
Received: 14 September 2018 Revised: 8 July 2019 Accepted: 25 July 2019 Published on: 19 August 2019

DOI: 10.1002/num.22420

R E S E A R C H A R T I C L E

A fitted numerical method for parabolic turning
point singularly perturbed problems with an
interior layer

Justin B. Munyakazi Kailash C. Patidar Mbani T. Sayi

Department of Mathematics and Applied

Mathematics, University of the Western Cape,

Bellville, South Africa

Correspondence
Justin B. Munyakazi, Department of

Mathematics and Applied Mathematics,

University of the Western Cape, Private Bag

X17, Bellville 7535, South Africa.

Email: jmunyakazi@uwc.ac.za

Abstract
The objective of this paper is to construct and analyze

a fitted operator finite difference method (FOFDM) for

the family of time-dependent singularly perturbed parabolic

convection–diffusion problems. The solution to the problems

we consider exhibits an interior layer due to the presence of

a turning point. We first establish sharp bounds on the solu-

tion and its derivatives. Then, we discretize the time variable

using the classical Euler method. This results in a system of

singularly perturbed interior layer two-point boundary value

problems. We propose a FOFDM to solve the system above.

Through a rigorous error analysis, we show that the scheme is

uniformly convergent of order one with respect to both time

and space variables. Moreover, we apply Richardson extrap-

olation to enhance the accuracy and the order of convergence

of the proposed scheme. Numerical investigations are carried

out to demonstrate the efficacy and robustness of the scheme.
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1 INTRODUCTION

In this paper, we consider the turning point parabolic singularly perturbed problems with interior layer

𝐿𝑢 ≔ −𝑑(x, t)ut + 𝜀u𝑥𝑥 + a(x, t)ux − b(x, t)u = f (x, t),−1 ≤ x ≤ 1; t ∈ [0,T]; (1.1)

u(−1, t) = 𝛼, u(1, t) = 𝛾, u0(x) = u(x, 0), (1.2)
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2408 MUNYAKAZI ET AL.

where 𝛼 and 𝛾 are given real numbers and the perturbation parameter 𝜀 satisfies 0<𝜀≪ 1. The coef-

ficients functions a(x,t), b(x,t), d(x,t), f (x,t) and u0(x) are assumed to be sufficiently smooth to ensure

the smoothness of the solution. Also d(x, t)> 0 ∀ (x, t)∈ [−1, 1]× [0, T]. The condition of the reaction

factor b(x,t)≥ b0 > 0, ∀ t∈ [0, T] ensures the uniqueness of the solution [1].

The problem (1.1) and (1.2) is said to be a turning point problem, if there exists 𝛼i with—1<𝛼i < 1

such that a(𝛼i,t) = 0 and a(−1, t)a(1, t)≠ 0,∀ t∈ [0, T]. The r zeros 𝛼i, i = 1, 2, …, r of a(x, t) are

called turning points. These statements can be seen in Berger et al. [2] where they also showed that the

bounds of the solution to the problem (1.1) and (1.2) near the given turning point 𝛼i depend on 𝜀 and

the constants 𝛽 i = b(𝛼i,t)/ax(𝛼i,t). When 𝛽 i < 0, the solution to u(x,t) is “smooth” near (x,t) = (𝛼i,t),
and if 𝛽 i > 0, the solution u(x,t) presents a rapid change at (x, t) = (𝛼i, t) ∀ t∈ [0, T] termed “interior

layer” which is often shown up by the change in signs of the convection coefficient a(x,t) near (𝛼i, t)
∀ (x, t)∈ [−1, 1]× [0, T]. In the case where the convection coefficient a(x,t) does not change the sign

throughout the spatial domain, the boundary layer may occur near −1 or/and 1. In addition, the exis-

tence of 𝛼0 ∈ [−1,1], such that |ax(x, t)|≥ |ax(𝛼0, t)|/2,∀ t∈ [0, T], ensures the uniqueness of the turning

point in [−1,1].

In this paper, we consider the assumptions below to guarantee the interior layer of the solution to

problem (1.1) and (1.2) at x = 0,∀ t∈ [0, T],⎧⎪⎪⎨⎪⎪⎩

a(0, t) = 0, ax(0, t) > 0, t ∈ [0,T],|ax(x, t)| ≥ |ax(0,t)|
2

, x ∈ [−1, 1], t ∈ [0,T],
b(0,t)
ax(0,t)

> 0, x ∈ t ∈ [0,T],

b(x, t) ≥ b(0, t) > 0, x ∈ [−1, 1], t ∈ [0,T].

(1.3)

The interior layers may also originate from discontinuous data [3–5].

Parameter-sensitive problems such as (1.1) and (1.2) in which the perturbation parameter mul-

tiplies the highest derivative of the underlying differential equation are termed singularly perturbed

problems. They have attracted researchers’ attention over the last few decades because of the existence

of oscillations or spurious solutions when trying to solve them numerically. These challenges are more

pronounced as the parameter approaches zero and classical numerical methods fail to generate suitable

approximations to the solution.

In the context of finite difference discretizations, two families of methods are widely used namely

the fitted mesh finite difference methods (see e.g., [6–8]) and the fitted operator finite difference

methods (FOFDM) [9–11].

Recently, a very large number of special methods have been developed by various authors to

solve nonturning and turning points time dependent singularly perturbed parabolic problems using

implicit Euler method for time discretization. Some authors developed appropriate spatial discretiza-

tions adapted to the conditions of their problems. For instance [12] developed finite difference schemes

using a semi-discrete Petrov–Galerkin finite element method. In Clavero et al. [13] an upwind finite

difference scheme is derived, and [14] constructed an upwind and midpoint upwind difference meth-

ods for the discretization of space variable. In Kadalbajoo et al. [15] a B-spline collocation method is

designed. Readers who need more information related to nonturning points time dependent singularly

perturbed parabolic problems may refer to [16–19], and those who are interested in time dependent sin-

gularly perturbed parabolic problems when the turning points lead to boundary and/or interior layer(s)

are referred to [20–24].

