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Segmentation of vertebrae in X-ray images is a difficult task that requires an 

effective segmentation procedure. Noise, poor image contrast, occlusions and shape 

variability are some of the challenges in many of the spine X-ray images archived at 

the U.S. National Library of Medicine (NLM). In this thesis, we propose a curvature-

based corner matching approach, which exploits the posterior corners of the vertebra 

to estimate the location and orientation of the vertebrae. The key advantage of the 

proposed approach is execution time, roughly about one-fifth of the previous 

approach that uses the generalized Hough transform when tested on a sizeable set of 

cervical spine images.  

This thesis also presents the first ever effort to develop a prototype internet-

based medical image segmentation and pathology validation tool, which enables 

radiologists to validate computer generated image segmentations, modify existing or 

create new segmentation in addition to identifying pertinent pathology data.  
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Chapter 1: Introduction 

1.1 Motivation 

The Lister Hill National Center for Biomedical Communications (LHNCBC), 

an intramural research and development division of the U.S. National Library of 

Medicine (NLM) maintains a collection of 17,000 digitized spine X-ray images of the 

cervical and lumbar spine in sagittal view from the second National Health and 

Nutrition Examination Survey (NHANES II). Figure 1.1 (a) and (b) show 

radiographic images of a cervical and a lumbar spine. The images come with over 

2000 text fields of survey data that include demographic information, health 

questionnaire, and medical reports.  

 

  
(a) (b) 

Figure 1.1 Illustration of (a) Cervical spine and (b) Lumbar spine in radiographic 
images 
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A key feature of spine disease manifested in these images is the presence of 

osteophytes which are bony processes that alter the shape of vertebrae [2]. The 

segmentation of vertebral bodies in such spine X-ray images is of great interest to 

bone morphometrists and radiologists since they exhibit pathologies such as anterior 

osteophytes (AO), disc space narrowing (DSN) [3], subluxation [4] and 

spondylolisthesis that are detectable consistently and reliably by vertebra boundary 

shape. Other pathologies such as vertebral fractures, ossification of posterior 

longitudinal ligament (OPLL), spinal stenosis caused by posterior osteophytes, 

tumors, and osteoporosis may also be detected from this dataset.  

Advances in medical imaging have led to growth in large image collections. 

Hence, computer assisted techniques is becoming a more promising approach in 

medical image analysis. The feasibility of computer assisted techniques for the 

segmentation of vertebral bodies in spine X-ray images has been of great interest [1, 

2] to biomedical researchers, in particular the osteoarthritic research community. 

Reliable extraction of vertebrae boundaries is a prerequisite for subsequent pathology 

validation and Content-Based Image Retrieval (CBIR) research. However, fully 

automated segmentation of spine X-ray images is a very challenging problem. Many 

published segmentation algorithms with results using our collection of spine X-ray 

images [5, 6, 7, 8, 9] depend on user intervention or some initial guess to achieve 

satisfactory performance. The techniques published in the research literature may be 

roughly categorized into methods based on Active Contour Segmentation [5], Active 

Shape Models [6, 7], and Generalized Hough Transform [8, 9]. In general, the quality 

of computer-assisted segmentation algorithms is affected by three important factors, 
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i.e. region of interest, image quality, and image size/resolution. Particular challenges 

regarding vertebra boundary segmentation in spine X-ray images may be outlined as 

follows: 

• The region of interest, i.e., the vertebra has a wide range of shape, size and 

orientation.  

• As X-ray images are usually of poor image quality, segmentation methods 

often confuse tissue and vertebra boundaries. In some cases, vertebra shows 

double edges as illustrated in Figure 1.2. The double edge is the distant (or 

nearer) edge of a 3D object seen in a projective image, such as an x-ray. This 

feature is critical for medical reviewers but very challenging for segmentation 

algorithm. 

• Large image size: original size for cervical spine is 1462 by 1755; for lumbar 

spine, it is 2048 by 2488. 

Thus developing a robust and efficient approach capable of robustly determining the 

location of the spine and the contour of the vertebrae is essential. 

Besides assessing vertebral abnormality, the segmentation of vertebral bodies 

helps to find the contour of vertebrae to categorize vertebrae shapes, facilitate shape 

indexing and shape retrieval in the CBIR System. Hence image segmentation plays an 

important role in the CBIR System. The ultimate goal of the CBIR system is to 

develop algorithms for segmenting the vertebral bodies, to accurately measure 

geometric features of the individual vertebrae and inter-vertebral areas; and, by using 

training data provided by medical experts, to classify the spine anatomy into normal 
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and abnormal classes for conditions of interest, including anterior osteophytes and 

disc-space narrowing.  

 

Figure 1.2. An example of cropped section from a lumbar X-ray showing two 
vertebrae exhibiting double edges. 

 
The digitized X-ray images from NHANES II represent a research resource 

for bone morphometry and osteoarthritis. The goal is to make both the NHANES II 

image and the text data available to researchers and educators through a variety of 

visualization and retrieval tools accessible via the internet. An additional goal is to 

provide a comprehensive CBIR tool for such large biomedical image collections that 

permits indexing of these images by vertebral shape which is segmented through 

computer assisted segmentation technique, and their retrieval by specifying image 

features defining the anatomy, and in particular, the pathology of interest in them.  

To provide ground truth for evaluating segmentation performance, a part of 

the image collection was delineated manually by medical experts. The shapes of the 

vertebrae are also validated to indicate type and severity of anterior osteophytes. In 

order to develop robust algorithms for segmentation and pathology detection, image 

indexing, and content-based image retrieval, it is necessary to obtain a large 
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collection of medically validated images from multiple experts. Our research goal [1] 

is to enable a comprehensive medical validation of the entire image set by cross 

validation from multiple geographically separated board-certified medical experts to 

include type and severity for all three pathologies mentioned above, and multi-

resolution vertebral boundary segmentations.  

1.2 Background 

NHANES II was conducted by the National Center for Health Statistics 

during 1976-1980 and included participants aged 6 months to 74 years. For the 

NHANES II survey, the records contain information for approximately 20,000 

participants. Each record contains about two thousand data points, including 

demographic information, answers to health questionnaires, anthropometric 

information, and the results of a physician’s examination.  In addition, approximately 

10,000 cervical spine and 7,000 lumbar spine X-ray films were collected on survey 

participants aged 25-74.  No X-rays were taken on pregnant women, and no lumbar 

X-rays were taken on women under 50. The pathologies of interest on these X-rays 

were osteoarthritis and degenerative disc disease.  

Figure 1.3 (a) and (b) illustrates an example of applying segmentation 

technique to detect osteophyte, a bony protuberance on normal bone surface, which is 

a characteristic feature of degenerative joint disease of the spine. The boundary points 

of vertebra shape helps to determine the existence of superior and inferior anterior 

osteophytes (AO), which are pathologies along the anterior superior or inferior edges 

of the vertebral bodies. Points 2-3-8-7 describe a superior anterior osteophyte on a 

sagittal spinal X-ray and points 7-9-6-5 describe an inferior anterior osteophyte. In 
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such cases, only a small interval along the vertebral boundary is pertinent to the 

pathology.  

(a) (b) 
 

Figure 1.3. (a) Anterior Osteophytes illustrated on vertebral body outline. Points 
marked indicate regions of interest. (b) Spinal X-ray image showing segmented 

vertebra and a localized view showing inferior AO on vertebra with 36 boundary 
points superimposed. 

