
TYPE Original Research

PUBLISHED 13 February 2023

DOI 10.3389/fams.2023.1068890

OPEN ACCESS

EDITED BY

Lei Zhang,

Shanghai Jiao Tong University, China

REVIEWED BY

Youssri Hassan Youssri,

Cairo University, Egypt

V. K. Kukreja,

Sant Longowal Institute of Engineering and

Technology, India

*CORRESPONDENCE

Eshetu B. Derzie

eshet.belete@gmail.com

SPECIALTY SECTION

This article was submitted to

Numerical Analysis and Scientific Computation,

a section of the journal

Frontiers in Applied Mathematics and Statistics

RECEIVED 13 October 2022

ACCEPTED 27 January 2023

PUBLISHED 13 February 2023

CITATION

Derzie EB, Munyakazi JB and Dinka TG (2023) A

NSFD method for the singularly perturbed

Burgers-Huxley equation.

Front. Appl. Math. Stat. 9:1068890.

doi: 10.3389/fams.2023.1068890

COPYRIGHT

© 2023 Derzie, Munyakazi and Dinka. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

A NSFD method for the singularly
perturbed Burgers-Huxley equation

Eshetu B. Derzie1*, Justin B. Munyakazi2 and Tekle G. Dinka1

1Department of Mathematics, Adama Science and Technology University, Adama, Ethiopia, 2Department of

Mathematics and Applied Mathematics, University of the Western Cape, Bellville, South Africa

This article focuses on a numerical solution of the singularly perturbed

Burgers-Huxley equation. The simultaneous presence of a singular perturbation

parameter and the nonlinearity raise the challenge of finding a reliable and e�cient

numerical solution for this equation via the classical numerical methods. To overcome

this challenge, a nonstandard finite di�erence (NSFD) scheme is developed in the

following manner. The time variable is discretized using the backward Euler method.

This gives rise to a system of nonlinear ordinary di�erential equations which are then

dealt with using the concept of nonlocal approximation. Through a rigorous error

analysis, the proposed scheme has been shown to be parameter-uniform convergent.

Simulations conducted on two numerical examples confirm the theoretical result. A

comparison with other methods in terms of accuracy and computational cost reveals

the superiority of the proposed scheme.
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1. Introduction

The time-dependent singularly perturbed Burgers-Huxley equation models a large class of

physical phenomena such as the interaction between convection effect, reaction mechanism and

diffusion transport. In one dimensional space this equation has the form [1, 2]















ut − εuxx + a(u)ux + b(u)u = 0, (x, t) ∈ D ≡ �× (0,T] ≡ (0, 1)× (0,T],

u(x, 0) = u0(x), x ∈ �,

u(0, t) = h1(t), u(1, t) = h2(t), t ∈ [0,T],

(1.1)

where

a(u) = αu, b(u) = −β(1− u)(u− γ ),

α ≥ 0, β ≥ 0, γ ∈ (0, 1) are real parameters and u0(x), h1(t), and h2(t) are sufficiently

smooth prescribed functions. Here, 0 < ε≪ 1 denotes the perturbation parameter.

The field of numerical methods for singularly perturbed problems has flourished

significantly over the last couple of decades. The studies focused on the design and analysis

of numerical methods that were parameter-uniformly convergent. In other words, research

was mostly motivated by the challenge posed by the presence of the singular perturbation

parameter. A vast majority of researchers discussed linear problems. Nonlinear singularly

perturbed equations, and in particular Equation (1.1), received little attention from scholars

in this research area. Nonlinearity constitutes an another layer of difficulties of singularly

perturbed problems.

In general, the solution of the singularly perturbed Burgers-Huxley problem (1.1) with

arbitrary initial and boundary conditions (IBCs) cannot be expressed in terms of a finite number

of elementary functions [2, 3]. Thus, several scholars seek approximate analytic solutions using
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different transformation techniques [4–6]. However, these

techniques still hold for only some specific parameters and

initial boundary conditions. Hence, for general cases, there is a need

to develop numerical methods to obtain an approximate solution of

the problem.

For the last two decades, various numerical methods have been

studied to solve the Burgers-Huxley equations of type (1.1) for

ε = 1 and specific IBCs in the framework of NSFD methods. For

example, A.R. Appadu et al. [7] developed two novel nonstandard

finite difference schemes, and explicit exponential finite difference

method and a fully implicit exponential finite difference method.

For the singularly perturbed case, that is when 0 < ε≪1, various

parameter-uniformly convergent methods have been developed to

solve (1.1) [1, 2, 8, 9]. It is to be noted that all these works used the

Newton’s quasilinearization to deal with the nonlinearity.

