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A fully compressible direct numerical simulation flow and combustion solver (S3D) is 

modified and turned into a Large-eddy simulation (LES) solver. In this study, Favre-

averaged governing equations are formulated first, supplemented with the classical 

Smagorinsky model and the dynamic procedure. To simulate low-Mach number flows, 

the speed of sound is artificially reduced while preserving the zero-Mach number 

physics. This pseudo-compressibility method is called Acoustic Speed Reduction (ASR). 

With ASR, the code has the capability to compute low-Mach number flows in an efficient 

way. 

The boundary conditions in S3DLES are based on a one-dimensional characteristic 

analysis. To stabilize the solution, a buffer layer treatment is introduced at outflow 

boundaries to reduce acoustic reflections. The resulting flow is stable and produces 

results that compare well with a reference study. The implementation of the Smagorinsky 

model and other sub-models are validated using published plane jet simulation results 

with well-defined flow and perturbation conditions. 
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A second test case is the simulation of a round thermal plume. The ASR method is 

adopted to increase the computational efficiency by a factor of at least 10, thus making 

the computation of a 3-D round plume feasible on a small-scale cluster.  

A third configuration is the simulation of a saltwater plume that was studied 

experimentally at UMD and is analog to a gaseous thermal plume. A comparison 

methodology between saltwater and gaseous plumes is developed. It is found that the 

computational requirement of a configuration that includes both the near- and far-field 

remains large and grid-resolution in our simulations remains marginal.  

The fourth and last simulation takes advantages of the compressible flow formulation and 

considers flow-acoustic-interactions as a part of a thermoacoustic study. Three streams of 

different densities and momentums are introduced into a wall-confined domain. The flow 

is acoustically excited by an acoustic driver. The amplitude and phase of the driver are 

controlled. The high frequency modal response of the chamber compares well with 

experimental results. A variety of numerical tests in 1D, 2D and 3D configurations reveal 

the mechanism of transverse resonance and the resulting flow-acoustic interactions. This 

suggests that S3DLES will be a good prediction tool for future combustion noise and 

combustion instability studies. 

Overall, the series of tests presented in this work serve to document the strengths and 

weaknesses of the current version of S3DLES. 
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Chapter 1. Introduction to buoyant flows 

 

1.1. Classical work on buoyant plumes 

Fire induced flows are mainly buoyancy-dominated flows, since the fire source provides 

the energy to raise the temperature, and the temperature variations correspond to density 

variations, which in the gravitational field, generate a buoyancy force that drives the fluid 

motion. Buoyancy dominated flows are widely encountered in the fire configurations, 

such as the fire plume (with reaction), the buoyant plume (without reaction), and the 

ceiling jet. The buoyant plume is a fundamental (canonical) form of fluid flow, and is 

described in many textbooks on turbulent flows (for example, see Tennekes and Lumley, 

1972, Pope, 2000). It will transport smoke to locations far from the fire, so it is very 

important for fire hazard calculations. The flame is the flow region with strong chemical 

reactions and thermal radiation effects (Zukoski, 1995). Understanding of the buoyant 

nature of the fire will help the understanding of the mechanisms of flame spread and 

smoke movement. The interaction of a buoyant plume with a horizontal wall leads to the 

formation of a ceiling jet (Alpert, 1972). The structure of the ceiling jet will affect the 

response of heat and smoke detectors, so it has many implications for fire detection and 

activation of suppression systems.  

 

Many flows in environmental applications are also influenced by the buoyancy forces 

arising from density difference. Because of the great practical significance of buoyancy-

influenced or -dominated flow phenomena, engineers, meteorologists, and also 

oceanographers need to be able to calculate these phenomena in order to predict and 

possibly control them.  
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The classical theoretical work on buoyant flow is carried out on boundary-layer type 

inviscid flows. Integral methods suitable for shear-layer flows were developed in which 

the partial differential equations are reduced to ordinary ones by introducing empirical 

similarity profiles for velocity, temperature, or concentration in the horizontal direction. 

The resulting ordinary differential equations describe the axial variation of the velocity, 

temperature or concentration scales and the characteristic shear-layer width. Further 

empirical input is necessary which describes the global effect of turbulence, in the case of 

turbulent buoyant jets and plumes, via an entrainment law relating the horizontal 

entrainment velocity at the jet edge to the local vertical velocity on the jet axis. The 

governing equations are thus simplified by dimensional analysis and problem-specific 

simplifications. Also, the Boussinesq assumption is adopted to limit the treatment of 

variable density to the buoyant term only, so the flow can be described similarly to an 

incompressible flow.  

 

Zeldovich (1937) first described thermally buoyant plumes arising from a point source 

and from a horizontal line source of heat. His treatment does not permit a velocity 

component normal to the plane of symmetry of the plume. Schmidt (1941) investigated 

the behavior of natural convection in a turbulent plume above a line and point source of 

heat. A similarity technique was used. The governing flow equations were solved by 

assuming a series solution in terms of the similarity variable. Rouse et al. (1952) found a 

transformation that results in closed-form solutions for the temperature and velocity 

distribution. The monumental work by Morton, Turner and Taylor (1956) was concerned 
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with describing isolated convection in a meteorological context. Three important 

assumptions were made for the weak point source plume: Boussinesq approximation, 

self-similarity and linear local entrainment assumption (for shear-layer flows). The 

entrainment assumption provides the entrainment velocity by integrating the simplified 

Navier-Stokes governing equations in terms of top-hat variables. The similarity 

assumption assumes that a plume spreads linearly with height and that the mean 

horizontal flux across the edge of the plume is proportional to the local vertical velocity. 

They formed the classical plume theory and are widely used in similar plume works of a 

point-source type.  

 

The general form of classical plume theory is described in the following, which can be 

found in any textbook on turbulence (Pope, 2000). In a neutral environment (no change in 

ambient density with height), the mean vertical velocity and buoyancy acceleration are 

given respectively as 

2
3/13/1 ηWB
WeAzBW

−−=                                                 (1) 

2
3/53/2 η

ρ
ρ

TB

TeAzBg
−−

∞

=
∆

                                               (2) 

Where W is the mean vertical velocity along the axis of the plume, B is the rate of 

addition of buoyancy, z is the height (distance from the buoyancy source), WW BA ,  are the 

parameters which quantify the Gaussian fit to the mean velocity profile, while TT BA ,  are 

the corresponding ones for the density profile; η  represents the similarity variable, 

zr /=η , where r is the radial distance at any z.  
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The primary disagreements among the various experimental results are regarding the 

centerline values of mean velocity and buoyancy profiles as well as the plume-spreading 

rate. According to Shabbir and George (1994), various parameters of Gaussian fit of 

profiles can be found in the literature: )7.4~4.3(=WA , )96~55(=WB , 

)28.14~1.9(=TA , )71~48(=TB . The scattering is significant. The discrepancies 

between different experimental data are likely to be due to various factors: 1. Boundary 

effects of the solid wall lateral boundaries and presence of reverse or co-flow can 

influence the entrainment process, 2) measurements may not have been carried out in the 

fully developed turbulent region in some cases; 3) hot-wire anemometer measurements 

are known to be insensitive to direction, and therefore the measurements made outside 

the half-width of the plume may not be reliable in such cases. Since B is used in the 

scaling for self-similarity, much depends on an accurate determination of the buoyancy 

flux B, the measurement of which, unfortunately, can be influenced by experimental 

errors.  

 

The early work on jets and plumes with special emphasis on environmental flows is 

summarized in the book chapter by Fischer et al. (1979) and reviews by Chen and Rodi 

(1980), List (1982), List and Rodi (1982). Further work on large-scale structure can be 

found by Papanicolaou and List (1988, 1989), Dahm and Dimotakis (1990). To overcome 

the difficulties due to Schmidt number effects in water, the velocity statistics are 

measured for gaseous plumes by Dai, Tseng, and Faeth (1994). Measurements in buoyant 

flows can be found also in George, Alpert, and Tamanini (1977), Shabbir and George 

(1994). Most of the fundamental progress before 1994 is summarized in the book by 
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Davies and Neves (1994). In that book, the phenominogical plume behavior is 

summarized by List and Dugan (1994), and an interesting theory is proposed using a 

Lagrangian vortex method to simulate the plume structure (Chu, 1994). The result from 

this assumption is surprisingly close to those of the results of classical integral methods. 

Zukoski (1995) summarized the classical plume theory with special application on fires, 

and the book by Gebhardt et al. (1996) summarized the buoyant flow dynamics with a 

wide range of engineering applications.  

 

Thus most of the classical results for buoyant plumes are based on integral models and 

the similarity assumption. Integral methods are suitable mainly when the flow retains its 

jet-type character; they are difficult to extend to more complex flow situations. For 

example, the interaction of the discharged jet/plumes with neighboring walls, with nearby 

plumes, and with layers of strong stable stratification (inversion) are difficult to describe 

with integral methods; the same can be said for complex geometries and boundary 

conditions. The reason is that in such cases the profile shapes are not similar and self-

preserving, so they are difficult to describe empirically, and it is also difficult to relate the 

entrainment rate to all local parameters that influence this rate. So with the advances in 

computer technology and numerical methods for solving partial differential equations, the 

so-called field methods have become increasingly popular.  

 

1.2. Numerical simulation of buoyant flows 

As described by Sagaut (2002), the numerical simulations are used for two types of 

purposes. The first is to accompany research of a fundamental kind. By describing the 
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basic physical mechanisms governing fluid dynamics, numerical simulation helps us 

understand, model, and later control these mechanisms. The quality of the data generated 

by the numerical simulation also depends on the level of resolution chosen. For the best 

possible precision, the simulation has to take into account all the space-time scales 

affecting the flow dynamics. When the range of scales is very large, as it is in turbulent 

flows, for example, the problem becomes stiff, in the sense that the ratio between the 

largest and smallest scales becomes very large. Direct numerical simulation and well-

resolved large-eddy simulation fall into the first category. 

 

The second kind of purpose is engineering analysis, for instance when flow 

characteristics need to be predicted during a design phase. Here, the goal is no longer to 

produce basic data for analyzing the flow dynamics itself, but rather to predict some of 

the flow characteristics or, more precisely, the values of physical parameters that depend 

on the flow, such as the stresses exerted on an immersed body, the production and 

propagation of acoustic waves, or the mixing and reaction of chemical species. The 

purpose is to reduce the cost and time needed to develop a prototype. The simulations 

may be aimed at predicting either the mean values of these parameters or the amplitude 

of their variations.  

 

Considered as canonical flow configurations, jets and buoyant plumes have attracted 

attention from the numerical researchers for a long time. The various models used in past 

computations belong to one of the following groups: direction numerical simulations 
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(DNS), Reynolds-averaged Navier-Stokes simulations (RANS) or large-eddy simulations 

(LES). 

 

1.2.1. DNS 

The most fundamental way to study flows is to work with the complete set of equations 

without turbulence modeling. This requires that the grid resolution cover the smallest 

scales down to the Kolmogorov scales. This kind of study requires that the physical 

model chosen to represent the behavior of the fluid must be pertinent and that the 

algorithms used, and the way they are used by the computer system, must introduce no 

more than a low level of error. For instance, a sixth-order compact finite difference 

scheme for spatial discretization, and 3
rd
 order Runge-Kutta method for time 

advancement are adopted in many DNS studies (Rajandram et al. 2002).  

 

Basu and Narasimha (1999) studied the effects of off-source volumetric heating (similar 

to that due to latent heat release in a cloud) using direct numerical simulation of a circular 

jet-like flow and found that the large-scale structures break down and entrainment is 

inhibited. Rajandram and Luo (2002) described the instantaneous unsteady behavior of 

the buoyant fire plume with a 2-D compressible reacting flow formulation. The presence 

of buoyancy causes the formation of large vortical structures in the plume. Decreasing the 

Froude number ( gluFr /2

∞= , the ratio of inertia forces to gravity forces) causes higher 

vorticity levels. The simulations successfully capture the instantaneous unsteady behavior 

of the buoyant fire plume. The inclusion of chemical reaction alone stabilizes the flow 

while the presence of buoyancy causes the formations of large vortical structures in the 
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fire plume. The overall integrated mean reaction rate is found to increase with buoyancy. 

Jiang and Luo (2001) simulated transitional noncircular buoyant reactive jets with a focus 

on the mechanism of vortex dynamics caused by buoyancy and chemical reaction. The 

interaction between density gradients and gravity produces flow vorticity and the 

rectangular jet has a stronger tendency of transition to turbulence due to the aspect ratio 

effect. Katta et al. (2000) have conducted detailed 2-D DNS of low-speed buoyancy-

driven premixed, partially premixed, diffusion and triple jet flames using detailed 

chemical mechanisms to address the vortex-flame interactions and two phase, swirling, 

and extinction effects.  

 

Currently, DNS is only used for some fundamental studies, such as the study of the role 

of buoyancy on turbulence, the role of coflow on entrainment, the effect of the presence 

of a wall etc. As the name implies, DNS directly simulates the Navier-Stokes equations 

without recourse to subgrid modeling, so for flows with a broad spectrum of motions (at 

high value of Reynolds number Re), the cost can be prohibitive - the number of required 

grid points scales like 4/9Re  and the number of time steps like 4/3Re  (Piomelli et al. 

1996). 

 

1.2.2.  RANS methods 

A cost-effective numerical simulation of a fire plume may be accomplished using 

Reynolds-averaged governing equations, either for a Boussinesq flow or weakly 

compressible flow. RANS equations require turbulence modeling. A review of turbulence 

models has been given by Rodi (1984) who concluded that models of an intermediate 
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level of complexity employing transport equations only for the rms velocity and integral 

length scale of the turbulent motions are most suitable for practical purposes. Of these so-

called two-equations models, the ε−k  model is the most widely tested and used.  

 

The ε−k  model was introduced by Launder and Spalding (1972). Patankar (1980) 

introduced the famous SIMPLE algorithm to compute the pressure field. Launder et al. 

(1972) also proposed the buoyancy correction to the ε−k  model, which is known as the 

gk −− ε  model. Subsequent turbulence models introduce more partial differential 

equations, these models are rather complex and hence, for reasons of economy, their 

practical application should be restricted to situations where simpler models fail, for 

instance, situations featuring counter-gradient diffusion. For example, in free convection 

situations in the atmosphere, the heat may be transported by the turbulence against the 

temperature gradient. Dewan et al. (2003) compared 3 buoyancy extended versions of the 

2tk ′−− ε  model in predicting turbulent plane plume and found that the mean flow 

quantities predicted by all the models agree well with the experimental observations. 

 

To name a few applications of the gk −− ε  model, Tamanini (1977) simulated 

axisymmetric forced and buoyant jets; You and Faeth (1982) simulated buoyant 

axisymmetric turbulent diffusion flames. Cox and coworkers developed the code SOFIE, 

which was successfully used to simulate the King’s Cross fire. Most commercial CFD 

codes currently available are based on the ε−k  model and claim to have the ability to 

simulate fire-induced flows, such as PHOENICS, FLUENT, STAR-CD, SMARTFIRE, 
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KAMELON, SOFIE, etc. These solvers are based on similar numerical algorithms (for 

example, variations of the SIMPLE algorithm). 

 

Hossain and Rodi (1980) simulated the vertical buoyant jets. Nam and Bill (1993) dealing 

with free plumes concluded that using the standard ε−k  model result in an over-

prediction of velocities and temperature on the central axis of a plume, leading to an 

underestimation of the width of the plume. Corrections were made by tuning the turbulent 

viscosity coefficient and the effective Prandtl number, thereby achieving agreement with 

experimental data within 2% error. Hara and Kato (2004) simulated a thermal plume with 

a standard ε−k model, and found that the cell Reynolds number is an important measure 

of the performance of the numerical set-up. However, this kind of traditional method 

cannot give a detailed picture of the fluctuating flow. 

 

Besides the work above, the simulation of plumes with RANS approaches is still limited, 

partly due to the unsteady nature of the plume, and partly due to the many empirically 

determined constants in RANS approaches. As Baum and Rehm (1978) point out, most 

turbulence models in use are of the gradient diffusion type. Thus, they implicitly assume 

that a small-scale, locally homogeneous turbulent field underlies the organized 

macroscopic mean motion whose solution is sought. Various models are proposed for 

predicting the turbulent flows, with little success to find a general all-purpose 

formulation.  
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Another comment made by McGrattan (2004) is also important. One of the difficult 

problems in using a ε−k  model is found in introducing the turbulence at the inlet. The 

transport equations of k  and ε  need initial values at the inlet and these values are not 

always available. In addition, the diffusion terms in the mass, energy and momentum 

equations are so large that they suppress any vorticity generation, or even any fluctuation. 

So the plume in a RANS approach has a smoothed appearance. There is always a need to 

modify the standard ε−k  model coefficients for a fire plume, since more turbulent 

energy is needed at the burner to account for all the buoyancy-induced vorticity that was 

being suppressed. This problem is not only coming from the ε−k  modeling, but also 

from the approaches/strategies adopted in the framework of RANS methods. There is a 

need to overcome such problems; the LES technique provides such a solution. 

 

1.2.3 Large Eddy Simulation 

Large-eddy simulation of the buoyant flow is an intermediate approach between DNS and 

RANS. As it can capture the large turbulent eddies, it will produce better mixing 

predictions than RANS, so the flow structure will be better represented. Also the cost of 

simulation is relatively reasonable for engineering calculations, so it can be used as an 

engineering tool. LES has the advantage that its solution is less model-dependent and that 

it can show instantaneous large-scale structures as well as providing statistics. In LES, 

the large eddies are resolved numerically while the fine-scale eddies are modeled by a 

subgrid scale (SGS) model. The feature of capturing large-scale motions in LES is of 

great value to practical applications such as thermal plumes.  
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An interesting observation made by Chu (1994) is here quoted, 

Turbulent flows such as jets and plumes are collections of eddies in motion. Large 

eddies and small eddies circulate around each other by mutually induced motions. 

Adjacent eddies of comparable size and strength compete for dominance. 

Ultimately, the largest eddy extending across the full width of the shear layer 

takes control over the process and, therefore, is responsible for the transfer of 

mass and momentum across and along the shear flow. The smaller eddies 

engulfed in the midst of the dominant eddy have relatively small effects on the 

transport processes.  

This view has been directly applied to the formulation of a Lagrangian method following 

the motion of the dominant eddies. The result based on such dominant-eddy hypothesis is 

surprisingly consistent with the classical Eularian work based on the relevant laboratory 

experimental results from the literature. The experimental work by List and Dugan 

(1994) supports the assumption that the averaging process used in integral models 

disguises the fact that measured instantaneous concentration levels may exceed the 

average concentration by as much as a factor of 6. Also regions of fluid high in tracer 

concentration can still remain coherent within the flow field at distances far removed 

from the source of the discharge. The experimental work by Shabbir and George (1994) 

concludes that in a buoyant plume the primary effect of buoyancy on turbulence is 

indirect, and enters through the mean velocity field (producing large shear production). 

These studies provide the theoretical basis that the large-eddy simulation will perform 

better than RANS approaches, since it can capture the eddies above grid level which are 

dominant in the plumes. 
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For this reason and others, Baum and Rehm (1978) borrowed the ideas from LES to 

capture the large scales down to the grid size. Since the turbulent kinetic energy cascades 

down from large to small eddies, it would accumulate (un-physically) at the grid scale, 

rather than diffusing into heat. Therefore, the Lanczos smoothing (which is equivalent to 

putting in an artificial viscosity term) was used at that time. This is equivalent to the 

Smagorinsky model, which is used in later versions of Fire Dynamics Simulator (FDS). 

Baum and Rehm (1978) also derived a new formulation for thermally driven flow (low 

Mach number flow). McGrattan et al. (1998) extended their pioneering work into a user-

friendly robust CFD tool. To date, FDS has been widely applied in different fields of 

thermally driven flows, including fire problems.  

 

Well-resolved LES simulations of a force turbulent buoyant plume have been performed 

by Basu and Mansour (1999). The simulations are based on an incompressible flow 

solver and the Boussinesq approximation. The weakly compressible formulation for 

plume simulations without the Boussinesq assumption is adopted by Zhou et al. (2001). 

The low Mach number formulation is adopted to filter-out the acoustic waves. While this  

treatment allows for significant gains in computational efficiency, the computational cost 

is still expensive and relies on parallel running on multi-processors. 

A summary of LES and numerical choice is provided in the following table. 

A study of LES stress and flux models applied to a buoyant jet is performed by Worthy et 

al. (2005). The choice of LES model can have a significant impact in a buoyant 

transitional flow. The stability consideration for upwind or TVD schemes sometimes



1
4
 

 
A
u
th
o
r(
s)
 

G
ri
d
 s
y
st
em

 
D
is
cr
et
iz
at
io
n
 

T
im

e-
in
te
g
ra
ti
o
n
 

P
o
is
so
n
 

eq
u
at
io
n
 

B
o
u
n
d
ar
y
 t
re
at
m
en
t 

M
cG

ra
tt
an
 e
t 

al
. 
(1
9
9
8
) 

O
rt
h
o
g
o
n
al
 

2
n
d
 o
rd
er
 c
en
tr
al
 

d
if
fe
re
n
ce
 s
ch
em

e 

E
x
p
li
ci
t 
2
n
d
 o
rd
er
 

P
re
d
ic
to
r-

co
rr
ec
to
r 
S
ch
em

e 

F
F
T
 s
o
lv
er
 

 

B
as
u
 e
t 
al
. 
 

(1
9
9
9
),
 W

eb
b
 

et
 a
l.
 (
2
0
0
0
) 

S
p
h
er
ic
al
 

p
o
la
r 

co
o
rd
in
at
e 

sy
st
em

 

2
n
d
 o
rd
er
 f
in
it
e 
v
o
lu
m
e 

m
et
h
o
d
 

2
n
d
 o
rd
er
 A
d
am

s-

B
as
h
fo
rt
h
 s
ch
em

e 

F
F
T
 s
o
lv
er
 

T
ra
ct
io
n
-f
re
e 

b
o
u
n
d
ar
y
 c
o
n
d
it
io
n
s 

B
u
ff
er
 z
o
n
e 
to
 t
ar
g
et
 

v
al
u
es
 

B
o
u
ss
in
es
q
 

F
lo
w
 

W
o
rt
h
y
 e
t 
al
. 

(2
0
0
1
) 

O
rt
h
o
g
o
n
al
 

2
n
d
 o
rd
er
 

ce
n
tr
al
+
T
V
D
+
3
rd
 

u
p
w
in
d
 

2
n
d
 o
rd
er
 

fr
ac
ti
o
n
al
 s
te
p
 

m
et
h
o
d
 

F
as
t 

m
u
lt
ig
ri
d
 

 

W
ea
k
ly
 

co
m
p
re
ss
ib
le
 

fl
o
w
 

Z
h
o
u
 e
t 
al
. 

(2
0
0
1
) 

U
n
if
o
rm

 

C
ar
te
si
an
 

g
ri
d
s 

2
n
d
 o
rd
er
 c
en
tr
al
 

d
if
fe
re
n
ce
 s
ch
em

e 

2
n
d
 o
rd
er
 A
d
am

s-

B
as
h
fo
rt
h
 s
ch
em

e 

M
u
lt
ig
ri
d
 

m
et
h
o
d
 

C
o
n
st
an
t 
p
re
ss
u
re
 B
C
 

Z
er
o
-v
el
o
ci
ty
 

g
ra
d
ie
n
t 

N
o
n
-n
eg
at
iv
e 

v
el
o
ci
ty
 f
o
rc
in
g
 

D
es
Ja
rd
in
 e
t 

al
. 

(2
0
0
4
) 

N
o
n
-u
n
if
o
rm

 

C
ar
te
si
an
 

g
ri
d
s 

F
in
it
e 
v
o
lu
m
e 
m
et
h
o
d
 

b
as
ed
 o
n
 A
U
S
M
+
 f
lu
x
 

v
ec
to
r 
sp
li
tt
in
g
 

9
th
 o
rd
er
 u
p
w
in
d
-b
ia
se
d
 

sc
h
em

e+
5
th
 o
rd
er
 E
N
O
 

m
et
h
o
d
 

+
4
th
 o
rd
er
 c
en
tr
al
 

sc
h
em

e 

4
th
 o
rd
er
 R
u
n
g
e-

K
u
tt
a 
m
et
h
o
d
 +
 

P
re
ss
u
re
 G
ra
d
ie
n
t 

S
ca
li
n
g
 

N
/A
 

N
av
ie
r-
S
to
k
es
 

C
h
ar
ac
te
ri
st
ic
 

B
o
u
n
d
ar
y
 C
o
n
d
it
io
n
 

F
u
ll
y
 

co
m
p
re
ss
ib
le
 

fl
o
w
 w
it
h
 

p
se
u
d
o
-

co
m
p
re
ss
ib
il
it
y
 

m
et
h
o
d
s 

T
h
is
 s
tu
d
y
 

N
o
n
-u
n
if
o
rm

 

C
ar
te
si
an
 

g
ri
d
s 

6
th
 o
rd
er
 F
in
it
e 

D
if
fe
re
n
ce
 S
ch
em

e 

w
it
h
 6

th
 o
rd
er
 f
il
te
ri
n
g
 

3
rd
 /
4
th
 o
rd
er
 

R
u
n
g
e-
K
u
tt
a 

m
et
h
o
d
 +
 

A
co
u
st
ic
-s
p
ee
d
 

R
ed
u
ct
io
n
 

N
/A
 

N
av
ie
r-
S
to
k
es
 

C
h
ar
ac
te
ri
st
ic
 

B
o
u
n
d
ar
y
 C
o
n
d
it
io
n
 

T
a
b
le
 1
. 
C
u
rr
en
t 
n
u
m
er
ic
a
l 
m
et
h
o
d
s 
fo
r 
b
u
o
ya
n
cy
-i
n
d
u
ce
d
 f
lo
w
 s
im
u
la
ti
o
n
s.
 



 15

overweighs the LES model constants difference. Reviews on the numerical simulation of 

buoyancy-induced flows can be found in Mitler (1990), Larsen (1994), Cox (1995) and 

Novozhilov (2001), though their reviews are predominantly focused on RANS 

approaches. Large eddy simulation of buoyant plumes is still primitive, primarily due to 

the computation cost associated with well-resolved LES and the limitations of hardware.  

 

1.3. Outline of current work 

The current LES capability corresponds to high-order numerical methods and is intended 

as a basic science-learning tool and a natural companion to detailed studies of laboratory-

scale experimental configurations. The choice of high-fidelity numerical methods is made 

in order to separate issues of numerical resolution from errors associated with subgrid-

scale physical modeling. 

This document is organized as follows. The LES formulation and numerical solver 

S3DLES are presented in Chapter 2. A validation test of S3DLES corresponding to a 

momentum-driven high-speed jet is presented in Chapter 3. Another validation test 

corresponding to multiple jets mixing in a wall-confined environment is presented in 

Chapter 4. This study also includes a test of the ability of S3DLES to simulate the 

acoustic response of a chamber. The third validation test corresponding to a strong plume 

is presented in Chapter 5. Finally, S3DLES is used for detailed comparisons with an 

experimental study of buoyant plumes performed with saltwater. The Chapter 7 presents 

a summary of our research and discusses future developments. Some numerical 

development and discussions are supplied in Appendix. 
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Chapter 2: Development of S3DLES 

2.1. Introduction 

The objective of this work is to adapt an existing CFD capability, named S3D, to the 

large-eddy simulation technique. S3D is a direct numerical simulation code developed in 

a DOE-sponsored collaborative effort between the Universities of Maryland (Prof. A. 

Trouvé), Michigan (Prof. H. G. Im), Wisconsin (Prof. C. J. Rutland), Sandia National 

Laboratories (Dr. J. H. Chen) and the Pittsburgh Supercomputing Center (R. Reddy). 

This collaborative effort is aimed at adapting and enhancing the S3D solver for efficient 

implementation on massively parallel processors (MPP) platforms. S3D couples an 

advanced fully compressible Navier-Stokes solver (high-order finite difference 

discretization, high-order Runge-Kutta explicit time integration, characteristic-based 

boundary conditions treatment, pseudo-compressibility treatment of acoustic waves, 

conventional structured uniform/non-uniform computational mesh) with a solver for gas-

phase exothermic chemical reaction. It is based on standard message passing interface 

(MPI) protocols and is both MPP-scalable (with tests performed up to 1,000 processors) 

and portable (IBM/Cray/SGI/Compaq/CPLANT). 

The present work is based on the numerical framework developed for S3D; it also uses a 

large eddy simulation approach and subgrid-scale physical modeling in order to widen 

the domain of application of the reacting flow solver. The new code is called S3DLES. 

The unchanged numerical features of S3D are: a fully compressible flow formulation; a 

sixth/eighth-order finite difference discretization; a third/fourth-order Runge-Kutta 

explicit time integration; a characteristic-based boundary conditions treatment enhanced 

with an inflow forcing treatment for turbulent inflow; a pseudo-compressibility treatment 
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of acoustic waves; a conventional structured uniform/non-uniform computational mesh. 

These features are described in more detail by Im (1999), Kennedy et al. (2001), Wang 

and Trouvé (2004). These choices are based on in-depth comparisons of several 

numerical methods (Kennedy et al., 1997) and lengthy tests on low storage, explicit 

Runge-Kutta schemes (Kennedy et al. 1999). The numerical methods have been shown to 

be of high quality and are characterized by very low levels of numerical dissipation. 

Similar to DNS, the objective of LES is to compute unsteady turbulence motions and the 

method must handle unsteady flow fields (at the resolved scales with adequate boundary 

and initial conditions). The numerical precision of the algorithm becomes a key point: 

subgrid scale models should not be offset by numerical errors. Although the compact 

schemes have a reputation for better performance over conventional higher-order 

schemes (Lele, 1992), the later is adopted here, due to a better parallelization 

performance. To damp high wave-number, non-physical perturbations, explicit high order 

spatial filters are also adopted. It is found by Kennedy et al. (1997) that the effect of 

changing the temporal or spatial scheme is less important than the filtering effects. To 

capture the correct physics within the compressible flow while letting spurious 

perturbations leave the computational domain smoothly, the characteristic-wave based 

boundary treatment is adopted and enhanced with several artificial relaxation terms. 

