
Universidade do Minho
Escola de Engenharia

Tiago André Paiva de Carvalho

Development of a mixed reality application
to perform feasibility studies on new
robotic use cases

outubro de 2022U
M

in
ho

 |
 2

02
2

Ti
ag

o
Ca

rv
al

ho
D

ev
el

op
m

en
t o

f a
 m

ix
ed

 r
ea

lit
y

ap
pl

ic
at

io
n

to
 p

er
-

fo
rm

 fe
as

ib
ili

ty
 s

tu
di

es
 o

n
ne

w
 r

ob
ot

ic
 u

se
 c

as
es

Outubro de 2022

Tiago André Paiva de Carvalho

Development of a mixed reality

application to perform feasibility studies

on new robotic use cases

Tese de mestrado
Mestrado Integrado em Engenharia e Gestão Industrial

Trabalho efetuado sob a orientação de:
Professora Senhorinha Teixeira
Professor Doutor Fernando Barbosa

ii

DIREITOS DE AUTOR E CONDIÇÕES DE UTILIZAÇÃO DO TRABALHO POR TERCEIROS

Este é um trabalho académico que pode ser utilizado por terceiros desde que respeitadas as regras e

boas práticas internacionalmente aceites, no que concerne aos direitos de autor e direitos conexos.

Assim, o presente trabalho pode ser utilizado nos termos previstos na licença abaixo indicada.

Caso o utilizador necessite de permissão para poder fazer um uso do trabalho em condições não previstas

no licenciamento indicado, deverá contactar o autor, através do RepositóriUM da Universidade do Minho.

Licença concedida aos utilizadores deste trabalho

Atribuição
CC BY

https://creativecommons.org/licenses/by/4.0/

iii

Acknowledgments

I wish to express my gratitude to Dr. Senhorinha Teixeira and Dr. Fernando Barbosa, my academic

supervisors, for their guidance and academic insights on this work.

I would also like to express my appreciation to CIMPA, in particular to MSc. Selcuk Kurun, for the

opportunity to develop this project and the excellent conditions made at my disposal. Moreover, I would

like to express my deepest gratitude to MSc. Ibrahim Mehrez, my supervisor at CIMPA, for the guidance,

advice, and time invested in this project. Without him, this thesis would not be possible.

A special thanks to MSc. Ricardo Falcão for the countless and enriching exchanges concerning some of

the topics presented in this thesis.

I must express my very profound gratitude to my parents for providing me with unconditional support and

continuous encouragement throughout my life and the process of researching and writing this thesis.

This gratitude extends to my family living in Germany for providing me with the best conditions possible

and continuous support throughout this challenging but rewarding journey. I also want to thank the rest

of my family, girlfriend, and friends for bringing up the best version of myself and always being ready to

comfort me in the most challenging moments of my life.

To all, my sincere Thank You!

iv

Statement of Integrity

I hereby declare having conducted this academic work with integrity. I confirm that I have not used

plagiarism or any form of undue use of information or falsification of results along the process leading to

its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of Minho.

Development of a mixed reality application to perform feasibility studies on new robotic use cases

v

Abstract

Manufacturing companies are trying to affirm their position in the market by introducing new concepts

and processes to their production systems. For this purpose, new technologies must be employed to

ensure better performance and quality of their processes. Robotics has evolved a lot in the past years,

creating new hardware and software technologies to answer the increasing demands of the markets.

Collaborative robots are seen as one of the emerging and most promising technologies to answer industry

4.0 necessities. However, the expertise needed to implement these robots is not often found in small and

medium-sized enterprises that represent a large share of the existing manufacturing companies.

At the same time, mixed reality represents a new and immersive way to test new processes without

physically deploying them. To tackle this problem, a mixed reality application is developed from top to

bottom, aiming to facilitate the research and feasibility studies of new robotic use cases in the pre-study

implementation phase. This application serves as a proof-of-concept, and it is not developed for the end

user. First, the application's requirements are set to answer the manufacturing companies’ needs,

providing two testing robots, an intuitive robot placement method, a trajectory modeling and

parameterization system, and a result framework. Then the development of the application’s

functionalities is explained, answering the requirements previously established. A collision detection

system was defined and developed to perceive self and environmental collisions. Furthermore, a novel

process to configure the robot based on imitation learning was developed. In the end, a painting tool was

integrated into the robot's 3D model and used for a use-case study of a painting task. Then, the results

were registered, and the application was accessed according to the non-functional requirements. Finally,

a qualitative analysis was made to evaluate the fields where this new concept can help manufacturing

companies improve the implementation success of new robotic applications.

Keywords: Collaborative Robots, Industry 4.0, Inverse Kinematics, Mixed Reality

Development of a mixed reality application to perform feasibility studies on new robotic use cases

vi

Resumo

As empresas de manufatura estão a tentar afirmar sua posição no mercado introduzindo novos conceitos

e processos nos seus sistemas de produção. Para isso, novas tecnologias devem ser empregues para

garantir um melhor desempenho e qualidade dos seus processos. O campo da robótica evoluiu bastante

nos últimos anos, criando novas tecnologias de hardware e software para atender à crescente procura

dos mercados. Neste sentido, os robots colaborativos surgem como uma das tecnologias mais

promissoras para atender às necessidades da indústria 4.0. No entanto, o conhecimento necessário para

implementar este tipo de robots não é frequentemente encontrado em pequenas e médias empresas

que representam grande parte das empresas de manufatura existentes.

Ao mesmo tempo, a realidade mista representa uma maneira nova e imersiva de testar novos processos

sem implementá-los fisicamente. Para fazer face ao problema, uma aplicação de realidade mista é

desenvolvida com o objetivo de facilitar a pesquisa e realização de estudos de viabilidade de novos casos

de uso de robótica na fase de pré-estudo da sua implementação. A aplicação serve como prova de

conceito e não é desenvolvida para o utilizador final. Primeiramente, os requisitos da aplicação são

definidos de acordo com as necessidades das empresas de manufatura, sendo fornecidos dois robots

de teste, um método intuitivo de posicionamento, um sistema de modelagem e parametrização de

trajetórias e uma estrutura de resultados. Em seguida é apresentado o processo de desenvolvimento das

funcionalidades da aplicação, tendo em conta os requisitos previamente estabelecidos. Um sistema de

deteção de colisões foi pensado e desenvolvido para localizar e representar colisões do robot com a sua

própria estrutura física e com o ambiente real. Além disso, foi desenvolvido um novo processo para definir

a pose inicial do robot baseado na aprendizagem por imitação. No final, uma ferramenta de pintura foi

desenvolvida e integrada no modelo 3D do robot com o objetivo de estudar o desempenho da aplicação

numa tarefa de pintura. Em seguida, os resultados foram registados e a aplicação avaliada de acordo

com os requisitos não funcionais. Por fim, foi realizada uma análise qualitativa para avaliar os campos

em que este novo conceito pode ajudar as empresas de manufatura a melhorar o sucesso da

implementação de novas aplicações robóticas.

Palavras-chave: Cinemática Inversa, Indústria 4.0, Robots Colaborativos, Realidade Mista

vii

Table of Contents

Acknowledgments ... iii

Statement of Integrity ... iv

Abstract ... v

Resumo .. vi

List of Figures ... ix

List of Tables ... xii

List of symbols and variables ... xiii

List of Abbreviations .. xv

1 Introduction .. 1

1.1 Motivation ... 1

1.2 Problem Statement ... 1

1.3 Objectives ... 2

1.4 Thesis Structure .. 2

2 Literature Review .. 3

2.1 Industry 4.0 and Collaborative Robots .. 3

2.2 Robot Kinematics .. 6

2.2.1 Forward Kinematics ... 6

2.2.2 Inverse Kinematics .. 9

2.2.3 Gradient Descent ... 16

2.3 Implementation of Collaborative Robots ... 17

2.4 Imitation Learning ... 20

2.4.1 Demonstration ... 21

2.4.2 Representation .. 22

2.4.3 Learning Algorithm .. 23

2.5 Path Planning Methods .. 23

2.6 Mixed Reality ... 28

2.6.1 Definition ... 28

2.6.2 Mixed Reality Output Devices ... 28

2.7 Software Used ... 31

2.7.1 Blender ... 31

2.7.2 Unity ... 31

viii

2.7.3 Mixed Reality Toolkit .. 32

2.7.4 Bezier Solution .. 32

3 Concept & Design ... 34

3.1 Application Goals ... 34

3.2 Requirements .. 35

3.2.1 Primary Requirements ... 36

3.2.2 Secondary Requirements ... 37

3.2.3 Non-Functional Requirements .. 39

3.3 Process Planning ... 40

3.3.1 User Experience .. 45

3.3.2 Process and Data Flow .. 46

3.4 Project Workflow.. 47

4 Application Development ... 48

4.1 Setting up the application environment .. 48

4.1.1 Selection and Development of the Inverse Kinematics .. 50

4.1.2 Collision Detection System ... 53

4.2 Development of the application features... 56

4.2.1 Selection of the testing robot .. 56

4.2.2 Positioning of the robot in the environment ... 57

4.2.3 Adjustment of the robot's initial configuration ... 61

4.2.4 Trajectory Generation ... 69

4.2.5 Trajectory Configuration ... 72

4.2.6 Trajectory Execution ... 77

4.2.7 Results .. 84

4.2.8 User Navigation Options ... 87

5 Testing & Evaluation ... 89

5.1 Setting up the testing environment ... 89

5.2 Testing the Application .. 90

5.2.1 Non-functional requirements analysis ... 92

5.2.2 Qualitative Assessment of the application ... 95

6 Conclusion & Future work ... 98

6.1 Conclusion .. 98

6.2 Future Work .. 100

References ... 101

ix

List of Figures

Figure 1 - The Universal robots UR3 and UR10 ... 5

Figure 2 – Coordinate frames of the UR arms. The joints rotate around the z-axes and are pictures in

zero position [16] ... 8

Figure 3 - Finding the origin of frame 5 [19] .. 10

Figure 4 - Robot (until frame5) seen from above. The robot is shown as grey lines. Note that 𝑧5 should

be pointing into the page if all angles are 0 [19]. ... 11

Figure 5 - Robot (including frame 6) seen from above [19] .. 12

Figure 6: The axis −𝑌16 expressed in spherical coordinates with azimuth −𝜃6. For simplicity, −𝑌16

is denoted y1 in the Figure. [19] ... 13

Figure 7 - Joint 2, 3, and 4 together constitutes a 3R planar manipulator [19] 14

Figure 8 - Five step implementation process [6] .. 17

Figure 9 - Breakdown of the Imitation Learning process (adapted from [26]) 21

Figure 10 - Bernstein basis functions of degree 4 [30] ... 26

Figure 11 - A Bézier curve of degree 4 contained on the convex hull defined by its five control points

[30]……………………….. ... 26

Figure 12 - Mixed Reality Continuum [33].. 28

Figure 13 - HoloLens 2 [37] .. 30

Figure 14 - End Point Handles (control points) [43] ... 33

Figure 15 – The application's core processes .. 40

Figure 16 - The robotic arm's point of interest [46] .. 40

Figure 17 - Point and commit gesture [47] .. 41

Figure 18 - User navigation options on the application's core processes ... 45

Figure 19 - The application's data flow .. 46

Figure 20 - The project's workflow ... 47

Figure 21 - UR3 modeled in Blender ... 49

Figure 22 - The UR3 after importing to Unity ... 49

Figure 23 - Process of modeling and importing the Objects to Unity ... 50

Figure 24 - Inverse Kinematics algorithm steps ... 52

Figure 25 - Base frame of the robot according to Unity's world coordinate system 52

Figure 26 - UR3 Colliders .. 54

Figure 27 - UR10 Colliders .. 54

Figure 28 - UR10 entering the collision.. 55

Figure 29 - Initial menu ... 56

x

Figure 30 –Data flow of the robot selection process... 57

Figure 31 - User instructions to position the robot in the environment .. 58

Figure 32 - Button to confirm the robot's initial position ... 58

Figure 33 - Data flow of the positioning algorithm .. 60

Figure 34 - Robot placed with the bounds control component active .. 61

Figure 35 - Menu to choose the desired method to set the robot's configuration 61