 

Several methods have been developed in the past to segment the cervical and 

lumbar Vertebrae in radiographic images. Tagare [5] proposed an Active Contour 

Segmentation (ACS), which is a classical snake model combined with an initial 

contour created from a priori information and a search constraint on the contour. The 

algorithm minimizes an objective function by seeking a contour that maximized 

gradients along the normals to the contour, and minimized the contour length. The 

ACS handles one vertebra at a time and is semi-automatic. The accuracy of ACS 

depends closely on the initial shape contour, a template created by averaging 

manually-segmented vertebral shapes. As a result, the ACS needs user-intervention to 

achieve fine segmentation.  
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Zamora [6] implemented a customized version of Active Shape Models 

(ASM) for fine segmentation of the cervical and lumbar vertebrae. ASM, which was 

originally formulated by Cootes [7], is basically an optimization algorithm that 

requires an initial guess of the position, orientation and the scale of the vertebrae and 

this initialization is termed as the pose of the vertebra. Tezmol [8] proposed pose 

estimation or coarse segmentation of the cervical vertebrae using a customized 

version of the Generalized Hough Transform (GHT). The GHT is an efficient 

template matching technique, which is invariant to variations in scale and rotation and 

is also robust to occlusions. The GHT also requires prior knowledge of the shape to 

be segmented. This method gave acceptable segmentation results for the cervical 

vertebrae in terms of initialization for the customized ASM [6]. Gururajan [9] 

extended the customized version of the Generalized Hough Transform to segment 

lumbar vertebrae. The ASM and GHT methods automatically process multiple 

vertebrae at a time. 

It is important to obtain medical validation data on the segmented boundaries 

of vertebral bodies and pathologies indicated by them. Collection of this data enables 

validation of retrieval performance and assists in the development of robust 

algorithms that reflect the typical queries posed by the targeted user community. Till 

recently the anterior osteophytes were our primary focus for shape-based retrieval in 

this project. Our interactions with a group of board certified radiologists have 

revealed that with use of image enhancement techniques, it may be possible to 

discover the existence of other pathologies such as spinal stenosis caused by posterior 

osteophytes. Correlating these pathology labels with segmented image features and 
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available participant health data can be used to build knowledge models and further 

enhance features of this multimedia database. These steps can also help lead the 

traditional CBIR research to a tool that can help further research and education in a 

particular field of medicine. 

1.3 Thesis Organization 

This thesis focuses on image segmentation and the development of a medical 

validation tool. The chapters are organized as follows. In Chapter 2, additional 

background on the characteristics of the spine X-ray image, as well as the pathology 

of interest is presented. Then, an investigation of various segmentation approaches for 

spine X-ray image segmentation including a shape operator, the active contour model, 

and steerable filters are presented. One major challenge is that the segmentation 

methods often confuse tissue and vertebra boundaries due to poor image quality. It 

has been shown that edge detection methods which have yielded very little promise of 

success in segmenting non-rigid, irregular, noisy vertebral shapes. In contrast, the 

model-based approach, i.e., snake, yields better results but depends more on user 

intervention. For each segmentation method investigated, we summarize the concept, 

main features, level of user interventions, and results obtained. Then, the proposed 

curvature-based corner matching approach for coarse segmentation of cervical 

vertebrae images is discussed. Chapter 3 discusses the performance of the proposed 

approach, and compares it with two previous methods in terms of execution time. 

Chapter 4 discusses the development of a medical validation tool that operates over 

the internet. It discusses the design considerations, features, capabilities, and technical 
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challenges faced when developing the tool. Finally, conclusions and future 

perspectives are drawn in Chapter 5.  
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Chapter 2: Segmentation of Spine X-ray Image 
 

This chapter presents algorithms for segmentation of cervical and lumbar 

vertebrae images. In this research, segmentation is the process of locating and 

extracting the shape of the vertebra in an image. First, the spine vertebrae and 

pathology interests are introduced, and the objectives of segmentation algorithm are 

discussed. This is followed by a brief review of the previous methods for the 

segmentation of cervical vertebrae. Then various general segmentation approaches 

including those based on the shape operator, active contour model, and steerable 

filters are discussed and applied to our X-ray image collection. Pertinent issues are 

brought up, and discussed as well. Finally the current approach is introduced with a 

flow diagram and then the individual blocks of the segmentation process are taken up 

and discussed in detail.  

2.1 Spine Vertebra and Pathology Interests 

Before going into the details of the image segmentation process, it would also 

be of interest to examine the nomenclature for the naming of the vertebra, and the 

region of interest for segmentation.  

The spine is made up of vertebrae. Figure 2.1 shows the human spine, and the 

nomenclature for naming the different parts of the spine. At the top are the cervical 

vertebrae. There are 7 of them and they are referred to as C1-C7, starting at the top. 

The seventh one joins to the first of the thoracic vertebrae. These are the 12 that run 

down the back and provide a place for our ribs to attach. They are referred to as T1-

T12, again from the top down. The lower inward curve of our back is made up of the 
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five lumbar vertebrae. They are called L1-L5. Below that comes a set of 5 fused 

vertebrae called the sacrum that lies between the hip bones. Lastly comes the coccyx 

or the tailbone, another set of fused vertebrae. The vertebrae join together at what are 

called the facet joints. Between each of the vertebrae are the disks, which provide 

cushioning and act as shock absorbers. Traveling down the center of the spine is the 

spinal cord and at each of the vertebrae, nerves branch out through what are called the 

foramen to the rest of the body. 

The regions of interest for segmentation are the cervical vertebrae (C3 to C6) 

and the lumbar vertebrae (L1 to L5). The reason for leaving out C1, C2 and C7 is 

because these structures are often not visible on the radiograph and hence it becomes 

a tough task to characterize them. The ground truth for the vertebra shape is a set of 

coordinate points present on and around the vertebra for a subset of 1800 images. 

This data was generated manually by radiologists, and both 9 and 36 points were 

collected per vertebra. Typically, for the cervical spine images, these included the 

vertebrae boundaries from C3 to C6 and for the lumbar images they spanned the 

boundaries from L1 to L5. For a subset of the cervical spine images, a special point 

marking the center of gravity of the C1 vertebra was collected additionally. These 

points are termed as morphometric points.  

The problem with the 9-point shape contour descriptor is its inability to fully 

represent the shape variation in the corners of the vertebrae. Therefore, 36-point or 

variable-point shape contour descriptors are more widely used in image segmentation 

research. With the morphometric points as the ground truth, the performance of 

computer assisted segmentation techniques can be evaluated. The segmentation 
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techniques generally place significantly more points per vertebra than the number of 

morphometric points, and provide a better representation of the shape variations. 

These points are termed as landmark points (LPs).  

 
 

Figure 2.1 Human spine nomenclature 

 

2.2 Investigation of Contemporary Segmentation Approaches 

2.2.1 Shape Operator 

Moon and Chellappa [10] proposed an approach to accurately detect 2-D 

shapes. In their work, the cross section of the shape boundary is modeled as a step 

function. A shape operator is obtained by extending the double exponential (DODE) 

filter [11] along the shape’s boundary contour; the responses are accumulated at the 

centroid of the operator to estimate the likelihood of the presence of the given shape. 
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In fact, using a shape operator to detect the shape is a natural extension of the task of 

edge detection at the pixel level to the problem of global contour detection. This 

simple filtering scheme has been applied to the problems of vehicle detection in aerial 

images [10, 29], and human facial feature detection [10]. We applied this algorithm to 

detect vertebrae. It has been shown that the shape operator can successfully detect 

rigid shapes, such as vehicle (rectangular shape) and human eyes (eclipse shape). 

However, it failed to detect the non-rigid, irregular, noisy vertebral shapes. Noisy X-

ray images produced many weak, small and discontinuous edges inside, outside, and 

along the actual boundary. Therefore false shape detection occurs.   

2.2.2 Active Contour Segmentation (ACS) 

Active contours, or snakes [12, 13, 14], are computer-generated curves that 

move within images to find object boundaries. The 3D version is often known as 3D 

deformable models or active surfaces [30, 31] in the literature. Active contours are 

often used in computer vision and image analysis to detect and locate objects, and to 

describe their shape. Tagare [5] proposed an Active Contour Segmentation (ACS), 

which is a classical snake model combined with an initial contour created from a 

priori information and a search constraint on the contour. The algorithm minimizes an 

objective function by seeking a contour with maximized gradients along orthogonal 

curves to the contour, and minimized the contour length.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 2.2. (a) A section of the original X-ray image of cervical vertebra. (b) Initial 
contour created by inputting 9 points (in blue circle) along the edges of the vertebral 

bodies. (c) Orthogonal curves in defining the search grid used in Active Contour 
Segmentation. (d) Final contour after deformation. The image section has been 

enhanced to show the details in (b), (c) and (d). 