Since the flow speeds for fire problems are generally on the order of a few meters per 

second, the conventional fully compressible flow formulation leads to a problem because 

it is inefficient when treating low-Mach number problems (due to the convection-limited 

time step). The Acoustic Speed Reduction method, originally proposed by Wang and 
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Trouvé (2004) is adopted to increase the solver efficiency and is adapted to buoyancy-

driven flows. With ASR, the time step is typically increased by a factor of 10 to 50.  

The new physical modeling features of S3DLES are: a Smagorinsky model to describe 

subgrid-scale turbulent stresses; a dynamic implementation of the Smagorinsky model 

using explicit top-hat filtering; a presumed probability density function (Pdf) model to 

describe subgrid-scale turbulent mixing. Along with the development and validation of 

the code, the problems in boundary treatment, initial conditions and in pseudo-

compressibility method are overcome. This chapter reviews the physical models adopted 

in S3DLES and presents the numerical developments that have proven necessary for a 

successful simulations of jets or plumes configurations. 

 

2.2. Governing equations for fully compressible reactive flows 

Fire is an unwanted combustion phenomenon characterized by exothermic chemical 

reactions and thermal radiation. The temperature in a combusting region can be as high as 

2000K in the thin flame sheet, or 1300K on average for unconfined fires. Thus the 

numerical simulation of spatially evolving turbulent flows has become popular to study 

the chemical, buoyancy and turbulence effects on combusting processes.  

 

The fully compressible Navier-Stokes equations for reactive flow are listed below. 

Conservation of total mass: 
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This is simply a statement that the rate of mass storage within a control volume, as 

measured by changes in density, is balanced by the net rate of inflow of mass by 

convection across the control volume boundaries.  

Conservation of species mass: 
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Where the diffusion of species is governed by Fick’s law: 
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, where kSc (assumed constant) is the Schmidt number of 

species k. For most combustion-related problems, kD  is a function of pressure and 

temperature. 

 

The equations describing the conservation of momentum are derived by applying 

Newton’s second law of motion (the sum of forces acting on a fluid element is equal to 

the rate of change of momentum). These are known as the Navier-Stokes equations and 

can be written as 
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The left-hand side of the equation simply represents the local rate of change of 

momentum of a small volume element traveling with the fluid. The right-hand side 

comprises the forces acting upon it. The first two terms are associated with surface forces 

acting on the fluid within the control volume and the third, the volumetric body force 
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term, is associated with influences on the fluid from external forces such as a 

gravitational field.  

For a Newtonian fluid obeying Stokes’s law (where shear stress is assumed to be linearly 

proportional to the rate of deformation, the coefficient of proportionality being the 

molecular viscosity), the viscous stress tensor is given by 
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The viscosity for gaseous species is computed using Sutherland’s Law: ( )bTT 00 /µµ = , 

where b=0.76 in S3DLES. It is usually adopted for combustion problems in air under 

normal atmospheric pressure. 

The equation describing the principle of conservation of energy for a multi-component, 

reacting system of gases is extremely complex involving both thermal and mechanical 

energy and the inter-diffusion of chemical species. It describes a balance between the rate 

of accumulation of both internal and kinetic energies within the control volume, and 

energy influx due to convection, conduction, thermal radiation, the inter-diffusion of 

species, together with the net rate of work done on the gases by pressure forces, viscous 

stresses and body forces. It may be written in a variety of ways depending upon whether 

temperature, enthalpy or internal energy is chosen as the principal variable. 

Here the conservation of total energy is the starting point: 

j

iij

j

j

jj

j

j

j

j

x

u

x

q
ug

x

pu

x

Eu

t

E

∂

∂
+

∂

∂
−=

∂

∂
+

∂

∂
+

∂
∂ τ

ρ
ρρ

                              (5) 

Where E is the total energy (per unit mass):  
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In a more detailed form, the total energy can be expressed as: 
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The expression above is the total energy in a detailed chemistry framework as commonly 

adopted in Direct Numerical Simulation (DNS) of reactive flows. For LES, the reaction is 

not based on a detailed chemistry scheme, and the reaction is usually modeled with 

simple chemistry. So the species chemical energy can be lumped into the reaction term 

and not computed inside the energy term. 

For simple chemistry, we can rewrite the total energy as:  
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                 (5b) 

Here energy   kineticthermalchemicalE ++= , and energy   kineticthermalEt +=  

The new energy equation for tE  is: 
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The term before last on the RHS of Equation (6) is the heat release rate due to 

combustion. We write: 
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The right side has the gravity term, stress term, conduction term, reaction term, heat 

transfer due to mass diffusion, and extra terms due to the molecular mass diffusion terms. 

Extra terms vanish if the specific heat is the same for the different gases in the mixture, 

i.e. kpc , = pc .  So the final form of the conservation of total energy is: 
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In the following, we also assume that pc  and vc  are constant. We then 

have
2
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pcµλ = , where Pr is the Prandtl number which is also assumed 

constant. The total energy equation may be modified using the conservation of kinetic 

energy: 
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And the conservation equation for internal energy becomes: 
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where Tc
uu

Ee v
ii

t =−≡
2

. 

This corresponds to a generalized form of the temperature equation, including 

compressibility and combustion effects.  

The equations (1), (2), (3), (8) constitute the governing equations in a description of a 

reactive flow with simple chemistry. To close the system of equations, an additional 

constitutive relationship is required, we use the ideal gas law: 
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Where M is the molecular weight of the mixture, and kM  that of the species k. 

 

2.3. LES filtering and filtered equations 

The direct numerical simulation of turbulent flow for engineering problems is all but 

impossible as a result of the wide range of scales that are present. Consequently, the 

solution to such problem must invariably be based on some form of turbulence modeling. 

Traditional turbulence models based on Reynolds averaging had only limited success 

since the large scales of the turbulence – which contain most of the energy - are highly 

dependent on the geometry of the flow being considered. The small scales are more 

universal in character and serve mainly as a source for dissipation. Hence, it can be 

argued that a better representation of turbulent flows could be achieved if just the small 

scales are modeled while the large scales are calculated (Deardorff, 1970). This is the 

basic idea behind large-eddy simulations. 

Generally, it is agreed that Smagorinsky first proposed the idea of an eddy-viscosity 

concept used for large-scale atmospheric flows. It is Lilly (1967) who utilized the famous 

assumption that if the subgrid kinetic energy is assumed to be in equilibrium and the filter 

is in the inertial range, this dissipation term is equivalent to the total dissipation. This 

paved the way for the application of LES technology. Deardorff (1970) and later 

Schumann (1975) modeled the flow near a wall successfully with LES. Rogallo and Moin 

(1984) wrote a good review summarizing the basic ideas and achievements in the field 

before the beginning of the cheap computing resource era. Their paper is a landmark 

work for the development of the LES technology. After that, Germano et al. (1991) 

proposed the dynamic procedure based on the assumption of scale similarity at different 
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levels. Later on, Lilly (1992), Ghosal et al. (1995) and Meneveau et al. (1996) made 

significant improvements on the averaging used in the dynamic procedure. Now, the LES 

technology has grown into maturity, and has been widely applied to different types of 

flow simulations. 

Along with the mainstream of LES technology development are some turbulence model 

development and sub-models for reactive flows. To name a few, Bardina et al. (1980) 

proposed the similarity model based on the scale similarity and Zang et al. (1993) applied 

a dynamic procedure to the mixed model. A comparative study of LES using different 

subgrid models is performed by Vreman et al. (1997). It was found that the eddy 

viscosity term models distant interactions, that is, among scales below filter-size and 

much larger than filter-size, whereas the similarity term models the local interactions, that 

is, among the scales below filter-size and marginally larger than filter-size. So they 

behave differently for low Re and high Re flows (Meneveau et al. 2000). Erlebacher et al. 

(1992) extended the LES methodology to the case of compressible turbulent flows. Moin 

et al. (1991) proposed the dynamic procedure for parameters used in reactive flow 

simulations. Cook and Riley (1994) extended the mixture fraction-based theory and the 

subgrid-scale PDF theory to modeling the reaction at the subgrid scale. Their assumed 

PDF model for turbulent reaction is combined with a dynamic procedure by Pierce and 

Moin (1998). Their pioneering work laid the foundations of the formulation used in the 

present work. 

The equations discussed in the previous section are directly solved in a DNS treatment, 

but in a LES approach these equations are filtered in order to reduce the range of scales to 

be solved. After filtering, the resulting equations for the large-scale component of the 
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flow contain terms representing the effect of the unresolved small scales. These subgrid-

scale (SGS) effects must be modeled. 

 

Here a spatial low-pass filter is applied to the DNS equations and the fundamental LES 

decomposition is introduced as: 

qqq ′+= =LES grid resolved component + subgrid scale component                  (12) 

where ∫∫∫
Ω

∆ −= ζζζ
rrrrr
dtqxGtxq ),()(),(  is the volume integral of q convoluted with the 

LES filter ∆G . By construction, the filter ∆G  satisfies 1)( =−∫∫∫
Ω

∆ ζζ
vrr
dxG . ∆  is called 

the filter width, which is usually related to the fact that ∆G  is of compact support and 

takes non-zero values in a finite sub-domain of Ω . 

In the following, a top-hat filter is adopted because it is consistent with the choice of a 

rectangular Cartesian grid. 
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The filter function has the property that the amplitudes of the high-frequency spatial 

Fourier components of any flow variable are substantially reduced. Thus the filtered 

variables represent the large-scale dynamics. If the size ∆  of the LES filter is uniform 

and constant, the filtering operator commutes with the differentiation operator: 
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Note that, multiple filtering operations are not in general equivalent to a single filter 

operation: qq ≠ .  

All the filtering is performed at the grid level. A thorough discussion on the commutation 

properties for LES is provided by Vasilyev et al. (1998). It is found that non-uniform 

grids will introduce commutative errors. These commutative errors are different from the 

discretization errors that characterize how grid resolution will be degraded by non-

uniform stretching. So for the most part of this work, uniform grids are used in the area of 

main flow activity, whereas the use of grid stretching is limited to near the computational 

domain boundaries. The stretched grids also introduce numerical damping that may help 

in stabilizing the numerical boundary scheme. 

 

For a variable density flow, the Favre-averaged filtering operation is adopted (Favre 

1965). Favre averaging simplifies (reduces the number of new terms) the filtered 

compressible equations significantly.  
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The filtered ideal gas law becomes 
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Where M is assumed constant. 

The filtered continuity equation is 
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Applying the LES filter to the conservation of species mass, we have:  
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Furthermore, we write: )~~(~~
jkjkjkjk uYuYuYuY ρρρρ −+= , where the first term is the LES 

grid-resolved convective flux of species mass and the second term the subgrid scale 

(SGS) convective flux. We then adopt the approximation
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where jkjkjk uYuY ~~
, ρρλ −= . In equation (21), closure models are needed for jk ,λ  and 

kω& . 

Applying Favre averaging to the momentum equations, we get: 
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We also use the decomposition )~~(~~
jijijiji uuuuuuuu ρρρρ −+= , where the first term is 

the LES grid-resolved convective flux of ix -momentum and the second term the 

corresponding SGS contribution. The filtered viscous stress tensor is modeled as:  
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With these choices, we have the following momentum equations. 
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where jijiij uuuuT ~~ρρ −= . In equation (23), a closure model for ijT  is needed. 

We choose to describe energy variations using the following filtered variable Tce v
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Where ∑
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kkhq
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0ω&&  is the LES-filtered heat release rate per unit volume. We use here 

again the standard LES decomposition: )~~(~~
jjjj ueeuueeu ρρρρ −+= , where the first 

term is the LES grid-resolved convective flux of internal energy and the second term the 

corresponding SGS contribution. 

For the pressure dilatation term, using the equation of state we have: 
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The contribution in the square bracket is neglected. It is argued that the fluctuation Mach 

number for the small scales is small and therefore this term may be neglected. Using low 

Reynolds number DNS data of isotropic turbulence at several Mach numbers, this 
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neglected term was found to be at most 5% of the heat flux (Moin et al. 1991). Similar 

approximations were made for the other terms where their small-scale components were 

neglected. For example, we approximate 
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where SGSε~ is the SGS dissipation rate of kinetic energy and is assumed to be balanced by 

the production term for SGS turbulent kinetic energy.  

Finally, we have the following equation for the LES grid-resolved temperature. 
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where ( )vjvjj cuTcTuQ ~~ρρ −= . In equation (24), closure models are needed for jQ and 

q& .  

The equations (18)(19)(21)(23)(24) form the filtered equations for a LES description of a 

chemically reacting flow.  To close the system, several models are needed to account for 

unresolved subgrid scale effects.  

 

2.4. SGS sub-models 

2.4.1. Classical Smagorinsky model 

In large-eddy simulations the effect of the large scales is directly computed, and only the 

small subgrid scales are modeled. Since small scales tend to be more isotropic than the 

large ones, it should be possible to parameterize them using simpler and more universal 

models than standard Reynolds stress models. Most subgrid scale stress models are based 
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on the eddy-viscosity assumption. The Smagorinsky model for eddy-viscosity is 

combined with the Yoshizawa model for SGS turbulent kinetic energy. The later is 

important in compressible flow simulations, particularly in combustion modeling 

formulations. The subgrid terms in species mass and energy equations are also adopting 

the gradient-transport models, whose role will rely to some extent on the correct 

choice/determination of the eddy-viscosity.  

The SGS stress ijT  can be decomposed into anisotropic and isotropic tensors, which are 

modeled separately. 
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The anisotropic part is modeled based on the concept of a turbulent viscosity: 
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velocity field.  

In the following, the classical Smagorinsky model is adopted: 
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=  and SC  is a model coefficient ( SC  is a constant, or is dynamically 

computed from the LES solution, see below). So for the anisotropic part,   
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The isotropic part of the SGS stress tensor is modeled based on the Yoshizawa model 

(Yoshizawa, 1986). Following the argument that ( )
2
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SCk ISGS ∆= , we have 
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where IC  is a model coefficient (see below). Erlebacher et al. (1992) neglected this term 

on the grounds that it is negligible compared to the thermodynamic pressure. In contrast, 

in Moin et al. (1992), this term is preserved for reactive flow simulations. 

So the full SGS stress tensor is then modeled as: 
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For SGS mass species transport, a gradient-transport modeling assumption is also used. 
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where tSc  is the turbulent Schmidt number and tν  is the Smagorinsky viscosity 

(equation (26)). 

Similarly, the SGS heat transport is expressed as: 
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where tPr  is the turbulent Prandtl number. 

In analogy to the description of molecular transport, where 
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have similar relations between the turbulent transport coefficients 
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. At this point, the LES formulation for turbulent inert flows is 

almost complete. Four model coefficients have been introduced ( SC , IC , tPr , tSc ) and 

remain to be specified. We turn to this question in the next section. 
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2.4.2. The dynamic model 

The Smagorinsky model always assumes a positive eddy viscosity, even in laminar flows. 

Although this property makes this model not suitable for transitional flows, its dissipative 

character helps stabilize numerical solutions. As pointed out by Moin et al. (1992), the 

limitations of the Smagorinsky model are the following: 

1. The optimal model constant must be changed in different flows; 

2. The model does not have the correct limiting behavior near walls; 

3. The model does not vanish in laminar flows, and it has been shown to be too 

dissipative in laminar/turbulent transition regions; 

4. The model does not account for backscatter of energy from small scales to large 

scales, which has been shown to be of importance in transition regions; 

5. Compressibility effects are not included in the model. 

The key element that has been lacking in most SGS modeling efforts prior to the 

introduction of the dynamic model has been the effective utilization of the large-scale 

field, which is computed directly.  

To overcome some of the limitations of the Smagorinsky model, Germano et al. (1991) 

introduced a dynamic procedure, based on the application of the Smagorinsky model at 

two different filter levels, this procedure allows to calculate the Smagorinsky coefficient. 

The coefficient can be negative in some regions and thus does not totally exclude 

backscatter; it provides for the proper asymptotic behavior of the stresses near the wall 

without ad hoc damping functions; and it vanishes in laminar flows without ad hoc 

intermittency functions.  
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2.4.2.1. Application of the dynamic model to the calculation of SC  

We start from the expression of the SGS stress at the grid filter level ∆  
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The key element of the dynamic model concept is the utilization of the spectral data 

contained in the resolved field. This information is brought to bear by introducing a test 

filter, defined with a filter width ∆̂  larger than the resolved grid filter, which generates a 

second field with scales larger than the resolved field. A point to be made about this 

second filtering is that it is realized through explicit filtering, while the first filtering is 

done implicitly at the grid level.  

The SGS stress at the test filter level ∆̂  ( also noted 
}
∆  if more than 2 variables are 

present under the hat) is defined as: 
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and is modeled as  
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Applying Germano’s identity, we have  
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where ijL  is known as the Leonard stress tensor. 

The right hand side may be obtained from the filtered variables. In other words, ijL  is 

known and this may be used to provide valuable expressions of SC  or IC . 

For instance, the anisotropic part of the Leonard stress tensor ijL  is  
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Equation (36) corresponds to 5 independent relations for SC  ( a

ijL  is symmetric and trace-

free). The ratio of test filter size to grid filter size is proposed as 2
ˆ

=
∆
∆

=κ  by Germano 

et al. (1989), and 5=κ  by Vreman et al. (1997). Germano et al. (1989) found the 

computed turbulence statistics to be insensitive to this ratio. With 5 relations, SC  is over-

specified, a least-squares approach is followed to calculate the model coefficients (Lilly, 

1992), 
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Note that in order to prevent numerical instability caused by negative values of 2

SC , the 

numerator and denominator are averaged over homogeneous flow directions, as 

expressed by the symbol <>. In the absence of a homogeneous flow direction, some form 

of local averaging may be used. Furthermore, the model coefficient is artificially set to 

zero at locations where the right-hand side of equation (38) still has negative values to 

prevent any unrealistic backscatter. One assumption in the formulation above is that 

variations of SC  on the scale of the test filter are small.  

A note should be made on the local averaging of the model coefficients. The original 

choice by Germano et al. (1989) is to average in the homogeneous directions, while 

Meneveau et al. (1996) proposed an averaging method based on the fluid imaginary 

particle trajectory, i.e., in a Lagrangian way. The later is suitable for complex geometries. 

Here both jet and plume configurations are spatially evolving flows, there is one 

homogeneous direction for plane configurations, and no homogeneous direction in round 

configurations. In the absence of a homogeneous direction, as an alternative to the 

Lagrangian model, we use have a simple local averaging in order to stabilize the 

calculation of SC .  

2.4.2.2. Application of the dynamic model to the calculation of IC  

The dynamic model has been extended to compressible flow problems by Moin et al. 

(1991). The isotropic part of the Leonard stress tensor is  
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Equation (39) corresponds to one relation for IC . We get  

i

kk

i

kk

I
M

L
C =2

                                                                               (41) 

 

2.4.2.3. Application of the dynamic model to the calculation of tSc  

The dynamic strategy may be easily extended to a calculation of tPr and tSc . We start 

from the SGS species k mass flux at the grid filter level: 
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This flux is modeled as: 
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Similar expressions are also assumed at the test filter level.  
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This species mass flux is modeled as  

( )
( )

i

k

t

ijijSM

ki
x

Y

Sc

SSC

∂

∂∆
−=Λ

~̂~̂~̂
2ˆ

ˆ

2

ρ                                           (45) 

Applying Germano’s identity, we have 
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The RHS is obtained from the LES solution, while the left hand side is expressed as: 
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Equation (47) corresponds to 3 independent relations (for each species k). 

The Schmidt number is finally computed from a least-square expression: 
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2.4.2.4. Application of the dynamic model to the calculation of tPr  

The calculation of the turbulent Prandtl number follows a similar approach. We start from 

the SGS heat flux at the grid filter level. 

Here the subgrid heat flux at grid level is defined as 
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This flux is modeled as  
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At the test filter level, the SGS heat flux is defined as 
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Applying the gradient transport model, the modeled heat flux is computed as 
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Applying Germano’s identity, we have 
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The RHS is obtained for the LES solution. The LHS is expressed as 
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Equation (55) corresponds to 3 independent relations. The Prandtl number is finally 

computed from a least-square expression, 
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2.4.3 A subgrid-scale model for turbulent mixing 

We present here a simple SGS model proposed to describe unresolved fluctuations in 

mixture composition. In the majority of fire configurations, the combustion correspond to 

diffusive burning and is limited by the rate of mixing between fuel and air. In this 

situation, a turbulent mixing model is all that is required to describe the rate of 

combustion ( kω&  and q&  in the LES equations). We limit our discussion here to the 

turbulent mixing SGS model. 

Assuming that the information is available on the first two statistical moments of the 

scalar field, it is possible to start to reconstruct a description of the instantaneous scalar 

distribution at any point in the flow by generating a quantitative prediction of the scalar 

probability density function (pdf). Use of the pdf is common practice in turbulent 

combustion problems where thermochemical properties (and reaction rates) are strong 

non-linear functions of the instantaneous gas state (e.g. fuel/air ratio or mixture fraction). 

With information on the mean and the variance (standard deviation), the easiest route 

would be to use these to generate a normal (Gaussian) distribution at any point in the 

flow. This is unwise for two reasons. Firstly the Gaussian pdf is unbounded, whereas the 

scalars in question are bounded to lie between maximum and minimum values 

determined by the experimental boundary conditions. Secondly, because the scalars are 

bounded, skewed, non-normal distributions are to be expected when the mean value lies 
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close to one of its bounds (e.g. at the edges of a plume). To overcome these defects, an 

alternative assumed shape for the pdf has acquired popularity in combustion modeling, 

namely the β -function pdf. This shape is therefore adopted here for use in combustion 

problems, it is defined as. 
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Where Z represents the local mixture fraction. The denominator is introduced as a 

normalizing factor, so that the integral of )(~ Zp  over the allowable scalar range (0<Z<1) 

is identically unity. The β -function shape has two free parameters, which may be 

determined from the available information on the first two moment of Z, i.e., 
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These relations lead to the following conditions on the two parameters ( )βα ,  
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And hence, with knowledge of ( )βα , , the pdf may be generated.  
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The presumed pdf model allows intermediate species formation, dissociation effects and 

the coupling between turbulence and chemistry to be accounted for. Only mixture 

fraction is solved, other species are predicted based on state relationships.  

In a large-eddy simulation (LES) framework, Z
~
 is the LES grid-resolved mixture 

fraction; ( )Zp~  represents the subgrid-scale statistical variations of Z at a given location 

and time; and Zσ  is the standard deviation of these subgrid-scale fluctuations. Zσ  may 

be obtained from an algebraic model expression: 

 ( )
2

22 ~
  ZCZZ ∇∆=σ                                                     (63) 

CZ is a model coefficient that may be expressed in terms of the Smagorinsky constant; 

and ∆  is the LES filter size usually taken as the local grid size.  

 

2.5.  Numerical developments 

While S3DLES builds up on the numerical framework previously developed for the DNS 

solver S3D, the larger domains and time scales found in LES applications require some 

adaptation in terms of boundary conditions and time integration. These adaptations are 

presented in this section. 

2.5.1. Buffer-zone treatment for outflow boundaries 

For both jet and plume simulations, the flow is injected into the computational domain 

across an inflow boundary with or without a coflow. The outflow boundaries are required 

to let spurious perturbations leave the domain smoothly while maintaining the ambient 

pressure. Here due to the nature of the compressible flow, a constant-pressure condition 

(Zhou et al. 2001) could not be specified. Nor did the ‘traction-free’ boundary condition 
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used by Boersma et al. (1999). Both schemes work for incompressible or weakly 

compressible flows. The essence of such boundary conditions is to maintain the ambient 

pressure while allowing the entrainment to happen without restrictions. In S3DLES, the 

non-reflecting boundary conditions of Poinsot and Lele (1992) are used. The form of 

these conditions is allowed to switch between non-reflecting inflow and outflow at each 

point on the computational domain boundary depending on the instantaneous local 

normal velocity.  

 

It should be noted that these characteristic-based boundary conditions were derived based 

on linearized waves propagating normal to the boundary (LODI treatment, Local One-

Dimensional Inviscid) and, thus, are not strictly non-reflecting in a multi-dimensional 

nonlinear flow. When the direction of wave propagation at the boundaries deviates from 

normal incidence, the amount of spurious reflection increases, the tilted part of the 

exiting waves will still be bounced back, possibly causing the jet profile to sway, and 

contaminating the flow structure (as shown in Figure 1a). In addition, in case of local 

flow reversal, the boundary condition treatment is known to have limited accuracy. To 

isolate the interior of the domain from the effects of the boundary conditions, several 

approaches can be followed in the boundary treatments for compressible flows (Colonius, 

2004): 

1. Grid stretching to keep the artificial boundaries as far away from the region of 

intense flow activity as possible.  

2. Numerical dissipation, as provided by low-order numerical schemes, to damp the 

perturbations generated near the boundaries. This is a common practice for most 
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low-order scheme simulations. It is not adopted in S3DLES, which has a 

minimum spatial resolution of 6
th
 order.  

3. Explicit filtering to damp high frequency oscillations. It is an optional choice in 

S3DLES, but the filtering operation must be fine-tuned in order to avoid the 

unwanted dissipation of turbulent motions.  

4. Numerical dissipation as provided by an additional term in the governing 

equations. Stretching the grid is equivalent to a kind of artificial viscosity. No 

artificial viscosity is adopted here.  

5. Applying absorbing buffer layers to minimize acoustic wave reflection at the 

boundary interfaces.  

In this study, an absorbing buffer layer is used near the outflow boundaries 

(downstream and lateral boundaries) in order to damp out numerical errors and 

improve the non-reflecting performance of the outflow boundaries. This buffer zone 

is a numerical construct that consists of a stretched grid, where exponential damping 

terms are added to the governing equations, so that the disturbance are damped prior 

to exiting the computation domain. The stabilizing effect is significant at large 

Reynolds number flow conditions. An example of the stabilizing effect resulting from 

the application of a buffer layer treatment is presented in Figure 1b. 
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                                 (a)                                                               (b) 

Figure 1: LES simulation of a three-dimensional high-speed plane jet. Instantaneous iso-

contours of u velocity at z=0 without (left) and with (right) a buffer zone. 

 

An absorbing layer treatment typically provides for a damping effect on disturbances 

prior to interaction with boundary surfaces. Some obvious ways to do this are to 

introduce artificial dissipation (by up-winding), to increase the value of physical viscosity 

(or add hyper-viscosity), and perhaps most simply, to add relaxation terms to the 

governing equations. Provided the relaxation factor σ  is large enough, then disturbances 

are exponentially damped during their residence in the layer. Whatever disturbances are 

reflected by the boundary are returned but similarly damped as they propagate back 

through the layer before reaching the domain as reflection errors. 
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For the strong-jet simulations described in Chapter 3, we use 0.2=β  and 0.2=mσ on 

the sidewall boundaries, *x  is the lateral boundary, and bL  is the thickness of the buffer 
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layer. On the downstream boundary, 0.2=β and mσ  is made a function of the cross-

stream spatial coordinates. )(ymσ  is specified as an inverted “top-hat” profile with 

smooth transitions. The minimum value of )(ymσ , near the centerline, is 0.1 and the 

maximum value is 2.0. This choice provides for strong damping in the co-flow region and 

weaker damping in the jet region. 

The absorbing layer treatment requires specifying targetu , i.e. the reference velocity profile 

at the outflow boundary. Choosing a target profile as the co-flow velocity is not a good 

choice as it will block the volume flux, and the jet will diverge at the buffer zone due to 

the conservation laws (Stanley et al. 2002). An experimental profile (empirical 

approximate expression) is a good choice, but its usage is limited, as the experimental 

conditions may be different from the current simulation (Stanley et al. 1999). Here the 

profile is calculated based on the spatially averaged stream-wise velocity profile in the 

buffer zone. The averaged profile is expected to keep the mass flux conserved (without 

disturbing the interior domain solution), and the jet can exit the domain in a non-

reflecting way.  

 

Figure 2: Effect of σ in buffer layer on the jet parameters. 
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Figure 2 shows the effect of different damping intensities on the jet parameters. Here the 

jet halfwidth is defined as the radial distance from the centerline to the position where the 

jet velocity is half of its centerline value. The velocity decay is represented by the 

quantity ( )2001 )/()( uuuu c −− . The numerator is constant, while the denominator is 

decreasing with the distance from the injector, so the velocity decay is expressed as a 

value larger than one. It is shown that the buffer layer will change the jet-spreading rate. 

Strong damping will maintain the jet initial profile for longer distances, while weak 

damping have less impact on the jet spreading. Choosing the right damping factor is a 

matter of balance between accuracy and stability. In chapter 3, 0.2=σ  is chosen, and the 

computational domain is made longer (instead of 16D used in Figure 1, the domain in 

Chapter 3 is 32D), so the impact is supposed to be less than those shown here. 

 

Another parameter to be tested is the thickness of the buffer zone. It is better to have a 

large layer, which can exert the damping force on the jet gradually, but the effective 

simulation domain is shortened by using a larger buffer layer. And the presence of a 

buffer layer close to the important zone of jet spreading will affect the process 

significantly. Figure 3 shows the effect of changing the buffer layer thickness on the jet 

evolution. lδ  is the number of grid points adopted in the layer treatment. Choosing the 

right damping layer thickness between valid data zone and minimum disturbance to the 

flow field is again a matter of balance.  
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Figure 3: Effect of buffer layer thickness on the jet parameters. 

After comparing these parameters for applying the buffer zone, we will choose 0.2=σ , 

and 10=lδ  in the simulations of chapter 3. 

 

2.5.2. A pseudo-compressibility method for a more efficient time integration of slow 

flow problems 

Fire is a complex combustion phenomenon with heat generation. After ignition, the fuel 

is vaporized (or pyrolyzed from the solid fuel) from the fuel surface, mixes with ambient 

air and burns, and rises vertically due to buoyancy. In some fire scenarios, the fire-

induced flow may be large, such as in a flash fire or a fireball, where the flow speed can 

reach several tens of meters per second; but these situations are extremely rare. For a 

typical pool fire in a stagnant environment, the flow speed is only a few meters per 

second and the flow Mach number is about 0.01.Thus the plumes from most accidental 

fires correspond to low Mach number flow conditions. 