Figure 36 - Button to confirm the robot's initial configuration ... 62

Figure 37 - Target being grabbed .. 63

Figure 38 - Configuration Menu ... 63

Figure 39 - Red-colored imitation target (robot in zero angle position) ... 64

Figure 40- Data flow of the imitation configuration method algorithm ... 65

Figure 41- Sliders/Input field components ... 67

Figure 42- Data flow of the manual configuration process .. 68

Figure 43 – Spline Hierarchy in Unity .. 69

Figure 44 - Point Prefab .. 70

Figure 45 - Segment Validation Process .. 71

Figure 46 – Segment validation feature (green and red-colored segments) ... 72

Figure 47 - Multiple Point Selection ... 73

Figure 48 - Two-point Selection ... 73

Figure 49 – Trajectory modeling sub-menu ... 74

Figure 50 - Warning message of the delete point feature .. 75

Figure 51 - Menu to configure the motion parameters ... 76

Figure 52 - Loop Data registration ... 77

Figure 53 - Run Simulation button ... 78

Figure 54 - Data flow of the trajectory execution primary process ... 80

Figure 55 - Data flow of the loop trajectory process ... 82

Figure 56 - Data flow of the CheckConfigurationAdjustment method .. 83

Figure 57 - Data flow of the AdjustConfiguration method .. 84

Figure 58 - Results GUI with text fields .. 85

Figure 59 - Results' Dialog Box .. 85

Figure 60 - User Navigation Menu ... 88

Figure 61 - 3D representation of the robot's painting tool ... 89

Figure 62 - Testing Environment ... 90

Figure 63 - Setting the robot's initial configuration ... 91

xi

Figure 64 - Path modeling and parameterization ... 91

Figure 65 - Painting task execution .. 92

xii

List of Tables

Table 1 - DH parameters for the UR3 [17] ... 8

Table 2 - DH parameters for the UR10 [17] ... 8

Table 3 - Problems faced in the pre-study implementation phase [3], [6] ... 18

Table 4 - Primary Functional Requirements ... 37

Table 5 - Secondary Functional Requirements ... 38

Table 6 - Non-Functional Requirements ... 39

Table 7 - Advantages/Disadvantages of Gradient Descent .. 50

Table 8 - Advantages/Disadvantages of Analytic inverse kinematics ... 51

Table 9 - Result's framework ... 92

Table 10 - Time required to initialize the application .. 93

xiii

List of symbols and variables

Symbol Description Units

𝑎𝑖 Distance from 𝑧𝑖 to 𝑧 measured along xi [m]

𝐵𝑖,𝑛 The 𝑖𝑡ℎ Bernstein polynomials of degree n [-]

𝑐𝑖 Cosine of the angle of joint i [-]

𝑐𝑖𝑗 Cosine of the sum of the angle of joint i and the angle of joint j [-]

𝑑 Distance [m]

𝑑𝑖 Distance from 𝑥𝑖−1 to 𝑥𝑖 measured along 𝑧𝑖 [m]

ℎ The change in 𝑥 [m]

𝑚 Robot's degrees of freedom [-]

𝑛 Degree of the Bézier Curve [-]

𝑝𝑖 Vector of the Bezier Curve's 𝑖𝑡ℎ control point [-]

Pj
𝑖 Position of frame j according to frame i. [m]

𝑃(𝜏) Bézier Curve [-]

𝑃𝑗𝑥
𝑖 , 𝑃𝑗𝑦

𝑖 , 𝑃𝑗𝑧
𝑖 𝑥, 𝑦 and 𝑧 coordinates of the position of frame j in relation to frame i [m]

𝑅𝑗
𝑖 Rotation matrix of frame j according to frame i. [-]

𝑠𝑖 Sine of the angle of joint i [-]

𝑠𝑖𝑗 Sine of the sum of the angle of joint i and the angle of joint j [-]

𝑡 Time [s]

𝑇𝑗
𝑖 Transformation matrix of frame j concerning frame i. [-]

�̅� Average velocity [m/s]

�̂�𝑗
𝑖 Unit vector of the direction of the x-axis of frame j according to frame i [-]

xiv

�̂�𝑗𝑥
𝑖 , �̂�𝑗𝑦

𝑖 , �̂�𝑗𝑧
𝑖 Coordinates of the 𝑥-axis' unit vector of frame j according to frame i [-]

𝑥, 𝑦, 𝑧 The three-dimensional axis [-]

�̂�𝑗
𝑖 Unit vector of the direction of the y-axis of frame j according to frame i. [-]

�̂�𝑗𝑥
𝑖 , �̂�𝑗𝑦

𝑖 , �̂�𝑗𝑧
𝑖 Coordinates of the 𝑦-axis' unit vector of frame j according to frame i [-]

�̂�𝑗
𝑖 Unit vector of the direction of the z-axis of frame j according to frame i. [-]

�̂�𝑗𝑥
𝑖 , �̂�𝑗𝑦

𝑖 , �̂�𝑗𝑧
𝑖 Coordinates of the 𝑧-axis' unit vector of frame j according to frame i [-]

Greek Symbols Description Units

𝛼𝑖 Angle from 𝑧𝑖 to 𝑧𝑖+1 measured about 𝑥𝑖 [°]

𝜃𝑖 Angle of joint i. [°]

𝜏 normalized variable of motion time [-]

�̅� Average angular velocity [°/s]

xv

List of Abbreviations

Abbreviation Description Units

AI Artificial Intelligence

AR Augmented Reality

AEET Active end effector time [s]

AVEE Average velocity of the end effector [m/s]

CDR Collision detection results

DH Denavit-Hartenberg

DOF Degrees of freedom

GUI Graphical user interface

HHD Handheld display

HMD Head-mounted display

HRI Human-robot interaction

MAV Maximum angular velocity [°/s]

ML Machine Learning

MR Mixed reality

MRTK Mixed Reality Toolkit

SMEs Small and medium-sized enterprises

TL Trajectory length [m]

TT Travel time [s]

UI User Interface

VR Virtual Reality

1

1 Introduction

1.1 Motivation

Industry 4.0 is becoming more and more popular among manufacturing companies as it plays a

significant role in strategy, taking advantage of the opportunities given by the digitalization of all stages of

production and service systems [1]. One of the technologies driven by Industry 4.0 are cobots. A cobot is

a collaborative robot that teams with humans within a shared space to perform a given task. It represents

a significant pillar of robotics in the industry 4.0 scenario and promises to profoundly change

manufacturing processes [2]. This idea is corroborated by many manufacturers who see the collaboration

between humans and robots in production processes as an essential requirement of this new industry

paradigm [1]. This collaboration comes with many benefits as it combines typical human abilities, such

as problem-solving, cognitive skills, and adaptability, with the repeatability and accuracy of collaborative

robots [3]. However, the implementation rates of these applications are lower than expected [4].

Meanwhile, in recent years, mixed reality (MR) technology has undergone a profound improvement in

terms of software and hardware. In return, this technology offers a new and immersive way of visualizing

and analyzing new methods and processes before physically deploying them. This can provide the

industry with new capabilities and solutions by creating a symbiosis between the physical and virtual

worlds [5].

1.2 Problem Statement

Despite being an innovative and advantageous solution to the industry, it is verified that the

implementation rate of collaborative robots is not following the expected rising trend. This happens

because expertise and economic resources are scarce for most manufacturing companies, mainly

represented by small and medium-sized enterprises (SMEs) [4].

Many resources are needed to study feasible robotic applications, which may never be fully deployed in

the production system. To test new robotic use cases, resources are spent on acquiring the robot,

conceptualizing a new work cell, and testing the new robotic application [6]. Furthermore, downtimes and

constraints to the production system can occur during the implementation process leaving the companies

even more reluctant to opt for this solution.

2

Therefore, the work conducted intends to answer the question, "Can MR technology be an effective

solution to facilitate the implementation of new robotic use cases, decreasing implementation time, costs

and efforts?".

1.3 Objectives

The thesis aims to develop an MR application to facilitate the research and deployment of new robotic

use cases reducing implementation time and costs. The solution consists of an MR interface where the

user can visualize different robot actions in the real production system and evaluate its performance. The

aim of the thesis is not to develop an application for the end-user, serving only as a proof of concept.

The application must show a simulation of different robots performing different trajectories modeled by

the user to test different use cases and possibilities. Furthermore, to ensure the feasibility of the new

robotic use case, important KPIs concerning the robot's movement must be shown, providing different

scenarios and data for the manufacturers to analyze. This will support decision-making and increase

opportunities, as the benefits of the new robotic application are clearly presented to the top management.

1.4 Thesis Structure

This thesis is structured as follows:

▪ Literature Review: This chapter covers the theoretical concepts used throughout the thesis.

▪ Concept and Design: The proposed concept is introduced and explained. It concerns the

definition and design of the application's structure and general process data flow. The workflow

of the master thesis is also presented.

▪ Application Development: This chapter presents the development of the application's

features, processes, and user interface (UI).

▪ Testing & Evaluation: A practical use case is tested, and the application's performance is

analyzed on different levels. An analysis of the results and the benefits brought by the application

is performed.

▪ Conclusion & Future Work: Discussion of the work done in this project and future work,

3

2 Literature Review

2.1 Industry 4.0 and Collaborative Robots

Collaborative robots represent an important pillar of robotics and play a significant role in the industry 4.0

framework [2]. Thus, some aspects of collaborative robots need to be discussed, especially the

advantages they bring to the new industry paradigm. As its name implies, what differentiates these robots

from traditional robots is their ability to share the workspace with humans and work alongside them to

achieve a common goal [7]. This makes it possible to combine robots and humans in a way that the full

potential of each one is achieved [8]. On the one hand, human operators have the unique capability of

knowing how the production system works and the cognitive capacity to analyze problems and find the

best way to solve them.

On the other hand, robots perform repetitive and monotonous tasks with a higher level of accuracy and

consistency. This removes human factors like fatigue or injuries from the equation, increasing productivity

and product quality. Another advantage of this kind of robot is that it can be easily programmed to perform

different tasks [2], [9], which allows companies to change the production process nimbly to their needs.

The lighter weight of these robots, when compared to traditional industrial robots, makes them easy to

move around the production system, adapting it to the one that best suits the process and client's needs

[8].

Traditional robots are designed to perform the same task over and over again with high levels of efficiency.

As the markets are asking for more sophisticated and customized products within a shorter delivery time,

flexibility in products and services represents a crucial advantage for manufacturing companies in today's

industry framework. Traditional industrial robots cannot achieve this as they can only perform one type

of task and cannot be easily moved to reconfigure the production system [8]. Next, they are challenging

to program, requiring a high level of expertise to adapt them to new production processes or even

introducing new products to the system [9]. Finally, their inability to cohabitate with humans in the same

workplace due to the high speeds, power, and forces applied turns into high investments in protective

cages and other protection systems to avoid injuries. This does not represent a problem for collaborative

robots once they are equipped with sensors capable of detecting human presence and stopping the

robot's motion before colliding with the worker. However, even though the risk of injuries inherent to

cobots is relatively low, this is still a hot research topic as safety problems may arise in any new use

4

cases. In conclusion, collaborative robots provide companies with the agility and flexibility needed to adapt

to the new challenges posed by the rapidly changing market and mass customization.

It is important to acknowledge that there are different collaboration levels between robots and humans.

Depending on the level of autonomation, the collaboration between men and machine varies [10]. In a

non-automated environment, the human worker performs all the tasks within the work cell. In a fully

automated environment, the robot performs all its functions independently [11]. Yet, this is not always so

linear once collaboration between man and machine is sometimes required to get the desired results.

When neither the robot nor the worker performs all tasks, their collaboration level needs to be defined. In

this case, two important aspects to consider are the tasks performed by each and the physical space

shared by them. [12], propose a classification of the human-robot interaction (HRI) considering a

definition of cobot that states that any robot operating without a fence or cage working alongside humans

is a collaborative robot. To classify the HRI, [12] suggest four scenarios where different dependency levels

and task intersection levels between the operator and robot are considered. The four proposed scenarios

are as follows:

▪ Independent: The robot and operator have two different manufacturing processes and work on

different workpieces independently. The main collaborative element here is that both work in the

same workplace, and the robot uses intelligent hardware/software to ensure the operator's

safety.

▪ Simultaneous: The operator and the robot operate on the same workpiece but perform

independent processes. However, the robot must be aware of the operator's presence and the

requirements of its task to respect its workspace.

▪ Sequential: In the sequential collaboration scenario, the robot and the operator perform

dependent tasks on the same workpiece, i.e., there is time dependency between both tasks

where the robot's process for the workpiece is an input for the operator's process.

▪ Supportive: An operator and a cobot work together towards the same process on the same

workpiece. There is a high level of dependency between both parties, as the process cannot be

handled without their cooperative participation.

5

Universal Robots UR10 and UR3

The UR10 and UR3 robots are two different collaborative robots manufactured by Universal Robots. The

robots can either be controlled manually through an interface or be programmed to run autonomously.

The UR10 weighs about 28.9kg having a 190mm diameter footprint. The robot has a reach of 1.3m and

is capable of lifting up to 10kg payloads. It comprises six joints with a range of +/- 360°. They have a

speed limit of 120°/s for the base and shoulder joints and a speed limit of 180°/s for the remaining

joints [13].

The UR3 is the smallest robot manufactured by Universal Robots. Proportionally, the robot's specifications

are very different from the UR10, making it adequate for smaller, lighter-weight workpieces. Hence, the

UR3 weighs about 11kg having a footprint diameter of 128 mm. It has a reach of 0.5m and can lift up to

3kg payloads. The UR3 also comprises six joints with a rotation range of +/- 360° except for the end

joint, which has infinite rotation. All wrist joints have a speed limit of 360°/s, while the others have a

speed limit of 180°/s [14].