 
Tagare’s ACS [5] is implemented as a semi-automatic algorithm, and 

processes one vertebra at a time. The algorithm constrains the solution to lie on a grid 

between an ‘inner contour’, inside the template, and an ‘outer contour’, outside the 

template. The ‘inner contour’ and ‘outer contour’ are user-defined. A novel feature of 

this algorithm is that the search space is the orthogonal curves to the contour, 
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calculated by numerically solving a boundary-value partial differential equation. The 

reason for implementing a search grid of orthogonal curves is to avoid having self-

intersecting normal line segments to the contour where the vertebra has a narrow 

protrusion.  

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 2.3. (a) Initial contour created by inputting 9 points (in blue circle) along the 
edges of the vertebral bodies. (b) Final contour after deformation. (c) Orthogonal 

curves in defining the search grid used in Active Contour Segmentation. The image 
section has been enhanced to show the details. 
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It has been shown that the accuracy of ACS depends closely on the initial 

shape contour. Figure 2.2 shows the results when using the 9-point shape template as 

the initial guess. The 9-point shape template is based on Figure 1.3(a), and created 

manually by inputting 9 points along the edges of the vertebral bodies. Figure 2.2(b) 

illustrates the initial contour where the user manually inputs 9 points depicted in blue 

circles, and then the ACS generates more points uniformly in between the 9 landmark 

points depicted in red dots. Points on the solution contour are constrained to lie on the 

non-intersecting curves shown in Figure 2.2(c). And Figure 2.2 (d) shows the final 

contour after deformation. It can be seen that the final contour convincingly captures 

small variations in the shape of vertebra. However, an inaccurate initial contour 

provided by the user, can result in bad segmentation in many cases. An example of 

incorrect initial contour, which is rotated by an angle from the actual vertebra shape, 

is shown in Figure 2.3(a). The final contour is unable to capture the shape of vertebra. 

In particular, it misses the inferior anterior and posterior corners of the vertebra as 

shown in Figure 2.3(b). 

Four other active contour models have been investigated, including the 

traditional snake [12], the snake using a local minimization algorithm [13], template 

deformation along the orthogonal curves of contour [5], and the snake using Gradient 

Vector Flow [14]. In general active contour models (also know as snakes) represents 

an object boundary as a parametric curve that is allowed to deform from some 

arbitrary initial shape towards the desired final shape. The problem of finding this 

final contour is cast as an energy minimization problem. Ideally, the energy function 

of the contour attains a minimum when the contour is spatially aligned with the 
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boundary of the object in the image. A summary of commonly used energy function 

is presented in Table 2.1. 

Table 2.1. A summary of snake implementation 
 

 Major terms in energy function Level of 
interaction 

Traditional snake 
 

Internal energy (elastic force and bending force) 
External energy (gradient energy) 

low 

Snake using local 
minimization 
algorithm 

Internal energy (continuity energy and balloon force) 
External energy (gradient energy and intensity 
energy) 

low 

Template 
deformation 

Internal energy (proximity energy and smoothness 
energy) 
External energy (gradient energy) 

high 

Gradient Vector 
Flow 

Internal energy (elastic force and bending force) 
External force (gradient vector flow) 

low 

 

In this thesis, we implemented snake-based methods using a local search 

algorithm [13], template deformation [5], gradient vector flow [14], and applied the 

techniques to the spine X-ray images. Simulation results show that the template 

deformation [5] method finds the best final contour, but need the most human 

interaction. In fact, the user needs to place 4 points marking the four corners of the 

vertebra, 2 points marking the median along the upper and lower vertebra edge, 1 

point marking the median along the anterior vertical edge of the vertebra, and 

additional 2 points marking the upper and lower anterior osteophytes if present. So 

totally 9 points are needed to be placed initially if osteophytes present, and 7 points 

need to be placed otherwise. Knowing the initial positions of the 9 landmark points, 

an arithmetic interpolation approach is used to generate 36 control points by adding 3 

intermediate points between two original landmark points. Then the deformation 

algorithm is applied. Since the contour is deformed by restricting every control point 
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to move only along its orthogonal curves, the optimal deformation cannot be large. 

The other three methods need low user interactivity, (user only provides the 

approximate location of the vertebra center), but they cannot find the actual contour. 

Low image quality is the main reason for poor behavior of snakes as noisy X-

ray images produced many weak, small and discontinuous edges inside, outside, and 

along the shape boundary. These edges can attract the contour points to local minima 

locations from which the snake cannot escape. Even worse, it has been found that the 

magnitude of gradient at some area inside the vertebra is greater than the magnitude 

of gradient on the actual boundary, leading to termination of contour deformation at 

these areas; as a result, the snake often misses the actual boundary of vertebra. The 

snake using the Gradient Vector Flow [14] performs the worst. Instead of using the 

gradient force as the external force, this method defines the external force as the 

gradient vector flow which features a larger capture range at the actual boundary as 

well as the areas with false edge. A larger capture range does not help in this case.  

Generally speaking, user intervention and some prior knowledge of the 

contour lead to finer segmentation. However inaccurate position, scale, and rotation 

of the initial template can result in bad segmentation in many cases.  

2.2.3 Generalized Hough Transform (GHT) 

Tezmol [8] proposed pose estimation or coarse segmentation of the cervical 

vertebrae using a customized version of the Generalized Hough Transform. The GHT 

is an efficient template matching technique, which is invariant to variations in scale 

and rotation and is also robust to occlusions. The GHT also requires prior knowledge 

of the shape to be segmented. This method gave acceptable segmentation results for 
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the cervical vertebrae in terms of initialization for the customized ASM [6], which 

was originally formulated by Cootes [7]. GHT is basically an optimization algorithm 

that requires an initial guess of the position, orientation and the scale of the vertebrae 

and this initialization is termed as the pose of the vertebra. There have also been other 

efforts to customize the GHT for this application. Gururajan [9] extended the 

customized version of the Generalized Hough Transform to segment lumbar 

vertebrae. 

It can be shown that the GHT is effective for finding the approximate location 

of the target vertebrae or Region of Interests (ROI) at the first step [6, 8, 9]. The basic 

GHT formulation for detection of arbitrary shapes in images was given by Ballard 

[15], and the effectiveness of GHT for the NHANES II images has been extensively 

investigated by Tezmol and Gururajan [8, 9].  

The GHT uses a lookup table termed the R-table for an arbitrary shape, so no 

analytical description for the shape is necessary. Figure 2.4 illustrates the geometry 

for building the R-table and the format of R-table. ( , )r r rP x y is a reference point 

which is the origin of an axis system fixed in the template shape. An arbitrary point 

on the template boundary ( , )i i iP x y  is specified by equation (2.1) and (2.2).  

2 2( ) ( )i r i rr y y x x= − + −      (2.1) 

1tan i r

i r

y y
x x

α −  −
=  − 

      (2.2) 

Where r  is the Euclidean distance from the reference point to the boundary point, 

and α  is the angle of the line connecting ( , )i i iP x y  and ( , )r r rP x y . The pairs of ( , )r α  

are then indexed by local edge direction angle iθ , which is determined by the 
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intersection of the tangent line through ( , )i i iP x y  and the horizontal axis. The format 

of the R-table is then defined in terms of discrete value iθ  and the corresponding 

( , )i iγ α pairs, as illustrated in Figure 2.4(b).  