In this article, a nonstandard finite difference method for the

singularly perturbed case is proposed. To deal with the nonlinearity,

rather than using quasilinearization, for the first time, nonlinear

terms are approximated in a nonlocal manner following one of

Micken’s rules [10]. The resulting method preserves the properties of

the continuous solution and provides reliable numerical results. The

method is proved to be first order parameter-uniform convergent in

time and space.

The rest of this article is structured in the following manner. In

the next section, we study a priori estimates of the analytic solution

to the problem. Section 3 is about the proposed NSFD method

and its parameter-uniform convergence. Section 4 deals with the

implementation of the method to confirm the theoretical results and

compare with other methods. Section 5 concludes the present work

and provides a direction for future work.

2. Some analytical results: A priori
estimates

Throughout this article, we assume that u0, h1, and h2 are

sufficiently smooth functions and that a and b satisfy

a(u) ≥ p > 0, b(u) ≥ q ≥ 0. (2.1)

Under these assumptions the problem (1.1) has a unique solution

u(x, t) ∈ C2,1(D̄) which exhibits a boundary layer near x = 1 [1].

In the rest of the paper, C denotes a generic constant independent

of the parameters and mesh sizes, and ‖.‖D denotes the maximum

norm over D. For the solution u(x, t) of (1.1), we have the

following bounds.

Lemma 2.1. [Uniform stability estimate for continuous problem]

Let u(x, t) be the exact solution of (1.1) on D̄, then

‖u‖D̄ ≤ C‖u0‖Di + ‖u‖∂D,

where Di = {(x, t) : t = 0, x ∈ [0, 1]}, ∂D = Di ∪ DL ∪ DR, DL =

{(x, t) : x = 0, t ∈ [0,T]}, and DR = {(x, t) : x = 1, t ∈ [0,T]}.

Proof: The proof can be seen in [9].

Remark 2.2. From our assumption in (2.1) and Lemma 2.1, one can

observe that the solution u(x, t) satisfies

p

α
≤ u(x, t) ≤ C‖u0‖Di + ‖u‖∂D, (x, t) ∈ D̄. (2.2)

3. Proposed scheme and its
convergence analysis

This section is dedicated to the construction of a new scheme and

to the analysis of its parameter-uniform convergence. The first step is

to discretize the solution domain D̄ and provide the definition of the

NSFD methods given in [11] (a revised version of [10]).

Let M and N be positive integers and D̄M,N = �̄M × [0,T]N be

uniform grid discretization of the solution domain D̄ = �̄ × [0,T]

such that

�̄M = {xm : xm = mh, m = 0, 1, · · · ,M}

and

[0,T]N = {tn : tn = n1t, n = 0, 1, · · · ,N},

where h = 1/M and 1t = T/N are spatial and temporal step

sizes, respectively.

Definition 3.1. A discrete scheme to determine approximate

solutions unm to the solution u(x, t) of the problem (1.1) is called a

NSFD method if at least one of the following conditions is satisfied

[10]:

1. The classical denominator h or h2 of the discrete first or second

order derivative is replaced by a nonnegative function ψ such that

ψ(h) = h+ O(h) or ψ2(h) = h2 + O(h2).

For example, denominator functions that satisfy the above

conditions are

ψ(h) = h, sin(h),
eβh − 1

β
,
hε

a

(

exp(
ah

ε
)− 1

)

(3.1)

and so on.

2. Nonlinear terms that occur in the differential equation are

approximated in a nonlocal way. For example,

un+1
m ≈ unm, (unm)

2 ≈ unmv
n
m+1, (unm)

2 ≈ unm
unm−1 + unm + vnm+1

3
,

(un+1
m )3 ≈ 2(unm)

3 − (unm)
2un+1

m , (unm)
3 ≈ unm−1u

n
mu

n
m+1, (3.2)

and so on.

Definition 3.2. Assume that the solution of (1.1) satisfies some

property P. The difference equation of (1.1) in unm is called

(qualitatively) stable with respect to P if, for any values of the mesh

sizes 1t and h, solution of the difference equation replicates the

property P.

Remark 3.3. In [10], Mickens set five rules for the constructions of

the finite difference models that can replicate the properties of the

exact solution. Definition 3.1 satisfies only two of these rules.

The remaining rules are expressed in terms of definition 3.2.

For example, the schemes under consideration in this paper is

qualitatively stable with respect to the order of the differential

equation, they do satisfy positivity and uniform boundedness.

