and TAU, the software that provides the link between AVATAR 

and other systems including the manipulator, AUV, and human user for lab-based 

tests.  The AVATAR/TAU separation of functionality was created to isolate changes 

in the computer vision and image processing from perpetuating outside of AVATAR, 

and vice versa assure that the operation of AVATAR is not affected by external 

changes in system architecture, communication protocols, and AUV/manipulator 

hardware and software systems.  Figure 4-3 shows a high level diagram of the vision 

system implemented in this thesis.  The arrows imply knowledge; for instance, the 

Analyze module has knowledge of Common, but not vice versa.  A typical target 

acquisition cycle consists of the DMU requesting an analysis via TAUUnit, the 

implementation of TAU on the DMU.  TAUNet, the TAU implementation on the 

vision computer, handles this request by invoking AVATAR through an instance of 

VisionInterface, a class that implements and initializes AVATAR specifically 

for use through TAU.  Once AVATAR has completed the analysis, the data is relayed 
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back to the DMU through VisionInterface and TAUNet and finally to 

TAUUnit.  Section 4.2 discusses each of the modules from Figure 4-3 in greater 

detail. 

 

Figure 4-3: Vision System Overview 

4.2 AVATAR 

AVATAR is an object-oriented software product designed to be modular and reliable 

for fully autonomous operation.  Many open-source software tools were utilized to 

aid in this effort, as described below in Section 4.5.2.  The final AVATAR release 
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contains four major modules – Acquire, Analyze, Common, and Config. 

 The Common and Config modules hold support classes that are used 

throughout the rest of AVATAR.  Common handles the storage and general 

manipulation of images, while Config reads system configuration, making sure the 

proper values are set and storing modified configurations as needed.  Acquire 

handles the acquisition of images from the cameras and stores images in memory for 

future use.  Analyze encapsulates all image processing and computer vision 

algorithms necessary to accurately identify and calculate desired target positions.  

4.2.1 Common 

The Common module contains the low-level building blocks for AVATAR, 

encapsulated in the StereoImagePair class.  Each StereoImagePair, or 

SIP, may contain a pair of OpenCV images or a pair of virtual “images” mapped to 

raw memory associated with acquiring images over a camera bus.  The SIP class 

allows a corresponding pair of images to be transmitted anywhere in the system 

without requiring additional overhead to keep track of left vs. right image.  In 

addition to the SIP class, the Common module also houses the 

StereoImagePairFileIO class used to read and write images from a hard disk. 

 Apart from providing the framework for storing the images, Common also 

houses utility functions used throughout AVATAR.   The image-related functions 

handle swapping endian values for 16-bit images in cases where this is necessary.  

Also included is the function for converting a Bayer pattern image to RGB format.  

The last utility functions create and manage the system-wide logger, log4cpp. 
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4.2.2 Acquire 

The Acquire module is split into five classes, four related to acquiring a SIP and 

one containing the custom driver for firewire cameras.  All classes that perform image 

acquisition are derived from the AcquireStereoImagePair class.  

AcquireStereoImagePair contains the basic functions required for the 

spectrum of acquire methods, while the derived classes, AcquireSIPFirewire, 

AcquireSIPFileLoader and RawDataAcquire implement the specific 

algorithms for acquiring images from different sources.  The final class is the 

AvatarCameras class, providing access to camera hardware over a firewire bus.  

Figure 4-4 shows a UML diagram of the classes in the Acquire module describing 

important functions and objects. 

 

Figure 4-4: UML Class Diagram of the AVATAR Acquire Module 

 The AcquireStereoImagePair class functions enable unique 

identification of each set of acquired images in addition to storing the association to 

the SIP that receives acquired images and performs all initializations general to each 
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of the derived classes.  Two values, group number and member number, identify each 

subsequent set of acquired images.  Member number is incremented every cycle.  

Although group size can be set, group number is incremented only when a system 

configuration change occurs.  Thus, when either the member number reaches the 

group size, or a configuration change occurs, the group number is incremented and 

the member number is reset.    The default group size is 99,999 for file naming 

purposes; five digits are reserved in the current naming scheme. 

 AcquireSIPFileLoader is a legacy class that reads data from stored 8-

bit image files, e.g., jpg or bmp, rather than acquiring real-time image data.  This is a 

relatively simple class that interfaces with Common’s 

StereoImagePairFileIO class to load a corresponding pair of images at each 

iteration.  Since current system hardware includes 16-bit cameras and 16-bit images, 

this class remains unused except when performing past test cases, although 

implementation with an 8-bit camera system would require this class. 

 The RawDataAcquire class replaces the AcquireSIPFileLoader 

class in the new system.  This class can handle raw images of any bit-depth as 

specified by the configuration file.  However, it only supports raw images, which in 

this case are binary files containing only the image data.  The current file naming 

scheme for raw files contain all information required to reconstruct the correct image 

size and bit-depth from the raw memory block.  This acquire method is used for 

recreating a previous test from raw data and the system log file.  See Section 4.3 for a 

detailed explanation on how the recreation is performed.   

Once the raw data is in memory, further manipulation is required based on the 
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raw data format.  Currently there are two possible transformations that must occur, 

both of which are contained in the Common utility functions.  The first is the endian 

swap, necessary only if the system to which the cameras are connected has a different 

byte order than the firewire cameras.  The second is the Bayer pattern correction used 

if the cameras store images in a grayscale Bayer pattern rather than a three channel 

RGB image (recall the definition of Bayer pattern from Section 2.2).  

 AcquireSIPFirewire is the final derived class for acquiring images.  It 

contains an AvatarCameras object that handles image acquisition from the 

hardware.  This is the most significant difference from the RawDataAcquire class.  

The other major difference to AcquireSIPFirewire is that it allows the user to 

dynamically adjust camera physical properties, e.g. exposure or white balance, to 

account for changing light conditions, environment changes, etc.  

 The AvatarCameras class is most complex module within the Acquire 

module, as it has to interface with the kernel modules, camera hardware, and the rest 

of the Acquire framework.  The idea behind this class was to create a wrapper 

driver for libdc1394, described in Section 4.5, to make the library more suitable for 

autonomous operations while keeping the AcquireSIPFirewire class as simple 

as possible.  To accomplish this, the AvatarCameras class must be able to perform 

two main tasks – provide a configuration interface to the cameras and store 

corresponding images from the camera pair into memory. 

 Each firewire camera has different features the user can customize, so the 

current feature set, enumerated in the CameraHardwareConfig structure, is the 

set of features the Point Grey Scorpion cameras use for hardware testing.  Although 
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this diminishes software portability to a certain degree, the ASTEP target mission will 

only use the Scorpion cameras.  libdc1394 can handle a much larger set of camera 

features, so in future work the programmer must add additional features to the 

configuration set as required and make the corresponding changes to the software. 

 The implementation of libdc1394 for initializing and taking images with the 

cameras is the most complicated portion of the Acquire module.  The first step of 

the initialization process is to locate all cameras on the bus, then attempt to match the 

camera hardware ID values with those specified in the configuration file.  It is critical 

that the left and right cameras are properly identified or else the stereo calculations 

will be incorrect.  Once the cameras are correctly identified, they are initialized for 

the type of images recorded – a DMA format 7 capture. 

There are a few pitfalls that must be avoided when locating the cameras.  The 

two major problems come from the firewire bus after hot-plugging the cameras or 

restarting the computer to which the cameras are attached.  If the initialization 

procedure attempts to locate the cameras before the firewire bus has settled after a 

camera hot-plug then an error will occur, but this is easily avoided by reattempting 

camera location after a small pause.  The greater problem occurs only on machines 

running Timesys6, the real-time operating system to be used for the ASTEP vision 

computer and DMU.  For an unknown reason, frequently the kernel improperly 

recognizes the cameras.  The current fix for this problem is to reset the bus a given 

number of times then assume there actually are no cameras.  To date, this method has 

worked flawlessly for finding cameras given that they are properly attached to the 

computer. 
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 Once the initialization of the cameras is successful, the remainder of the 

libdc1394 interface is straightforward.  The grabRawImagePair function used to 

perform the image grab must ping the cameras then copy the appropriate memory 

buffer for use in the rest of the target acquisition system.  If both cameras record 

images, expected at this point in the process, error checking can be safely ignored and 

execution continues uninterrupted.  However, if one or both of the cameras fails to 

acquire an image, the reason must be discovered before the process can continue.  

The only such problem encountered thus far has involved intermittent (loose cable) 

firewire connection between cameras and computer after initialization.  Such a 

problem cannot be fixed via software necessitating reliable connections for ASTEP. 

4.2.3 Analyze 

The Analyze module contains all classes that perform image processing actions.  A 

single class, AnalyzeStereoImagePair, performs the target acquisition 

analysis.  AnalyzeStereoImagePair also coordinates each subsequent 

processing step, keeps track of all discovered features, performs feature matching 

between images, calculates the final target coordinates, and stores the data for 

retrieval from a TAU process.  The system is set up such that an RGB SIP is 

necessary for an analysis to occur and targets to be located.  Figure 4-5 shows the 

Analyze module class diagram. 
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Figure 4-5: UML Class Diagram for AVATAR Analyze Module 

The Analyze structure originated as a set series of image processing algorithms, 

implemented in classes derived from the ProcessStereoImagePair class, 

which involves receiving a SIP as input and providing another SIP as output.  

However, to decrease execution time by reducing number of calculations, certain 

processing algorithms were not implemented depending on environment lighting and 

the visual uniqueness of target from background.  For instance, during laboratory 

testing with the rubber ducky target, the order of processing start with the color filter 

implemented in the SIPColorFilter and ImageColorFilter classes, 

followed by feature extraction implemented in SIPFeatureLocator and 

ImageFeatureLocator classes.  This operational environment does not 

necessitate the use of the color correction algorithm used for modifying images 

acquired in low-light environments with a distinct lighting pattern, or the erosion with 

feature-AND restoration required with visually nondescript target fields.  In O-
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notation [35] all the lighting correction and color filtering algorithms have complexity 

O(mxn), where m is image height and n is image width, thus by leaving out 

unnecessary algorithms, the overall complexity is substantially decreased.  Testing 

performed on an Intel Core-Duo Mac Mini running at 1.8GHz with 1GB RAM had an 

average execution time of 1.22s for the Analyze routine without any form of 

lighting correction.  The addition of both lighting correction routines increased this 

execution time to 1.36s.  Not shown in Figure 4-5 is the flexibility to insert additional 

image processing classes, such as a lighting correction class.  The architecture is 

designed to facilitate insertion, removal and modification of the 

ProcessStereoImagePair derived classes, given careful analysis since 

additional complexity may significantly increase execution time. 

 The SIPColorFilter class, after being passed the appropriate SIP to 

filter, sequentially performs the ImageColorFilter processing necessary for 

each image, with separate filtering functions to handle 8-bit and 16-bit images.  

Recall that the color filtering process was described above in Section 3.3. 

 Following color filtering, the remaining image features must be extracted.  

The SIPFeatureLocator class contains ImageFeatureLocator objects for 

each of the right and left images, which can then extract the required data for the 

feature matching process.  Output from the SIPFeatureLocator class takes the 

form of the SIPFeatureList class, STL vectors of required data for continued 

analysis.   

 The next step of the analysis is to correctly match extracted features between 

images based on values from the feature locator process.  Relative position matching 
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works through a recursive procedure that matches each feature in one image with 

another feature in the second image.  This matching process is handled within the 

SIPFeatureMatcher class, capable of implementing a variety of matching 

algorithms, but focusing on the geometric constraint algorithm detailed in Section 

3.4.1.  Output from the SIPFeatureMatcher class takes the form of a 

matchedFeatureList, an STL container holding all relevant data. 

 The final image processing task takes place in the 

StereoCoordinateCalculator class, which calculates target coordinates 

based on the intrinsic and extrinsic calibration parameters of the stereo vision system.  

This procedure is based directly on the stereo_triangulation method from 

[3] but is converted into C++.  Details of this algorithm were provided in Section 

3.4.2. 

 Completion of the StereoCoordinateCalculator process populates a 

VisionTargets object, part of the VisionInterface library, with all target 

data needed external to AVATAR, such as 3-D position, centroid coordinates, and 

object area.  By providing sole access to AVATAR data through this 

VisionTargets object, AVATAR is isolated from all other interfaces. 