 

iθ  ( )α,r   

θ∆  ( )11 α,r , ( )22 α,r   

θ∆2  ( )33 α,r   

θ∆3  ( )44 α,r , ( )55 α,r , ( )66 α,r  

… …  
 

   

(a) 

 

(b)  

 

Figure 2.4 Generalized Hough Transform: (a) Illustration of the geometry for building 
the R-table. (b) The R-table format 

 

The GHT methods in [8, 9] segment multiple vertebrae at a time. Figure 2.5 

shows the template for the bottom part of vertebra C2 and the whole front shape of 

vertebrae C3-C6 with minimum bounding box in red rectangle. Although theory does 

not set constraints for the location of the reference point, a common practice is to 

choose rP  to be inside the template. In our study, rP  is positioned as the center of the 

minimum bounding box that encloses the template [16]. The left-most and right-most 

sides of the bounding box are vertical lines passing through the minimum and 

maximum x-coordinate of the template. While the top-most and bottom-most sides of 

the bounding box are horizontal lines passing through the minimum and maximum y-

coordinate of the template respectively.  
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Figure 2.5. Example cervical spine shape template with location of the reference point 
marked in the template. The minimum vertical bounding box is depicted in red 

rectangle. 

 
The GHT is a template matching method. Matching is done up to position, 

orientation and scale, but the shape of the template does not deform. If the template is 

rotated through an angleϕ , relative to an image-fixed coordinate system, and scaled 

by a quantity s, then the relationships between a boundary point and the reference 

point are specified by equation (2.3) and (2.4).  

cos( )i r i ix x s r α ϕ= + ⋅ ⋅ +     (2.3) 

sin( )i r i iy y s r α ϕ= + ⋅ ⋅ +     (2.4) 
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
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∂
∂

∂
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
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G
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y

x                                                    (2.5) 

In a given image, the gradient direction is computed as 1tan y

x

G
G

−  
 
 

, where ( , )x yG G  is 

the gradient vector of the image ( , )f x y at ( , )i ix y and defined in equation (2.5). 

( )rrr y,xP
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xG and yG  can be computed using gradient operators, such as Canny [26], Prewitt 

[32] or Sobel operators [33]. And the edge direction differs from gradient direction 

by / 2π . 

Using the predefined template, the GHT algorithm tallies votes for uniquely 

identified bin ( , , , )r rx y s ϕ  in the 4-D Hough space corresponding to the candidate 

boundary point ( , )i ix y . At the end of all processing, the bin with the largest number 

of votes identifies the position, scale, and rotation of the template in the image. The 

candidate boundary points in the image for which we compute the Hough bins are 

edge points that we have detected in the image; hence the detection of edges in the 

images is crucial to the performance of the algorithm. More details on image 

enhancement and edge detection will be discussed in sections 2.3.2.  

In recent research, the cervical spine vertebrae segmented are bottom of C2 

through C5 or C6, while for lumbar spine the vertebrae are L1–L5. The template is 

usually created by finding the mean of the training set of manual segmentations. In 

[9], Gururajan carried out a measure of performance by creating a bounding box 

which closely fit the spine template, and computes the number of ground truth 

boundary points lying within the template’s bounding box when the template had 

been placed on an image by the GHT algorithm. The mean percentage and standard 

deviation percentage of points within the bounding box were also computed. 

However, these numbers alone give little insight into the usefulness of the GHT even 

for approximate segmentation of the images. In fact, the mean percentage of points 

within the bounding box can be higher than 82%, but the GHT still can misplace the 

template or slide along the vertebral column by one vertebra in some cases. That is, 
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instead of being placed correctly on C2–C6, the template may be placed on C3–C7, 

for example. Figure 2.6 shows one of the cases of misplacement, and one of the 

examples where GHT outputs good segmentation.  Many of these misplacements 

were determined to correspond to failure of the algorithm to properly distinguish the 

correct template bin in the Hough space from among the top three bins.  

  
(a) (b) 

Figure 2.6. Example of GHT results: (a) misplaced the template by one vertebra 
down, (b) placed the template approximately close to ground truth. Output of GHT is 

denoted in blue marks, and the ground truth landmark points (LPs) is in red.  

 
Like the ACS or snake, the performance of GHT can be improved by 

returning the template placements corresponding to the top three bins, and allowing 

the user to choose among these best three candidates. When the user was allowed to 

consider these top three candidates, more GHT results were judged acceptable [9]. 

However, for GHT, computation time is an issue. For example, on a 2.1 GHz AMD 

microprocessor using MATLAB, the processing time for cervical spine image was 55 
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seconds; for lumbar spine image, 110 seconds, even after the images were reduced to 

one quarter of their original size horizontally and vertically (original size for cervical 

image was 1462 by1755; for lumbar image, 2048 by 2488) shown in [9]. Moreover, 

the GHT allows template matching up to position, orientation and scale, but does not 

allow non-rigid shape deformation. This makes GHT unable to capture the prominent 

variation of vertebra boundary, for example when severe osteophytes are present. The 

GHT fails to achieve the fine segmentation for detecting and representing pathology 

or abnormality of vertebrae shapes. In general it can be used for coarse segmentation 

or finding the orientation of the spine. 

2.2.4 Steerable Filter 

In the literature, oriented filters are used in many vision and image processing 

tasks, such as image enhancement, edge detection, texture analysis, motion analysis, 

and image data compression. The concept of steerable filter was introduced in [23] 

and extended in [24]. Freeman et al. [23] first proposed to synthesize filters of 

arbitrary orientations from linear combinations of basis filters. It is useful to allow to 

“steer” a filter to arbitrary orientation under adaptive control, and to examine the filter 

output as a function of both orientation and phase. As a result, steerable filters 

provide directional edge detection as they behave as band-pass filters in a particular 

orientation [23]. The edge located at different orientations in an image can be 

detected by splitting the image into orientation sub-bands obtained by basis filters 

having these orientations. The steering constraint [23] is stated as  

1
( , ) ( ) ( , )a i

M

i a
i

h x y K h x yθ θθ
=

= ⋅∑      (2.6), 
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where the basis filters are represented by ( , ),1ih x y i Mθ ≤ ≤ , which are rotated 

versions of impulse response ( , )h x y at filter orientation iθ , and ( ),1i aK i Mθ ≤ ≤ , are 

interpolation functions which control the filter orientations. In designing and 

implementing steerable filters, we want to know what functions ( , )h x y  can satisfy 

equation (2.6), how many terms, M, are required in the sum, and what the 

interpolation functions, ( ),1i aK i Mθ ≤ ≤  are.  

Freeman et al. [23] point out that steerable filters work with discretely 

sampled functions as well as continuous ones. They also give several sample 

applications, such as determining dominant local orientations, filtering noise on 

angularly aligned features, contour detection, and shape-from-shading computations. 

Freeman also [23] showed an example of applying steerable filters to vessel image 

enhancement. The second derivative of the Gaussian (G2) along any direction is 

expressed as a combination of the derivatives at orientations 0, 60, and 120 degrees. 

The G2 filter is steered adaptively along the directions of dominant vessel orientation. 

The result is less noisy than the output of an isotropic filter of the same frequency 

passband. It is computed at a single scale. 

To the best of our knowledge, no previous work on steerable filters has 

investigated their applications to the digitized spine X-ray image collection. Using an 

edge detector operator in combination with steerable filters usually achieves higher 

performance in boundary detection compared to using the edge detector directly on 

the image because steerable filter can remove noise and enhance oriented structures 

by angularly adaptive filtering. Thus we propose to use steerable filters to enhance 

oriented structures, and incorporate it into the proposed segmentation scheme to 
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detect the dominant orientation of the spine. In fact, the region of interests of spine 

for segmentation is the cervical vertebrae (C3 to C6) and the lumbar vertebrae (L1 to 

L5). In most cases, the anterior and/or posterior edges of the vertebrae structure 

approximate parallel lines except at the corner. The idea is to detect the corners of the 

vertebrae, match the corners to prior shape template, and then use snakes for finer 

segmentation. The proposed method will be discussed in the next section. 

