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Resumo

Development of a classification algorithm for vehicle impacts:
An Anomaly Detection approach

Na última década, Machine Learning tem sido extensamente utilizado em soluções na indústria automóvel,

o mais promissor sendo o desenvolvimento de veículos com condução autônoma.

Novos serviços de mobilidade estão disponíveis hoje como alternativas à posse de um carro, como

ride hailing ou car-sharing. Os elevados custos associados à manutenção do veículo e a sua reduzida taxa

de utilização ao longo do dia são alguns dos fatores que contribuem para a popularidade destes serviços.

Car-sharing é um modo de transporte self-service que fornece aos seus membros acesso a uma frota

de veículos estacionados em vários locais duma cidade.

Danos são espectáveis de ocorrer quando os veículos são usados e a reparação necessária implica

custos para os operadores da frota. Sistemas capazes de detectar esses danos irão promover um melhor

aproveitamento desses veículos pelos utilizadores dos veículos.

Os danos de veículos resultam de impactos com outros objetos como, por exemplo, outros veículos

ou estruturas e esses impactos provocam deformações na estrutura externa do veículo. A maioria desses

impactos podem ser compreendidos ou detetados pelas forças envolvidas do resultado do impacto.

Anomaly Detection é uma técnica aplicável em uma variedade de domínios, como deteção de in-

trusões, deteção de fraude, deteção de eventos numa rede de sensores ou deteção de distúrbios no

ecossistema.

O objetivo desta dissertação foi o estudo e desenvolvimento de um sistema inteligente semi-supervisio-

nado para detecção e classificação de impactos de veículos a partir de uma abordagem de Anomaly

Detection, utilizando os dados de acelerómetro, e seguindo uma estratégia que permitisse explorar um

ciclo de Machine Learning.

Esta dissertação foi desenvolvida no âmbito de um estágio na empresa Bosch Car Multimedia S.A,

situada em Braga.

Palavras-chave: Acelerómetro, Aprendizagem Semi-Supervisionada, Deteção de Anomalias, Impactos
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Abstract

Development of a classification algorithm for vehicle impacts:
An Anomaly Detection approach

In the past decade, Machine Learning has been heavily applied to automobile industry solutions, the most

promising being development of autonomous vehicles.

New mobility services are available today as alternatives to owning a car, like ride hailing and car-

sharing. High costs associated with the maintenance of the vehicle and the reduced rate of vehicle use

throughout the day are some of the factors for the popularity of these services.

Car-sharing is self-service mode of transport that provides its members with access to a fleet of vehicles

parked in various locations throughout a city.

Damages are expected to happen when vehicles are used and the required repair implies costs to fleet

operators. Systems able to detect these damages will promote a better use of these vehicles by vehicle

users.

Vehicle damages result from impacts with other objects, for instance, other vehicles or structures of

any kind and these impacts inflict deformations to the vehicle exterior structure. Most of these impacts

can be perceived or detected by the forces involved as result of the impact.

Anomaly Detection is a technique applicable in a variety of domains, such as intrusion detection, fraud

detection, event detection in sensor network or detection ecosystem disturbances.

The objective of this thesis is the study and development of a semi-supervised intelligent system for de-

tection and classification of vehicle impacts with an Anomaly Detection approach, using the accelerometer

data, and following a strategy that would allow exploring a Machine Learning cycle.

This thesis was developed under an internship in the company Bosch Car Multimedia S.A, located in

Braga.

Keywords: Accelerometer, Anomaly Detection, Impacts, Semi-Supervised Learning
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Chapter

1
Introduction

1.1 Context

The accelerated growth of population density in cities has a direct impact on the reduction in the capacity

of urban mobility, which negatively affects the quality of life in cities, with significant direct and indirect

costs to society.

In addition, there are several conditions that make owning vehicles in city contexts less and less

interesting, such as mobility restrictions for vehicles, as well as the reduced rate of vehicle use throughout

the day due to work schedules.

These factors lead to the appearance of new mobility services, such as ride hailing, for instance Uber

or Lyft, and car-sharing, such as Sixt and ShareNow, which aim to increase the possibilities of choosing

urban mobility without the hassle and expense of owning and maintaining a vehicle, because of all the

requirements for it be allowed into the road, like insurance and annually government costs.

Car-sharing is a self-drive and self-service mode of transport that provides its members with access to

a fleet of vehicles parked in various locations throughout a city. Car-sharing offers users access to a car

that users typically pick up and return the car to fixed locations around the city, and, using an automated

check-in and check-out system, are charged for the time used.

Car-sharing is a type of car-rental. However, in traditional car-rental schemes there is a contact between

a providers agent and the client to find a car that best suits the requirements of the client and the whole

process of reservation, pickup and return is made with physical contact. In car-sharing the process is

completely self-service.

The client logs into his account in the car-sharing providers app, searches for the car and define the

rental schedule. When it is time to pickup the car, the client goes to the location of the car and then just

needs to be close to the car and is given access via a virtual key that needs to be configured on the car

system or the car unlocks via remote action. The return of the car is also made with no contact with an

agent, in fixed locations around the city.

1.2 Problem

The problem with car-sharing lies in the fact that typically there is not a regular supervision of the vehicle,

which results in scratches, for instance, that are impossible to pinpoint to a single client.

1



CHAPTER 1. INTRODUCTION

Given that the vehicles are spread throughout the cities and the service provider is not required in the

process because of it being completely automated, the identification of damages can sometimes be made

too late.

There is no control on what the vehicle condition status is after every customer use when there is a

requirement to certify if a vehicle is in a condition that allows it to be lend to another customer in a legal and

safe state, specially addressing the exterior condition of the vehicle: external hood damage, scratches, etc.

In the normal car-rental process, after every use, an inspection is made by a professional of the company

to check the vehicle condition.

The safety and confidence of the clients is the biggest worry for the providers. A client driving through

a bump in high speed can result in damage on the vehicle that could compromise the client and the

following users of the vehicle.

1.3 Objectives

Given the context, it was relevant to equip the vehicle with a setup of acquisition, which consists of a

system of sensors, that enabled the service providers to better detect when impacts occur.

In this thesis there is a study of an Anomaly Detection system with a semi-supervised approach for

detection and classification of vehicle impacts using accelerometer data.

Taking into account that impacts are abnormal events on the roadway, the analysis of an Anomaly

Detection approach to the problem was contemplated to be a possibility that could lead to good results,

specially when considering the application of the Anomaly Detection algorithm as a filtering mechanism.

Additionally, considering the importance of a well structured project of a Machine Learning (ML) sys-

tem, the understanding and the application of a ML cycle is also appointed as an objective of this thesis.

To better conduct the process of implementing an Anomaly Detection project, a well carried out method

on all phases is fundamental to reach the best possible results.

1.4 Document Structure

This thesis document is divided into the following chapters:

• State of the Art has the theoretical analysis of anomaly detection, describing the definition of con-

cepts necessary to understand the problematic of anomaly detection and a review of literature.

• Machine Learning Process where the model process behind a generalized and industrialized Ma-

chine Learning project is explained.

• Use Case: EasyRide there is a definition of additional work that was performed on another project

in order to fully comprehend and execute the ML cycle.

• Use Case: SlimScaley - Business and Data Understanding where the phases corresponding to the

Data Collection and Exploratory Data Analysis (EDA) are performed to understand the data.

2



1.4. DOCUMENT STRUCTURE

• Use Case: SlimScaley - Data Preparation and Modeling phases is the final chapter where from the

development of the dataset to the implementation of the Anomaly Detection solution is outlined.

• Conclusion and Future Work is the chapter where an interpretation of the results is performed and

follow-up strategies are outlined in order to possibly improve the outcome of the application of the

Anomaly Detection strategy.
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Chapter

2
State of the Art

This chapter presents the theoretical foundations about the main fields covered in this Master thesis.

First, a brief description of concepts, like anomaly and outlier, and their differences are presented and,

subsequently, a specification of important aspects to consider before choosing the Anomaly Detection

technique, such as the different types of anomalies and the data used.

The main objective of this chapter is to give a complete review of the base theoretical background

of Anomaly Detection which is fundamental to understand the application of Anomaly Detection in the

problem introduced. A review of literature is also presented.

2.1 Theoretical Concepts

The relevant terms and concepts applicable to understand the problematic of Anomaly Detection are

explained in this section.

2.1.1 Anomaly Detection

An important notion is the distinction of anomalies and outliers. Hawkins (1980) defines outlier as an

observation which deviates so much from the other observations as to arouse suspicions that it was

generated by a different mechanism.

Aggarwal (2016) presents in his book the terms that are also used to reference outliers and a citation

from that paragraph is mostly referenced to prove the equality of both concepts: ”Outliers are also referred

to as abnormalities, discordants, deviants, or anomalies in the data mining and statistics literature.”

However, in the same book, Aggarwals explains that ”the term “outlier” refers to a data point that could

either be considered an abnormality or noise, whereas an “anomaly” refers to a special kind of outlier that

is of interest to an analyst”. So Aggarwal regard outliers as a broader concept which also includes noise

in addition to anomalies, as in the article of Salgado et al. (2016).

The terms anomaly and outlier are used interchangeably in a lot of research about Anomaly Detection

but, when used, the term outlier is always not inclusive of noise. The difference between noise and

anomalies are explained later in this section.

In this thesis the terms anomalies and outliers are not used interchangeably, with outlier being the

combination of anomalies and noise data.

One of the most common definitions of anomalies is the following: ”Anomalies are patterns in data

4



2.1. THEORETICAL CONCEPTS

that do not conform to a well defined notion of normal behavior”(Chandola et al., 2009).

Some important characteristics of anomalies are:

• The distribution deviates remarkably from the general distribution of the data.

• Anomalies are rare data points of the dataset.

Another important notion that has already been presented is the distinction between anomalies and noise.

a With noise b No noise

Figure 1: Noise and anomalies: the difference.

Noise can be a mislabeled example (class noise) or errors in the attributes of the data (attribute noise)

(Salgado et al., 2016).

As seen in Figure 1, the distribution of the main two clusters is the same. In Figure 1a the anomaly,

marked with an A, is difficult to distinguish from the rest of the noisy points. But in Figure 1b the anomalous

point seems to be obvious as it deviates significantly from both clusters.

Another important concept to distinguish from anomaly is novelty. Novelty patterns are data points

that haven’t been previously observed. The distinction between novel patterns and anomalies is that the

novel patterns are typically incorporated into the normal model after being detected (Miljković, 2010). Most

methods used in Anomaly Detection are also used in Novelty Detection.

A definition of Anomaly Detection can be given: Anomaly detection refers to the problem of finding

patterns in data that do not conform to expected behavior (Chandola et al., 2009).

The concept of anomalies and how to detected them has been studied for many years in the statistics

community. In fact, in the 19𝑡ℎ century, Edgeworth (1887) studied and researched the aspect of anomalies,

naming it ”discordant observations”and how to proceed with the ”treatment of such observations”.

It is important to differentiate between Anomaly Detection and Forecasting. Forecasting focuses on

the established pattern of data distribution (Lazzeri, 2020). In contrast, anomaly detection focuses on the

data points that deviate from what is expected.

Chandola et al. (2009) has listed the main challenges about Anomaly Detection:

• Defining a normal region that encompasses every possible normal behavior is very difficult. In

addition, the boundary between normal and anomalous behavior is often not precise. Thus, an
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anomalous observation that lies close to the boundary can actually be normal, and vice versa.

• In many domains, normal behavior keeps evolving and a current notion of normal behavior might

not be sufficiently representative in the future.

• The exact notion of an anomaly is different for different application domains. For example, in the

medical domain, a small deviation from normal (for example, fluctuations in body temperature)

might be an anomaly, while similar deviation in the stock market domain (for instance, fluctuations

in the value of a stock) might be considered as normal. Thus, applying a technique developed in

one domain to another, is not straightforward.

• Availability of labeled data for training/validation of models used by anomaly detection techniques

is usually a major issue.

• Often the data contains noise that tends to be similar to the actual anomalies and hence is difficult

to distinguish and remove.

Due to these challenges, an Anomaly Detection problem is not easy to solve. To select the appropriate

approach to resolve the problem of anomaly detection, some properties are important like the type of

data, the availability of labeled data and types of anomalies. These aspects are described in the following

sections.

2.1.2 Structure of anomalies

The nature of the anomalies can be classified into three categories: Point Anomalies, Contextual Anomalies

and Collective Anomalies (Chandola et al., 2009; Prado-Romero et al., 2016; Song et al., 2007; Zhao et al.,

2020).

An instance is described as a point anomaly when it is considered as anomalous with respect to the

rest of data. This is the simplest type of anomaly and is the focus of the majority of research on anomaly

detection.

Figure 2: Example of two points anomalies.

Figure 2 gives a simple representation of point anomalies: 𝑂1 and𝑂2. The points𝑂1 and𝑂2 are far

from the rest of the data, grouped on 𝐶1 and 𝐶2.

An instance is described as a contextual anomaly if it is anomalous in a specific context (but not
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otherwise), then it is termed as a contextual anomaly, also referred to as conditional anomaly. Each

instance is composed of contextual attributes and behavioral attributes.

1. Contextual attributes are used to determine the context for that instance.

2. Behavioral attributes define the non-contextual characteristics of an instance.

Contextual anomalies are most common on time series data or spatial data.

A normal behavior on a context can be anomalous when in another context. The temperature of 30ºC

in Portugal, without any context, cannot be seen as an anomaly. For instance, in Portugal a temperature

of 30ºC in the summer is normal. A temperature of 30ºC in the winter is anomalous. The spatial-temporal

aspect can also be used in this example. Snow is normal on the highest point of Continental Portugal, the

Serra da Estrela, in the winter. However, snow in Beja in the winter is anomalous.

Is important to state that anomalies are not necessarily impossible events, but unlikely/rare under

normal conditions.

If a collection of related data instances is anomalous with respect to the entire data set, it is termed

as a collective anomaly. The individual data instances in a collective anomaly may not be anomalies by

themselves, but their occurrence together as a collection is anomalous.

Figure 3: Example of a Collective Anomaly.

Looking at figure 3, one can conclude that the data represented by the red line is anomalous. The

respective value itself is not anomalous as there’s other instances that record the same value. The set of

values is what causes that group of records to be anomalous.

If considering a context, a point anomaly detection problem or a collective anomaly detection problem

can become a contextual anomaly detection problem, as described on the Table 1.

Data Grouping

No Yes

No Point Anomaly Collective Anomaly
Data Context

Yes Contextual Anomaly Contextual Anomaly

Table 1: Taxonomy of the types of anomalies.
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2.1.3 Performance Metrics

A confusion matrix (Fawcett, 2006), also called a contingency table, forms the basis for many common

metrics. The concept of contingency table was first introduced by Pearson (1904).