4.2.4 Config 

Both Acquire and Analyze modules contain numerous parameters that must be 

modified to reflect changes in the operating environment, target properties, and 

camera systems.  The Config module facilitates changing these parameters via an 

external public interface.  An XML configuration file contains all relative information 
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to completely fill the necessary values for the AVATAR system.  The handling of the 

XML files is mainly done using an SSL created XML Config tool based on TinyXml 

[36], a small, easily configurable XML parsing tool, and Boost [37], a set of open-

source C++ libraries. 

 The four configuration structures are CameraHardwareConfig, 

TargetConfig, MatchConfig and StereoSystemConfig.  

CameraHardwareConfig contains data about the properties of acquired images 

(height and width in pixels, bit depth, channels, Bayer pattern flag, and endian swap 

flag), camera hardware IDs, and initial values for the camera feature set including 

flags for the use of automatic hardware modifications where applicable.  

TargetConfig contains configuration values for the color filters and feature 

locators as well as search window specifics, separated into multiple sections for 

different target types.  A future modification will implement multiple window 

capabilities to enable focus of attention on multiple regions of interest.  The 

MatchConfig structure contains target geometric information and epipolar 

constraints used during the feature matching process.  StereoSystemConfig 

contains all calibration values, intrinsic and extrinsic, necessary for the stereo 

triangulation calculations.  The specific values were discussed in Section 2.1. 

 In addition to header files for configuration data structures, the Config 

module also includes utility functions.  These functions provide an interface for 

reading and writing configuration files from either a file on disk or a string variable.  

Due to conflicts with libdc1394 all XML and Boost code must be in separate libraries 

from modules containing libdc1394-dependent code.  The configuration utility 
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implementation is contained within the TAU interfaces, but it was also used widely 

throughout AVATAR unit tests. 

4.3 TAU 

The Target Acquisition Unit, TAU, describes the collection of software used to 

interface manipulator systems (and in the future the WHOI AUV computer) to 

AVATAR.  There are four levels of TAU software.  First is the wrapping of 

AVATAR into a single public interface, the VisionInterface class.  The second 

layer is the TAUNet application that provides network access to AVATAR through 

the VisionInterface class.  Nominal execution of TAUNet does not provide public 

access to the vision system – another interface must be present to send the appropriate 

messages to TAUNet.  These interface programs are based on the TAUUnit class 

that provides basic interface messages to TAUNet, useful for non-human control, 

while derived classes can be outfitted with greater functionality, such as displaying 

images in the TAUGUI implementation or simply saving images to the disk in the 

TAUTUI implementation. 

4.3.1 VisionInterface 

The VisionInterface class consists of a generic header file with multiple 

implementations, each for a different version of AVATAR’s Acquire methods.  By 

providing this standard interface, the higher levels of TAU can use any method 

seamlessly.  The two currently implemented versions of VisionInterface are 

TAU_1394 and TAU_Raw, corresponding to AcquireSIPFirewire and 

RawDataAcquire, respectively.  This implementation with multiple source files 
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for the same class allows changing the object file used during linking rather than 

modifying which class is used in the source and recompiling the entire class. 

 The main differences between TAU_1394 and TAU_Raw stem from the fact 

that TAU_1394 runs new analyses each cycle, whereas TAU_Raw must parse 

previous tests’ log files, read their images, and reanalyze these images.  Each method 

has inherent difficulties.  The initialization of the firewire cameras in TAU_1394 is 

achieved as described above.  On the other hand, TAU_Raw must parse large log files 

and requires a great deal of preparation to ensure all images, log files and 

configuration files exist and are in the correct directories prior to execution. 

 Other the initialization, which only changes the method of acquiring images, 

there are limited differences between the two classes, such as the method to change 

the configuration.  To make changes to both versions simultaneously, a single source 

file contains code shared between both implementations, while the specific 

TAU_xxx. file contains the functions that differ.   

4.3.2 TAUNet 

The TAUNet application provides a single program that executes continuously on the 

vision computer, waiting to receive commands over the network to start/stop target 

acquisition.  TAUNet is the main program for executing the desired Vision Interface, 

thus providing a back-end public interface to AVATAR over a network.  To provide 

access to the vision system, an implementation of the TAUUnit class that 

communicates with TAUNet is discussed later in this section. 

TAUNet utilizes Ranger’s communication protocol for all message handling 
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activities.  A separate channel and set of messages were developed specific to TAU to 

facilitate operation of the vision system.  The actions required for nominal vision 

system operation consist of starting or stopping a continuous search for targets, 

performing a single “snapshot” of the current view to determine target locations, and 

retrieving the target coordinates from the most recent analysis.  If the designated task 

is based on a single system configuration, these operations are all that are necessary 

for the entire mission profile.   

The remainder of the tasks performed by TAUNet provide capabilities for 

more complicated sampling tasks.  Still necessary for autonomous operations is the 

ability to send a new configuration to the system.  This provides the interface for 

changing any aspect of the system – camera parameters if lighting is different than 

expected, the image filter parameters to search for a different target type(s), or 

modifications to the camera or stereo system properties, among others.  In addition to 

changing configuration is the ability to retrieve the current configuration, most useful 

during supervised autonomy so the operator can determine what changes to make. 

Finally, TAUNet can retrieve any desired set of images from AVATAR, such 

as the original images, filtered images, or images marked with located and matched 

features.  To ease network load associated with transmitting large data streams, 

images are converted to .jpg format since the human user views them rather than 

precisely analyzed with vision algorithms.  This compression step reduces image size 

from 3MB for an 8-bit .bmp or close to 8MB for the 16-bit raw 3-channel image to 

approximately 50kB for an 8-bit .jpg.  OpenCV’s file saving only handles 8-bit 

images at this time, so compressed 16-bit images are not available. 
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Although the current capabilities of TAUNet are limited to those discussed 

here, the system is designed to facilitate extension.  Further testing may identify the 

need for immediate access to vision system internals, in which case real-time access 

by the DMU or human user to more features will be an indispensable tool. 

4.3.3 TAUUnit 

The next level of interface to the vision system is the TAUUnit class.  This class 

provides message transmission (TX) and receiving (RX) capabilities to connect with 

TAUNet.  Where the TAUNet application must be executed locally on the computer 

with either the cameras connected or previously recorded images, a TAUUnit class 

can be created in any executable, such as the DMU, then invoked to send commands 

or retrieve data from the vision system. 

 In addition to providing the public interface to TAUNet, the TAUUnit class 

also maintains a log of action execution timing information.  For instance, if a 

continuous search for targets is underway the system must ensure the target data 

stored in the TAUUnit object is the most recent data.  To allow this check, 

TAUUnit stores the current iteration number of the vision system, the iteration of the 

vision system when target data was last retrieved, as well as iterations for when the 

configuration and images were last retrieved.  

4.3.4 TAUGUI 

The highest level of interface to the vision system is a subclass of TAUUnit, the 

TAUUnit_GUI.  There are two executable programs that instantiate this class: 

TAUTUI, providing a text-based interface shown in Figure 4-6, and TAUGUI, 
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providing a wx-widgets GUI interface.  The foremost difference between 

TAUUnit_GUI and its base class is the re-implementation of the function for 

handling receipt of an image from TAUNet.  This subclass can be populated with 

additional capabilities deemed necessary for human control of the vision system, thus 

keeping the TAUUnit base class bereft of information superfluous for autonomous 

control.  The final implementation of the GUI is still under development, so all testing 

was performed with a fully-functional TAUTUI. 

 

Figure 4-6: TAUTUI Interface to AVATAR 

4.4 Visual Servo Controller 

Initial tests with the Ranger manipulator were performed “open loop” with respect to 

the vision system:  a target was visually located with respect to the manipulator base 

frame, then the manipulator maneuvered its end effector to this position for sample 

target acquisition.  Such a procedure presumes highly accurate camera-manipulator 
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registration and minimal motion of the target relative to the AUV.  In practice, 

disturbances (e.g., currents) can induce motion of the AUV and/or target, and 

registration parameters may not be sufficiently precise for reliable sampling.   

To mitigate the effects of these error sources, AVATAR and the DMU were 

augmented to support a visual servo controller for true “closed-loop” target 

acquisition.  In this paradigm, the vision system computes both the sampling target 

position and a visually-distinct region near the manipulator wrist, thereby enabling 

computation of the relative offset between the end effector and target in the same 

(camera) reference frame.  By using this offset as an error to be minimized over time, 

the end effector can be collocated with the target in a truly closed-loop manner that 

does not require accurate camera-manipulator registration. 

4.4.1 Visual Servo Software Integration 

Successful integration of the visual servo process requires substantial augmentation of 

the vision system.  Filtering for multiple target types requires target filters be specific 

to a single target type to differentiate between similar features.  Initial selection of the 

primary targets for sampling and arm tracking is now required – the arm as detected 

by AVATAR must correspond with telemetry data internal to the manipulator system, 

while still allowing for errors introduced by the camera calibration and registration.  

Previously temporal tracking was irrelevant as only a single snapshot of target data 

from the vision system was utilized.  Figure 4-7 shows the state machine for the 

visual servo controller. 
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Figure 4-7: Visual Servo Controller State Machine 

The visual servo controller begins in an initialize state waiting for its first set of data 

from TAU.  This data set must contain the location of both a sampling target and arm 

target.  The main execution cycle requests vision data, waits for it, calculates an 

iterative move based on the target position relative to the manipulator, initiates this 

move, and repeats until the error is below a specified threshold.  This implementation 

is not a fully closed-loop visual servo controller where the vision system is actively 

tracking the arm and providing feedback at a sufficient frequency.  Rather, it is more 

of an iterative series of open-loop moves.  For example, the estimate of arm and 

sample target position takes approximately 1 second to accomplish, which will result 

in calculation of a motion vector for the manipulator tool position with a given 

magnitude (5cm during initial testing).  This motion occurs over a specified period, 

which happened to be 5 seconds during testing.  Once this motion has stopped 

another visual position estimate is performed.  This entire cycle takes over 6 seconds 

to complete.    For the final AUV system, limited by the strobe refresh rate, the entire 
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process could be scaled to fit exactly within the given time constraints – vision 

estimate plus manipulator motion time equals strobe recharge.  A system with faster 

frequency would provide no overall benefit. 

Two states exist for waiting until manipulator motion is complete. ArmMoving 

describes the state when the arm is moving towards the target, but the target is still 

too far from the manipulator to sample.  ArmSampling is the state when the 

calculated manipulator position is within a specified distance from the sampling 

target and must now execute motion required to physically capture the target.  In the 

case that errant target data is provided from TAU to enter the VisualServo state 

(i.e. arm position estimate too far off or sampling target moved too much) then a new 

set of data will be requested from TAU. 