Discussions on fitted finite difference methods to solve time dependent singularly perturbed

convection–diffusion problems whose solution exhibits an interior layer are rare. Nevertheless, we

have for instance Clavero et al. [25] who developed a classical upwind finite difference scheme on a
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MUNYAKAZI ET AL. 2409

piecewise defined mesh of Shishkin type to solve a one-dimensional parabolic singularly perturbed

reaction–diffusion problems with parameters affecting the diffusion and the convection terms. Dunne

and O’Riordan [26] constructed numerical methods involving piecewise uniform meshes of Shishkin

type which fitted to interior and boundary layers. The methods were used to solve singularly perturbed

parabolic problems in which the coefficients are discontinuous in the space variable. O’Riordan and

Quinn [27] examined a linear time dependent singularly perturbed convection–diffusion problems,

where the convective coefficient got interior layer; to design and analyze a monotone finite difference

operator and a piecewise-uniform Shishkin mesh. Gracia and O’Riordan [28] constructed and ana-

lyzed a numerical method consisting on a monotone finite difference operator and piecewise uniform

mesh. This method was used to solve a linear singularly perturbed time dependent convection–diffusion

problem, in which initial condition was designed to have steep gradient in the vicinity of the inflow,

transported in time to create a moving interior chock layer.

In several works on time dependent problems, as we can notice from the references above, in the

discretization of interior layer problems based on difference equation theory [29], there has never been

singularly perturbed problem with smooth coefficients depending on both space and time variables.

The main aim of this paper is to construct and analyze a FOFDM based difference equation theory

and implicit Euler method to obtain piecewise uniform meshes respectively on space and time. This

strategy approximates the solution of time dependent singularly perturbed problems (1.1) and (1.2),

where the coefficients are functions of space and time variables and the solution to the problem exhibits

an interior layer due to the presence of a turning point. We show that the method converges uniformly

of order one in both space and time variables. We also use Richardson extrapolation [6, 23], as the

acceleration technique to improve the accuracy and the order of convergence of the FOFDM designed

up to order two in space only.

The paper has been organized as follows: in Section 2 we provide qualitative results on the bounds

of the solution and its derivatives at every time level t in [0,T]. Using techniques (tools) presented in

[2, 13, 30], we then provide sharp error estimates specific to the class of problems (1.1) and (1.2).

And Section 3 presents some a priori estimates on time discretization. In Section 4, we introduce the

proposed scheme which is analyzed in Section 5. Section 6 deals with Richardson extrapolation. To

show the effectiveness of the proposed scheme, we carry out and discuss some numerical experiments

in Section 7. Section 8 is devoted to some concluding remarks.

2 QUALITATIVE RESULTS

In this section, some results related to the continuous problem are presented. We use these results in

Section 5 of the error analysis. f (x,t) and u(x,0) are herein assumed to be smooth functions to secure

the continuity and 𝜀-uniform bound of the solution with its derivatives to the problem (1.1) and (1.2).

These conditions are required for appropriate space and time accuracy when using the maximum norm

on the domain D = Ω × [0,T], with Ω = (−1,1) and D = Ω× (0,T].

Lemma 2.1 (Minimum principle). Let 𝜓 be a smooth function satisfying 𝜓(−1,t)≥ 0,

𝜓(1,t)≥ 0, ∀t∈ [0, T] and L𝜓(x, t)≤ 0, ∀ (x, t)∈D. Then, 𝜓(x, t) ≥ 0, ∀(x, t) ∈ D.

Proof. Assume that there exists a point (x∗, t∗) ∈ D such that𝜓(x*, t*) = min𝜓(x, t)< 0.

It follows that (x*,t*) cannot be of the form (−1, t), (1, t) or (x, 0). From the definition,

𝜓x(x*, t*) = 0, 𝜓 t(x*, t*) = 0 and 𝜓xx(x*, t*)≥ 0. We also have

𝐿𝜓(x∗, t∗) = 𝜀𝜓𝑥𝑥(x∗, t∗) + a(x∗, t∗)𝜓x(x∗, t∗) − b(x∗, t∗)𝜓(x∗, t∗) + 𝜓t(x∗, t∗) > 0,

which is false. It follows that 𝜓(x*,t*)≥ 0, and thus 𝜓(x, t) ≥ 0, ∀(x, t) ∈ D. ▪
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2410 MUNYAKAZI ET AL.

We use this minimum principle to prove Lemma 2.2.

Lemma 2.2 (Uniform stability estimate). Let u(x,t) be the solution of (1.1) and (1.2).

Then, we have

‖u(x, t)‖ ≤ C(b−1
0 ‖f (x, t)‖ + max(|𝛼|, |𝛾|)), ∀(x, t) ∈ D,

where ||.|| denotes the maximum norm on the domain D, and b0 a positive constant as
specified above in the introduction.

Proof. Consider the comparison function

Π±(x, t) = b−1
0 ‖f (x, t)‖ + max(|𝛼|, |𝛾|) ± u(x, t), x ∈ D.

We have

LΠ±(x, t) = −b(x, t)
b0

‖f (x, t)‖ − b(x, t)max(|𝛼|, |𝛾|) ± 𝐿𝑢(x, t) ≤ 0.

Using the minimum principle above it follows that

Π±(x, t) ≥ 0, ∀(x, t) ∈ D.

Consequently

‖u(x, t)‖ ≤ C(b−1
0 ‖f (x, t)‖ + max((|𝛼|, |𝛾|))), ∀(x, t) ∈ D,

which completes the proof. ▪

For the rest of this work we consider the following partition of Ω = [−1, 1]: ΩL = [−1, −𝛿),

ΩC = [−𝛿,𝛿], ΩR = (𝛿,1], where 0<𝛿 ≤ 1/2. Furthermore, ΩC = Ω−
C ∪Ω+

C, with Ω−
C = [−𝛿, 0), Ω+

C =
[0, 𝛿] and D = Ω × [0,T].