2.3 A Proposed Image Segmentation Scheme 

2.3.1 Scheme Outline 

In this section, we propose a curvature-based corner matching approach for coarse 

segmentation of cervical vertebrae and discuss some issues in this approach. The flow 

chart of the segmentation algorithm is illustrated in Figure 2.7, where the target image 

is taken to be the radiographic cervical spine or lumbar spine, and the target shape to 

be segmented is the cervical vertebrae C3-C6 or lumbar vertebrae L1-L5. The 

template of the shape is also shown in the figure. The first step determines a bounding 

box around the vertebrae. This is a significant step because once we have a bounding 

box, our domain of operation decreases in size and hence the total computational 

intensity involved in image enhancement, edge detection, corner detection and 

template matching decrease. This region of interest is then passed to the image 

enhancement module. The subsequent step is the detection of edges followed by 

corner detection. Then the detected corners are matched to a shape template so that 

non-vertebral corners can be identified and removed. The output image shows the 

corner points overlaid on the enhanced image. Using corner matching, the  
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Figure 2.7. Flow chart of the proposed segmentation scheme. 
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approximate orientation of the anterior and inferior boundaries of the vertebrae can be 

detected, and then prior shape template and snakes used for fine segmentation. 

2.3.2 Image Enhancement 

Typically, digitized X-ray images are corrupted by additive noise. De-noising 

can improve the visibility of some structures in medical X-ray images, thus 

improving the performance of computer assisted segmentation algorithms. However, 

image enhancement algorithms generally amplify noise [17, 18]. Therefore, higher 

de-noising performance is important in obtaining images with high visual quality. The 

most important part of the corrupting noise is the spatially correlated Gaussian noise 

whose variance may vary with the signal level due to sensor non-linearity [18]. There 

exists different adaptive image enhancement methods, such as adaptive unsharp 

masking, adaptive neighborhood filtering and enhancement, adaptive contrast 

enhancement, and various adaptive filtering approaches using directional wavelet 

transform [19, 20, 21, 22]. Some methods require a priori information about the 

image [19].  

Adaptive histogram-based equalization can be applied to aid in the viewing of 

key cervical and lumbar vertebrae features. However, since the method was applied to 

the entire image where areas including the skull and shoulders biased the histogram 

with a large number of high gray levels, the resulting enhancement often yielded 

poorly contrast enhanced vertebrae near these areas. For example, Figure 2.8(a) 

shows an original cervical X-ray image and Figure 2.8(b) the corresponding image 

after adaptive histogram equalization with C7 distorted. The vertebrae C1, C2 and C7 

are basically left out because these structures are often not visible on the radiograph 
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and hence it is difficult to characterize them. Thus the regions of interest for 

segmentation are the cervical vertebrae (C3 to C6) and the lumbar vertebrae (L1 to 

L5) showed in Figures 2.8(c) and (d).  

For some images, adequate contrast enhancement may not be achieved using 

only adaptive histogram equalization. Unsharp masking was further applied on the 

histogram-equalized cropped portion of the image. As shown in Figure 2.9, the main 

idea is to subtract the smoothed image section filtered by a Gaussian filter with a 

large standard deviation, argl eσ , from the smoothed version filtered by a Gaussian 

filter with a small standard deviation, smallσ . This operation will cancel any subtle 

variation in the gray scale, preserving only abrupt changes (edges). The parameters of 

the standard deviation of the Gaussian mask smallσ  and argl eσ  have been fixed 

respectively for cervical and lumbar images to achieve better enhancement 

performance. An example of the enhanced image using only adaptive histogram 

equalization is shown in Figure 2.10(b), and the enhanced image processed by both 

histogram equalization and unsharp masking is shown in Figure 2.10(c). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2.8. (a) Example of original cervical image. (b) Enhanced cervical image after 
adaptive histogram equalization. (c) Example of original lumbar image. (d) Enhanced 

lumbar image after adaptive histogram equalization. 
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Figure 2.9. Unsharp masking applied after adaptive histogram equalization. 
 

The two-dimensional, zero-mean discrete Gaussian function is defined by 

equation (2.7), where the standard deviation,σ , determines the width of the Gaussian. 

 [ ] ( )2 2

2, exp
2

x y
g x y

σ

 +
 = −
 
 

                                          (2.7) 

The degree of smoothing of a Gaussian filter is controlled by the parameter σ. Large 

σ implies a wider Gaussian filter and enhanced smoothing effect. And the amount of 

smoothing by Gaussian filters will be the same in all directions.  

The steerable filter [23] can also be applied to assist in the viewing of key 

cervical and lumbar vertebrae features. It is an efficient process for removing noise 

and enhancing oriented structures by angular adaptive filtering. We used the steerable 

properties of derivatives of Gaussians for image enhancement. Figure 2.10(d) shows 

the result of filtering with a 3rd derivative of Gaussian separable steerable filters 

( 0.09, 1.5µ σ= = ). 

Another important issue with image enhancement is to remove unwanted 

noise from the available edge image. This objective can be achieved using a great 

variety of algorithms and, consequently, the different algorithms that this particular 

approach uses can be substituted for any other that yield similar or better results. We 

[ ]
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assume that the image is corrupted by independent additive white Gaussian noise of 

known variance. We then used a Bayes Least Squares - Gaussian Scale Mixture 

(BLS-GSM) de-noising method proposed by Portilla et al. [25]. This specific de-

noising approach uses the same top-level structure as most approaches: (1) 

decompose the image into pyramid subbands at different scales and orientations; (2) 

denoise each subband, except for the lowpass residual band; (3) invert the pyramid 

transform to reconstruct the de-noised image from the processed subbands and the 

lowpass residual. The main features of the method are that the coefficients within 

each local neighborhood around a reference coefficient of a pyramid subband are 

characterized by a Gaussian Scale Mixture (GSM) model. Second, a statistical model 

of the coefficients of an overcomplete multi-scale oriented basis was used, and the 

Bayesian least squares estimate of each coefficient was reduced to a weighted average 

of the local linear estimate over all possible values of the hidden multiplier variable 

under this model. Figure 2.11 shows an example of first de-nosing the image, then 

applying the Canny edge detector [26] to obtain the binary edge information. The 

BLS-GSM de-noising method reduced the amount of unwanted high frequency 

components that appear in the form of small broken edges but retained most long 

edge information.  

For various de-noising and image enhancement methods, one important issue 

to be considered is computational efficiency. The algorithm should be executable in a 

reasonable time, since the number of human experts is limited and the workloads of 

radiological units are increasing especially due to the screening policies. The 
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accuracy and resolution of X-ray images are also increasing, thus requiring more 

computations to be performed.  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2.10. (a) A section of original X-ray image of cervical vertebra. (b) Enhanced 
image after adaptive histogram equalization, (c) Enhanced image after adaptive 

histogram equalization and unsharp masking, (d) Enhanced image after applying 3rd 
Derivative of Gaussian separable steerable filters ( 0.09, 1.5µ σ= = ). 
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(a) 

 
(b) 

  
(c) (d) 

Figure 2.11. (a) Region of interest of original cervical X-ray image. (b) Resulting 
image after de-noising. (c) Edge image after applying Canny detector on (a). (d) Edge 

image after applying the Canny detector on (b). 

 

2.3.3 Corner Detection 

Corners play an important role in object identification methods used in 

computer vision. The vertebra generally has a rectangle shape, and the four corners of 
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it convey important information indicating osteophytes pathology. Since anterior and 

posterior osteophytes are of our primary interest in validation and diagnosis, we use 

corner points as the local features. In order to detect corners, we first apply the Canny 

edge detector [26] on the gray level image to obtain a binary edge-map. The edge 

contours are extracted from the edge-map, and then the gaps in the contours are filled. 

The curvature of each edge contour is computed based on the definition in [27], 

which is specified by the equation (2.8).  

2 2 3/ 2
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= ⊗

                                (2.8), 

where ⊗  is the convolution operator, and ( , )g u σ denotes a Gaussian function with 

deviationσ , which is also referred to as the scale parameter. And ( , )ug u σ , ( , )uug u σ  

are the first and second derivatives of ( , )g u σ  respectively. 