4.4.2 Visual Servo Control Law 

Closed-Loop Control of Ranger Manipulator 

A block diagram of Ranger’s inner control loop is shown in Figure 4-8.  Initially, a 

desired motion, , either a joint-space or Cartesian position or velocity vector, is 

fed into the DMU.  The DMU control loop operates at 125Hz, with each cycle 

calculating a new set of desired joint angles, .  These desired joint angles are 

fed into each LPU, which generates commanded torque values, 

desiredr

desiredq

commandedτ , for each 

joint at 750Hz.  The LPUs use a PD (proportional-derivative) control law based on 

position and velocity data from the encoders.  These commanded torques are sent to 

motor controller boards to generate motor current values, . motori
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 Motion of the manipulator is converted into joint angles by optical position 

encoders.  The actual joint angle values, , are utilized by both the LPU and 

DMU to close the control loop.  While the LPU requires the joint feedback at each 

iteration, the DMU controller only uses the actual joint angles to generate the initial 

set of desired joint positions through inverse kinematics.  The DMU then bases all 

subsequent desired joint position calculations on the previous iteration’s desired joint 

position. 

actualq

 

Figure 4-8: Ranger Control Loop 

Integration of Visual Servo Data with Ranger Control System 

Figure 4-9 shows how vision frame Cartesian position estimates of the manipulator 

and sampling target,   and , respectively, are combined with Ranger’s 

telemetry data to determine a new arm position, .  There are a few key 

integration items of note for the system to function properly.  The first is the 

translation from  to  -- changing the manipulator reference point from the 

visually distinct target to the tip of the end effector.  The rotation matrix  is 

provided by the manipulator forward kinematics present within the DMU and is based 

arm
V p sample
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servop0

armp0
toolp0

RT
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on joint positions provided from the motor encoders.  Knowledge of arm telemetry is 

also required for the final calculation that transforms desired arm motion  from 

an iterative move into the Cartesian position , the input into Ranger’s control 

system.  Once  has been commanded as a desired position, the visual servo 

system pauses until the arm motion has completed. 

motione0

servop0

servop0

 

Figure 4-9: Open-Loop Visual Servo Diagram 

 The goal of the visual servo system is to drive the value  to 0, which 

would mean that  and the sampling task could be completed.  The value 

 in Figure 4-9 is a scaling parameter to adjust the magnitude of arm motion based 

on several factors.  If  is small then more iterations of the visual servo routine are 

applied, which will more closely resemble a fully closed-loop controller, while 

 results in a simple dead-reckoning attempt at sampling.  To get the most 

samplee0

sampletool pp 00 =

sK

sK
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benefit out of the vision data while maximizing periods of arm motion,  should be 

tuned so that the calculated motion can be safely executed prior to the next strobe 

cycle.  For example, with the manipulator stationary, the vision system acquires 

images when the strobe flashes.  Approximately 1s later position data is provided to 

the manipulator, so motion should be scaled such that it is completed within the next 

1.5s (assuming a 2.5s strobe recharge).  Further testing of the system will dictate 

appropriate values for  in a fully-lit environment.  The final value of  is a 

Cartesian position of the end effector tool tip, with orientation remaining constant 

from previous telemetry.  This value is then used as input to the DMU control loop, 

recall  from Figure 4-8. 

sK

sK servop0

desiredr

4.5 Software Utilities 

Two sets of software utilities provide a human interface to the vision system as well 

as management and validation of the entire software suite.  The first set is a collection 

of custom utilities created within the AVATAR/TAU framework to allow for easy 

integration with the firewire cameras, image acquisition during calibration, filter 

creation, and other similar tasks.  The second set of software engineering tools is used 

for version control, integration of unit tests, defect tracking and other tasks to help 

manage and validate the software as it is being developed. 

4.5.1 Custom Utilities 

A set of utility programs provide the ability to generate developmental data not 

required by the vision system for deployed operation.  These tools generate 
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configuration data that remains constant during application of the vision system to a 

specific target area, or provide knowledge that enables the system to choose between 

predefined configuration values.  The rest of the tools provide the ability to test 

specific aspects of the system without requiring the entire code-base to run unit tests, 

such as testing that the firewire cameras are properly attached and the kernel driver is 

functioning.   

libdc1394 and Firewire Camera Custom Driver 

This system utilizes the open-source libdc1394 library [38] to communicate with the 

firewire-based Scorpion cameras.  An interface driver was written to streamline the 

libdc1394 functions with the specific Scorpion cameras used in the research, as well 

as with the data storage methods.  The implementation of this driver is within the 

AvatarCameras class. 

 The AvatarCameras driver allows certain configuration parameters to be 

set through XML files, but all parameter values that will remain constant throughout 

AVATAR tests are hard-coded in to minimize complexity.  For instance, the 

resolution and acquire methods, important for switching between different cameras, 

or for using cameras with many pre-defined states, are set to constant values.  Other 

camera parameters, such as exposure and white-balance are set through configuration 

variables.  The underlying idea behind this driver-on-a-driver is to decouple the 

involved aspects of the camera initialization process from the configuration of the 

target acquisition system by the user.   
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Camera Interface Utilities 

The Point Grey Scorpion cameras have the ability to automatically determine the 

proper “feature set” to apply while recording images.  This feature set consists of 

values related to camera exposure, shutter time, white balance, etc.  However, since 

AVATAR heavily depends on consistent values and auto-adjust does not provide 

sufficiently fast or repeatable value sets, applying a known feature set will ensure 

repeatability between consecutive analyses.  Problems can arise if the auto-adjust is 

constantly altering values, such as during the light-dark pattern seen with a strobe 

light; in some cases the white balance is mistuned such that the entire image is 

discolored.  To handle the selection of a camera feature set, a program was created to 

record images until steady state values are reached by the automatic adjustment 

ability, and then if the images are of good quality the feature set is stored for use with 

the vision system. 

Another utility facilitates proper testing and initialization of the vision system 

through a set of programs used to acquire images directly from the cameras and save 

them to disk.  Both GUI and text-based programs provide critical functionality for 

vision system development.  A text-based image acquisition utility has been 

developed to ensure that the cameras are functioning correctly with respect to the rest 

of the computer hardware, permissions are set correctly on the devices, and the kernel 

driver has successfully recognized and is communicating with the cameras.  Since 

this program is independent of AVATAR, TAU, and the rest of the AUV/DMU 

software system, it can be run without the overhead associated with the full system. 
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Similarly, a standalone GUI-based utility serves as the main method for 

acquiring calibration images.  Since ensuring the entire checkerboard image is present 

within the field of view of both cameras is necessary to the calibration procedure, this 

program facilitates that process through real-time presentation of acquired images to 

the user.  Also, the GUI update of this program is useful in camera placement, as the 

user can immediately ensure the cameras are placed in the desired position.  Similar 

to the text-based program, this program is independent from the remaining software 

architecture, so it can execute on any computer given the appropriate Linux software. 

Filter Creation Utility 

To enable quick creation of color filters, a program was created to display an image 

and allow the filter parameters to be adjusted in real-time.  This filtergui 

program is the counterpart to the MATLAB-based filter creation procedure discussed 

in Section 3.3.1, but without the requirement of executing MATLAB.  Via the 

OpenCV Highgui interface, a previously recorded image is displayed with a set of 

slider bars to adjust filter values.  Through this interface, a user is able to immediately 

examine output of the image filter when applied to a specified configuration.  

However, when dealing with multiple similar target types or targets with similar 

properties to the background the MATLAB analysis is a much more reliable tool 

since it allows the user to extract exact values rather than continuously modify the 

slider bars until the output appears correct.  Figure 4-10 shows a screenshot of the 

filtergui program in action. 
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Figure 4-10: filtergui program in the process of creating a target filter 

4.5.2 Software Engineering Tools 

To ensure proper software functionality, steps were taken to minimize novice 

programming mistakes.  Attention was given to const-correctness when dealing with 

references (allowing values to be modified only if they should be modified), ensuring 

zero memory leaks, proper use of inheritance and polymorphism of classes, and many 

other common C++ issues where problems can easily arise [39][40].  Although 

attempts were made to follow proper programming tactics within the software itself, 

the use of external analytical tools can greatly increase the ability of a programmer to 

create reliable code.  Comprehensive documentation of the system, logging of 

programmatic state and internal data during execution, frequent system-wide unit 

testing and coverage analysis in addition to continuous integration are all built-in to 

the SSL software system to further validate and accurately profile all software.    
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Documentation and Logging 

For a software system to be useful to anyone besides the original programmer, 

comprehensive documentation of the code is a must.  In addition, the ability to track 

bugs and other defects in a central database eases collaboration in a multi-

programmer environment.  Another important aspect of documentation is data 

logging during program execution, as this allows a programmer to track down bugs as 

well as re-create a previous execution or state. 

Writing software is hard.  Writing software with sufficient, understandable 

documentation thus allowing other programmers to easily interface with your 

software is more difficult.  Doxygen [41] is a tool that parses software to 

automatically create legible, comprehensible documentation in the form of hyper-

linked html pages for on-line viewing or LaTeX files for off-line use.  By 

commenting the software in a specific manner, the programmer can almost 

effortlessly oversee the creation of the Doxygen documentation.  Doxygen is used 

to provide explanations for files, classes, variables, functions, etc. as necessary 

throughout the software system, in addition to providing longer, more detailed pages 

describing in greater depth how to use different software modules, known problems 

associated with the system, test results and anything else necessary for the continued 

use and portability of the software. 

In concert with Doxygen, which creates its own UML diagrams, Gentleware’s 

Poseidon for UML tool [42] is frequently used to visually plan and describe object-

oriented software.  Tracking down unwanted dependencies and other unforeseen 
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architecture mistakes is much easier with UML diagrams.  Poseidon is compliant with 

UML 2.0 and was used to create the diagrams used throughout this thesis. 

 Creating useful execution logs assists experimenters in continued 

development of products in addition to providing a useful tool for debugging and 

fixing problems.  Log4Cpp [43] is a tool that provides an easy-to-use interface with 

valuable capabilities.  It is also reputed to be efficient so it will not greatly affect 

execution time.  The system is set up on a priority basis allowing superfluous debug 

messages to be ignored during actual runs, leaving only the most important messages 

to be logged, or, during development periods, leaving all messages to be logged.  A 

simple flag set at the beginning of program execution determines the logging priority. 

System-wide Unit Tests and Memory Profiling 

One important consideration for large-scale software creation in a multi-programmer, 

experimental laboratory setting is ensuring that the software will always perform as 

desired.  Providing a framework to allow unit tests at compile time, during a 

daily/nightly build or any other time is necessary so that bugs or other unexpected 

behaviors are caught before an actual test is run with hardware.  Ensuring a large 

percentage of code coverage as well as testing for memory leaks within the unit tests 

further validates software for implementation.   

CxxTest [44] is one of many unit test frameworks, and is the current tool used 

system-wide at SSL. The first major use of unit testing is an assurance that after 

changes have been made to a specific code section, the program will continue to 

behave correctly, or, if it was incorrect before, it will exhibit correct behavior in the 
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future.  By using the CxxTest selection of “assertions” the programmer can make sure 

functions return correct mathematical values from a complex calculation or another 

form of successful operation, in addition to testing whether the code behaved properly 

when provided inaccurate, incompatible, or otherwise erroneous input.  In essence, a 

wide set of test cases better guarantees proper software execution during critical test 

periods.  When used in conjunction with gcov, described below, the programmer can 

be confident that the software is thoroughly tested prior to final execution. 

Test coverage programs are widely used throughout the software industry to 

analyze programs.  The two most important reasons to apply a test coverage analyzer 

are to ensure not only that the majority of the software is validated in unit tests, but 

also to provide output that gives the programmer the ability to focus on optimizing 

the sections of code executed with the highest frequency.  With the knowledge gained 

from such a utility, a programmer can have much more confidence in their software. 

 The software created for AVATAR, SAMURAI and other SSL projects now 

utilizes the gcov [45] utility, which works in concert with GNU CC.  After 

integration into the build system, gcov automatically analyzes all software to provide 

the coverage output mentioned above.  However, a programmer cannot easily parse 

the output provided by gcov, thus a shell script is used to sift through the gcov 

output and create html output as part of the Doxygen documentation.   

 A gcov results page is created that links all software modules that currently 

have active results from testing.  For each file, a results page similar to Figure 4-11 is 

created to visually convey concise results of the coverage testing.  The color-coded 

results quickly display to the viewer the extent to which each source file is tested by 
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the unit test system, along with the test time and date and the architecture/OS of the 

computer that ran the tests.  A red highlight means less than 33% of the code is tested, 

yellow means 33% - 66% while green means greater than 66% is tested.  The names 

of the source files in this list are links to a text file showing the source file with an 

execution count at the beginning of each line.  Through this output, a programmer can 

ensure that all possible execution paths have been tested prior to deployment of the 

system. 

 

Figure 4-11: Colored output of gcov results for each specific file 

A memory leak of any magnitude can have drastic consequences during 

program execution that must last for hours, continuously performing operations while 

slowly (or quickly) exhausting system memory.  Large memory leaks will often have 

more immediate consequences as they tend to cause program termination much 
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sooner.  Detection of all memory leaks within a software system can be a daunting 

task, especially if a programmer only has the source code available.  Fortunately, 

there are tools that can run on top of a program to alert the programmer of possible 

memory leaks and provide line numbers and source files to help locate the offending 

code.  The Valgrind [46] memory profiler was used for the software associated with 

this thesis.  

Continuous Integration and Defect Tracking 

Amassing these software validation tools, but only infrequently using them, destroys 

many of the benefits they provide.  Another set of tools are applied at SSL to ensure 

that all software is continuously integrated and validated after every change, while 

supplying version control and correlated defect tracking.  

 The open-source Subversion [47] tool is used to handle version control.  

Subversion provides many benefits in a multi-programmer environment, such as 

allowing each user to have a separate working copy to make individual changes, and 

allowing a programmer to easily revert to a previous version of software or view 

differences between two versions.  With good server backups, Subversion’s code 

repository also provides reliable software backup. 