Lemmas 2.3 and 2.4 provide the appropriate bounds on the solution to the problem (1.1) and (1.2)

and its derivatives, depending on whether x belongs to ΩL, ΩC, or ΩR.

It is well known that if u(x,t) is the solution to the problem (1.1) and (1.2), then there exists a

positive constant C such that |u(x, t)| ≤ C, ∀(x, t) ∈ D.

Lemma 2.3 Let u(x,t) be the solution to (1.1) and (1.2) and a(x,t), b(x,t) and f (x,t)
sufficiently smooth functions in D. Then, there exists a constant C such that||||𝜕iu(x, t)

𝜕xi

|||| ≤ C, ∀(x, t) ∈ D ⧵ΩC.

Proof. See [13]. ▪

Lemma 2.4 Let u(x,t) be the solution to (1.1) and (1.2) and a(x,t),b(x,t), and f (x,t)
sufficiently smooth functions in D. Then there exist positive constants 𝜂 and C such that||||𝜕iu(x, t)

𝜕xi

|||| ≤ C
[
1 + 𝜀−i exp

(
𝜂𝑥

𝜀

)]
, ∀x ∈ Ω−

C, t ∈ [0,T], i = 0, 1, 2,

and ||||𝜕iu(x, t)
𝜕xi

|||| ≤ C
[
1 + 𝜀−i exp

(−𝜂𝑥
𝜀

)]
, ∀x ∈ Ω+

C, t ∈ [0,T], i = 0, 1, 2.
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MUNYAKAZI ET AL. 2411

Proof. We prove this lemma on Ω−
C. The proof on Ω+

C can be done in similar manner.

To start let us rewrite Equation (1.1) as follows:

Lx,𝜀u = 𝑑(x, t)𝜕u
𝜕t

+ f (x, t) = g(x, t), ∀x ∈ Ω−
C, t ∈ [0,T], (2.1)

where

Lx,𝜀u = 𝜀
𝜕2u
𝜕x2

+ a(x, t)𝜕u
𝜕x

− b(x, t)u,

Assuming u0 = u(x,0), d and f smooth functions, then g(x,t) is continuous and

𝜀-uniformly bounded. We use the technique of [19] and Equation (2.1), to get||||𝜕iu(x, t)
𝜕xi

|||| ≤ C
[
1 + 𝜀−i exp

(
𝜂𝑥

𝜀

)]
, ∀x ∈ Ω−

C, t ∈ [0,T], i = 0, 1. (2.2)

To deduce the similar bounds for higher values of i, we consider v(x,t) = 𝜕u(x,t)/𝜕x, and

after differentiating (2.1) with respect to x, it follows that ∀x ∈ Ω−
C, t ∈ [0,T];

−𝑑(x, t)𝜕v(x, t)
𝜕t

+ Lx,𝜀v = m(x, t) = 𝜕f (x, t)
𝜕x

+ 𝜕𝑑(x, t)
𝜕x

𝜕u
𝜕t

− 𝜕a(x, t)
𝜕x

𝜕u
𝜕t

+ 𝜕b(x, t)
𝜕x

u,

v(−1, t) = 𝜕u(−1, t)
𝜕x

= 𝛼1, v(1, t) = 𝜕u(1, t)
𝜕x

= 𝛾1, v0(x) =
𝜕u(x, 0)
𝜕x

Assuming m(x,t) smooth function and applying the above technique for the second time,

yields ||||𝜕v
𝜕x

|||| ≤ C
[
1 + 𝜀−1 exp

(
𝜂𝑥

𝜀

)]
, ∀x ∈ Ω−

C, t ∈ [0,T],

which is a bound for 𝜕2u/𝜕x2. ▪

3 TIME DICRETIZATION

In this section, we discretize the problem (1.1) and (1.2) with respect to time, with uniform step size

𝜏, using Euler implicit method. The partition of the time interval [0, T] is given by:

𝜔k = {tk = 𝑘𝜏, 0 ≤ k ≤ K, 𝜏 = T∕K}. (3.1)

And the discretization of the problem (1.1) and (1.2) on 𝜔k

−𝑑(x, tk)
u(x, tk) − u(x, tk−1)

𝜏
+ Lx,𝜀(u(x, tk)) = f (x, tk), 1 ≤ k ≤ K, (3.2)

u(x, t0) = u0(x), ∀x ∈ (−1, 1), u(−1, tk) = 𝛼, u(1, tk) = 𝛾. (3.3)

Equation (3.2) can also be written as:

(−𝑑(x, tk)I + 𝜏Lx,𝜀)(u(x, tk)) = 𝜏𝑓 (x, tk) − 𝑑(x, tk)u(x, tk−1). (3.4)

The discretization above is the result of the turning point singularly perturbed problems, at each

time level tk = k𝜏 which will be examined later. The global error Ek at the time level tk is the sum of

local errors ek at each time level tk. This local truncation error ek is given as: ek = u(x,tk)− ũ(x,tk),

where ũ(x,tk) is the solution of

(−𝑑(x, t)I + 𝜏Lx,𝜀)(u(x, tk)) = 𝜏𝑓 (x, tk) − 𝑑(x, t)u(x, tk−1), u(−1, tk) = 𝛼, u(1, tk) = 𝛾. (3.5)

We find out that the operator (−d(x,t)I + 𝜏Lx,𝜀) verifies the maximum principle leading to:

‖(−𝑑(x, tk)I + 𝜏Lx,𝜀)−1‖ ≤
1

max0≤k≤K, x∈[−1,1](|𝑑(x, tk)|order(I)) + 𝜏𝛽
. (3.6)
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2412 MUNYAKAZI ET AL.

where order(I) in the inequality above is the order of the identity matrix I. Which proves the stability

of the discretization with respect to time.