We adopt a multi-scale corner detector based on the Curvature Scale Space 

(CSS) technique [27]. First the curvature of each edge contour is computed at a 

relatively low scale to retain all the true corners. All of the curvature local maxima 

are considered as corner candidates, then rounded corners and false corners due to 

boundary noise and trivial details are eliminated by comparing with an adaptive local 

curvature threshold instead of a single global threshold as in [27].  Note that the 

angles of corner candidates are checked in a dynamic region of support for removing 
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falsely detected corners. End points of line-mode curve are added as corners, if they 

are not close to the detected corners. 

We adopt the two criteria which were proposed for eliminating falsely 

detected corner candidates in [28]. First, the adaptive local curvature threshold is set 

for a candidate according to its neighborhood region’s curvature. The local maxima 

whose absolute curvatures are below a local threshold are eliminated, while the local 

maxima whose absolute curvatures are above the local threshold are declared as 

corner candidates. This adaptive threshold is given by: 

1

2

1( ) 1.5 ( )
1 2 1

u L

i u L
T u C k k i

L L

+

= −

= × = ×
+ + ∑                             (2.9) 

 
In equation (2.9), u is the position of corner candidate in the curve, L1 and L2 are 

sizes of the region of support (ROS), which is defined as from one of the neighboring 

local curvature minima to the next, where the curvature is strictly decreasing from the 

candidate point to both ends. C is a coefficient, and the mean value k  is used to 

represent the curvature of a neighborhood region. Note that if C is set to 1, no corner 

is removed, and for the purpose of retaining a corner whose curvature function 

waveform is a standard triangle, the boundary value of C is 2. By observation, the 

round corner has a convex waveform in absolute curvature function, and is not 

sharper than a triangle. So, theoretically C should be greater than 1 and less than 2. 

Based on extensive experiments testing, the value of 1.5 is chosen for the coefficient 

C, which works well for cervical images. 

The second criterion is the corner checking criterion, which states that corner 

iC  is a false corner if 160 ( ) 200iangle C≤ ≤ ; otherwise, iC  is a true corner. The 
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value 160  is determined after further analyzing the angles of the vertebra shape 

corners from our cervical and lumbar images.  The angles of corner candidates iC  are 

given by, 

 ( ) ( )( ) tan 1/ 1 tan 2 / 2iangle C arc Y X arc Y X= ∆ ∆ − ∆ ∆                (2.10), where 

1 1
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As the set of corner candidates may change after applying the criterion of corner 

checking, further iterations are required till convergence. Using this criterion, the 

isolated corner candidates due to boundary noise and trivial details can be removed.  

2.3.4 Definition of the Template 

The vertebral shape has been described using 6, 8, 9, and 10 point models by 

the bone morphology community. These landmark points are placed at pathologically 

significant points on the vertebra boundary. We use the 9-point representation of 

vertebra shape since a portion of the NHANES II spine image collection was marked 

using the 9-point model by a board certified radiologist as ground truth. The locations 

of these template points, shown in Figure 1.3(a), are indicative of the pathology found 

to be consistently and reliably detectable in the image collection. Points 1, 3, 6, and 4 

are indicative of the four “corners” of the vertebral body as seen in a projective 

sagittal view. Points 1 and 4 mark the upper and lower posterior corners of the 

vertebra, respectively; Points 3 and 6 mark the upper and lower anterior corners of the 

vertebra, respectively. Points 2 and 5 are the median along the upper and lower 

vertebra edge in the sagittal view; Point 7 is the median along the anterior vertical 
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edge of the vertebra in the sagittal view. Note that Points 8 and 9 mark the upper and 

lower anterior osteophytes, so if osteophyte(s) are not present on the vertebra, then 

these points coincide with points 3 and 6, respectively. 

We use the mean of 50 templates randomly selected from the images which 

were marked using 9-point model. The target shape to be segmented is the cervical 

vertebrae C3-C6, thus the template is defined by a total of 36 morphometric points for 

the four vertebrae. As shown in equation (2.11), each template iT  contains the x and 

y-coordinates of a single 36-dimensional vector respectively, and T  denotes the mean 

of the 50 templates.  

 

1 2 36
i

1 2 36

50
i1

, ...
, ...

1
50

i i i i

i i i i

i

X x x x
T

Y y y y

T T
=

   
= =   
   

= ∑
                               (2.11) 

 

2.3.5 Template Corner Matching 

A matching procedure generally follows after a local feature extraction 

procedure to recognize and locate objects. We use corner points as the local features. 

These corners have sufficient information to recognize and locate objects. The shape 

template also has corner points, and by matching these corner points with corner 

points in a real image, it is possible to recognize and locate objects.  

The template points 1, 3, 6, 4, 7, 8 and 9 were used as anchors in our corner 

matching stage. The median points 2 and 5 which reside at the middle of the upper 

and lower vertebra edge in the sagittal view are not used in corner matching. We 

overlaid the template on one image and correlate corner points to the seven points in 

the template. We examined every corner point iC  in the image, and compute the 
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Euclidean distance from every template corner point jT . If the Euclidean distance 

( , )d Ci Tj is below a certain threshold, the corner point iC  is extracted as a vertebra 

corner point, and included in the object model. The threshold value is chosen as 18 

pixels from many trials to ensure that falsely detected corners due to noise and 

unwanted corners not belonging to vertebrae are not included in the object model. 

Figures 2.12 (a) and (b) illustrate the results of corner detection and template corner 

matching. It can be seen that corner matching picks up candidate corners which are 

most correlated to vertebrae corners. 

 

  
(a) (b) 

Figure 2.12. Illustration of (a) corner detection, (b) template corner matching. 
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Figure 2.13. Calculating the orientation of the object model from the corner points 
passing through the posterior corners of the cervical vertebrae. 

 

After obtaining the object model points by corner matching, the 

approximation of the orientation of the object model can be computed from the corner 

points passing through the upper and lower posterior corners of the cervical vertebrae. 

Let φ to be the angle that describes the orientation of the template. As shown in 

Figure 2.13, the posterior corner points define a curve passing through the cervical 

spine. The value of φ is defined as the inverse tangent of the slope of the polynomial 

of first order (straight line) that best fits that series of points. The angle φ and the 

location of the top-rightmost corner point of the object model determine the final 

location of the prior shape template.  

2.3.6 Fine Segmentation 

The 9-point model is sufficient for corner matching and finding the initial 

spatial location of the shape template. However it falls short of providing a 
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sufficiently rich description of the shape contour for the purposes of fine 

segmentation. Thus we use arithmetic interpolation to increase the 2-D points from 9 

to 36 by adding 3 intermediate points between two original landmark points. And 

then the denser 36-point shape contour for each vertebra is allowed to deform 

according to the following energy function. 

Let ( , ), 1, 2,...,k x kv x y k N=  be the N deformable vertices on the polygonal 

contour, and let , , 1,...,k jp k N=  and ,...,0,...,j M M= − be the uniformly sampled 

points along the orthogonal curves of the contour, where ,0 , 1,...,kp k N= denote the 

base point. And ( , )k kf x y  is the image intensity at ( , )k kx y . The associated energy 

function is given by, 

gradient proximity smoothness
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                           (2.11) 

The proximity energy proximityE  measures the displacements of the contour vertices 

from the base points ,0 , 1,...,kp k N= , and the smoothness energy smoothnessE  measures 

the dissimilarity of distances of consecutive vertices from their base points. The 

resulting contour after deformation should lead to more accurate segmentation results. 
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Chapter 3: Experiments and Results 

3.1 Data Set and Ground Truth 

Based on the 9-point model, the template for cervical image is defined by a 

total of 36 morphometric points including the whole shape of vertebrae C3-C6, and 

the template for lumbar image is defined by a total of 45 morphometric points 

including the whole shape of vertebrae L1-L5.  These morphometric points were 

previously marked by expert radiologists, and represented our ground truth about the 

correct location of points defining the shape of the cervical vertebrae. Figure 3.1 

shows the location of points of the defined template for both cervical and lumbar 

images.  