 Subversion can be coupled with Trac, a web-based software management and 

defect tracking system [48].  Trac allows users to view a timeline of recent software 

revisions to the Subversion repository, in addition to creating “tickets” to notify 

another programmer, or themselves, of possible bugs in the system due to a recent 

change that was made or a possible enhancement that would benefit the overall group.   
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 Also coupled with Subversion and Trac is the CruiseControl continuous 

integration tool [49].  CruiseControl continuously performs entire system builds, with 

the corresponding unit test cases, every time a programmer commits a software 

revision to the Subversion repository.  If no revisions were made, a mandatory daily 

build is still performed to ensure system stability.  This provides immediate feedback 

on any problems that were caused by recent changes.  Provided comprehensive 

system-wide unit testing with a good percentage of coverage, successful builds 

throughout the day can help ensure proper execution during tests, demonstrations, and 

field-trials.  This idea of, at minimum, a full daily build with test cases is a widely 

accepted concept that provides immense benefits to system development [50]. 

Example Benefits of Software Engineering Tools 

By looking at output logs from the build system, dating back seven months, the 

benefits of the various tools implemented within the system are immediately evident.  

Within the logs, 484 separate full-system builds and tests were performed in that time 

period, although the total number is higher due to sparse periods when the 

CruiseControl (continuous integration) software was offline.  These logs show that 45 

builds failed due to problems specifically with the AVATAR/TAU code, while nearly 

4 out of 5 builds has some problem associated with it.   

Out of these 45 failed builds due to the vision software there are only 7 actual 

errors, but they were not fixed before the next build occurred.  The trend of the build 

errors is in the earlier dates the problems were associated more with problems relating 

to cross-platform compiles or missing/undefined references while linking.  The later 
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errors are due to the unit tests failing.  This was happening because configuration files 

and other parameters were being tuned during laboratory tests, which was causing 

changes in software behavior that, in turn, caused changes in unit test system output.  

The system output is checked with a reference file during the unit tests, so when the 

output changes, the tests fail until an updated reference file is provided.  In these 

cases the tests were still performing as they should, but the programmer is alerted 

because the output has changed, which could be a sign of larger problems. 

An instance when Valgrind, the memory profiling tool, was especially useful 

was during the transition from 8-bit to 16-bit images.  At the time the software was 

under development OpenCV did not handle saving and loading of 16-bit images to 

the hard disk, so custom software was developed to facilitate these operations.  These 

changes were widespread throughout the system where any specific image handling 

operations were occurring.  Rather than OpenCV providing memory handling, it had 

to be accomplished manually.  A single omission of freeing dynamically allocated 

memory caused system-wide failure during unit tests and would have been quite 

difficult to immediately track down without the assistance of the tool.  Similar 

problems occurred during the transition from dynamically allocated arrays to STL 

variables for storing data within the system.  These problems caused significantly 

smaller memory leaks (on the order of bytes rather than mega-bytes) and were not as 

evident as the 8MB memory losses for each 16-bit RGB image.  Once again, the use 

of the memory profiler allowed the problems to be tracked down much more quickly, 

as well as pointing them out prior to a runtime crash. 
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Chapter 5 Experimental Platform and Test Plan 

Due to the extensive suite of software and hardware required to fully test and validate 

the vision system, development of a proper test matrix is critical for success.  This 

chapter will focus on the major considerations taken into account during vision 

system testing, including the vision hardware and manipulator systems, then 

summarizes a test sequence aimed at comprehensive system evaluation and validation 

within practical availability and functionality constraints. 

5.1 Vision Hardware 

The quality and performance of the vision system hardware is directly related to 

successful system operation.  Below, the two sets of cameras used during different 

phases of testing will be discussed, including discussion of factors that influenced 

specific camera choices.  The next issue that arises during testing is where to place 

the cameras to ensure maximum coverage of the target sampling area while taking 

into consideration manipulator occlusion and stereo baseline factors.  The final 

subsection will describe the housings and mountings used for securing the cameras 

during operation, including details regarding the transition to a deep-sea 

configuration. 

5.1.1 Stereo Cameras 

Two sets of cameras were used during AVATAR testing.  Initial tests were performed 

using analog Sony XC-999 cameras.  Due to poor image quality issues related to 

these cameras, higher resolution cameras were purchased for the next phase of testing 

106 
 
 



– Point Grey Scorpion cameras that run on a firewire bus. Figure 5-1 shows the two 

camera types. 

 

Figure 5-1: Cameras used for AVATAR testing 

 Left: Sony XC-999 Right: Point Grey Scorpion 

 The first phase of testing used Sony XC-999 cameras because they were 

readily available.  While the availability of the cameras made their use convenient, 

many issues caused problems.  First, since the cameras are analog, they be routed 

through a frame grabber board to be digitized for use within AVATAR.  This 

involves using proprietary drivers for the legacy frame grabber boards, thus being 

limited to the Windows operating system.  Also, the resolution for these cameras is 

limited to 640x480 with 8-bit depth per channel.  Finally, the age of the cameras has 

resulted in significant degradation of image quality in many of the available cameras. 

 Once the first phase of testing was completed with the Sony cameras, design 

criteria were developed to ensure similar issues would not plague the next test phase.  

The first criterion is that the cameras use a form of digital output, to avoid the need 

for extra frame grabber hardware, and similarly have open-source drivers readily 

available.  Next, the cameras need to have 16-bit depth per channel to maximize the 

data available in each image along with a dramatic increase in resolution.  The 

cameras must also be compact to fit within deep-sea-rated housings.  Finally, perhaps 
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the most important constraint was on cost given the limited project budget. 

 Based on these criteria, the decision was made to purchase Point Gray 

Scorpion 14SO cameras [51].  These cameras receive power and transmit data over a 

standard firewire cable, thus are capable of utilizing standard software tools on 

different operating systems for image acquisition.  These cameras have 1280x960 

resolution with 16-bits per channel operating up to 19 frames per second (FPS).  Each 

image is stored in a Bayer pattern, meaning the CCD is organized with alternating 

elements sensitive to different wavelengths of light (Section 2.2). The camera itself is 

a compact 50x40x50mm in size but requires an attached external lens to focus light 

onto the CCD. 

 Computar model H3Z4512 lenses are attached to the Scorpion cameras.  The 

H3Z4512 are vari-focal cs-ir 4.5-12.5mm F1.2 TV lenses, and were recommended for 

operation at ranges from 0.5 m up to 10 m.  They must be manually adjusted for focus 

and zoom.  Figure 5-1 shows the Computar lens attached to the Scorpion camera. 

5.1.2 Camera Placement 

Camera placement covers two major issues – placement of the stereo pair of cameras 

with respect to the manipulator and placement of the cameras relative to each other.  

Placement with respect to the manipulator mainly concerns the ability to see the 

target sampling area while limiting occlusion by the manipulator.  Placement of the 

two cameras relative to each other encompasses a multitude of issues related to 

specific capabilities of the vision system. 

The camera/lens combination was measured to have approximately a 75-
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degree field of view (FOV) in air, but when placed underwater in a housing, the FOV 

drops to approximately 55 degrees.  This affects the range of possible baselines for 

the stereo system.  If an overlap of 75% is desired at a distance of 1m, a good range 

for use with the Ranger dexterous manipulator, then the maximum baseline between 

the cameras is limited to 0.26m.  A large overlap is necessary to maximize the 

possible sampling area, so keeping the cameras close is important.   

After acquiring test images with the cameras placed as close as possible while 

inside the deep-water housings, it is evident that the high resolution of the Scorpion 

cameras provides sufficient pixel disparity to accurately locate features, even with the 

shorter baseline.  This result is somewhat surprising because earlier tests with the 

Sony cameras indicated short camera baselines compromised localization accuracy.  

A single pixel offset with the Sony camera test setup resulted in a nearly 10cm shift in 

calculated target position during neutral buoyancy tests.  With the minimum baseline 

of 10cm, constrained by the underwater housings, a single pixel offset with a target 

located at a distance of 1.2m is only 2cm.  All testing was performed with this 

baseline, as extending it will only increase accuracy of the system, until there is 

insufficient image overlap. 

5.1.3 Housings and Mountings 

For underwater tests of the vision/manipulator system, waterproof housings are 

necessary for the cameras and required computers.  Due to the configuration of 

Ranger during initial tests with the Sony cameras, additional housings were 

unnecessary, as a Sony XC-999 pair was pre-mounted within the pressurized Ranger 
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vehicle with data communication lines to surface computers.  However, for the next 

phase of testing, housings needed to be procured for both cameras and computers.  

The camera housings for the Scorpion cameras consist of two parts – a deep-water 

pressure housing and the internal mount to secure the camera. 

Deep-Sea Pressure Housings 

Operating at great undersea depths requires high-strength pressure housings to 

operate cameras at one atmosphere (surface) pressure.  For the scope of this testing, 

housings were purchased to withstand 3000m of pressure.  This fulfilled requirements 

for an initial deep-sea test phase that was not completed prior to the writing of this 

thesis.  The commercial-off-the-shelf (COTS) housings are model number SSC-5000 

from DeepSea Power and Light [52], manufactured for one of their proprietary analog 

cameras, but modified in-house to work with the firewire cabling and connectors 

required for operations at depth.  These housings consist of aluminum housings with 

sapphire lenses, as shown in Figure 5-2.  Models are available with depth ratings up 

to 6000m, where titanium is used in lieu of aluminum. 

 

Figure 5-2: DeepSea SSC-5000 Camera Housing 
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Internal Camera Mounts 

Since the DeepSea camera housings are designed for use with a DeepSea camera, 

custom internal mounts were constructed to secure the Scorpion cameras to the 

housings.  Delrin was used as the material for this mount to reduce electrical 

interference with the cameras.  A design was first made in I-DEAS after measuring 

the external housings and cameras.  Once a working CAD drawing was accepted, the 

internal mounts were manufactured on a Bridgeport mill and Hardinge lathe.  Figure 

5-3 shows the internal camera mount assembly components, and Appendix D 

contains the set of CAD drawings. 

 

Figure 5-3: Internal Camera Mount Assembled and Disassembled 

5.1.4 Transition to Deep-Sea Configurations 

Plans were originally made for implementing the entire vision system on two deep-

sea platforms for open-water testing.  The first platform was designed as a large test-

bed for both manipulator and vision systems.  A frame around the test area was 

planned for testing positions of the cameras with respect to the manipulator to 

determine the most effective camera positions. The sampling/storage area resides on 

either side of the manipulator rest position.  These two areas were the main usable 
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workspace in this configuration.  Figure 5-4 shows a picture of the manipulator test 

frame attached to the WHOI sled. 

 

Figure 5-4: SSL Manipulator Test Frame Attached to WHOI Sled 

 The second underwater configuration is on WHOI’s JAGUAR AUV.  

Interfacing a manipulator with an AUV is a daunting task, and placing cameras to 

provide vision data in the manipulator workspace makes that task more difficult.  

Working on an AUV requires meeting stringent weight and moment constraints as 

well as ensuring that all cables or protrusions, such as camera housings, are located 

and secured to avoid becoming entangled with the environment.  Also, manipulator 

occlusion of the camera field of view must be minimized and characterized prior to 

deployment, particularly for visual servo operations where the manipulator and target 

must both be visible throughout the motion sequence.   

 Due to the large set of constraints on manipulator and camera position, there is 

a small set of possible configurations when interfaced on the AUV.  As neither the 

AUV nor a mockup is currently available, simulated environments were created for 

determining appropriate positions for the cameras with respect to the manipulator.  

Initial data provided by CAD models and basic laboratory mockups provide a basis 
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for positioning the hardware when the AUV is available. 

5.2 Ranger Manipulator System 

The SSL’s Ranger manipulator was utilized for hardware testing in this research.  

Ranger is a 10DOF manipulator with eight revolute joints and two torque-driven tool 

drives.  Kinematically, Ranger is segmented at the wrist into two four degree of 

freedom sections for mathematical simplification.   

5.2.1 Manipulator Configuration 

Since Ranger has eight degrees of freedom rather than the traditional six, it has a 

relatively complex mechanical and kinematic design, but it also possesses more 

capabilities due to the redundant degrees of freedom.  Much research has been 

performed to analyze and characterize the additional manipulator capabilities 

[53][54].  While the dexterous workspace of the manipulator increases substantially 

given the extra degrees of freedom, singularities are more frequent but are also more 

easily avoided.  One of the key benefits is that 8DOFs provide an infinite number of 

configurations for a given tool pose.  The extra DOFs also allow the manipulator to 

move while the tool position remains constant and enable smooth planar motions.  