Figure 1 illustrates the UR3 and UR10 robots, respectively, together with each joint's name and number,

between brackets.

Figure 1 - The Universal robots UR3 and UR10

The robotic arm is equipped with a force sensor to detect the external forces acting on it and automatically

activates an emergency stop when a large force is detected. This feature is available in both autonomous

and manual modes. There are no sensors other than the force sensor, and no tool is attached to the tip

of the arms. However, they are structured so that tools, extensions, and sensors can be attached to the

tip.

6

2.2 Robot Kinematics

A robotic kinematic chain is a set of rigid bodies connected by joints that provide the ability to perform

motions and interact with the environment. The rigid bodies standing between the joints are called links

and provide the robot with the physical structure that connects the joints of the manipulator. The joints,

in turn, control the angular position of the links by rotating around a local rotational axis. Some of the

combinations of joint angular displacements are impossible to reach once they can cause collisions with

the robotic arm or with objects in the environment. The set of combinations of possible joint values forms

the so-called joint space. On the other hand, the task space, or cartesian space, represents the

orientations and positions that the end effector can reach in a space broken down into x-y-z coordinates.

The number of joints in the kinematic chain can be referred to as the number of degrees of freedom

(DOF).

The robot kinematics field studies the geometry of robots with multiple DOF and establishes a relationship

between a robot's joint angular values and spatial arrangement. This provides the ability to transform the

joint space, where the kinematic chain is defined, to the cartesian space, where the manipulator interacts

with the environment, and vice-versa.

2.2.1 Forward Kinematics

Forward Kinematics refers to the problem of finding the position and orientation of the end effector once

the parameters of the actuators are given. Forward kinematics makes it possible to transform the

kinematic information from the joint variable space to the cartesian coordinate space of the final frame.

Hence, given a robot with m joints having a set of joint values (𝜃1, 𝜃2, … , 𝜃𝑚) it is possible to find the

end effector's position and orientation in the three-dimensional x-y-z space. When solving the forward

kinematics problem, the output will be the transformation matrix from joint 0 to joint m, represented by

the shorthand 𝑇𝑚
0 . This matrix contains information that maps the position and orientation of frame m

concerning frame 0, according to the joints' angle values [15].

Forward Kinematics - UR3 and UR10

The UR10 and UR3 represent highly flexible and light-weighted six DOF robots. The main difference

between the robots lies in their specifications, varying in size, payload, weight, and working radius.

However, it is possible to solve the forward kinematics problem using the same approach since they have

7

the same configuration. For this purpose, the Denavit-Hartenberg (DH) parameters, which serve as input

for the forward kinematics equations, change for each robot.

The forward kinematics of the robot arms can be implemented according to the work of Kelsey P. Hawkins

[16]. Each joint is named according to the roll it performs on the robot arm and goes as follows:

▪ 𝜃1- Shoulder pan

▪ 𝜃2 - Shoulder lift

▪ 𝜃3 - Elbow

▪ 𝜃4 - wrist 1

▪ 𝜃5 - wrist 2

▪ 𝜃6 - wrist 3

First, to properly define the forward kinematics problem, it is necessary to represent the position and

orientation of the end effector as a function of joint angles. This is given by the matrix deducted in equation

1, where:

▪ 𝑅6
0 represents the orientation of frame 6 according to frame 0.

▪ 𝑃6
0 represents the position of frame 6 in relation to frame 0.

▪ �̂�0
6 represents the unit vector defining the x-axis of frame 6 in relation to frame 0.

▪ �̂�0
6represents the unit vector defining the y-axis of frame 6 in relation to frame 0.

▪ �̂�0
6 represents the unit vector defining the z-axis of frame 6 concerning frame 0.

𝑇6
0(𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5, 𝜃6) = 𝑇1

0(𝜃1)𝑇2
1(𝜃2)𝑇3

2(𝜃3)𝑇4
3(𝜃4)𝑇5

4(𝜃5)𝑇6
5(𝜃6) = [𝑅6

0 𝑃6
0

0 1
]

= [�̂�0
6 �̂�0

6 �̂�0
6 𝑃6

0

0 0 0 1
] =

[

�̂�0𝑥

6 �̂�0𝑥
6 �̂�0𝑥

6 𝑃6𝑥
0

�̂�0𝑦
6 �̂�0𝑦

6 �̂�0𝑦
6 𝑃6𝑦

0

�̂�0𝑧
6 �̂�0𝑦

6 �̂�0𝑧
6 𝑃6𝑧

0

0 0 0 1]

(1)

The coordinate frames of the UR robot's joints in its zero position are given in Figure 2.

8

Figure 2 – Coordinate frames of the UR arms. The joints rotate around the z-axes and are pictures in zero position [16]

At this stage, the DH parameters must also be defined once they are the key elements used in calculating

the position and orientation of the end effector. The DH parameters for the UR3 and UR10 are defined in

Table 1 and Table 2, according to the official Universal Robots website [17]. The DH parameters can be

specified as follows:

▪ 𝑎𝑖 = distance from 𝑧𝑖 to 𝑧𝑖+1 measured along 𝑥𝑖

▪ 𝛼𝑖 = angle from 𝑧𝑖 to 𝑧𝑖+1 measured about 𝑥𝑖

▪ 𝑑𝑖 = distance from 𝑥𝑖−1 to 𝑥𝑖 measured along 𝑥𝑖

 Table 1 - DH parameters for the UR3 [17]

i 𝒂 [m] 𝒅 [m] 𝜶 [rad]

1 0 0.1519

2 -0.2437 0 0
3 -0.2133 0 0

4 0 -0.11235

5 0 -0.08535 −

6 0 0.0819 0

Table 2 - DH parameters for the UR10 [17]

i 𝒂 [m] 𝒅 [m] 𝜶 [rad]

1 0 0.1273

2 -0.612 0 0
3 -0.5723 0 0

4 0 - 0,16394

5 0 - 0,1157 −

6 0 0.0922 0

According to Figure 2, equations 2,3,4,5,6,7,8,9,10, 11, and 12 were deducted to calculate the different

fields of the transformation matrix 𝑇6
0, which gives the end effector's position and orientation concerning

the robot's base frame. This will provide a way of directly calculating the robot's forward kinematics

concerning the robot's joint angles. The shorthand 𝑐𝑖 = 𝑐𝑜𝑠 (𝜃𝑖), 𝑠𝑖 = 𝑠𝑖𝑛(𝜃𝑖) , 𝑐𝑖𝑗 = 𝑐𝑜𝑠(𝜃𝑖 + 𝜃𝑗),

and 𝑠𝑖𝑗 = 𝑠𝑖𝑛(𝜃𝑖 + 𝜃𝑗) are used.

�̂�0𝑥
6 = 𝑐6 (𝑠1𝑠5 +

((𝑐1𝑐234−𝑠1𝑠234)𝑐5)

2
+

(𝑐1𝑐234+𝑠1𝑠234)𝑐5

2
) −

𝑠6((𝑠1𝑐234+ 𝑐1𝑠234)−(𝑠1𝑐234−𝑐1𝑠234))

2
 (2)

9

�̂�0𝑦
6 = 𝑐6(

(𝑠1𝑐234+𝑐1𝑠234)𝑐5

2.0
− 𝑐1𝑠5 +

(𝑠1𝑐234−𝑐1𝑠234)𝑐5

2
+ 𝑠6(

𝑐1𝑐234−𝑠1𝑠234

2
−

𝑐1𝑐234+𝑠1𝑠234

2
) (3)

�̂�0𝑥
6 = −

𝑐6((𝑠1𝑐234+𝑐1𝑠234)−(𝑠1𝑐234−𝑐1𝑠234))

2
− 𝑠6(𝑠1𝑠5 +

(𝑐1𝑐234−𝑠1𝑠234)𝑐5

2
+

(𝑐1𝑐234+𝑠1𝑠234)𝑐5

2
) (5)

�̂�0𝑦
6 = 𝑐6 (

𝑐1𝑐234−𝑠1𝑠234

2
−

𝑐1𝑐234+𝑠1𝑠234

2
) − 𝑠6(

(𝑠1𝑐234+𝑐1𝑠234)𝑐5

2
− 𝑐1𝑠5 +

(𝑠1𝑐234−𝑐1𝑠234)𝑐5

2
) (6)

�̂�0𝑧
6 =

𝑐234𝑐6+𝑠234𝑠6

2
+

𝑐234𝑐6−𝑠234𝑠6

2
− 𝑠234𝑐5𝑠6 (7)

Ẑ0x
6 = 𝑐5𝑠1 −

(𝑐1𝑐234−𝑠1𝑠234)𝑠5

2
−

(𝑐1𝑐234+𝑠1𝑠234)𝑠5

2
 (8)

Ẑ0y
6 = −c1c5 −

(s1c234−s1s234)s5

2
+

(c1s234−s1c234)s5

2
 (9)

Ẑ0z
6 =

c234c5−s234s5

2
−

c234c5+s234s5

2
 (10)

𝑃6𝑥
0 = −

𝑑5(𝑠1𝑐234−𝑐1𝑠234)

2
+

𝑑5(𝑠1𝑐234+𝑐1𝑠234)

2
+ 𝑑4𝑠1 −

𝑑6(𝑐1𝑐234−𝑠1𝑠234)𝑠5

2
−

𝑑6(𝑐1𝑐234+𝑠1𝑠234)𝑠5

2
+ 𝑎2𝑐1𝑐2 + 𝑑6𝑐5𝑠1 + 𝑎3𝑐1𝑐2𝑐3 − 𝑎3𝑐1𝑠2𝑠3

(11)

𝑃6𝑦
0 = −(

𝑑5(𝑐1𝑐234−𝑠1𝑠234)

2
+

𝑑5(𝑐1𝑐234+𝑠1𝑠234)

2
− 𝑑4𝑐1 −

𝑑6(𝑠1𝑐234+𝑐1𝑠234)𝑠5

2
−

𝑑6(𝑠1𝑐234−𝑐1𝑠234)𝑠5

2
− (𝑑6𝑐1𝑐5 + 𝑎2𝑐2𝑠1 + 𝑎3𝑐2𝑐3𝑠1 − 𝑎3𝑠1𝑠2𝑠3)

(12)

2.2.2 Inverse Kinematics

Inverse kinematics is one of the most critical approaches to program and control robot manipulators'

motion. Robot manipulators are used to reach specific target points or follow trajectories in the cartesian

space. Furthermore, they are often used to manipulate objects in the working environment in which the

position is known and expressed by the global coordinate frame. Inverse kinematics approaches the

problem in a reversed way compared to forward kinematics, transferring the information from the

�̂�0𝑧
6 =

𝑠234𝑐6 + 𝑐234𝑠6

2
+ 𝑠234𝑐5𝑐6 −

𝑠234𝑐6 − 𝑐234𝑠6

2
 (4)

𝑃6𝑧
0 = 𝑑1 +

𝑑6(𝑐234𝑐5−𝑠234𝑠5)

2
+ 𝑎3(𝑠2𝑐3 + 𝑐2𝑠3) + 𝑎2𝑠2 −

𝑑6(𝑐234𝑐5+𝑠234𝑠5)

2
− 𝑑5𝑐234 (13)

10

cartesian space to the joint variable space. Hence, given the position and orientation of the end effector,

it is possible to determine the set of joint values (𝜃1, 𝜃2, … , 𝜃𝑚) of a kinematic chain that produces a

desired end effector location. This gives the ability to determine how particular configurations change in

time so that the end effector performs the desired motion with the proper orientation [18]. One of the

main problems when solving an inverse kinematics problem analytically is the number of possible

configurations within the joint variable space that match a particular end effector position and orientation,

especially when dealing with systems having high DOF.

In this thesis, the method proposed to solve the inverse kinematics problem analytically is based on the

research work carried out by Rasmus Skovgaard Andersen [19]. The inverse kinematics equations

deducted by the author aim to calculate the joint angles 𝜃1−6 according to the desired position and

orientation of the end effector, defined as the transformation from frame 0 to frame 6, 𝑇6
0.

Finding 𝜃1

To find 𝜃1 we start by determining the position of the 5th joint (wrist frame) concerning the base frame,

𝑃5
0. As it can be seen in Figure 3, 𝑃5

0 can be found by translating backward from frame 5 to frame 6

along 𝑧6, whereas 𝑑6 and 𝑇6
0 are known.

Figure 3 - Finding the origin of frame 5 [19]

The translation 𝑃5
0 can be calculated by multiplying the transformation matrix by the distance vector

between frame 6 and frame 5 along the z-axis, as shown in equation 14.

 To derive 𝜃1, the robot must be examined from above, looking down into 𝑧0, as shown in Figure 4.

𝑃5
0 = 𝑃6

0 − 𝑑6. �̂�0
6 ⇔ 𝑇6

0. [

0
0

−𝑑6

1

] (14)

11

Figure 4 - Robot (until frame5) seen from above. The robot is shown as grey lines. Note that 𝑧5 should be pointing into the page if all

angles are 0 [19].