  
(a) (b) 

Figure 3.1. Illustration of the ground truth morphometric points for (a) cervical spine 
C3-C6. (b) lumbar spine L1-L5. 

 
We tested our proposed scheme on a data set of 50 randomly selected cervical 

images from NHANES II database used. Each cervical image is 1,755 rows by 1,462 

columns with 256 levels of gray, and stored in JPG format. Although our current 
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efforts concentrate on cervical X-ray images, future work will also include lumbar X-

ray images. The important issues in applying our scheme to lumbar images are 

discussed in the next section. 

3.2 Experiments and Performance Measurements 

Edge detection, corner detection and template corner matching are applied 

sequentially to every image on the data set using its own template. This experiment 

aims to verify the hypothesis that if the correct template is used, the proposed scheme 

is a suitable approach for segmenting the cervical vertebrae from radiological images. 

The last statement would be proven given that if the correct answer (a template 

extracted from every image) were used, our curvature-based corner matching 

approach would be able to find adequate estimates of the location, orientation and 

scale of the cervical spine. Results from this experiment can be summarized as 

follows, 

• In most cases, all posterior corner points of vertebrae were detected, and 

further used in finding the orientation of the cervical spine. Although the 

corner points can be missing due to poor image contrast in some cases, the 

remaining corner points provide enough information to design the 

polynomial of first order (straight line) that best fits that series of points. 

An example of poor image contrast is presented in the second row of 

Figure 3.2. It can be seen that vertebrae C5 and C6 appear in the image of 

low contrast, which hinders the corner detection for posterior edges. 

• An average difference in orientation is less than 1  and a corresponding 

0.41σ =  was measured. The displacement between the location of the 
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top-rightmost corner point of the object model and the template model is 

on average 5.4 pixels along the x-coordinate and 8.8 pixels along the y-

coordinate. The location displacement does not greatly affect the result 

since the orientation of the template at its final location has nearly the 

same orientation as the template model.  

These results clearly show that the curvature-based corner matching is an effective 

technique for coarsely segmenting the cervical vertebrae if the correct template is 

used. In other words, if a reasonable template is provided, our approach will yield 

acceptable segmentation results. Figure 3.2 shows some of the results of our proposed 

scheme. The first column shows the captured region of interest for C3 to C6 on 

cervical images. The second column shows the region of interest after applying image 

enhancement, which is overlaid with the detected corners and the line passing through 

the upper and lower posterior corners of the cervical vertebrae. The third column 

presents the final segmentation using a snake with initial estimates of location and 

orientation of the cervical vertebrae C3-C6. It can be seen that the successful pose 

estimation of the vertebrae leads to improved segmentation. 
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Figure 3.2. Results of applying the proposed scheme on 50 randomly selected cervical 
images using their corresponding templates. The region of interest is marked by the 
rectangular bounding box. The detected corner points are marked by red dots, the 

posterior corner points are additionally marked by blue circles, and the final contours 
after deformation are indicated by red marks in the third column. 

 

3.3 Computational Issue 

The biggest advantage of the template corner matching approach is execution 

time. During the development of this thesis, all algorithms were implemented using 

MTLAB 7.0.4 on a Pentium M 2.0 GHz computer with 512 MB of RAM. Although a 

number of preprocessing steps including finding region of interest, adaptive 

histogram equalization, and unsharp marking needs to be carried out before corner 

detection and matching, they are performed quickly. Moreover, these preprocessing 

steps are computed only once, and are saved. The total preprocessing of each image 

takes an average of 3.1092 seconds. During edge detection and corner matching, it 

takes 1.1194 seconds for edge detection, 4.5296 seconds for corner detection, and 

0.0132 seconds for corner matching on average. Hence, the execution time will be the 

sum of the time spent in four major steps: (1) preprocessing, (2) edge detection, (3) 

corner detection, and (4) template corner matching. Hence, the total execution time of 

the proposed approach for coarse segmentation on a cervical spine image from the 
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data set is an average of 10.42 seconds. Table 3.1 shows the average execution time 

of the proposed approach compared with GHT approaches reported in [8, 9] for 

cervical vertebrae.  

 
Table 3.1. Comparisons of execution time for previous and current coarse 

segmentation scheme 
 

EXECUTION TIME CERVICAL X-RAY 
IMAGES (seconds) 

 
Previous approach [8] 
 

78 

Previous approach [9] 
 

55 

Current approach applied on 
region of interest (ROI) 

10.42 

 

The execution time of both corner matching approach and GHT depend on 

several factors such as the size of the target image, size of the template and some 

factors associated with implementation. GHT also depends on the quantization of the 

Hough space. The size of the target images is one of the key aspects in determining 

the execution time. Based on our experiments, the execution time is directly 

proportional to the size of target image. It should be noted that the execution time for 

detecting the edges, extracting the contour curve and detecting the corners accounts 

for more than half of the total execution time. The execution time has a greater 

dependence on the number of edge pixels to be processed by the algorithm than the 

size of the image itself, although these two quantities are related. Thus, extracting 

gradient information from thin edges that contain all the shape information from the 

cervical spine is crucial in keeping the execution time low.  
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Note that edge detection and corner matching are applied to the region of 

interest instead of on the entire image. This is one of the basic preprocessing steps but 

yet a very important step. The region of interest is basically a bounding box which is 

placed around the vertebrae and for all further processing only that particular region 

is processed. The algorithm should also make use of some a priori knowledge about 

the location of the vertebrae. To generate a proper bounding box, we examined the 

939 cervical images which have been marked by radiologists using the 9-point shape 

model. The average location and size of the bonding box corresponding to cervical 

vertebrae C3-C6 are obtained statistically. And then an additional border of width 150 

pixels is included to make sure that the bonding box will not be placed in a wrong 

position which does not correspond to the vertebrae. The first column of Figure 3.2 

shows the bounding box placed around the region of interest for C3 to C6 on cervical 

images. 

The number of critical points in the template also plays an important role. In 

our current approach, the number of points that the template is made of has been 

reduced to 36, while in previous approaches [8] and [9] each template is made out of 

80 landmark points. Our approach uses 9-point for each vertebra which conveys 

enough information for the corner matching algorithm to obtain the posterior corners 

of vertebrae C-3-C6, and thus determine the orientation and location of template. 

However, the GHT [8, 9] needs more points in the template to represent the anatomic 

features of the cervical spine, since more points in the GHT accumulator will be 

related to the same reference point. The execution time of GHT depends on the search 
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procedure which is directly proportional to the number of points in the template. 

Therefore, a bigger template results in increased execution times.  
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Chapter 4: Image segmentation and Pathology Validation Tool 

The medical image segmentation and pathology validation tool was developed 

to collect ground truth data on the digitized spine X-ray images from NHANES II. In 

addition, it enables verification of the segmented vertebral boundaries and collection 

of pertinent pathologies from the image as a whole, in addition to those local to the 

vertebral body. The tool, shown in Figure 4.1, is designed to allow content experts to 

login into our database and review image and pathology data and provide necessary 

updates. The software can operate in an offline or online mode and need only connect 

to exchange data. It has been developed using JAVA and continues to evolve based 

on suggestions from experts. 

4.1 Design Considerations 

In developing a medical validation tool, it is essential to take into account 

typical practices of radiologists and other medical experts providing validation data. 

For example, a brightness-contrast leveling tool is often assumed to exist in such 

software as a response to vertical drag movements of the mouse with a mouse-button 

press. Other image enhancement tools are unsharp masking, histogram equalization 

and image negation. Our interaction with experts has enabled us to develop a software 

that provides a traditional interface and could help in minimizing the time it takes to 

use the software. It also takes into account the fact that the radiologists are providing 

this data while caring for their patients and may be interrupted during the validation 

process. The system regularly saves their work and if necessary can return them to 

their last completed action. 
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Figure 4.1: Screen shot of the main window in the medical validation tool showing a 
whole cervical spine X-ray and some image enhancement controls. 