These additional degrees of freedom allow motions necessary for robust obstacle 

avoidance, although obstacle avoidance was not emphasized in this work.   

 The redundancy of the manipulator is controlled in two segments – a four 

DOF upper arm segment and the four DOF wrist.  The upper arm segment control is 

in the form of the roll angle of the shoulder-elbow-wrist (SEW) plane.  Through the 

use of the SEW angle, the upper arm joint angles can be computed independent of the 
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wrist joint angles, while the arm still possesses an additional DOF for avoiding the 

wrist singularity [53].  A more in-depth look at both singularity considerations and 

manipulator kinematics is provided below. 

Workspace 

Fully extended, the Ranger manipulator has a reach of approximately 1.3 meters.  

However, singularities exist in fully extended joint configurations. Additionally, 

large, sometimes prohibitive, torques are required to hold the arm straight in 1-G 

given its native neutral buoyancy design environment, further limiting the dexterous 

manipulator workspace, defined as the volume of space the robot end effector can 

reach in all orientations [27].  

 Due to the redundant degrees of freedom, and the resulting capabilities to 

avoid singularities, the dexterous workspace is almost as large as the reachable 

workspace.  By correctly orientating the SEW angle and prudent use of the skew 

angle wrist, there are configurations that avoid nearly all singularities throughout the 

reachable workspace.  To-date, a full analysis of the dexterous workspace has not 

been performed, so more quantitative workspace characterization is not possible. 

Kinematics 

The serial manipulator literature reveals that, except in research environments, 

revolute manipulators with greater than six degrees of freedom have usually been 

avoided due to increased complexity of hardware and the dramatic increase in 

required kinematic analysis.  Despite these facts, Ranger required extra DOFs to 

avoid obstacles and singularities.   
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As with all serial manipulators, the forward kinematics are straightforward to 

derive.  Previous research on SEW kinematics with a seven DOF manipulator was 

used to develop the forward kinematics of Ranger [55].  By building on this research, 

and through the use of modified Denavit-Hartenberg (DH) notation [27], the forward 

kinematics are fully developed in [53].  Figure 5-5 illustrates the D-H parameters and 

link frame assignments for the 8DOF Ranger manipulator.  This figure was provided 

by Dr. Craig Carignan, which shows corrected values from the similar figure in [53]. 

 

Figure 5-5: D-H Parameters and Frame Assignments of the Ranger Manipulator 

Inverse kinematic solutions are more difficult to compute.  To simplify the analysis, 

the manipulator is broken into two segments, joints 1-4 in the upper arm, and joints 5-

8 in the wrist.  A different method is used to solve the inverse kinematics of each 

section.  Joints 1-4 use the Extended Jacobian Method based on the wrist location and 

SEW angle.  Joints 5-8 use the General Inverse Method that finds a locally optimal 

solution for joint velocities specific wrist orientations and additional constraints 
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imposed by tool and forearm orientations [53][54].  The kinematic redundancies in 

the skew wrist design cause additional singularities that prohibit the use of the 

Extended Jacobian Method. Figure 5-6 shows a flow chart of how the 8-DOF inverse 

kinematics of Ranger are solved, from [53]. 

 

Figure 5-6: Inverse kinematics flowchart for the Ranger manipulator [53]. 

Singularity Considerations 

Similar to the kinematics problem, the singularities are decomposed into two separate 

areas: upper arm and wrist.  The traditional arm singularities that arise at workspace 

boundaries can easily be avoided by preventing arm motion to these boundaries.  

These singularities are known as external singularities.  On the other hand, the 

internal singularities, or singularities that arise within the usable workspace of the 

manipulator due to loss of rank in Jacobian matrices during inverse kinematics, are an 

important problem since not all of these singularities are intuitive.   
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 Based on the design of the arm, most of the upper arm internal singularities lie 

within regions outside of the normal workspace.  One occurs when the wrist lies 

along the base frame z-axis, which happens when the arm is extended straight to the 

side, a configuration that would not be commanded during nominal operation.  The 

only singularity that must be handled within the inverse kinematics solver is when the 

shoulder pitch angle is zero, but by holding the shoulder roll angle fixed this problem 

can be avoided.   

Most wrist singularities result in loss of a single degree of freedom, which 

only has the result of removing redundancy.  However, another type of singularity 

exists that causes loss of two degrees of freedom.  An approach to such a singularity 

is internally recognized by abnormally large commanded joint velocities and can only 

be recognized in this manner [53].  The system is designed to automatically ignore 

joint velocities above a specified threshold so the manipulator will halt.  In this case, 

a human teleoperator is needed to assist, or, under full autonomous control, an 

algorithm would need to be developed to back out and re-plan the motion to avoid the 

singularity.  

5.2.2 Ranger Computer Architecture and Interface 

Fortunately, the internal kinematic and control calculations are decoupled from the 

vision system.  The software architecture from Section 4.1.1 enumerates the available 

methods to provide desired position data, which is then translated to Ranger motion.  

Aside from hand controllers and direct joint-by-joint control through a user interface, 

trajectory items can be created and used flexibly.  For the vision system, this requires 
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a visual servo object to compute desired overall end effector motion then relies on 

other trajectory planning functions based on inverse kinematics to calculate the 

desired intermediate positions for smooth arm motions that avoid singularities [34]. 

5.2.3 Observed end effector positioning accuracy and resolution 

Previous testing of Ranger was performed to characterize both static and dynamic 

performance characteristics of the manipulator [56][57].  These tests were performed 

in compliance with ANSI standards ANSI/RIA R15.05-1-1990 (R1999) for point-to-

point static performance characteristics and ANSI/RIA R15.05-2-1990 (R1999) for 

path-related and dynamic performance characteristics.  Results show Ranger is 

statically accurate to about 2 cm, while having a static repeatability of about 0.5 mm 

and a static compliance no worse than 0.4 mm/kg of applied force at maximum reach.  

For path following, Ranger has an average Cartesian accuracy of 1 mm, a Cartesian 

repeatability of 1 mm and a Cartesian path cornering radius of about 1 cm.   

 In terms of this research, the most important number is the static accuracy 

limited to 2 cm.  Although gravity is one of the key causes of this error when 

operating in 1-G, there are also significant errors in directions not parallel to the 

gravity vector.  This error adds uncertainty to the Ranger telemetry data, which is 

used as a truth-value during the automated registration procedure.  This additional 

uncertainty will cause even more problems with a single snapshot, dead-reckoning 

approach to target sampling.  Implementation of the visual servo controller can 

alleviate many of these issues by working directly with vision system data. 
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5.3 Test Sequence 

Comprehensive testing of the fully integrated AVATAR system can be broken into 

several distinct steps.  As mentioned in Section 3.1, the first step is to develop a set of 

calibration parameters for the stereo camera setup.  Once this has been accomplished, 

the camera-manipulator registration must be determined to provide the transformation 

parameters between the vision reference frame and manipulator base frame.  The next 

step is to test the sampling capabilities of the entire system by placing a visually 

distinct object in the camera FOV and manipulator workspace then performing a 

sampling task.  Hardware and software upgrades evolve the system toward higher 

accuracy and more repeatable test results, enabling extension to more realistic targets.  

The final step of testing is using the vision system to not only track the sampling 

target, but also to track a distinct feature on the manipulator itself, enabling the visual 

servo algorithm to specify manipulator motion. 

5.3.1 Camera and Manipulator Calibrations 

Although some vision systems operate with an uncalibrated system, performing a full 

calibration can drastically reduce computational complexity while ensuring accurate 

target localization up to calibration accuracy limits.  Throughout testing, the 

procedure for determining intrinsic and extrinsic parameters of the vision system 

remained fairly constant, although slight modifications were made when migrating 

from MATLAB to a C++ algorithm.  The manipulator registration procedure evolved 

over time, but was always mathematically based on an algorithm designed to 

iteratively align two point clouds via estimation of a Z-Y-X Euler angle rotation 
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matrix (recall the algorithm from Section 3.1.2). 

Vision System Calibration 

Camera calibration throughout testing process has remained primarily a manual 

process.  Every time the relative position of cameras changed, a new extrinsic 

calibration must be performed, but to be conservative an entire calibration was always 

performed.  The use of a checkerboard in numerous poses throughout the field of 

view of both cameras requires human interaction both moving the checkerboard and 

validating images.  However, once the images have been acquired and validated, the 

remainder of the calibration procedure is straightforward and can be handled 

automatically.  For some of the camera setups, other software developed at the SSL 

for autonomously calibrating cameras [25] was used to determine the intrinsic 

parameters of each camera.  This software utilizes OpenCV functions that perform 

the same tasks as described in [3].  However, the software does not currently perform 

the extrinsic calibration procedure that to-date must be performed manually. 

Camera-Manipulator Registration 

Multiple procedures were developed to determine an accurate camera-manipulator 

registration between the manipulator and camera system.  Small errors, especially 

with the rotation matrix, can cause large errors when applied to points at the 

extremities of the manipulator workspace.  Initially, the transformation was measured 

with inaccurate measurement devices (rulers) and rotation assumed at approximate 

angles.  As testing commenced, this was immediately deemed insufficient. 

 An initial procedure manually tracked points in both the vision frame and 
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manipulator frame and developed a transformation between the two using an early 

version of the registration algorithm from Section 3.1.2.  Concurrently, registration 

was attained using a Faro Arm, a portable coordinate-measuring machine (CMM).  

Since the CMM registration process was highly accurate, the software-based 

registration system was temporarily abandoned.   

 Given that the cameras might be perturbed relative to the manipulator frame 

during deployment where no CMM is available, the method of determining points in 

both vision and manipulator frames was subsequently revisited.  With the higher 

resolution Scorpion cameras and the improved algorithm described in Chapter 3, a 

hand-eye registration was obtained autonomously for use in the final phases of testing 

through use of Ranger’s trajectory generation system.  

5.3.2 System-Level Testing with a Visually Distinct Object 

Preliminary testing of an early version of the AVATAR software, coupled with the 

Sony XC-999 cameras, was performed using a visually distinct sampling target, such 

as the rubber duckys seen throughout this thesis.  A series of tests were conducted in 

both 1-G laboratory and neutral buoyancy underwater environments.  Initial tests 

performed in 1-G were designed to characterize the accuracy and precision of the 

vision system with respect to the Ranger manipulator in its original configuration.  

Sampling tests were performed with great success. 

Transitioning to underwater testing introduces a necessity for multiple 

SCUBA divers and deck crew, in addition to the manipulator operators, which greatly 

increases the inherent overhead.  Due to these factors, the scope of testing in the 
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neutral buoyancy tank was highly limited.  Despite these issues, similar precision 

tests were performed, in addition to the overall sampling task operational tests.  In the 

underwater tests, Ranger was operated in its extended wide-body configuration due to 

concurrent testing that required the extended configuration.  Figure 5-7 shows 

Ranger’s configuration in both environments. 

 

Figure 5-7: Ranger configurations in 1-G and neutral buoyancy 

5.3.3 Evolution to Repeatable, Accurate Target Identification and Tracking 

To increase accuracy and reliability of the vision system data, the transition was made 

to the higher resolution Scorpion cameras.  Also, by the start of these tests, significant 

upgrades had been made to the AVATAR software.  The major goals associated with 

this phase of testing were to quantify the accuracy and precision of the vision system, 

in addition to the ability to work with less distinct, more realistic sampling targets.  

Figure 5-8 shows sample target fields taken with WHOI’s SeaBED AUV, processed 

along with other target fields engineered for capture by the AVATAR system. 
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Figure 5-8: Images of Deep Water Sampling Target Fields 

 Due to the lack of availability of hardware for underwater operations, testing 

with the Scorpion cameras was performed only in a 1-G laboratory with the original 

Ranger configuration.  In addition to increased accuracy of the AVATAR data, 

software upgrades enabled operation with the fully functional AVATAR software 

described in Chapter 4.  As described in Section 5.3.1, an automated hand-eye 

registration process was also implemented, further narrowing the gap between current 

capability and fully-autonomous operation.  The automated registration procedure 

computes the transformation between the manipulator base frame and the camera 

frame of reference.  Accuracy of this process determines manipulator accuracy when 

sampling a target via the dead reckoning process.  To facilitate transition to the visual 

servo experiment, where a target on the arm must be tracked, the testing of the 

automated registration also uses a target on the Ranger arm – the IEEM.  The IEEM 

is an easily recognizable gold object that lies after all degrees of freedom on the wrist.   