It is also known that the local error and the global error are respectively bounded as follows:‖ek‖∞ ≤ c𝜏2, 1≤ k≤K and ||Ek ||∞ ≤ c𝜏,1≤ k≤K.

Lemma 3.1 Let u(x,tk) be the solution of (3.2) and (3.3) at time level tk, Then there
exists a positive constant C such that

|u(m)(x, tk)| ≤ C
[
1 + 𝜀−m exp

(
𝜂𝑥

𝜀

)]
, m = 0, 1, 2, 3, ∀ x ∈ Ω−

C,

and |u(m)(x, tk)| ≤ C
[
1 + 𝜀−m exp

(−𝜂𝑥
𝜀

)]
, m = 0, 1, 2, 3, ∀ x ∈ Ω+

C.

Proof. See [13]. ▪

In the next section we introduce the scheme which we analyze in a subsequent section.

4 THE SCHEME

Let n be a positive and even integer and let us denote by Ωn
the following partition of the interval

[−1,1]:

x0 = −1; xj = x0 + 𝑗ℎ; j = 1,… , n − 1, h = xj − xj−1, xn = 1.

Let Qn,K = Ωn × 𝜔K be the grid of (xj,tk). To simplify, we adopt the following; ∀ (xj, tk) ∈
Qn,K

, Ξ(xj, tk) ≔ Ξk
j . And Uk

j the approximation of uk
j . Using difference equation theory on Qn,K

[29],

we discretize the problem (1.1) and (1.2) as:

Ln,KUk
j ≔

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜀𝛿2Uk
j + ãk

j D−Uk
j −

(
b̃k

j +
𝑑k

j

𝜏

)
Uk

j = f̃ k
j − 𝑑k

j
Uk−1

j

𝜏
,

j = 1, 2,… ,
n
2
− 1, k = 1,… ,K,

𝜀𝛿2Uk
j + ãk

j D+Uk
j −

(
b̃k

j +
𝑑k

j

𝜏

)
Uk

j = f̃ k
j − 𝑑k

j
Uk−1

j

𝜏
,

j = n
2
,

n
2
+ 1,

n
2
+ 2,… , n − 1, k = 1,… ,K,

(4.1)

Uk
0 = 𝛼, Uk

n = 𝛾, (4.2)

where

D−Uk
j =

Uk
j − Uk

j−1

h
, D+Uk

j =
Uk

j+1 − Uk
j

h
, 𝛿2Uk

j =
Uk

j+1 − 2Uk
j + Uk

j−1

𝜙k
j

2
,

and

𝜙k
j

2

=

⎧⎪⎪⎨⎪⎪⎩

ℎ𝜀

ãj
k

[
exp

(
ãj

kh
𝜀

)
− 1

]
, j = 1, 2,… ,

n
2
− 1,

ℎ𝜀

ãj
k

[
1 − exp

(
−ãj

kh
𝜀

)]
, j = n

2
,

n
2
+ 1,

n
2
+ 2,… , n − 1.

(4.3)
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MUNYAKAZI ET AL. 2413

Also, we have adopted the following convention for k = 1, …, K.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ãk
j =

ak
j +ak

j−1

2
for j = 0, 1, 2,… ,

n
2
− 1,

ãk
j =

ak
j +ak

j+1

2
for j = n

2
,

n
2
+ 1,

n
2
+ 2,… , n − 1,

b̃k
j =

bk
j−1

+bk
j +bk

j+1

3
, f̃ k

j =
f k
j−1

+f k
j +f k

j+1

3
for j = 1, 2,… , n − 1,

F̃k
j = f̃ k

j − 𝑑k
j

Uk−1
j

𝜏
, for j = 1, 2,… , n − 1,

𝑑k
j =

𝑑k
j−1

+𝑑k
j +𝑑

k
j+1

3
, for j = 0, 1, 2,… , n − 1.

(4.4)

We rewrite (4.1) as

⎧⎪⎪⎪⎨⎪⎪⎪⎩

r−j,kUk
j−1 + rc

j,kUk
j + r+j,kUk

j+1 = f̃j
k
, j = 0, 1, 2,… ,

n
2
− 1;

k = 0, 1,… ,K,

r−j,kUk
j−1 + rc

j,kUk
j + r+j,kUk

j+1 = f̃j
k
, j = n

2
,

n
2
+ 1,

n
2
+ 2,… , n − 1;

k = 0, 1,… ,K.

(4.5)

where⎧⎪⎪⎨⎪⎪⎩
r−j,k =

𝜀

𝜙k
j

2 −
ãj

k

h
; rc

j,k =
−2𝜀

𝜙k
j

2 + ãj
k

h
−
(

b̃j
k
+

𝑑k
j

𝜏

)
; r+j,k =

𝜀

𝜙k
j

2 , j = 0, 1, 2,… ,
n
2
− 1,

r−j,k =
𝜀

𝜙k
j

2 ; rc
j,k =

−2𝜀

𝜙k
j

2 − ãj
k

h
−
(

b̃j
k
+

𝑑k
j

𝜏

)
; r+j,k =

𝜀

𝜙k
j

2 +
ãj

k

h
, j = n

2
,

n
2
+ 1,

n
2
+ 2,… , n − 1.

(4.6)

The FOFDM (4.5) along with the boundary conditions (4.2) satisfies Lemmas 4.1 and 4.2:

Lemma 4.1 (Discrete minimum principle). For any mesh function 𝜉k
j such that, Ln,k𝜉k

j ≤

0 ∀(j, k) ∈ Qn,K , 𝜉0
j ≥ 0, 0 ≤ j ≤ n, 𝜉k

0 ≥ 0, and 𝜉k
n ≥ 0, 1 ≤ k ≤ K. Then

𝜉k
j ≥ 0, ∀(j, k) ∈ Qn,K

.