 

Generally, the flow problems with variable temperature are treated either as 

incompressible constant density flow with a special treatment for buoyancy effects, or 

variable density flow with a special treatment for pressure effects. The former is 
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applicable to weak (small density variations) plumes, as found in environmental flows. 

For instance, the classical buoyant plume theory is treated with the Boussinesq 

approximation. The density variations are ignored in the equations except in the body 

force term due to buoyancy. The Boussinesq approximation has been the corner stone of 

the classical weak (small density variation) plume theory (Morton et al. 1956). A 

different treatment is applied in strong (large density variations) plumes, as found in 

combustion and fire problems. The pressure term in the momentum equation is 

decomposed into a background pressure, which satisfies the ideal gas law, and a pressure 

perturbation, which drives the turbulent flow (Zhou et al. 2001a, McGrattan, 2004). This 

approach is also called the zero or low Mach number approach, in which the acoustic 

waves are filtered out intentionally to increase computational efficiency. This is achieved 

at the cost of a reduced domain of application (the flow must remain in the 

incompressible range, i.e. the Mach numbers remain below 0.3) and increased complexity 

in the numerical algorithms.  

 

An alternative to the zero Mach number approach is the pseudo-compressibility 

approach, where compressibility effects, meaning the propagation of acoustic waves, are 

intentionally controlled to achieve faster time integration. More specifically, the 

computational efficiency is increased by decreasing the gap between flow and acoustic 

speeds. One such method is the Pressure Gradient Scaling (PGS) method (Ramshaw et al. 

1985), where the modification of acoustic speeds is directly achieved by the modification 

of the pressure gradient term in the momentum equations. Since the pressure is rescaled 
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everywhere, a side effect of PGS method is that the pressure variations are dramatically 

amplified. 

 

A variation of the PGS method has been proposed by Wang and Trouvé (2004) and we 

adopt this variation in our plume simulations (chapter 5, 6). The variation is called the 

Acoustic Speed Reduction (ASR) method. In S3DLES, the fully compressible flow 

formulation uses explicit time integration, which leads to the following acoustic-limited 

time step restriction: 

MauxCFLcuxCFLt ×∆≈±∆=∆ |)|max/(|)|max/(  

With the ASR method, the acoustic speed is reduced, Ma is artificially increased and the 

time step t∆  may then take large values. The goal of ASR is to achieve the gains in 

computational efficiency allowed by PGS, while preserving the pressure field. Preserving 

the pressure field is believed to be important in situations where it is externally imposed 

(for instance by gravity). It is found in this work that the original ASR method has to be 

modified to accommodate the gravity-induced hydrostatic pressure field. 

We start from the generic equation for energy conservation modified by the Acoustic 

Speed Reduction method (equation B.25 in Wang and Trouvé, 2004). 
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The first term on the left hand side is the temperature change of the fluid, while the 

second term is the pressure change, which directly supports acoustic wave propagation. 

Hereα  is the ratio of the original acoustic speed to the modified acoustic speed. When 

ASR is not activated, 1=α , i.e. the acoustic speed is unchanged. The terms on the right 
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hand side are the rate of viscous dissipation, the transport of heat due to conduction, and 

the generation of heat due to combustion.  

From the ideal gas law, MRTp ρ= , and assuming that M is constant, we have 
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Combining the 2 previous equations, we get: 
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or  
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The essence of the ASR method is to scale the acoustic dilatation term (the first term in 

the expression of 
j

j

x

u

∂

∂
) while keeping the other terms due to heat transfer, viscous 

dissipation, and chemical reaction unchanged (the second term in the expression of 
j

j

x

u

∂

∂
).  

 

It is noticed that in the presence of an external pressure gradient (Wang and Trouvé, 

2004), the decomposition may have to be reformulated to properly account for non-

acoustic pressure variations. The ASR method has been tested previously in a number of 

flow and flame configurations, but without an external pressure gradient. 

To properly account for the presence of the hydrostatic pressure gradient, the 

decomposition of flow dilation into a small acoustic component and an order 1 heat 

transfer component is now re-written as.  
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The newly corrected ASR modified energy equation is  
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The ASR method corresponds to minor changes in the solvers S3D or S3DLES. These 

changes allow in turn for an increases in the integration time step by a factor α . The 

value of α  is typically up to 10 to 50.  

We present here basic tests of the modified ASR treatment in the presence of a 

hydrostatic pressure gradient. We simulate the test problem TP3 introduced in Wang and 

Trouvé (2004). This problem corresponds to a 1-D, steady flow problem, with gravity 

and without diffusion and reaction.  

The corresponding ASR system of equations may be written as  
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For small spatial variations, 112

1
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p

cc 2222* ==  which 

shows that the pressure gradient is almost independent of the ASR parameter α  and is a 
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good approximation to the exact solution. However, as shown in Figure 5, while the 

pressure gradient is correct, the velocity gradient is not  (using the original ASR 

formulation). It may be shown that the velocity gradient is in that case multiplied by a 

factor 2α . Figure 4 also shows that the proposed correction to ASR successfully cancels 

the velocity errors.  

 

Figure 4: Pressure and velocity variations in the test TP3. Comparison of the original and 

modified ASR formulations. 

Additional tests are presented below for different values of the ASR parameter α  and 

different flow velocities. 

 

Figure 5: Velocity and temperature variations in test TP3, u=5.0m/s, 400 ≤≤α  
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Figure 6: Velocity and temperature variations in test TP3, u=1.0m/s, 400 ≤≤α  

 

Figure 7: Velocity and temperature variations in test TP3, u=0.50m/s, 500 ≤≤α  

The results in Figure 5-7 suggest that the errors introduced by an ASR treatment are 

small while the increase in computational efficiency is large (for α =50, the calculations 

proceed at a speed that is about 50 times faster than in the non-ASR calculations). It is 

important to note, however, that the ASR acceleration should be such that the flow Mach 

numbers remain below 0.3. For instance, in Figure 6, the simulation corresponding to 

α =40 exhibits an unrealistic temperature variation. This result may be explained by the 

introduction of significant non-physical compressibility effects (in this case the flow 

Mach number has been artificially increased by ASR to a value above 0.5, the 

compressibility is no longer negligible).  
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2.5.3 Non-uniform computational grid 

The effect of non-uniform computational grid is difficult to quantify. Here a 2-D 

numerical simulation of 3 streams (case selected from Chapter 4, 3 streams without 

density variations), shows the dilation change at the interface between uniform and non-

uniform computational grid. It is observed that high-frequency oscillation of dilatation 

terms appear near the transition interface from uniform to non-uniform meshes. This 

error is localized and supposed to be not affecting the result at other locations. 
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  (a) non-uniform computational mesh (1 out of 5 shown)            (b) flow dilatation 

Figure 8. Flow dilation distortion showing the impact of non-uniform meshes. 

Beside the numerical error, there is additional error due to the non-commutable feature of 

LES filter. This is even more difficult to quantify. But it serves to damp the incoming 

waves from outside, improving the boundary treatment, so it is an advantage to our flow 

simulations.



 55

Chapter 3: Numerical simulation of a plane jet 

Turbulent plane jets are prototypical free shear flows on which fundamental research can 

expand the overall understanding of turbulent flows. Here the S3DLES code is validated 

against a plane jet simulation to test the performance of the SGS models adopted and to 

accumulate experience for further simulations. We compare our results to previous 

studies performed by Ribault et al. (1999) and Ribault et al. (2001) where the dynamic 

Smagorinsky model was used. Since in the reference studies, the governing equations and 

the numerical scheme are comparable to those of S3DLES. We view the present 

simulation as validation tests that serve to establish the performance and accuracy of 

S3DLES. 

 

3.1.  Numerical configuration 

The techniques used in this study to numerically solve the governing equations are 

summarized here. The governing equations correspond to a fully compressible flow 

formulation (see Chapter 2). A sixth-order finite difference discretization is utilized to 

evaluate the spatial derivatives. This otherwise center-difference scheme is biased at the 

boundaries using one-sided, third order finite difference expressions. This 3-6-3 scheme 

allows the simulation of problems on an open, non-periodic domain while maintaining at 

least an overall fourth-order spatial accuracy. In order to eliminate high-wave-number 

errors resulting from numerical boundary closures, a 6
th
 order filter is utilized to damp the 

high-wave-number modes. The role of filters is discussed in more detail by Kennedy et 

al. (1997).  The Euler and viscous terms in the governing equations are marched in time 
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using a low storage third-order Runge-Kutta explicit time integration (Kennedy et al., 

1998) 

 

The open boundaries are described using characteristic-based boundary conditions 

enhanced with an inflow forcing treatment for turbulent inflow boundaries and a buffer 

zone treatment for outflow boundaries. A conventional structured rectangular Cartesian 

uniform/non-uniform computational mesh is adopted. The current turbulence sub-model 

in S3DLES is a Smagorinsky model to describe subgrid-scale turbulent stresses with a 

static or a dynamic implementation using explicit top-hat filtering. The flow field 

dynamics near the nozzle in plane turbulent jets are initially dominated by the shear layer 

instabilities at the jet edges. Near the nozzle the most strongly growing disturbances are 

those corresponding to the shear layers (Ho and Huerre, 1984). The shear layers grow 

downstream and interact to form a fully developed jet. This reorganization as the flow 

field develops from the shear layers near the nozzle to the fully developed jet downstream 

has a strong influence on the mixing of the jet. Note that the flow is sensitive to the initial 

shear layer instabilities and we need to specify the inflow turbulence forcing carefully.  

 

In our study, the turbulence forcing is slightly different from that used in the paper by 

Ribault et al. (2001). Instead of using broadband forcing, we have a forcing scheme that 

corresponds to a synthetic flow field with a specified characteristic turbulence intensity 

and a specified characteristic length scale associated with the most energetic eddies 

(Passot and Pouquet, 1986). The generated velocity fluctuations are superimposed upon 

the mean velocity profile at the inlet. The generated turbulence field is recycled after each 
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sweep-over of the synthetic field. A full discussion on the role of the discrete forcing is 

presented in Stanley and Sarkar (2000) and will be discussed in the next section. 

 

3.2. Simulation parameters 

The configuration is three-dimensional and corresponds to a “strong” jet. The jet is called 

strong because the co-flow velocity is small and the resulting shear large. The velocity 

ratio between the co-flow and jet streams is 0.09. The jet Reynolds number is  

3000)/(Re =∆= µρ Du jd , where ju∆  is the differential velocity between the jet and the 

co-flow, and D is the jet slot width. The Mach number of the high-speed stream is 0.35 

( jetuu =1 =121.5 m/s) and the convective Mach number for the jet shear layers is 0.16 

( =∆ 2/ju  55.5 m/s, 0u = 10.4 m/s). The Mach numbers are moderate and the flow 

dynamics are essentially incompressible. 

 

The computational domain is (32D) in the streamwise direction, (40D) in the cross-

stream direction, and (6D) in the spanwise direction. The domain is larger than that used 

in the reference study (16Dx16Dx4D). The reason is due to the outflow boundary 

treatment and the requirement for a fully developed flow. Stretched grids cover the extra 

domain area, so the computational cost is not significantly increased. The computational 

grid size is 136x126x26. The grid is uniform in the near-field region of the jet and 

stretched in the stream-wise and cross-stream directions in the far field. For the near 

injector region, a uniform grid is chosen: Dx 164.0=∆ , Dy 066.0=∆ and Dz 24.0=∆ . 

Compare to the reference studies, the gridsize in the x direction is finer (0.25D), while 

comparable in the other 2 directions. Boundary conditions correspond to prescribed 
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velocity at the injection plane, non-reflecting conditions at the outflow and cross-stream 

boundaries, and periodic conditions in the spanwise direction. The prescribed velocity 

field at inlet corresponds to a pre-computed turbulent flow with well-characterized rms 

intensity and integral length scale. The outflow boundary condition is also stabilized by 

introducing a buffer zone treatment in its vicinity. The buffer zone treatment consists in 

adding damping terms to the governing equations (different implementations are 

available in the literature, here only the momentum equations are treated); the effect of 

those damping terms is to reduce the strength of flow perturbations prior to their 

interactions with the outflow boundary. The damping terms are calibrated in terms of an 

empirical damping coefficient and a target outflow velocity profile; this target profile is a 

priori unknown and is determined in the simulations from spatial averaging across the 

buffer zone interface (see Chapter 2). A series of tests have shown that: the buffer zone 

treatment is required to get stable solutions; and that the constraints that are introduced 

are strong enough to stabilize the simulations, but remain weak enough not to affect the 

flow solution in any significant way. 
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Uniform
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Buffer
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Figure 1:  Computational grid on in a constant-z plane. 

The configuration is treated as a mixing problem, both in terms of temperature and 

species composition. The mixture fraction is unity in the jet and zero in the co-flow field. 

Also the jet is hot and the co-flow cold. Since the flow is momentum driven and 

buoyancy effects are small, temperature behaves like a passive scalar. The jet temperature 

is 420K and the co-flow field temperature is 300K. Both passive scalars should have 

similar behavior. The evolution of mixture fraction is studied in more detail by Ribault et 

al. (2001).  

For the inflow condition, hard-inflow conditions (prescribed velocity conditions) are set. 

The mean u-component is set using a hyperbolic tangent function. The mean v- and w- 

components are set to zero. The inlet profiles are specified as: 
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where 1u , 0u  are the velocities of the jet and co-flow streams, respectively;  u′ , v′ , w′  

are the fluctuations due to turbulence; 1T  is the jet temperature, and 0T  is the ambient 

temperature. The function Ω  is defined as 
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where θ  is the shear layer momentum thickness, wy 5.0  and wy 5.0−  are the location of the 

jet orifice boundaries respectively. The momentum thickness θ  determines the 

magnitude of inlet flow gradients, so it is important for the transition to turbulence due to 

Kelvin-Helmholtz instability of the shear layer flows. Equation (2) is a normalized 

smoothed top-hat profile, with peak 1 and background 0. The mean pressure is initially 

set as uniform.  
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3.3. Effect of the turbulence forcing scheme  

Here several tests are performed on a smaller domain (76x126x16 grids for a physical 

domain of 16Dx16Dx4D) to show the effect of turbulence forcing. The grid-size is 

approximately the same as that used for the formal study, and a buffer zone treatment is 

applied to stabilize the computations. 

 

In most experimental studies, the fluctuation intensity at the jet nozzle is only reported on 

the centerline. However, because of the boundary layers upstream, the fluctuation 

intensity peaks in the shear layers on either side of the jet, so does the peak mean shear. 

So the fluctuation intensity in this region of the jet will have a strong influence on the 

initial jet-flow evolution. As seen in Figure 2, when the inflow fluctuation intensity is 

increased from juu ∆′ / =0.025 to 0.10, the length of the potential core decreases from 5D 

to 3D. (The potential core is defined as the region of the flow where the center-line 

means excess velocity remains constant.) 

 

Figure 2: Downstream evolution of the jet half-width and the centerline mean excess 

velocity for different inflow turbulence intensities: thick line, juu ∆′ / =0.025; dotted line, 

juu ∆′ / =0.05; dashed line, juu ∆′ / =0.10.The centerline mean excess velocity is 

normalized and presented as 2

001 ))/()(( uuuu c −− , with cu the mean centerline x-velocity. 

 



 62

Another important factor for turbulence forcing is the length scale associated with the 

most energetic eddies. Figure 3 presents the results of different simulations performed for 

different values of this length scale. High values of the facing length scale will make the 

potential core shorter. Again, the near-field dynamics are sensitive to the details of the 

inflow-forcing scheme, whereas the far-field exhibit growth rates that seem independent 

from these details. 

 

Figure 3: Downstream evolution of the jet half-width and the mean centerline excess velocity 

for different values of the inflow turbulence integral length scale. 

 

Based on these tests above, it is decided to choose juu ∆′ / =0.10 and Le=1.0D for the 

simulations below.  

 



 63

3.4. Simulation results 

3.4.1. Instantaneous view of jet variables 

 

a. u-velocity                                                  b. SC  

 

c. v-velocity                                                  d. IC  

 

e. mixture fraction                                                  f. CS  
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g. temperature                                                  h. Pr  

             

   i. pressure 

Figure 4: Instantaneous snapshots of the solution. The data are taken in a median plane, z 

=0, a uniform grid zone (0<x<15D, -4D<y<4D) 

 

Figure 4 presents a series of snapshots from the S3DLES solution. On the left hand side 

are the primitive variables, while the model coefficients are on the right hand side. This 

simulation corresponds to a solution with the dynamic Smagorinsky model.  The 

Smagorinsky model is sensitive to the local strain rates, and the effect of local filtering is 

clearly shown in figure 4(b). Due to the same initial profiles and similar governing 

equations, the Pr and Sc fields are similar to each other. It should be pointed out that the 

background values of model coefficients (Sc, Pr only) are not zero, rather a certain 

default value is used, to avoid numerical difficulties of dividing by zero.  
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3.4.2. Evolution of the mean properties 

Figure 5 presents a test of the similarity of cross-stream variations of stream-wise 

velocity. The right figure shows that the slight backflow observed on the edge of the jet 

vanishes in the far field. It is seen that the velocity profile features a classical transition 

from an initial top-hat shape to a fully developed Gaussian-like shape.  

 

Figure 5: Time-averaged cross-stream variations of u-velocity at different stream-wise 

locations. (The right plot shows a wider view of the curves presented in the left plot.) 

Figures 6 and 7 present the stream-wise evolution of the jet half-width and time-averaged 

centerline velocity. The total length of the calculation is 1.5e-3 sec, or approximately 10 

flow-over time. The variations are compared to previous results from the literature 

(Ribault et al. 1999). The comparison is good; some discrepancies are observed, however, 

and in particular the velocity decay is delayed.  
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Figure 6: Time-averaged stream-wise variations of the jet half-width 

 

Figure 7: Time-averaged stream-wise variations of the mean centerline u-velocity 

 

3.4.3. Velocity Fluctuations 

The downstream evolution of the longitudinal centerline fluctuation intensity is presented 

in Figure 8. The fluctuating quantities develop slowly toward a self-preserving behavior. 

Compared to the study by Ribault et al. (1999), the stream-wise rms value increases later 

than expected, but achieves about the same level as in the reference study. The cross-

stream variations of stream-wise turbulence intensity are shown in Figure 9. This section 

x=10D is chosen because it belongs to the region where self-similarity in the fluctuating 

quantities applies and is still far from the outflow boundary. The overall agreement 

between S3DLES and the previous study is good. 
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Figure 8: Downstream evolution of the fluctuation of the longitudinal velocity 

 

Figure 9:  Time-averaged cross-stream variations of stream-wise turbulence intensity at 

x=10D 

 

3.4.4.  Variation of the dynamical Smagorinsky coefficient 

Here the time-averaged dynamic Smagorinsky coefficient is compared to Ribault’s data 

at x=10D (Figure 10). Our results are slightly lower and smoother than the published 

result. This is possibly introduced by the local spatial averaging of the coefficients used 

to get stable computations. The level is still close, as the same filter-size is used. 
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Figure 10: Time-averaged cross-stream variations of the dynamic Smagorinsky 

coefficient at the section x=10D 

 

3.4.5. Iso-contours of vorticity 

A snapshot of iso-contours of spanwise vorticity is presented in a xy-plane in Figure 11. 

For x<5D the Kelvin-Helmholtz rollers of the two mixing layers at the jet edge appear 

clearly. These mixing layers develop symmetrically and start breaking down into small 

scales. Downstream of x=5D, the two mixing layers merge, causing a rapid breakdown 

of the large structures with a growth of smaller structures, and the development of a 

sinuous motion in the jet.  

 

Figure11: Spanwise vorticity showing the vortex breaking-up process 
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3.4.6.  Evolution of passive scalars 

An instantaneous snapshot of the mixture fraction field is shown in Figure 4(e), with the 

dynamically determined turbulent Schmidt number field in Figure 4(f). Here the jet 

halfwidths based on temperature and mixture fraction are shown in Figure 12. The 

similarity profiles of temperature and mixture fraction are shown in Figure 13. 

 

 

Figure 12: The jet halfwidth based on velocity, temperature and mixture fraction. 

 

(a)                                                                   (b) 

Figure 13: Time-averaged cross-stream variations for (a) mixture fraction and (b) 

temperature  

 



 70

3.5. S3DLES performance study 

To test the performance of S3DLES running on multi-processors, a scalability test is 

performed for the simulation of the planar jet described above. The order for spatial and 

temporal integration is 6
th
 and 3

rd
 respectively  (8

th
 order in space and 4

th
 order in time 

will increase the computing time by a factor of 90%). The grid size is 128x128x64. There 

is no initial turbulence. The computational cost is evaluated in Table 1. The data 

corresponds to a calculation duration of 2500 time-steps (1-flow-over time) on 12 cpus in 

a Titan cluster at NCSA super-computing center at University of Illinois. Global 

quantities are evaluated at every 10 time-steps and saved in a history file. The full 

solution is saved every 50-time step in a Tecplot–ready data file.  

  With data-

dumping 

(sec) 

Without data-

dumping (sec) 

Computing 

Load (without 

damping) 

No dynamic 

procedure 

13915 10738 1.00 

Dynamic LES with 

2 coefficients 

23541 20469 1.91 

Dynamic LES with 

3 coefficients 

29678 27057 2.52 

Table 1. Computational cost of S3DLES with different input parameters. 

The data indicate that dynamically evaluating the Smagorinsky and Yoshizawa 

coefficients approximately doubles the computational cost. In addition, if the Schmidt 

number is also dynamically determined, the cost is increased by a factor of 50%.  

The next test shows that S3DLES has a good scalability up to 64 processors (Figure 14). 

This test is done on different combination of cpus without initialization and data 

damping. The test case is allowed to run strictly 50 time steps. The calculation on 2 

processors will have a longer running time than the total time on one processor divided 
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by 2, which is the ideal situation, due to the cross-communication between nodes and 

waiting time requirement.  

 

It is interesting to notice that the computational time in 8-cpu is smaller than the time of 

the one-cpu case divided by 8. The same is true for the 64-cpu case. The reason may be 

due to the heavy memory requirement on one-cpu running case, which is less efficient.  

 

Figure 14: Scalability of S3DLES on a Titan cluster 

Generally, the scalability of the MPI-based parallel code is very good. This is reasonable, 

as the code was well optimized during the conversion process from Fortran77 with 

special emphasis on parallel optimization. These tests provide the guidance for future 

parallel computing allocation.  

For the plane jet simulation, the domain length is 1.3568 cm (=32D) with a coflow speed 

of 10.9m/s, so the flow-through time is 1.56e-3sec. The characteristic length is the plane 

jet width (D=0.0424 cm). The jet Re number is 3000 (based on velocity difference 

between the jet and the coflow), the Mach number is 0.35 for the jet velocity, and 

Richardson number is zero (no gravitational force).  Here the dimensionless parameters 

are defined as in equation (3): 
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Here the D is the characteristic length scale, usually the jet width (plane jet) or the jet 

diameter (round plume). α  is the thermal expansion coefficient. The DNS grid 

requirement is based on the Kolmogorov scale, which is estimated as: 

4/3Re−⋅= ttlη                                                                 (4) 

Here the turbulent Reynolds number is based on the rms velocity and the integral length 

scale (commonly using diameter). 

The computing cost ratio between different computational grids is defined as grid size 

ratio to the 4
th
 power, because of the 3 coordinates and the time restrictions. 
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A grid resolution study shows that for such a Re=3000 flow ( 600Re ≈t ), the DNS 

resolution would be on the order of 2 mµ , while the resolution for a well-resolved LES is 

10.6 mµ  (based on the jet thickness divided by 40, D/40), as compared to the current 

choice (dx=27.8 mµ ). The difference of cost between DNS and LES based on the above 

choices are 789 and 37,330, respectively. Only a marginal resolution for LES is chosen 

here due to the limitation of computing resources. The advantage of LES over DNS for 

such a problem is obvious.  
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3.6. Conclusions 

For the strong jet simulations, the buffer layer can successfully control the disturbances at 

the outflow boundary by matching the exit velocity profile with a target profile. This 

method proves valuable in strong jet simulations. 

Detailed comparison with published results is satisfactory. The jet parameters: velocity 

decay, jet width, and fluctuation level are comparable with the reference study. The 

Smagorinsky model and relating submodels are playing its role by damping the high-

frequency oscillations (due to the unresolved turbulence scales). However, some 

oscillation of scalar variables outside of physical boundary are noted. They are the 

byproduct of higher order differencing schemes, commonly called Gibbs error, which 

will be discussed more in Appendix B. 

The parallel performance of S3DLES is also tested. The scalability of the code is good. 

The computation cost follows the log-linear relationship with the number of processors. 

The computational cost of the dynamic Smagorinsky procedure is significant. So the 

dynamic procedure is not resorted in later chapters. 
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Chapter 4. Acoustic response of jets in a chamber 

4. 1. Introduction 

Combustion noise has plagued the liquid rocket engine since its early appearance in 

1940s. With the NASA plans to re-land the moon and exploration to Mars, there is a new 

wave of interests on the combustion noise (thermoacoustic instability) for liquid rocket 

engines. To fully understand the noise problem in the liquid rocket engine, duct acoustics 

provides the simple problem toward the understanding of the detail instability 

mechanisms. 

Combustion instability problem in liquid rocket engines usually occurs following a 

sequence of events: 

1. Initialization of the perturbation; 

2. Selective amplification of the perturbation; 

3. Combustion-acoustic coupling 

The combustion oscillation can be overcome by removing any of the 3 events in the 

acoustic excitation loop. The instability of the combustion process requires an excitation 

source and the interaction between the unsteady heat release and the acoustic waves.  

There are several mechanisms leading to the onset of instability in a liquid rocket engine. 

The combustion of propellants in liquid rocket engines consists of several major 

component processes. These processes have all been considered to be candidates for 

combustion instability mechanisms and may be categorized following the general 

sequence of events affecting an elemental mass of liquid propellant (Santoro, 2006) 

1. Injection; 

2. Atomization of a liquid stream to form drops; 
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3. Drop heating and vaporization 

4. Mixing of drops, vapors, and gases 

5. Chemical reaction 

These mechanisms belong to two schools of thought. The heat release fluctuations are 

caused by the local mixing rate or mass flux (Richards, 1998) or by the flow instabilities 

such as vortex rollup (Poinsot et al. 1987). However, there is not a single mechanism to 

explain all the observed combustion instability phenomena. It is postulated that several 

mechanisms potentially are important in establishing combustion instability. And the 

local environment produced by the rocket engine determines the specific mechanism 

responsible for a particular combustion instability event. A series of direct numerical 

simulations ( Colonius et al. 2004) show that the sound generation is in fact the leakage 

of otherwise trapped wave modes facilitated by the vortices. Details of physical 

mechanisms that generate sound in complex flows can be revealed by carefully 

conducted numerical simulations. 

Depending on the geometry and local information, the acoustic perturbation generated by 

these processes may be enhanced or damped by the ambient conditions. Here the wall 

and the local density interfaces play an important role on exciting or damping certain 

acoustic modes. Depending on the phase relationship between the source and the 

response from the media and the boundary, acoustic waves may successively increase in 

energy leading to large-amplitude self-excited oscillations. Some early research work 

focused on providing passive control measures (such as baffles, resonators, and acoustic 

liners) to damp the troubling modes. The essential point is to force the resonance to occur 
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in frequency ranges where the driving mechanisms are inadequate to sustain oscillations 

or to directly damp the mechanical energy of unsteady motions (Culick and Yang, 1995).  

When the acoustic wave is strong enough to affect the combustion process, the 

Rayleigh’s criterion (Rayleigh, 1896), of the acoustic type oscillations observed in a 

Rijke tube, specifies the conditions that must be met for driving a periodic pressure 

disturbance by energy addition. Due to the high density of energy release in a volume 

having relatively low losses, conditions normally favor excitation and the source of 

excitation is difficult to remove. If the addition of energy is periodic and in phase with 

local pressure oscillations, the excitation is amplified until limited by the non-linear 

effects. This is the general guideline for acoustic instability generation. This theory has 

been validated by numerous experimental results (Culick and Yang, 1995). Addition of 

energy out of phase with the local pressure oscillation provides a damping effect. This 

provides a basic route toward active noise control (Dowling, 2005). 

The excitation of the perturbation and the combustion-acoustic coupling have attracted 

most research interests in the literature. Detail research work is summarized by the 

literature reviews on combustion instability in liquid rocket engines (such as most recent 

ones: Yang and Anderson, 1995, Santoro, 2006). Other reviews on general combustion-

oscillation control are also useful to understand the problem (Ffowcs Williams, 1983, 

Candel et al. 2004, Dowling et al. 2005). The intermediate process, the selective 

enhancement of the acoustic wave, is usually included in the combustion-acoustic 

coupling studies. 

Acoustic wave propagation in fluids has been studied for a long time. Most of modern 

methods are summarized in Crighton et al. (1992). Analytically, Sujith and his coworkers 
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(for example, 2000) derived many exact, transient solutions for sound propagation in 

inhomogeneous media. Dowling (1995) compared the analytical methods for computing 

thermoacoustic oscillations and found that the mean flow effects are significant even at 

modest inlet Mach numbers. Experimentally, Liuwen (1999) studied combustion 

instability in premixed gas turbines. Numerically, Eccardt et al. (1996) studied the wave 

propagation in flowing media using finite element simulations on linear wave equation. 

These methods study either the wave propagation or the resulting modes. The interaction 

between inhomogeneous fluids, wall and acoustic wave are simplified. Ducruix et al. 

(2004) developed the external flow modulation for flow-acoustic interactions and applied 

in Richecoeur et al. (2006) for simulations. 

 

This chapter presents an application of S3DLES to the simulation of acoustic phenomena. 