First, when looking at the image above, it is necessary to inspect the angles 𝜙1 and 𝜙2, defined in Figure

4. The angle 𝜙1can be found by examining the triangle with sides 𝑃5𝑥
0 and 𝑃5𝑦

0 , as described in equation

15.

Then, the triangle formed by the angle 𝜙2 must also be considered. As shown in Figure 4, this triangle

has one side equal to 𝑑4 and the other equal to |𝑃5𝑥𝑦
0 |. So 𝜙2 can be found by equation 16:

The desired value of 𝜃1 is calculated by adding equation 15 and 16. The general formula for the

calculation of the angle is given by equation 17:

When calculating the value of 𝜃1 there are two possible solutions that represent different configurations.

The two configurations represent the shoulder being "left" or "right."

Finding 𝜃5

To determine the value of 𝜃5 the robot must be again seen from above, including frame 6, represented

in Figure 5.

𝜙1 = 𝑎𝑡𝑎𝑛2(𝑃5𝑦
0 , 𝑃5𝑥

0) (15)

𝜙2 = ±acos(
𝑑4

√(𝑃5𝑥
0)2 + (𝑃5𝑦

0)
2
)

(16)

𝜃1 = 𝜙1 + 𝜙2 +
𝜋

2
 ⇔

𝜃1 = 𝑎𝑡𝑎𝑛2(𝑃5𝑦
0 , 𝑃5𝑥

0) ± 𝑎𝑐𝑜𝑠(
𝑑4

√(𝑃5𝑥
0)2 + (𝑃5𝑦

0)
2
) +

𝜋

2

(17)

12

Figure 5 - Robot (including frame 6) seen from above [19]

Now that 𝜃1 is known, we can remove 𝑇1
0 from the complete 𝑇6

0 and examine the remaining

transformation 𝑇6
1 = (𝑇1

0)−1. 𝑇6
0. By looking at Figure 5, 𝑦1 can be traced back to see that the y-

component of 𝑃6
1 is given by equation 18:

The y-component of 𝑃6𝑦
1 can also be expressed by looking at 𝑃6

1 as a rotation of 𝑃6
0 around 𝑧1, through

equation 19:

By combining equation 18 and 19, it is possible to determine the value of 𝜃5 through equation 20:

Again, when determining the value of 𝜃5, two possible solutions result in different robot configurations.

These two possible configurations represent the wrist being "up" or "down." The joint sum (𝜃2 + 𝜃3 +

𝜃4) can cause the end effector to be in the same position but with the wrist flipped. The orientation can

then be “corrected” by 𝜃6.

−𝑃6𝑦
1 = 𝑑4 + 𝑑6cos 𝜃5 (18)

𝑃6
0 = 𝑅1

0. 𝑃6
1 ⇔ 𝑃6

1 = 𝑅1
0𝑇 . 𝑃6

0 ⇔

[

𝑃6𝑥
1

𝑃6𝑦
1

𝑃6𝑧
1

] = [
cos (𝜃1) sin (𝜃1) 0
−sin (𝜃1) cos (𝜃1) 0

0 0 1

] ⇒

𝑃6𝑦
1 = 𝑃6𝑥

0 . (− sin 𝜃1) + 𝑃6𝑦
0 . cos 𝜃1

(19)

𝜃5 = ± acos (
𝑃6𝑥

0 sin 𝜃1 − 𝑃6𝑦
0 cos 𝜃1 − 𝑑4

𝑑6
) (20)

13

Finding 𝜃6

To determine 𝜃6 , 𝑦1 is examined, seen from frame 6; �̂�1
6; This axis will (ignoring translations) always be

parallel to �̂�2,3,4
6 , as can be seen in Figure 6. Thus, it will only depend on 𝜃5 and 𝜃6. It turns out that

−�̂�1
6 can effectively be described using spherical coordinates, where the azimuth is −𝜃6 and the polar

angle is 𝜃5.

Figure 6: The axis −�̂�1
6 expressed in spherical coordinates with azimuth −𝜃6. For simplicity, −�̂�1

6 is denoted y1 in the Figure. [19]

Equation 21 shows the transformation of −�̂�1
6 from spherical to cartesian coordinates:

In equation 21, it is possible to isolate 𝜃6 and have an expression of 𝜃6 in relation to 𝑇1
6. The goal is to

get an expression of 𝜃6 all the way from 𝑇0
6. To get this, we identify that �̂�1

6 𝑖s given as a rotation of 𝜃1

in the x, y-plane of frame 0, as shown in equation 22:

Equating the first two entries of the equation 21 and 22, equation 23 is deducted:

−�̂�1
6 = [

𝑠𝑖𝑛 𝜃5 𝑐𝑜𝑠(−𝜃6)

𝑠𝑖𝑛 𝜃5 𝑠𝑖𝑛(−𝜃6)
𝑐𝑜𝑠 𝜃5

] ⇔

�̂�1
6 = [

−𝑠𝑖𝑛 𝜃5 𝑐𝑜𝑠(−𝜃6)

𝑠𝑖𝑛 𝜃5 𝑠𝑖𝑛(−𝜃6)
− 𝑐𝑜𝑠 𝜃5

]

(21)

�̂�1
6 = [

−�̂�0𝑥
6 . 𝑠𝑖𝑛𝜃1 + �̂�0𝑥

6 . 𝑐𝑜𝑠𝜃1

−�̂�0𝑦
6 . 𝑠𝑖𝑛𝜃1 + �̂�0𝑦

6 . 𝑐𝑜𝑠𝜃1

−�̂�0𝑧
6 . 𝑠𝑖𝑛𝜃1 + �̂�0𝑧

6 . 𝑐𝑜𝑠𝜃1

] (22)

𝜃6 = ± atan2 (
−�̂�0𝑦

6 . 𝑠𝑖𝑛𝜃1 + �̂�0𝑦
6 . 𝑐𝑜𝑠𝜃1

𝑠𝑖𝑛𝜃5
 ,
�̂�0𝑥

6 . 𝑠𝑖𝑛𝜃1 − �̂�0𝑥
6 . 𝑐𝑜𝑠𝜃1

𝑠𝑖𝑛𝜃5
) (23)

14

There is only one possible solution when determining the angle value of 𝜃6. As seen from the equation

above, there is no solution when the denominator cos 𝜃5 = 0. The joint axes 2, 3, and 4 are aligned in

this case. The joint axes 2, 3, and 4 can, on their own, rotate the end effector around its rotational axis

(𝑧6) without moving it, and the sixth joint, therefore, becomes redundant. In this case, it can be simply

set to an arbitrary value.

Finding 𝜃3

The remaining three joints (2, 3, and 4) are now to be examined. The joint axes of these three joints are

all parallel, as seen in Figure 7. Together they form a planar 3R-manipulator, as illustrated in the figure

below.

Figure 7 - Joint 2, 3, and 4 together constitutes a 3R planar manipulator [19]

We can constrict ourselves to look at 𝑇4
1 (frame 4 seen from frame 1) because 𝑇1

0, 𝑇5
4, and 𝑇6

5 are known

at this point. This transformation is illustrated in the x, y-plane. From the figure, it is evident that the

translation's length 𝑃4𝑥𝑦
1 is determined only by 𝜃3, or similarly by 𝜙3. The angle 𝜙3 can be determined

by using the law of cosine described in equation 24:

Therefore, equation 25 writes the equation in order to 𝜃3:

For the calculation of 𝜃3, there are two possible solutions. One represents a configuration with the "elbow

up" and another with the "elbow down."

cos𝜙3 = −
 𝑎2

2 + 𝑎3
2 − |𝑃4𝑥𝑦

1 |2

2𝑎2𝑎3
 (24)

𝜃3 = ± acos(
|𝑃4𝑥𝑦

1 |2 − 𝑎2
2 − 𝑎3

2

2𝑎2𝑎3
) (25)

15

Finding 𝜃2

The angle 𝜃2 can be calculated as 𝜙1 − 𝜙2. Each one of these expressions is obtained by analyzing

Figure 7 using the atan2 and sine relations, described in equation 26 and 27:

and,

which combined form equation 28,

Finding 𝜃4

Finally, the value of 𝜃4 is determined by the angle between 𝑥3and 𝑥4 about 𝑧4 (see Figure 7). It can

then be easily derived from the last remaining transformation matrix, 𝑇4
3, using its first column, �̂�4

3. This

way, equation 29 is obtained.

At this point, the joint values are all defined. Eight possible solutions within the joint space can make the

robot reach a specific point, as represented in equation 30. The combination of the values calculated for

the joints gives different configuration possibilities.

The analytic inverse and forward kinematics provide the following possibilities:

▪ To calculate the orientation and position of the end effector as a function of the joint angles

through forward kinematics.

▪ To calculate the set of angles that reach a desired position and orientation in space.

▪ To validate if the robot can perform the desired motions by detecting singularities.

▪ To provide the user with different solutions and configurations to reach the same point in space.

𝜙1 = 𝑎𝑡𝑎𝑛2(−𝑃4𝑧
1 , −𝑃4𝑥

1) (26)

𝜙2 = asin (
−𝑎3 sin(𝜙3)

| 𝑃4𝑥𝑧
1 |

) (27)

𝜃2 = 𝜙1 − 𝜙2 = 𝑎𝑡𝑎𝑛2(−𝑃4𝑧
1 , −𝑃4𝑥

1) − asin (
−𝑎3 sin(𝜃3)

|𝑃4𝑥𝑧
1 |

) (28)

𝜃4 = 𝑎𝑡𝑎𝑛2(�̂�4𝑦
3 , �̂�4𝑥

3) (29)

2𝜃1
∗ 1𝜃2

∗ 2𝜃3
∗ 2𝜃4

∗ 2𝜃5
∗ 1𝜃6

= 8 (30)

16

2.2.3 Gradient Descent

Gradient Descent is a modern method used to minimize an objective function. This method updates the

objective function parameters to minimize it as far as possible. To do this, the Gradient Descent algorithm

calculates the function's gradient to know whether it is increasing or decreasing. In mathematical terms,

the function's gradient can be expressed as the derivative of a function concerning its parameters. The

derivative provides information about the function's slope that is then used to predict how steep the

function is at a certain point [20]. However, for a significant percentage of day-to-day problems, there is

no way of deducting a function's derivative analytically. Thus, it must be estimated by sampling the

function within two sufficiently close points, applying the analytical formula of derivatives given by equation

30, where h represents an adequately small value:

This way, it is possible to calculate an approximation of the direction in which the function is going.

Another vital aspect of Gradient Descent is the learning rate. The learning rate defines how fast we get

closer to the optimal solution. However, this does not mean that a high learning rate will give better and

faster results. When defining the learning rate, it is imperative not to overrate this value once the algorithm

can overshoot the local minima and fail to converge. On the other hand, a small learning rate requires

too many iterations to reach a solution which translates into long waiting times and high needs for

computational power. No formula tells how the learning rate should be calculated, so the correct value is

often found using a trial-and-error strategy in search of the best solution [21].

When applying Gradient Descent to inverse kinematics, it is first needed to define the objective function,

also called the loss function. As we want to implement inverse kinematics, the loss function can be defined

by the distance between the end effector and the target distance, i.e., the position we want the end

effector to be positioned in the end. As the end effector position depends on the joint angles, these are

the parameters to be updated when calculating the offset between the end effector position and joint

position [22].

𝑓′(𝑥) ≅ lim
ℎ→0

(
𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
) (31)

17

2.3 Implementation of Collaborative Robots

The implementation process of collaborative robots acts as a critical point for manufacturing companies

once it often determines the success or failure of these new applications. The literature shows that the

implementation rates of industrial collaborative robots are lower than expected, and SMEs have a hard

time finding the time and expertise needed to introduce this technology into their production systems [4].

Thus, companies must be aware of the problems faced at each stage of the implementation process. The

literature provides different definitions for the industrial collaborative robots implementation process, the

steps needed, and problems faced by manufacturing companies. According to [4] there are only three

implementation phases, i.e., the decision phase, the implementation phase, and the operation phase. In

the decision phase, the manufacturing company evaluates the feasibility of introducing the cobot solution

both from an economic and operational point of view. Second, in the implementation phase,

the cobot's specifications are clarified according to the task requirements and the industrial environment's

constraints. Finally, in the operation phase, the robot is already integrated into the production system,

used to perform the assigned task, and monitored by the operator in charge. However, this poses a

reductive perspective on the implementation process of cobots once it can be broken down into a more

detailed procedure. Furthermore, literature related to production technology shows that companies often

use a five-step implementation process [6]. To address this gap, [6] propose a five-step implementation

process for collaborative robots’ applications represented by Figure 8:

Figure 8 - Five step implementation process [6]

This process consists of five phases: pre-study phase, application design phase, factory installation phase,

start-up phase, and operation phase.