Real

Anomaly Normal

Anomaly True Positive False Positive
Predicted

Normal False Negative True Negative

Table 2: Confusion Matrix.

The Confusion Matrix presented on Table 2 represents a generalized application of an Anomaly Detec-

tion algorithm, where the positive class is the one represented by anomalous data, and the negative class

is the normal data.

When an anomaly detection technique is applied three things can happen (Mehrotra et al., 2017):

• Correct Detection: detected anomalies in data correspond exactly to real anomalies. In most of real

live systems, a 100% correct detection is impossible. On the Confusion Matrix represented on Table

2, the corrected detection is equivalent to combination of the True Positive (TP) and True Negative

(TN) cases.

• Presence of False Positive (FP) and none False Negative (FN): the process continues to be normal,

but unexpected data values are observed.

• Presence of FN: the process becomes abnormal, but the consequences are not registered in the

abnormal data.

The objective is to minimize both FPs and FNs. Depending on the problem, it could be more beneficial

to allow a higher value of FPs than FNs, and vice-versa. An analysis should be carried to make this

decisions. For example, in a medical disease diagnosis it is more beneficial to have more FPs than FNs,

however not a big imbalance.

The simpler and widely used performance metric that allows to evaluate the performance of an algo-

rithm is the accuracy.

𝐴𝑐𝑐 =
True Negatives + True Positives

True Positives + True Negatives + False Positives + False Negatives
=
Correct Prediction

Total Data

Accuracy is not a metric which can be applied to evaluate an anomaly detection technique.

Given that anomalies are few and rare, an example of an anomaly detection problem sometimes

consists on 99.9% of normal data and only 0.1% of anomalous data. A simple technique that evaluated all

the data on this problem as normal would have 99.9% of accuracy, an impressive value for an evaluation

of a technique but a fact that is not desired on the anomaly detection problem.
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The metrics Precision, Recall, RankPower (Tang et al., 2007; Tharwat, 2020), Receiver Operating

Characteristic (ROC) Curve and Precision-Recall (PR) Curve defined below, are often used to evaluate the

performance of the anomaly detection algorithm.

Given a dataset 𝒟, suppose an anomaly detection algorithm identifies 𝑠>0 potential anomalies, of

which 𝑠𝑡 (⩽ 𝑠) are known to be true anomalies and having 𝑛 true normal data. Then Precision, which

measures the proportion of true anomalies in top 𝑠 suspicious instances is:

𝑃𝑟 =
𝑠𝑡
𝑠

Precision equals 1.0 when all the instances identified by the algorithm are true anomalies.

Taking into consideration the information on Table 2, Precision can be defined as:

𝑃𝑟 =
True Positive

True Positive + False Positive
=

True Positive
Total Predicted Positive

Precision is a good metric when the cost of FP is high.

If 𝒟 contains 𝑑𝑡 (⩾ 𝑠𝑡 ) true anomalies, then Recall is defined as:

𝑅𝑒 =
𝑠𝑡
𝑑𝑡

Recall equals 1.0 when all true anomalies are identified by the algorithm.

𝑅𝑒 =
True Positives

True Positives + False Negatives
=
True Positives
Real Anomaly

Recall, also known as True Positive Rate (TPR) and sensitivity, is recommended to be the model metric

when there is a high cost associated with a False Negative.

Precision and recall can be combined into a single score that seeks to balance both concerns, called

the F-score or the F-measure.

𝐹 −𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗ Precision ∗ Recall
Precision + Recall

The Fbeta-Measure is an abstraction of the F-measure where the balance of precision and recall in the

calculation of the harmonic mean is controlled by a coefficient 𝛽 . F-score is a specific case of Fbeta-

Measure where 𝛽 = 1.

𝐹𝑏𝑒𝑡𝑎 −𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = (1 + 𝛽2) ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝛽2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

Another really import metric is called RankPower (RP). RP was proposed by Tang et al. (2007) and evaluates

the ratio of the number of known anomalies and anomalies returned by an algorithm, along with their

rankings. The difference between the previous metrics and Rank-Power is that the preceding do not give

any preference to the ranks, that is, how anomalous is a particular sample.

Formally, if 𝑅𝑖 denotes the rank of the 𝑖𝑡ℎ true anomaly in the sorted list of most suspicious objects,

then the RP is given by:

𝑅𝑃 =
𝑠𝑡 (𝑠𝑡 + 1)
2
∑𝑠𝑡
𝑖=1 𝑅𝑖
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RP takes maximum value 1 when all 𝑑𝑡 true anomalies are in top 𝑑𝑡 positions.

False Positive Rate (FPR), also known as specificity, can be defined as follows:

𝐹𝑃𝑅 =
𝑠 − 𝑠𝑡
𝑛

The metric RankPower only takes into consideration the abnormal class, leaving the normal class with no

evaluation consideration.

A popular graphical plot that characterizes binary classifiers is the ROC Curve. ROC graphs are two-

dimensional graphs in which TPR is plotted on the Y axis and FPR is plotted on the X axis (Fawcett, 2006).

Area Under the Curve (AUC) is computed using a trapezoid rule and is equal to the probability that a

classifier will rank a randomly chosen positive instance higher than a randomly chosen negative one. The

score is a value between 0.0 and 1.0, the latter meaning a perfect classifier.

Although generally effective, the ROC Curve and AUC can be optimistic under a severe class imbalance,

especially when the number of examples in the minority (anomaly) class is small.

An alternative to the ROC Curve is the PR Curve that can be used in a similar way, although focuses

on the performance on the minority (anomaly) class.

PR Curve is a plot of the precision, in the Y axis, and recall, in the X axis, for different probability

thresholds.

(a) ROC Curve (b) PR Curve

Figure 4: (Schlegel, 2019): Example of a perfect evaluation by a ROC Curve (4a) and PR Curve (4b)

Either in the ROC Curve or the PR Curve (Figure 4), the best model bows towards the coordinate (1,1).

Matthews Correlation Coefficient (MCC) is a metric introduced by Matthews (1975), extensively used

on the Machine Learning (ML) field.

𝑀𝐶𝐶 =
𝑇𝑃 ∗𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁√

(𝑇𝑃 + 𝐹𝑃) (𝑇𝑃 + 𝐹𝑁 )(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁 )
Considering the equation above that represents the MCC calculation, this metric returns a value between

-1 and 1, where 0 is a random estimate.

MCC is a metric that weigh all the outcomes of the algorithms, lowering the evaluation score from FP,

as well as FN. F-score, a measure explained before, equals zero when the TP of the result of applying the

classifier is zero, being independent from the value of TN and is not symmetric if a class swapping occurs.
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The key advantage of the MCC is that it generates a high quality score only if the prediction correctly

classified a high percentage of negative data instances and a high percentage of positive, being considered

a balanced measure (Chicco et al., 2020). This aspect of the MCC metric, as well as the limitations of

other metrics explained formerly, are arguments for applying this technique, over others, in an Anomaly

Detection approach.

2.1.4 Supervised, Unsupervised and Semi-Supervised Learning

The Anomaly Detection techniques can be one of the following three approaches, based on the the avail-

ability of labels in the data:

• Supervised. Labels available for both normal data and anomalies. The algorithm distinguish be-

tween normal and known anomalous instances.

• Semi-supervised. Labels available only for normal data. The training data has labels on non anoma-

lous (normal) instances that are then trained to be able to find the anomalies. The algorithm learns

the normal behavior and then detect any deviations from normal behavior as anomalous.

• Unsupervised. No labels assumed. This approach is based on the assumption that anomalies are

very rare compared to normal data. If this aspect is not found on the data, a unsupervised approach

cannot be applied successfully.

Supervised Semi-Supervised Unsupervised
Require Prior-Knowledge Yes Yes No
Environment Static Dynamic Dynamic
Detection Speed Fast Fast/Moderate Moderate/Slow
Detection Generality No Yes Yes

Table 3: Difference between Supervised, Semi-Supervised and Unsupervised Learning.

The Table 3 gives a brief resume of the main differences between the different approaches. Because

of the difficulty that manually labeling data implies, semi-supervised and unsupervised learning are two

of the most used approaches, besides the possibility of finding new anomalies because of its ability to

generalize.

2.1.5 Output of Anomaly Detection

The output of anomaly detection techniques is an important aspect of it, influencing a lot of decisions in

terms of which technique to use, depending on the desired output type. Typically, the outputs produced

by anomaly detection techniques (Gao et al., 2006; Kriegel et al., 2011; Mehrotra et al., 2017) are one of

the following two types :

• Scores. Scoring based anomaly detection techniques assign an anomaly score to each instance
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in the test data depending on the degree to which that instance is considered an anomaly, that

is, the test data more likely to be an anomaly has a higher associated value (score) than a likely

normal instance. There are many advantages to transforming the output scores into well-calibrated

probability estimates. The analyst can analyze the top anomalies or use a domain-specific threshold

to select the most relevant anomalies.

• Binary Labels. Techniques in this category assign a label (normal or anomalous) to each test

instance. Although some algorithms might directly return binary labels, anomaly scores can also

be converted into binary labels. This is the typical output of classification-based approaches.

2.2 Literature Review

This section provides a review of articles about Anomaly Detection applied to vehicle data. The articles

mention road condition, driver behaviour and accident detection based methods using Anomaly Detection.

Besides the analysis of Anomaly Detection algorithms applied to the context mentioned, firstly there is

gonna study of some of the preprocessing techniques applied.

Raw data is sometimes difficult to analyze and understand so it needs to be preprocessed, adding

new features or even transforming the data, allowing for an easier to understand data and increasing its

usability in algorithms.

A ri-orientation procedure using the Euler Angles in a stationary condition in which the only acting

force is the gravity (acceleration along the z axis), was carried out by Astarita et al. (2012). Using the XYZ

sequence, the equations for the calculation of the roll and pitch angles have the following expressions:

𝛼 = arctan

(
𝑎𝑦

𝑎𝑧

)
𝛽 = arctan

(
−𝑎𝑥√

𝑎𝑦2 + 𝑎𝑧2

)
The article (Vittorio et al., 2014) also performed this calculation. In this article, the evaluation of the

road surface quality was based on the analysis of the Vertical Acceleration Impulse (DVA): the temporal

derivative of the acceleration absolute amplitude in one second 𝑑 (𝑎𝑧−𝑚𝑎𝑥 − 𝑎𝑧−𝑚𝑖𝑛), that was calculated
as the difference between the maximum and the minimum values of the vertical acceleration in the defined

unit of time. The DVA corresponds to a high-energy event, that is labelled as an “anomaly” on the road

surface. The ri-oriented accelerometer data were also filtered by means of a post-processing algorithm in

order to remove low frequency components in the signal due to the background noise.

In Douangphachanh et al. (2014) the data consisted of only acceleration data (x, y, z) from an ac-

celerometer and location data, including speed, from GPS, collected from smartphones, and it is checked

and matched with referenced data before dividing into 100 meter sections. A high pass filter is used to

remove unrelated low frequency signal, which is contributed by the effect of vehicle maneuver such as

braking and turning as well as the contribution of the force of gravity, from all axes of the acceleration

data. After sectioning, road sections that have incomplete data will be excluded from the analysis. Road

sections where experiment vehicles have stopped are also excluded.
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Bello Salau et al. (2015) extracted the mean, standard deviation and variance of accelerometer data

over a sliding window. The energy content (𝐸) of the measured time series signal 𝑥 (𝑛) was also computed
using the following equation:

𝐸 =
𝑁−1∑
𝑖=0

(|𝑥 (𝑛) |)2

The authors noted that areas with road defects will have higher energy content than other anomaly free

portions of the dataset, where the threshold values were manually set to identify portions of higher energy

content, and hence, indicating of the presence of possible road defects within the dataset.

Bello Salau et al. (2018) used a Wavelet Transformation (WT) theory and a noise filtering technique to

characterize road anomalies into either potholes or bumps. The filtering technique was used to filter noise

from acceleration signals noting that noisy samples have lower correlation values across an increasing WT

scale.

Some articles that used Anomaly Detection techniques are next reviewed in order to best define the

possible algorithms to solve the problematic.

In the first article reviewed, Yoon et al. (2007) developed a threshold-based clustering algorithm cus-

tomized for their data, called threshold-based quadrant clustering since general clustering algorithms do

not work with unlabeled GPS data. The data was divided into 4 quadrants with each one indicating a

different kind of condition. The first quadrant indicates a both spatially and temporally good traffic—steady

travel at good speed. The second quadrant represents a spatially good but temporally bad one. Similarly,

the fourth quadrant depicts good average speed, but with some slow-and-go periods. The last quadrant

shows poor traffic conditions.

Eriksson et al. (2008) analyzed the abnormal behaviors of taxis, including detour behavior, speed

anomaly, and local shape anomaly. The dataset used contained the GPS trajectory data of 10357 taxis in

Beijing for the period from February 2 to February 8, 2008. According to the different anomalies causing

abnormal taxi trajectory, different solutions were proposed:

• Global router anomaly detection algorithm: the similarity between trajectories in the same deme is

used as the input to the Isolation Forest (iForest) algorithm that trains a suitable model to determine

global router anomaly trajectories.

• Local speed anomaly detection algorithm: the instantaneous velocities of trajectory points are clus-

tered by Density-Based Spatial Clustering of Applications with Noise (DBSCAN) for each road sec-

tion. A trajectory having a sufficient number of speed anomaly points will be marked as a local

speed anomaly trajectory. Because of the large number of clusters in this dataset, they selected

clustering results of three road sections between 13:00 and 14:00 on February 2, 2008.

• Local shape anomaly detection algorithm: the direction deflection angle of each trajectory point is

calculated. The deflection angle of the trajectory point on the same road section is used as the

input of the Local Outlier Factor (LOF) algorithm to determine the abnormal trajectory of the lane

change. The parameters used were k = 5, d = 0.5 and f = 0.15.

The metrics used were precision and recall rates. The number of abnormal trajectories in the precision
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and recall rate calculation were obtained by the union of the results of the three algorithms. The results

are presented in Figure 5.

(a) (b)

Figure 5: Precision (a) and Recall (b) of the algorithm (Eriksson et al., 2008).

Zhu et al. (2009) proposed a distance-based Anomaly Detection method that used the Euclidean

Distance to decide if a specific point is an anomaly or not. Through analysis of road condition on urban

arterial road, traffic abnormality can be recognized as anomaly. Given that an incident causes a reduction

of roadway capacity, it will possibly be detected as an anomaly. After the Euclidean distance is calculated,

Zhu et al. proposed two strategies:

• Assign a threshold parameter 𝜑 and calculate the average distance:

𝜑 =
1
𝑛

𝑛∑
𝑖=1

𝜑𝑘,𝑖

where 𝜑𝑘,𝑖 is the Euclidean-distance calculation and 𝑛 is the amount of vectors in the data.

If 𝜑 > 𝜑 , then there is probably an incident.