 

 4.2 Features and Capabilities 

The system is shown in Figure 4.2. It consists of a MySQL database server 

and an image server on the server side and the validation tool/applictaion on the client 

side. The client tool operates in both stand-alone and online modes. It starts in the 

stand-alone mode and the user can login to the remote server to download image and 

text records. These records can be obtained as individual items or can be downloaded 

in selectable batch sizes. If the latter is selected, then future operations of the client 

can be performed in the stand-alone mode until all images and records have been 

reviewed. After completing the batch the user uploads all validated records which are 

verified by the service manager. Only the validated text records and image 

segmentation data are uploaded. Such a batch mode operation allows the medical 
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experts to validate images on their own time while disconnected from the Internet. In 

this case, the user may need to login to the server again for performing data 

transactions. 

 
 
 

Figure 4.2: A schema depicting the various components enabling the collection of 
medical validation data. 

 

For each cervical or lumbar image, the user is shown the image on a tabbed 

interface with the entire image on the main tab, and the corresponding vertebrae 

appear on the other tabs, as in Figure 4.1. Here the user can mark regions of interest 

(ROI) and perform image enhancements to better view the pathology of interest. 

Image enhancement tools include a leveling tool, un-sharp masking tool that operates 

in a cumulative fashion, adaptive histogram equalization tool and image negation 

tool. These tools are commonly used by radiologists in their typical workflow. This 

tab also permits image level comments to be recorded. Individual vertebral images 

are visible through a button on this main panel. The viewport for each vertebra is 
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Images

Client Computer WWW

JDBTunnel
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computed from segmented vertebral boundary data coordinates that are stored in the 

server database. Since the vertebral segment is not cut and saved as a separate image, 

it is possible to allow the user to expand his/her view to include neighboring vertebrae 

by adjusting the coordinates of the cropping rectangle. In consultation with the 

medical experts, we enabled a viewing technique of multiple vertebrae while 

highlighting the vertebra under investigation. The user is provided with four sliders to 

manually adjust the dimensions of the viewport. The maximum width and height of 

the viewport are set to 400 and 700 pixels respectively. The top left corner 

coordinates, and width and height of the cropping rectangle are also displayed 

separately to facilitate usage, seen in the middle of the screen shot in Figure 4.3. This 

view would enable the medical experts to make a better judgment on the pathology. 

In the vertebra pathology examination panel, shown in Figure 4.3, the medical 

expert can enter data about four types of pathologies and comment about others not 

covered by the provided drop-down boxes. The pathology categories provided are 

anterior and posterior osteophytes, disc space narrowing, and subluxation and 

spondylolisthesis. For the osteophytes, they can either be normal or have three grades 

of severity, viz.: slight, moderate, and severe. Each can be of traction or claw type. It 

is possible to mark both types of pathology for vertebrae with osteophytes of slight 

severity. This indicates that the expert was unable to determine the type of 

degenerative growth, so that he/she choose to mark the type of pathology undecided. 

For moderate or severe pathology, only one of the two types may be marked since it 

is expected that a clear judgment can be made for these severities. Overall, each 

osteophyte location can have only one severity grade. For the case of narrowing disc 
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space, the expert can indicate either mild, moderate, or severe. The tool also provides 

a measuring tool for measuring distances between objects. In certain cases, this tool 

could be used to measure the narrowing. For subluxation and spondylolisthesis, both 

of which indicate disk slippage, similar mild, moderate, and severe selection criteria 

are provided.  

Often, a vertebral boundary is computed by computer assisted image 

processing techniques and may not be medically valid. Thus, an essential task of this 

validation process is verifying that these boundaries are indeed a true representation 

of the anatomy. Additionally, for the fixed point boundary distributions, viz., the 9-

point and 36-point boundaries, it is essential that the points are located at appropriate 

locations. For example, in the 9-point boundary layout, shown in Figure 1.3(a), points 

1, 3, 6, and 4 are indicative of the four “corners” of the vertebral body as seen in a 

projective sagittal view. These and other points are often used as anchors in our shape 

matching step and their correct location is important to proper system performance. 

The experts can modify boundary-point position by moving each point as necessary. 

In addition, the medical expert can also select one or more valid boundary 

representations from the multiple segmentations often available for each vertebra. A 

segmented boundary shape is identified by the segmenting person identifier and 

creation date. The software provides a way to show the experts each shape on the X-

ray image and up to three shapes can be overlapped. It is also possible to turn off the 

lines connecting the boundary points to get a clearer view of the outline with respect 

to the image edge. 
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Figure 4.3: Screen shots of vertebral tab panel depicting a cropped vertebra with the 
segmented boundary as overlay. It also shows various pathology check boxes and 

notes area. 
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4.3 Lessons learned 

In this chapter, we discussed the design and development of a Web-enabled 

medical validation tool. Note that the tool cannot be currently generalized for use 

with a variety of image types; however, it is possible to build such tools that can be 

easily modified for different image types by learning from the design and use of the 

medical validation tool. Lessons were learned in both design and developmental 

aspects of the tool and are important for any project of similar nature. They include 

concepts in project and workflow planning, software and GUI design, and software 

engineering. Involving primary users, who may be domain experts, early on in the 

development and planning of such software is very helpful. Obtaining information 

about their typical workflow and obtaining a list of desirable features significantly 

improves long-term benefits from data collection and validation efforts. Some 

examples of add-ons and modifications in the software resulting from such efforts 

include mouse-based image enhancement tools, batch-mode operation, and tools for 

reorienting users interrupted during the validation process.  

Future enhancements are planned for the tool in order to reduce expert burden 

in medical validation. Several image segmentation algorithms are expected to be 

included after a thorough on-line testing and performance evaluation. A major hurdle 

in this task will be the redevelopment of specialized routines in a cross-platform 

language such as JAVA. In general, we expect that the contributions from this work 

will enable a medically validated dataset valuable for evaluating the performance of 

various segmentation algorithms and CBIR related research.  
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Chapter 5:  Conclusion and Future Perspective 

The success of our curvature-based corner matching scheme for coarse 

segmentation of cervical X-ray image mainly depends on three factors: (1) 

Availability of edges for corner detection, (2) Correctness of the template, and (3) 

Correlation between template points and detected corner points. The Canny detector 

is adopted to detect the edges in the cervical vertebrae, and then the multi-scale 

corner detector extracts vertebral contour curves using the detected edges. The 

corners of the contour curves are further detected based on Curvature Scale Space 

(CSS) technique.  

Although more study is still needed, experiments showed that the proposed 

scheme is a suitable approach for coarse segmentation of cervical vertebra if the 

correct template is used. Moreover, the proposed scheme lessened segmentation’s 

dependence on gradient information. The corner matching approach detected only 

part of the corners when the available gradient information is poor. However, the 

detected corners could be successfully related to the template, thus orientation of the 

vertebrae could still be estimated by finding the polynomial of first order (straight 

line) that best fits the series of detected corner points along the posterior edges of the 

vertebrae in the sagittal view. Bad segmentation occurs when gradient information is 

poor and the template does not represent appropriately the target object. Although 

current efforts concentrate only on cervical X-ray images, future work will also 

include lumbar X-ray images.  

This thesis is also the first reported effort to develop a prototype Internet-

based medical image segmentation and pathology validation tool, which aims to 
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enable radiologists to validate computer generated image segmentations, modify 

existing or create new segmentation in addition to identifying pertinent pathology 

data. The tool collects validation data on the digitized spine X-ray images in a 

uniform and consistent manner. In addition, it allows multiple expert opinions on 

each image, and online feedback without the physical presence of the users at NLM 

facility or replication of the entire collection at the remote facility.  

In general, we expect that the medical image segmentation and pathology 

validation tool will contribute to a medically validated dataset valuable for evaluating 

the performance of various segmentation algorithms and CBIR related research. 

Moreover, our work enables the formation of general principles for design and 

development of similar tools that could allow validation of images of different 

anatomy in different modalities which may have different set of pathologies. 
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