In the pre-study phase, companies develop the general idea and concept, considering business and

process requirements. Also, feasibility studies are carried out to assess if the integration of the robot in

the production environment is possible and beneficial, as well as potential limitations. Still, at this stage,

companies survey to find a suitable cobot and gripper to perform the task and explore some general

safety and task planning requirements [3]. For the application design phase, manufacturing companies

develop and improve the solution's design concept, aiming to achieve a design solution capable of

performing its purpose and running daily operations. Then, in the factory installation phase,

manufacturers test the solution within the production environment on simple product variants and

18

operations. These tests are performed to assess the overall performance of the solution iterating it until

it reaches a higher maturity state. In the start-up and operation phases, the manufacturing company

increases the number of product variants processed by the cobot and ramps up the production to its

cruising speed.

The challenges faced at each implementation stage vary according to the stage that a manufacturing

company is at. Three decisive areas can be distinguished to assess them qualitatively [3]:

▪ Safety

▪ Knowledge

▪ Functionality

The safety of industrial collaborative robot applications is strictly related to the HRI. It represents a

challenging topic once fenceless robots are used more in today's industrial framework. Furthermore, the

collaboration level between humans and machines is challenging to assess once they vary according to

the task and the situation. Thus, the safety area tries to ensure the operator's safety when interacting with

the robot.

The area related to the knowledge needed to implement these solutions can also be a barrier, especially

for SMEs, which make up 99% of all enterprises in the manufacturing industry [23]. This happens because

this technology is often new to managers and operators who lack in knowledge and experience to deploy

it successfully. Furthermore, the more recent the manufacturing technology is, the more time it requires

to gather the information and know-how needed to implement it [6].

Finally, the functionality area concerns all the functional aspects of the industrial collaborative robot

application that affect the implementation effort, i.e., the maximum speed, the size of the robot, the

software and hardware used, and others. Table 3 summarizes the challenges faced in three crucial areas

of the pre-study phase according to the literature. In this thesis, only the pre-study phase will be assessed

once it is the area of interest of the application.

Table 3 - Problems faced in the pre-study implementation phase [3], [6]

19

During the pre-study phase, there is often a lack of involvement from the operators. Due to this fact, the

operator's safety cannot be assessed appropriately. This problem then propagates to other

implementation phases leading to further safety issues later in the process [3], [6]. Furthermore, in the

knowledge area, it is difficult for companies to understand at such an early stage where the integration of

collaborative robots in the production system can be most helpful, challenging manufacturers to know

what needs to be evaluated. This concerns the evaluation of the cycle times, the benefits of having a robot

perform previous hand-made tasks, and calculating the return on investment [3].

Then, many manufacturers feel the need to reduce the evaluation scope of the new robot to only a few

variants to decrease the complexity of the evaluation. This leads to uncertainty when industrializing the

concept and scaling up to other product variants [3]. Finally, in the functionality area, manufacturers have

a hard time figuring out the benefits of implementing these robots when, in some cases, they are slower

than manual operations. Moreover, potential functional problems related to joint speeds, collisions,

unreachable configurations, or even choosing the robot that best fits the system’s requirements represent

a big challenge for manufacturers [6].

These problems will be discussed and evaluated correctly so that the development of the application can

help tackle them, providing the manufacturers with a new and better way to properly assess the

integration of collaborative robots and potential problems that may arise during the pre-study phase.

Area Problems

Safety
Safety of the robot movements, gripper, and tools is not assessed properly

The ack of involvement of the operators leads to errors in assessing safety issues

Knowledge

Lack of knowledge on how the robot will perform previous hand-made tasks

High investment difficult to justify

Lack of knowledge regarding the actual performance of the robot in the production
system (cycle times)

Unclear how to industrialize the concept

Pre-study phase scope is limited to one product variant.

Functionality

Difficulty in comparing the speed of manual operations with automated operations

Difficulty in assessing potential functional problems of the new robot application

Difficulty in choosing the robot with the best specifications according to the
requirements of the task

20

2.4 Imitation Learning

Imitation learning is a technique that is becoming more and more popular among researchers as it has

the potential to tackle a lot of the problems faced by the industry at the moment. Imitation learning can

be defined as the process by which an agent uses instances of performed tasks to learn a policy that

solves a given task [24]. It aims to track and map human behavior so that it can then be used to train an

agent (learning machine) to perform the task by mimicking the movements and actions. This learning

process should not be confused with machine learning (ML); although both use the term learning, it has

different meanings. In the case of imitation learning, it is used in a more general way [25].

In contrast, in ML, the term is used as a collection name for algorithms that can learn and adapt according

to patterns in data. However, ML techniques can be combined with imitation learning to achieve more

accurate results.

In robotics and automation, imitation learning can eliminate burdensome and cumbersome code writing

for every task the robot manipulator must perform. The overall advantages of imitation learning

mechanisms when comparing it to other techniques are [26]:

Enhancing the system's adaptability and flexibility - If a robot can mimic and learn helpful

behaviors, like a simple manipulation movement towards the workpiece, it can then replicate it and take

advantage of that information to use it in new use cases. This makes the production system far more

adaptable and flexible whenever a change in the process is needed.

Improving communication efficiency - Imitation can pose an efficient way for machines and robots

to communicate as a large amount of information is sent and stored during each action.

Improving Learning Efficiency - Learning efficiency is one advantage that stands out. As one

individual acquires a new behavior, it can be spread quickly among the population, increasing the flexibility

of the entire system.

Compatible with other learning mechanisms - Imitation learning can be combined with other ML

and artificial intelligence (AI) techniques to increase the learning capacity of individuals.

Benefiting from these advantages, imitation learning poses a far more intuitive and user-friendly

mechanism for robots to develop new skills and adapt to new environments. The imitation learning

process of robot manipulators can be generally divided into three main parts: demonstration,

representation, and imitation learning algorithm [26]. There must also be present two principal agents:

21

the teacher, who holds the cognitive capacity and appropriate knowledge to execute the task, and the

robot, which represents the learning individual. Figure 9 shows the imitation learning framework for robot

manipulation proposed by [26].

Figure 9 - Breakdown of the Imitation Learning process (adapted from [26])

2.4.1 Demonstration

Imitation learning works by extracting information from an agent called a teacher. As mentioned before,

the teacher can create information for the learning agent to learn. An everyday example is a way humans

learn by imitating the behavior of others; e.g., when someone wants to assemble a particular piece of

furniture, they use the instructions manual as a source of information to learn how to assemble it. In this

case, we can state that the learning agent is the person who wants to assemble the furniture, the

demonstration is the instruction manual, and the teacher is the company that provides the instructions

manual. This being said, a demonstration is presented as a pair of input and output (x,y), where x

represents a vector of features describing the state at that instant and y is the action performed by the

demonstrator [24]. The demonstrations can be seen as a dataset composed of examples of executing a

task in which the learning agent will use the most important features to perform it. There are two ways of

obtaining the information to create the demonstration data:

▪ Direct demonstration is where the demonstration data is obtained directly from the robot,

either by moving the joints to perform a specific movement or using a teach pendant to have the

robot perform the desired movement. For example, [27] used teleoperation teaching to collect

22

training data for the deep learning algorithm with the final goal of teaching the robot the sweeping

task.

▪ Indirect demonstration is where the demonstration data is collected via sensors, cameras,

and other data-capturing devices and generally captures the teaching agent motion information

for robots to interpret and generate anthropomorphic operations [24]. For example, [28] used a

capturing motion system to record a person's movements while assembling a bottom case and

a mouse shell to obtain the training data for the robot to perform the assembly task.

Some struggles are worth mentioning concerning the demonstration process. First, when capturing the

demonstration via sensors, videos, or images, there is a high probability that the instruments used are

sensitive to noise and errors, which compromise the accuracy of the demonstration and can then lead to

misleading interpretations by the learner. Then, especially in the indirect demonstration process, there is

often a correspondence problem between the teacher and the learner. The correspondence problem

relates to the learner and teacher's unmatching capabilities, DOF, kinematics, skeleton, and others. This

makes the training process a lot more complex once the features must be matched [24], [26].

2.4.2 Representation

When the demonstrations are created, many features define the information present in them. The sample

may often contain information about the environment that may be redundant and irrelevant to learn a

determined task. Thus, the representation process relates to extracting and modeling the most important

and relevant features, such as manipulable objects or the object's area to be grabbed during

manipulation. Also, in this stage, the correspondence problem between teacher and learner is handled

to convert the raw demonstration data into valuable data for the robot to learn. However, in some cases,

the data can be used directly for training if the information contained in it has the appropriate number of

dimensions and suits the learning algorithm's needs [24].

Whether the features are used directly from the source or engineered afterward, the main goal of this

stage of the imitation learning process is to model the demonstration's information and use it as input for

the learning algorithm to interpret it correctly.

23

2.4.3 Learning Algorithm

The learning algorithm refers to the process that tries to represent how the learning agent will learn using

the information collected and subsequently modeled. Several methods can be used: supervised learning,

reinforcement learning, and deep learning are the most common ones [24], [27].

2.5 Path Planning Methods

Path planning algorithms generate a geometric path on the task or joint space so that the robot's end

effector moves from the desired starting point to the ending point. In general, it represents the geometric

description of motion. However, sometimes it is required to add more detail to the robot's motion than

simply setting a start and ending point. One way to solve this problem is to establish via-points that

represent configurations the robot must transit during its motion and can be predefined to further adjust

the end effector's movement [29].

On the other hand, trajectory planning algorithms take the geometric path as input and generate a

schedule to follow it, integrating features such as velocity, acceleration, and position of the joints on each

point of the generated path.

Trajectories can be planned in the joint space, where the time evolution of the joint values is specified for

the end effector to reach certain positions and orientations in space. Conversely, trajectories can be

planned in the cartesian space, where the end effector's position and orientation are specified in each

trajectory point [15].

Trajectory defined on Joint Space

Advantages:

▪ Inverse kinematics is computed only on via points, so the computational power required to have

the robot follow a motion on joint space is relatively low.

▪ Can consider constraints relative to the velocity and acceleration of joint angles.

Disadvantages:

▪ Inability to consider workspace restrictions and collision routes.

24

Trajectory defined on Cartesian Space

Advantages:

▪ Possibility to obtain a collision-free path considering objects and conditions of the workplace.

▪ The robot’s motion is predictable.

Disadvantages:

▪ Higher computational power is required as the inverse kinematics of the robot must be calculated

multiple times.

Whichever method is used to generate the trajectory, there are always constraints related to the

mechanism dynamics and the process requirements, such as the maximum angular displacement, the

joint's maximum angular velocity (MAV) or even the need for a constant velocity value for the end effector

(e.g., gluing operation). Furthermore, constraints related to the objects surrounding the workplace must

also be considered to generate a collision-free trajectory. These are all essential aspects to consider when

generating a trajectory [15].

Trajectory Requirements

The basic requirements for trajectory planning are:

▪ The trajectory of the manipulator should always be defined as the motion of the tool frame in relation

to the workstation frame [15]. This means that even if the workstation moves, like a conveyer belt,

the tool's trajectory will not be compromised. The fact that the relative position of the trajectory is

defined according to the robot's or workstation frame provides the system with more flexibility and

adaptability.

▪ A trajectory should be smooth to avoid vibrations and mechanical stress on the robot's joints and the

payload so that neither the workpiece nor the robot is compromised during manipulation operations.

▪ A trajectory must respect the time and operational requirements of a task. In most production

systems, there is a time limit for the robot to perform one task and move to the next, e.g., a robot

manipulating workpieces on a conveyor belt.

In this thesis, a trajectory defined in the cartesian space will be considered. The ability to see the trajectory

of the cartesian space and predict the robot's movement is why this approach is the right one to pick.

25

Point-to-Point Motion

Trajectory planning for point-to-point motion tracks the position with respect to time between two specified

points. Velocity and acceleration in any trajectory point can be computed by differentiating the position

with respect to time. Hence, velocity corresponds to the first derivative of the positioning concerning time,

and acceleration to the second derivative of the position in relation to time. Consequently, to define a

smooth path between two points, the velocity and acceleration should be continuous to avoid infinite

accelerations.

Bézier Curves

Bézier Spline, also referred to as Bézier Curve, represents a parametric curve commonly used in computer

graphics, trajectory generation, and other industrial fields due to its unique properties [30]. The Bézier

Curve can be expressed, in mathematical terms, by equation 32:

Where:

▪ 𝑷(𝜏): represents the Bézier Curve.

▪ 𝒑𝒊: indicates a vector that consists of the coordinates of the 𝑖𝑡ℎ control point. The Bézier curve

can be defined in a two-dimensional space or in a three-dimensional space. So, 𝑝𝑖 ∈ ℝ2 for

planar curves and 𝑝𝑖 ∈ ℝ3 for spatial curves [31]. The number of control points depends on

the curve's order. The higher the order of the curve, the higher the number of control points it

will have. So, a Bézier Curve is defined by a set of control points ranging from 𝑝0 to 𝑝𝑛 [32].