• Assign two threshold parameters which are 𝜑 and 𝜌 . Calculate the amount of outliers:

𝜌 =
𝑛∑
𝑖=1

ℎ(𝑖)

where the function ℎ(𝑖) is defined as

ℎ(𝑖) =

1, if 𝜑𝑘,𝑖 > 𝜑

0, if 𝜑𝑘,𝑖 ≤ 𝜑

and if 𝜌 > 𝜌 , then there is probably an incident.

The first strategy was chosen to allow an easier analysis of the evaluation. The performance metrics

used were Detection Rate (DR) and False Alarm Rate (FAR). With an 𝜑 = 2.97, the DR = 81.5% and FAR =

1.83%.

Dogru et al. (2012) consider incidents in normal traffic flow as an anomaly. The principle used was that

when accident happens, following cars will slow down or stop and many cars are affected from accident
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which could be considered an anomaly, depending on the technique and attributes. The Simulation of

Urban MObility (SUMO) traffic simulator was used to enable mobility of vehicles and all the information

needed. The algorithm used was DBSCAN to cluster the anomalies as they occurred. The evaluation metric

used was not specified but the authors shared an example of the output and the number of anomaly cluster

increases after the accident.

Ren et al. (2012) used K-means as a feature learning algorithm and a L1 regularized Support Vector

Machine (SVM) with RBF kernel for incident classification.

Alonso et al. (2014) used SVM for wet road surface identification using tyre/road noise, detecting road

wetness from audio of the tire-surface interaction and discriminating between wet and dry classes.

Chen et al. (2015) used an onboard accelerometer to sense vehicle vibrations by examining the z-axis

acceleration. Normally, the vibration on abnormal road sections is greater than that on smooth sections,

so an abrupt increase of z-axis acceleration often signifies a pothole. The Gaussian Mixture Model (GMM)

algorithm was used for the event detection.

Silva et al. (2017) implemented and deployed a cloud-based road condition/anomaly information man-

agement service based on vehicle context data, collected during driving activities using smartphones that

collect inertial data, that is, accelerometer data, for x, y, and z axes, GPS coordinates, speed, and bear-

ing during driving activity. The algorithms used were Gaussian Naive Bayes (NB), Linear Support Vector

Classification (SVC), Decision Tree, Gradient Boosting and Multi-layer Perceptron (MLP) Classifier. The al-

gorithms were evaluated on using all the attributes and the attributes that resulted from the preprocessing

process. Linear SVC had the best improvement going from both experiences. Then in Soares et al. (2018),

the authors developed a cloud-based road condition/anomaly information management service based on

vehicle context data. Collected data is then processed, transformed and classified using a ML model,

producing the road anomaly information managed by the service, described on the previous mentioned

article.

Chowdhury et al. (2020) used an autonomous device anomaly detection in a surveillance setting,

which contained data from IMU sensor and images of respective time frames. The IMU data was divided

on two groups: IMU/data which contains the orientation and velocity information of the drone along 3 axis

and IMU/mag that contains magnetic field data read by magnetometer.

The methodology proposed was a autoencoder based anomaly detection system for IMU data and an

AngleNet to estimate the angle of an input image with respect to a normal reference image sample and

later ensembles the 3 outputs to estimate the degree of abnormality. The AngleNet is a Convolutional

Neural Network (CNN) based regression architecture which estimates angular displacement between two

images. An ensemble mechanism is utilized to estimate the degree of abnormality using predictions both

from the given image and IMU data samples at a particular timestamp.

Even through the authors claim that they used an unsupervised Anomaly Detection approach, in reality

their approach was semi-supervised because only the data labeled as normal was used on training the

algorithms.

Figure 4 has the information about the performance of the autoenconder on IMU data.
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Data Accuracy F-1 Score False Negative
IMU/data 96.8% 0.9812 2
IMU/mag 100% 0.95 0

Table 4: (Chowdhury et al., 2020): Performance on IMU Data.

C. Wu et al. (2020) used Logistic Regression (LR), SVM and Random Forest (RF) for pothole-detection.

The SVM classifier had as parameter the radial basis function kernel and RF with n_estimators=100.

The metrics used for evaluating the models were Precision, Recall and F1-Score and the results can be

observed in Table 5.

Classifiers
Accuracy for
Training Set

Accuracy for
Testing Set

Window Type Precision Recall F1-Score

normal 0.965 0.984 0.974
LR 0.961 0.952

pothole 0.851 0.734 0.788
normal 0.952 0.992 0.971

SVM 0.951 0.948
pothole 0.908 0.642 0.752
normal 0.965 0.988 0.976

RF 0.999 0.957
pothole 0.885 0.750 0.812

Table 5: Precision, Recall and F1-Score (C. Wu et al., 2020).
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Chapter

3
Machine Learning Process

A well defined process for a Machine Learning (ML) project allows for a structured and organized develop-

ment which contributes for the best results.

Two model processes will be introduced in this chapter in order to define the structure of the pro-

posed work and a better organization of the development process: Cross Industry Standard Process for

Data Mining (CRISP-DM) and the Cross Industry Standard Process model for the development of Machine

Learning applications with Quality assurance methodology (CRISP-ML(Q)).

3.1 Introduction to the CRISP-DM

The Cross Industry Standard Process for Data Mining (CRISP-DM) is a process model originally devel-

oped to standardize the Data Mining process by Shearer (2000), currently widely adopted for ML as well

(Lukyanenko et al., 2019).

The CRISP-DM process model has six major phases (Shafique et al., 2014; Wirth, 2000):

• Business Understanding: definition of important factors including success criteria, business and

data mining objectives and requirements as well as business terminologies and technical terms.

• Data Understanding: executing data collection, checking of quality and exploring of data to get

insight in order to form hypotheses for hidden information.

• Data Preparation: selection and preparation of the data into the state needed for analysis.

• Modeling: process selection and application of various modeling techniques to support business

decisions; different parameters are set and different models are built for same data mining problem.

• Evaluation: evaluation of obtained models and interpretation of the results.

• Deployment: determining the use of the knowledge and results obtained and organizing, reporting

and presenting the gained knowledge to a customer, for example.

Annex I there is a more detailed structure of the phases involved on the CRISP-DM model process.

Taking into consideration, that the CRISP-DM process was designed for Data Mining, the process lacks

some important aspects of a ML project.

The first aspect to consider is the fact that Data Mining is different from Machine Learning.

Data mining is the process of discovering interesting patterns and knowledge from large amounts of

data. The data sources can include databases, data warehouses, the Web, other information repositories
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or data that are streamed into the system dynamically (Han et al., 2012). Machine Learning, on the other

hand, is the study of algorithms that allow computer programs to automatically improve through experience

(Mitchell, 1997).

Considering that Machine Learning and Data Mining are not the same, the process involved in applying

each of this methodologies is also different. This reasons led to researchers Studer et al. (2021) to propose

a guide for ML practitioners though the development life cycle.

3.2 The CRISP-ML(Q) methodology

Studer et al. (2021) released a new methodology called Cross Industry Standard Process model for the

development of Machine Learning applications with Quality assurance methodology (CRISP-ML(Q)), which

is an adapted CRISP-DM applied to the development of ML projects.

The differential aspect of CRISP-ML(Q) and other process model is the focus on quality assurance

throughout the development of the project.

The CRISP-ML(Q) model is divided into six stages:

1. Business and Data Understanding

2. Data Preparation

3. Modeling

4. Evaluation

5. Deployment

6. Monitoring and Maintenance

Taking the CRISP-ML(Q) process as a basis for the definition of all the stages, an explanation of its

contents is next made.

3.2.1 Business and Data Understanding

The first step in any ML project is to identify the scope of its application, the success criteria, and a data

quality verification. The goal of the first phase is to ensure the feasibility of the project.

Regarding the scope of the project, is imperative that the objectives and requirements from a business

perspective are collected. The application of ML tasks take this information into consideration, so the

continuous communication between business stakeholders is instrumental for a successful understanding

and application of the objectives and requirements.

The feasibility confirmation before setting up the ML project is a best practice in industry. The appli-

cation of the ML Canvas Framework is an example of a structured document to perform this confirmation

(Zhou et al., 2020). The ML Canvas guides through the initial phases of the ML application. The non-

functional requirements include robustness, scalability, explainability and resource demand that are used

for the development and verification of later phases (Hamon et al., 2020; Studer et al., 2021).
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The principal non-functional requirements can be explained as being (Fernandes et al., 2016; Ghezzi

et al., 1991):

• Robustness is the ability of a computer system to cope with errors during execution and cope with

erroneous input.

• Scalability is a property of a system to handle a growing amount of work by adding resources to the

system.

• Explainability is the extent to which the internal mechanics of a ML system can be explained in

human terms.

Taking into account that the data is the guide along the process, data collection and data quality

verification are essential to achieve business goals. A descriptive documentation of the process involved

behind the data collection exercises is crucial for evaluating and assurance of the data quality. An well

defined data exploration and of its statistical properties, resulted from a Exploratory Data Analysis (EDA)

(Tukey, 1977), can assure that the requirements are being followed (Morgenthaler, 2009).

3.2.2 Data Preparation

The second phase of the CRISP-ML(Q) process model aims to prepare data for the modeling phase,

considering that in this phase Feature Engineering tasks are analyzed.

While for Studer et al. (2021) the tasks of Feature Selection and Feature Engineering are considered

as being independent, the identification of valuable and necessary features for the future model training

is a phase of Feature Engineering named Feature Selection.

Feature Engineering can be divided into three phases: Feature Selection, Feature Extraction and Fea-

ture Reduction. According to some articles, e.g., (Gherabi et al., 2021; Qin, 2020), Feature Normalization

is also described as being a task of Feature Engineering.

Feature Selection is related to Feature Reduction in that both methods seek to reduce the number

of features, however use different approaches to do so. Feature Selection uses filter methods, wrapper

methods or embedded methods for the selection of features, being examples of techniques for Feature

Selection: Correlation, Forward Selection and Information Gain (H. Liu et al., 2012).

Feature Reduction is mostly known as dimensionality reduction. Therefore, the number of features

can be reduced in two ways: using Feature Reduction or Feature Selection. Principal Component Analysis

(PCA), for instance, is a well known Feature Reduction approach that allows the original variables to be

combined into a smaller number of principal components (Hoffmann, 2007).

Feature Selection then can be described as: from m variables one selects a subset of variables that

seem to be the most discriminating. The features obtained therefore, correspond to some of the given

measurements, by simply selecting and excluding given features without changing them, while in the

display methods the dimensionality reduction is obtained by using all the variables but combining these

into a lower dimension. Feature selection therefore constitutes a means of choosing sets of optimally

discriminating variables, filtering irrelevant or redundant features from the data set and, if these variables
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are the results of analytical tests, this consists, in fact, of the selection of an optimal combination of

analytical tests or procedures (Deming et al., 1988; Theodoridis et al., 2009).

Feature Extraction allows for the creation of new features based on mathematical computations applied

to the data. Some examples applied to data sets are (Nahid et al., 2019):

• Mean: arithmetic mean of the dataset.

• Standard Deviation (𝜎 ): measure of the amount of variation or dispersion of a set of values.

• Variance (𝜎2): squared deviation of a random variable from its population mean or sample mean.

• Minimum: it is the minimum value in the given data set. The lowest possible value of the function

at minimum point in a given data set is called Least significant value.

• Maximum: the highest possible value, also known as the most significant value, in a given data set.

• Kurtosis: defines how heavily the tails of a distribution differ from the tails of a normal distribution.

• Skewness: defined as the measure of the similarity or asymmetric distribution. It can be positive

as well as negative.

The standardize data step on the CRISP-ML(Q) model process denotes the process of normalization

of the data and the establishing of the file format needed for the specific problem, a more analytical

perspective of the standardize data task. Normalization is an important task on the application of some

ML algorithms because features defined on different scales could lead to bias towards the larger scaled

features (Sola et al., 1997; Trebuna et al., 2014). Normalization implies the rescaling of the features

values into a range, commonly on the range [0,1]. On the scientific field, standardization frequently

means rescaling of the data to have a mean of 0 and a standard deviation of 1 (Sabri, 2021).

CRISP-ML(Q) process also mentions the problem of unbalanced classes as being an important aspect

to tackle by applying over-sampling or under-sampling strategies. Likewise, data augmentation tasks can be

important to perform, depending on the ML task objective. Data augmentation utilizes known invariances

in the data to perform a label preserving transformation to construct new data (Engelhardt et al., 2021).

3.2.3 Modeling

The choice of modeling techniques depends on the ML and the business objectives, the data and the

boundary conditions of the project the ML application is contributing to. The requirements and constraints

that have been defined in the Subsection 3.2.1 are used as inputs to guide the model selection to a subset

of appropriate models. The goal of the modeling phase is to craft one or multiple models that satisfy the

given constraints and requirements (Studer et al., 2021).

The literature research on similar problems is also an important source to select a subset of models

and tasks to establish a baseline for the modeling strategy.

The definition of quality measures of the model can be weighed differently depending on the appli-

cation. On the CRISP-ML(Q) development lifecycle model, besides the performance metric of the model,

measures such as robustness, explainability, scalability, resource demand and model complexity should
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also be evaluated.

Generally, the modeling phase includes model selection, model specialization and model training

tasks. Additionally, depending on the application, there might be a need to use a pre-trained model,

compress the model or apply ensemble learning methods to get to the final ML model.

Another important principle of scientific methods and the characteristics of robust ML application

is reproducibility: the method itself needs to be reproducible and also its results. Keeping track of the

changes to the model and its implications on the performance through experimental documentation is

crucial to prove reproducibility. The documentation should contain the listed properties in the method

reproducibility task.

3.2.4 Evaluation

Model training is followed by a model evaluation phase. During this phase, the trained model is validated

against a test set and model robustness is assessed.

The explainability of the ML model is important to provide trust, meet regulatory requirements and

comprehend the ML-assisted decisions.

Finally, the model deployment decision should be met automatically based on success criteria or

manually by domain and ML specialists. Similar to the modeling phase, all outcomes of the evaluation

phase need to be documented (Visengeriyeva et al., 2021).

3.2.5 Deployment

The MLmodel deployment denotes a process of the MLmodel integration into the existing software system.

After succeeding in the evaluation step in the ML development life cycle, the ML model is graduated to be

deployed in a production environment (Visengeriyeva et al., 2021).

The ML model deployment includes the following tasks: inference hardware definition, model evalua-

tion under production environment, providing user acceptance and usability testing, providing a fall-back

plan for model outages and setting up the deployment strategy.

3.2.6 Monitoring and Maintenance

Once the ML model has been put into production, it is essential to monitor its performance and maintain

it.

When an ML model performs on real-world data, the main risk is that the characteristics of the data

distribution are represented incorrectly by the training data. The unseen data can degrade the performance

of the model over time. Furthermore, model performance is affected by the degradation of hardware and

software and/or hardware updates. Therefore, the best practice is to perform monitoring tasks in order to

best analyze the strategy for fixing the model performance drop when it occurs, allowing for an update on
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the ML model or even an adjust of the ML process.