In contrast to the next chapters in which acoustic waves are considered as a numerical 

nuisance to be handled by specialized treatments (e.g., NSCBC boundary conditions, the 

ASR pseudo-compressibility method, etc.), this chapter considers a problem in which 

acoustics are an integral part of the flow solution, and thereby takes advantage of the 

compressible flow formulation adopted in the LES solver. Here we will perform some 

numerical analysis on chamber acoustics with flow and density effects, which provides a 

basic problem towards the understanding of the whole combustion-instability problem in 

liquid rocket engines. Historical experience shows that the best approach to eliminate 

combustion instability in rocket engines is to modify the injector and incorporate passive 

controlling methods. These methods are supposed to change the energy release process 

and the acoustic response of the chamber. This requires a thorough understanding of the 
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duct acoustics and the working mechanism of the wall (including other density 

interfaces). This provides another motive to study the chamber acoustics. To predict the 

onset of acoustics in a combustor is one important goal toward controlling the 

combustion noise. 

 

The combustion instability can be separated into three effects: wall and density effects, 

flow effects and combustion effects. In this paper, we will focus on the passive 

environment for the resonance behavior inside a duct (to mimic the situation in a 

combustor). Study is limited to gas phase effects, while the spray and vaporization effects 

are neglected. Also no combustion is involved. The main research tool is a fully 

compressible LES flow solver for 3-D flow-acoustics simulations. Another 1-D acoustic 

solver is developed to validate the CFD result. They are also validated by the 

experimental work on the acoustic behavior in homogeneous and density-stratified flow 

fields. 

The organization of the chapter is to present the numerical theory and the experimental 

work first, followed by the data analysis on 1-D numerical, experimental and analytical 

results. Then 2-D simulation is performed to test the effectiveness of the wall boundary 

treatment. Now turbulence is involved. Large-eddy simulation requires 3-D flow 

information, so here 3-D simulations are also performed to predict the effects of acoustic 

excitation at the density interface. The simulation results are compatible with the 

experimental results. Due to the details of CFD results, the numerical work can provide 

some insights about the acoustic phenomena, which are difficult to observe and measure 

in experiments. 
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4.2. Numerical and experimental configuration 

4.2.1. Experimental configuration 

The tested configuration is shown in figure 1. It is a simplified version for the real 

situation, which is a combination of hydrogen/oxygen/hydrogen with reaction and two-

side-forcing (Details can be found in Ghosh et al. [4]). The dimension of the chamber is 

15x3.5x0.375 in (38.1x8.9x0.95 cm). Three injectors for Helium/Air/Helium are ¼, ¾, 

and ¼ inch in width respectively. The slot for acoustic forcing speaker is 1 inch in length. 

The four black dots in the graph are the pressure sampling points in the centerline of the 

acoustic forcing. The pressure measurement is accomplished with 4 Kistler 211B5 

piezoelectric transducers along with a 4 Channel Kistler 5134A1 Piezotron coupler. 

Pressure transducers are mounted on the sidewall along the centerline of the lateral 

forcing. Their relative position is shown in the plot (see figure 1). The speaker is 75 watts 

16 ohm trumpet horn driver, where we use a sine wave generator to simulate its function.  

3.5in

1/4in

1/4in

3/4in
Air,

6m/s

Helium, 18m/s

Helium, 18m/s

15in

x,u

y,v

 

Figure 1: Experimental mixing chamber (used as a simplified representation of a liquid- 

rocket engine configuration). 

The above configuration is enough for a homogeneous static field, without density 

variations. If a stream of different density is introduced into the field, the stream profile is 
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not easy to maintain, and the injector will introduce more acoustics associated with the 

cavities and the walls. The resulting response is complex and difficult to differentiate the 

density effects. So we have to resort a static pipe test with density inhomogeneity to find 

the effect of the density (see figure 2). The arrangement is made of a plastic pipe 

commonly used for indoor plumber system. It is 2 inch in diameter and made of PVC 

material. The pipe is cut into blocks of 1, 2, 3, 5 inch in length, so we can adjust the 

position of the density inhomogeneity easily. The cutting surface is smooth, so there is no 

significant leakage. After a few try runs, the sealing of the space between these blocks are 

proved to be unnecessary. The density inhomogeneity is introduced by a 5-inch segment 

with 2 plastic films on both sides. The film is the kind commonly used to wrap the food 

in a refrigerator. The thickness of the film is 0.127mm in thickness. The film is glued to 

the both end with a fast-hardening glue. The hydrogen filling process is happened in a 

plastic container, where the hydrogen environment is maintained for a few seconds. This 

is enough for the glue to do its work. 

 

Figure 2: Auxiliary one-dimensional set-up. 
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For any confined domain, the sequential-broadband forcing is applied to find the natural 

frequencies. This is realized by quickly scanning the specified frequency range. The 

duration for each frequency is short, so it is an approximation to the broadband forcing. 

 

4.2.2. 3-D Navier-Stokes flow solver 

To mitigate the Gibbs error commonly associated with high-order schemes, a forth-order 

finite difference discretization is utilized to evaluate the spatial derivatives. In order to 

eliminate high-wave number errors resulting from numerical boundary closures, a 4
th
 

order optimized filter is utilized to damp the high-wave-number modes (Kennedy et al. 

1994, Bogey et al. 2004). The purpose of such optimization is to improve the spectral 

performance at the price of global resolution. Since the target of the simulation is not 

acoustic wave generation or propagation, but the spectral mode selection, this is an 

acceptable choice. The governing equations are marched in time using a low storage 

third-order Runge-Kutta explicit time integration (Kennedy et al. 2000). The parallel 

programming is based on the Message Passing Interface (MPI) protocols. The 

conventional structured uniform/non-uniform computational mesh is adopted. For 1-D 

and 2-D simulations, no turbulence model is used. 

The boundaries are described through the characteristic-based boundary conditions 

treatment. For the walls of the pipe, the slip wall condition is used (except the excitation 

velocity v term, which has to be specified). For the downstream boundary, the non-

reflecting boundary conditions of Poinsot and Lele (1992) are used. The form of non-

reflecting conditions is allowed to switch between that for non-reflecting inflow and 

outflow at each point on the boundary depending on the instantaneous local normal flow 
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velocity. Moreover, to isolate the interior of the domain from the effects of the boundary 

conditions, a buffer zone based on the approach of Hu (1997) is used on the nonreflecting 

boundaries. The buffer zone is an artificial boundary consists of non-uniform grids 

around the exit outlet where exponential damping terms are added to the governing 

equations. Buffer zone technique for computational Aeroacoustics is reviewed by 

Colonius (2004). 

For numerical simulations, since the governing equations are not simply wave equations, 

but the full Navier-Stokes equations which support the propagating waves in the gaseous 

media. So we can have a separated wave source superimpose upon the flow field. 

Depending on the domain geometry and purposes, the excitation can be applied in 

different forms. The excitation signal is a specified velocity signal, while the pressure is 

floating depending on the local flow conditions.  

The perturbation source can be a harmonic-wave generator of known frequency. 

Permanent harmonic forcing: ( )[ ]tVtv 001 2sin)( ωπ⋅=                                          (1) 

Finite-duration excitation: 
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Temporarily, the excitation source is either permanent forcing (equation 1) or finite-

duration-forcing (equation 2). The former provides a source of known frequency and 

phase, those frequencies close to its natural resonance have the largest response. It is 

commonly used to find the duct acoustics experimentally. The later is only used for a 

closed domain. Since the viscosity is small for wave propagation, let the wall damp those 

modes away from the natural frequencies. The wall will redistribute the acoustic energy 

in the frequency domain to fit the geometry. It is commonly recognized as the energy 
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transfer method for duct acoustics. Both methods can be used to find the acoustic 

response of the system. 

For 2-D and 3-D simulations, the whitenoise (equation 3) is used to find the natural 

frequencies of the duct. This method is commonly used for the open domain, where a 

continuum of multi-mode excitation is supplied and let the duct select its natural 

frequencies 

White noise excitation:   ( )5.02)( 03 −⋅⋅= errandomnumbVtv                             (3) 

Here random number generator in Fortran generates a number in the range of (0,1), so we 

need to convert it into (-1,1). (The conversion is not important as the broadband 

frequency inherent in these random numbers). 

 

4.2.3. 1-D acoustic solver 

As will be provided later, the numerical simulations can provide details of mode 

information missing from the experiments. It is necessary to find a theory to explain such 

behaviors in a consistent way. The acoustic wave traveling in air can be treated as a 

pneumatic spring, thus we can make a direct comparison using the classical mass-spring 

theory. In this theory, the resonance of a multi-degree-of-freedom system is determined 

by its total inertia (mass) and elasticity (stiffness) (Kinsler, 1982). 

The acoustic equation usually appears in a pressure form. A measurement of the pressure 

at a fixed location shows, roughly, a time dependence similar to that for the displacement 

of a simple mechanical oscillator. Hence, it is natural to suppose that the fluctuation of 

pressure satisfies the oscillator equation with damping constant α , natural frequency 0ω , 

and forcing )(tf . 
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Analogy between the pressure perturbation and local displacement is already known. 

Here start from the Newton’s law, the equation of motion based on displacement is set up 

as 
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=++                                                     (5) 

Where M, R, K are mass, resistance, and stiffness of the media respectively. tjeF ω
0  is an 

external forcing of the sinusoidal function, where ω  is the angular frequency. From the 

Ohm’s law, it is established that the velocity is force over impedance, as in Equation (5) 
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When the resonance happens, the impedance is lowest, which means  

0/ =− ωω KM                                                    (6) 

Here we can set up the K and M for an infinitely small element as.  

dyAPK /⋅= γ                  Adym ⋅⋅= ρ                                      (7) 

If treating this element as a piece of pneumatic spring, we can get a matrix of linear 

springs with individual stiffness and mass components. Then the system performance is 

determined by this multi-degree-of-freedom system. Each element forms a one-degree-

of-freedom resonator, and the chamber boundary conditions allow solutions only at 

discrete modal frequencies. This idea was originally proposed by John Bernoulli and his 

son David and got its wide application on solid vibration problems. It is also restated 

(Culick and Yang, 1995) that a continuum, such as the gaseous environment inside a 

combustion chamber, is basically an infinite degree of freedom system.  



 85

K
1

K
2

K
3

K
4

K
i

K
n

K
n+1

m
1

m
2

m
3

m
4

m
i

m
n

K
i+1

x
1 x

2
x

3
x

i

 Figure 3. Distributed system approach 

For each distributed node in a multidegree freedom system, we have the force balance.  

( ) iiiiiiiiii FxKxKKxKxm =−++− +++− 1111
&&                              (8) 

The resistance is assumed low (for acoustic wave in air). This can further be simplified as  

[ ]{ } [ ]{ } { }FxKxm =−&&                                                            (9) 

where [M] and [K] are called the mass and the stiffness matrix, respectively, and are 

given by  
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For free vibrations, F is zero. The characteristic equation of the system is that the 

determinant equate to zero; that is  

021 =−− ωIKM                                                        (12) 

Equation (12) is commonly recognized as the eigenvalues problem. This is also known as 

the characteristics equation or frequency equation of the physical system. MATLAB 

provides a function EIG to solve equation 12 in this form: 
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),(]   [ 2 KMeigX i =ω                                                       (13) 

The roots 2

iω  of the characteristic equation are called the eigenvalues, and they are the 

natural frequencies of the system. The eigenvector [ ]iX  is the corresponding mode shape 

for vibration displacement. Such a solution is often referred to as being obtained by 

modal superposition or simply modal analysis. This is the physical model (mass-spring 

theory) approach to find the natural modes. More rigorous development can be found 

using Finite Element Technique, which will be provided in appendix. 

Equation (10) (11) and (13) provide the governing equations for the characteristic system. 

To find the response of a specific system, we need to know the boundary conditions. If 

the domain is closed at both ends, there are n pieces of mass with n+2 stiffness constants. 

The springs at both ends should be counted twice. If one side is open, the number of 

stiffness will be n+1, since the open side spring does not work. This is the physical 

reasoning for the boundary condition.  

The acoustic solver has no input requirement on signal generation, since it solves the 

characteristic equation and the eigenvalue analysis is fundamental to any mechanical 

system. 
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4.3. Result Analysis 

To start with a simple case, the mixing chamber is simplified as a 1-D homogeneous 

domain with walls on both sides. The source velocity is specified on one side, and the 

pressure is floating depending on the boundary conditions. The acoustic modes are found 

by spectrum analysis and some statistical calculations.   

For the auxiliary 1D configuration, there is not flow involved. So the density 

inhomogeneity is maintained fixed in position. It is realized via decoupling the species 

equation with others and enforcing the density profile at each time step. The acoustic 

wave will change the propagating speed and mode shape in the density inhomogeneity. 

Some pseudo-gases with a different molecular weight but same bulk modulus as air are 

tested within the background air. So the physics of acoustic propagation is preserved. 

Again the perturbation can only be measured statistically as done in experiments. This 

configuration will help to find the role of density inhomogeneity toward wave 

propagation.  

For the above 1-D cases, the acoustic solver can solve the system response given the 

distribution of mass and elasticity via the eigenvalues analysis.  

For 2-D simulation, the flow could not be set up realistically (Turbulence is in-essence a 

3-D flow phenomenon), so an excitation of whitenoise is introduced into the uniform 

density chamber, and let the chamber wall to select (or damp) certain modes. Here the 

transverse mode is the main focus. Longitudinal modes could not be found due to the 

non-reflecting boundary treatment and the buffer layer treatment at the outlet. Unlike 

Longatte et al. (2000), where only Euler equations are used, here the full Navier-Stokes 

equations are used, so they are more sensitive to the backflows at the outlet. 
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For 3-D LES simulations, the variable density flows can be set-up into the domain. The 

purpose the flow is to maintain a density inhomogeneity. The transverse mode will be 

found based on the numerical measurement of pressure sensor. The mixing behavior of 

different excitation will researched based on the relationship between the hydrodynamic 

instability and excitation frequency. This will provide some insights on the density effect 

on the acoustic response of a certain chamber. 

 

4.3.1. 1D analysis of transverse modes in homogeneous domain 

For the standing wave problem in a tube, it is well established that the fundamental mode 

in an open-open tube is the half-wave mode (
L

c
f

2
1 = ), while the fundamental in a 

closed-open tube is the quarter-wave mode (
L

c
f

4
1 = ) (Kinsler, 1982). In this experiment, 

the injectors are sealed with an aluminum tape to avoid unnecessary cavity acoustics. The 

source speaker occupies a small fraction of the wall, so it is a condition of closed wall on 

both sides. Here the source speaker is simulated with a velocity generator on top of a 

wall. This arrangement has a problem that the resonance is so strong, that the acoustic 

wave growth will be limited only by non-linear effects, but the resonance frequency will 

be unaffected by this limitation. Figure 4 shows the response (pressure) signal in the 

numerical simulations. While the source has a perfect sine wave specified velocity, the 

response will have the perturbation due to the reflection at the walls. If the incoming and 

outgoing waves at the wall are out-of-phase (for example, f=900Hz, figure 5(a)), the 

response is a linear wave with some imposed high frequency term introduced by the 

geometry. If in-phase (f=1950Hz, figure 5(c)), then the pressure wave will be enhanced 
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upon each reflection at the wall, until limited by the non-linear effects (figure 5 (d)). This 

process is commonly recognized as resonance, which is most harmful for the safe 

operation of any combustors. 
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Figure 4. Time series of excitation (velocity) and pressure response for (a)  f=900Hz; (b) 

f=1200Hz and (c) f=1955Hz. (d) is the pressure (receiver) signal in  (c), but reaches the 

steady state due to non-linear effects. 

The resonance behavior is better shown in the graph of mode shape (figure 5). The root-

mean-square (RMS) pressure tells the spatial distribution of pressure fluctuation. Figure 5 

shows that the pressure amplitude is enhanced at the resonance frequencies. For those 

harmonics, the pressure perturbation is symmetric and has a full integer number of cycles 

covering the domain. For those frequencies not harmonics (such as f=900 Hz in figure 5), 

the reflected wave are not in phase with the incoming wave, so the amplitude is small and 
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a steady state is reached quickly. Most passive combustion instability control methods 

utilize this property explicitly or implicitly. 
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Figure 5. Pressure fluctuation level (mode shape) under different excitation frequencies 

It is also observed that the pressure fluctuation is not zero at some nodes for both graphs. 

As will be discussed with mode analysis in figure 9, the pressure fluctuation here has the 

contributions from all excited harmonics. The node is defined as the zero pressure 

fluctuation point. The node for a certain frequency may not be the node for another 

harmonics. Here the mode shape is dominated by the fundamental harmonic, so it is still 

useful in predicting the resonance. 

Knowing how the response pressure behaves temporally (figure 5) and spatially (figure 

6), we can use this information to find the chamber characteristic acoustics. Figure 7 

shows the acoustic response of a two-sides-closed domain on a variety of frequencies 

(The sampling point is on the receiver wall side). Here the mixing chamber is used and 

the injectors are sealed to avoid any unnecessary cavity acoustics. The pressure 

measurement is sampled at the receiver wall side. The resonance amplitude is finite, since 

it is limited by the non-linear effect (see figure 5(d)). From the relative strength of the 

response, it is found that the fundamental frequency is 1957Hz, while the theory gives 



 91

1951Hz for half wave mode (
L

c
f

2
1 = , for two-sides closed pipe, listed in table 1). This 

discrepancy is mainly introduced by the choice of different acoustic speeds. The others 

harmonics are clearly shown to be full-integer multiples of the fundamental.  
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Figure 6. Acoustic response of 1-D domain between 2 walls 

 first second third forth fifth 

Longitudinal Modes (Hz) 228 684 1139 1595 2050 

Transverse Modes (Hz)  1951 3903 5854 7806 9757 

Table 1. Theoretical modes with first 5 harmonics (The numbers are based on the 

acoustic speed of 347.2m/s, which is based on 20 
o
C and 1 atm.) 

The experimental data are gained via two methods (discrete forcing and whitenoise 

forcing). The excitation pressure amplitude is not a constant (constant voltage operation 

mode for the speaker), so the exact amplitude of pressure perturbation is unknown and 

not important here. For the discrete forcing, the sampling point is the closest to the 

receiver wall and the data are sampled at 100Hz intervals. For the continuous forcing, a 

whitenoise signal is introduced into the duct. It is found that both methods produce the 

same result. Here all signals are scaled by the maximum amplitude in each data series for 

comparison purposes. It is also found that the duct acoustic spectrum has many 
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contributions from the longitudinal modes. The first 3 peaks are those induced by the 

longitudinal modes. The peak at 1957 Hz and its multiples are those induced by 

transverse modes. The occurrences of these transverse harmonics are in good agreement 

with the theoretical prediction and numerical results.  

The numerical results are gained through flow solver with velocity excitations. Only 1D 

configuration is used, so only the transverse modes are simulated here. The fundamental 

harmonic in the transverse mode is close to the fifth harmonic (2050 Hz = 9c/4/L) in the 

longitudinal mode, shows the limitation of this experimental arrangement in 1-D 

acoustics. In a rigid-wall waveguide, only plane waves propagate if the frequency of the 

sound is lower than the cutoff frequency of 0.5c/L (Kinsler, 1982), which is not our case 

here. The auxiliary test setup (figure 2) is designed to overcome this dimensional effect. 

To determine the resonance frequency in a waveguide, the commonly used way is to 

introduce a whitenoise and let the boundary conditions to determine which frequency has 

the resonant effects (Kinsler, 1982). Here an energy transfer method can be used for the 

duct acoustics in a static domain. A wave of known frequency is introduced into the 

domain, and after the balance is reached, the source is shut-off. The residual acoustic 

energy will transfer into those dominant modes via the wall. The process is like a puff at 

the open end of an empty bottle, the buzzing will linger for some time before being 

damped completely. This buzzing is the initial excitation energy being transferred into 

the residual energy by the bottle walls. 

A cyclic wave of 200Hz is introduced into the domain on the left side. It reached a steady 

state quickly, since the reflected wave is out-of-phase with the incoming wave, so the 

energy is quickly balanced. Then the source is shut-off, leaving the residual energy 
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trapped inside and being worked by the wall over time. The frequency spectrum shown in 

figure 7(c) is that before the shutoff and figure 7(d) is that after shut-off. All raw data are 

treated with Hamming windows before FFT, which is good at increasing the signal-noise-

ratio for this situation. 

time (sec)

v
e
lo
c
it
y
(c
m
/s
)

0.005 0.0075 0.01 0.0125

-8

-6

-4

-2

0

2

4

6

velocity (source)

velocity (middle)

velocity (receiver)

 time (sec)

P
re
s
s
u
re

fl
u
c
tu
a
ti
o
n
(P
a
)

0.005 0.0075 0.01 0.0125

0

20

40

60

80

100

120

140

160

pressure (source)

pressure (middle)

pressure (receiver)

 
(a)                                                                    (b) 

frequency (Hz)

A
m
p
li
tu
d
e

10
2

10
3

10
410

-3

10
-2

10
-1

10
0

10
1

10
2

frequency (Hz)

A
m
p
li
tu
d
e

10
2

10
3

10
410

-3

10
-2

10
-1

10
0

10
1

10
2

 
(c)                                                                    (d) 

Figure 7: Wall effect on mode selection. (a) Velocity before and after shutoff; (b) 

pressure before and after shutoff; (c) spectrum before the shutoff; (c) spectrum after the 

shutoff 

 

The left figure shows that even in the cyclic forcing mode, the pressure spectrum has its 

characteristic harmonics due to the wall. After the source signal shutoff (right figure), the 

residue acoustic energy redistribute in spectrum from 200Hz to its geometry-dependent 

value, the harmonics, but not simply into the fundamental harmonic. This is the reason 
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that even under the excitation of the fundamental harmonic, the center pressure 

fluctuation is not zero (figure 5), but has the contributions from other harmonics. When 

decomposed into normal modes (as seen in figure 8), the pressure fluctuation at each 

harmonic has zero fluctuation point(s), i.e., pressure nodes. This method can be used to 

find the acoustic response for a non-homogeneous flow field, as will be discussed next.  

Since almost all mechanical structures have their own natural modes of vibration 

(dynamic response), the modal analysis can help us understand the nature of resonance in 

any domain. These modes can be readily computed given the elastic and inertia 

characteristics of the structure. Here the gaseous medium is treated as a coupled system 

of mass spring arrangement. When assembled together, the stiffness (elasticity) matrix 

and the mass (inertia) matrix can be used to find the system eigenvalues (natural/resonant 

frequencies) and eigenvectors (spatial-temporal mode structure). 
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Figure 8: Mode shape for velocity fluctuation (Flow solver) and displacement (Acoustic 

solver) 

A comparison of flow solver (via statistical analysis) result and acoustic solver (via eigen 

value analysis) result is shown in figure 8. They are normalized to unity for comparison 

purpose. For the numerical simulations, the characteristic displacement used in the 

eigenvectors is most closely related to the velocity fluctuation, since they share the same 
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governing equation (Helmholtz wave equation) and the same boundary conditions (no-

slip wall on both sides). By definition, the velocity is the time derivative of the 

displacement. So they share the same governing equations in steady state. 

It is found that the characteristic displacement from the acoustic solver has the same 

mode shape as the velocities fluctuations for the flow solver. The only difference is the 

velocities shown here are RMS values (always positive). Beside this difference, they are 

exactly the same, which means these theoretical mode shapes can be used to validate 

each other.  

A further experimental validation of the mode shape is shown (figure 9) below. Here the 

pressure is chosen since it is easily measurable. The acoustic wave is manifested more as 

a pressure perturbation wave than a velocity perturbation wave. The rescaled pressure 

RMS fluctuations fit well with the predicted mode shape. Due to the limited number of 

pressure measurements, the experimental data could not match the numerical simulation 

completely. According to Nyquist Sampling rule, the number of pressure samplings is far 

from enough to produce the perturbation structure in the domain. Given the numerical 

results known, the experimental result can be better explained from the theory. Here for 

f=1900Hz and f=3900Hz, which are close to the harmonics in the domain, the acoustic 

structure is symmetric, while for f=900Hz and f=2900Hz, the structure is asymmetric. 

The numerical result provides details that are unavailable in the experiments, while the 

experimental results validate the theory qualitatively.  
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Figure 9: Mode shape comparison with experimental data 

 

4.3.2. 1-D analysis of transverse modes in inhomogeneous domain 

The incoming acoustic/pressure wave will experience the reflection and transmission 

behavior at the density interface. For a general density interface, there is no separation or 

interpenetration of the two media at the boundary. So the continuity of displacement and 

velocity at the interface is valid. Also the interface can be treated as a free-body diagram 

of forces acting on a thin layer of material, where the pressures on either side of the layer 

are equal. These two boundary conditions form the basis for analyzing the wave behavior 

at the interface.  
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From the above boundary conditions, it can be found in most textbooks (for example, see 

Kinsler, 2005) on acoustics that the amplitude ratio of the reflected acoustic (pressure) 

wave to the incoming wave is  
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= is the ratio of impedance ( cρ ) at the density interface. From this 

equation (20), we can find the reflected pressure is in-phase with the incident pressure if 

1122 cc ρρ >  (figure 10d), otherwise, the reflected wave is out-of-phase when traveling 

from high to low-density fluid (figure 10b). If the interface is between gas and wall, 

which means ∞→22cρ , the incoming wave is 100% bounced back and in-phase (figure 

10f). 

The amplitude ratio of the transmitted wave to the incoming wave is  
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From this equation, there is no phase change between incoming and transmitted waves. 

The amplitude of transmitted wave will be higher or lower solely depending the 

impedance ratio 12r . According to the conservation of the acoustic energy, we will have 
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Figure 10: Traveling wave behavior at different density interfaces 

Figure 10 shows the transmission and reflection behavior for a single incoming Gaussian-

shaped wave. They are generated using the flow solver and show the time-evolution 

result of velocity and pressure at high-to-low-density interface (a~c), low-to-high-density 

interface (d~f), and wall interface (g~h). The default/background gas is air (28.84g/mol). 

Here the wall is treated as the infinite density difference, where all outgoing waves are 

bounced back into the computational domain completely. From the above relationship 

(for acoustic pressure only), the amplitude change of the incoming, reflecting and 

transmitting waves are clearly defined and computable. It is also observed that the 

pressure fluctuation is smaller and wider in low-density zone due to its high acoustic 

speed, and higher and thinner in high-density zone due to its low acoustic speed. This is 

the reason proposed by G.G. Stokes (1867) on successfully explaining the hydrogen-in-

air stifling sound phenomena. 
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Figure 11. Mode shape with and without a density trap (for the second harmonic only: 

f2=3899Hz for homogeneous domain, and f2=5078Hz for density-stratified domain) 

 first second third forth fifth 

Transverse modes (without density trap) 1949 3899 5848 7797 9746 

Transverse modes (with density trap) 2420 5078 6455 9816 13129 

Table 2. Theoretical transverse modes with first 5 harmonics with and without density 

trap 

Mode shape can further be used to understand the resonance behavior in a closed domain 

with a density trap. Here in figure 11, a mode shape for the second harmonic is generated 

(using the acoustic solver) to show the effect of the inhomogeneity on the mode structure. 

Here the inhomogeneity is introduced not at the center (to break the symmetry). 

Basically, the mode shapes are all changed (or more precisely stretched) over the low-

density part. The full integer number of cycles over the closed domain is preserved for 

the resonance frequencies, since the zero amplitude at the wall is determined by the 

boundary conditions. Comparing with the homogeneous case, the low-density zone has a 

larger fluctuation and the zero-amplitude node is shifted. This information is important 

for the placement of pressure sensors, which are sensitive to the location of pressure 

nodes. It is expected that with a priori knowledge of the mode shape, the pressure sensor 

can record the power spectrum and the acoustic field better by avoiding these nodes. The 
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frequency shift due to the location and profile of density trap is listed in table 2, and will 

be discussed more in figure 15/16/17. 

Once we know the wave behavior at the density interface and mode structure for 

inhomogeneous field, it is natural to find some experimental results to validate the theory. 

Here the experimental setup in figure 1 is not good enough for setting-up variable density 

field. The inhomogeneous flow is easy to set up, but the injector will bring some cavity 

noise and the 3-D effects are strong (as shown in figure 6). So we devised the simple 

arrangement in figure 2 to test the role of a static density inhomogeneity on the transverse 

modes. 
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Figure 12. Frequency response of the density trap (a)FFT spectrum for sampling point 

near the center (b)Comparison with theory (c) measurements at different positions 

Figure 12 shows the frequency response of different density trap positions. Displacement 

means the distance from the center of the density trap to the center of the domain. The 
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frequency values are local peaks on the power spectrum. They are obtained via 

converting the raw signal into the frequency domain (using FFT) as shown in figure 

12(a). Here the trap is placed near the center of the domain. The frequency shift due to 

the films and the hydrogen trap is also shown. The difference introduced by the films and 

the hydrogen trap is better presented in figure 12(b). It clearly shows that the effect of 

films is to decrease the resonance frequency since the density of the film is higher than 

the air. The hydrogen introduced as a light medium, so the resonance frequencies are 

higher even with the films. Figure 12(c) shows the frequency shift at different position by 

the films and the trap. The base line case is the 14 inch pipe with air inside only, to serve 

as the reference. With a 5-inch air trap (plus 2 plastic films on both sides), the response 

frequency change is small, only some phase change due to the position changes. The air-

trap can be looked as a heavy density trap (The density of the film is larger than the air), 

so the characteristic frequencies are a little lower than the baseline case. The hydrogen 

trap case (with 2 films) has a significant frequency shift, but the phase change is almost 

the same as the air-trap-only case. So it is believed that the 2 films will introduce some 

phase change due to the elasticity of the film, while the hydrogen trap will cause a 

frequency shift systematically. 

The experimental hydrogen trap case is predicted with the numerical result from the 

acoustic solver (figure 13). Here the numerical result is based on a density profile without 

any correction for the plastic films. The f2 and f3 are correctly predicted, while the high 

frequency responses show some phase difference. The film has some effect under high 

frequency noise, while transparent to the acoustic wave of f2 and f3.  
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Figure 13. Comparison with analytical predictions (left) and Experimental vs. 

Predictions at 5 positions on one side (right). 

If given the element (or pneumatic spring) at the position of the films with more mass to 

mimic the film (here only 2 points with 10 times of the original mass), the frequency 

response will be improved (as shown in figure 14.). Though there are still some phase 

difference, the magnitude of higher harmonics are closer to the experimental data. It is 

equivalent to say that adding the mass effect of the film will improve the prediction. 