Aside from the visual servo tests discussed in Section 5.3.4, tests focused on 

identification and tracking of difficult targets rather than sampling.  A series of future 

tests will be needed to verify the integrated system once SAMURAI is operational. 
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5.3.4 Visual Servo Testing 

The culmination of AVATAR testing is implementation of the visual servo procedure 

to demonstrate the capability to sample a stationary or slowly moving target.  Since 

the design of a sampling end effector is outside of the scope of this research, these 

visual servo tests are designed to validate the sampling procedure and software.  To 

this effect, sampling targets are not be “sampled” during these tests, instead the 

location of the target as determined by the visual servo process will be demonstrated 

by placement of a pointer end effector.  Since successful sampling of a target requires 

“sufficient” accuracy given a compliant end effector (with some tolerance for error), 

placement of the pointer is potentially a more difficult task.  Figure 5-9 shows the test 

setup for visual servo demonstrations. 

 

Figure 5-9: Ranger and AVATAR configuration for visual servo testing 
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Chapter 6 Test Results 

6.1 Ranger Tests with Low Resolution Cameras 

The first series of tests were performed with the system consisting of Sony XC-999 

cameras in both 1-G and underwater environments and with two configurations of the 

Ranger manipulator.  Testing in both environments was performed to determine 

whether the system was capable of retrieving a target with unique color properties 

from the background.  In both environments data was recorded on the precision of the 

vision system.  During 1-G testing, accuracy data, with respect to Ranger’s internal 

telemetry, was also recorded.   

6.1.1 Calibration Parameters 

Table 6-1: Camera calibration data for Sony camera testing 

Intrinsic xf  (mm) +/- yf  (mm) +/- xc  (px) +/- yc  (px) +/- 
1-G Left  358.46 0.53 358.52 0.52 311.06 0.88 240.13 0.85 
1-G Right 358.00 0.52 357.55 0.52 311.78 0.87 230.42 0.84 
Underwater Left  477.42 0.36 478.57 0.35 315.16 0.75 244.41 0.72 
Underwater Right  478.57 0.36 476.91 0.35 305.49 0.75 236.31 0.72 
                   
Extrinsic 
(underwater)                

Rotation (rad) xω  yω  
zω          

  -0.010 0.026 0.026        

Translation (mm) xt  yt  
zt          

  -49.29 -0.41 2.38        
 

Table 6-1 shows calibration data for this phase of testing, as calculated using [3].  The 

intrinsic parameters are shown for both test setups, the 1-G testing with head-

mounted cameras and underwater testing using Ranger’s boresight cameras.   
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Extrinsic calibration is only provided for the underwater tests, as the other data was 

not properly saved.  The uncertainty values for the extrinsic parameters are also 

unknown. 

6.1.2 Vision System Accuracy 

During 1-G testing, an effort was made to produce an initial accuracy characterization 

of the target acquisition system. The concept was to use the manipulator as a 

measurement tool since its positioning accuracy was expected to be at least an order 

of magnitude greater than that of the vision system. A target was fixed to the wrist of 

the manipulator and moved to 11 different static locations within the workspace of 

the manipulator and within the FOV of the vision system. Position data for the target 

from the target acquisition system was collected as well as manipulator pose data at 

each of the 11 locations. Target position data was then derived from the manipulator 

data, based on registration between target and manipulator, and compared with the 

data from the target acquisition system.  

Table 6-2 summarizes the results. Of the eleven trials, errors ranged from 3.8-

8.0cm with an average error of 5.3cm.  Note that the negative X-axis for the 

coordinate frame used for this data corresponds to distance (range) from the camera.  
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Table 6-2: Target Acquisition System Accuracy Data 

 Target Acquisition System Vehicle Telemetry  
Test 
Number 

 
X(m) Y(m) Z(m) X(m) Y(m) Z(m) Difference(cm)

1 -0.605 0.108 -0.190 -0.614 0.123 -0.143 5.1 
2 -0.501 -0.006 0.007 -0.487 0.000 0.049 4.5 
3 -0.481 0.014 -0.382 -0.497 0.019 -0.348 3.8 
4 -0.647 -0.022 -0.286 -0.674 0.009 -0.230 7.0 
5 -0.628 0.014 -0.072 -0.625 0.030 -0.019 5.6 
6 -0.717 -0.001 0.054 -0.704 0.022 0.129 8.0 
7 -0.732 0.015 -0.113 -0.728 0.035 -0.040 7.5 
8 -0.626 -0.003 -0.173 -0.637 0.004 -0.130 4.5 
9 -0.518 -0.088 -0.171 -0.540 -0.078 -0.136 4.3 
10 -0.558 -0.186 0.021 -0.555 -0.177 0.062 4.2 
11 -0.450 -0.143 -0.234 -0.481 -0.147 -0.209 4.0 

 

The minimum error is 3.8cm, maximum error is 8.0cm, and average error is 

5.3cm with a standard deviation of 1.5cm.  There are at least two significant sources 

of error. One source is the poor registration between the vision system and the 

manipulator coordinate frames for the 1-G testing. Even small rotational errors cause 

significant positioning error at extended distances from the cameras, which is evident 

in tests six and seven. Additionally, as discussed in Section 5.2.3, Ranger has a static 

positioning accuracy of 2cm [56] that impacts accuracy as well.  

6.1.3 Vision System Precision 

Without an external measurement system it is difficult to obtain the accuracy data 

presented previously, however, precision of the vision system is easily measured. In 

both testing environments a large set of images were acquired with a stationary target 

(500 in 1-G testing and 80 in neutral buoyancy).  As shown in Table 6-3, results from 

1-G testing showed a much more precise system due to better camera quality.  
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Table 6-3: Vision System Precision Data 

Environment # Points σ x (cm) σ y (cm) σ z (cm) magnitude
1-G 9 0.27 0.28 0.57 0.69
Underwater 9 0.58 0.36 3.91 3.97
Underwater 1 0.71 0.37 4.79 4.86 (Centroid)
Underwater 1 0.48 0.31 0.28 0.64 (Selective)

 

Figure 6-1 shows the neutral buoyancy data. These plots show that in cases where 

only the centroid was used, the averages jump consistently between three levels, 

marked as black lines.  This is because the triangulation algorithm is, for rotationally 

aligned cameras, based mainly on horizontal shift in pixel location of matching 

points. As the amount of horizontal shift for the centroid between left and right 

images varies discretely, so does the calculated depth. However, on each of these 

levels the calculated positions are proximate. The final row in Table 6-3 shows that 

only selecting a single level for the centroid-only data results in similar standard 

deviation as the 1-G case.  Conversely, when all nine points are used, the standard 

deviation drops significantly, yet the values are spread further apart than on the 

discrete levels associated with the centroid-only calculation.   
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Figure 6-1: Difference in Z reconstruction due to single pixel error 

During testing, the centroid-only method was utilized, but all values were monitored 

so that only results from the correct level were sent to the manipulator. Removing all 

data points from the incorrect levels, the standard deviation reduces to 2.80mm in the 

Z direction.   

The calculated target position jumped between those discrete levels during 

neutral buoyancy testing because of the dramatic increase in manipulator size. Due to 

workspace limitations, the target was placed approximately three times as far from 

the vision system:  1450mm in neutral buoyancy and only 500mm in 1-G. This 

caused the target pixel area to reduce significantly, thus the fixed-size boundary 

blending between target and background occupied a much larger percentage of 

feature size. In neutral buoyancy, the target filled an area of only 12x12 pixels while 

in 1-G it filled an area of 25x25 pixels. The boundary blending adds 2-3 pixels around 

the border on all sides of the target – a much more substantial percentage of the more 
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distant neutral buoyancy target. This results in less predictable filter output, which 

causes the triangulated location to vary more significantly. When the target was 

placed at approximately the same distances in 1-G and underwater environments the 

results were similarly promising; this indicates the underwater environment itself did 

not impact vision system precision. 

6.1.4 Overall System Behavior 

Despite vision system inaccuracies, autonomous sampling sequences were quite 

effective in practice. Out of approximately 30 test runs in the 1-G environment, only 

two were unsuccessful in grasping the target.  The first failure occurred when running 

Ranger in a different mode such that the tool offset from the end-effecter was 

ignored. This caused Ranger to attempt a grab 37cm away from the duck target. The 

second failure resulted in improper target acquisition by the vision system. In an 

attempt to acquire live footage, the video feed from the left camera was split into a 

video recording system. Unfortunately this reduced the quality of the feed and made 

the left image much darker than that recorded by the right camera. The difference in 

brightness between the two images caused the filters to incorrectly select and match 

corresponding points, resulting in an incorrect object position estimate. Other tests in 

a variety of lighting conditions were successful so long as both left and right images 

had similar brightness. 

Neutral buoyancy testing was successful considering the dramatic increase in 

manipulator size and increase in target distance from the vision system. After 

performing the accurate registration process with the portable CMM and constraining 
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the target localization to the appropriate level of calculation, successful target 

retrieval occurred for one out of seven tries. In each case where the target was missed, 

the manipulator was systematically too close in the depth dimension hitting the target 

but not grasping it with the end-effecter. Small errors in the rotation aspect of the 

vision system to manipulator registration are suspected to have caused this error. 

Figure 6-2 shows successful tests in both environments, the 1-G view from the vision 

system itself, and the neutral buoyancy view from an external camera on the left 

Ranger arm (the right arm is grabbing the target). 

 

Figure 6-2: Ranger successfully grabbing a target in both testing environments 

6.2 1-G Ranger Tests with High-Resolution Cameras 

The first set of results will focus on the automated hand-eye registration process 

developed as a step toward fully autonomous operation.  The registration procedure is 

performed multiple times with different sets of original points to demonstrate the 

precision of the algorithm.  After the registration parameters have been chosen, they 

are used to transform a set of independently recorded points from vision frame into 

manipulator frame to evaluate accuracy between the two sets.   

 The second set of results describes the outcome of visual servo experiments.  
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This compares the difference between attempting a target grab based on dead-

reckoning from an initial snapshot from the hand-eye transformation with results 

from the implemented visual servo controller. 

6.2.1 Calibration Data 

Table 6-4 shows the calibration data used for this phase of testing.  The intrinsic 

parameters of focal length and principle point are shown in the upper rows, while the 

extrinsic parameters are shown below. 

Table 6-4: Calibration data for testing with Scorpion cameras 

Intrinsic xf  (mm) +/- yf  (mm) +/- xc  (px) +/- yc  (px) +/- 
Left Camera 1049.13 0.67 1050.38 0.68 712.28 1.13 564.45 1.18 
Right Camera 1047.20 0.67 1048.66 0.69 702.74 1.22 561.13 1.16 
                  
Extrinsic                 

Rotation (rad)  xω   +/-  yω   +/-  zω   +/-     
  0.002 0.001 0.003 0.001 0.047 0.000     

Translation (mm)  t  x  +/-   yt  +/-   zt  +/-      
  -106.53 0.08 -2.58 0.07 0.82 0.29     

 

6.2.2 Automated Registration 

As with the testing with the lower resolution Sony cameras, vision system precision 

and accuracy were evaluated to characterize the overall system.  Since the Ranger 

IEEM is used as the target during the automated registration process, the same target 

is used throughout the rest of the vision system tests. 

Precision evaluation is performed with two procedures.  First, the precision of 

the vision system is calculated based on numerous sets of static images to ensure 
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consistent results.  Second, the automated registration procedure is repeated three 

times with two different sets of points to illustrate the precision of the overall 

algorithm.  The accuracy measurements are based on data relating perceived arm 

position with instantaneous arm telemetry.  By taking a random set of points within 

the manipulator workspace and applying the hand-eye registration transformation on 

the vision data, the difference between this result and the arm telemetry will portray 

relative accuracy of the system. 