3.3 Conclusion

In this chapter, a description of the CRISP-DM and CRISP-ML(Q) model processes was presented in order

to better define the next phases.

The importance of a well defined process for a ML project is crucial for a continuous development

where all stakeholders are in sync with the state of the project. The pursuit for a ML model process has

been more prioritized in the last few years, inasmuch as the market demand for Artificial Intelligence (AI)

related products is at an all time high.

Considering that the CRISP-DM was developed with an objective of being applied to a Data Mining

industrial project, the application of this model to a ML project would lead to weaknesses in the process,

where ML specific tasks would not be considered.

The CRISP-ML(Q) is, as of today, the most complete and reliable process model for the development

of ML project in a generalized industrial scenario. Nevertheless, it still lacks a more scientific background

to the ML process, with it being, in some stages, too industrial and business focused.

It is important to emphasize that the ML process is not a linear procedure. Contrarily, it is a cycle

where the tasks can go back and forth among them. This contributes to an enrichment of all phases as

more knowledge is acquired during the development.
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4
Use Case: EasyRide

The project Detection of anomalies from fusion of multiple sensors is one of the 18 Projects of the Easy

Ride R&D Program. This program results from the University-Industry Collaborative Partnership engaged

between Bosch Car Multimedia Portugal, S.A. and University of Minho, with the collaboration of Centro de

Computação Gráfica.

The objective of this project is to detect anomalies that happens inside the vehicle, with the use of

multiple sensors fused together for better detection and results understanding.

This chapter presents the first phase of the Cross Industry Standard Process model for the develop-

ment of Machine Learning applications with Quality assurance methodology (CRISP-ML(Q)) model process:

Business and Data Understanding. The importance of this chapter lies on the implementation of the data

collection task.

4.1 Business Understanding and Data Understanding

The project Detection of anomalies from fusion of multiple sensors is part of the defined vision for the

Intelligent Cockpit subprogram and aims to develop solutions to enable anomalies detection based on the

fusion of data from several sensors that monitor the vehicle interior (In-Vehicle Sensing (IVS)).

A major advantage of sensory fusion systems is the capability of crossing information generated by

several sensors. Data coming from several sensors describes normal processes or behaviors occurring

inside the vehicle. Anomaly Detection aims to understand when these systems behave in abnormal states

by considering single or combined sources of sensory data.

An overview of the sensors used is described in the next section.

4.1.1 Data Collection

Considering that no data was available for this project, data acquisition exercises where pivotal and nec-

essary. The data acquisition of the Easy Ride data was performed using the components presented in

Figure 6.
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(a) PM2.5 (b) Raspberry 4 (c) UMA-8 (d) BME680

Figure 6: Components of the data acquisition setup

The required components are a particle sensor and microphone, connected though a Raspberry PI 4.

The addition of a gas sensor to the array of sensors was thought to complement the particle sensor in its

recordings outputs.

The Mic Array UMA-8-SP (Figure 6c) is a high-performance multichannel USB microphone paired with

a digital audio amplifier. This sensor has seven high-performance MEMS microphone array configured in

a circular disposition to ensure the capture of high-quality voice for heterogeneous kinds of applications.

The UMA-8-SP (miniDSP, 2018) supports several voice algorithms including beamforming, noise reduction,

acoustic echo cancellation and de-reverb, which are important algorithms to filter irrelevant and noisy data

(Table 6).

Specification Description

USB audio capabilities

2 possible configurations for audio recording:
• 8-channel mode (7 x MEMS installed + 1 x spare)
• Stereo recording with DSP processing enabled USB audio
playback: 2ch fed to stereo amplifier

DSP processing

• Beamforming with configurable beam width (up to 20dB
attenuation)
• Perceptual acoustic echo cancellation (up to 80dB attenuation)
• Noise suppression (up to 20dB attenuation)
• De-reverb (up to 20dB attenuation)

Sample rate 11/16/32/44.1/48 kHz
Resolution 24bit

Amplifier output Two output power amplifier >90% efficiency at full power

MEMS microphones

7 x microphones with low noise buffer high performance
modulator
• Low distortion: 1.6% @ 120 dB SPL
• High Signal-to-noise ratio: 65 dB and flat frequency response
• Radio Frequency shielded against mobile interference
• Omnidirectional pick-up pattern

Table 6: UMA-8 specifications

The PM2.5 laser dust sensor SKU SEN0177 (Figure 6a) represents a digital universal particle concen-

tration sensor that can be used to analyze the concentration of particulate matter, that is, the amount of

suspended particulate matter (mixture of liquid droplets and solid particles) in a unit volume of air that has

0.3 to 10 microns and the quality data of per particle (Beijing Hike IoT, 2017). The specifications from the
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PM2.5 sensor is described on the Table 7.

Specification Description
Measuring pm diameter 0.3-1.0, 1.0-2.5, 2.5-10 (um)
Measuring pm range 0 ∼500 ug/m3
Standby current ≤ 200 uA
Response time ≤ 10 s

Operating temperature range -20 ∼50C
Operating humidity range 0 ∼99% RH

Minimum size of micron resolution 0.3

Table 7: PM2.5 specifications

The SparkFun Environmental Sensor - BME680 (Qwiic) (Figure 6d) is a module for the BME680 gas

sensor from Bosch (2017). The BME680 combines a gas sensor with temperature, humidity and baro-

metric pressure sensing (Table 8).

Specification Description

RH
• Operating range: 0% to 100%
• Absolute Accuracy: ±3%RH
• Resolution: ±0.008%RH

Temperature
• Operating range: -40°C to +85°C
• Absolute Accuracy: ±0.5°C to ±1.0°C
• Resolution: 0.01°C

Pressure

• Operating range: 300hPa - 1100hPa
• Relative accuracy: ±12Pa (25°C to 40°C @ constant RH)
• Absolute accuracy: ±60Pa (0°C to 65°C)
• Resolution: 0.18PA, highest oversampling

Gas

• Resolution of gas sensor resistance: 0.05% to 0.11%
• Typical current consumption (varies based on mode and active
sensor)
◦ 2.1µA to 18mA
◦ 0.15µA (sleep mode)

Table 8: BME680 specifications

4.1.1.1 Planning of the Data Collection

The Data Acquisition exercises were based on the requirements for the project objective, it being audio

anomaly detection and the measurement of air quality inside the vehicle.

The regular use of a vehicle comprise background noise done by the proper use of the vehicle (e.g.

engine sound) and all the surroundings of the moving or stationary vehicle. Additionally the noise made

by the occupants of the vehicle is a factor that also needs to be evaluated and analyzed. Considering

these aspects, a wide selection of use cases were defined and their corresponding labels of normal and

abnormal behavior.

Abnormal behavior does not strictly imply abnormal use of vehicle or of its occupants. It just implies
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some aspects of not normally occurring events.

Use Case ID Use Case Description Behaviour Label
0101 Normal Wake state Normal
0102 Talking Normal
0103 Texting and talking Normal
0104 Using the Smartphone Normal
0105 Reading Normal
0106 Singing Normal
0204 Coughing Anomaly
0205 Breaking a Window Anomaly
0206 Argumenting Anomaly

Table 9: Use Case Description of Audio Anomaly Detection

Considering logistical and organizational barriers to perform all the use cases presented on the Table

9, the use cases collected were the following:

• Normal Wake State: only the sound of the functioning of the vehicle and exterior sounds is con-

sidered for this use case; the objective is to then be able to filter the sounds of a normal running

vehicle and its surroundings.

• Talking: occupants talking inside the vehicle.

• Texting and Talking: occupants talking on the phone or via Bluetooth; the variant of texting, because

of security constraints, was not included.

• Singing: occupants singing inside the vehicle.

• Coughing: occupants coughing inside the vehicle.

• Argumenting: occupants arguing inside the vehicle.

Regarding the audio collection requirements, each use case had to be collected from 3 to 5 hours

following a certain distribution of variants. These variants were the combination of windows closed/open

and radio off/on. The most significant variant was windows closed and radio off, which had to be 70% of

the total time, where the remaining 30% split between the other variants (10% to each).

The technicalities for this collection were that the microphone had to be recording at least at 44100

Hz with a single channel and, if the recordings were being done in segments, each segment had to be

more than one minute. The importance of these specifications lies in the fact that these were the basis

for a audio analysis that was able to differentiate between the different use cases. The requirements for

the air quality inside vehicle only defined that a total of 6 hours should be collected, 3 hours for each type

of use case (normal and abnormal), independently of the use case.
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Sensor Sample Rate
UMA-8 48kHz
BME680 0.5Hz
PM2.5 0.5Hz

Table 10: Sensors Sample Rate

The final setup configurations are presented in Table 10. On can conclude that while the microphone

recorders, every second, 48.000 instances, the gas and particle sensors only record every two seconds,

which means that for each 96.000 instances of the microphone there is 1 recording of gas and of particle,

like specified on Table 10.

In order to simplify and streamline the data collection process, a representative nomenclature of

window and radio variants was created and put into practice during the planning, execution and labeling

of the exercises.

Structure Variant
W0 Windows closed
W1 Windows open
R0 Radio off
R1 Radio on

Table 11: Nomenclature of window and radio variants

An exercise of Normal Wake State with windows open and radio on would be portrayed as 0101W1R1:

0101 corresponding to the use case ID of the event (0101) and the respective nomenclature of the state of

the windows (W1) and radio (R1). This format was applied to all use cases and variants of windows and

radio.

The recording of data for the Air Quality Analysis was performed during the recording of the audio infor-

mation, where the analysis of anomalous or normal events was not considered. An example of anomalous

event was smoking, a particularity that no person involved in this first data collection does.

4.1.1.2 Execution of the Data Collection

The execution of the data acquisition plan was done considering all the use cases and variants already

described above. A stationary and moving data acquisition were conducted using a series of different

vehicles ranging from internal combustion engines (petrol, diesel, Liquefied Petroleum Gas (LPG)) to a

Battery Electric Vehicle (BEV) (Table 12).

On the first data acquisition, all vehicles were stationary and it allowed for some conclusions to be

made and configurations to be changed. The microphone was recording dynamically on two channels of

all 8 channels, meaning that there was no control over which channels were recording and even in which

side it was being activated. If a noise was made on the right side, for instance, the microphone would

dynamically choose the two nearest channels to activate and record. The impossibility to know where the

events occurred lead to a change on the configuration of the microphone. What started out as 8 channels
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recording dynamically, moved to only 2 fixed channels (mic0 and mic1), with mic0, corresponding to the

channel 1, recorded the driver side and mic1 recorded the opposite direction.

Both data collections were done at the same time by having the particle and gas sensors recording

simultaneously as the microphone, which allowed to collect more data for the air quality exercise. The

exercises were carried out sequential, with the sensors data being saved every 80 seconds in order to

preserve the data if any error on the data collection occurred.

The moving data acquisition plan was conducted on a wider spread of vehicles for a better analysis

and conclusions.

Brand Model Fuel Exercise Category
Mini One Gasoline Stationary
BMW 520D Diesel Stationary/Moving
BMW i3 BEV Stationary/Moving
Nissan Micra K12 Gasoline/LPG Moving
BMW 120D Diesel Moving

Peugeot 207 Diesel Moving
Ford Fiesta Gasoline Moving

Table 12: Specifications of the vehicles used on the Data Collection exercises

A wide number of specifications for each data collection event were collected for a better understanding

of the data.

• Experiment ID: identifier of the experiment in each given day.

• Event ID: identifier of the use case (e.g. 0101).

• Event Description: name of the use case (e.g. Normal Wake State).

• Run: identifier of the exercise.

• Car: brand and model of the vehicle used for the data acquisition exercise.

• Fuel: vehicle type fuel.

• Type of road: type of road of the data acquisition exercise (e.g. asphalt).

• Windows: state of the windows (open or closed).

• Windows Description: description of the state of windows (e.g. front windows open).

• Radio: state of the radio (on or off).

• Radio description: description of the state of the radio (e.g. radio intensity: low).

• AC: state of the air conditioning (on or off).

• AC intensity: description of the state of the AC (e.g. AC intensity: low).

• Wipers: state of the wipers (on or off).

• Wipers Intensity: description of the state of the wipers (e.g. wipers intensity: low).

• Passengers: number of passengers on the vehicle.

• Passenger action description: description of the passengers actions and/or location (e.g. driver
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and front passenger. Front passenger coughing.).

• Average Speed: average speed during the exercise.

• Location: general location where the exercise was performed.

• Obs: observations and/or new information that is not described on the other specifications.

• Done: if the exercise was completed (1) or it was just planned (0).

Figure 7: Setup placement inside the vehicle for the Data Acquisition of the EasyRide data

The setup was located on the windshield like shows Figure 7, with the microphone being placed on

the middle of the windshield and the gas and particle sensor placed on the left side, leaving a gap between

the both of them so that the PM2.5 fan cannot be heard.

Table 13 summarizes the distribution of each data acquisition (stationary and moving), where the total

denotes the number of experiments gathered of each use case. Table 14 reports more specifically the

stationary events collected and the moving events are described in Table 15.

Event Event Stationary Moving
ID Description W0R0 W0R1 W1R0 W1R1 W0R0 W0R1 W1R0 W1R1

Total

0101
Normal Wake

State
23 25 28 23 113 13 15 13 253

0102
Talking Inside
the Vehicle

18 31 19 19 98 29 28 42 284

0103
Talking or
Texting

25 3 10 - 119 - 16 - 173

0106 Singing - 2 - 2 94 12 24 12 146

0204 Coughing 29 14 10 11 96 13 14 29 216

0206 Argumenting - - - - 94 18 17 9 138

Table 13: Distribution of each use case
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Event ID Event Description Total events Total events in hours
0101 Normal Wake State 99 2 h 12 min
0102 Talking Inside the Vehicle 87 1 h 56 min
0103 Talking or Texting 38 50 min 40 sec
0106 Singing 4 5 min 20 sec
0204 Coughing 64 1 h 25 min 20 sec
0206 Argument 0 0 h

Table 14: Distribution of the events when the car is stopped.

Event ID Event Description Total events Total events in hours
0101 Normal Wake State 154 3 h 25 min 20 sec
0102 Talking Inside the Vehicle 197 4 h 22 min 40 sec
0103 Talking or Texting 135 3h
0106 Singing 142 3 h 9 min 20 sec
0204 Coughing 152 3 h 22 min 40 sec
0206 Argument 138 3 h 4 min

Table 15: Distribution of the events when the car is moving.

4.1.1.3 Data Labeling

The labeling of the data was performed considering the files resulted by the use of the setup for data

acquisition: microphone, gas and particle sensors data files and the metadata file.