Proof. Let (s,l) be such that 𝜉l
s = min(j,k)𝜉

k
j < 0, 𝜉k

j ∈ Qn,K
. It is clear that s≠ 1, 2,

…, n− 1 and l≠ 1, 2, …, K; otherwise 𝜉l
s ≥ 0. Also 𝜉l

s+1 − 𝜉l
s ≥ 0, 𝜉l

s − 𝜉l
s−1 ≤ 0, and

𝜉l
s − 𝜉l−1

s ≤ 0. We have

Ln,K𝜉l
s =

⎧⎪⎪⎨⎪⎪⎩

𝜀𝛿
2
𝜉l

s + al
sD−𝜉l

s −
(

bl
s +

𝑑 l
s
𝜏

)
𝜉l

s > 0, s = 1, 2,… ,
n
2
− 1, l = 1, 2,… ,K,

−
(

bl
s +

𝑑 l
s
𝜏

)
𝜉l

s > 0, s = n
2
, l = 1, 2,… ,K,

𝜀𝛿
2
𝜉l

s + al
sD+𝜉l

s −
(

bl
s +

𝑑 l
s
𝜏

)
𝜉l

s > 0, s = n
2
+ 1,… , n − 1 , l = 1, 2,… ,K.

(4.7)

Thus Ln,K𝜉l
k > 0, s = 1, 2,… , n−1 and l = 1, 2, …, K, which is a contradiction. It follows

that 𝜉l
s ≥ 0, and thus 𝜉k

j ≥ 0, ∀ (j, k) ∈ Qn,K
.

The above minimum principle is used to prove Lemma 4.2. ▪
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2414 MUNYAKAZI ET AL.

Lemma 4.2 (Uniform stability estimate). Let Zk
j be a mesh function at a time level such

that Zk
0 = Zk

n = 0. Then

|Zk
j | ≤ 1

b0

max
1≤i≤n−1

|Ln,KZk
i |, for 1 ≤ j ≤ n, and 1 ≤ k ≤ K.

Proof. Consider the mesh function

(𝜉±)kj =
1

b0

max
1≤i≤n−1

|Ln,K
𝜀 Zk

i | ± Zk
j , 1 ≤ j ≤ n, and 1 ≤ k ≤ K,

with bk
j ≥ b0 > 0 to ensure the uniqueness of the solution to the problem (4.1) and (4.2).

It is clear that (𝜉±)k0 ≥ 0 and (𝜉±)kn ≥ 0. Also, for 0≤ j≤ n, and 1≤ k≤K,

Ln,K(𝜉±)kj =
−bk

j

b0

max
1≤i≤n−1

|Ln,KZk
i | ± Ln,Kzk

j , 1 ≤ j ≤ n, and 1 ≤ k ≤ K.

For 0 ≤ j ≤ n, (−bk
j )∕(b0) ≤ −1. This leads to Ln,K(𝜉±)kj ≤ 0. By the discrete minimum

principle (Lemma 4.1), we conclude that (𝜉±)kj ≥ 0, ∀ 0 ≤ j ≤ n, 1 ≤ k ≤ K and this

ends the proof. ▪

Lemma 4.3 For a fixed mesh and for all integers m, we have

lim
𝜀−>0

max
1≤j≤ n

2
−1

exp(𝑀𝑥j∕
√
𝜀)

𝜀m∕2
= 0, and lim

𝜀−>0
max

n
2
≤j≤n−1

exp(−𝑀𝑥j∕
√
𝜀)

𝜀m∕2
= 0.

Proof. See [8]. ▪

In the next section we concentrate on convergence analysis of the FOFDM derived.

5 CONVERGENCE ANALYSIS OF FOFDM

In this section we analyze the FOFDM described in the previous section. The analysis will be conducted

on x ∈ [−1,0] and the case when x ∈ (0,1] can be done similarly.

Let us define the operator LK from (3.3) as:

LKz(x, tk) = 𝜀
𝑑2z(x, tk)
𝑑𝑥2

+ a(x, tk)
𝑑𝑧(x, tk)
𝑑𝑥

−
(

b(x, tk) +
𝑑(x, tk)
𝜏

)
z(x, tk),

= f (x, tk) − 𝑑(x, tk)
z(x, tk−1)

𝜏
. (5.8)

The local truncation error of the space discretization on [−1,0]× [0,T] (e.g., j = 1, 2, …, n/2–1,

k = 1, 2, …, K) can be given as:

Ln,K(Uk
j − zk

j ) = (LK − Ln,K)zk
j

= 𝜀z′′j,k + ãk
j zk

j −
⎡⎢⎢⎣ 𝜀

𝜙2
j

k (z
k
j+1 − 2zk

j + zk
j−1) +

ãk
j

h
(zk

j − zk
j−1)

⎤⎥⎥⎦
= 𝜀u′′

j,k −
𝜀

𝜙2
j

k

[
h2u′′

j,k +
h4

24
(z(𝑖𝑣))k(𝜉1) +

h4

24
(z(𝑖𝑣))k(𝜉2)

]

+
ãk

j h
2

z′′j,k −
ãj

kh2

6
z′′′j,k +

ãj
kh3

24
(z(𝑖𝑣))k(𝜉3), (5.9)
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MUNYAKAZI ET AL. 2415

with 𝜉1 ∈ (xj,xj+1), 𝜉2,𝜉3 ∈ (xj−1,xj). Using the expression for ãk
j in reference to (4.4), the Taylor expan-

sions of ak
j−1 up to order four, and the truncated Taylor expansion 1∕𝜙2

j

k
= 1∕h2 − ãj

k∕𝜀ℎ, it follows

that

Ln,K
1 (Uk

j − zk
j ) =

3

2
ak

j u′′
j,kh! +

[
−

3a′
j,k

2
z′′j,k −

𝜀

24
((z(𝑖𝑣))k(𝜉1) + (z(𝑖𝑣))k(𝜉2)) −

ak
j

6
z′′′j,k

]
h2

+

[
3a′′

j,k

4
z′′j,k −

ak
j

24
((z(𝑖𝑣))k(𝜉1) + (z(𝑖𝑣))k(𝜉2)) +

a′
j,k

12
z′′′j,k +

ak
j

24
(z(𝑖𝑣))k(𝜉3)