▪ 𝝉: denotes the normalized variable of motion time.

▪ 𝑩𝒊,𝒏(𝝉): stands for the 𝑖𝑡ℎ Bernstein polynomials of degree n.

The base function of the Bézier Curve can be expressed by the Bernstein polynomials of degree n over

the interval [0,1]. The general formula of the Bernstein polynomials is given by equation 33.

The Bernstein polynomials form a partition of unity, i.e., the sum of 𝐵𝑖,𝑛 is equal to 1 for any 𝜏 ∈ [0,1]

[30]. More practically, the Bernstein polynomials can be seen as a weight assigned to each control point

𝑃(𝜏) = ∑𝐵𝑖,𝑛(𝜏)𝑝𝑖, 𝑡 ∈ [0,1]

𝑛

𝑖=0

 (32)

𝐵𝑖,𝑛 = 𝐶𝑛
𝑖 𝜏𝑖(1 − 𝜏)𝑛−𝑖 =

𝑛!

𝑖! (𝑛 − 𝑖!)
𝑡𝑖(1 − 𝜏)𝑛−𝑖, 𝜏 ∈ [0,1] (33)

26

and vary with the value of 𝜏. According to the weight of each control point, the spline's position and

curvature change along its domain.

Figure 10 shows the Bernstein polynomials of degree 4 with five control points. The evolution of the Bézier

curve along its domain is defined by the weight given by each Bernstein polynomial to its respective

control point. By analyzing Figure 10, it can also be concluded that for 𝜏 = 0 and 𝜏 = 1, the respective

Bernstein polynomials are equal to 1. In this case, the spline's starting and ending points are equivalent

to the position of the first control point and the last control point, respectively. As for the other Bernstein

polynomials, they never get to one, meaning that the spline interpolates the starting and ending points

and approximates the remaining control points.

Figure 10 - Bernstein basis functions of degree 4 [30]

Another important aspect of Bézier Curves is that they always lie within the convex hull defined by the

control points. This property states that the entire curve, except for the starting and ending points, will be

inside the region comprehended by the spline's control points. Figure 11 shows a Bézier Curve of degree

4 with five control points and the area defined by them in a two-dimensional space.

Figure 11 - A Bézier curve of degree 4 contained on the convex hull defined by its five control points [30]

27

In some cases, the Bézier Curve can intersect all control points. In this case, all the control points must

be collinear. This will result in a spline with no curvature, i.e., a straight line.

Cubic Bézier Spline

Cubic Bézier Splines consist of cubic polynomials and are the most used since they provide higher

flexibility compared to lower-order curves and are less expensive to evaluate and compute when compared

to higher-order curves. This curve comprises four control points, 𝑝0, 𝑝1, 𝑝2, 𝑝3, that help shape the

spline. The points 𝑝0 and 𝑝3represent the starting and ending points of the spline. The general formula

of the cubic Bézier Spline is defined by equation 34:

This curve was chosen to model the trajectory of the robot. The following section describes the main

properties that made this curve the right choice for the job.

Properties

Some properties are worth mentioning about the Bézier Curve. These properties made this curve, mainly

the cubic Bézier Curve, the one chosen to model the end effector's trajectory on the cartesian space. The

main ones are [30], [31]:

▪ The Curve always intersects 𝑝0 and 𝑝4, making the trajectory's first and end points easy to define.

▪ The Bézier Curve can be divided into different segments using the Casteljau algorithm. The

Casteljau algorithm represents a recursive process to divide the Bézier Curve 𝑃[𝜏0,𝜏2] into two

segments, 𝑃[𝜏0,𝜏1] and 𝑃[𝜏1,𝜏2]. As it is a recursive algorithm, the spline can be repeatedly

subdivided into different segments, enhancing its flexibility in terms of trajectory definition and

planning. Furthermore, the curvature of each segment can be controlled and adjusted. This

property is important for the definition of waypoints and different trajectory curvatures during

trajectory planning.

▪ A Bézier Curve can be easily transformed into a line by positioning the control points collinearly.

If the robot needs to follow a straight line, changing the spline's curvature is easy and intuitive.

▪ A Bézier Curve is infinitely derivable (C-infinity continuity). It has no discontinuities, meaning that

the trajectory does not require infinite accelerations, and the end effector can move at a constant

speed throughout all trajectory points.

𝑃(𝜏) = (1 − 𝜏3)𝑝0 + 3(1 − 𝜏2)𝜏𝑝1 + (1 − 𝜏)𝜏2𝑝2 + 𝜏3𝑝3, 𝜏 ∈ [0,1] (34)

28

2.6 Mixed Reality

2.6.1 Definition

It is important to introduce the reality-virtuality continuum notion to understand the MR concept. The

reality-virtuality continuum, characterized in Figure 12, represents the interval between the world as it is

in reality, and a world entirely modeled by computer-based techniques.

Figure 12 - Mixed Reality Continuum [33]

Different definitions and approaches on what MR is and what it encompasses. For example, some authors

consider the far end of the spectrum, Virtual Reality (VR), as part of MR, while others do not [34].

Furthermore, MR can also be seen as a synonym of Augmented Reality (AR) or a "strong AR," which

understands MR as a more efficient and effective method than AR. Despite these different interpretations

found in the literature, the definition that best suits this thesis is the one proposed by [33]. Harashima

argues that MR encompasses everything ranging from AR, where computer-generated objects are overlaid

on the real world augmenting it, and Augmented Virtuality, where reality features are implemented to

augment completely graphic display environments. MR can be understood as the blend of the physical

and virtual worlds in a way that real and virtual objects are combined to enhance the user's perception of

the world. The main goal of MR is to create an environment where both worlds merge into one giving the

user the ability to interact in real time with digital and physical objects to create different scenarios. Due

to the advancements in the areas of information technologies and computer science, the number of

applications of this technology promises to increase in areas ranging from Engineering, Architecture, or

even Medicine, promising to improve the user's perception of the environment [5].

2.6.2 Mixed Reality Output Devices

There are several ways in which a user can experience an MR application. The devices used vary

according to the application’s specifications and goals and can be broken down into two major categories

[35]:

29

▪ Head Mounted Displays (HMD).

▪ Handheld Displays (HHD).

It is important to acknowledge that other output devices can be used to experience MR, but the ones

listed above are the most used to interact with an MR environment.

HMD: HMDs are among the most successful devices for MR applications. After the analysis carried out

by [35], it becomes clear that this is the device of choice for many developers and researchers. The HMD

consists of one or two visual display units together with an optical compensation system that prevents

the virtual objects from being located at the wrong perspective of the user even though the display is very

close to the user’s eyes. HMDs can often be used in VR, but they only let the user perceive what is being

shown on display placed inside of it, and a merge between both real and virtual worlds does not occur.

On MR devices, the real world can be captured by a camera (video-see through HMD) or simply be

perceived by the user via a semi-transparent mirror for an optical combination of both worlds (optical see-

through HMD) [36]. In the first, the virtual world is captured via a camera. The video image is then

superimposed with the virtual content in the proper perspective and displayed on the device.

On the other hand, in the optical see-through HMD, the user perceives the real world in real-time through

the transparent lens. These devices must have a separate display for each eye or use a stereoscopic

display to adjust the perspective of each eye. An essential aspect of the use of HMDs is that they require

tracking of the user’s head position and orientation such that the correct render of the virtual images can

be performed.

HHD: HHDs are used for MR by using the metaphor of a magic lens because of the ability to enrich reality

with virtual elements [36]. The image of the real world is captured via cameras (video see-through) and

then merged with the virtual image. The position and orientation of the HHD must also be tracked to

generate virtual images correctly. HHDs are becoming more popular since they are easy to implement

and are less expensive than HMDs. One example of this is the number of MR applications available for

smartphones. The hardware already available on the market sets a very promising scenario to escalate

the deployment of this kind of applications.

Microsoft HoloLens

HoloLens is an HMD developed and manufactured by Microsoft as a solution for MR Applications. It is

composed of a pair of transparent glasses that allow projecting an image from the user’s point of view

superimposing it on the real-world environment. The user perceives the real-world environment via the

30

glasses, which makes this device part of the optical see-through HMD category. Two generations of the

HMD were launched, namely HoloLens1 and HoloLens 2. The hardware chosen for the MR application

is the HoloLens 2, illustrated in Figure 13.

Figure 13 - HoloLens 2 [37]

HoloLens 2 runs the Windows Holographic OS, which is built based on the Windows 10 operating system.

It represents a more ergonomic device than the first generation due to its lighter and better-distributed

weight. Furthermore, it provides the users with an increased field of view, increasing from 30 x 17,5 to

43 x 29 and maintaining the same image resolution of about 47 pixels per degree of sight [38].

The main features of the HoloLens 2 are divided into Hand tracking, Eye tracking, Voice commands, and

Spatial Mapping [37]. First, to detect the user’s actions and gestures, the HoloLens comes with a hand-

tracking system. This system enables the user to interact with holograms in real-time and change their

position and orientation using the gestures and actions supported by HoloLens. Then, eye-tracking,

introduced by HoloLens 2, allows developers to enhance the user experience by collecting information

concerning the direction the user is looking at. For this feature to work correctly, the user must perform

a calibration before being able to profit from it.

Moreover, it also offers users the ability to use voice commands to operate and navigate the HoloLens

applications when the user cannot use his hands to interact with them. Finally, accurate spatial mapping

is performed by HoloLens 2. This feature is one of the most important due to its impact on the MR

experience. The prominent role of this feature is to provide a clear representation of the real world to

diminish the gap between the real and virtual worlds. Thus, this feature helps to identify surfaces where

holograms can be placed and anchored in real-world surfaces providing developers with valuable

information about the real world [39].

31

2.7 Software Used

2.7.1 Blender

Blender is a free and open-source 3D software that offers a broad range of essential tools for 3D creation

– modeling, rigging, animation, simulation, rendering, compositing, and motion tracking [40].

In this thesis, the purpose of using the Blender software is to adapt the imported 3D model to the needed

conditions. This includes setting the rotational axes of the joints and defining the correct coordinate

system for each object. This will allow importing the model into Unity in a ready-to-use stage.

2.7.2 Unity

Unity is a cross-platform game engine that is mainly used to develop video games. It is free for non-

commercial use and is widely used by game developers due to its intuitive interface and ability to target

different game platforms. Also, Unity allows users to develop projects in a three-dimensional or two-

dimensional environment. On top of the development platform, Unity has a large community and offers

an Asset Store where developers share and sell their import-ready models, animations, scripts, and

others, making this an even more attractive platform for users to explore. Furthermore, many new features

and platforms have been integrated to increasingly facilitate the development of AR and VR games and

simulations, making this program the best choice for developing the application. Unity also has native

support for the .blend format, which enables to direct import of files from Blender to Unity [41].

Finally, Unity uses C# as the default programming language. C# is a high-level object-orientated

programming language with different application possibilities, such as mobile apps, cloud-based services,

and websites. In Unity, it controls the different attributes of the game objects by attaching the script to

the object the user wants to control.

In this thesis, the three-dimensional environment is to be used. The 3D view and object manipulation are

similar to Blender, and the space is defined by the Euclidean coordinate system on both. However, Unity

uses a left-handed coordinate system with the y-axis pointing up, and Blender uses a right-handed

coordinate system with the z-axis pointing up.

32

2.7.3 Mixed Reality Toolkit

The Mixed Reality Toolkit (MRTK) is a Microsoft-driven project aiming to provide users with tools and

features to accelerate the cross-platform development of MR applications in Unity. The main goal of this

open-source project is to provide developers with the building blocks to create MR applications. It provides

compatibility with different HMDs, such as the Microsoft HoloLens 1 and 2, and even Android and IOS

devices [42].

The MRTK provides a wide range of features to facilitate the development of new MR applications. The

most important features offered by the MRTK are:

a. Building blocks for Spatial interactions

b. Building blocks for UI

c. Holographic Remoting

The MRTK provides a comprehensive framework for MR applications on different levels. First, the building

blocks for spatial interactions represent scripts or components that can be added to 3D objects. By having

these pre-conceived components, the objects will gain important properties for user interactions.

As for UI, some building blocks are also available on the MRTK. These represent pre-developed buttons,

menus, and other components that can be edited according to the developer's needs.

Finally, holographic remoting enables developers to rapidly prototype and test the application. Holographic

remoting streams the application's content directly from the computer to the HoloLens. This significantly

increases developers' productivity, as deploying the applications to the HMD is unnecessary.

2.7.4 Bezier Solution

Bezier Solution is a free-of-charge package available on Unity's Asset Store. It helps to create Bézier

Splines visually in the editor mode and by scripting when running an application.

The package has two main components: the Bezier Spline and the Bezier Point. The Bezier Spline

component manages the whole curve and provides a UI for the editor mode, where various features can

be edited. The Bezier Point component represents the points of the spline and carries the information

about the curve's points. On the scene view, the points can be translated, rotated, scaled, deleted, etc.

Each point has two control points that can be translated, as seen in Figure 14 [43].