The data collected was organized as follows:

• Each day of data acquisition resulted in a folder with the day as a name

• Each day exercises, identified as run, were carried out resulted in several experiment files that are

equivalent as one minute and twenty seconds of recordings

The metadata of each experiment is used for the identification of the variants of windows and radio and

the use case, which was important for the labeling process. The structure of the labels were as follows:

[identification of the exercise and experiment; use case ID and windows and radio variant; initial second;

final second]. For instance an experiment of Normal Wake State with window open and radio off could be
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labeled as [21_02_2021\run37\5; 0101W1R0; 0; 80].

Algorithm 1: Labeling strategy for the EasyRide data

1 function Labeling (𝑝𝑎𝑡ℎ);
Input: path of the data folder

2 for exercise in path do

3 for experiment in exercise do

4 Find microphone, PM2.5 and BME680 files of experiment;

5 Find metadata of experiment;

6 Save label structure into text file in folder;

7 endfor

8 endfor

Algorithm 1 gives a simple representation of how the labeling script was created, allowing also for a

understanding of how the files were organized inside the data folders, representative of each date of data

collection.

4.1.2 Exploratory Data Analysis

During the data acquisition exercises, an Exploratory Data Analysis (EDA) was performed in order to ap-

prehend the state of the data and to perform changes in the setup for a better quality of the collected

data.

The exercises where performed on different environments in order to understand the impact of different

scenarios (heavy traffic, low traffic, for instance) and different vehicles in the data recorded.

The analysis is divided into two sections: Audio Anomaly Detection and Air Quality Analysis, the two

use cases under study on this project.

4.1.2.1 Audio Anomaly Detection

The EDA of the audio takes into consideration the definition of anomalous events in this setting: argument-

ing and coughing. By assessing the anomalous events, one can conclude that the most similar normal

events are, respectively, talking and normal wake state. A comparative analysis of the amplitude and

frequency is carried on considering these conclusions.
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(a)

(b)

(c)

Figure 8: (a) Fast Fourier Transform, (b) signal representation and (c) spectrogram of a talking recording

(a)

(b)

(c)

Figure 9: (a) Fast Fourier Transform, (b) signal representation and (c) spectrogram of an argument record-
ing

Figure 8b, representative of a talking recording, is possible to conclude that lower amplitudes are

stimulated, when compared to the argument recording (Figure 9b). The peak reaches a value of 0.8 on

the argument, while the maximum amplitude value on the talking recording is 0.1.
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Besides the difference in amplitudes, the frequency aspect of the signal is also different between the

two events. Comparing the Fast Fourier Transform (FFT) (Figures 8a and 9a) and the spectrogram (Figures

8c and 9c) of both events, it is possible to conclude that while the frequencies between 0Hz and 4000Hz

are present on either events, the amplitude is higher on the argument recording and there is a presence on

the whole spectrum, where it is possible to visualize the presence on higher frequencies, between 15000

and 20000Hz.

(a)

(b)

(c)

Figure 10: (a) Fast Fourier Transform, (b) signal representation and (c) spectrogram of a normal wake
state recording
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(a)

(b)

(c)

Figure 11: (a) Fast Fourier Transform, (b) signal representation and (c) spectrogram of a coughing recording

On the Normal Wake State recording (Figures 10a and 10c), only the frequencies until 2500Hz are

stimulated. When comparing to the FFT graph of the coughing event (Figures 11a and 11c), the frequencies

on this range have higher amplitudes and also frequencies until the 20000Hz are possible to encounter

when an cough happens, for example between the 20 and 30 seconds of the recording.

Regarding the amplitude (Figures 10b and 11b), on the coughing recording the amplitude of the signal

reaches higher values, having an absolute positive and negative peak surpassing 0.2.

4.1.2.2 Air Quality Analysis

The analysis of air quality is an important characteristic when considering the comfort of the occupants

and its well being. A bad air quality inside a vehicle could lead to health risks for its occupants.

Due to organizational constraints, the recording of anomalous events for the air quality of the vehicle

interior was not considered. The analysis performed is related to a normal flow on a route compared to a

high traffic circumstance. Only the data retrieved from the particle sensor was studied on account of the

sufficient information that it acquires.
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Column Name Description
pm10 standard Concentration of PM1.0, ug/m3
pm25 standard Concentration of PM2.5, ug/m3
pm100 standard Concentration of PM10.0, ug/m3

pm10 env Internal test data
pm25 env Internal test data
pm100 env Internal test data

particles 03um The number of particulate of diameter above 0.3um in 0.1 liters of air
particles 05um The number of particulate of diameter above 0.5um in 0.1 liters of air
particles 10um The number of particulate of diameter above 1.0um in 0.1 liters of air
particles 25um The number of particulate of diameter above 2.5um in 0.1 liters of air
particles 50um The number of particulate of diameter above 5.0um in 0.1 liters of air
particles 100um The number of particulate of diameter above 10.0um in 0.1 liters of air

Table 16: PM2.5 data description

The variety of data collected through the communication protocol of the PM2.5 sensor to the system

is described in Table 16, where a description of each data title of the data collected is presented.

Figure 12: Normal recording captured by the particle sensor

Figure 12 is a representation of a normal recording with the particle sensor, where the values in all

variables are stabilized and with no peak, considering that the values are almost linear. Different vehicles

can have different linearities of the values considering, for example, the air isolation that it offers from

outside influences.
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Figure 13: Heavy traffic recording captured by the PM2.5 sensor

In Figure 13, the values are similar to those on the normal example (Figure 12) until a sudden peak

happens. Figure 13 represents a recording of a two-way road where both sides, that were stopped on the

traffic light, started to move again, requiring a low gear and resulting in a higher quantity of gases expelled

by the exhaust of the vehicle and those around it. The sensor was able to capture the abrupt augment of

particles expelled resulting in a recording higher than those recorded before and on the normal example.

It is also possible to conclude that the signal is gaining a negative slope after the peak and, if the recording

would have continued, the values would possibly stabilize around normal values.

On both recordings, the variants of windows closed and radio off were identified, which allowed for

this analysis to be made.

4.2 Conclusion and Future Work

The EasyRide project was crucial because it allowed for a practical implementation of the first stage of the

Machine Learning (ML) process.

From the preliminar analysis of the data it was possible to change the initial configuration of the

microphone, dismantle the setup because of the noise coming from the P2.5 fan being audible from the

microphone, resulting in noise data, and also to study if the setup was obtaining the data with the preferred

structure.

The main focus of the EDA process was the perception of the quality of the setup, i.e., whether the

setup configuration allowed relevant data to be obtained given the project objective and requirements.

Considering these factors, the sensor is capable to capture events of heavy traffic that resulted in

heavy expel of exhaust gases, an important feature for air quality analysis that is important to filter and
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require more study.

The values of particles recorded increased meant that the recordings of the exterior environment where

possible to evaluate based on the particles that traveled from the air duct that connects the exterior air

environment to the interior.

Performing exercises in which one of the occupants of the vehicle is smoking would allow for a capture

of an irreprehensible anomaly considering the high health risks for all the occupants, even more so if one

of them is a child. If the occupant that is smoking the cigarette is the driver, there is a dangerous risk of

accident because of visual, manual and cognitive distractions, a more instantaneous repercussion of this

activity.

The next phases of the ML process were not developed because the main focus of this thesis is

centered around the project described on the Chapters 5 and 6.

Nevertheless, the next phase would consist of applying data preparation tasks such as, for instance,

establishing a group of features that best describe the anomalous events and perform more data collection

exercises to augment the available data for the modeling phase.
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Chapter

5
Use Case: SlimScaley - Business and

Data Understanding

Exterior vehicle damage detection is the detection of damaging events that negatively affect the exterior

appearance of the vehicle. These damage inflicting events can be caused by a person, structure, or object

(human or non-human made) and can occur while the vehicle is moving or stationary. This system allows

to alert the owner of the vehicle if any irregular event has been detected on the vehicle while the engine is

running, moving or parked.

Considering that high energy damages involve a release of a lot of energy and, consequently, is easier

to distinguish and identify when comparing with normal/background data, the real problem relies when

a small damage happens. A small damage produces a response that can be similar to a normal driving

event. Therefore, a Small Damage Detection (SDD) system is the scope of the project.

The process involved on the first phase of the implementation of an Anomaly Detection approach to

the problematic is related to the Business Understanding and Data Understanding phase.

5.1 Business Understanding and Data Understanding

SlimScaley is a Bosch internal product where the primary goal of the SDD algorithm is to detect exterior

impacts into a vehicle via a sensor set placed inside.

The set of sensors used to source information from the vehicle and its surroundings were an accelerom-

eter, gyroscope and a microphone. The selection of sensors was based on the fact that most events can

be perceived or detected by the forces involved as a result of the impact and by the resulting sound. The

Inertial Measurement Unit (IMU) or combination of accelerometer and gyroscope, record information that

allows to perceive these forces, and microphones allow to capture sounds that result from these events.

Given that the accelerometer and gyroscope is triaxial, that is, the records are collected of the three axis

(x, y and z), is possible to gather information from all the different angles on the vehicle.

An accelerometer measures acceleration forces that can be a dynamic force caused by movement,

vibration or the static force like the constant force of gravity (Amin et al., 2016).

Given the context, the objective of applying an Anomaly Detection approach is to detect events that

are considered anomalous, in this case the impacts/damaging events.
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5.1.1 Data Collection

The setup is composed of multiple sensors and processors, in order to create a system capable of detecting

a damage event, all mounted in a Printed Circuit Board (PCB).

Multiple setups were implemented with accelerometer and gyroscope, ranging from accelerometer

and gyroscope mounted separately or using IMU to combine both in just one sensor. Regarding the

microphone, two units are mounted in opposite corners of the PCB.

The accelerometer and gyroscope specifications are described below on the Table 17.

Accelerometer Gyroscope

Sensor
Output Data

Rate
Bandwidth Range

Output Data
Rate

Bandwidth Range

BMI270 1600Hz 434Hz ± 8G 1600Hz 134Hz ±250deg/s
MPU9250 1000Hz 218.1Hz ± 8G 1000Hz 184 Hz ±250deg/s
SMA130 1000Hz 500Hz ± 8G - - -
BMG250 - - - 1600Hz 523.9Hz ±250deg/s

Table 17: Sensor setup for exterior vehicle impact detection use case

The IMUs BMI270 and MPU9250 were used as accelerometer and gyroscope devices since they

comprise both. The SMA130 and BMG250 were used together since they are an accelerometer and a

gyroscope, respectively. Only one microphone model was used (see Table 18).

Sensor Sample Rate Bandwidth
SPG08P4HM4H-1 44100 Hz 10000 Hz

Table 18: Microphone setup for exterior vehicle impact detection use case

The sensors where placed on the windshield, right next to the rear-view mirror. After having a setup

ready to collect data, a plan was created to outline events that needed to be collected to later analyze.

Two main groups were identified: damaging and non-damaging events. The plan was conducted so

that the experiments could replicate as closely as possible real-life situations. Damaging events involved

a careful setup for experiments since human safety was a priority.

The tables presented on the Annex II (Table 30, Table 31 and Table 32) represent the events to be

collected and its identifiers.

The data collected was labeled during the execution of the exercises. For each event, a hot key was

associated to each event to simplify and streamline the process. When an event starts, the corresponding

key is pressed until the end of the said event.

The data resulting from the data collection exercises is aggregated between two files: a JSON and a

H5 file.

The JSON files has all the metadata that allows for a better understanding of the characteristics of the

collection, as well as the event label. A list of some of the key value attributes used is presented bellow:

• Car identification
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• Event label

• Event start time

• Event end time

• Damage type

• Damage severity

• Road Type

• Weather type

The H5 file had all the recordings for the setup sensors. The name of the JSON and H5 file are the

same, for an easier correspondence between the data recorded and the associated metadata.

5.1.1.1 Data Preprocessing

Data collection exercises were done using various setups, with different configurations, as explained above.

In order to better analyze and take conclusions based on the data collected there is a need for standardize

the data for all the setups and join the information of each pair JSON-H5 files.

Accelerometer and Gyroscope

The setup where all the sensors are aggregated is placed on the windshield of each of vehicle used

on the data collection exercises. Since the sensors are placed on the windshield and cars have different

windshield angles and heights, the rotation matrix of the accelerometer and gyroscope sensors need to

be standardized in order to be consistent throughout all data available. A change in the height placement

of the setup would mean, for instance, that the affect on the Z axis would be different, considering the

calculus of the force of gravity. The accelerometer and gyroscope are deeply dependent on the position

that the reading occurs. Given this problem, the data from different cars would not be interpretable in the

same way, so everything is converted considering the matrix presented in the below image (Figure 14),

taking into account the car coordinates of setup on the windshield.

Figure 14: Accelerometer and gyroscope orientation in the rotation matrix.
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Considering the orientation of the Z axis, a stationary vehicle, with no other forces but the gravitational

force, will have a 1g reading on the accelerometer, caused by the mechanical force exerted in the upward

direction by the ground.

After the application of a rotation matrix, depending on the sensor, different transformations were

applied to uniformize the sampling rate and the bandwidth. Contemplating the data on Table 17, the focus

was to resample the accelerometer and gyroscope sensor data to 1600 Hz and low-pass filter accelerom-

eter data at 218 Hz and gyroscope data at 124 Hz.

Microphone

The same microphone, but with different configurations, was tested until a reliable architecture was

establish.

In order to not loose all the data collected prior to that configuration, different transformations were

applied, considering the configuration changes to the main one. Ultimately, the audio data was resampled

to 24 kHz and low pass filtered to 11 kHz.

Subsequently, after all data was uniform on the different sensors, the information from the H5, where

the sensor data was located, and all the metadata and labels derived from the corresponding JSON file

was aggregated on a single H5 file.

5.1.2 Exploratory Data Analysis

The first data analysis is important in order to understand the data distribution and draw some conclusions

about how to proceed in the next phases. Given that the problem lies on the problematic of anomaly de-

tection, a statistical analysis on the data allows for a better understanding of the available data. Afterwards

an in depth analysis of the events is performed in order to perceive details and knowledge of the damage

and no damaging events.

5.1.2.1 Statistical analysis

From approximately 39h44 minutes of data recordings, which includes 13186 events manually reported,

7h52 minutes of those are recordings where damage occurred, translating to 2695 events of damage.

Based on this analysis alone, is possible to conclude that the data is really unbalanced which is a prob-

lematic that needs to be considered on the next phases. An unbalanced dataset on an algorithm that

does not complement this fact can lead to significant bias to the higher presence class. Also, as explained

before, the use of metrics to evaluate the model that does not consider this aspect can lead to wrongful

conclusions. Considering the aspect of anomaly detection, an unbalanced dataset is an expected condition

of the data available in order to apply this methodology.