To construct the scheme, first we semidiscretize the problem (1.1)

in time direction and then in space direction.
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3.1. Semidiscrete scheme

Denote un(x) as the approximation of u(x, tn) at time level tn, 0 ≤

n ≤ N. Now, we apply backward Euler finite difference method to

discretize the continuous problem (1.1) in the temporal direction and

obtain the following semidiscrete scheme:















u0(x) = u(x, 0) = u0(x),

(I +1tLN
ε )u

n+1(x) = un(x), x ∈ �,

un+1(0) = h1(tn+1), un+1(1) = h2(tn+1), n = 0, 1, · · · ,N − 1,

(3.3)

where

L
N
ε ≡ −ε

d2

dx2
+ a(un)

d

dx
+ b(un).

Here the nonlinearity a(u)ux and b(u)u approximated in a

nonlocal way as

a(un+1)
dun+1

dx
≈ a(un)

dun+1

dx
and b(un+1)un+1 ≈ b(un)un+1.

and thus this approximation satisfies the condition (2) in

definition 3.1.

3.2. Convergence analysis for the
semidiscrete scheme

The local truncation error en+1 of the semidiscrete scheme (3.3)

is given by en+1 = u(x, tn+1)− ûn+1(x), where ûn+1(x) is the solution

of

{

(I +1tLN
ε )û

n+1 = u(x, tn), x ∈ �,

ûn+1(0) = h1(tn+1), ûn+1(1) = h2(tn+1), n = 0, 1, · · · ,N − 1.

(3.4)

That is, ûn+1(x) is the solution obtained after one step of

semidiscrete scheme (3.3) by taking the exact value u(x, tn) instead

of un(x) as the starting data.

In order to analyze the uniform convergence of the solution un(x)

of (3.3) to the exact solution u(x, tn), we will perform the stability

analysis and establish the consistency result. First, let us consider the

semidiscrete maximum principle for the operator I +1tLN
ε .

Lemma 3.4. Let 8n+1(x) be a function such that 8n+1(0) ≥

0, 8n+1(1) ≥ 0 and (I + 1tLN
ε )8

n+1(x) ≥ 0 for all x ∈ �. Then

8n+1(x) ≥ 0 for all x ∈ �̄.

Proof: Suppose there is x∗ ∈ �̄ such that 8n+1(x∗) =

min
x∈�̄

8n+1(x) < 0. From the given hypothesis and second derivative

test, we have x∗ 6= 0, x∗ 6= 1, 8n+1
x (x∗) = 0 and 8n+1

xx (x∗) > 0.

Then, from (3.3) we have

(I +1tLN
ε )8

n+1(x∗) =8n+1(x∗)+1t
(

−ε8n+1
xx + a(8n)8n+1

x

+b(8n)8n+1
)

(x∗)

= 8n+1(x∗)+1t
(

−ε8n+1
xx (x∗)

+a(8n(x∗))8n+1
x (x∗)+ b(8n(x∗))8n+1(x∗)

)

= 8n+1(x∗)+1t
(

−ε8n+1
xx (x∗)

+b(8n(x∗))8n+1(x∗)
)

.

Assumption (2.1) leads to (I + 1tLN
ε )8

n+1(x∗) < 0, which

contradicts the given assumption in Lemma 3.4 and thus 8n+1(x) ≥

0 for all x ∈ �̄.

This maximum principle leads to the following stability result

‖(I +1tLN
ε )

−1‖ ≤ C. (3.5)

Lemma 3.5. (Local error estimate)

Estimate of the local error en+1 is given by

‖en+1‖ ≤ C1t2. (3.6)

Proof: See [2].

The global error En+1 associated to the semidiscrete scheme (3.3)

at (n + 1)-th time level is given by En+1 = u(x, tn+1) − un+1(x) =
n+1
∑

i=1
ei. Using the local error estimate (Lemma 3.5) and triangular

inequality the following global error estimate follows.

Theorem 3.6. (Global error estimate)

The global error En+1 of the time discretisation at the n + 1 time step

satisfies

‖En+1‖ ≤ C1t, n1t ≤ T. (3.7)

Therefore, the semidiscrete scheme (3.3) is a first order uniformly

convergent in the time direction.

The following lemma provides the asymptotic estimates of the

exact solution un+1 of (3.3) and its derivatives. These estimates will

be used in the convergence analysis of the fully discrete scheme

Lemma 3.7. If un+1(x) is the solution of the problem (3.3), then there

exists a constant C such that

||
∂ iun+1

∂xi
||�̄ ≤ C

(

1+ ε−i exp(
−p(1− x)

ε
)

)

, 0 ≤ i ≤ 4, ∀x ∈ �̄.

(3.8)

Proof: See the proof of Lemma 4.1 in [12]

3.3. The spatial discretisation

In this subsection, we totally discretise the semidiscrete scheme

(3.3) on a uniform mesh �̄M . Let the approximation of un(x) at xm
be denoted by unm, 0 ≤ m ≤ M. Similarly, let the approximations of

a(unm) and b(unm) be denoted respectively by anm and bnm.