Precision 

During automated registration testing, data was recorded for seven random 

points within the Ranger workspace at distance magnitudes ranging from 0.65m to 

0.95m from the cameras.  A 3-D reconstruction from fresh images was performed at 

each point five distinct times then analyzed for repeatability.  Table 6-5 shows the 

results from this experiment in the form of standard deviation for all three dimensions 

and the corresponding magnitude.  The substantial improvement from the earlier 

system is evident, as the maximum standard deviation magnitude over all three 

dimensions is less than 4mm.  The seventh point is not listed as all five analyses 

resulted in the same 3-D reconstruction.  Another test was performed with two rubber 

duck targets placed approximately 2.5m from the cameras.  Thirty tests were 

performed, and in every case the pixel centroids were measured at precisely the same 

value, thus there was zero change in reconstructed position. 
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Table 6-5: Vision System Precision with High Resolution Cameras 

σ x (cm) σ y (cm) σ z (cm) magnitude 
0.13 0.14 0.27 0.33 
0.10 0.05 0.36 0.38 
0.03 0.13 0.26 0.29 
0.01 0.09 0.24 0.26 
0.01 0.07 0.29 0.30 
0.00 0.04 0.01 0.05 

  

Based on this data we can be confident that AVATAR itself will provide extremely 

consistent results.  The next task is to demonstrate that when combined with Ranger 

to determine hand-eye registration, results are once again consistent.  Two different 

sets of points within the workspace were chosen for this experiment.  For each set, 

three iterations of the registration procedure are performed.  Test results summarized 

in Table 6-6 show excellent precision for this process.  Each of the Euler angles has 

error less than 0.005 radians, while the overall magnitude of the standard deviation 

for the translation vector is slightly more than 5mm.  This indicates that vision system 

precision is maintained through the registration process. 

Table 6-6: Hand-Eye Registration Precision Results 

Euler Angles 
σ α (rad) σ β (rad) σ γ (rad) 
0.0049 0.0042 0.0024 

 
Translation Vector 
σ x (cm) σ y (cm) σ z (cm) magnitude 
0.33 0.23 0.33 0.52 

Accuracy 

With automated hand-eye registration, the transformation can be applied to the 

random points used to determine vision system precision.  When each of these points 
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was recorded, the arm telemetry at that point was also logged.  By transforming the 

vision data into the arm frame of reference, the relative accuracy between 

transformed data and arm telemetry data can be calculated.  Table 6-7 shows a 

summary of standard deviation and maximum offset results from these 

transformations.  The complete data sets from these tests is presented in Appendix E. 

Table 6-7: Difference of Arm Telemetry and Transformed Vision Coordinates 

Standard Deviation of Offsets 
σ x (cm) σ y (cm) σ z (cm) magnitude 
0.28 0.92 0.34 1.02 
Max Offsets 
x(cm) y(cm) z(cm) magnitude 
1.02 2.87 1.37 3.34 

  

These results show that the updated system performs substantially better than the 

earlier system, but there is still potential for improvement.  Multiple sources of error 

factor into these calculations, thus the relative accuracy achieved here is encouraging.  

However, this error is still appreciable, motivating use of the visual servo algorithm.  

6.2.3 Visual Servo Experiments 

In addition to automating some of the more difficult processes, the ability to deal with 

unforeseen inaccuracies in camera calibration and hand-eye registration parameters is 

an important feature of a fully autonomous system.  To mitigate such errors through 

feedback, a visual servo system was implemented to track both the manipulator and 

target.  Aside from showing successful completion of a sampling task, results from 

the visual servo test illustrate the difference between what visual servoing and dead 

reckoning with a single data snapshot, in the “open loop” procedure used for Section 
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6.1 tests.   

 Initial tests to validate the software implementation were performed in 

simulation mode, where arm telemetry is purely mathematical and a user provides 

vision data.  The data recorded from these tests show smooth trajectories with each 

step moving closer to the target.  In these tests, the system exhibits the ability to 

handle small-magnitude changes in manipulator or sampling target position.  Figure 

6-3, Figure 6-4, and Figure 6-5 show plots of upper arm and wrist joint angles as well 

as Cartesian position and orientation for a simulated sampling task. 

 

Figure 6-3: Upper Arm Joint Angles During Visual Servo Simulation 
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Figure 6-4: Wrist Joint Angles During Visual Servo Simulation 

 

Figure 6-5: Cartesian position and orientation during visual servo simulation 

 Although the code appears to function properly in simulation, there have been 

many issues in getting it to work with the Ranger manipulator.  Initial testing was 

successful – the manipulator would approach the position of the target and stop at the 
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desired position.  However, on one test an error arose where the arm drew too much 

current when approaching a singularity and the power supply turned off.  Further 

modifications to the software appeared to take care of this issue, but another test on 

the manipulator ran into the same power supply issue.  Until this can be resolved, it 

will be impossible to perform more testing with Ranger.   

With only a few initial test runs utilizing the visual servo system, the 

manipulator appeared to be within the same accuracy as the dead-reckoning tests with 

the earlier system.  Until the final system is fully debugged and exhaustive testing can 

be performed, a decision on whether or not the visual servo routine provides clear 

benefits to the sampling capabilities cannot be made. 

6.3 Increased Target Realism 

The final set of tests was aimed to evaluate AVATAR performance when transitioned 

from the laboratory to a real-world environment where targets cannot be designed 

specifically for the task at hand.  Based on both deep-water color attenuated imagery 

from WHOI, as well as cluttered target fields created specifically to stress the 

AVATAR algorithms, output from the initial stages of the vision system is shown 

with desired sampling targets extracted for further processing.   

6.3.1 Laboratory Tests 

A sample target field was created within view of the Scorpion camera pair.  The 

targets in the simulated sampling field consist of different rocks, as well as a starfish 

and sand dollar.  Feature extraction tests are performed with both lights on and lights 

off to simulate a dark environment.  Using a combination of the MATLAB filter 
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creation process and the filtergui program, separate filters were created for both cases.  

In the lights on case, the focus was on extracting the rock targets, while in the lights 

off case, an attempt was made to extract whatever targets were distinguishable. 

 Output from the MATLAB filter creation program is displayed in Figure 6-6, 

Figure 6-7 and Figure 6-8.  The target range of data versus unwanted data has a 

clearly distinguishable separation, which translates to clear image filtering 

parameters.  As shown in Figure 6-9, the filtering process easily segments desired 

targets for further analysis.  No further image processing is necessary for successful 

localization in these tests. 

 

Figure 6-6: Blue vs. Green ratio data for light laboratory targets. 
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Figure 6-7: Red vs. Blue ratio data for light laboratory targets. 

 

Figure 6-8: Red vs. Green ratio data for light laboratory targets. 
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Figure 6-9: Realistic targets easily segmented in lighted laboratory environment. 

 Once the lights are turned off, the difficulty of the filtering process greatly 

increases.  The MATLAB data from these tests, shown in Figure 6-10, Figure 6-11 

and Figure 6-12, is still somewhat separated into two distinct clusters, although the 

targets areas now overlap significantly.  The data is now separated more by a 

diagonal line rather than a distinct horizontal line, which requires a more complicated 

filter that accounts for varying ratio data versus RGB magnitude. 
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Figure 6-10: Blue vs. Green ratio data for dark laboratory targets. 

 

Figure 6-11: Red vs. Blue ratio data for dark laboratory targets. 

142 
 
 



 

Figure 6-12: Red vs. Green ratio data for dark laboratory targets. 

To achieve adequate results, a feature AND operator was applied to eroded versions 

of the original image to restore degraded features.  Without the extra steps to erode 

and restore the image, it would have been impossible to extract usable feature data as 

much of the background remained in the processed image.  Figure 6-13 shows the 

results from this test – the original image is dark, so the results were changed to 

binary values to clearly delineate the segmented features.  In this test, the starfish, a 

single rock, and the sand dollar were all extracted with sufficient quality for further 

processing.  Edges of the background image used to simulate sand also appear, but 

would be ignored through aspect ratio constraints.  Also, note that the lead weights in 

the background also appear due to their similar color properties.  
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Figure 6-13: Some targets extracted in darkened laboratory environment. 

6.3.2 Underwater Imagery 

With full color correction applied to the raw WHOI imagery, any clearly distinct 

objects can be easily segmented.  The focus of this test is to show that without full 

color correction, or even application of the simple frame averaging algorithm, targets 

can be cleanly extracted from the color attenuated images.  At first, the feature 

extraction did not function suitably, as the difference in lighting from the center of the 

image to the edges drastically changed the RGB values at each pixel, due to the 

already attenuated data.  By applying the lighting correction algorithm, discussed in 

Section 3.2.2, a more homogenous image is created that provides much more useful 

results from the filtering process.   

Once again, the MATLAB filter creation algorithm was applied to the raw 

imagery to estimate good values for the filter process.  Figure 6-14 and Figure 6-15 

shows these results; due to the color attenuation, the Blue vs. Green chart is useless. 
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Figure 6-14: Red vs. Blue ratio data for sand dollar images. 

 

Figure 6-15: Red vs. Green ratio data for sand dollar images. 
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These plots are similar to the low-light results from the lab tests, but the lighting 

correction creates sufficient distinction to extract the majority of the sand dollars.  

Figure 6-16 shows the lighting corrected image and extracted features side by side. 

 

Figure 6-16: Sand dollar targets extracted from color attenuated image 
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Chapter 7 Conclusions and Future Work 

7.1 Conclusions 

This thesis describes the development and implementation of a fully autonomous 

vision system used to provide 3-D localization of sampling targets for a robotic 

manipulator.  Three major focus areas are pursued: the development of the vision 

algorithms to perform feature segmentation and 3-D reconstruction, design of a 

logical, modular software structure, and finally hardware integration with a robotic 

manipulator and subsequent sampling tests.  The overall system is capable of visually 

tracking both sampling targets and the manipulator, providing position data in the 

correct frame of reference to allow the manipulator to accurately approach a sampling 

target.   

7.1.1 Vision Algorithms 

The current set of vision algorithms provide the necessary capabilities to sample 

targets with sufficiently distinct color properties.  Although the algorithms remain 

quite simple from a mathematical standpoint, this simplicity minimizes computational 

complexity and facilitates intuitive understanding, which is important in an 

environment where not everyone is fluent in the most recent computer vision 

algorithms.   

 The initial feature filter algorithm is performed by calculating the ratios of 

RGB pixel channels with one another and comparing with a desired range of values.  

This is essentially mapping a specific section of the RGB histogram to a feature of 
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interest.  Any feature remaining in the image is extracted by a recursive procedure to 

locate and record all connected neighbor pixels, then geometric properties about the 

feature are evaluated to ensure compliance with the desired target.  Once features 

have been extracted from a corresponding pair of images, they are matched with an 

algorithm that capitalizes on epipolar constraint and assumes a realistic and practical 

field of view.  The 3-D target position can then be calculated through knowledge of 

the intrinsic and extrinsic parameters of the camera pair. 

7.1.2 Software Structure 

The software is split into two main modules: AVATAR, the computer vision system, 

and TAU, the public interface used to access AVATAR.  This packaging allows a 

programmer to make local changes without propagation through other software 

systems.    This modular structure is used down to the lowest level to ensure only 

required coupling occurs. 

 The use of external software management and validation tools allows the 

programmer to have greater confidence in the reliability of the software.  Continuous 

integration and comprehensive unit testing quickly alerts the programmer to 

anomalies that may not immediately be recognized otherwise.  Use of a memory 

profiling tool helps track down and reduce unforeseen memory leaks that can cause 

major problems hours into operation.  Although 100% reliability is tough to 

guarantee, the use of additional tools can enable tested software to approach this goal.  

7.1.3 Sampling Tasks 

The success of sampling trials shows that the current system is capable of 
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autonomously sampling a desired target from within the manipulator’s workspace.   

Testing with an earlier version of the system demonstrates that a less-capable version 

was able to successfully retrieve targets in both 1-G and underwater environments.  

With an increase in camera quality as well as software functionality and reliability, 

subsequent accuracy and precision data show much improved operational 

dependability of the overall system.  Many of the tasks, aside from the initial 

calibration of the cameras and creation of the target filters, are completely 

autonomous.  Finally, the implementation of the visual servo controller shows that 

even with little care taken in creating an extremely accurate camera calibration, and a 

fully autonomous procedure used for hand-eye calibration, the manipulator will 

successfully sample targets within its dexterous workspace. 

7.2 Future Work 

While the AVATAR system provides the capabilities necessary to autonomously 

sample a target, there are numerous avenues for future work.  The modular nature of 

the software design allows quick and easy integration of new algorithms or other 

modifications, facilitating extension.  Three main areas of possible future work will 

be discussed.  First, implementing more complex, capable, or accurate computer 

vision algorithms could improve performance and flexibility.  The second avenues for 

future upgrade are enhancements to the overall software architecture and ways to 

make the software run smoother and become more user-friendly.  The final section 

will examine necessary changes for the transition from the 8DOF Ranger manipulator 

to the 6DOF SAMURAI manipulator. 
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7.2.1 Computer Vision 

The major vision-related area that will benefit from future work is feature 

segmentation.  There are many algorithms capable of performing quick and accurate 

feature extraction.  By implementing multiple methods that complement the current 

color-based scheme, a user would be able to select the most capable algorithm for 

each target class.   