Figure 15 gives a distribution of all impact events, allowing for a better understanding of the quantity

of data collected in each of the events categories.
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Figure 15: Statistical analysis of categories

Considering all the class categories presented on the dataset, the events characterized as “Road

Events“ have a higher presence and events considering the “Sunroof“ of the vehicle have the lower pres-

ence.

The “Car Wash“ is the category with a higher average time, but considering that the process is time-

consuming, the average of 300 seconds (4 minutes) is an understandable value.

Another important conclusion is that the average time for a lot of impact related events is 1 second, or

close, which could mean that a 1 second window could obtain the signal information from most of impact-

related events. The events with a higher average time are the ones where the occurrence of damage is

not expected, such as “Car Watch“ and the actions involving the “Sunroof“.
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Figure 16: Damage/no damage distribution by events

Figure 16 gives a specific analysis on the distribution of the damage and no damage events in each

of the events categories.

It would be expected that impact related classes of events to be characterized, by default, as damaging

occurrences. The classes mentioned that involve impacts are the following:

• Throw Object at the car

• Scratching

• Vehicle hits object

• Door opens against object

On the data recorded, scratching and door opens against object always involve damage to the vehicle

however, the other impact related classes have also non damaging events recorded. The impact with a

low density object does not result in damage to a vehicle, this being a possibility of a non damaging data

collected from each of the classes presented.
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Figure 17: Distribution of the damage severity

Considering the data that resulted in damage, the damage severity on the vehicle was divided by levels:

small, medium, medium/big, big and high.

Most of the damaging events captured on the data collection phase resulted in small damages to the

vehicle, with only a small volume of high damage data collected.

Figure 18: Statistical analysis of the damage/no damage data

Looking at all the manually labeled data as an event, that resulted in damage or not, is possible to

conclude that the number of damaging events captured is roughly 1/5 of the total of all events. In terms

of time captured, the difference is even higher with damaging events corresponding to 6.87% of the total

data.
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5.1.2.2 Event depth analysis

Firstly, an analysis of the gyroscope, accelerometer and microphone data was performed, to better define

which sensors to use for the resolution of the problematic.

(a)

(b)

Figure 19: (a) gyroscope and (b) accelerometer representation of a high energy door event.

As seen in Figure 19, the information obtained from the accelerometer and gyroscope is similar, where

there is a response from both sensors when they are excited by the occurrence of an event. The use of

the gyroscope sensor data, joined with the accelerometer data, would not bring additional information. As

a result of this study, only the accelerometer data will be contemplated on the future phases.
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Figure 20: Saturation of microphone data (above) compared to the accelerometer data (bellow) with iden-
tification of labeled events.

Figure 20 allows to perceive that the microphone data, even when there is not an occurrence of an

event, there is a large portion of data with high saturated audio data. Being that the microphone system

is independent from the accelerometer and gyroscope setup, the audio data has also synchronization

problems regarding the accelerometer data.

The problem will then be analyzed from the perspective of using the accelerometer as the only sensor

that provides valid or relevant data.

A study of damaging and non-damaging events will be carried out in order to better make conclusions

and proceed on the Data Preparation step.

The analysis of the events were made considering the information from the accelerometer signal, the

Fast Fourier Transform (FFT) and the wavelet (Discrete Wavelet Transform (DWT)).

Wavelet algorithms process data at different scales or resolutions. The FFT and the DWT are both

linear operations that generate a data structure that contains log2 𝑛 segments of various lengths, usually

filling and transforming it into a different data vector of length 2𝑛, however wavelets are also located in

space (Graps, 1995).

The signal analysis was carried by using the XYZ norm of the signal. Considering that the Z axis of the

accelerometer is affected by the gravity, a measure of 1g was reduced on the data analyzed though FFT

in order to remove the influence of gravity and reduce the representative peak at 0Hz.

Non-damaging events
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(a)

(b)

(c)

Figure 21: (a) Fast Fourier Transform, (b) signal representation and (c) wavelet representation of a regular
door event.

The signal on the Figure 21 is a representation of a normal recording of an event of doors. An event

of doors has a low amplitude (Figure 21b) and almost no representation on the frequencies above 200Hz.

(a)

(b)

(c)

Figure 22: (a) Fast Fourier Transform, (b) signal representation and (c) wavelet representation of a high
event of doors.
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The Figure 22 represents the highest recording of a door event on the dataset. The amplitude reaches

a value of 10g (Figure 22b) and there is presence of frequencies on the higher range, from 200 to 300Hz

(Figure 22a). The occurrence of the highest frequencies happened where the signal excitation was higher,

that is, reached the highest amplitude (Figure 22c).

(a)

(b)

(c)

Figure 23: (a) Fast Fourier Transform, (b) signal representation and (c) wavelet representation of a speed
bump.

The signal that represents a speed bump is really characteristic of this event, where its possible to

visualize the passage of the two front wheels, the body between the wheels and the back portion (Figure

23b). In terms of frequencies, the speed bump event has a stronger presence on the lowest frequencies

(Figures 23a and 23c).

Damaging events
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(a)

(b)

(c)

Figure 24: (a) Fast Fourier Transform, (b) signal representation and (c) wavelet representation of a high
impact event of vehicle hits object.

The impact on Figure 24 releases a lot of energy, reaching an amplitude of 12g (Figure 24b). The

event had a representation of a wide range of frequencies (Figure 24c), with frequencies above the 200Hz

having a high presence on the FFT graph (Figure 24). Consequently, is possible to bring to a conclusion

that high impacts have higher amplitudes and a wider range of excited frequencies.
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(a)

(b)

(c)

Figure 25: (a) Fast Fourier Transform, (b) signal representation and (c) wavelet representation of a scratch-
ing event.

The event of scratching is not possible to be characterized by the accelerometer data. Taking into

account that the signal represented on the Figure 25b considers the information from the gravity, the

signal only heights more 0.02g than the axis represented by the information of the gravity (Z axis), where

the representative value is 1g.

Furthermore, the information from the FFT (Figure 25a) and the DWT (Figure 25c) also corroborates

this conclusion.
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(a)

(b)

(c)

Figure 26: (a) Fast Fourier Transform, (b) signal representation and (c) wavelet representation of a door
opening against object.

The event of a door opening against an object (Figure 26). The impact is highly represented on the

range of frequencies between 100 and 200Hz (Figure 26a). However, even through the event is charac-

terized as being an impact, the amplitude reached is lower than the one on the Figure 22, representative

of a door closing. Therefore, is possible to conclude that a door event can have a similar or higher repre-

sentation that those of a impact-related signal.
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6
Use Case: SlimScaley - Data

Preparation and Modeling phases

After the processes to understand the raw data available to solve the problem by an Anomaly Detection

approach, the following phases where conducted and are described on this chapter:

• Data Preparation

• Modeling

• Model Evaluation and Results Analysis

6.1 Data Preparation

As explained on the Chapter 3, the Data Preparation step is paramount to the modeling task. It is an

essential step as a prerequisite to put data in context in order to turn it into insights and eliminate bias

resulting from poor data quality.

A threshold-based filtering strategy, data cleaning and windowing strategy were performed on the data

before the application of Feature Engineering task on the accelerometer data.

6.1.1 Distribution Analysis and Threshold Definition

Some events of damage and non-damage have low energies associated with it, resulting in little or no

defining or differentiating characteristics to this signals.

Also, considering the application of the system on a real environment, if the event classification system

did not have a triggering mechanism and was inferring all the time, it could result in a system overload

and delay on the evaluation process.

Considering this aspects, a filtering strategy was implemented in order to separate relevant from

irrelevant events.

A reduction of the background/non-damaging events analyzed by the model results in a better defined

strategy considering that the project objective is to detect the damaging events.

The definition of a threshold for separation of relevant and irrelevant events was made taking into

account the norm of the accelerometer axis of all the samples.

52



6.1. DATA PREPARATION

(a) Sample Inverted Cumulative Distribution
Function.

(b) Difference between distributions.

Figure 27: Distribution analysis of damage/no damage data.

Firstly, an analysis of the Cumulative Distribution Function (CDF) of all events of the data set, defined

why its label, was performed (Figure 27).

The CDF implies that distribution function of X, evaluated at x, is the probability that X will take a value

less than or equal to x (Deisenroth et al., 2020).

Looking at the Figure 27a, the inverted of the CDF is represented, the definition is: distribution function

of X, evaluated at x, is the probability that X will take a value higher than or equal to x.

Considering this definition, the range of values between 1.0 and 1.5 on the accelerometer norm rep-

resent a value where the distribution of the damage events is higher than those of background. A value in

this range would favor the number of damage events selected to non-damage events. However, as seen

on the peaks of the Figure 27b, the values closer to 1.0 should be ignored because of abrupt changes,

which can indicate that those values are not stable.

The lowest possible value between the defined range should be considered as the threshold, seeing

that the values closer to 1.5 should also be ignored because of its ability to filter out more damaging events,

when the objective is to maximize the number of those events.
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Figure 28: Histogram of damage/no damage data.

The final value was chosen from an analysis of the histogram of the damage and no damage data

(Figure 28), where the 95th percentile on the normal data corresponds to the accelerometer norm of 1.2g.

Taking into account the analysis carried out by the application of a CDF and histogram on the data,

1.2 was considered to be the best value for the threshold application.

6.1.2 Data Cleaning

After the definition of the threshold value that is best applicable to the problem, and before the data set

design, some data cleaning was necessary to implement to the data.

Following an analysis of the labeled events, some labels were removed because they were considered

to be incorrect where the initial sample is higher or equal than the final sample.

Furthermore, the events of scratching were also removed. As studied on the Exploratory Data Analysis

(EDA) phase, the scratching events are not apprehended by the accelerometer data. Even though scratches

result in damage to the vehicle, the usage of those events on the models would result on a wrongful

classification. For the identification of scratches, an analysis with more sensors, for instance amicrophone,

could result on those events to be well classified.

6.1.3 Dataset Design

The data involved on the creation of the windows for the train and test datasets were specifically from

different folders. Because of the importance of the test set in terms of analyzing the performance of the

models, the folder of the testset data had 0 background events manually classified as damage, that is, had

0 False Positives (FPs). This characteristic is crucial for the correct classification of the damaging events

54



6.1. DATA PREPARATION

as anomalies.

The distribution of the manually labeled events throughout the folders identified as train (Figure 29)

and test (Figure 30) sets is possible to analyze on the next figures.

Figure 29: Distribution of the train dataset with manually labeled events.

Figure 30: Distribution of the test dataset with manually labeled events.

Taking into consideration the different size windows of the manually labeled events, as seen on the

Subsection 5.1.2, a processing and standardization of the window size needed to be processed in order
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to use the accelerometer for Feature Engineering tasks. A non-standardized data would lead to incorrect

feature creation as, for instance, features like the mean are extremely influenced by the size of the windows.

The analysis and construction of the datasets followed some specifications considering the two classes

of data: damage (anomaly) and non-damaging/background (normal) data. This being said, the dataset

was built differently for damaging events and non damaging events.

Considering that the damaging events are the subject of study, ensuring that the window capture the

relevant information of this events is crucial for a well defined data set.

Figure 31: Methodology of construction of the dataset window. After Window (AW) and Before Window
(BW) correspond to 0.9 and 0.1 seconds, respectively.

To define an event, anomalous or normal, two values had to be specified: the size of the window that

frames an event and the position in the window of the first value above the threshold. To have a continuous

analysis of events on an automotive system, a window of 1 second was defined, as a bigger window size

could delay the response in case of an impact, which corresponds to 1600 samples of accelerometer data,

as it has a sample rate of 1600Hz. Considering the ripple effect on the signal when an event occurs, the

window was constructed considering 10% of the window size before the first value above the threshold

(BW), that is, 160 samples, and the 1439 samples after the defined value (AW). The windows constructed

where non-overlapping windows, as an overlap would allow the same event to be analyzed more than one

time (Figure 31).

Damage events where designed based on their initial labeled window, were the first XYZ L2 norm

(Jeffrey et al., 2000) value, as the XYZ norm provides the overall magnitude of the forces, above the

threshold was framed on a window with 1600 samples. The information of the X, Y and Z data on this

window was saved, as well as the associated label. “None“ labeled damaging events were not regarded,

as a well defined event classification was crucial to the analysis.

Looking at the creation of the windows of the damaging events, if the background windows did not

follow the same parameters because:

• Only the information on the initial labeled window would be regarded on the creation of the back-

ground window.

• There would be only one background window for each of the initial labeled window.
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Considering that a high amount of data from background is important for the application of an Anomaly

Detection approach, and the ability for the system to then be able to recognize background events that

exceed the threshold as non-damaging, the selection of non damage events followed a new set of rules

discarding the information of the manual labels. Files where there was the occurrence of damage were

not considered on the creation of background events, regarding to the possibility of residual damaging

information, that was not included on the window frame, being considered as background.

In any recording, that did not have damage events, the positions of all reference indexes from the

XYZ norm that exceeded the threshold were calculated and, after that, a non overlapping sliding window

created background events considering the positions of these values. Just like on the damaging windows,

the X, Y and Z axis data was saved. The background events were labeled based on the occurrence of an

labeled event in the window and, if no manually labeled event is encountered, were labeled as “None“.

The creation of the windows on the train and test datasets have taken for consideration the process

explained. The distribution of the damage and background windows on each dataset is detailed on the

Figure 32.

Figure 32: Distribution of the train and test datasets with events created on a 1 second window with a 0.1
reference index position regarding the window size.

6.1.4 Feature Engineering

The next phase after the dataset was created with the necessary structure, as well as the events filtered,

the application of Feature Engineering tasks was necessary for a better explainability of both classes. The

Feature Engineering tasks were supported by the information obtained on the EDA phase (Subsection

5.1.2).
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The accelerometer event, as described above, was constructed by a windows of 1600 data points for

each of the accelerometer axis: X, Y and Z.

Regarding the frequencies up to 10Hz, because they where present on all events and were considered

as noisy data, a highpass filter of 10Hz was applied to the accelerometer data on all axis.

The L2 norms XYZ, XY, XZ and YZ, calculated at each sample in the event window, was also incorpo-

rated onto the data to analyze, as the XYZ norm provides the overall magnitude of the forces, the same

applies to the other norms however their values only concern two axis. The information derived from the

calculation of the norms results in the distance of the vector coordinate from the origin of the vector space,

resulting in a positive distance value. The application of the norm removes the directionality of the applied

force, as a negative force applied on the X and Y axis would result on a positive XY L2 norm value. The L2

norm is often used when fitting machine learning algorithms as a regularization method, e.g. a method to

keep the coefficients of the model small and, in turn, the model less complex (Briggs et al., 2000).

Considering the specific frequency ranges that are present in damaging and non-damaging events, a

wavelet transform was applied to the norms (XYZ, XY XZ and YZ) and axis (X, Y and Z). The Table 19 gives

information about the wavelet scales chosen and the corresponding frequency.