]
h3

+
[
−

13a′′′
j,k

24
z′′j,k −

a′
j,k

48
((u(𝑖𝑣))k(𝜉1)) + (z(𝑖𝑣))k(𝜉2)) −

a′′
j,k

24
z′′′j,k −

a′
j,k

48
(z(𝑖𝑣))k(𝜉3)

]
h4. (5.10)

where 𝜉’s lie in the interval (xj−1,xj+1). Note that the coefficients of uk
j , z′j,k,… , (z(𝑖𝑣))k(𝜉∗j) can be

bounded by a constant. Now, applying Lemmas 3.1 and 4.3 it follows that|Ln,K
1 (Uk

j − zk
j )| ≤𝑀ℎ, ∀j = 1(1)n

2
− 1.

In a similar way, we can prove that|Ln,K
2 (Uk

j − zk
j )| ≤𝑀ℎ, ∀j = n

2
(1)n + 1.

Lemma 4.2, leads to the following results.

Theorem 5.1 Let Uk
j be the numerical solution of (4.1) along with (4.4) and zk

j the
solution to (3.2) and (3.3) at time level tk. Then, there exists a constant M independent of
𝜀, 𝜏, h and k such that

max
1≤j≤n+1

|Uk
j − zk

j | ≤𝑀ℎ k = 1(1)K + 1. (5.11)

Triangular inequality |Uk
j − uk

j | ≤ |Uk
j − zk

j | + |zk
j − uk

j | along with Lemma 4.2, Theorem 5.1 and

the global error; lead to the following main result.

Theorem 5.2 Let Uk
j be the numerical solution of (4.1)–(4.4) and uk

j the solution to
(1.1) and (1.2) at the grid point (xj,tk). Then, there exists a constant M independent of 𝜀,
𝜏, h and k such that

max
0≤j≤n

|Uk
j − uk

j | ≤ M(h + 𝜏). (5.12)

In the next section we deal with Richardson extrapolation which is an acceleration technique. We

use this technique to improve the estimate (5.12).

6 RICHARDSON EXTRAPOLATION ON FOFDM

Richardson extrapolation is the extrapolation technique based on linear combination of p solutions,

p≥ 0 corresponding to different, nested meshes.

In this section we improve the accuracy and the order of convergence of (5.12). To begin, we look

back to (5.10) that can also be written as:

Ln,K(Uk
j − zk

j ) = M1h + M2h2 + Rn(xj), (6.1)
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2416 MUNYAKAZI ET AL.

where

M1 =
3aj

2
z′′j,k,

M2 =
3a′

j,k

3
− 𝜀

24
((z(𝑖𝑣))k(𝜉1) + (z(𝑖𝑣))k(𝜉2)) −

ak
j

6
z′′′j,k ,

Rk
n(xj) = h3

[
3a′′

j,k

4
z′′j,k −

ak
j

24
((z(𝑖𝑣))k(𝜉1) + (z(𝑖𝑣))k(𝜉2)) +

a′
j,k

12
z′′′j,k +

ak
j

24
(z(𝑖𝑣))k(𝜉3)

]

+ h4

[
13a′′′

j,k

24
z′′j,k −

a′
j,k

48
((z(𝑖𝑣))k(𝜉1) + (z(𝑖𝑣))k(𝜉2)) −

a′′
j,k

24
z′′′j,k −

a′
j,k

48
(z(𝑖𝑣))k(𝜉3)

]
.

The 𝜉’s and zk
j , z′j,k,… , (z(𝑖𝑣))k(𝜉∗j) remain the same as specified in (5.9). Now, let 𝜇2n be the mesh

obtained by bisecting each mesh interval in 𝜇n, that is,

𝜇2n = {xi} with x0 = −1, xn = 1 and xj − xj−1 = h = h∕2, j = 1, 2,… , 2n.

Uk
j the numerical solution on 𝜇2n. M and p positive constants. Equation (6.1) can be written in terms

of Uk
j as follows:

Ln,K(Uk
j − zk

j ) = Mh + ph2 + Rk
2n(xj), 1 ≤ j ≤ 2n − 1. (6.2)

Note that zk
j ≡ zk

j .

Multiplying (6.2) by 2, leads to

2Ln,K(Uk
j − zk

j ) = 2Mh + 2ph2 + 2Rk
2n(xj), 1 ≤ j ≤ 2n − 1, (6.3)

or

Ln,K(2Uk
j − 2zk

j ) = 2Mh + 2ph2 + 2Rk
2n(xj), 1 ≤ j ≤ 2n − 1. (6.4)

Let (6.1) be in terms of M and p. After subtracting (6.1) from (6.4), we get:

Ln,K((2Uk
j − Uk

j ) − zk
j ) = ph2 + 2Rk

2n(xj), 1 ≤ j ≤ 2n − 1 (6.5)

or

Ln,K((2Uk
j − Uk

j ) − zk
j ) = 0(h2), 1 ≤ j ≤ 2n − 1.

Let

U𝑒𝑥𝑡,k
j ≔ 2Uk

j − Uk
j .

U𝑒𝑥𝑡,k
j is another numerical approximation of zk

j .