Two approaches to this goal can be pursued.  Complicated vision algorithms 

with the most accuracy, determining target type, in addition to pose, target motion 

and other quantities, are far from being used for real-time operations.  On the other 

hand, through simplifying existing algorithm or researching faster algorithms 

potentially inspired by existing complex approaches, one might reduce execution time 

down to a reasonable level for real-time control. 

Another useful enhancement would be researching methods of matching 

features extracted from one image, based on color data, with grayscale features in the 

other image.  Most real-time computer vision applications use grayscale imagery 

since the one data channel can be analyzed more quickly than can multi-color data.  

Also, many underwater systems have one color camera and one grayscale camera, as 

color provides visually attractive pictures while the grayscale cameras have higher bit 

depth thus provide more data of use to scientists.  

For moving targets and manipulator tracking, implementation of Kalman 

filters would provide a much more capable framework for ensuring desired outcomes.  

The current method assumes the most recent values are truth, providing no noise 

rejection capability. 
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Another possible avenue for research would be creating a 3-D map of the visible 

scene.  This would enable obstacle detection and avoidance by the manipulator, an 

important capability for an autonomous manipulator sampling system operating in a 

complex 3-D environment (e.g., a hydrothermal vent mound with multiple chimney 

deposits).  

7.2.2 Software Architecture 

Although the software has been tested thoroughly, one issue that was never 

approached is profiling the software to determine bottlenecks to target for increased 

code and/or algorithmic efficiency, in turn yielding increased execution frequency.  

By apply a profiling tool, such as gprof [58], such areas could easily be discovered 

and possibly alleviated of extraneous code. 

 Due to the parallel nature of processing two images simultaneously, moving to 

a multi-threaded process structure also has can increase execution efficiency, 

particularly with multi-core or multi-CPU processing capability.  Although useful for 

future applications, these upgrades were not pursued for this research.  AVATAR 

execution frequency is limited by the JAGUAR strobe (1-2.5 sec flash interval) more 

than code overhead. 

7.2.3 ASTEP Manipulator 

One of the most important aspects of future work that will arise when SAMURAI is 

completed is the integration of AVATAR and TAU with the new manipulator.  

Ranger’s kinematic calculator automatically enables the arm to move smoothly and 

reliably throughout the workspace.  Without the SEW and additional wrist degree of 
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freedom, SAMURAI will not be able to achieve smooth planar motion, instead 

constrained to a single configuration for a given tool position and pose.  The absence 

of redundancy will make singularity avoidance a greater issue, as well as avoidance 

of obstacles within the immediate workspace.  Due to these factors, a reliable system 

must be developed for robustly planning obstacle-free and singularity-free paths from 

the current manipulator position to the desired manipulator sampling position.   

 Another crucial issue that will arise once integration with SAMURAI and 

JAGUAR occurs is the problem of camera occlusion by the manipulator.  Space is 

extremely limited on an AUV so there are few camera positions where they could 

obtain a complete, overlapping view of the manipulator workspace.  With any of 

these mounting options the manipulator will block parts of the camera view during its 

transit to the sampling target, potentially motivating a hybrid control scheme that 

actively switches between dead reckoning and visual servoing modes based on 

occlusion constraints.   
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Appendix A  Relationship Between Essential and Fundamental 

Matrices with Camera Calibration Parameters 

The Essential matrix E  is defined as: 

RE xt
∆

=  where  is skew-symmetric matrix of 3-D translation vector and xt R  is the 

rotation matrix from extrinsic calibration 
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Appendix B  Derivation of the Registration Algorithm 

The equation for a general transformation is given by: 

  0
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Assuming pure planar rotation about x-axis this equation may be described by: 
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Similarly substituting for γsin  gives: 
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The values of ( ) γsin2
0

2
0 zy +  and ( ) γcos2

0
2

0 zy +  are computed by the registration 

algorithm, yielding the transformation due to x-axis rotation. 

 

Next, assuming pure planar rotation about the y-axis, the transformation equation 
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Similarly substituting for βsin  gives: 
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0 zx +  then enable the registration 

algorithm to describe the transformation due to a y-axis rotation. 
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α  

Substituting this expression for αcos  into the equation for : 1y

( ) 1010
2

0
2

0

2
010

2
010

0

01
001

sin

sinsin

sin
sin

xyyxyx

yxyxyx

x
yx

yxy

−=+

++=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
+=

α

αα

α
α
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Similarly substituting for αsin : 

( ) 1010
2

0
2

0

2
0

2
01010

0
0

10
01

cos

coscos

cos
cos

yyxxyx

zxxxyy

y
y

xx
xy

+=+

++−=

+
−

=

α

αα

α
α

 

The values ( ) αsin2
0

2
0 yx +  and ( ) αcos2

0
2

0 yx +  then enable the registration 

algorithm to compute the transformation resulting from a z-axis rotation. 
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Appendix C  Full Algorithm for Extracting Feature Geometric Data 

do to size( f ) 1=i

 
yitotalYtotalY
xitotalXtotalX

].[
].[

f
f

+=
+=

 

 if  then 1==i

   

yiY
yiY

xiX
xiX

top

bot

l

r

].[
].[
].[
].[

f
f
f
f

=
=
=
=

  else 

   if  then rXxi >].[f

    

yiY
yiY

xiX

Xrtop

Xrbot

r

].[
].[

].[

,

,

f
f

f

=

=
=

 

   else if rXxi ==].[f  then 

    if  then XrbotYyi ,].[ >f

     yiY Xrbot ].[, f=  

    end if 

    if XrtopYyi ,].[ <f  then 

     yiY Xrtop ].[, f=  

    end if 

  end if 

   if lXxi <].[f  then 

    

yiY
yiY

xiX

Xltop

Xlbot

l

].[
].[

].[

,

,

f
f

f

=

=
=

 

   else if lXxi ==].[f  then 

    if  then XlbotYyi ,].[ >f
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     yiY Xlbot ].[, f=  

    end if 

    if XltopYyi ,].[ <f  then 

     yiY Xltop ].[, f=  

    end if 

  end if 

   if  then botYyi >].[f

    

xiX
xiX

yiY

Ybl

Ybr

bot

].[
].[

].[

,

,

f
f

f

=

=
=

 

   else if botYyi ==].[f  then 

    if  then YbrXxi ,].[ >f

     xiX Ybr ].[, f=  

    end if 

    if YblXxi ,].[ <f  then 

     xiX Ybl ].[, f=  

    end if 

  end if 

   if topYyi <].[f  then 

    

xiX
xiX

yiY

Ytl

Ytr

top

].[
].[

].[

,

,

f
f

f

=

=

=

 

   else if topYyi ==].[f  then 

    if  then YtrXxi ,].[ >f

     xiX Ytr ].[, f=  

    end if 

    if YtlXxi ,].[ <f  then 

     xiX Ytl ].[, f=  
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    end if 

  end if 

 end if 

end do 

)(fsize
totalXCx = , 

)(fsize
totalYC y =  

topbot

lr

YY
XX

oaspectRati
−
−

=  

))(( topbotlr YYXXboxArea −−=  

boxArea
sizeareaRatio )(f

=  
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Appendix D  CAD Drawings for the Internal Camera Mounts 
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Appendix E  Results from IEEM Tracking 

Transformed     Cartesian 
Measured Vision Measured Arm Difference Difference 
x (cm) y (cm) z (cm) x (cm) y (cm) z (cm) x (cm) y (cm) z (cm) (cm) 
-51.75 -41.61 13.59 -51.63 -41.27 14.72 0.12 0.34 1.13 1.19 
-51.82 -41.36 13.60 -51.63 -41.27 14.72 0.19 0.09 1.13 1.15 
-51.82 -41.36 13.60 -51.63 -41.27 14.72 0.19 0.09 1.13 1.15 
-51.60 -40.97 13.35 -51.63 -41.27 14.72 -0.03 -0.30 1.37 1.41 
-51.60 -40.97 13.35 -51.63 -41.27 14.72 -0.03 -0.30 1.37 1.41 
-52.30 -40.99 -5.22 -52.19 -41.64 -4.36 0.11 -0.65 0.86 1.09 
-52.77 -41.65 -5.00 -52.19 -41.64 -4.36 0.58 0.01 0.64 0.87 
-52.77 -41.65 -5.00 -52.19 -41.64 -4.36 0.58 0.01 0.64 0.87 
-52.80 -41.64 -5.00 -52.19 -41.64 -4.36 0.61 0.00 0.64 0.89 
-52.77 -41.65 -5.00 -52.19 -41.64 -4.36 0.58 0.01 0.64 0.87 
-55.50 -52.54 -4.86 -55.22 -52.99 -4.47 0.27 -0.45 0.40 0.66 
-55.30 -51.93 -4.93 -55.22 -52.99 -4.47 0.08 -1.06 0.46 1.16 
-55.30 -51.93 -4.93 -55.22 -52.99 -4.47 0.08 -1.06 0.46 1.16 
-55.30 -51.93 -4.93 -55.22 -52.99 -4.47 0.08 -1.06 0.46 1.16 
-55.30 -51.93 -4.93 -55.22 -52.99 -4.47 0.08 -1.06 0.46 1.16 
-55.11 -53.15 -16.43 -54.33 -55.49 -15.99 0.78 -2.35 0.44 2.51 
-54.87 -52.62 -16.40 -54.33 -55.49 -15.99 0.54 -2.87 0.41 2.95 
-54.87 -52.62 -16.40 -54.33 -55.49 -15.99 0.54 -2.87 0.41 2.95 
-54.87 -52.62 -16.40 -54.33 -55.49 -15.99 0.54 -2.87 0.41 2.95 
-54.87 -52.62 -16.40 -54.33 -55.49 -15.99 0.54 -2.87 0.41 2.95 
-62.00 -57.97 -19.61 -60.98 -58.20 -19.53 1.02 -0.24 0.09 1.05 
-61.65 -57.37 -19.64 -60.98 -58.20 -19.53 0.67 -0.83 0.11 1.07 
-61.63 -57.43 -19.64 -60.98 -58.20 -19.53 0.65 -0.78 0.12 1.02 
-61.65 -57.37 -19.64 -60.98 -58.20 -19.53 0.67 -0.83 0.11 1.07 
-61.63 -57.43 -19.64 -60.98 -58.20 -19.53 0.65 -0.78 0.12 1.02 
-66.63 -59.50 5.72 -66.35 -60.75 6.15 0.27 -1.26 0.43 1.35 
-66.68 -59.41 5.71 -66.35 -60.75 6.15 0.33 -1.34 0.43 1.44 
-66.68 -59.41 5.71 -66.35 -60.75 6.15 0.33 -1.34 0.43 1.44 
-66.68 -59.41 5.71 -66.35 -60.75 6.15 0.33 -1.34 0.43 1.44 
-66.68 -59.41 5.71 -66.35 -60.75 6.15 0.33 -1.34 0.43 1.44 
-62.97 -45.85 5.12 -62.22 -47.50 5.96 0.75 -1.66 0.84 2.00 
-62.97 -45.85 5.12 -62.22 -47.50 5.96 0.75 -1.66 0.84 2.00 
-62.97 -45.85 5.12 -62.22 -47.50 5.96 0.75 -1.66 0.84 2.00 
-62.97 -45.85 5.12 -62.22 -47.50 5.96 0.75 -1.66 0.84 2.00 
-62.97 -45.85 5.12 -62.22 -47.50 5.96 0.75 -1.66 0.84 2.00 
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 Trial 1-1 Trial 1-2 Trial 1-3 Trial 2-1 Trial 2-2 Trial 2-3 
α (rad) -2.322 -2.336 -2.332 -2.331 -2.334 -2.333 
β (rad) 1.577 1.575 1.573 1.566 1.568 1.570 
γ (rad) 0.012 0.013 0.013 0.017 0.017 0.017 
x (m) -0.22861 -0.21913 -0.22217 -0.22265 -0.22061 -0.22068 
y (m) 0.20837 0.20358 0.20511 0.203 0.20201 0.20307 
z (m) -0.1223 -0.12402 -0.12584 -0.13054 -0.12965 -0.12841 
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