Scale 8 16 32 64 128
Frequency 162.5 81.25 40.625 20.3125 10.15625

Table 19: Association between each wavelet scale and the respective frequency.

Besides the frequency analysis made using wavelets, a bandpass filter on the range [200, 300Hz] was

also extracted of the norms and axis because of the presence of this range of frequencies on damaging

events.

After the analysis, each event is then composed of 49 windowed streams of data.

In terms of application of Feature Extraction, a set of features from different domains were extracted

from each of the windowed streams. The analysis carried out on the Section 2.2 Literature Review sup-

ported the selection of features presented on the Table 20.

Domain Features calculated

Time

Autocorrelation, Zero Crossings, Peak to Peak Distance, Count
Mean Crossings, Negative Turning, Positive Turning, Absolute
Energy, Mean Differences, Median Differences, Distance, Sum
of Absolute Differences, Slope, Area Under Curve, Absolute
Sum of Changes, Count Above Mean, Count Bellow Mean, First
Max Location, First Min Location, Mean Absolute Differences

Statistical

Kurtosis, Skewness, Root Mean Square, Median Absolute
Deviation, Interquartile Range, Variance, Standard Deviation,
Mean Absolute Deviation, Mean, Median, Max, Min, 5th
Percentile, 25th Percentile, 75th Percentile, 95th Percentile,
Range

Spectral Total Energy, Spectral Distance

Table 20: Features extracted separated by domain.
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A total of 38 features are presented on the Table 20, out of those 19 are time related features, 17 are

statistical and 2 spectral features.

Besides the features described on the Table 20, the Signal Magnitude Area (SMA) on the raw ac-

celerometer axis data was also calculated:

𝑆𝑀𝐴 =
𝑛∑
𝑖=1

( |𝑋 (𝑖) |) + (|𝑌 (𝑖) |) + (|𝑍 (𝑖) |)

The number of features obtained from the accelerometer data after the Feature Extraction phase, that

was used to describe each event, was 1863.

The curse of dimensionality (Bellman, 1957) refers to various phenomena that arise when analyzing

and organizing data in high-dimensional spaces that do not occur in low-dimensional settings. Considering

the amount of features extracted from each event, Feature Selection was necessary to apply. Taking into

account the fact that the algorithms used in the modeling phase are semi-supervised and therefore have

no associated Feature Selection techniques, the application of Feature Selection techniques was developed

based on the scikit-learn (Pedregosa et al., 2011) approaches: SelectKBest, VarianceThreshold and Se-

lectFpr. SelectKBest and SelectFpr are supervised techniques, while VarianceThreshold is unsupervised.

Considering the problematic of high correlated features, where redundant information from two or

more features are used on the model, the features with a 95% or higher correlation where discarded.

VarianceThreshold removed all features that remained constant throughout the dataset and also quasi-

constant features. The application of VarianceThreshold, and the removal of high correlated features,

resulted in a removal of 196 features, leaving 1667 features out of the initial 1863. This two strategies

where always applied for its ability to remove redundant features out of the dataset.

SelectKBest, as the name imply, selects the features based on the k highest scores. The score function

chosen was chi2, that computes chi-squared stats between each non-negative feature and class. To apply

this technique the features need to be non-negative, so a normalization of the data to the range [0,1] was

performed. Then, the 10% highest scored features were selected, which corresponds to the selection of

166 features.

The SelectFpr filters the features by its p-values below alpha based on a False Positive Rate (FPR) test.

The score function, similar to the SelectKBest technique, was chi2. The alpha chosen was 0.01, which

means that features with p-values less than 0.01 were selected. The application of the SelectFpr resulted

in 634 features selected out of 1667.

The completion of the application of Feature Selection techniques resulted in 3 datasets with 1667,

166 and 634 features that where trained and tested for the problematic.

The only Feature Reduction approach used was UniformManifold Approximation and Projection (UMAP).

UMAP (McInnes et al., 2020; Sainburg et al., 2021), firstly published in 2018, was used to project the

raw accelerometer data into a two-dimensional space. The UMAP was instantiate as the dimensionality

reducer with target dimensionality n_components = 2, resulting in a 2D representation of the data. UMAP

is faster than the widely used Feature Reduction unsupervised linear transformation technique Principal

Component Analysis (PCA) and retains the global data structure much better (Albrecht et al., 2020). The

UMAP was applied to the raw axis (X, Y and Z) accelerometer windowed data, due to the ability of UMAP
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to represent the information of the accelerometer on a different dimension (Figure 33).

Figure 33: UMAP application on the accelerometer data.

The objective of the usage of UMAP was to try to separate the damage and background data. In

Figure 33 is possible to see the red clusters, representative of damaging data. However, is not possible to

complitely separate the damage from the background data using only this approach, as some of damaging

representative points are scattered throughout the figure.

6.2 Modeling

Considering the aspect that the labels of the windows were available, the emphasis was on a semi-

supervised Anomaly Detection approach because of its potential to focus on having appropriate explain-

ability of one of the classes to fit the model.

Semi-supervised Anomaly Detection takes into consideration one of the classes to proceed with the

training of the algorithms. Taking into account the requisite of Anomaly Detection of having a substantial

difference between the normal class and the anomalous and a larger representation of normal data avail-

able, the normal class was regarded as being the one with the non-damaging events. The validation and

test of the model is when the anomalous/damaging data is regarded.

For a search of the best hyperparameters for each model that best fit the data, a GridSearch was

performed. Measuring the models based on a non-nested cross validation bias the model to the dataset,

resulting in an overly-optimistic score of the model with a specific set of hyperparameters (Cawley et al.,

2010). A nested cross validation with grid search was then implemented to choose the best hyperparam-

eters for each algorithm and assert the model quality.

The classical nested cross-validation procedure, just as the one presented on scikit-learn (Pedregosa

et al., 2011), version 1.1.0, is used in a supervised ambient as it takes the labels for the evaluation of the

models. A new semi-supervised nested cross-validation procedure was created for this proposal, taking

into consideration the structure and logic behind the traditional nested cross-validation. In this process,
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only the training data was used.

On an Anomaly Detection application, the normal data is represented by a 1 and the anomalies by a

-1. The training dataset is only composed of background (normal) data, which means that the associated

label would be 1.

Taking into consideration that Anomaly Detection algorithms give a score value to each sample, nor-

mally positive for inlier (normal) and negative for outlier, the objective was to have the highest mean among

the training data. The models with a higher mean of scores meant a better a fit for the model because it

would have considered the data to have fewer outliers. Taking into consideration that the fit of the models

would have only background (normal) data, a higher mean score of a model compared to another would

mean that the first had more correctly identified normal data that the latter.

Algorithm 2: k-Fold Nested Cross-Validation with hyperparameter tuning

1 function NestedCrossValidation;

Input:𝑀 : model to Nest Cross Validate

Input: 𝐻𝑠𝑒𝑡𝑠 : set of hyperparameters for the model

Input: 𝐷 : training data

Input: 𝐾1: number of outer folds

Input: 𝐾2: number of inner folds

2 for i = 1 to 𝐾1 splits do

3 Split 𝐷 into 𝐷𝑡𝑟𝑎𝑖𝑛𝑖 , 𝐷𝑡𝑒𝑠𝑡𝑖 for the 𝑖𝑡ℎ split

4 for j = 1 to 𝐾2 splits do

5 Split 𝐷𝑡𝑟𝑎𝑖𝑛𝑖 into 𝐷𝑡𝑟𝑎𝑖𝑛𝑗 , 𝐷𝑡𝑒𝑠𝑡𝑗 for the 𝑗𝑡ℎ split

6 foreach h in 𝐻𝑠𝑒𝑡𝑠 do

7 Train𝑀 on 𝐷𝑡𝑟𝑎𝑖𝑛𝑗 with hyperparameter set ℎ

8 Compute scores 𝑆𝑡𝑒𝑠𝑡𝑗 for𝑀 with 𝐷𝑡𝑒𝑠𝑡𝑗

9 endfch

10 endfor

11 Select optimal hyperparameter set (ℎ∗) from 𝐻𝑠𝑒𝑡𝑠 where mean(𝑆𝑡𝑒𝑠𝑡𝑗 ) is best

12 Train𝑀 with 𝐷𝑡𝑟𝑎𝑖𝑛𝑖 using ℎ∗
13 Compute scores 𝑆𝑡𝑒𝑠𝑡𝑖 for𝑀 using with 𝐷𝑡𝑒𝑠𝑡𝑖

14 endfor

The Algorithm 2 represents a generalized structure of a k-Fold Nested Cross-Validation with hyper-

parameter tuning. The definition of the best score model is dependent of the Machine Learning (ML)

algorithm chosen, where on Isolation Forest, for example, the score is equal to the depth of the leaf con-

taining the sample. This results on a lower score on a normal sample when comparing to an anomaly

sample, as a result of the latter needing more splits on the tree to be defined.

The models used for training were the One-Class Support Vector Machine (OCSVM), Isolation Forest,

Gaussian Mixture Model, Local Outlier Factor (LOF), k-Means and an integration of UMAP with OCSVM.

Five outer and inner folds were chosen on the Nested Cross-Validation.
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6.2.1 k-Means

The k-Means algorithm aims to partition n observations into k (≤ n) clusters in which each observation

belongs to the cluster with the nearest mean (centroid), minimizing the variance within the cluster.

Considering𝐷 = 𝑥1, . . . , 𝑥𝑛 as the data set to be clustered, k-means can be expressed by an objective

function that depends on the proximities of the data points to the cluster centroids as follows:

min
{𝑚𝑘 },1≤𝑘≤𝐾

𝐾∑
𝑘=1

∑
𝑥𝜖𝐶𝑘

𝜋𝑥𝑑𝑖𝑠𝑡 (x,m𝑘)

where 𝜋𝑥 is the weight of x, 𝑛𝑘 is the number of data object assigned to cluster𝐶𝑘 , m𝑘 =
∑
𝑥𝜖𝐶𝑘

𝜋𝑥𝑥
𝑛𝑘

is the centroid of cluster𝐶𝑘 , 𝐾 is the number of clusters set by the user and the function “dist“ computes

the distance between object x and centroid𝑚𝑘 , 1 ≤ 𝑘 ≤ 𝐾 (J. Wu, 2012).

Hyperparameter Description

n_init
Number of times the k-means algorithm will be run with
different centroid seeds. The final results will be the best
output of n_init consecutive runs in terms of inertia.

max_iter
Maximum number of iterations of the k-means algorithm for a
single run.

n_clusters
The number of clusters to form as well as the number of
centroids to generate.

Table 21: Hyperparameters used on GridSearch of k-Means.

The n_clusters hyperparameter was defined as 2 and 3 for the GridSearch analysis. The definition of

3 clusters was to try to better separate events similar to damage as a different cluster.

6.2.2 One-Class Support Vector Machine

The objective of the Support Vector Machine (SVM) algorithm is to find a hyperplane in an N-dimensional

space, with N number of features, that distinctly classifies the data points (Cortes et al., 1995).

Any hyperplane can be written as the set of points 𝑥 that satisfy

𝑤𝑇𝑥 − 𝑏 = 0

where𝑤 is the normal vector of the hyperplane.

OCSVM, proposed by Müller et al. (2001) is similar to the classical SVM, but it instead uses a hyper-

plane which is far from the origin.

The process of the OCSVM can be described as follows (Schölkopf et al., 1999):

• Projection of the point to a higher dimensional space.

• Separation of all the data points from the origin in the feature space using a hyperplane.
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• Unlike traditional SVM, where there is a use of soft margin for smoothness, there is a use of a

parameter that fixes fraction of outliers in the data.

• Maximize the distance between the hyperplane and the origin.

• The points lying below the hyperplane and closer to origin are outliers.

Hyperparameter Description
kernel Specifies the kernel type to be used in the algorithm.
gamma Kernel coefficient.

nu
An upper bound on the fraction of training errors and a lower
bound of the fraction of support vectors.

Table 22: Hyperparameters used on GridSearch of OCSVM

The nu hyperparameter is important when applying an Anomaly Detection strategy with OCSVM as its

fine-tuning can make the model better handle outliers and prevent overfitting.

6.2.3 Local Outlier Factor

LOF was proposed by Breunig et al. (2000) is a well-known local anomaly detection algorithm and also

introduced the idea of local anomalies. To calculate the LOF score, three steps have to be computed

(Goldstein et al., 2016):

1. The k-Nearest Neighbors (k-NN) have to be found for each record 𝑥 . In case of distance tie of the

𝑘𝑡ℎ neighbor, more than 𝑘 neighbors are used.

2. Using these k-NN𝑁𝑘 , the local density for a record is estimated by computing the Local Reachability

Density (LRD):

𝐿𝑅𝐷𝑘 (𝑥) =
©«

∑
𝑜∈𝑁𝑘 (𝑥)

𝑑𝑘 (𝑥, 𝑜)

|𝑁𝑘 (𝑥) |
ª®®¬
−1

whereas 𝑑𝑘 (·) is the reachability distance of the k-NN.
3. The LOF score is computed by comparing the LRD of a record with the LRDs of its 𝑘 neighbors:

𝐿𝑂𝐹 (𝑥) =

∑
𝑜∈𝑁𝑘 (𝑥)

𝐿𝑅𝐷𝑘 (𝑜)
𝐿𝑅𝐷𝑘 (𝑥)

|𝑁𝑘 (𝑥) |

The LOF score is thus basically a ratio of local densities.

k-NN algorithm is amethod proposed by Cover et al. (1967) and is used for classification and regression

problems.

A k-NN algorithm is used based on the idea that similar data points are close to each other, that is,

an instance should be similar to a majority of its k immediate neighbors, rather than to a centroid or an

aggregate over a large set of data points.
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Hyperparameter Description
n_neighbors Number of neighbors.
algorithm Algorithm used to compute the nearest neighbors.

leaf_size
Leaf size, which can affect the speed of the construction and
query, as well as the memory required to store the tree.

contamination
The amount of contamination of the data set, i.e. the
proportion of outliers in the data set.

𝑝 Parameter for the Minkowski metric.

novelty
Outlier Detection (novelty=False) or Novelty Detection
(novelty=True)

Table 23: Hyperparameters used on GridSearch of LOF.

The hyperparameters studied on the application of the GridSearch technique were the ones described

on Table 23.

Considering the 𝑝 hyperparameter, the Minkowski distance, 𝑑𝑚𝑖 , of order ℓ between two points 𝑝 =

(𝑝1, . . . , 𝑝𝑑) and 𝑞 = (𝑞1, . . . , 𝑞𝑑) ∈ 𝒟 is defined as:

𝑑𝑚𝑖 (𝑝, 𝑞) =
( 𝑑∑
𝑖∗1

|𝑝𝑖 − 𝑞𝑖 |𝑙
) 1

𝑙

If ℓ = 2 the Minkowski distance is equal to the Euclidean distance and for ℓ = 1 this distance is equal to(∑𝑑
𝑖∗1 |𝑝𝑖 − 𝑞𝑖 |

)
and is known as the Manhattan distance or 𝐿1 distance.