Using Lemma 4.2 we get the following result:

Theorem 6.1 Let U𝑒𝑥𝑡,k
j be the numerical solution approximation, obtained via the

Richardson extrapolation based on FOFDM (4.5) along with the boundary conditions
(4.2) and zk

j the solution to (3.2) and (3.3) at time level tk. Then, there exists a constant M
independent of 𝜀, 𝜏, h and k such that

max
0≤j≤n

|U𝑒𝑥𝑡,k
j − zk

j | ≤𝑀ℎ2. (6.6)

Applying triangular inequality leads to|U𝑒𝑥𝑡,k
j − uk

j | ≤ |U𝑒𝑥𝑡,k
j − zk

j | + |zk
j − uk

j |. (6.7)

From Lemma 3.1, Theorem 6.1 and the global error, we get the following result.
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MUNYAKAZI ET AL. 2417

Theorem 6.2 Let U𝑒𝑥𝑡,k
j be the numerical solution of (4.5) along with the boundary

conditions (4.2) and zk
j the solution to (1.1) and (1.2) at the grid point (xj,tk). Then, there

exists a constant M independent of 𝜀, 𝜏, h and k such that

max
0≤j≤n

|U𝑒𝑥𝑡,k
j − uk

j | ≤ M(h2 + 𝜏). (6.8)

In the next section we implement the proposed scheme on two examples and present numerical

results which confirm the accuracy and robustness of the solution.

7 NUMERICAL EXAMPLES

In this section we present the numerical results of some problems of type (1.1) and (1.2).

Example 7.1 Consider the following singularly perturbed turning point problem

𝜀u𝑥𝑥 + a(x, t)ux − b(x, t)u − 𝑑𝑢t = f (x, t),−1 ≤ x ≤ 1; 𝜀, t ∈ [0, 1],
u(−1, 0) = u(1, 0) = 0.

}
(7.1)

where d = 1, a(x, t) = 2x[1 +
√
𝜀t2)] and b(x,t) = 2(2 + xt).

This problem has an interior layer of width (𝜀). The exact solution is

u(x, t) = 𝜀(1 − x2) exp
(
− t
𝜀

)
erf

(
x√
𝜀

)
.

To get the expression of f (x,t) we substitute a(x,t);b(x,t) and u(x,t) into Equation (7.1).

Example 7.2 Consider the following singularly perturbed turning point problem

𝜀u𝑥𝑥 + a(x, t)ux − b(x, t)u − 𝑑𝑢t = f (x, t), 0 ≤ x ≤ 1, 𝜀, t ∈ [0, 1],

u(0, 0) = 𝜀 tanh
(

1

2𝜀

)
− c; u(1, 0) = 𝜀 tanh

(
− 1

2𝜀

)
− c, c = 𝜀

2

3 ,

⎫⎪⎬⎪⎭ (7.2)

where d = (1 + x2)exp(−t), a(x,t) = 2(2x− 1)[1 + t2)] and b(x,t) = 2(1 + xt).

This problem has an interior layer of width (𝜀). The exact solution is

u(x, t) = 𝜀 exp
[
− t
𝜀

]
tanh

(
0.5 − x
𝜀

)
− c exp(−𝑥𝑡),

and f (x,t) is obtained after substituting u(x,t) into Equation (7.2).

The maximum errors at all mesh points and the numerical rates of convergence before extrapolation

are evaluated using the formulas

E𝜀,n,K ≔ max
0≤j≤n;0≤k≤K

|||U𝜀,n,K
j,k − u𝜀,n,Kj,k

||| .
In case the exact solution is unknown, we use a variant of the double mesh principle

E𝜀,n,K ≔ max
0≤j≤n;0≤k≤K

|||U𝜀,n,K
j,k − U𝜀,2n,2K

j,k
||| .

where u𝜀,n,Kj,k and U𝜀,n,K
j,k in the above represent respectively the exact and the approximate solutions

obtained using a constant time step 𝜏 and space step h. Similarly, U𝜀,2n,2K
j,k is found using the constant
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2418 MUNYAKAZI ET AL.

TABLE 1 Maximum errors of Example 7.1 (before extrapolation)

N = 16 N = 32 N = 64 N = 128 N = 256
𝜺 K = 10 K = 20 K = 40 K = 80 K = 160

10−3 6.34E−02 4.06E−02 2.25E−02 1.18E−02 6.05E−03

10−4 6.34E−02 4.07E−02 2.26E−02 1.19E−02 6.09E−03

10−5 6.34E−02 4.07E−02 2.26E−02 1.19E−02 6.09E−03

10−6 6.34E−02 4.07E−02 2.26E−02 1.19E−02 6.10E−03

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

10−14 6.34E−02 4.07E−02 2.26E−02 1.19E−02 6.10E−03

TABLE 2 Maximum errors of Example 7.2 (before extrapolation)

N = 16 N = 32 N = 64 N = 128 N = 256
𝜺 K = 10 K = 20 K = 40 K = 80 K = 160

10−3 8.70E−02 4.71E−02 2.44E−02 1.24E−02 7.32E−03

10−4 8.66E−02 4.69E−02 2.43E−02 1.23E−02 6.22E−03

10−5 8.65E−02 4.68E−02 2.43E−02 1.23E−02 6.21E−03

10−6 8.64E−02 4.68E−02 2.43E−02 1.23E−02 6.21E−03

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

10−14 8.64E−02 4.68E−02 2.43E−02 1.23E−02 6.21E−03

TABLE 3 Rates of convergence of Example 7.1 (before
extrapolation)

𝜺 r1 r2 r3 r4

10−3 0.64 0.86 0.93 0.96

10−4 0.64 0.85 0.93 0.96

10−5 0.64 0.85 0.93 0.96

10−6 0.64 0.85 0.93 0.96

⋮ ⋮ ⋮ ⋮ ⋮

10−14 0.64 0.85 0.93 0.96

time step
𝜏

2
and space step

h
2
.Nevertheless, the computation of numerical rates of convergence is given

by:
rl = rk ≡ r𝜀,k ≔ log2(E𝜀,n,K∕E𝜀,2nl,2Kl), l = 1, 2,…

Also, we compute En,K = max0<𝜀≤1E𝜀,n,K .