Using the upwind finite difference scheme and nonstandard finite

difference methodology of Mickens [13], the semidiscrete problem

(3.3) can be fully-discretised as

{

(I +1tLM,N
ε )un+1

m = un(xm), 1 ≤ m ≤ M − 1,

un+1
0 = h1(tn+1), un+1

M = h2(tn+1),
(3.9)

where

L
M,N
ε un+1

m ≡ −ε

[

un+1
m+1 − 2un+1

m + un+1
m−1

(ψn
m)

2

]

+ anm

[

un+1
m − un+1

m−1

h

]

+bnmu
n+1
m ,

Frontiers in AppliedMathematics and Statistics 03 frontiersin.org

https://doi.org/10.3389/fams.2023.1068890
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Derzie et al. 10.3389/fams.2023.1068890

0.2

1

0.22

0.24

1

u

0.26

0.8

t

0.28

0.5
0.6

x

0.3

0.4

0.2
0 0

FIGURE 1

Numerical solutions of Example 4.1 using the proposed method for T = 1, M = 64, N = 40 and ε = 10−4. A layer is observed near x = 1.

TABLE 1 Maximum absolute errors for Example 4.1 forM = 32 at the number of intervals N.

ε ↓ N = 20 40 80 160 320 640

1.00e+00 3.15e-04 1.82e-04 9.81e-05 5.10e-05 2.60e-05 1.31e-05

0.79 0.89 0.94 0.97 0.99

1.00e-02 8.31e-04 4.31e-04 2.20e-04 1.11e-04 5.58e-05 2.80e-05

0.95 0.97 0.99 0.99 1.00

1.00e-04 1.06e-03 5.61e-04 2.90e-04 1.47e-04 7.43e-05 3.73e-05

0.91 0.95 0.98 0.99 0.99

1.00e-06 1.06e-03 5.61e-04 2.90e-04 1.47e-04 7.43e-05 3.73e-05

0.91 0.95 0.98 0.99 0.99

1.00e-08 1.06e-03 5.61e-04 2.90e-04 1.47e-04 7.43e-05 3.73e-05

0.91 0.95 0.98 0.99 0.99

1.00e-10 1.06e-03 5.61e-04 2.90e-04 1.47e-04 7.43e-05 3.73e-05

0.91 0.95 0.98 0.99 0.99

1.00e-12 1.06e-03 5.61e-04 2.90e-04 1.47e-04 7.43e-05 3.73e-05

0.91 0.95 0.98 0.99 0.99

and the denominator function ψn
m is

(ψn
m)

2(h, ε) =
hε

anm

(

exp(
anmh

ε
)− 1

)

.

The denominator function is derived systematically to replicate

the dissipativity properties of the solution of the differential

equations. Interested readers may refer to [14] for details. Observe

that

(ψn
m)

2(h, ε) = h2 + O(
h3

ε
),

and thus this function satisfies the condition (1) in definition 3.1.

The method in Eq. (3.9) is a linear nonstandard finite difference

(LNSFD) and can be written as:

En+1
m un+1

m−1 + Fn+1
m un+1

m + Gn+1
m un+1

m+1 = Hn+1
m , 1 ≤ m ≤ M − 1,

(3.10)
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TABLE 2 Maximum absolute errors for Example 4.1 for N = 10 at the number of intervalsM.

ε ↓ M = 32 64 128 256 512 1,024

1.00e+00 5.579e-05 2.989e-05 1.545e-05 7.854e-06 3.959e-06 1.988e-06

0.90 0.95 0.98 0.99 0.99

1.00e-02 1.271e-03 1.622e-03 1.144e-03 6.693e-04 3.596e-04 1.861e-04

-0.35 0.50 0.77 0.90 0.95

1.00e-04 2.064e-03 1.229e-03 6.846e-04 8.908e-04 3.387e-03 2.938e-03

0.75 0.84 -0.38 -1.93 0.20

1.00e-06 2.064e-03 1.229e-03 6.815e-04 3.624e-04 1.872e-04 9.526e-05

0.75 0.85 0.91 0.95 0.98

1.00e-08 2.064e-03 1.229e-03 6.815e-04 3.624e-04 1.872e-04 9.526e-05

0.75 0.85 0.91 0.95 0.98

1.00e-10 2.064e-03 1.229e-03 6.815e-04 3.624e-04 1.872e-04 9.526e-05

0.75 0.85 0.91 0.95 0.98

1.00e-12 2.064e-03 1.229e-03 6.815e-04 3.624e-04 1.872e-04 9.526e-05

0.75 0.85 0.91 0.95 0.98

TABLE 3 Comparison of absolute errors for Example 4.1 using the proposed

scheme (LNSFD) with results of [7, 19] and NNSFD for

ε = 1, α = β = 1, γ = 0.001 at some values of x and t.