Further improvement is not made, since the film modulus is missing and it is not 

worthwhile to model the impact of the film separately. It has a minor effect on the 

frequency shift introduced by the density trap. 
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Figure 14. Better prediction with improved film effects. 
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Having partially validated the solvers in inhomogeneous field, we can make some 

predictions on the role of the inhomogeneous zone on the duct acoustics. The 

experimental validation is difficult to perform, so we will use these two solvers to 

validate each other. The purpose of these tests is to find the acoustic response of a closed 

system with density and location effects. 
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Figure 15. Mode selection on the position of a light density trap (mw=8g/mol)(a) mode 

shape (b) fundamental harmonic (c) other harmonics 

Figure 15 shows the pressure mode shape and the mode selection on the different 

positions of a light density trap. The molecular weight of the density trap is 8 g/mol out 

of 28.84 g/mol (air). The trap is 0.75 inch in width (top-hat profile) and moves from the 

center (zero displacement) to the right until out of the domain.  The pressure mode shapes 

are those at the instant when the displacement is 1 inch from the center (figure 15(a)). 
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Consistent with figure 11, the pressure fluctuation level is lower in the trap. Again the 

light density trap stretches the mode shapes. The frequency shift for the fundamental 

harmonic is shown in figure 15(b). The result from the acoustic solver is also shown with 

the dashed lines. The trends are closely preserved and the prediction difference comes 

from the number of points for spectrum analysis (for flow solver) and the number of 

pneumatic springs for mass-spring analysis (for acoustic solver). This difference is 

expected to diminish with finer grids in both cases.  

The frequency shift for other harmonics is shown in figure 15(c). Only the fundamental 

harmonics is monotonously decreasing and transits to the value in the homogeneous field 

of air, while the other harmonics follow a pattern that looks like a mode shape. 

Physically, it means the acoustic wave of the fundamental harmonic travels once across 

all media, while the other waves travel more than once locally (near the density 

interfaces). The global effect is that the system response is a function of local position 

and local density. This provides the possibility to avoid certain acoustic modes via initial 

design control. In theory, all system response can be controlled by organizing the position 

and strength of the density inhomogeneity. And this is implicitly practiced in the pass 

liquid rocket engine development (Hulka et al. 1995). In reality, shifted system response 

may be another acoustic modes to be damped. So there sill need some research work on 

predicting the onset of resonance in a combustor. Our work is a step forward on 

completely avoiding the resonance in a combustor. 

This prediction can be used to explain the experimental result reported by Marshall et al. 

(2006). They provide carefully designed combustor details and use 1-D unsteady Euler 

equation solver for numerical simulations. All effects, including wall, density, flow and 
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combustion, are involved in modeling the acoustics. Here we find their result on the 

acoustic response to different injector locations supportive to our needs. In studying 

transverse modes, the location of the single injector is varied to find the system response. 

The fundamental harmonic for the injector near wall is around 2700 Hz, while the same 

harmonic is shifted to 3900 Hz when the location is moved to the center. The second 

harmonic is almost unchanged (around 5000Hz). We made following observations 

according to our theory: 

The advanced harmonics are no longer full integer multiple of the fundamental 

harmonics, because the density field is no longer homogeneous.  

The centerline light density trap has the highest fundamental harmonic. The 

fundamental frequency will decrease when shifted to the wall side. That is to say, 

the injector (or the density trap) near the center will have a larger role on 

changing the duct acoustics.  

The second harmonic can be the same with different positions of the density trap 

(injector with combustion), since they are not the monotonous function of the 

location. 

Their result is consistent with our result. It seems possible to make a prediction of the 

characteristic response based on the measured density profile, given the concentration 

and temperature distribution in the domain. 

A similar prediction is performed on the position of the heavy density trap. Again the 

pressure fluctuation in the trap is higher, and the mode shapes are distorted by the trap 

and its position (figure 16(a)). The mode selection on the right figure is correctly 

performed and predicted (figure 16(b)(c)). 
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Figure 16. Mode selection on the position of a heavy density trap (mw=160g/mol)  

A further study is to find the role of the trap width on mode selection. Here we have only 

a light density trap and expands until flooding the domain (figure 17a). Thus we have a 

smooth transition from one medium to another, which is correctly predicted on the right 

figure. It is noticed that the transition for higher harmonics are not monotonous, probably 

due to the complex coupling between the two density interface and the two walls.  
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Figure 17. Density trap width and its role on harmonics 

It is no surprise that the two solvers produced almost the same prediction on the density 

and location effects. The characteristic harmonics are the system response of any 

mechanical system. With the same mass (inertia), stiffness (elasticity) and the boundary 

condition, both solvers behaves properly.  

The above successful simulation and prediction seems to pave the way for an inverse 

problem approach to find the density position, width and/or profile in an acoustically 

excited flow field. The theory says yes while in reality we need to measure the higher 

order harmonics, which is low in energy, and the background noise is usually strong. The 

2D or 3D acoustics is further complicated by the geometry functions and the source terms 

inside the domain. In some simpler cases, such as those encountered in underwater 

acoustics, the inverse acoustic problem is actively researched (Taroudakis et al., 2001).  

 

4.3.3. 2-D simulations of chamber acoustics in a homogeneous domain 

Real combustion-instability problem are mostly 3-dimensional flow with reactions within 

a certain chamber. Here with the flow solver, we can find the chamber acoustic modes in 

a 2-D domain without flow and density effects. Here the source is the sinusoidal wave 

generator modulated by the amplitude of whitenoise. The whitenoise is generated based 
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on the random number generator in FORTRAN and the Gaussian distribution function 

(Press et al., 1996). 
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Figure 18. 2-D DNS simulation of acoustic waves (whitenoise) in homogeneous chamber 

a) spectrum at the wall opposite to speaker, pressure fluctuation at b) f=1955Hz, c) 

f=3910Hz, d) f=5856Hz, e) f=7820Hz. 
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Figure 18(a) shows the spectrum response of pressure sampling at the wall opposite to the 

excitation speaker. The transverse modes are clearly shown. It is also observed that the 

amplitude of these modes is variable depending on locations, so the amplitude 

distribution for these modes (b/c/d/e) are selected to show the patterns of these modes. 

This result is consistent with previous 1-D simulations, and also with the mode pattern 

studies of Longatte et al. (2000). No matter what is the source of the speaker, the 

chamber will select its preferred modes based on the boundary conditions. The correct 

prediction of these modes shows the right boundary treatment in this code.  

 

4.3.4. 3-D simulations of chamber acoustics with inhomogeneous flow 

In real test conditions, the density in-homogeneity is maintained within streams in a 

complex domain (injector cavities, flow dampers, acoustic-liner, etc.). So we need to 

simulate a 3D flow to show the capability of the flow solver under these conditions. Here 

the Smagorinsky model is used to provide the additional turbulent viscosity for the 

stabilization of the computation.  For the safety operating conditions, the Helium is 

chosen as the light gas instead of hydrogen, while the heavy gas is the normal air. The 

flow solver uses a constant ratio of specific heats, while this ratio for Helium is different 

from the common di-atomic gases. This will cause a minor effect by different bulk-

moduli of the medium. Since some flow parameters (turbulence level, initial pressure 

drop, etc) are missing, and the jet profile measurement also has some uncertainties, we 

accept this error. 
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Figure 19. Snapshot of inhomogeneous flows a) Schlieren image in experiments.  b) 

Numerical Schlieren image. 

Here the flows in experiment and simulation are shown in figure 19. The black sensor in 

the helium stream is a hotwire for velocity measurement. The Schlieren image is the 

common method for density variable flows. The numerical Schlieren image is based on 

the second order derivative of the density field. Due to the dissipative nature of 

Smagorinsky model, the fine turbulence structure in the experiment is smoothed in the 

numerical result. 
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Figure 20. Spectral measurement in the acoustically excited flows. The role of acoustic 

excitation on the density-variable flow is shown in figure 20. The sampling point is 2cm 
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from the injector plane and 3.5 cm from the speaker (transversely). For the unforced 

cases, the experimental results (a) are subject to various mechanism of flow instability 

(flow instability and longitudinal acoustic mode), while the numerical test on the right (b) 

are predominantly perturbed by the initial forcing. This artificial perturbation is a little 

strong (comparing with experiments) and mostly covers the low frequency range (near 

120 Hz). These frequencies are subject to the impact of the outflow boundary treatment, 

where a buffer layer is imposed. For the sideway acoustically excited cases, both graphs 

show that the specified mode will be excited in the stream, no matter whether the 

excitation is related to a peak or valley (in spectrum diagram) or not. The external forcing 

will modulate the flow and lead to an enhanced mode, while the neighboring modes are 

suppressed. For the numerical streams, the initial turbulence forcing creates significant 

perturbation in the low frequency range. Though not significant as the experimental 

result, the effect of modulation is observable. Here the data for statistical analysis is about 

10 cycles (of excitation) comparing with more than 1000 cycles in the experiment. So the 

peak amplitude is still under-resolved as the experiment. Longer simulation time will 

produce better statistics. 
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Snapshots:   a) unexcited          b) excited with 372Hz              c) excited with 500Hz 
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Averaged-shots:   d) unexcited      e) excited with 372Hz           f) excited with 500Hz 

Figure 21. Effect of acoustic excitation on the density stratified flow field. 

The role of excitation is also shown in figure 21. Here the streams are superimposed with 

a turbulence spectrum (Passot et al. 1986). So the flow will transit into turbulence in a 

later stage. The acoustic source will modulate the flow with its inherent frequency, so the 

vortex is generated earlier due to the external forcing. The right stream is perturbed more 

than the left stream due to its proximity to the source. 
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Figure 22: Averaged species profile at x/D=0.75. 

The effect of mixing is shown in figure 22. Here all 3 averaged species profile at 

x/D=0.75 are shown. The excitation of 372Hz has the better mixing effect, since it is the 

most dominant mode in the unforced streams. The acoustic mode close to the jet 

preferred mode would have the most significant effect on the mixing, which is also 
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shown in figure 21. This enhanced mixing effect is also studied by Richecoeur, et al. 

(2006). 

 

4.4. Discussion and future work  

4.4.1. Summary of the simulation 

For the plane variable-density streams simulation, the domain size is 15 cm with a jet 

speed of 6 m/s, so the flow-through time is 0.025 sec. The characteristic length scale is ¼ 

inch, or 0.00635m. The jet Re number is 6781 (based on the Helium speed and Helium 

plane jet width), the Mach number is 0.052 for the jet velocity, and Richardson number is 

zero (no gravitational force).  

A grid resolution study shows that for such a Re=6781 flow ( 1356Re ≈t ), the DNS 

resolution is on the order of 28.4 mµ , while the resolution for a well resolved LES is 

158.8 mµ  (based on jet thickness divided by 40), as compared to the current choice 

(dx=395 mµ ). The cost ratios for DNS over LES based on the above choices are 978 and 

37420, respectively. Only the last one is chosen here due to the limitation of computing 

resources. The advantage of LES over DNS for such a high-Re flow problem is obvious.  

 

4.4.2. Brief overview of the previous experimental work on LRE 

The fire triangle is well established for analyzing the fire prevention and suppression 

problems. Here the noise is unwanted sound, just like the fire is unwanted combustion. 

So we can setup a combustion noise triangle following the fire triangle. Removing any of 

the 3 elements in the fire triangle will lead to un-sustained combustion. Similarly, 

improving any of the 3 elements in combustion noise triangle will lead to stable 
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combustion without combustion oscillations. A review of the literature shows most of the 

research in combustion instability control focused on either the source or the boundary, 

while there is not enough understanding on the media supporting the propagation of the 

sound waves. It is the main purpose of the paper to find the role of medium density in 

selectively supporting the acoustic waves. 

Heat

Fuel Air

Source

Media Boundary

 

Figure 23. Analogy between fire triangle and combustion noise triangle 

According to Culick and Yang (1995), the term “passive control” means the change of 

the geometry parameters to suppress acoustic waves in the chamber. Usually the passive 

part means the baffles, resonators, or acoustic liners which need no additional energy to 

suppress the noise. So it is a modification to the boundary. The essential point is to force 

the resonance to occur in frequency ranges where the driving mechanisms are inadequate 

to sustain oscillations or to directly damp the mechanical energy of unsteady motions. 

The effectiveness of the baffles is associated with the possibility for shadowing regions 

of sensitive processes from disturbances. Whatever devices are used, limitations always 

arise because of the issues such as the rigid frequency response, the structural integrity 

and the flow loss, etc.  

Active control of combustion instabilities has received more attention recently since the 

limitation of passive control is well understood. The most important means of control is 

to control the supply of propellant. The transfer function for pressure and controlling 
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force is established very early, but the instrumentation and transducers limit this method 

from successfully controlling the noise. Also the internal process for propellant supply is 

lacking understanding. So this method is far from mature. A second method is based on 

the idea of antisound in which destructive interference is caused by injecting an 

appropriate acoustic field to cancel unwanted noise. There is a series of applications with 

various means to generate antisound, including using a secondary flame to produce the 

noise anti-phase with the primary noise source. Since the acoustic energy is only a tiny 

fraction of the chemical energy released in combustion, it is hoped that an acoustic 

source, such as a loudspeaker, primary fuel control or secondary fuel control will lead an 

acoustic source into the field. This source is anti-phase with the original source, so the 

noise is cancelled or damped. This idea works for some simple laminar flame apparatus, 

such as Rijke tube, and some limited work on real combustors. The main problem is a 

lack of the understanding on combustion noise generation process and the complexity of 

the turbulent mixing. The problem lingers as when, where and how to introduce the 

antisound, so current experiments are mostly simple and one-dimensional. 

Due to the high density of energy release in a volume having relatively low losses, 

conditions normally favor excitation and the source of excitation is difficult to remove. 

Though not explicitly stated, the density effects were utilized in finding the instability 

boundaries for some combustors. For example, the importance of propellant density on 

the combustion instability problem was long recognized in the cryogenic 

oxygen/hydrogen propulsion industry. Different adjustment methods, such as Hydrogen 

injection temperature, momentum ratio, velocity ratio, contraction ratio, etc. were 

proposed to find the unstable region of the combustor operation. They have gained 
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variable success in practice for some specific combustors. The essential point from the 

density point of view is that phase-shift due to the density interface, so that there could 

have some anti-node (to the dominant combustion induced frequency) at the wall. Thus 

the wall damps the dominant waves indirectly. This method is a spatial phase-shift via 

density control. This idea has to be validated by further experiments. 

4.4.3. Predicting the instability zone for design purpose 

It was found that the combustion stability of many LRE program is represented by a 

particular injection element type – the concentric or coaxial orifice - and particular 

conditions for developing high-frequency acoustic instability – low-hydrogen injection 

temperature. The later means the background density determines the over-all behavior in 

the combustor. From the source side, the high density of energy release in a volume 

having relatively low losses, conditions normally favor excitation and sustenance of 

oscillations in any combustion chamber intended for a propulsion system. So it is difficult 

to modify the disturbance from the source side, while the role of background density field 

is predictable. This leads a new cluster of methods controlling the combustion instability, 

i.e., control the resonance via density field control. This idea look new, but some 

measures are already practiced in the industry. With the analysis result in section 3, we 

can have a new look at some practice in this field. Here are a few examples: 

Various mechanisms describing the instabilities were theorized as engine parameters 

were correlated and empirical stability boundaries defined. Hutt and Hulka (1995) 

provide a summary of the numerous LOX/hydrogen coaxial injector studies that have 

identified hydrogen temperature and the ratio of gas to liquid propellant flow velocity as 

the primary determinants for the onset of combustion instability. Recommended design 
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practices are velocity ratios greater than ten and hydrogen temperatures greater than 55K. 

It has also been observed that a small cup recess has a beneficial effect on stability. Based 

on the result in this work, increasing the hydrogen temperature will lower the density. So 

the system dynamics are changed by the boundary through different spatial distribution of 

inertia and elasticity. 

The injection velocity ratio needs some attention, since it maintains the density traps 

(Oxygen is heavier than Hydrogen). This condition is close to the ideal condition set by 

Prof. Ffowcs Williams, “ The hope is that physically connected regions might one day be 

acoustically separated by a sparse array of secondary sources that constitute an acoustic 

screen.” This screen can be understood as a complete shield with not sound wave in and 

out, but it can also be looked as a selective filter to change the phase of the dominant 

acoustic wave. The stiffness of the stream will enhance its role as an acoustic screen. In 

the perspective, the flame can be treated as both a source and a damper/phase-shifter. 

With better knowledge on the role of density in fine-tuning the phase of the combustion 

noise, we can design the future combustor in the following way (figure 24). 
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Figure 24. Conceptual flowchart for future liquid rocket engine design with special 

emphasis on combustion noise control. 

Here there are two difficulties still lingering:  system dynamics and acoustic response. 

This paper tries to find a method to predict the acoustic response, while system dynamics 

looks predictable from the historical data. For example, when hydrogen level reaches a 

certain level, all combustion oscillations are killed at the wall or some density interface, 

so the combustion is stable. This fact was usually explained from the chemical kinetics 

perspective. Here this study shows this may be a possible criterion for system dynamics, 

which is beyond our research in this work.  
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4.5. Conclusions 

To find the role of density and wall on the acoustic response of a duct, 2 numerical 

solvers are developed to prediction the system response with variable complexities. They 

are validated by carefully designed experiments. 

The 3-D compressible flow solver can predict the transverse modes from 1D to 3D 

conditions, with and without flow, and/or with the variable density conditions. The 

excitation is specified as a source of velocity fluctuation, and the floating pressure 

fluctuation field shows the acoustic response of the system. Several experiments are 

performed to validate the numerical results. The results show the role of density and wall 

on changing the acoustic wave propagation, so leading to different mode selections. The 

modal analysis can be used to demonstrate the mode identification. 

Originally developed for any mechanical devices, the 1D characteristic-based acoustic 

solver used the idea of modal superposition and eigenvalue analysis to find the natural 

frequency of a certain system. The resonance property is based on the inertia, the 

elasticity and the boundary conditions, so it is inherent to any system disregarding the 

perturbation source. The acoustic solver is independent to the perturbation and can be 

applied to validate some simple resonance cases.  

As commented by Colonius et al. (2004), the sound generation is in fact the release of the 

trapped wave modes in the vortices, here the mode selection process is the release of the 

predetermined modes due to the density field (including the density interfaces, such as 

wall). The flow has a secondary role in mode selection, since it is the density profile 

maintained by the flow determining the system response. With smaller viscosity 

damping, the non-dissipative wave in chamber will shift the acoustic energy into those 
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predetermined modes. The selected and enhanced acoustic wave will play an important 

role in flame-acoustic interaction, which is still actively researched.  

The experimental and numerical results show that the externally applied mode will work 

on the stream better when the acoustic mode are coincide with the jet-preferred mode. 

Excitations at other modes can still modulate the flow to a lesser extent than the jet-

preferred mode. The effect of external forcing on mixing is correctly simulated. 
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Chapter 5. Numerical simulation of a strong plume 

 5.1. Background 

Fire-induced flow is one kind of plumes (featuring temperature variation) usually 

important in transporting the combustion products to other locations outside the 

combustion zone. So it is of great interest to fire detection, sprinkler actuation and fire 

suppression processes. When the variable-density jet is flowing in a gravitational field, 

the flow speed will increase or decrease due to the action of gravity. A jet is the discharge 

of fluid from an orifice or slot into a large body of the same or similar fluid. A plume is a 

flow that looks like a jet, but is driven by the potential energy source that provides the 

fluid with positive or negative buoyancy relative to its surroundings. The primary 

difference between a jet and a plume is that the jet is momentum-dominated while the 

plume is buoyancy-dominated. The buoyancy is generated from the density difference, 

which can be caused by either thermal difference (such as fire) or concentration 

difference (such as salt water). In most plume situations, fluid either at high temperature 

or at a different density is injected into ambient air. After a certain distance, the initial 

momentum is lost while buoyancy effects become dominant. Depending on the initial 

momentum strength, the plume can be either a forced plume (characterized by a strong 

momentum at the injector) or a purely buoyant plume (no initial momentum). Forced 

plumes share some common features with jets, such as: transition from a laminar to a 

turbulent state in the near-field, self-similarity in the far field, air entrainment by large 

eddies that control spreading, etc. In this perspective, the plume is controlled by flow 

dynamics that are similar to those found in cold jets. 
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The classical jet and plume theory is based on the application of dimensional analysis and 

similitude arguments. A typical example is the buoyant momentum jet (i.e. the forced 

plume). Integration of the equations of momentum and mass conservation across the jet 

leads to the conclusion that the total specific momentum flux is preserved as the jet 

develops spatially, thus the volume flow rate µ  associated with a momentum-dominated 

flow is given by a relationship of the form. 

xM 2/1~µ                                                                     (1) 

On the other hand, the volume flow rate associated with a buoyancy-dominated flow is 

given by 

3/53/1~ xBµ                                                                   (2) 

Where B is the initial specific buoyancy flux, M is the momentum flux, which are defined 

as 
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Where 0r  is the source radius.  

For forced plumes (plume with non-negligible initial momentum), the jet solution (1) is 

appropriate for 2/14/3 / BMx << , and the plume solution (2) is valid for 2/14/3 / BMx >> , 

since the only length scale that can be constructed from M and B is 2/14/3 / BMLM = , the 

Morton length scale. It is argued that though buoyancy effects become dominant over 

momentum at 5/)( 0 =− MLxx  (Shabbir and George), self-preserving profiles of mean 

and fluctuating mixture fraction can only be achieved at roughly 10/)( 0 >− MLxx  (Dai 
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et al. 1994). Failing to collect data in the well-established zone leads to different 

constants supported by different work by different authors (Basu et al. 1999).  

The work of Nam and Bill (1993) dealing with free plumes shows that the standard ε−k  

model over-predicts velocities and temperature on the centerline of a plume, leading to an 

underestimation of the width of the plume. Correction is made by tuning the turbulent 

viscosity coefficient and the effective Prandtl number; thereby reported agreement is 

improved within 2 % error. Hara and Kato (2004) simulated the thermal plumes with a 

standard ε−k model, and found that the cell Reynolds number determines the quality of 

the numerical results. Besides the above work, the simulation of plumes with RANS 

approaches are limited, partly due to the unsteady nature of the plume, and partly due to 

the many empirically-determined constants in RANS approaches. 

McGrattan et al. (1998) developed a numerical model based on a simplified set of 

equations, applicable to buoyancy-driven flows of perfect gas. The weakly compressible 

approximation is made, so that acoustic waves are filtered out. This model was originally 

developed to model smoke dispersion from large pool fires, then down-scaled to simulate 

fire plumes and fires.  

Based on the DNS code of Boersma et al. (1997), a dynamic LES (Basu et al. 1999) in a 

spherical polar coordinate system is performed to compare with the experimental data of 

Shabbir and George (1994). The governing equations correspond to an incompressible 

flow with the Boussinesq assumption. Similarity solution and turbulence levels of the 

plume are compared. This work provides some insights on the boundary conditions and 

the validity of Boussinesq hypothesis. A low-Mach-number weakly compressible flow 

with variable density is simulated with a standard Smagorinsky model (Zhou et al. 2001). 
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The pressure is decomposed as the zeroth-order thermodynamic pressure that follows the 

ideal gas law, and the hydrodynamic pressure, which is solved by a projection method 

with a Poisson equation solver. This formulation has no need to capture the acoustic 

wave, but is still expensive to solve (using multi-grid method and the Poisson equation 

solver), so no dynamic model is used. DesJardin et al. (2004) developed a LES code to 

simulate the instability modes and flow dynamics of a Helium plume. Their simulation is 

computationally expensive, since the full compressible flow formulation is adopted and a 

combination of different schemes are employed to prevent the generation of nonphysical 

overshoot and undershoot (Gibbs error), and to prevent the occurrence of odd-even 

decoupling errors (i.e., checkerboarding) from appearing in regions of the flow where the 

Mach number approaches zero.  

Most of the experimental and theoretical work on plume has been concentrated on the 

far-field self-similar region. Dai et al. (1994) studied the fully developed turbulent plume 

extending far from the source (up to 150 diameters). According to their observation, the 

self-similar region can only be achieved after about 80 diameters. So most previous 

research results are questionable as to the state of turbulence. On the other hand, the 

plume experiment by George et al. (1979) and Shabbir et al. (1992) presented results in a 

self-similar region in the range of 8-25 diameters from the inlet. So their work is a good 

choice for a computational study.  

Here we look at a round turbulent plume discharging into a quiescent environment with 

strong initial momentum, buoyancy and turbulence at the source (so it is called a 

turbulent forced plume), using the tools of large-eddy simulation. A strong plume means 
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large density variations (buoyancy flux). The emphasis of the simulation will be on the 

similarity assumption and the decay laws (plume structure). 

The text in this chapter is organized as follows. The simulation inputs are presented first. 

The result from plume simulations will be compared with a similar numerical study and 

the original experimental measurements. The purpose of this work is to reproduce the 

correct decay laws appearing in classical buoyancy-dominated flows. 

 

5.2. Simulation Inputs 

One of the advantages of LES is to predict the transition and subsequent turbulent mixing 

(or spreading) process that occurs in spatially developing flows. A free jet is known to be 

susceptible to Kelvin-Helmholtz instability, which in turn means that the flow is unstable 

to small exponentially growing disturbances and many linear instability analyses have 

confirmed this growth. The thin shear layers in a spreading jet with an initially top-hat 

profile undergoes several stages of development: Kevin-Helmholtz instability followed 

by the rolling up of vortices, pairing and merging process and the breakdown of the 

potential core with the increase of spreading by a secondary three-dimensional instability 

mechanism. Vortex dynamics are also expected to be important in the control of plume 

instability, transition from the momentum to buoyancy dominated region and even the 

plume development further downstream. According to the experiments by George et al 

(1978) and Shabbir and George (1994), the plume achieves its turbulent state within 2 

diameters. Other investigators, however, have shown that the length of the potential core 

lies between 5-8 jet diameters if white noise is imposed on the jets. Here following Zhou 

et al. (2001) a sinusoidal forcing is imposed at the inlet boundary to generate the 
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turbulence for an early transition to a turbulent state. A survey of free jets shows that the 

evolution of an azimuthal instability mode can lead to an earlier breakdown and transition 

from laminar to turbulence. The same forcing scheme with both vertical forcing and an 

azimuthal mode of instability is adopted to get consistent results with the experiments. 

The outflow conditions are similar to those used in Chapter 3. The inflow conditions 

correspond to prescribed velocity and temperature profiles.  

To excite the flow, the fluctuating axial velocity at the inflow plane takes the following 

form: 

∑
=


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 +=′
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n n

ft
rAUu θ

π
                                                   (5) 

where A is the amplitude of forcing and N is the number of modes (set to 6).  Therefore 

the fluctuating axial velocity is specified as a function of time, t, and azimuthal angle, θ . 

The frequency f is the passage frequency of the vortical structures at the end of the 

potential core, which is determined by the jet-preferred mode corresponding to 

3.00 == UfDSt . That is, the response of a round jet to a monochromatic excitation, 

(measured as the gain or ratio of the peak amplitude to initial amplitude of the wave 

along the jets axis), reaches a maximum near a Strouhal number of 0.3. This value comes 

from forcing experiments on round jets by Crow and Champagne (1971) and was 

validated by the numerical experiments by Zhou et al. (2001b).  
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Summation of the Sine Perturbations
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Figure 1. Summation of the temporal modes of equation (5) and azimuthal variations. 

 

A vertical round jet of heated air is injected upward, which is subjected to a positive 

buoyancy force. Although the use of a rectangular grid for the circular jet may cause 

some stepped edges around the jet boundary, especially close to the plume source, the 

effect is considered to be negligible in the reference study by Zhou et al. (2001a). The 

heat source diameter is 6.35 cm, the exit velocity 0.98 m/s, the inflow temperature 568 K 

(295 C). The corresponding Reynolds number is 1273, based on the inflow mean 

velocity, viscosity and diameter. The reference study has 256x128x128 uniform grid cells 

for a domain of 16x8x8 diameters. In the present study, in order to keep the domain 

boundaries far from the flow region of interest, the grid is uniform in the center and 

stretched (with a stretch ratio of 6%) near the side boundaries. More specifically, 45-46-

45 grid cells are allocated for the y and z directions. The grid in the direction of gravity 

(in the x direction) is uniform up to the first 180 grids, and then a grid stretching of 3% is 

used down stream. Overall a 256x136x136 grid is used to simulate a domain of 

16Dx16Dx16D, with a resolution that is about twice higher than that used in the 

reference study.  
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Figure 2. Grid adopted in the present plume (only 1 out of 3 grid lines is shown here)  

Comparison Current Study Zhou et al. 

Temporal 

discretization 

3
rd
 order Runge-Kutta scheme 2

nd
 order Adams-Bashforth 

time integration 

Spatial 

discretization 

6
th
 order central difference 

scheme + 6
th
 order central-

stencil filter 

2
nd
 order central difference 

scheme 

Grid 256x136x136 256x128x128 

Domain 16x16x16D (D=0.0635m) 16x8x8 D (D=0.0635m) 

Best Resolution 

(D/dx) 

29 16 

Time step 0.00028 sec 0.00025 sec 

Running cost 10 (sec) x 4 (cpus) x 34.0 (hours) 6.5(sec) x 64 (cpus) x 10 

(hours) 

Acceleration ratio ASR = 100 None 

Table 1. Summary of computational inputs and comparison with Zhou et al. (2001a) 

We now turn to the specification of initial conditions. This specification is affected by the 

ASR method. As the background flow speed is small, the chance of initial perturbations 

(due to incorrect initial profiles) being flushed away is small. So it is important to set-up 

correct initial conditions. The initial conditions are specified as a hydrostatic solution. 