6.2.4 Gaussian Mixture Model

A Gaussian Mixture Model is a weighed sum of M component Gaussian densities as given by the equation

𝑝 (𝑥 |𝜆) =
𝑀∑
𝑖=1

𝑤𝑖 𝑔(𝑥 |𝜇𝑖, Σ𝑖)

where x is the D-dimensional continuous-valued data vector (features), 𝑤𝑖 , 𝑖 = 1, . . ., M, are the mixture

weights, and 𝑔(𝑥 |𝜇𝑖, Σ𝑖 ), 𝑖 = 1, . . ., M, are the component Gaussian densities (Reynolds, 2009).

Each Gaussian component in the mixture is comprised of the following parameters:

• A mean 𝜇𝑖 that defines its center.

• A covariance Σ𝑖 that defines its width.

• A mixing probability 𝑝𝑖 that defines how big or small the Gaussian function will be.
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Hyperparameter Description
n_components The number of mixture components.

reg_covar
Non-negative regularization added to the diagonal of
covariance.

n_init The number of initializations to perform.
covariance_type String describing the type of covariance parameters to use.

max_iter The number of Expectation-Maximization iterations to perform.

Table 24: Hyperparameters used on GridSearch of Gaussian Mixture Model.

A covariance matrix is symmetric positive definite, so the data, before being applied to the Gaussian

Mixture model, had to be normalized to the range [0,1] to comply to this characteristic.

6.2.5 Isolation Forest

The Isolation Forest approach assumes that anomalies are easier to isolate from the rest of the data than

normal instances. (F. T. Liu et al., 2008, 2012).

F. T. Liu et al. (2012) defines isolation as ”separating an instance from the rest of the instances”.

In general, an isolation-based method measures individual instances susceptibility to be isolated and

anomalies are those that have the highest susceptibility.

Isolation Forest (𝑖Forest), builds an ensemble of 𝑖Trees for a given dataset and anomalies are the

points that have shorter average path lengths on the 𝑖Trees.

Let 𝒳 = {𝑥1, . . ., 𝑥𝑛} be a set of d-dimensional points and 𝒳
′ ⊂ 𝒳. An 𝑖Tree is defined as a data

structure that:

• for each node 𝒯 in the tree, 𝒯 is either an external-node with no child, or an internal-node with

one ”test”and exactly two daughter nodes ( 𝒯𝑙 and 𝒯𝑟 )

• a test at node𝒯 consists of an attribute 𝑞 and a split value 𝑝 such that the test 𝑞 < 𝑝 determines

the traversal of a data point to either 𝒯𝑙 or 𝒯𝑟 .

In order to build an 𝑖Tree, the algorithm recursively divides𝒳
′
by randomly selecting an attribute 𝑞 and a

split value 𝑝, until either

• the node has only one instance, or

• all data at the node have the same values.

Hyperparameter Description
n_estimators The number of base estimators in the ensemble.

contamination
The amount of contamination of the data set, i.e. the
proportion of outliers in the data set.

Table 25: Hyperparameters used on GridSearch of Isolation Forest.
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6.3 Model Evaluation and Results Analysis

A separation of the training dataset into training and validation datasets was necessary as a semi-supervised

Anomaly Detection approach only uses the normal data for the training of the models. The validation

dataset was composed of all the damage data from the train dataset, and 20% of the background infor-

mation.

The top ten set of hyperparameters resulting from the application of the k-fold nested cross validation

with 5 folds to GridSearch were then used to train the model to the training data.

Two metrics were used to choose the best models from each of the algorithms:

• Matthews Correlation Coefficient (MCC) on the validation dataset.

• Number of FPs on the test dataset.

The validation and test datasets MCC was calculated inferring on the whole data, to understand the

implication of the use of those hyperparameters on more data.

As said above, the selection of the best models was based on the validation MCC, being the test MCC

just used as a confirmation that the model is performing in accordance with the validation results.

The MCC was calculated by comparing the inferred labels from the models and the true label of each

of the windows.

Another statistic of evaluation and comparison was the number of FPs obtained in the test dataset.

FPs, in this problem, are events that did not result in damage but were classified as damage-causing.

Having the lowest number as possible of the these was one of the requisites of the project since they

would trigger the system to wrongfully alarm the driver of a vehicle damage.

Algorithm Validation MCC Test MCC
OCSVM 0.63 0.14

Isolation Forest 0.4 0.16
Gaussian Mixture Model 0.36 0.0

k-Means 0.13 0.33
LOF 0.46 0.21

UMAP and OCSVM 0.36 0.0

Table 26: Validation and test MCC

The validation and test MCC of the best models is described on the Table 26. The Gaussian Mixture

Model, as well as the joined model with UMAP and OCSVM, did not generalize well to the data, as the test

MCC is 0.0, which means a random classification. In terms of the validation MCC, the OCSVM model had

the best results, but the test MCC has dropped a lot compared to the validation. The different distribution

of abnormal and normal data on both datasets could be the reason for the test MCC to be a lot lower than

the validation MCC. In terms of a lower variance between the validation and test MCC, the LOF model

has the best results. Considering that the LOF algorithm was created to be applied to Anomaly Detection

problems, the results are not unexpected.
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Algorithm True Negative False Positive False Negative True Positive
OCSVM 3250 850 62 1077

Isolation Forest 2662 1438 189 950
Gaussian Mixture 2447 1653 232 907

k-Means 4011 89 1046 93
LOF 3654 446 500 639

UMAP and OCSVM 3486 614 1098 41

Table 27: Confusion Matrix results on the validation set

When looking at the Confusion Matrix of the validation dataset (Figure 27), the lowest FPs come from

the k-Means model. Nonetheless, the trade-off of having a low FPR and a MCC of 0.13 is to have a higher

number of False Negatives (FNs).

Algorithm True Negative False Positive False Negative True Positive
OCSVM 8774 752 179 89

Isolation Forest 5762 3764 28 240
Gaussian Mixture 4901 4625 122 146

k-Means 9453 73 202 66
LOF 8397 1129 115 153

UMAP and OCSVM 8243 1283 235 33

Table 28: Confusion Matrix results on the test set

The model with the lowest FPs on the test dataset is also the k-Means model (Table 28). From an

analysis of the FPs of all the models it was possible to conclude that the events that were worst classified

were events related to doors and bottoming out of the vehicle.

Taking into account that the number of damaging windows is 21.7% of the whole validation dataset,

and only 3% on the test dataset, the imbalance in distributions could be resulting in a difficulty for the

model to have similar MCC results on the validation and testing dataset. The removal of events on the

validation dataset would not be an option, as the objective of the project was for there to not be a defined

distribution. As the objective of the project is to implement a system for impact detection on vehicles,

defining a distribution of impacts that can occur would invalidate its use on a real setting system.
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Chapter

7
Conclusion and Future Work

This dissertation was developed as an internship for Bosch Car Multimedia, in Braga, where the main

objective was to use Anomaly Detection to classify as a damage or background a series of accelerometer

data. Anomaly Detection is a binary technique that allows to detect data that do not conform to expected

behavior. The data was presented as pairs H5-jsons, where each H5 file had all the raw sensor data and

the corresponding json had information about the label and the conditions of how the data was collected,

e.g., weather, type of surface where most of the collection was performed, driver, among others.

The other objective of this thesis was to understand and apply a cycle of a Machine Learning (ML)

project, where the methodology used was Cross Industry Standard Process model for the development of

Machine Learning applications with Quality assurance methodology (CRISP-ML(Q)).

As described before, the early work developed in Chapter 4 was important for both the objectives of

the dissertation. The process of the Data Collection, which was not possible to perform on the SlimScaley

project, was crucial to understand how the data is collected and how to assure quality on the collection

and the following processing of the data. Another important aspect of the EasyRide project was the fact

that it allowed to introduce the problematic of Anomaly Detection.

On the SlimScaley, an internal project of Bosch, most of the work was developed, going from the initial

understanding of the business side, until the modeling phase.

The algorithms that allowed for the best results where the Local Outlier Factor (LOF) and One-Class

Support Vector Machine (OCSVM). Despite the promising results, considering that Anomaly Detection is a

technique that allows for the detection of anomalies, the fact that the models of the Chapter 6 cannot ac-

curately identify all damaging events as anomalies and even identify normal/background data as anomaly

can be corroborated by the Exploratory Data Analysis on Chapter 5. Some events involving doors can

have a magnitude similar, or even higher, than some events that originate damage. Furthermore, other

background events, for instance bottom out, also have a high energy representation on the accelerometer

axis. The fact that those events cannot be discriminated as normal could be the result of some factors:

• The features are not explanatory, that is, cannot correctly describe the normal class, resulting in a

difficulty of distinguishing the normal from abnormal data.

• The data available was not representative of each event class and/or not in quantities for the

application of Anomaly Detection.

• The Anomaly Detection approach cannot be implemented as a solo concept to this problematic.

An example of feature that was considered to initially be explanatory of a high intensity event (damage)
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was zero-crossings. However, a weak signal with a high variance can also have a high presence of zero-

crossings. A research of the explainability of the features needs to be carried in order to limit ambiguous

features.

Anomaly Detection is a technique that allows to identify occurrences of anomalous events. The defini-

tion of anomaly takes into consideration that those class which are considered anomalous, are composed

of rare events. Anomaly Detection is specially used on unbalanced datasets, where the best results come

from extremely low presence of abnormal data. Collecting more data could mitigate the problematic of

the distribution of anomalous/normal events and result in a higher performance from the models.

One aspect of Anomaly Detection that is important to emphasis is a specific set of anomalies: novelties.

Novelties are data that has never been seen by the model. An approach with Neural Networks, in its original

form, can only look at classes of data which have already seen and, if confronted by new data, can only

attribute one of the classes. On the other hand, Anomaly Detection has the ability to determinate if new

data is normal, that is, was trained as a normal instance, or abnormal, not being limited by the classes of

data.

An Anomaly Detection algorithm as a filtering step on the modeling pipeline could potentiate the

performance of the whole system. Anomaly Detection integrated with a Sensor Fusion algorithm could

be a possible study for future work. The ability of Sensor Fusion to gather information from different

sensors could better specify the aspects of damaging and non-damaging data, integrated with the ability

of filtering some data with Anomaly Detection, could enable the models for an overall better classification

and detection of damage.

If the system were to be integrated with the dashboard of the vehicle, information of the instant velocity

and the state of the doors, for instance, would be retrieved. This would allow the system to know when a

vehicle was parked or moving, and this information could be used to filter out some events that would not

happen when the vehicle was parked and, furthermore, the information of the doors would filter out the

necessity of analyzing door events from the Small Damage Detection (SDD) system.
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Annex

I
Summary of the phases of the Cross

Industry Standard Process for Data

Mining (CRISP-DM)

Business
Understanding

Data Under-
standing

Data
Preparation

Modeling Evaluation Deployment

Determine Business
Objectives
• Background
• Business Objectives
• Business Success

Criteria
Assess Situation
• Inventory of Re-

sources
• Requirements,

Assumptions and
Constraints

• Risks and Contingen-
cies

• Terminology
• Costs and Benefits
Determine Data
Mining Goals
• Data Mining Goals
• Data Mining Success

Criteria
Produce Project
Plan
• Project Plan
• Initial Assess-

ment of Tools and
Techniques

Collect Initial
Data
• Initial Data

Collection
Report

Describe
Data
• Data Collec-

tion Report
Explore Data
• Data Ex-

ploration
Report

Verify Data
Quality
• Data Quality

Report

Data Set
• Data Set De-

scription
Select Data
• Rationale for

Inclusion/ Ex-
clusion

Clean Data
• Data Cleaning

Report
Construct
Data
• Derived

Attributes
• Generated

Records
Integrate
Data
• Merged Data
Format Data
• Reformatted

Data

Select
Modeling
Technique
• Modeling

Technique
• Modeling

Assump-
tions

Generate
Test Design
• Test Design
Build Model
• Parameter

Settings
• Models
• Model

Description
Assess
Model
• Model As-

sessment
• Revised

Parameter
Settings

Evaluate
Results
• Assessment

of Data
Mining Re-
sults w.r.t.
Business
Success
Criteria

• Approved
Models

Review
Process
• Review of

Process
Determine
Next Steps
• List of Possi-

ble Actions
• Decision

Plan
Deployment
• Deployment

Plan
Plan Monitoring
and
Maintenance
• Monitoring and

Maintenance
Plan

Produce Final
Report
• Final Report
• Final Presenta-

tion
Review Project
• Experience Doc-

umentation

Table 29: Wirth (2000): Tasks and Outputs of the CRISP-DM Reference Model
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Annex

II
SlimScaley: Data Collection Planning -

Event Description

Event ID Description

EV01 Door slamming

EV02 Low curbs bump with wheels

EV03 Speed bumps

EV04 Stomping occupant/party people

EV05 Trunk lid open/close

EV06 Hood open/close

EV07 Hood slamming

EV08 Sunroof open/close

EV09 Switch pushed in mirror panel

EV10 Roofline slapping

EV11 Sunvisor open/close

EV12 Sunvisor detach/fix

EV13 Make up mirror o/c

EV14 Wiper flapping

EV15 Rear mirror (int.) adjusting

EV16 Side mirror folding

EV17 Side mirror collision

EV18 Object placed on roof

EV19 Wiper activation/deactivation

EV20 Side window opening/closing

EV21 Door slamming engine off

EV22 Speed bumps + ABS braking

EV23 Windshield slapping (mosquito…)

EV24 Smartphone/Navi holder fixation

EV25 Object sliding against windshield

EV26 Switch dipping mirror

EV27 Ventilation maximum

EV28 ABS-braking event

EV29 ESP-intervention in curves
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ANNEX II. SLIMSCALEY: DATA COLLECTION PLANNING - EVENT DESCRIPTION

EV30 Rough road

EV31 Belgisch block

EV32 Aquaplaning track

EV33 Engine load change acc

EV34 Engine load change dec

EV35 Carwash

EV36 High-pressure washer

EV37 Wiper on frozen windshield

EV38 Engine on (auto start/stop)

EV39 Person knocking on the vehicle structure

Table 30: Non damaging events

Event ID Description
EV42 Scratching with object across vehicle
EV43 Bump collision (get bumped by another vehicle)
EV44 Side collision with another vehicle (left / right)
EV45 Hitting the car with object (baseball bat / hammer)
EV46 Throw object at the car

Table 31: Stationary damaging events

Event ID Description
EV47 Speeding over speed bump / pothole
EV48 Vehicle hits object
EV49 Vehicle side drags on object
EV50 Vehicle drives over obstacle
EV51 Scrape with object when cornering
EV52 Vehicle bumps with rim on low curb

Table 32: Damaging events in movement
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