t x LNSFD NNSFD VIM[19] NSFD[7]

0.05 0.1 7.5615e-09 7.5595e-09 1.87405-08 8.13470-09

0.5 1.6945e-08 1.6945e-08 1.87405-08 1.78493-08

0.9 7.5601e-09 7.5601e-09 1.87405-08 8.13524-09

0.1 0.1 1.1125e-08 1.1123e-08 3.74813-08 1.19758-08

0.5 2.8280e-08 2.8280e-08 1.37481-08 3.02147-08

0.9 1.1124e-08 1.1124e-08 3.74813-08 1.19770-08

1 0.1 1.6853e-08 1.6850e-08 3.74812-08 1.86370-08

0.5 4.6811e-08 4.6809e-08 3.74813-08 5.17712-08

0.9 1.6853e-08 1.6853e-08 3.74813-08 1.86393-08

TABLE 4 CPU time for Example 4.1.

LNSFD NNSFD

CPU Time (Sec) 0.010792 6.777089

where

En+1
m = −1t

(

ε

(ψn
m)

2
+

anm
h

)

, (3.11)

Fn+1
m = 1+1t

(

2ε

(ψn
m)

2
+

anm
h

+ bnm

)

, (3.12)

Gn+1
m = −

ε1t

(ψn
m)

2
, (3.13)

Hn+1
m = unm.

Equation (3.10) leads to the tridiagonal system which can be

solved with Thomas Algorithm [15, 16].

Remark 3.8. The developed scheme is a linear difference equation

even if the original equation (1.1) is nonlinear. This is one of the

feature of NSFD.

3.4. Convergence analysis of the space
discretisation

The difference operator I+1tLM,N
ε of (3.9) satisfies the following

maximum principle. Hence (3.9) has a unique discrete solution unm.

Lemma 3.9. Let 8n+1
m , m = 0, 1, · · · ,M be fully discrete mesh

functions. If 8n+1
0 ≥ 0, 8n+1

M ≥ 0 and (I + 1tLM,N
ε )8n+1

m ≥ 0

for 1 ≤ m ≤ M − 1 then8n+1
m ≥ 0 for 0 ≤ m ≤ M.

Proof: Let us proof by contradiction. Assume there is m∗ such that

8n+1
m∗ = min

0≤m≤M
8n+1

m < 0. Thus, we have, m∗ /∈ {0,M}, 8n+1
m∗+1 −

8n+1
m∗ ≥ 0, and8n+1

m∗−1 −8
n+1
m∗ ≥ 0. Now, from (3.9) we have

(I +1tLM,N
ε )8n+1

m∗ =8n+1
m∗ +1t

[

−ε

(

8n+1
m∗+1 − 28n+1

m∗ +8n+1
m∗−1

(ψn
m∗ )2

)

+anm∗

(

8n+1
m∗ −8n+1

m∗−1

h

)

+ bnm∗8
n+1
m∗

]

=− ε1t

(

8n+1
m∗+1 −8

n+1
m∗ +8n−1

m∗−1 −8
n+1
m∗

(ψn
m∗ )2

)

+ anm∗1t

(

8n+1
m∗ −8n+1

m∗−1

h

)

+
(

1+1tbnm∗

)

8n+1
m∗ < 0,

which contradicts the given assumption (I + 1tLM,N
ε )8n+1

m ≥ 0 for

1 ≤ m ≤ M − 1 and hence8n+1
m ≥ 0 for 0 ≤ m ≤ M.

This leads immediately to the following stability result, analogous

to the continuous result.
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FIGURE 2

Numerical solutions of Example 4.2 using the proposed method for T = 1, M = 64, N = 40 and ε = 10−4. A layer is observed near x = 1.

Lemma 3.10. [Uniform stability estimate for discrete problem]

Let 8n+1
m , 0 ≤ m ≤ M, be any mesh functions such that 8n+1

0 =

8n+1
M = 0, then

|8n+1
m | ≤

1

1+ q1t
max

1≤i≤M−1
|(I +1tLM,N

ε )8n+1
i |, 0 ≤ m ≤ M.