Here the flow problem in the gravitational field can be simplified into a 1-D steady flow 

case as shown in equation (6). This problem corresponds to a 1-D, steady flow problem 
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in the gravitational field, without diffusion and reaction. It was first introduced by Wang 

and Trouvé (2004). 
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The solution to the above equation is 
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With the introduction of variable flow profiles, the initial condition for a plume 

simulation is set up as 

( )[ ]

[ ]
























 −
−=








 −
−+Ω−=








 −
−Ω−+=

−

−
−

1

0

0
0

0

0
001

1

1

0

0
010

1
1

1
1)(

1
1

γ
γ

γ

ρ
γ

γ

ρ
γ

γ

ρ
γ

γ

p

gx
pp

p

gx
TTTT

p

gx
uuuu

                                          (8) 

where Ω  is a hyperbolic-tangent profile in the y-direction that corresponds to a smooth 

step function. Here the density is directly computed from the state equation, so only u, T 

and p need to be specified. 
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The conventional Smagorinsky model is adopted, as the reference numerical study has 

shown that the effect of the SGS model is small (Zhou et al. 2001b). A Smagorinsky 

constant of 0.1 is chosen to facilitate the flow transition from laminar to turbulent state. 

The time step is limited by the CFL condition with the ASR method, so the total running 

time is limited by the pseudo-acoustic speed. Roughly 35 seconds is needed for a time 

step of 0.00028 second on 4 processors (2.8 GHz CPU of the Opteron PC/cluster). A total 

simulation time of 10 flow-over times is computed. 

 

5.3. Data Analysis 

 

Figure 3. 3D Snapshots of vorticity magnitude and hydrodynamic pressure (perturbation 

only) 

Figure 3 shows a snapshot of the vorticity magnitude and pressure field. The unsteady 

puffing near the injector is clearly seen. Though the grid near the outflow boundary is 

coarse, the buoyancy-induced turbulence can be recognized from the vorticity magnitude 

field. The helical pressure surface shows the azimuthal forcing. The regular/orderly 

structure breaks in the second half of the domain, showing the role of buoyancy in 

forcing transition from momentum-dominated to buoyancy-dominated state. 
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Since the experimental work by Shabbir and George (1994) was performed in the well-

established plume region (8~25 D), there is no experimental data available for the near field. 

Here the numerical results of Zhou et al. (2001a) are used as the reference study. Simulation 

was found to agree well with experimental data. 
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Figure 4. Instantaneous snapshots of velocity and temperature field in center XY plane 

Figure 4 shows an instantaneous velocity and temperature contour plot in the center x-y –

plane with azimuthal forcing. The acceleration of the flow due to buoyancy can be clearly 

seen. The laminar flow dominates the near-field region until the end of the potential core. 

Some overshooting of temperature near the rim of the potential core and at the tip region 

can also be observed. 
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Figure 5. Instantaneous snapshots of 2D azimuthal vorticity and pressure 
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Figure 5 shows a snapshot of the z_vorticity and pressure. The helical instability mode 

and the entrainment vortex are clearly seen.  

The centerline mean velocity and temperature distributions are shown in figure 6. The 

initial acceleration of axial velocity is due to the buoyancy acceleration and has been 

observed by Lingens et al. (1996) who experimentally investigated buoyant jet diffusion 

flames. The underlying physical mechanism is that the positive body force constitutes a 

major part to the mean flow in the near-field region of the buoyant jet. The flow is 

accelerated while the mass flux is not increased much, so the velocity keeps increasing 

until the tip of the potential core. The temperature curves follow a stable plateau, which is 

the potential core, and then drop due to the turbulent mixing/entrainment. The rapid 

decrease of velocity downstream is also caused by turbulent mixing with the surrounding 

fluid. Though the temperature is still higher than the background, (so that the buoyancy 

force is still acting), the entrained ambient fluid offsets the buoyancy-induced 

acceleration. The result is a rapid decay of the velocity and temperature in the far-field.  
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(a)                                                                 (b) 

Figure 6. Centerline mean velocity and temperature variations. 
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In the present study, the mean temperature variations show a local peak at the end of the 

potential core. This behavior is believed to be due to the Gibbs error commonly 

associated with higher order schemes. Also the potential core is a little longer than those 

of the reference study. The reasons may come from 3 sources: 

1. The soft-inflow conditions adopted here have some relaxation effects on the 

imposed turbulence forcing scheme, so the gradient near the momentum thickness 

is smoothed to some extent. This effect will be less significant if the boundary 

profile is constant (i.e. without turbulent forcing). With the turbulent forcing both 

in temporal and spatial domains, the soft-inflow works like a spring, it will absorb 

any sharp changes, and smear some gradients. A difference between the imposed 

velocity and actual velocity profile at a random instant is shown in Figure 7. Here 

the data are shown within each cpu block. It shows that the most changes happen 

near the momentum thickness, which smears the gradient to some extent and is 

important for the flow transition from laminar to turbulent state. 

  

(a)                                                                 (b) 

Figure 7. The relaxation caused by the soft-inflow conditions. 
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2. S3DLES used a high-order central difference scheme. High-order schemes works 

well as long as there are enough grid cells to resolve sharp gradients. If not 

enough grid cells are used, the so-called Gibbs phenomenon will appear at the 

locations where the largest gradients are found. The resulting effect is overshoots 

and undershoots of the primitive variables, such as velocity, temperature and 

mixture fraction. At the same time, the high-order central-differencing filter also 

fails when variations are under-resolved, so it cannot be used to control the Gibbs 

phenomenon. This will be discussed more in Appendix B. Figure 8 shows 

examples of non-physical oscillations formed downstream of step variations. 

  

(a) 8
th
 order scheme                                      (b) 6

th
 order scheme 

Figure 8. Gibbs phenomenon on the specified input temperature profile. 

3. 3-D round plumes have a degraded resolution in an orthogonal coordinate system. 

Due to the entrainment behavior, all errors produced near the edge converge at the 

tip of the potential core. This leads to a significant overshooting at the end of the 

core. 
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Figure 9. Spatial distribution of errors in the near field of the plume. 

Of these 3 factors, the second one is believed to be dominant for all the simulations in 

this work. The unphysical overshooting of the parameters will delay the transition, so it 

helps explain the delay of the velocity decay, and the longer potential core, and under-

development in the far-field regions. The first factor only delays the turbulence transition, 

but will produce no overshooting of primary variables. 

The centerline values of the non-dimensionalized mean velocity 0Mxuc  as a function 

of non-dimensional vertical distance mLx /=ζ  are plotted in Figure 10. The 

experimental correlation of 3/24.3 ζ  as a function of ζ  is also shown by the dash-dot 

line. The results from S3DLES show the correct scaling law for the far-field velocity 

decay. 
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Figure 10. Centerline mean axial velocity profiles in dimensionless form 
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Figure 11. Half-width of the mean velocity and temperature profiles 

Figure 11 shows the half-width of the plume compared with the reference study. The 

half-width based on velocity is slightly wider than the half-width based on temperature 

(defined as where the excess mean temperature to the ambient value is half the 

temperature difference between centerline and ambient) in the far-field. This means that 

the velocity field in a round plume spreads faster than the temperature field and is 

consistent with the experimental observations of Shabbir et al. (1994). Consistent with 

Figure 4(b), the plume has a longer potential core. It shows that the simulated plume has 

a correct behavior in the far-field while the near-field is affected by the inflow conditions. 
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It seems that the initial forcing is not enough, which can be explained by the relaxation 

due to soft-inflow conditions, and the high order scheme also has some impact on 

transition effects. The flow in the potential core is laminar, which means less 

entrainment, and leads to less spreading. The trend is reversed when the buoyancy begins 

to dominate the flow and when the impact of the initial momentum is lost over distance. 

The spreading rates obtained with S3DLES are larger than the reference study. 

The centerline rms values of velocity and temperature normalized by the mean velocity 

and temperature difference between the local and ambient values are shown in Figure 12. 

It can be seen that the rms velocity and temperature reach nearly-constant values in the 

downstream self-similar region and are very close to the experimental of George et al. 

(1977), who reported the following values: ( ) 4.0
2/1

2 =∆′ TT , ( ) 28.0
2/1

2 =′′ uu .  
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Figure 12. Centerline velocity and temperature fluctuations 

The tendency for a plume to become self-similar some distance downstream of a plume 

means that the turbulent flow depends only on the initial momentum flux and initial 

weight deficit. The overall properties at all vertical heights above the plume follow the 

same dimensionless rule.  
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These imply a slightly greater spread of momentum relative to buoyancy (as also shown in 

Figure 8). If self-similarity is achieved in a plume, the radial profiles of mean velocity, 

temperature and their fluctuations will maintain the same shapes at different downstream 

locations. Four axial positions (x/D=8, 10, 12, 14) are chosen to examine the radial profiles 

across the plume. The radial profiles of velocity and temperature from our LES results and 

the experiments of Shabbir et al. (1994) are shown in Figure 13 where 0x  is the origin of the 

jet. Note that 0x = -1.8D is different from the reference study, which is calculated as the slope 

of a plot of xuc
3 versus 3

cu  as suggested in appendix A of George et al. (1977)  
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Figure 13. Radial profiles of mean (a) axial velocity, and (b) temperature at different 

axial positions. 
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Figure 14. Ratio of SGS viscosity divided by molecular viscosity  

Figure 14 shows the SGS/molecular viscosity ratio in the plume region. This is slightly 

smaller than the result by Zhou et al. (2001a), but the levels are similar. Comparing with 

the strong jet simulation, the Smagorinsky model plays a smaller role here. Larger values 

of the Smagorinsky constant will damp the turbulence and mask the nature of the 

buoyancy-induced-turbulence-transition. So a smaller Smagorinsky constant (Cs=0.1) is 

chosen here. 

The streamlines of the mean velocity field are plotted in Figure 15. It can be seen that the 

plume draws in ambient fluid through the lateral boundary. This is generally called 

entrainment. Cortesi et al. explained that the entrainment was a direct consequence of the 

engulfment of fluid by the coherent, vortical structures after the roll-up and pairing 

(amalgamations) events. The entrainment or mixing of surrounding fluid into the plume 

engulfed by the turbulent eddies is the key to understanding turbulent plumes.  
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Figure 15. The streamlines of mean velocity field in the plume. 

 

The classical plume theory by Morton et al. (1956) is based on the following 3 important 

assumptions: similarity profiles, the Boussinesq assumption and a linear entrainment rate 

assumption. The assumption of linear entrainment states that the mean entrained flux 

across the edge of the plume E (entrainment rate) is proportional to the local upward 

velocity u (a function of plume height). The plume theory is simplified by the integral 

solution/assumption of top-hat profiles of velocity, temperature, and plume radius. Of 

most importance is the determination of the entrainment rate on the basis of the 

assumption introduced by Morton et al. (1956). 

The calculated plume width b from the simulation data is shown in Figure 16. The 

experimental slope of 0.18 is also plotted in the same graph. It can be seen that agreement 

is roughly acceptable, the discrepancy comes from the insufficient statistics (longer 

simulation time  needed). 
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Figure 16. The plume width distribution along axial position 

 

5.4. Conclusions 

For the round hot-air plume simulation, the domain size is 120 cm with a initial speed of 

0.98 m/s, so the flow-through time is 1.224 sec. The jet Re number is 1273, the Mach 

number is only 0.0028 for the jet velocity, and Richardson number is 0.579. The 

characteristic buoyant velocity is 0.746 m/s (
gDuc

0ρ
ρ∆

= ). 

A grid resolution study shows that for such a Re=1273 ( 969Re ≈t ) plume, the DNS 

resolution would be on the order of 366 mµ , while the resolution for a well-resolved LES 

is 1588 mµ  (based on plume diameter over 40), as compared to the current choice 

(dx=3216 mµ ). The cost ratios for DNS over LES based on the above choices are 354 

and 5961, respectively. Only the last one is chosen here due to the limitation of 

computing resources. The advantage of LES over DNS for such a plume simulation is 

obvious.  
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A forced plume has been simulated using LES at a Reynolds number of 1273 and a 

density ratio of about 2.0. The initial turbulence scheme is forced azimuthally at the inlet 

to facilitate an early transition to turbulence. An ASR ratio of 100 is chosen to decrease 

the acoustic speed, thus increasing the computing efficiency by two orders of magnitude. 

The primary objective of this study was to establish the validity of the ASR method and 

the boundary treatment in treating a low Mach number flow. The results were 

encouraging.  

The far-field of the plume shows the correct statistical behavior (and follows the correct 

decay laws). Basic statistical plume variables (averaged values and rms values) are 

consistent with the reference study. In the far-field, the buoyant jet (or forced plume) 

eventually loses its initial momentum and becomes plume-like far away from the jet 

origin even with a large initial momentum flux at the source. In the near-field, the current 

grid resolution is not adequate to resolve the sharp gradients, and the Gibbs phenomenon 

is observed at the rim of the potential core. The longer potential core and overshoots in 

temperature and velocity lead to an incorrect near-field behavior. A finer mesh is required 

to capture the near-field behavior, which will increase the computational cost 

significantly. Further improvements on the numerical schemes are presented in Appendix 

B. 
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Chapter 6: Numerical simulation of a weak plume 

6.1. Introduction 

Most of the fire-induced flows become buoyancy-dominated. Compared to jet 

configurations, buoyant plumes have a strong large-eddy motion due to the external 

gravitational force; this motion generates shear and promotes entrainment and the mixing 

with the ambient fluid. The entrainment of fresh air into the mainstream determines the 

plume structure and associated hazards to the environment. The plume structure is very 

important to determine the threshold of detection and optimal position of fire detectors. 

From a combustion perspective, the mixing with fresh air determines the non-premixed 

flame location, or in other words, the flame structure. Since most engineering plumes are 

turbulent, the turbulent mixing behavior will be fundamental to the study of buoyant 

flows. 

Integral models based on the similarity assumption have been successful in predicting the 

averaged properties of jet and plume behavior. These models were applied to a salt-water 

plume by Morton et al. (1956) in their classical work on plume theory. Subsequent work 

focused on the measurement of transient properties. As pointed out by List and Dugan 

(1994), although we have a perfectly good theory to describe the long-term average 

concentration of a tracer in a jet or plume, it is the peak concentration that is frequently of 

particular interest. The similarity assumption is valid only in an averaged sense. So we 

need to know the detail structure of the flow, to resolve the apparent contradiction that a 

peak concentration may be equal to 4.2 times the value of the average concentration 

(Papanicolaou et al. 1988). In a fire situation, this peak concentration in the plume may 
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still have the capability to trigger a smoke detector, although the time averaged value 

may be far below the critical level. 

Early work focused on the integral and similarity theory and the plume structure, while 

later work focused on the turbulence and mixing behavior (Papantoniou et al. 1989). The 

numerical approach has made significant progress in recent years. The capacity, 

efficiency and cost of computation have improved at a fast pace. Now, with clusters of 

conventional PCs, it is possible to routinely carry out computational tasks that were 

designated as super-computer applications only 10 years ago. So there is a revival of 

interests on plume structures, with the purpose of developing numerical modeling tools 

(Basu et al., 1999, 2000, Zhou et al. 2001). 

Salt-water modeling has been used in the fire community primarily as a qualitative tool to 

explore smoke dispersion in complex geometries. In salt-water modeling, plumes are 

created by carefully introducing salt-water into fresh-water. The salt-water dispersion 

closely simulates the dispersion of hot exhaust gases (smoke) in a fire plume. The salt-

water plume has the advantage of small-size, is less sensitive to ambient perturbation and 

facilitate visualization. Here the fine-resolution of the plume structure provided by PLIF 

images can be compared as DNS results, so we can study the plume mixing behavior with 

DNS-like resolution data. The experimental images can be used to validate numerical 

sub-models used under the framework of Large Eddy Simulation. This provides the 

background and benchmark work for the large-eddy simulations of turbulent plumes. 

Following the experimental work on the detailed plume structures, the purpose of this 

work is an extension of the study presented in the previous chapter and an application to 

weak plumes, as found in salt-water experiments. The aim of the simulations is two-fold, 
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to validate the ability of S3DLES to simulate weak plumes, and to validate the subgrid-

scale mixing model used in the LES framework. The numerical results from the 

simulation will be compared with the experimental results of a salt-water plume study 

(Yao, 2006). 

The structure of the chapter is organized as follows. First, the direct analogy between 

salt-water plume and thermal air plume is discussed. Then the LES mixing sub-models to 

be tested will be presented. The simulation results will form the main body of the chapter. 

Potential applications of this comparison will be finally discussed. 

 

6.2. Salt-water/fire plume analogy 

Many researchers interested in buoyant flows are environmentalists or meteorologists and 

the experimental fluid is often water. Also the water pollution problems are always 

associated with density variations. So early research in water plumes has been motivated 

by environmental problems. With a growing interest in fires, the advantage of simulating 

fire plumes using salt-water began to be recognized. Early work on fire plume includes 

Baum et al. (1982). Linden et al. (1990) studied the smoke-filling problem for natural 

ventilations using salt-water experiments. It is a useful scaled simulation tool among 

HVAC (including smoke management) communities. 

Since the density of water is about 800 times larger than that of air, high Reynolds 

number flows can be more easily achieved and the experiment can be performed in a 

small configuration (at a reduced scale). The additional benefit comes from the increased 

easiness in visualization and measurements. Reduced experiments in a liquid container 

are subject to less perturbation than a gaseous plume in a large space. For example, the 
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classical study by Morton et al. (1956) has shown the effectiveness of studying plume 

dynamics by injecting fresh water into salt-water. Papantoniou et al. (1989) studied the 

large-scale structure in the far field of buoyant jets. Dahm et al. (1990) characterized the 

large Schmidt number effects in the self-similar far-field of turbulent jets.  

Plumes and jets share several common features. The similarity profiles in plume, first 

proposed by Zeldovich (1937) and Schmidt (1941) are basically irrespective of the fluid 

used. The similarity profiles for jets and plumes are covered in current textbooks on 

turbulence (for example, Pope, 2002).  

The major difference between a salt-water plume and a thermal air plume is due to the 

Schmidt number: while air has a Schmidt number of order unity, water has a Schmidt 

number of around 600. So the mass transport behavior is different at the molecular level. 

This problem is partly overcome by the fact that transport in turbulent buoyant flows is 

determined by the turbulent flow properties, not by molecular transport. Bejan et al. 

(1984) has studied the critical value for laminar plume transition to turbulent state. The 

source-based critical Rayleigh number, 1010=critRa , has been proposed as the criterion 

for axisymmetric plume transition to turbulence. The other limitation in using salt-water 

plumes is that the range of buoyancy intensities (Froude numbers) is limited by the 

density ratio (too small if salt-water is used, too large if air bubbles are used). For the best 

quality of the visualization, only weak buoyancy fluxes can be realized with salt-water 

plume. In addition, the near-field region is still dominated by the initial momentum, the 

analogy breaks down before the plume gains its turbulent state. So the salt-water plume is 

used for comparison with the far-field region in a buoyant air plume.  
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In addition to the universality of the similarity profile in well-developed plumes, the salt-

water plumes and fire plumes have additional common features in the distribution of 

source and strength terms. The early work in developing the salt-water analogy for fire 

plume application is due to Baum, Quintiere and Rehm (1982). Further work includes 

studies of fire-induced flows by Kelly (2000), and Zhang et al. (2002), natural ventilation 

studies by Linden et al. (1996), etc. The focus of these studies are the global properties, 

such as the entrainment ratio, travel times, decay law, etc. With the improvement on 

instrumentation hardware, more detailed work on direct comparisons between salt-water 

and fire plumes was performed by Jankewitz (2004) and Yao (2006). Here a numerical 

simulation of a gaseous liquid-like plume is performed with the intent of comparing 

numerical results with the salt-water plume experiments performed by Yao (2006). The 

purpose is to test turbulent mixing models for LES and the overall ability of the LES 

solver to capture the correct flow physics.  

In salt-water modeling, plumes are created by careful introduction of salt-water into fresh-

water.  The salt-water dispersion closely simulates the dispersion of hot exhaust gases 

(smoke) in a fire plume. The salt concentration and exhaust gas temperatures downstream of 

the flame zone behave like passive scalars and are transported by similar turbulent 

convective and diffusive processes.  Proper scaling of the fire and salt-water flows allows for 

direct comparison of fire measurements and salt-water measurements. 

While most of the previous studies are macroscopic study of the plume structure, in the study 

by Yao (2006), the microscopic structure of local mixing is studied with a high-resolution 

camera and high-resolution simulation of buoyant plumes. Interest in the transport and 

mixing processes in turbulent shear flows stems mainly from their importance in a wide 
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range of technological applications including turbulent combustion, which in the fast 

chemistry limit can be determined from the transport and mixing of a conserved scalar. 

Classically, turbulent transport has been treated as a diffusion-like process, resulting from 

vertical motions whose scales are presumed small relative to the lateral extent of the flow and 

characteristically lacking any persistent large-scale organization. However, contrary to this 

classical picture, experiments over the past years have established that transport in fully 

turbulent plane shear layers is dominated by a characteristic large-scale and roughly periodic 

organization that ultimately results from the dynamics of large vertical structures. This 

organized character of the fully developed shear layer has been found to have particularly 

important implications for turbulent mixing. A further consequence is that the range of mixed 

fluid compositions encountered at different lateral location across the layer is far less uniform 

than what the mean concentration profile might suggest. So it is widely presumed that some 

form of large-scale organization may also play a significant role for transport in other 

turbulent free shear flows. Large-eddy simulation provides such an attractive tool to study the 

mixing behavior due to large-scale organizations. 

 

6.3. Comparison strategy 

The methodology for the PLIF based salt-water plume measurements and the LES based 

CFD plume analysis is provided.  The PLIF experiments provide quantitative visualization of 

large cross-sections of the flow for comparison with CFD model predictions. Highly resolved 

salt-water concentration measurements also provide detailed turbulent mixture fraction data 

for comparison with LES modeling results at the resolved grid scales and sub-grid scales. 
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Conventionally, the salt-water simulation results are used to explain a thermal gaseous 

plume behaviour using scaling laws. Here the salt-water plume results are used to 

compare the turbulence details. While S3DLES is a gas-phase solver and uses the ideal 

gas law, a set of modified gas parameters are proposed to mimic a liquid flow. The direct 

analogy can be established by modifying the transport properties of the gas to match 

those of the salt-water. In the analogy, it is assumed that the turbulent transport is 

dominant over molecular transport. Inlet boundary conditions for S3DLES are specified 

as close to the experimental injection state as possible, though the turbulence levels of the 

salt-water plume are unknown. The turbulence level in the simulation is specified so as to 

promote an early transition to turbulent state to match the experimental results. 

Comparisons between numerical results and experimental data will be made at the same 

location measured from the virtual origin based on the classical plume theory. So here the 

self-similarity assumption of the plume is implicitly used. The sampling point is a point 

in the fully-developed turbulent region. 

Controlled parameters 

 Physical geometry 6.5=injD mm 

 Initial velocity 5.7=u cm/sec 

 Source strength (buoyancy flux) 336108.1/ −−×=∆= smVgB injρρ&  

 Turbulent Mixing Properties 
tt Sc=Pr  

 Turbulent state 
criticalRa

ScGr

Gr
Ra >×=

⋅
⋅

= 10108.3
Pr

 

Uncontrolled parameters 

 Turbulent inlet conditions u′  
 Mixing at molecular levels Sc , Pr  

Table 1. List of important parameters in the comparison between salt-water experiments and 

S3DLES simulations. 
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For a direct comparison to be made, several adjustments are to be made to the gaseous 

plume simulation. 1). The geometry is kept the same, so the length scales are subjected to 

a direct comparison; 2). The initial velocity is the same, so the specific momentum flux is 

the same for both plumes; 3). The source specific buoyancy flux in the model is equal to 

that in the experiment. The source buoyancy flux is given by  

inj
VgB ρρ∆= &                                                                          (1) 

 where V&  is the volumetric source flow and ρ∆  is the density difference at injection, and 

injρ  is the density at injection. The inhomogeneous density is caused by a density 

difference in the water experiment, and a temperature difference in the gas simulation. 

Thus the velocity scale will be preserved by these 3 conditions. 4). The Pr of gas is also 

set equal to the salt-water Sc for direct comparison of the results. Thus the transport of 

the conserved scalar will be comparable at the molecular level. 5) Furthermore, the 

modelled viscosity is artificially modified to match the experimental Rayleigh number. 

Matching Ra provides dynamic turbulence similarity between the experiment and the 

LES model. 

 

To clarify this comparison, further points are made on the direct comparison. Flow 

conditions were prescribed for the experiment and the CFD analysis to ensure that the 

flow was turbulent and buoyancy-dominated. The appropriate specification of these 

criteria is essential to ensure that the mixing dynamics are similar to those in a fire-

induced flow. The flows created in the salt-water modelling study have non-negligible 

initial momentum and are thus considered as forced plumes. If the initial momentum is 

small, these flows will become buoyancy-dominated and exhibit plume-like behaviour 
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very near the source. As discussed previously, Morton defined a length scale based on the 

relative proportions of the initial momentum flux and specific buoyancy flux, 

2/14/3 BMLM = . Morton demonstrated and others have verified that plume-like 

behaviour is achieved at a streamwise location of 5×LM. Although plume-like mixing 

behaviour is achieved beyond 5×LM, it is necessary to introduce a virtual origin, 0z , to 

correct for the initial injection momentum and finite injector geometry before the results 

are compared with point source plume theory. Furthermore, the flow is not necessarily 

turbulent at the exit of the injector because of the small injection velocities required to 

achieve a buoyancy-dominated flow near the injector.  Turbulence in plumes results from 

the buoyancy-induced inertial forces.  A source based critical Rayleigh number of 

1010=critRa  has been proposed by Bejan (1984) and used as a criterion for axisymmetric 

plume transition to turbulence.  The locations of interest in this study correspond to 

10108.3 ×=Ra  significantly larger than this value. The observed turbulent flow dynamics 

are consistent with these results.  

6.4. Results 
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Figure 1. Grid configuration for current simulation (only 1 out of 3 grids is shown here) 
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Figure 1 shows the computational grid for this simulation. The grids are stretched by 6% 

on both sides, and 3% along the jet flow region. About 






⋅






⋅







3

1

3

1

2

1
of the total mesh 

(136x126x126) are kept uniform to capture the near-field flow dynamics. The non-

uniform mesh grids are adopted to keep the boundary away from the point of interest. In 

this problem, a longer domain is needed for the flow to develop into a turbulent state, 

which means 20-30 D from the injector.  

 

Figure 2. Instantaneous 3D snapshots of vorticity magnitude and hydrostatic pressure 

An instantaneous view of the vorticity magnitude and hydrostatic pressure field is shown 

in Figure 2. The azimuthal forcing is seen to create an organized helical pressure field. 

This weak plume has much less turbulent activity than the previous strong plume case 

(see Chapter 5) due to its liquid-like properties.  
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Figure 3. Instantaneous distribution of density (salt-water plume) and temperature (air 

plume) at central xy-plane. 

An instantaneous temperature distribution is compared in Figure 3 with an instantaneous 

concentration profile from the salt-water experiment. The experimental image shows fine 

structure in the far field while the LES result appears more smoothed due to the turbulent 

viscosity and the stretched grids. Also the unmatched initial forcing plays some role on 

the development of the plume. The S3DLES have a thicker plume due to the stretched 

grids in the far field region.  
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Figure 4. Power spectrum of pointwise velocity and temperature fluctuations in the 

plume 

 

Figure 4 shows the energy-spectrum of velocity and temperature fluctuations at x/D=8 

along the centerline. (The statistics are accumulated over a period corresponding to 40 

forcing periods). It is expected that the inertial range in the velocity spectrum obey the –

5/3 Kolmogorov power law. The power spectrum for temperature fluctuations is similar 

to the velocity spectrum. The high-frequency region corresponds to a –3 power law. 

Kotsovinos argued that the ‘jump’ from a –5/3 to a –3 power law is a result of a stronger 

energy cascade due to large plume vortices driven by buoyancy forces.  
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Figure 5. Virtual origin determined from the plume decay law 

The time-averaged velocity and temperature profiles show the correct decay behavior in 

the region where the grid is still uniform. The behavior is obscured in the down-stream 
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non-uniform grid region, where the linear curve has another slope. Due to the different 

transport coefficients, the temperature and the velocity profiles produced different virtual 

origins (0.944cm for temperature and 3.12cm for velocity). The experimental virtual 

origin is -1.18 cm for temperature and 5.36cm for velocity. The similarity profile will be 

corrected based on the respective virtual origins.  
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Figure 6. Non-dimensional evolution of temperature and vertical velocity along the 

plume centerline. Comparison between experimental data and numerical result. 

Figure 6 shows a comparison between experimental and computational results for 

centerline scaling laws. Here all parameters are dimensionless to have better comparison 

between different plume conditions. Here 0xxx −=+  is the distance corrected by the 

virtual origin location. 
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 is the characteristic dimension of the point 

source plume. The dimensionless velocity 
( ) 2/1

*
*

gD

u
u =  is the velocity scaled by the 

characteristic velocity. The scaled representation of the simulation results is close to that 

observed in the far field region in the experiments. The scaling laws are partially 

validated from the theory. 
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Figure 7. Similarity profiles in the fully developed plume region 

The similarity profiles of velocity and temperature are shown in Figure 7. The velocity 

profiles are wider than the temperature profiles, which explains why the virtual origin for 

velocity is located farther upstream than that of temperature. 
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Figure 8. Turbulence fluctuations along the centerline. 

Figure 8 shows LES results for the velocity and temperature fluctuation intensity. Values 

of 0.28 and 0.4 are given respectively for velocity and temperature fluctuation intensities 

in George’s experiments.  
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Figure 9. Time-averaged cross-stream profiles of the turbulent/molecular viscosity ratio 

The role of the Smagorinsky model is shown in figure 9, where the turbulent/molecular 

viscosity ratio is shown at different x-locations. Here for comparison with salt-water 

plume, the reference thermal conductivity is 500 times smaller than that of air. So the 

molecular viscosity of this ‘liquid-like’ gas is also smaller. The averaged 

turbulent/molecular viscosity ratio is about 10 times more than that of air. 