33

A spline is initialized when a Game Object with the Bezier Spline component and two child objects with

the Bezier Point Component is created. This can also be done automatically by clicking Game Object -

Bezier Spline on the editor's menu.

Figure 14 - End Point Handles (control points) [43]

Some utility functions are also included, like finding specific points on the spline or traveling the spline at

a constant speed. These functions provide a fully integrated and developed trajectory modeling system

according to the developer’s needs.

The flexibility offered by this extension asset is very important for this thesis. It helps to reduce application

development time by eliminating the need to program the Bézier Spline using its mathematical formula.

34

3 Concept & Design

3.1 Application Goals

This chapter presents the concept and design development of the MR application. The application's

primary purpose is to give manufacturers the possibility to assess new robotic use cases before

implementing them in their production system. The application is thought to present a trustworthy

representation of the robotic arm performing a task in the environment. It should be used as a source of

data that supports decision-making early in the implementation process.

So, before starting to develop the application, some main goals were defined:

1. Development and implementation of the forward and inverse kinematics of the robots.

2. Environment Mapping.

3. Trajectory generation and manipulation.

4. Assessment of the robot’s performance.

The development of the analytic inverse and forward kinematics represents the foundation of the

application. For the robot to properly and realistically follow the trajectory generated on the cartesian

space, the inverse kinematics should be computed multiple times on each point transited by the robot.

Then, the environment mapping also poses a key goal for the application's success. The spatial awareness

system provided by the MRTK will deliver a detailed representation of real-world surfaces so that the user

can see the robot interacting with real-world objects. From the user's point of view, this poses a significant

advantage because of the possibility of having an accurate representation of the way the robot will perform

and interact with the production system (e.g., visualize collisions).

As mentioned in section 2.5, the application will use trajectories defined in the cartesian space. The goal

of the application is to have a new and intuitive way to create trajectories and let the user configure them

in the way he desires. This includes creating different segments, editing the speeds of different segments,

and even adjusting each segment's configuration and repetitions.

Finally, after the robot performs the movements set by the user, some simulation results should be shown.

These results will enable the user to assess the robot's performance on different levels and make

decisions according to the level of efficiency presented by the robot.

35

Application Scope

The scope of the application was defined considering some limitations, mainly related to the inaccuracy

of the HMD, especially HoloLens 2. Research shows that the accuracy of any MR application, SDK, or

even equipment is hard to pin down on an exact dataset. The number of factors that directly affect the

accuracy performance of a system is so large that a correct evaluation is arduous to perform.

For the to-be-developed MR application, the primary source of inaccuracy lies in spatial mapping and

hologram anchoring. The inaccuracy of the HoloLens is influenced by multiple factors such as lightning

conditions, the distance of the targets, camera and sensor calibration, sudden moves performed by the

user, and others.

The HoloLens has been used in industry to program robots and fulfill other higher-accuracy purposes.

However, it is more suitable and performs better on lower-accuracy applications [44]. For high accuracy

purposes, AI and ML approaches are often used to model and correct the data obtained by the HoloLens

depth sensors. Nevertheless, this viewpoint is not covered in the present work.

According to this review, the scope of the application is reduced only to tasks where the level of accuracy

needed is relatively low. Some examples of tasks that can be tested using the application are gluing,

painting, and scanning.

3.2 Requirements

This section concerns the formulation of the design requirements. The requirements of the application

are divided into functional and non-functional requirements. The functional requirements focus more on

the functions, i.e., a process that the application should be able to perform. In contrast, the non-functional

requirements focus more on nonbehavioral aspects of the system, including portability, scalability,

reliability, efficiency, and others [45].

The functional requirements were divided into primary and secondary according to their degree of

specificity. The primary functional requirements derive from the main goals of the application, which were

set after reviewing the state-of-the-art reports about the struggles encountered by manufacturers in the

early implementation phase of new collaborative robot use cases. Then, the secondary requirements were

based on the deconstruction of the former, representing more detailed features that the application must

have to lead to a feasible solution.

36

These requirements will be crucial in developing the main features that present a solution to the problem

of the lack of knowledge and resources to implement new robotic use cases successfully.

3.2.1 Primary Requirements

The primary requirements are essential since they represent the main features that must be developed

to ensure the application's success.

First, the user must be able to choose different robots to perform the tasks to have an overview of the

overall performance of at least two different robots with different specifications. Then, the application

should be flexible to the point where the user can place the robot on various surfaces with different

formats and slopes. Furthermore, the user must be able to choose from different positions on the surface

to test the one that brings the most benefits to the new robotic use case.

A feature to adjust the initial configuration of the robot must also be available. It will allow the user to

choose the robot's initial pose when it starts performing the task. The robot's initial configuration will

provide the desired starting position and orientation for the end effector to follow the trajectory.

One of the goals of the application is trajectory generation and manipulation. Therefore, a must-have

requirement is the trajectory's definition, configuration, and visualization in the cartesian space. For the

application to be intuitive, the user must visualize the trajectory to model it in the desired way. This will

provide a way of predicting the end effector's motion and configuring it considering workplace constraints.

Furthermore, the user can consider some task requirements and restrictions by configuring a range of

properties that affect the robot's motion.

Finally, the application should be able to show the simulation by animating the robot's movement

according to the user's input. In the end, important KPIs regarding the robot's performance must be

calculated and delivered to the user for later comparison of scenarios.

Table 4 summarizes the primary requirements.

37

Table 4 - Primary Functional Requirements

Number Primary functional Requirements

A1 The user can test different robots.
A2 The user can place the robot on real-life surfaces.
A3 The user can choose different starting configurations.
A4 The user can define a trajectory for the end effector to follow.
A5 The user can visualize the trajectory of the robot in space.
A6 The user can see the robot executing the trajectory in real-time.

A7
The user has access to different results regarding the feasibility of the motion and
performance of the robot after executing the task.

3.2.2 Secondary Requirements

To develop the application, the primary requirements represent a reductive framework. Thus, the

secondary requirements provide a deep dive to get more in detail. The reasoning used to define these

requirements was to ask how the primary requirements should be achieved and what features will help

to reach them. Therefore, the secondary functional requirements are more connected to the user

experience and the application's range of features.

First, by analyzing requirement A1, established in Table 4, it becomes clear that the user should have a

range of testing robots to choose from. However, before picking them, some information should be shown

to support the user's decision to select the respective robot. This can be provided by a menu showing a

photo of the robot together with its primary specifications. Furthermore, as the user cannot see the robot's

actual dimensions, a feature that allows the user to preview the robot's real dimensions should be

developed.

Then, in requirement A2, it is essential to define how the user will be able to place the robot, i.e., in what

way. First, an approach using markers was studied. This approach consisted of having a marker to target

the robot's position in the environment, providing accurate tracking and detection of the spawning

position. However, this approach had several disadvantages in terms of user experience and portability.

So, a marker-free process was considered.

The marker-free method should work by pointing and clicking on the location of the surface where the

user wants to position the robot using the HoloLens pointer input model. After placing the robot, the user

should also be given the option to orient the robot according to the position he wants it to be facing.

Requirement A3 was defined by the need to have different possible desired configurations to start a task.

As this functionality can be given to the user in various ways, it was necessary to specify what features

38

are to be implemented to configure the robot's initial configuration. So, two possible features were defined.

On the first one, the user can input a specific angle value for each joint, which is advantageous when it

already has the robot's starting configuration in mind. The second approach consists of grabbing the end

effector and manipulating it until it reaches the position and orientation desired by the user.

The deconstruction of requirements A4 and A5 was done parallelly as they both cover the same goal:

trajectory generation and configuration. For this requirement, defining the options given to the user when

setting up the trajectory was necessary. Therefore, some features were introduced to provide a wide range

of options. First, the user should be able to add and delete segments. Then, he should also be able to

control the curvature of each segment intuitively either to avoid obstacles or to meet the task

requirements, e.g., get around a workpiece when painting it.

Concerning the configuration of motion parameters, which represent the motion conditions the robot is

under while transiting different segments, it was defined that the speed, configuration, number of

repetitions, and state of the tool on individual or multiple segments can be edited by the user. For the

user to perform different actions, the points should be selectable.

As for requirements A6 and A7, they are self-explanatory and do not need further deconstruction.

Table 5 summarizes the secondary functional requirements, which will be considered throughout the

project.

Table 5 - Secondary Functional Requirements

Number Secondary Functional Requirements

A1.1 The user can preview the robot before choosing it.
A1.2 The user can see the robot’s specifications.
A2.1 The user can point at the location he wants to spawn the robot (marker-free solution).
A2.2 The robot sits on the surface according to its slope and format.
A2.3 The user can adjust the direction the robot is facing after spawning it.
A3.1 The user can adjust the position and orientation of the end effector by imitation.
A3.2 The user can input the values of the angles manually.

A3.3 The user can add and delete different waypoints.
A4.1 The user can select waypoints.
A4.2 The user can move waypoints.
A4.3 The user can define the curvature of the trajectory’s segments.
A4.4 The user can set the speed of each segment of the trajectory.
A4.5 The user can change the configuration of the robot in different segments.
A4.6 The user can define how many times the robot should loop a segment.
A4.7 The user can set the state of the tool (On/Off) on each segment.

39

3.2.3 Non-Functional Requirements

The non-functional requirements are fundamental as they can make or break the success of a software

system. Even if all functional requirements work correctly, if the application fails to deliver the required

quality outcomes, it will fail to please the user. So, the non-functional requirements cover areas related

to the quality properties intrinsic to the software to meet users' expectations.

The non-functional requirements were divided into five main sub-areas, each covering different system

properties. It is important to note that there are different sub-areas for non-functional requirements, the

next five ones considered the most important for the current context:

▪ Consistency, which describes the application's ability to deliver the same outputs in the same

conditions.

▪ Performance, which measures how effectively the system operates by using minimal resource

consumption.

▪ Portability, which measures the ease that an application can be transferred from one operating

environment to another.

▪ Reliability, that measures the ability of a solution to perform without failure.

▪ Usability, which is integrally linked to the user experience and how quickly he learns to use the

new application.

The main non-functional requirements are divided into these five categories and are listed in Table 6.

Table 6 - Non-Functional Requirements

Number Non-functional requirements
A Consistency

NF1
If a robot performs the same trajectory with the same motion parameters more than
once, the results should not have a variance higher than 5%.

B Performance

NF2 The application should start up within 15 seconds after initiation.

NF3 The application should not have a low frame rate.
C Portability

NF4 The MR application can be deployed in HoloLens 2 and 1.
D Reliability

NF6 The application can run a simulation ten times without malfunctioning.
E Usability

NF7 The graphical user interface (GUI) should be intuitive.
NF8 The GUI should always be within the user's field of view, facing him.
NF9 The user can return to the main menu after the simulation.
NF10 The user can edit the trajectory after performing the simulation.

40

3.3 Process Planning

In this section, the application flow is defined. The definition of the process flow is fundamental because

it represents the different stages the user will go through from the start to the end of the application.

Furthermore, it will help to define the application's data flow and the user inputs needed to advance from

each stage of the application to the other. The application is divided into six primary operational levels

represented by Figure 15:

Figure 15 – The application's core processes

Robot Selection

When starting the application, the first action that the user must take is to choose between the robots

available to test. There are two robots that the user can choose from, both manufactured by Universal

Robots. The robots selected were the UR3 and the UR10. The reason why these robots were chosen was

because of the difference between their specifications.

▪ UR3 and UR10

The UR3 and the UR10 are two six DOF robotic arms manufactured by Universal Robots. According to

their technical specifications, the UR3 weighs 11 kg, reaches 0.5m, and can lift up to 3Kg payloads. On

the other hand, the UR10 weighs 28.9kg, reaches 1.3m, and can lift up to 10kg payloads. As can be

seen, despite having the same configuration, these robots can be used for different use cases. According

to the user's needs, it can choose the one that adapts best to its needs, considering operational and

economic constraints. An essential point of interest of both robots is the end effector, which dictates the

position and orientation of the tool that is used to perform a task.

Figure 16 - The robotic arm's point of interest [46]

Robot
Selection

Robot
placement

Selection of
the robot‘s

initial
configuration

Trajectory
generation &
configuration

Trajectory
execution

Results

41

For the application, this poses a crucial point once the user should be able to manipulate the position

and orientation of the end effector freely. By tracking the end effector's position and orientation, the

inverse kinematics can be computed correctly to determine the set of joint angles to reach it. This process

will be essential to configure the robot's starting configuration and execute the trajectory.

Robot Placement

In the application, the robot's placement in the environment is done by accessing the spatial awareness

system available in the MRTK. The spatial awareness system creates a collection of meshes that represent

the geometry of the environment. This system intends to enhance the user experience by better merging

the real and virtual worlds and having a better interaction between them.

From the user's point of view, the placement of the robot should be done in the most intuitive way possible.