Proof: Define

[9±]n+1
m =

1

1+ q1t
max

1≤i≤M−1
|(I +1tLM,N

ε )8n+1
i | ±8n+1

m

which implies

[9±]n+1
0 =

1

1+ q1t
max

1≤i≤M−1
|(I +1tLM,N

ε )8n+1
i | ±8n+1

0

=
1

1+ q1t
max

1≤i≤M−1
|(I +1tLM,N

ε )8n+1
i | ≥ 0,

[9±]n+1
M =

1

1+ q1t
max

1≤i≤M−1
|(I +1tLM,N

ε )8n+1
i | ±8n+1

M

=
1

1+ q1t
max

1≤i≤M−1
|(I +1tLM,N

ε )8n+1
i | ≥ 0,

and, form = 1, 2, · · · ,M − 1,

(I +1tLM,N
ε )[9±]n+1

m = (I +1tLM,N
ε )

( 1

1+ q1t
max

1≤i≤M−1
|(I +1tLM,N

ε )8n+1
i | ±8n+1

m

)

=
1+1tbnm
1+ q1t

max
0≤m≤M

|(I +1tLM,N
ε )8n+1

m | ± (I +1tLM,N
ε )8n+1

m .

Since bn(xm) ≥ q, one has (I + 1tLM,N
ε )[9±]n+1

m ≥ 0. Thus,

by discrete maximum principle given in Lemma 3.9, one obtains

[9±]n+1
m ≥ 0. This gives the required result

|8n+1
m | ≤

1

q
max

1≤i≤M−1
|(I +1tLM,N

ε )8n+1
i |, 0 ≤ m ≤ M.

Remark 3.11. Lemmas 3.9 and 3.10 show the developed nonstandard

finite difference method replicates the positivity and boundedness

of the solution, respectively. Hence, the proposed method is

qualitatively stable.

Theorem 3.12. (Error estimate in the spatial direction)

Let un+1(x) be the solution of the semidiscrete problem (3.4) and un+1
m

be the solution of the full discretisation (3.9). Then, the error estimate

is given by

∣

∣un+1(xm)− un+1
m

∣

∣ ≤ Ch, 0 ≤ m ≤ M.

Proof: The truncation error of the complete discretization (3.9) is
given by

(I +1tLM,N
ε )

(

un+1(xm)− un+1
m

)

(3.14)

= 1t
[

−ε(un+1)′′(xm)+ an(xm)(u
n+1)′(xm)+ bn(xm)u

n+1(xm)
]

−1t

[

−ε
h2

(ψn
m)

2
D+D−un+1(xm)+ an(xm)D

−un+1(xm)+ bn(xm)u
n+1(xm)

]

= ε1t

(

h2

(ψn
m)

2
D+D− −

d2

dx2

)

un+1(xm)+ an(xm)1t

(

d

dx
− D−

)

un+1(xm),

(3.15)

where

D−un+1(xm) =
un+1(xm)− un+1(xm−1)

h
,
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TABLE 5 Maximum absolute errors for Example 4.2 forM = 32 at the number of intervals N.

ε ↓ N = 20 40 80 160 320 640

1.00e+00 8.75e-03 5.46e-03 3.09e-03 1.64e-03 9.86e-04 8.23e-04

0.68 0.82 0.91 0.73 0.26

1.00e-02 1.09e-02 6.28e-03 3.54e-03 1.89e-03 9.83e-04 5.01e-04

0.79 0.83 0.90 0.95 0.97

1.00e-04 1.08e-02 5.91e-03 3.33e-03 1.78e-03 9.27e-04 4.73e-04

0.87 0.83 0.90 0.94 0.97

1.00e-06 1.08e-02 5.91e-03 3.33e-03 1.78e-03 9.27e-04 4.73e-04

0.87 0.83 0.90 0.94 0.97

1.00e-08 1.08e-02 5.91e-03 3.33e-03 1.78e-03 9.27e-04 4.73e-04

0.87 0.83 0.90 0.94 0.97

1.00e-10 1.08e-02 5.91e-03 3.33e-03 1.78e-03 9.27e-04 4.73e-04

0.87 0.83 0.90 0.94 0.97

1.00e-12 1.08e-02 5.91e-03 3.33e-03 1.78e-03 9.27e-04 4.73e-04

0.87 0.83 0.90 0.94 0.97

TABLE 6 Maximum absolute errors for Example 4.2 for N = 10 at the number of intervalsM.

ε ↓ M = 32 64 128 256 512 1,024

1.00e+00 6.399e-03 3.542e-03 1.861e-03 9.533e-04 4.824e-04 2.427e-04

0.85 0.93 0.96 0.98 0.99

1.00e-02 9.602e-02 4.611e-02 4.394e-02 5.108e-02 3.545e-02 2.077e-02

1.06 0.07 −0.22 0.53 0.77

1.00e-04 4.147e-03 2.242e-03 1.167e-03 5.956e-04 3.294e-04 7.375e-03

0.89 0.94 0.97 0.85 −4.48

1.00e-06 4.147e-03 2.242e-03 1.167e-03 5.956e-04 3.009e-04 1.513e-04

0.89 0.94 0.97 0.98 0.99

1.00e-08 4.147e-03 2.242e-03 1.167e-03 5.956e-04 3.009e-04 1.513e-04

0.89 0.94 0.97 0.98 0.99

1.00e-10 4.147e-03 2.242e-03 1.167e-03 5.956e-04 3.009e-04 1.513e-04

0.89 0.94 0.97 0.98 0.99

1.00e-12 4.147e-03 2.242e-03 1.167e-03 5.956e-04 3.009e-04 1.513e-04

0.89 0.94 0.97 0.98 0.99

D+un+1(xm) =
un+1(xm+1)− un+1(xm)

h
,

D+D−un+1(xm) =
un+1(xm+1)− 2un+1(xm)+ un+1(xm−1)

h2
.