The PDFs of mixture fraction (based on the temperature ratio) at different positions along 

the centerline are shown in figure 10. Here a total of 1050 slices are sample over a time 

interval of 0.0146 sec. That is a total of 10 flowover time are accumulated for data 

sampling. Away from the injector, the peak value of the PDF shifts to the lower values, 

which is consistent with the mixing process.  
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Figure 10. Statistical distribution of mixture fraction at different locations on the 

centerline 

 

6.5. Conclusions 

For the round hot-air plume simulation, the domain size is 12 cm with an initial speed of 

0.075 m/s, so the flow-through time is 1.6 sec. The initial Re number is 11031, the Mach 

number is only 2.16e-4 for the jet velocity, and Richardson number is 0.975. . The 

characteristic buoyant velocity is 0.074 m/s (
gDuc

0ρ
ρ∆

= ). The turbulent Re number is 

10884. A grid resolution study shows that for such a weak plume, the DNS resolution is 

on the order of 5.2 mµ , while the resolution for a well-resolved LES is 139.7 mµ  (based 

on plume diameter divided by 40), as compared to the current choice (dx=172 mµ ). The 
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cost ratio for DNS over LES based on the above choices are 5.2e5 and 1.2e6, 

respectively. Only a course LES is chosen here due to the limitation of computing 

resources.  

Compared to the strong plume case discussed in the previous chapter, the weak plume 

displays similar features except for the extremely small characteristic velocities and the 

relatively large domain size when scaled by the injector diameter. To overcome this first 

problem, an ASR ratio of 200 is chosen for decreasing the acoustic speed, thus increasing 

the computational efficiency.  

The second problem is a difficult one, since it is directly related to the computing 

resources at hand. Currently, the small cluster for this project has only 4 cpus of 2.8GHz 

each. So the grid size is constrained to be less than 3 million grid points. Also great care 

is taken to resolve the initial jet profile before reaching the fully developed stage. 

Currently, more than half of the grids are allocated uniformly around the potential core, 

though test results show it is still not sufficient to get rid of the Gibbs phenomena and the 

resulting overshooting behavior. Simulation results are not grid-independent and finer 

grids are likely to improve the simulation flow structure. 

The direct comparison between variable-density salt-water plume and the thermal air 

plume is a new concept to validate the subgrid models used in LES. The essence of this 

method is that the flow is fully turbulent and turbulent transport over-powers molecular 

transport. Transition from an initial momentum-dominated laminar plume into a 

buoyancy-dominated turbulent plume is correctly observed. The direct comparing of air 

plume with liquid-water plume shows encouraging results and supports the analogy. The 

small Mach number flow is compensated by a large ASR ratio.  
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The fundamental feature of the plume, the decaying law, is validated by the simulation 

result. The fully compressible simulation of plume dynamics combined with the pseudo-

compressibility method successfully captures many of the flow features. Due to the 

numerical problems of the solver, the code could not produce a grid-independent result 

under current computing resources. Further work is still needed on improving the 

numerical schemes and performing direct comparisons of detailed structure of the 

plumes. 
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Chapter 7. Conclusion and discussion 

 

7.1. Simulations summary 

The numerical development in this work is based on the fully compressible DNS flow 

solver S3D. So the main numerical work is the adaptation of a DNS solver to LES 

filtered equations and submodels. Here Favre-averaged governing equations are 

formulated first, supplemented with the classical Smagorinsky model and the dynamic 

procedure. To simulate low-Mach number flows, the speed of sound is artificially 

reduced while the zero-Mach number physics are modeled correctly. The LES framework 

of governing equations and the ASR method provide the basis for several simulations in 

the thesis work. 

The boundary treatment in S3DLES (or its original version S3D) is based on the 

characteristic-based non-reflecting boundary treatment. The LODI formulation is precise 

for one-dimensional conditions, while approximate under 2-D or 3-D conditions. For 

plane jet simulations, the Mach number is 0.35, which is strong and causes some trouble 

at the exit boundary (usually associated with backflow events). To stabilize the solution, 

a buffer layer treatment is introduced to reduce the acoustic reflection at the outflow. The 

resulting flow is stable and produces comparable results with a reference study. 

Following the study by Ribault et al. (1999), the Smagorinsky model and other relating 

sub-models are validated using published results with clearly defined flow and 

perturbation conditions. 

The next simulation in chapter 4 is devoted to test the turbulent mixing and acoustic 

response capabilities of the code in a confined domain. Three streams of different 

densities and momentum are introduced into the chamber-like domain. The wall is treated 
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as a slip-wall while a velocity perturbation (modulation) is introduced on the speaker 

wall. This arrangement provides a platform for flow-acoustic interaction simulations. The 

amplitude and phase of the excitation source can be adjusted easily. The mode shape 

prediction from the code compares well with the experimental work. A variety of 

numerical tests on 1D, 2D and 3D domain show the mechanism of transverse resonance, 

and resulting flow-acoustic interactions. It will be a good prediction tool for future 

combustion noise control studies. 

The above two cases are flows of intermediate Mach number, so the computational 

efficiency is not as constrained as for the low Mach number flows. The time-advancing 

steps for compressible flow are determined mainly by the acoustic speed. The acoustic 

wave is important to propagate pressure information across the full domain, while its 

contribution to convective flow dynamics is a small fraction. This leads to the idea of a 

pseudo-compressible method, where the acoustic speed is manipulated in order to allow 

larger time steps and faster calculations. For buoyancy-induced flows (such as air 

streams), this acceleration can be 20 times or more. Thus the computational efficiency for 

low Mach number flows can be greatly improved. The problems in applying the ASR 

method to gravitational flows are the distorted gravitational field (initial conditions) and 

the correct gravitational gradient scaling, which are developed in this work. The 

simulation results of the Shabbir plume (1992) are close to the reference study (Zhou et 

al. 2001) and to the experimental results (Yao, 2006). The turbulence-forcing method 

produced the expected early transition to the turbulent state; and the plume parameters 

meet the theoretical predictions and the scaling laws. 
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One of the primary goals of this code development is simulating fire-induced flows. So 

the reaction-modeling capability is an important feature to be tested. Here the condensed 

(reduced-scale) saltwater plumes are used to test the mixing properties of the LES sub-

models, a valuable intermediate step in the development of a non-premixed combustion 

capability. The analogy between a buoyant plume and a saltwater plume is based on the 

fully turbulent state, where the mixing is predominantly based on turbulent transport 

instead of the molecular transport (different by orders of magnitude). The scaling laws of 

the turbulent plume are correctly predicted. The mixing behavior of the ‘liquid-like’ air 

plume is close to the saltwater plume under the buoyancy- and turbulence-dominated 

states. This analogy shows the possibility of validating turbulence models using saltwater 

measurements. 

 

 Reynolds No. Mach No Richardson No. 

Plane jet 3000 0.35 0 

Acoustics 6781 0.052 0 

Round plume 1273 0.0028 0.580 

Saltwater plume 13013 2.16e-4 0.977 

Table 1. Summary of input parameters for cases in this work. 

In summary, the test cases used in this work feature a wide range of flow velocities of 

121m/s, 18 m/s, 1 m/s and 0.075 m/s. When the flow velocity is small, the buoyancy 

plays a more important role in determining the flow state. Depending on the characteristic 

speed and the purpose of the study, the pseudo-compressible method (ASR) is used to 

improve the computational efficiency under low-Mach number conditions. The global 

prediction capability of the code is encouraging, while there remain several problems 

associated with the computational costs and the numerical methods. 
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7.2. Computational costs 

One of the difficult problems in applying this code is the large computer power 

requirement. Here the code is based on the fully compressible flow formulation with a 

high order spatial discretization and a high-order explicit Runge-Kutta method. The 

filtering of the solution variables at each time step is also intensive. Although the code 

uses MPI and takes advantage of current parallel computing technology, additional 

problems arise due to the global data exchange and the relating synchronization 

requirement. The current platform used in this work is one Opteron with 4 cpus of 

2.0GHz each. It is a good platform for debugging purposes, while still limited for 

production runs. The computational cost for the plume cases are listed in table 2. 

 

Comparison Strong (hot air) plume Weak (saltwater) plume 

Ma number  0.0028226 0.00021531 

Velocity 98 cm/s 7.5 cm/s 

Diameter 6.35 cm 0.5588 cm 

Re 626 23170 

Grid 136x136x256 126x126x136 

Domain 16x16x16D 22x22x22D 

Acceleration ratio ASR = 100 (cfl_no=1.0) ASR =200 (cfl_no=0.8) 

Maximum D/dx 29.4 29.0 

Time step (sec) 2.88e-4 1.47e-4 

Running cost 10 (sec) x 4 (cpus) x 34.4 

(hours/sec) 

16 (sec) x 4 (cpus) x 23.2 

(hours/sec) 

Table 2. Computational cost for a plume simulation of 10 flow-through times. 

 

To accomplish the simulation of 10 flow-through times in a certain time period, the finest 

grid size and the domain size are carefully chosen to fit the time constraints. Here the 

ASR method is pushed to its limits, that is, the acoustic speed is lowered so that the 

modified Mach number is close to 0.3 without considering the compressibility effects. 

Other factors, such as the background temperature gradient, the easiness of applying soft-

inflow conditions are also considered in choosing the right combinations. For the weak 
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plume, in theory ASR=1000 can be adopted for the acoustic speed reduction. The current 

choice is based on the consideration of boundary treatment, so a lower value is used.  

The only comparable plume research is performed by DesJardin et al. (2004). Besides 

different numerical choice to control numerical overshoots and undershoots, only a cubic 

domain of 4 diameters was chosen, which decreases the computational cost significantly.  

In current saltwater plume simulation, the plume becomes buoyancy-dominated after 5 

Morton length scales, which means that the best sampling region for plume turbulence is 

in the region 20D-30D from the injector. This condition plus previous requirements puts 

a strong constraint on the grid allocation and resulting computational costs. The injector 

needs fine grids, while the sampling point in the turbulent plume region needs uniform 

mesh. To meet the 2 constraints significant computer power is required. 

7.3. Numerical problems in S3DLES for plume simulations 

The numerical framework of S3D is based on higher-order central finite difference 

schemes. Though more computational cost is required for larger stencils used in high-

order schemes, the overall computational efficiency is generally increased by adopting 

high-order schemes (Ekaterinaris, 2005). When these high-order schemes are used in the 

LES framework, the unresolved gradients will lead to dispersion and aliasing errors. The 

important Gibbs phenomenon is a byproduct of such numerical schemes. Currently there 

is not a conclusive method on avoiding the Gibbs phenomenon except the demand for 

finer meshes. Many numerical improvement and/or physical models are developed for 

avoiding such behavior. Here are some partial results that provide directions for future 

work. 
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When centered difference schemes are used in hyperbolic systems of linear first-order 

PDEs, it was found that they disperse, but do not dissipate, the Fourier components of the 

solution. When higher wavenumbers cannot be represented on the grid, their energy is 

aliased onto the resolved wavenumber. Higher order schemes have the effect of 

increasing the aliasing error, although to a first approximation, the aliasing error may be 

considered independent of the finite-difference scheme. Even for an eighth-order scheme, 

the error is smaller than the subgrid term for only about half of the wavenumber range 

(Ghosal, 1996). An increase in grid resolution makes the errors increase faster than the 

dissipation due to subgrid models, so the situation cannot be improved by grid refinement 

alone as long as the cutoff wavenumber remains in the inertial range.  

According to Colonius and Lele (2003), spurious waves are generated due to initial 

conditions, boundary conditions, nonlinear cascading, and stretching/coarse grids. If not 

generated by the coupling with the boundary treatment, the spurious waves arise due to 

insufficient resolution of relevant length scales in a given problem. In linear, constant 

coefficient problems, where the relevant length scales are determined solely by initial and 

boundary conditions, smoothing of spurious waves only changes the nature of the error 

for the poorly resolved components from dispersive to dissipative. As the problem is 

linear, the solution at the resolved scales is unaffected by the presence of errors of either 

type. This puts some requirement on a spatial filter for smoothing/removing the spurious 

waves. For nonlinear problems, smoothing amounts to an ad hoc turbulent model or 

shock-smoothing scheme. If spurious waves cannot be reduced by using higher-order 

schemes or more grid points, they can be attenuated by artificial dissipation (e.g. the 
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upwind scheme), by adding an artificial viscosity term to the governing equations, or by 

directly filtering them from the solution. 

As pointed out by Kennedy et al. (1997), the finite difference derivative scheme used in 

S3D is not so important as the effect of the filtering scheme. This has been tested with 

some simple tests. The modification of filtering order indeed changes the plume 

turbulence while a change in the spatial discretization scheme has no significant effect on 

the global properties. There are several tests in appendix B for the behavior of the 

numerical schemes. 

The role of filtering is partially validated by the simulation of the strong plume in a small 

domain. Here a conserving variable mixture fraction is introduced into the domain. The 

left figure in figure 1 is filtered with an 8
th
 order standard filter, while the right figure is 

filtered with an optimized 8
th
 order filter (with an overall 4

th
 order resolution). The Gibbs 

phenomenon is significant in the figure 1(a), while the gradient in figure 1(b) is improved 

at the rim of the potential core. The overshoots are not completely overcome at the tip of 

the potential core remain. So the solution of an optimized filter is only a partial solution. 

Further work on the governing equations is still needed. 



 168

y (cm)

te
m
p
[K
]

-5 0 5
250

300

350

400

450

500

550

600

650
Optimized

Standard

 
Figure 1. Gibbs phenomena improved by the optimized schemes on real plume 

simulations. Other conditions are same. (6
th
 order derivative, 4

th
 order Runge-Kutta time 

advancing, ASR=100).  

Aliasing errors result from evaluation of the nonlinear terms on a discrete grid. Unlike 

truncation errors, aliasing errors can be removed from some simulations and a method of 

controlling aliasing errors is known in the Fourier space. Dealiasing has primarily been 

performed in incompressible flow simulations. Suppression of aliasing errors in 

compressible flow simulations is difficult due to the division by density required in 

numerical formulations. To minimize the aliasing error, the nonlinear terms has been 

rewritten in the skew symmetric form (Kravchenko et al., 1997).  
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Most of the current compressible jet simulations are medium or high Mach number flow 

(such as Ribault et al., 1999, Bogey et al. 2004).  Nonlinear cascading of energy to 

smaller scales is a feature of turbulent flows. While artificial dissipation can be 

introduced to eliminate them, it imposes in essence, a grid-dependent turbulence model. 
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For LES, the effects of spurious waves are not well understood at present. The Reynolds 

number is high so the dissipative effect by the Smagorinsky model is also strong. For 

such flow, the turbulent viscosity vs. molecular viscosity ratio is on the order of 10, while 

in the low Mach number plume case this ratio is typically on the order of 0.5. Large 

values of the Smagorinsky coefficient will dissipate the turbulence, while small values 

will not damp the spurious waves. There is some research work aiming at model-free 

simulations with the utilization of the artificial diffusion caused by upwind schemes. Low 

order scheme will have a dissipative effect on turbulent scales. DesJardin et al (2003) 

used high order schemes for a plume simulation, but their high-order scheme has the 

special dissipation introduced by the upwinding and the ENO schemes. So the dissipative 

nature of the scheme is important for a successful CFD simulation. 

 

7.4. Other candidate solutions 

Most computational Aeroacoustics (CAA) simulations on jet acoustics are those for 

subsonic flows, using compact scheme and explicit filtering. Sometimes the compact 

scheme is optimized and is also filtered with an optimized compact filter. The scheme 

itself has a lower dissipation than the classical standard (central) scheme. The associated 

high Reynolds number favors the gradient-type Smagorinsky model to damp the 

unwanted spurious waves. Comprehensive reviews are produced almost yearly on this hot 

research topic in the CAA community (Bogony et al. 2005, Colonius et al. 2004).  

The non-density weighted LES formulation, which provides a subgrid diffusive term in 

the density equation, was helpful for numerical stability. Other work has used a direct 

approach of explicitly filtering the spatial scales by the addition of artificial selective 



 170

damping (Constantinescu, 1999). This approach is also used in the jet study by Bogey, 

Bailly and Juve (2000). Approaches to achieve robust simulations, without degrading the 

wideband spatial resolution of the calculations remains an active research area.  

Comparison Compressible jet Saltwater plume 

Characteristic 

Flow 

Ma=0.9 Ma=0.0002153 

Physical model Non-Favre-weighting Favre-averaging 

Aliasing error 

treatment 

Skew-symmetric Rotational 

FD scheme 6
th
 Compact scheme 6

th
 order central differencing 

Coordinate Cylindrical  Orthogonal 

Time integration 4
th
 order RK 3

rd
 order RK 

Filters 4
th
 central on Sij only 6

th
 order central 

Table 3. Comparison of the numerical choices (Boersma et al. 1999). 

 

Table 3 shows several choices for a round jet/plume simulation. Each item on the left 

column is chosen so that the numerical overshooting will be damped either by turbulent 

diffusion (via Smagorinsky model), an additional damping term (non-Favre-averaging), 

better-resolution (cylindrical meshes), a skew-symmetric form of the convective term 

(dealiasing) and additional filtering.  

 

There is only one closely related research topic on plumes by DesJardin et al. (2003) 

where a similar compressible flow solver and a pseudo-compressibility method are 

adopted. Here is a table comparing our current simulation parameters with those provided 

by DesJardin et al. (2003). Their work is close to this work in the following aspects. 

1. Fully compressible flow solver 

2. Characteristic-based boundary treatment; 

3. Pseudo-compressibility method for acoustic speed reduction; 

4. Buoyancy-induced flow. 
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5. High-order discretization schemes 

6. Chemically-inert flow 

Their study is focused on the plume instability modes and flow dynamics. So only the 

near field is simulated. Our simulation work is focused on the far-field plume dynamics, 

so the near field is not as well resolved. Besides these dense grids for the near-field flow, 

the combination of high-order upwind scheme and ENO scheme plays an important role 

in overcoming the overshooting error. 

Table 4 shows the computational details for the current simulation with a published 

result. The main difference is the choice of the numerical scheme and the resolution. 

While the grid size in both cases is on the order of 2~4 million grid cells, the choice of 

the discretization scheme and the dynamics procedure is more time-consuming.  

 

Comparison Helium plume Hot-air plume 

Temporal 

discretization 

4
th
 order Runge-Kutta scheme 3

rd
 order Runge-Kutta scheme 

Spatial 

discretization 

9
th
 order upwind biased 

schemes + 5
th
 order ENO 

scheme + 4
th
 order flux/stress 

terms 

6
th
 order central difference scheme 

+ 6
th
 order central-stencil filter 

Grid 136x136x136 136x136x256 

Domain 4x4x4 D 16x16x16D 

D/dx 62.5/12.9 29 

Subgrid model Dynamic Smagorinsky Smagorinsky model 

Running cost 20(sec) x 128 (cpus) x 5.5 

(hour/sec) 

10 (sec) x 4 (cpus) x 34.0 

(hours/sec) 

Acceleration 

ratio 

PGS = 20 ASR = 100 

Table4. Comparison with a plume simulation (DesJardin et al. 2004) 

 

The numerical work in this thesis is limited by the computing resources and the choice of 

numerical methods. In a long run, S3DLES can have the following solutions for a good 

simulation of round plume: 
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Optimized FD derivative and filters 

Compact FD derivative and filters 

Optimized upwind FD derivative and filters 

Non-density averaging governing equations 

Hybrid methods (central differencing with WENO scheme applied locally) 

Turn the orthogonal grids into cylindrical coordinates 
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Appendix A. Finite element technique for acoustics 

 

Linear spring as a finite element is commonly used as an introductory material leading to the 

formal finite element analysis. Here we can derive the above theory from the famous 

Galerkin method, with applications in the field of structural dynamics.  

The governing equation for any solid or gaseous bar (1-D case only) is 
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Here E is the modulus for solids and bulk modulus for gases ( pE γ= ). 

In the dynamic case, the axial displacement is discretized as  
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Applying Galerkin method to equation B.1 yields the residual equation ass 
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Assuming constant material properties, we have 
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Substitute (A..2) into (A.5), we can further have 
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If rewrite the (A.6) and (A.7) into matrix form for only 2 elements, we have  
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For the system response, the external force is zero. So the right hand side of (A.8) is zero 

matrix. The stiffness matrix is the same as (equation 11 in chapter 4), but the mass matrix is 

different with (equation 10 in chapter 4). This is because here the consistent mass matrix is 

used. The consistent means the interpolation function used in formulating the mass matrix are 

the same as (consistent with) those used to describe the spatial variation of displacement. For 

the spring mass examples, the lumped mass matrix is used, where half the total mass of the 

element is assumed to be concentrated at each node and the connecting material is treated as 

a mass less spring with axial stiffness. The lumped mass matrix for a bar element is then 

[ ] 



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
=

10

01

2

AL
m

ρ
, which is consistent with the distribution used in the mass-spring system.  

For the finite element technique, the boundary is treated as node with various degrees of 

freedom. If the domain is closed, the 2 nodes at the walls have no degree of freedom, so only 

n nodes are involved, with a matrix of the form, but with n x n terms. The mass is also 

distributed into n nodes. If one side is open, this node is counted like others with one degree 

of freedom, so the total number of nodes is n+1, and nn kK =−1  instead of 11 +− += nnn kkK  for 

internal nodes. This treatment is exactly the same as the physical reasoning in the text. 
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The prediction error is shown in figure A.1. The error is mainly physical, since the modeling 

error comes from the closeness of each element to the Helmholtz resonator model. The finer 

the grids, the better a Helmholtz model can be used as an element. 
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Figure A.1. Modeling errors for mass-spring method 
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%Matlab code for eigen-value analysis 

clear all;close all;clc; 

p0=101325;t0=300;mw0=0.02884;rho0=p0*mw0/8.3144/t0;c0=sqrt(1.4*p0/rho0); 

c=zeros(ny-1,1);M1=zeros(ny-1,1);S1=zeros(ny-1,1);f=zeros(ny,1); 

M2=zeros(ny-1,ny-1);S2=zeros(ny-1,ny-1); 

djet    =  1.25*2.54/100.d0;theta   = 0.25*.0254/30.d0;dhjet   = .75*2.54/100.d0; 

yhl     = djet-.5d0*dhjet;yhu     = djet+.5d0*dhjet;ny=100; 

L0=3.5*.0254;dy=L0/(ny-1); 

for j=1:ny 

   y(j)=.0254*(-1.75)+dy*(j-1); 

end 

for k=8:8                  % Molecular weight 

mw(k)=k*.001; mass=0.d0;stiff=0.d0; 

for j=1:ny 

   temp1=5.d-1*(tanh((y(j)-yhl)/4.d0/theta)-tanh((y(j)-yhu)/4.d0/theta)); 

   p(j)=p0; s(j)=temp1; t(j)=t0;   m(j)=(1-temp1)*mw0+temp1*mw(k); 

   rho(j)=rho0*m(j)/mw0; 

end 

for i=1:ny 

   M1(i)=rho(i)*dy/pi;  S1(i)=1.4*p0*pi/dy; %-p0*(1-rho(i)/rho0)/dy; 

end 

for i=1:ny-1 

   mass=mass+M1(i);   M2(i,i)=M1(i);   stiff=stiff+1.d0/S1(i); 

     if i==ny-1 

         S2(i,i)=S1(i)*2;         S2(i,i-1)=-S1(i); 

      else if i==1 

         S2(i,i)=S1(i)+S1(i+1);          S2(i,i+1)=-S1(i+1); 

         else 

         S2(i,i)=S1(i)+S1(i+1); S2(i,i+1)=-S1(i+1);      S2(i,i-1)=-S1(i+1); 

      end 

   end       

   c(i)=sqrt(S1(i)/M1(i))/pi*dy;   f(i)=sqrt(S1(i)/M1(i))/2/pi; 

end 

[v d]=eig(S2,M2);stiff=1.d0/stiff; 

for i=1:ny-1 

   ff(i)=sqrt(d(i,i))/2/pi/pi; 

end 

ff3=sort(ff);ff2=sqrt(stiff/mass)/2/pi 

figure(1);hold on;plot(y(1:ny-1),ff3,'-rx'); 

end 
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Appendix B: Numerical study on schemes used in LES 

 

The S3DLES used for this thesis is based on the DNS code, S3D, developed by Sandia 

National Laboratory. S3D is a fully compressible solver with high-order central finite-

difference scheme. This scheme is strictly non-dissipative in nature. This choice and 

other measures (such as filtering and time integration) prove to be a good choice for DNS 

on studies of combustion and acoustic phenomena, with the limitations clearly defined 

and tested by Kennedy et al. (1997). When tailoring to the LES framework, additional 

problems occur due to the numerical properties of the spatial discretization scheme. 

During the development of S3DLES, the resolution problem constantly lingers in all the 

simulations. Here the problems in LES will be discussed in different aspects of the 

numerical properties. Special attention is paid on the spectral improvement on the current 

numerical choices. Several numerical tests are performed to show the improvements. 

Finally, other candidate solutions to the problem are also proposed and discussed. 

Currently, there is still no conclusive idea on best high-order scheme for Large-eddy-

simulations (usually application-dependent), so this study is some preliminary work for 

future decisions. 

1. Analysis of the current numerical schemes 

High-order methods typically have at least third-order spatial accuracy. Traditionally, 

second-order accurate numerical methods are often preferred in practical CFD 

simulations due to their simplicity and robustness. In many practical fluid problems, the 

solution structures are so complicated and their time evolution is so long, that it is 

impossible to obtain an acceptable solution with today’s computing speeds using high-
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grid density and low-order methods. So there is a need for high-order schemes. Vortical 

flow fields are especially challenging for low-order numerical methods that are typically 

found in current Euler and Navier-Stokes flow solvers. The main cause for this deficiency 

is that these vortical flow features deform and dissipate prematurely due to excessive 

numerical diffusion in the solution algorithms. High-order methods can minimize the 

numerical diffusion due to low-order finite difference schemes (Ekaterinaris, 2005). 

High order central finite difference (CeFD) schemes are straightforward, easy to 

implement, and sufficiently accurate to capture the smallest resolvable scales presented at 

these problems with a small number of points per wavelength. Comparing with compact 

schemes, the demand on exchanging information from neighboring cells is acceptable for 

parallel computing. For this reasons, central difference schemes are very popular in DNS 

of compressible flow, Unfortunately, the standard central difference approximations tend 

to be unstable when the gridsize is not enough, which is usually encountered in LES, 

unless some kind of artificial numerical dissipation (damping or filtering) is added.  

The inherent limitation of any numerical method is that any wavenumber k greater than 

x∆/π  on a uniform mesh cannot be resolved. Even in a well-resolved computation, 

numerical errors are still present and are introduced primarily at high wave number. This 

can be readily be seen by plotting the modified wave number versus wave number (see 

figure 1). In many situations such as those encountered in Large Eddy Simulation, high 

wavenumber couldnot be resolved by the grids, the oscillation between grids will not 

only degrade the order of the scheme, but also induce numerical instability. Experience 

with the use of high-order central difference schemes for LES indicates that grid-to-grid 
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oscillations can become locally dominant. This is commonly called Gibbs errors 

(numerical grid uncertainty) caused by a finite representation of a continuous function. 

The uncertainty for a finite representation of a continuous function can be shown in the 

following numerical test. Here the spatial derivative can be approximated by a central 

2N+1 points stencil, finite-difference scheme in the form as 
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The coefficients are derived to cancel the Taylor series in (1) so that the maximum order 

of resolution is reached. Applying Fourier transform to (1), the effective wavenumber of 

the scheme is given by, 
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Figure 1. Modified wavenumber versus wavenumber (Fourier images) of first-derivative 

spatial operator for standard different finite difference schemes 

Figure 1 shows the accuracy of various centered-difference first derivatives relative to the 

exact spectral derivative. Using the scaled wavenumber λπω /2 xk∆=  where λ  is the 

wavelength and the number of grid points per wavelength is ωπ /2 k . Therefore, the 

lower the scheme’s resolving ability the higher is the number of points per wavelength 



 180

required to resolve accurately certain predetermined portion of the range [ ]π2,0 . The 

spectral method gives an exact representation of the first derivative up to a grid 

resolution. In contrast, finite-difference methods exhibit large errors at high 

wavenumbers. Even though more accurate finite-difference schemes provide better 

approximations at higher wavenumbers, the accuracy is always better at low 

wavenumbers than at high wavenumbers. All derivative operators except the spectral 

method have no resolution at π=∆xk  and have marginal resolution for wavenumbers 

near π . Nonlinear interaction of these unresolved nonphysical waves of various 

wavenumbers generates higher wave-number oscillations. 

As a comparison, one compact scheme (will be discussed more later) is also shown in 

figure 1. It is noticed the compact derivative operators are more accurate than their 

explicit counterparts because the compact scheme has an implicit nature. Additional cost 

is needed for matrix inversion in solving the derivative from the implicit schemes. 

When the grid is unable to resolve the highest wave-number information, the error is 

introduced into low wave numbers and eventually contaminates the solution. In addition, 

successive application of the first derivative operator to obtain a second-order derivative 

results in an amplification factor of unity at π=∆xk  for centered-difference operators; 

this application facilitates what is commonly referred to as “odd-even” decoupling. To 

suppress these effects, a numerical filter is used to create artificial viscosity. The 

important feature of these filters is that the eigenvalues corresponding to low wave 

numbers that are resolved should be virtually untouched; the relatively unresolved high 

wavenumbers should be removed. So it is a matter of selecting the bandwidth for the 

damping function of the filters. 
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Though Lele (1992) uses the compact filters up to the sixth order, S3D adopts an explicit 

filter because it is computationally more efficient and its design is more conceptually 

straightforward.  Filtering is applied to the solution vector after the full predictor-

corrector and central-difference stages in order to remove spurious information before it 

could move to lower wave numbers. The appropriate filter order was chosen based on the 

interior or boundary accuracy of the differencing scheme. The fact that the filters had 

such a significant effect indicates that the simulations may not have been completely 

resolved (Kennedy et al. 1994). Without filtering, the high-frequency spurious wave will 

be easily shown in dilation terms, which are sensitive to the resolution issues.  