And the numerical rate of uniform convergence is:

Rn,k ≔ log2(En,K∕E2n,2K).

For a fixed mesh, we see that the maximum nodal errors remain constant for small values of 𝜀 (see

Tables 1 and 2). Moreover, results in Tables 3 and 4 show that the proposed method is essentially first

order convergent.

After extrapolation the maximum errors at all mesh points and the numerical rates of convergence

are evaluated using the formulas:

E𝑒𝑥𝑡𝜀,n,K ≔ max
0≤j≤2n;0≤k≤2K

|U𝑒𝑥𝑡
j − u𝜀,n,Kj,k | and Rk ≡ R𝜀,k ≔ log2(E𝑒𝑥𝑡nk ∕E𝑒𝑥𝑡2nk

), k = 1, 2,…

respectively, where E𝑒𝑥𝑡nk stands for E𝜀,2n,2K . Tables 5–8 confirm the theoretical predictions that Richard-

son extrapolation improves the accuracy of the numerical method employed and increases the rate of

convergence.
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TABLE 4 Rates of convergence of Example 7.2 (before
extrapolation)

𝜺 r1 r2 r3 r4

10−3 0.88 0.95 0.96 0.76

10−4 0.88 0.95 0.98 0.99

10−5 0.89 0.95 0.98 0.99

10−6 0.89 0.95 0.98 0.99

⋮ ⋮ ⋮ ⋮ ⋮

10−14 0.89 0.95 0.98 0.99

TABLE 5 Maximum errors of Example 7.1 (after extrapolation)

𝜺 N = 16 N = 32 N = 64 N = 128 N = 256
K = 10 K = 40 K = 160 K = 640 K = 2,560

10−3 8.87E−02 2.65E−02 5.25E−03 9.45E−04 6.06E−04

10−4 8.98E−02 2.97E−02 7.88E−03 1.68E−03 3.05E−04

10−5 8.99E−02 2.97E−02 8.08E−03 2.06E−03 4.89E−04

10−6 8.99E−02 2.98E−02 8.09E−03 2.07E−03 5.19E−04

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

10−14 8.99E−02 2.98E−02 8.09E−03 2.07E−03 5.20E−04

TABLE 6 Rates of convergence of Example 7.1 (after
extrapolation)

𝜺 r1 r2 r3 r4

10−3 1.74 2.34 2.47 0.64

10−4 1.60 1.91 2.23 2.46

10−5 1.60 1.88 1.97 2.07

10−6 1.60 1.88 1.97 1.99

⋮ ⋮ ⋮ ⋮ ⋮

10−10 1.60 1.88 1.97 1.99

TABLE 7 Maximum errors of Example 7.2 (after extrapolation)

𝜺 N = 16 N = 32 N = 64 N = 128 N = 256
K = 10 K = 40 K = 160 K = 640 K = 2,560

10−3 1.07E−01 3.10E−02 8.00E−03 7.32E−03 7.32E−03

10−4 1.07E−01 3.13E−02 8.21E−03 2.07E−03 1.46E−03

10−5 1.07E−01 3.13E−02 8.21E−03 2.08E−03 5.21E−04

10−6 1.07E−01 3.13E−02 8.21E−03 2.08E−03 5.21E−04

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

10−14 1.07E−01 3.13E−02 8.21E−03 2.08E−03 5.21E−04
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TABLE 8 Rates of convergence of Example 7.2 (after
extrapolation)

𝜺 r1 r2 r3 r4

10−3 1.77 1.93 1.99 0.50

10−4 1.77 1.93 1.98 2.00

10−5 1.77 1.93 1.98 2.00

10−6 1.77 1.93 1.98 2.00

⋮ ⋮ ⋮ ⋮ ⋮

10−14 1.78 1.93 1.98 2.00

8 CONCLUDING REMARKS AND SCOPE OF FUTURE RESEARCH

Singularly perturbed turning point problems are difficult to solve using standard/classical methods due

to the presence of boundary or interior layers in their solutions. Usually, when seeking for numerical

solutions of layer problems, layer adapted meshes are used. These meshes are fine in the layer region

and coarse away from the layer region. Due to the nature of these meshes, and especially when time is

involved, the computation with regards to the convergence analysis becomes more complex.
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FIGURE 1 Plots of the numerical solution of Example 7.1 for 𝜀 = 1, 10−2, 10−4 and 10−6 with n = 128 and K = 128 [Color

figure can be viewed at wileyonlinelibrary.com]
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FIGURE 2 Log–log plot for Example 7.2: The logarithm of pointwise maximum errors is plotted against the logarithm of

step size h at time t = 1 with values of n from 4 to 4,096 and for 𝜀 = 10−2 and 10−6 [Color figure can be viewed at

wileyonlinelibrary.com]

The main aim of this paper was to design and analyze a FOFDM to solve a class of time depen-

dent singularly perturbed turning point problems whose solution exhibits an interior layer. We first

established bounds on the solution and its derivatives. Then, we discretized the time variable before

proceeding to space discretization. Bounds were used to prove uniform convergence of the proposed

numerical method. The first order uniform convergence shown theoretically, with respect to space and

time variables was confirmed numerically through two test examples.

We provided plots of the numerical solution for Example 7.1 for various values of the perturba-

tion parameter 𝜀 to see the layer behavior (see Figure 1). In addition, we presented a log–log plot for

Example 7.2 (see Figure 2).

We also applied Richardson extrapolation to improve the accuracy and the convergence of the

numerical scheme in the space variable. Indeed, convergence order improved from one to two.

The problem investigated in this paper depends on the perturbation parameter 𝜀 which multiplies

the highest order derivative that appears in the problem. One would like to understand how replacing

𝜀 by some function of 𝜀 and x affects the design of numerical methods. We are currently working in

that direction.
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