Applying absolute values and using triangle inequalities in (3.15)

leads to

∣

∣(I +1tLM,N
ε )(un+1(xm)− un+1

m )
∣

∣

≤ ε1t

∣

∣

∣

∣

(
h2

(ψn
m)

2
− 1)D+D−un+1(xm)

∣

∣

∣

∣

+ε1t

∣

∣

∣

∣

(D+D− −
d2

dx2
)un+1(xm)

∣

∣

∣

∣

+an(xm)1t

∣

∣

∣

∣

(
d

dx
− D−)un+1(xm)

∣

∣

∣

∣

. (3.16)

From the use the Taylor series expansions of some terms in the

above equation, on obtains

h2

(ψn
m)

2
− 1 = −

an(η1)h

2ε + ha(η1)
, (3.17)

D+D−un+1(xm) =
d2un+1

dx2
(η2), (3.18)

(D+D− −
d2

dx2
)un+1(xm) =

h2

16

d4un+1

dx4
(η3), (3.19)

(
d

dx
− D−)un+1(xm) =

h

2

d2un+1

dx2
(η4), (3.20)

for some ηi such that xm−1 ≤ ηi ≤ xm+1, i = 1, 2, 3, 4.
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Substituting equations (3.17)–(3.20) in (3.16) and from the

boundedness of an(x) in (3.8), one has

∣

∣(I +1tLM,N
ε )(un+1(xm)− un+1

m )
∣

∣ ≤ ε1t
an(η1)h

2ε + han(η1)

∣

∣

d2un+1

dx2
(η2)

∣

∣

+ε1t
h2

16

∣

∣

d4un+1

dx4
(η3)

∣

∣

+an(xm)1t
h

2

∣

∣

d2un+1

dx2
(η4)

∣

∣, (3.21)

and this gives

∣

∣(I +1tLM,N)(un+1(xm)− un+1
m )

∣

∣

≤ Ch

(

1+ ε−2 exp
(−p(1− xm)

ε

)

)

+Ch2
(

ε + ε−3 exp
(−p(1− xm)

ε

)

)

≤ Ch

(

1+ ε−3 exp
(−p(1− xm)

ε

)

)

, form = 1, 2, · · · ,M − 1.

Applying Lemma 7 of [17] gives

lim
ε→0

∣

∣(I +1tLM,N)(un+1(xm)− un+1
m )

∣

∣ ≤ Ch (3.22)

which, upon use of Lemma 3.10, leads to

lim
ε→0

|un+1(xm)− un+1
m | ≤ Ch. (3.23)

Combining the schemes (3.3) and (3.9), one

obtains the following fully-discrete scheme on the

mesh �̄M × [0,T]N .

{

(I +1tLM,N
ε )un+1

m = unm, 1 ≤ m ≤ M − 1, 0 ≤ n ≤ N − 1,

un+1(0) = h1(tn+1), u
n+1(1) = h2(tn+1), 0 ≤ n ≤ N − 1.

(3.24)

The temporal and spatial error estimates in Theorem 3.6

and 3.12, respectively, give the the following main result of

this paper.

Theorem 3.13. If u(x, t) is the exact solution of the continuous

problem (1.1) and unm is the solution of the fully-discrete scheme (3.24),

then

|u(xm, tn)− unm| ≤ C(1t + h), 0 ≤ m ≤ M, 0 ≤ n ≤ N.

Therefore, the presented discrete scheme is ε-uniform convergent

of order one both in time and space.

4. Numerical implementation

In this section, two test examples are provided to demonstrate

the efficiency and applicability of the proposed numerical method.

The first example is taken from a recent article [7] for ε = 1,

and we modified it by multiplying the highest derivative term by

ε to make the problem singularly perturbed. It is the first time

to consider this example for the singularly perturbed case. The

second example is taken from [2] for different initial and boundary

conditions to satisfy our assumption (2.1). All the computations

are carried out by Intel Coreå i5-4210M CPU @2.60GHz × 4 with

MATLAB 2017.