 

The grid-to-grid oscillation introduced by central finite-difference schemes must be 

removed because they can lead to numerical instabilities. Practically, the elimination of 

these spurious short waves is obtained by introducing artificial dissipation through 

additional damping terms in the equations or more efficiently through filtering without 

affecting the physical long waves. Applying a central 2N+1 point stencil filter to variable 

u on a uniform mesh provides 
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where the coefficients are such as jj dd −−= ensuring no dispersion. The standard 

approach for determining constants in canceling the terms resulting from the Taylor 

series of (3) for 0→∆xk . 

The spatial Fourier transform of (3) is  
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 Here  0)0( ==∆xkDk  and 1)( ==∆ πxkDk . The damping function shows the amount 

of dissipation for any wavenumber (figure 2). 
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Figure 2. Performance of different finite-difference filters. 

Figure 2 shows the damping function )( xkDk ∆ for some explicit filters used in S3D. Note 

the transfer function shown in Lele’s paper (1992) is )(1 xkDk ∆− , the band passing zone 

in a frequency domain. 

 

2. Numerical problems in LES 

 Since the main problem in plume simulation is associated with the high order scheme, 

we can devise some tests to show the problem. Here we have 2 typical test profiles for 

testing the performance of the derivation operation: 

Case 1. Sinusoidal profile 

)cos(),sin()( x
dx
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xxy ==                                                   (5) 

Case 2. Hypertangent profile 
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Here θ  is 2 times momentum thickness. The raw signal and its derivative are shown in 

Figure 3(a) and 4(a) respectively. Case 1 is used for testing the global property of any 

scheme, since there is no special gradient appeared in the series. The wavenumber is 

discrete; the gradient is smooth and can easily be captured. Case 2 has a central gradient 

at the center of the domain. This special gradient needs enough grids to cover or special 

treatment to capture, so it is commonly used to test the local behavior of a difference 

scheme.  

Applying the 6
th
 order central scheme to case 1 shows that the global performance of the 

scheme is 6
th
 order. The 6

th
 and 8

th
 order filtering will not change the order of the 

derivative operator, while lower order filters change the performance significantly (figure 

3b). This shows the explicit filter play an important role in the derivative operation. The 

round-off error for current simulations is about 1410− , so the error curves couldn’t go 

beyond this limit.  
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(a)                                                              (b) 

Figure 3. Sinusoidal wave and performance curve 



 184

When case 2 is used, the global resolution behavior is not monotonous. Instead, the 

system error will not decrease much until the grid is fine enough to cover the gradient. 

Then the scheme gains its nominal performance with finer resolutions. Below a certain 

grid density level, the error lingers and cannot be overcome simply by increasing the 

number of grids. Unfortunately, most grids requirement at LES level falls bellow this grid 

density. So the simulation error cannot be smaller simply by increasing the grid density, 

while the derivative operation has no problem at the resolution of DNS. The Gibbs error 

(shown in figure 5) is not a simple function of grid number, so improvement is little when 

refining the grids, unless a grid level of DNS is reached. This behavior is discussed by 

Boran and Oris (1987) and also mentioned in DesJardin et al. (2003).  
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(a)                                                              (b) 

Figure 4. Hyper-tangent profile and the performance curve for derivative and filters. 

A systematic increase of grid number on Gibbs behavior is shown in figure 5.  According 

to the Nyquist sampling rule, when there are not enough grid cells to cover the gradient, 

the numerical solution on grid cells will not be representative of the real value. The true 

derivative value is also sparsely sampled. The Gibbs phenomenon is usually appeared 

when the central scheme (usually non-dissipative) is used to capture the gradient. The 
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central schemes are usually non-dissipative, so the oscillation at the sharp gradient could 

not be simply damped.  

The SGS viscosity commonly used in LES has the capability to be dissipative. But it is 

not designed to do this work, so there is some calibration work needed to use this 

property. Too much or not enough viscosity will lead to problems. If the eddy (SGS) 

viscosity is too much, it will kill the turbulence and laminarize the flow. When the flow is 

laminar, the computation is more DNS like, and the important feature of plume mixing is 

missing. If the SGS viscosity is not enough, the numerical oscillation induced by the 

central scheme could not be damped. This is true especially for low Mach number flow, 

where the turbulent behavior is not significant. This error will accumulate in the 

computational domain and contaminate the solution finally. So the computation needs 

other means of numerical damping to get the stabilized solution.  

Figure 5 shows the Gibbs error when the grid number is not enough to capture the sharp 

gradient and filtering is not enough to remove the high-frequency oscillations. The high-

order central-stenciled filters are designed to remove the high wave number oscillation 

associated with high-order derivative, and they fail to work properly when the derivative 

operator fails to capture the gradient. Figure 5 (a) shows that the high-order filter shifts 

the local energy, while the oscillation is not damped, but shifted. Only when enough grids 

are provided, both the derivative and the filter will capture the gradient to their designed 

purpose. So they are popular choices for DNS codes.  
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(c)                                                              (d) 

Figure 5. Gibbs error associated with not-enough grid cells covering the gradient. 
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Figure 6. Role of filters at coarse grids 

Figure 6 shows the role of the numerical filter at coarse grids, where the gradient is not 

fully resolved. The improvement is not significant, but also not zero. Along with the 
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finite-difference schemes, the filters fail significantly at coarse grids. So the filters cannot 

overcome the Gibbs error. 

From figure 5 and figure 6, we can also see that the low order filter could not damp the 

strong oscillations at coarse grids. The improvement by the filters is limited at coarse 

grids. Since the code relies heavily on the filters to damp unwanted high-wavenumber 

oscillation, the error introduced by the high order scheme and not enough grids is 

difficult to remove by the filter. In other words, the filters determine the performance of 

the derivatives. 

 

3. A family of low dispersive and low dissipative explicit schemes 

For the Gibbs phenomena associated with high order schemes, there are 2 directions for 

improving to the schemes: decreasing the dispersion error (commonly adopted in CAA 

community) and increasing dissipation (commonly adopted in CFD community) 

Taylor analysis is a tool that provides the order of accuracy, while Fourier analysis is 

used to investigate the dispersion properties. Utilizing a concept of often called 

bandwidth optimization in aero-acoustics, the formal accuracy can be sacrificed in 

exchange for better dispersion properties in the construction of an explicit center-

difference scheme to represent the derivative.  

The most promising candidate solution is the optimized finite difference scheme, with 

only minor modification to the coefficients to CeFD. A family of such optimized scheme 

is developed with the purpose of developing a low dispersive and low dissipative (LDD) 

explicit schemes for CAA (Bogey et al. 2004). 



 188

Following Tam and Webb (1993), the optimized finite difference schemes are developed 

so that the dispersion error is small for a large range of wave numbers up to 2/π=∆xk . 

They are of fourth order and their coefficients are defined to minimize the integral error 

∫
∆

∆
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h

l

xkn

xk
xkdxkxk

)(

)ln(
))(ln(*                                                             (7) 

where the wavenumber limits are ( ) 16/π=∆ lxk , ( ) 2/π=∆ hxk  for optimized schemes. 

The Fourier image of modified wavenumber for the optimized schemes is shown in 

figure 7. 
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Figure 7. The modified wavenumber versus wavenumber for optimized schemes. 

 

The standard center-stenciled finite difference filter has the coefficients derived from the 

canceling the terms resulting from the Taylor series of equation (3) for ( ) 0→∆xk . To 

develop selective filters, the spatial transform function )( xkDk ∆  is optimized so the 

integral dissipation is small in a certain range (in accordance with the optimized 

derivative scheme (7)).  

∫ ∆∆
)2/(

)16/ln(
))(ln()(

π

π

n

k xkdxkD                                                 (8) 

The damping functions of the optimized filters are displayed in figure 8. As expected, the 

dissipation is small for long waves and is significant for the wavenumber near π=∆xk . 
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Increasing the number of stencil points, from N=3 to N=6, allows to construct more 

selective, spectral-like filters. 
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Figure 8. Performance of different finite-difference filters. 

The standard Runge-Kutta time integration scheme can also be optimized to improve 

their dispersion and dissipation properties. Following the idea of Hu et al. (1997), the 

optimized scheme coefficients are derived via optimizing the dissipation and the 

dispersion error up to the angular frequency 2/πω =∆t . Both are of second order and 

are defined by coefficients lγ  minimizing the following error: 
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with these two conditions for the dissipation rate 
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for πω ≤∆≤ t0 , as for the selective filters. The performance of the optimized Runge-

Kutta scheme is shown in figure 9.  
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Figure 9. Performance of optimized Runge-Kutta time advancing Scheme 

Due to the pseudo-compressibility method used in S3DLES, the time advancing steps are 

limited by the reduced acoustic speeds. The dispersion behavior of the Runge-Kutta 

scheme gains more importance with this acceleration. Though it is difficult to discern any 

significant error from the spatial error due to time advancing scheme, it is expected that 

the optimized scheme will have better performance over the conventional scheme.  

It is expected that the d8 optimized derivative, f8 optimized filter, and Rko5 time 

integration will form a LDD scheme under the current framework of S3DLES. Here a test 

case with Hypertangent profile is used to test the performance of the optimized schemes. 

 

4. Test of the optimized schemes 

The numerical derivative is performed on case 2 (equation (6)) with different schemes 

and variable resolutions shown below (figure 10). Here the resolution is defined as 

dxdxL /2/ θ= , the number of grid points covering the full gradient (4 times the 

momentum thickness).  
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Figure 10. Performance of Standard derivatives 

Figure 10 shows the performance of standard FD derivatives on the Hypertangent profile. 

The nominal order of the high order scheme only was gained after a certain resolution 

5~2/ ≈dxL . When the gradient is under-resolved, all schemes produced poorer 

behavior. It is also noticed that the lower order scheme behaves better at low 

wavenumber, because the shorter stencils and their dissipative nature. 
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Figure 11. Performance of Standard filters 

Figure 11 shows the performance of standard FD filter on the Hypertangent profile. The 

low order filters are always poorer than the high order schemes.   

 



 192

log
10
(L/dx)

L
o
g
1
0
(e
rr
o
r)

-0.5 0 0.5 1 1.5 2

-12

-10

-8

-6

-4

-2

0

d8 standard

d8 optimized

d10 standard

d10 optimized

d12 standard

d12 optimized

 
log

10
(L/dx)

L
o
g
1
0
(e
rr
o
r)

0.5
-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

d8 standard

d8 optimized

d10 standard

d10 optimized

d12 standard

d12 optimized

 

Figure 12. Performance of optimized derivatives comparison with standard derivatives. 

Figure 12 shows that the optimized schemes are poorer than the standard schemes 

globally (in the full spectrum). But they are superior only in a certain range as the dash-

dot line marked and zoomed up in the right figure. From this figure, it is clear that the 

optimized scheme have better performance in a certain region while sacrificing the global 

behavior in the high wavenumber region. The improved region is located in a range right 

around the grid resolution for large eddy simulation, so it is a better choice for LES, with 

improved dispersive and dissipative properties over the conventional high-order 

derivatives. The spectral resolution is improved at the price of degrading the overall 

resolution. The details of the improvement are shown in the coming figure 13. 
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Figure 13. The derivative for Hypertangent profile. 

Figure 13 shows the local behavior of the optimized scheme over the standard schemes. 

Only around the resolution L/dx=2.6~5.1 (nx=256~512), the optimized scheme is better 
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than the standard schemes. The error improvement is not significant in these graphs, 

which shows from the error perspective that the derivative operation is not so important 

as the filtering operators (Kennedy et al, 1997).  

The performance of any derivative scheme is limited by the accompanying filter. Here 

the optimized filter over the Hypertangent profile is shown in figure 14. Again, the 

optimized filter is better only up to the resolution of around L/dx=2.6. All filters have 

their designed behavior in the high wavenumber region, and deteriorate significantly 

when the grid is not dense enough. The optimized filters improve the overshooting 

behavior in the under-resolved region. 
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Figure 14. The performance of optimized filters on a Hypertangent profile. 

Again, the optimized filters gained their improved spectral resolution by sacrificing their 

overall resolution. Here f8 and f12 optimized are 4
th
 order while the f10 optimized has 

only 2
nd
 order resolution. 
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              (a) nx=64, L/dx=0.6, standard filter             (b) nx=64, L/dx=0.6, optimized filter 
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            (c) nx=128, L/dx=1.3, standard filter           (d) nx=128, L/dx=1.3, optimized filter 
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           (e) nx=256, L/dx=2.6, standard filter             (f) nx=256, L/dx=2.6, optimized filter 

Figure 15. Filtering of the Hypertangent profile 

Figure 15 shows the local behavior of the optimized filtering scheme over the standard 

filtering schemes. The optimized scheme shows better performance than the standard 
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schemes up to the resolution of L/dx=2.6. When the gradient is not fully resolved, the 

application of filters will degrade the resolution. So multiple applications of filters will 

propagate the error away from the gradient. It also shows that the optimized selective 

filter has better performance in low wave number but poor behavior at high wave 

number, so after 100 times of filtering, the error travels more distance than those of the 

standard filter, but the maximum amplitude is significantly smaller. 

 

5. Family of upwind schemes for CFD 

Another line of thoughts for improving the robustness of the simulation is to increase the 

dissipation in the finite difference operations. This is a commonly adopted approach in 

CFD community. For nonlinear problems, straightforward application of high-order 

accurate central difference schemes is not possible, because the spurious modes that 

develop from the irresolvable by the numerical discretization high frequency models lead 

to instabilities (Ekaterinaris, 2005). Rai and Moin (1991) found that high-order upwind 

schemes are more promising to simulate turbulent flows. Upwinding alleviated some of 

the problems encountered with centered schemes and yielded some promising results for 

both incompressible and compressible flow DNS.  

Upwind schemes (2n-1 order) can be considered as the corresponding central schemes 

(2n order) plus a correction term that introduces the numerical dissipation (Li, 1997). So 

it is commonly resorted as an alternative when the numerical dissipation is not enough to 

overcome the overshooting and under-shooting behavior. Comparing with the central 

scheme, it is more close to the flow physics, since the biased stencil can be chosen such 

that it favors the incoming flow.  
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The general form of the upwind scheme is 
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Depending on the flow direction, the Na  or Na−  is zero depending on local flow 

directions. Here only (N-1)-cells-stencil is chosen for upwind-biased schemes. It is a 

choice to provide the maximum formal order of accuracy for any partial upwind scheme 

when N is fixed. The coefficients determination process is the same as the standard 

schemes (using Taylor table). 

The modified wave number is a complex function with real and imaginary parts. The real 

part and the imaginary part are associated with the dispersion error (phase error) and the 

dissipative error (amplitude error) respectively. 
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For the centered difference schemes, the imaginary part is zero, so all the centered 

schemes are non-dissipative. 
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Figure 16. Modified wavenumber for standard and upwind schemes 

 



 197

Figure 16 shows the real part and the imaginary part of the wave number for upwind-

biased schemes. The dispersion property of the (2N-1) upwind scheme is the same as the 

standard 2N standard scheme, while the same stencil is used. Upwinding introduced 

additional dissipative terms shown in the right figure. Note the wavenumber for central 

stenciled schemes is real, so central schemes are non-dissipative which is a good 

advantage in CAA. 
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Figure 17. Performance of upwind-biased schemes on the Hypertangent profile 

Figure 17 shows the global performance of upwind-biased schemes. Comparing with the 

standard central scheme of the same stencil size, the upwind schemes have additional 

dissipative terms, so the behavior is locally improved. Also the upwinding scheme has 

used one point smaller than standard scheme, so the resolution is one order smaller. The 

global resolution is slightly sacrificed in favor of the dissipation for robustness. 

An extension to the upwind scheme is the wavenumber-extended high-order upwind-

biased finite difference scheme, which provides the better resolution characteristics for 

the same order upwind scheme (Li, 1997). The coefficients are chosen to have better 

wavenumber performance using the integrated error minimization method (same as 

equation 7, but with different spectral interval for optimization), originally proposed by 

Tam and Webb (1992). The resulting new scheme is of 2N-2 formal order, which is one 



 198

order lower than the corresponding upwind-biased schemes. However, their high 

wavenumber oscillations are suppressed to a greater extent.  
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Figure 18. Performance of upwind and wavenumber-extended upwind schemes (Li, 1997) 

Figure 18 shows the performance of the wavenumber-extended upwind schemes over 

normal upwind scheme. Basically, the spectral performance is tailored to favor the low 

wavenumber regime while sacrificing the high frequency resolution. The comparison 

between upwind and extended schemes on the Hypertangent profile is shown in figure 

19. The comparison of standard and wavenumber extended schemes is show in figure 20. 
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Figure 19. Tests of upwind and wavenumber-extended upwind schemes  
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Figure 20. Tests of standard and wavenumber-extended upwind schemes 

 

6. Family of compact schemes for CFD 

The first systematic attempt to develop high-order accurate, narrow stencil, finite-

difference schemes appropriate for problems with a wide range of scales was presented 

by Lele (1992). Compared with the traditional FD approximations, the compact schemes 

provided a better representation of the short-length scales. As a result, compact high-

order scheme are closer to spectral methods and at the same time maintain the freedom to 

retain accuracy in complex stretched meshes. Emphasis in the development of compact 

schemes was given on the resolution characteristics of the difference approximations 

rather than formal accuracy. Compact schemes are variations or extensions of the Pade 

scheme, so they are also called Pade schemes in the literature. 

Due to the high performance of the compact schemes and the leading work of Lele 

(1992), the family of compact schemes is popular in CAA community. Compact schemes 

using the neighboring derivative information, so it is an implicit scheme by nature, which 

requires numerical solver to reconstruct the local information for the global array of 

derivatives. This also put a strong demand on communication if running on multi-

processors. Most of the current code adopted a compromise by recovering the derivative 
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matrix within one processor, thus the communication are reduced at the price of 

degrading the performance. The general form for a tridiagonal compact scheme has the 

following form.  

( ) ( ) ( )11223311
222

ˆˆˆ
−+−+−++− −+−+−+=++ iiiiiiiiii ff

b
ff

c
ff

d
affff αα          (11) 

The stencil coefficients a,b,c,d are chosen to have the best resolution while the coefficient 

α  determines the implicitness of the scheme. Here 5.05.0 ≤≤− α , and 0=α  leads to 

the standard (central-stenciled) high order finite difference schemes. 
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Figure 21. Fourier analysis for compact schemes 

Fourier analysis of compact scheme with different α  is shown in figure 21. Usually, α  

is close to 0.5 to have the best spectral performance.  
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Figure 22. Taylor analysis of compact schemes (a) 2
nd
 order (b) 4

th
 order (c) 6

th
 order (d) 

all 

Taylor analysis of the schemes is shown in figure 22. Like the usually central schemes, 

the nominal (theoretical) order of resolution is achieved after a certain resolution.  
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Figure 23. Comparison of compact scheme with central schemes 

Figure 23 shows the performance of compact schemes with central schemes (α =0.45). 

The compact schemes gain no significant improvement in the low frequency domain.  
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7. WENO schemes 

The Gibbs phenomenon is well known to appear with high order schemes. Several 

schemes are developed to overcome such unphysical oscillations. Usually, they are based 

on Finite Volume Approach. Here the popular WENO (Weighted Essentially-Non-

Oscillatory) scheme is tested here to show its non-oscillatory nature.  

 

Figure 24. Stencils for WENO scheme 

The combination of stencils used of WENO scheme in shown in Figure 24. The weights 

are chosen that the stencil covering sharp gradient have a small weight/contribution. So 

the scheme have local dissipative nature near gradients Like most TVD schemes, the 

sharp gradient is captured with first order upwind scheme while the higher order 

performance is resumed away from the sharp gradients. The purpose of such combination 

is to find the best stencil with a strong damping term (weight) for sharp gradients. 
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Figure 25. The non-oscillatory feature of WENO scheme 

Figure 25 shows the non-oscillatory nature of WENO scheme. The oscillation behavior at 

sharp gradients is suppressed by the dissipation terms. 
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Figure 26. Comparison of 5
th
 WNEO scheme with 6

th
 order central scheme 

Figure 26 compares the WENO scheme with 6
th
 order central scheme. It can be seen that 

the WENO scheme performs better in the high wavenumber region, while resuming its 

higher order performance for low wavenumber components.   
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8. Other candidate solutions 

Large-eddy simulations of turbulent flows are normally performed on grids that are just 

fine enough to resolve the important large flow structures, and numerical discretization 

errors on such grids can have considerable effects on the simulation results. 

A point of concern related to the high order numerical schemes such as the ones used in 

this study is that the discretization does not numerically conserve kinetic energy for an 

inviscid low Mach number flow. This means that the calculation can become unstable 

when a flow scale is under-resolved, and there is not enough viscosity (molecular or 

subgrid) to damp this instability. Because in a LES setting the molecular viscosity is 

relatively low, the damping has to come from the subgrid model. The calculation of the 

subgrid stresses is subject to numerical errors to the point that ix∆2  error waves become 

apparent. These ix∆2  waves in the subgrid stresses can generate instabilities in the 

resolved quantities. To avoid numerical problem, such error waves are removed by 

filtering the strain rate tensor before the terms in the subgrid stress are calculated.  

Dissipation can be added by using additional damping term, using upwind biased 

schemes, and/or using implicit filters or explicit filters. Following Boersma and Lele 

(1999), several treatments to the governing equations are proposed in LES framework. As 

a non-linear equation, Favre averaged continuity equation will be prone to numerical 

instabilities. Such instabilities are observed to lead to small grid point to grid point 

waves. These waves have to be removed from the flow field. This can be done by adding 

an artificial diffusion term to the right hand side of the continuity equation. Another way 

to do this is by using the non-Favre averaged LES equations. In this set of equations a 

damping term is already present in the continuity equation. The LES modeling of the 
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non-Favre averaged equations is a little bit more complicated due to the appearance of an 

additional unsteady term in the momentum equation. Here S3DLES adopted the first 

strategy, i.e., using explicit filtering to introduce the additional artificial diffusion term 

into the continuity equation. 

In simulations where not all the relevant length and /or time scales of the problem are 

being resolved, dissipation must be added to ensure computational stability. Some 

numerical dissipation is desirable to remove spurious high-frequency information 

regardless of whether second-order derivatives are taken once with a second-order 

derivative operator or twice with a first-order derivative operator. The source of this high-

frequency information may be intrinsic instability in the scheme, the misspecification of 

physical boundary conditions, the “odd-even” decoupling between grid points, or 

insufficient resolution (temporal and spatial). Upwind finite-difference schemes are one 

possible way of introducing numerical dissipation into the solution to damp high 

wavenumber components. DesJardin et al. (2004) used 9
th
 order biased upwind scheme 

together with ENO scheme to capture the derivatives.  

 

When all above improvements on governing equations and on numerical schemes are not 

enough for removing the overshooting behavior, the more dissipative shock-capture 

schemes are resorted. The application of such schemes is still tentative in the CFD 

community. 

1. ENO (Essentially Non-Oscillatory) and WENO (Weight Essentially Non-

Oscillatory) schemes 
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2. Hybrid (High-order hybrid central-WENO finite difference scheme) and flux-

splitting-limiting 

Essentially Non-Oscillatory schemes (ENO) have been developed in order to overcome 

the Gibbs phenomenon (Harten, 1997). ENO schemes make use of nonlinear weights 

based on divided difference of the numerical solution in order to bias the local stencil 

when computing derivatives, avoiding interpolations across discontinuities. This method 

has been adopted partially in Runge-Kutta steps by DesJardin et al. (2003). Weighted 

Essentially Non-Oscillatory schemes (WENO) are an improvement over ENO schemes 

due to their higher order of accuracy with same stencil size (Jiang, et. al. 2000). A convex 

combination of all the possible sub-stencils of ENO achieves optimal order of accuracy at 

the smooth parts of the solution. Nevertheless, the intrinsic numerical dissipation of 

WENO schemes, although necessary to capture shock waves, might seriously damp 

relevant small scales. 

Since the central finite difference scheme is numerically more efficient than the WENO 

scheme, it is natural to find an algorithm to combine the 2 schemes together, and use a 

numerical switch between the discontinuity-capturing schemes and the normal FD 

schemes for smooth parts of the solution. The important sensor is a switch algorithm that 

dynamically decide at any given time step which scheme to turn on at each grid point. A 

high order multi-resolution analysis is chosen to perform at every time step of the 

temporal integration process. The resulting adaptive scheme ensures that fluxes at grid 

points around discontinuities will always be computed by a WENO scheme, whereas 

smooth tendencies will not suffer any unnecessary extra damping since they will be 
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treated by a central scheme. A smart sensor (multi-resolution method) is designed to 

detect the sharp gradients (Figure 27, Costa et al., 2006). 
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Figure 27. The difference between smoothed and interpolated data to find the sharp 

gradient for switching CeFD/WENO 

Since the low-order filter has no Gibbs phenomena, a combination of low and high order 

filtering is realized to damp the physical noise. The solution is based on flux 

correction/limiting on the corrective fluxes, which is the difference between a high-order 

diffusion scheme and a low-order one. Over-shootings near sharp gradients are 

prevented, while the highly selective property of damping is retained (Xue, 2000). 

 

9. Conclusions 

While popular in DNS, the higher order CeFD schemes introduce high-wavenumber 

oscillations in LES of jet and plumes. Two approaches are adopted to remove the 

overshooting and undershooting behavior, decreasing the dispersion and increasing the 

dissipation. The CAA community adopted the first choice for better resolution, while 

CFD community adopted the second for better robustness. Most adjustments to the 

central schemes are to improve the spectral performance of the scheme (sharper spectral 

cutoff for the same stencil), while at the price of decreasing the order of the schemes. 
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Similar argument is also valid for finite difference filters and the time integration 

schemes. Tests are performed on a Hypertangent profile for these specially designed 

schemes. 

Unlike the strict low-dispersion and low-dissipation requirement in CAA, the design 

objective of S3DLES is to simulate low-Mach number flows of practical dimensions. So 

the dispersion property of high order central FD scheme should be controlled. Here is a 

list of potential solutions to the simulation of buoyancy-induced flow using S3DLES: 

1. Additional damping terms, such as the non-Favre-averaging procedure will 

introduce an additional damping term into the continuity equation; 

2. Adopting skew-symmetric form for convection terms, avoiding the aliasing error 

due to unresolved non-linear terms; 

3. Higher order scheme with better spectral properties, such as the compact scheme 

and Pade filters.  

4. Optimized higher order finite difference scheme with optimized selective filters; 

5. 4
th
 order Runge-Kutta scheme or optimized 5

th
 order Runge-Kutta scheme. 

6. Hybrid scheme with variable upwinding, introducing more dissipation; 

7. Hybrid scheme with ENO/WENO for local improvement; 

8. Converting the orthogonal coordinate system into cylindrical only for round flow 

simulations. 

Of these choices, only partial solution are realized and tested in S3DLES. The next 

important criterion is the computational cost. The final choice will be balanced among 

development easiness, accuracy, and running cost. The modification in the current 
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research work is not enough, given the fixed framework set in S3D. Further work is 

needed to tailor this code more suitable to low Mach number simulation purposes. 
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Appendix: Stencil Coefficients for modified numerical schemes. 

 
D8, 

standard 

D10, 

standard 

D12, 

standard 

D8, optimized D10, optimized D12, optimized 

1a  
4/5 5/6 6/7 0.841570125482 0.872756993962 0.907646591371 

2a  

-1/5 -5/21 -15/56 -0.244678631765 -0.286511173973 -0.337048393268 

3a  

4/105 5/84 5/63 0.059463584768 0.090320001280 0.133442885327 

4a  
-1/280 -5/504 -1/56 -0.007650904064 -0.020779405824 -0.045246480308 

5a  

 1/1260 3/1155  0.002484594688 0.011169294114 

6a  
  -1/5544   -0.001456501759 

Table 1. Coefficient of the standard and optimized finite difference first derivative 

schemes 

 

f8, std f10, 

standard 

fD12, 

standard 

f8, optimized f10, optimized f12, optimized 

0d  
35/128 63/256 231/1024 0.243527493120 0.215044884112 0.190899511506 

1d  
-7/32 -105/512 -99/512 -0.204788880640 -0.187772883589 -0.171503832236 

2d  
7/64 15/128 495/4096 0.120007591680 0.123755948787 0.123632891797 

3d  
-1/32 -45/1024 -55/1024 -0.045211119360 -0.059227575576 -0.069975429105 

4d  
1/256 5/512 33/2048 0.008228661760 0.018721609157 0.029662754736 

5d  
 -1/1024 -3/1024  -0.002999540835 -0.008520738659 

6d  
  1/4096   0.001254597714 

Table 2. Coefficient of the standard and optimized finite difference spatial filter schemes 
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U1D0, 1st 

order 

U2D1, 3rd 

order 

U3D2, 

 5th order 

U4D3, 

7th order 

U5D4, 

9th order 

U6D5,  

11th order 

6−iφ  
     1/2772 

5−iφ  
    -1/630 -1/210 

4−iφ  
   36/5040 1/56 1/336 

3−iφ  
  -1/30 -336/5040 -2/21 -5/42 

2−iφ  
 1/6 1/4  1512/5040 1/3 5/14 

1−iφ  
1 -1 -1 -1 -1 -1 

iφ  
-1 1/2 1/3  1260/5040 1/5 1/6 

1+iφ  
 1/3 1/2  3024/5040 2/3 5/7 

2+iφ  
  -1/20 -1/10 -1/7 -5/28 

3+iφ  
   48/5040 1/42 5/126 

4+iφ  
    -1/504 -1/168 

5+iφ  
     1/2310 

Table 3. Coefficient of the upwind schemes 

 

U2D1, 

 2nd order 

U3D2, 

 5th order 

U4D3, 

7th order 

U5D4, 

9th order 

5−iφ  
   -0.004191 

4−iφ  
  0.015825 0.041288 

3−iφ  
 -0.055453 -0.127442 -0.188962 

2−iφ  
0.213933 0.360600  0.482326 0.552022 

1−iφ  
-1.141798 -1.221201 -1.303877 -1.328033 

iφ  
0.651798 0.554534  0.553877 -0.528033 

1+iφ  
0.286067 0.389400 0.417674 0.447978 

2+iφ  
 -0.027880 -0.039225 -0.049133 

3+iφ  
  0.000842 0.000379 

4+iφ  
   0.000619 

Table 4. Coefficient of the wavenumber-extended upwind schemes 
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