Example 4.1. Consider the following singularly perturbed Burgers-
Huxley problem:



















∂u
∂t − ε

∂2u
∂x2

+ αu ∂u
∂x − β(1− u)(u− γ )u = 0, (x, t) ∈ (0, 1)× (0,T],

u(x, 0) = γ
2 +

γ
2 tanh(A1x), 0 ≤ x ≤ 1,

u(0, t) = γ
2 +

γ
2 tanh(−A1A2t), u(1, t) = γ

2 +
γ
2 tanh(A1(1− A2t)),

0 ≤ t ≤ T,

where

A1 =
−α +

√

α2 + 8β

8
, A2 =

γα

2
−

(2− γ )(−α +
√

α2 + 8β)

8
.

For ε = 10−4, α = β = 1 and γ = 0.5, we plotted the numerical

solution of Example 4.1 using the proposed method in Figure 1. As

we see, the method resolves the boundary layer at x = 1. Thus, our

proposed method replicates the property of the continuous solution.

Since the exact solution of this problem is not known, for each

ε, the maximum pointwise error is calculated using double mesh

principle [18] given by

EM,N
ε = max

(xm ,tn)∈DM,N
|un;Nm;M − u2n;2N2m;2M|,

where un;Nm;M and u2n;2N2m;2M are approximate solutions to problem

(3.9) on DM,N and D2M,2N , respectively. The corresponding order of

convergence is given by

RM,N
ε = log2

(

EM,N
ε

E2M,2N
ε

)

.

In Tables 1, 2, we compute the maximum absolute errors and the

corresponding order of convergences using the proposed method for

α = β = 1, γ = 0.5 and various values of ε with fixed values of

M and N, respectively. From these results, we can observe that the

method is ε-uniform convergent of order one both in time and space.

This confirms the theoretical error results.

Table 3 compares absolute errors at some values of x and t using

the proposed method and methods in [7, 19] and the nonlinear

nonstandard finite difference (NNSFD) method given by

un+1
m − unm
φ(1t, ε)

− ε
un+1
m+1 − 2un+1

m + un+1
m−1

(ψn+1
m )2(h, ε)

+ an+1
m

un+1
m − un+1

m−1

h

+ bn+1
m un+1

m = 0, (4.1)

where the denominator functions

φ(1t, ε) =
eε1t − 1

ε
, (ψn+1

m )2(h, ε) =
hε

an+1
m

(

exp(
an+1
m h

ε
)− 1

)

.

The nonlinear system (4.1) can be easily solved using Newton’s

method (see in [7]). The solution at the previous time-step is taken

as the initial estimate. The methods considered in [7] and [19] are

NSFDmethods and variational iteration method (VIM), respectively.

From the table, we observe that our proposed method gives more

accurate results.

Also, in Table 4, we compare the CPU times required to compute

the solutions of Example 4.1 for M = 10,N = 2000,α = β =

1, γ = 0.001,T = 10 using the LNSFD and NNSFD methods. As

one can observe in the table, the CPU time for NNSFD is larger than

the LNSFD.
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Example 4.2. Consider the following SPBHE [2]:















∂u
∂t − ε

∂2u
∂x2

+ u ∂u
∂x − (1− u)(u− 0.5)u = 0, (x, t) ∈ (0, 1)× (0, 1],

u(x, 0) = 1+ sin(πx/2), 0 < x < 1,

u(0, t) = 1, u(1, t) = 2, 0 ≤ t ≤ 1.

5. Conclusion

In this paper, a nonstandard finite difference method for

a singularly perturbed Burgers-Huxley equation has been

developed. First, the backward-Euler scheme was applied to

discretize the problem (1.1) with respect to time derivative and

the upwind nonstandard finite difference scheme on uniform

mesh to approximate the spatial derivative. Then, the presented

method was proved to be first-order convergent in both the

spatial and temporal variables. Numerical results are given in

Figures 1, 2 and in Tables 1–6 for two test examples to confirm

the theoretical results and to compare with recent results. It has

been observed from these figures and tables that the numerical

results are in agreement with the theoretical findings. For ε = 1,

in Table 3, comparisons with the NNSFD and the VIM of [19]

and the NSFD method of [7] reveal that the proposed NSFD

method gives more accurate results. In addition, the present

method is also applicable when 0 < ε < 1. Thus, in all cases,

the present method produces more accurate results than the

existing schemes.

For future work, one may proceed with a higher

order scheme for the problem under consideration for

example by using the Crank-Nicolson method or those

presented in [20, 21]. We are currently working in this

direction. Also to note is that higher order parameter-

uniform numerical methods for Burgers-Huxley equations are

quasi-absent. The design of direct higher order parameter-

uniform convergent methods is thus an interesting direction

to explore.
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