HoloLens 2 supports several types of user input models. Point and commit with hands represent an input

model that enables users to select and manipulate objects outside of the user's reach. This provides a

more efficient and effective way to interact with the world. This input model employs hand rays that shoot

out from the user's palm with a donut-shaped cursor that intersects the targeted object, as illustrated in

Figure 17.

Figure 17 - Point and commit gesture [47]

For the robot placement process, the user should only have to point with his index finger to a location on

the surface where he wants the robot to be placed. Then, using the air-tap gesture, represented in Figure

17, the robot should spawn in the position where the cursor hits the surface. Here, the user must also

have the possibility to spawn the robot on multiple surfaces and points of the surfaces until it finds the

best positioning solution.

The robot must be in an orientation that matches the slope of the surface so that it is perfectly placed on

it. Furthermore, after having the robot placed, the user should also be able to adjust the direction faced

by the robot.

42

Selection of the Initial Configuration of the Robot

At this stage, the user has chosen the robot he wants to use for testing, and it is already placed. The next

step is to select the starting configuration of the robot by setting the position and orientation of the robot's

tool. It was defined that this process can be done in two ways:

▪ Set initial configuration by imitation

This work proposes an intuitive method for positioning the end effector. This method works by having a

manipulable target that dictates the end effector's position and orientation. This user can manipulate this

target to update the end effector's position and orientation according to the user's actions. Moving the

cube, the end effector should follow it to match the desired position. Rotating the cube, the end effector

should update its rotation accordingly to match user expectations.

This process is particularly interesting in use cases where the user wants to examine different

configuration possibilities to find the most feasible one. As this method is very intuitive, not much

knowledge is needed, and different configuration possibilities can be nimbly tested.

▪ Set initial configuration manually

The other method consists of manually introducing the values of the joint angles with the help of sliders

or input fields. The field where the values are introduced must be a hybrid of an input field and an

information provider. This is because the sliders and the input field must work together to give the user

two possibilities. One is to introduce the precise angle values of each joint directly. The other is to adjust

the angles using a slider, having access to the current value of the joints.

This method enables the user to have a precise and effective way of introducing the exact starting angles

of the joints to start the task. This is very important to meet user expectations and enhance the

application's flexibility by delivering features for all kinds of situations.

Trajectory Generation and Configuration

This part of the application comes after having the configuration of the robot already defined. The first

trajectory point must be clamped to the end effector's position to have a trajectory ready for the user to

edit. Furthermore, as a trajectory only exists with a starting and ending point, another point must be

created to generate the initial path. So, when the user goes from the previous step to the current phase,

a trajectory consisting of one segment and two points should be generated.

Regarding the trajectory configuration process, it can be sub-divided into two different processes:

43

▪ Configuration of the trajectory's format.

▪ Configuration of the trajectory's motion parameters.

As the trajectory is expressed in the cartesian space, a line between the points must be rendered to obtain

the trajectory's 3D representation. To properly configure the trajectory format, the user must be able to

add different points to create new segments. In the same way, it should also be able to delete points

which in turn will delete segments. Furthermore, the user must be able to change the position of the

waypoints and the curvature of the segment. The only point that can never be manipulated is the starting

point since the robot should start the motion in the initial position set previously by the user. All these

features are related to the trajectory's format.

The configuration of the trajectory's motion parameters concerns another aspect. In this part, the user

must define the motion constraints on which the robot will perform the trajectory on each segment. As

defined in the requirements, the user must be able to change the end effector's speed, the number of

repetitions, the robot's configuration, and the end effector's on-and-off state on single and multiple

segments. Thus, the user will input the data used to run the simulation afterward.

Trajectory Execution

Trajectory execution represents the fifth stage of the application. At this stage, with the trajectory and

motion constraints defined, the user should be able to see an animation of the robot performing the

desired path. The data provided by the user will be the foundation for this stage. Therefore, suitable data

structures must be chosen to save and use the information in this part of the process.

One of the assumptions made in this part of the project is that the robot's motion starts on the first

trajectory point and ends on the last trajectory point. So, the execution of the path cannot end before

reaching the final point defined by the user.

Results

After visualizing the robot executing the trajectory, the user must be aware of some important KPIs that

give an overview of the robot's performance. The results should cover two different areas:

▪ Performance Evaluation

This result section evaluates the robot's efficiency when performing the task. By analyzing Table 3, which

provides an overview of the problems faced in the early stages of the implementation process of the

44

robots, some essential results were defined. They give some key measurements for later benchmarking

and comparison of scenarios. Hence, the four measurements related to performance assessment are:

a. Travel time

Travel time (TT) relates to the time required to finish the task. This time value should be measured from

when the robot starts the motion until it reaches the ending point of the trajectory.

b. Trajectory length

The trajectory length (TL) measures the distance traveled by the end effector from the trajectory's initial

point to its final point. It is important to consider that this measure is not always equivalent to the actual

trajectory's length. In some situations, depending on the user's inputs, the robot can repeat segments or

even the whole course. This leads to an increase in the distance the end effector needs to travel.

c. Average Velocity of the end effector

The average velocity of the end effector (AVEE) provides the user with a way of knowing how fast the

overall motion was. This speed should relate to the end effector's speed at each trajectory point.

d. Active end effector time

The active end effector time (AEET) relates to the end effector's time on an on-state during trajectory

execution. It is advantageous to know how much time the end effector was activated. In the case of gluing

or painting operations, where resources are being consumed, an estimation of the amount of material

used can be done. For this, the rate of consumption of the tool must be known.

▪ Feasibility of the path

The results related to the feasibility of the path provide the user with information related to the validity of

the trajectory performed. For this purpose, the specifications of the robot must be considered. In the case

of the UR10 and UR3, all joints have a range of +/-360 degrees. However, the velocity of each of the

joints varies and is restricted by an upper limit. These limits are set by the manufacturer and must be

respected to avoid damaging the robotic arm. So, at each trajectory point, each joint's angular velocity

must be calculated to ensure that the MAV value set to the joint is not exceeded and, therefore, the

integrity of the robot is guaranteed.

On the other hand, looking for collisions is crucial when studying the path's feasibility. Crashes in the

workplace can occur in two ways: self-collision and environmental collisions. Self-collisions happen when

45

the robot, to reach a particular position and orientation, collides with its rigid body damaging the robot

and potentially the workpiece. Environmental collisions occur more often and happen every time the robot

hits an object in its surroundings. These objects include the surface where the robot is on, objects that

are part of the workspace, and the workpiece. Therefore, collision detection results (CDR) must be shown.

3.3.1 User Experience

In the application's development phase, the user experience is one important aspect to consider. For the

user to have a good experience, the application should offer a wide range of features and respect the non-

functional requirements listed in sub-chapter 3.2.3. The user experience relates not only to the

intuitiveness of the GUI but also to the navigation options given to him. Therefore, two navigation options

were defined as described in Figure 18:

Figure 18 - User navigation options on the application's core processes

As the diagram describes, when the user gets the performance results of the robot, two different options

must be given. One is to get back to the selection menu, where he can choose another robot to test, and

the other is to get back to the trajectory generation and configuration process.

If the user chooses to go back to the initial menu, then the process of placing the robot, configuring the

robot, and modeling the trajectory must be repeated.

On the other hand, the user can go back to perform changes to the trajectory or repeat the same

trajectory. Here, the inputs given before by the user concerning the trajectory's modeling and motion

parameters should be the same. This way, the user can test the same task under the same motion and

modeling constraints. Depending on its needs, the user can also make minor or significant changes to

the trajectory and input different values to test new use cases.

Robot
Selection

Robot
placement

on the
environment

Selection of
the robot‘s

initial
configuration

Trajectory
generation &
configuration

Trajectory
execution

Results

46

3.3.2 Process and Data Flow

With all the processes and navigation options properly defined, an overview of the application's process

flow can be developed. So, the flow chart in Figure 19 describing the application's processes, and data

flow was created. This provides a guideline for application development, where the different processes

and options provided to the user are considered.

Figure 19 - The application's data flow

47

3.4 Project Workflow

The work in this project is divided into two main parts: application development and testing and results.

In the application development phase, the environment setting was first presented. This includes the

installation of external packages, importing the robot's 3D models, selecting the inverse kinematics

method to be used, and creating a visual collision detection system. Then, a detailed description of the

development of the application's functionalities is explained, as well as the GUI. Each application's process

is covered, and the data flow of the most critical and complex features is presented.

After developing the application, a practical use case is presented to assess different aspects of the

application. First, the non-functional requirements are analyzed to evaluate whether they were met. Then,

a qualitative assessment is presented to give an overview of how the application can help manufacturers

in the early stage of the deployment of new robotic use cases. Figure 20 provides an overview of the

project workflow.

Figure 20 - The project's workflow

Application Development

• Installation of external
packages

• Importing & modeling the
robot's 3D models

•Selection & development of
the robot's kinematics

•Development of a collision
detection system

•Development of the
application's features

Testing & Results

•Definition & testing of the
practical use case

•Analysis of the non-
functional requirements

•Qualitative Assessment of
the application

48

4 Application Development

This chapter concerns the development of the application in all its different functional areas. This comes

after the definition of the concept and requirements of the application. First, an overview of the

environment set-up for the application is given. This includes getting the 3D models of the robots,

modeling them to have them ready to use for the application, and installing the external packages needed

to develop the application. Then, the development process of each feature of the application is properly

described and explained.

The application was developed in Unity. Unity uses C# as its native programming language, which was

used throughout the application's development.

4.1 Setting up the application environment

Installation of external packages

Some external packages were installed into Unity so that some crucial features that support the

development of the application were made available. The packages installed help in two main areas of

the application:

▪ Trajectory Generation and Manipulation.

▪ MR features.

The Bezier Solution was obtained on Unity's asset store and later installed via the package manager,

which oversees installing, removing, and updating the packages of a Unity project. This package's two

most important components are the Bezier Spline and the Bezier Point. The Bezier Spline component

represents the spline, while the Bezier Point component represents a point on the spline. They both have

different properties and methods that help to define and edit the spline.

In turn, the MRTK was downloaded on GitHub. To install the package, the installation guide available on

the MRTK documentation was followed [48]. The MRTK is a crucial package to develop the application

since it provides the building blocks and features needed to create a MR system.

3D Models

The first step taken to create the simulation environment is to import and configure the 3D models of the

robots so that they can be used in the required way. For this project, the UR10 and the UR3 were imported

from previous open-source projects available online [49], [50]. However, they had to be modeled to

49

answer the application's necessities. This modeling is done on Blender, where each joint's local coordinate

systems and pivot points can be defined. The pivot point represents the location for rotating and scaling

an object. Therefore, the pivot points' location of the joints must be correctly defined for the correct motion

of the robot. Furthermore, the rotations of each joint were defined to match the robot's zero-angle position,

according to the Universal Robots' official website. Figure 21 shows the end result of the robot's modeling

process in Blender.

Figure 21 - UR3 modeled in Blender

With the pivot points, local axis, and angles defined, the models are ready to be imported to Unity. In

Unity, the robot's models can be positioned in the 3D environment, and the material of each part can be

added. The materials are mainly used to give the right texture and color to the mesh. For the application,

the textures of the robot and other physical properties are discarded. Hence, materials are essentially

used to give different colors to the robot for better visualization and recognition of parts. Figure 22 shows

the robot's 3D model in Unity's 3D environment with the respective materials assigned to the robot's

parts.

Figure 22 - The UR3 after importing to Unity

Figure 23 resumes the modeling process of the robot’s models using Blender and Unity software.

50

Figure 23 - Process of modeling and importing the Objects to Unity

4.1.1 Selection and Development of the Inverse Kinematics

The inverse kinematics of the robots was developed before integrating the MR features into the

application. As this is the foundation of the application, it had to be appropriately studied, developed, and

implemented.

Selection of the inverse kinematics approach

In section 2.2, two different approaches for calculating the inverse kinematics were studied. The first

approach uses numerical optimization to update the joint angles and reach the desired position in space

according to the distance between the end effector and the target point. On the other hand, the robot's

inverse kinematics can be obtained directly from its geometry. This approach is frequently used in robotics

to obtain a straightforward analytical solution for the robot's inverse kinematics.

Before choosing the method that best suits the application's needs, some advantages and disadvantages

of each method were listed in Table 7 and Table 8.

Table 7 - Advantages/Disadvantages of Gradient Descent

Advantages Disadvantages

General approach that can be implemented
in different robots.

Inability to control the orientation of the end effector.

Simple and easy to implement. It only provides one solution for the joint angle values.

 - The algorithm can fail to converge.

 -
If the inverse kinematics is computed multiple times, the
computational power needed is very high.

Blender

a.Open .blend files

b.Definition of local
coordinate system

c.Definition of pivot points

d.Definition of the robot's zero
angle position

Unity

a.Importing .blend files

b.Positioning the objects on
the environment

c.Definition of the robot's part
material

51

Table 8 - Advantages/Disadvantages of Analytic inverse kinematics

The most significant advantage of the Gradient Descent method is that it can be implemented similarly

for robots with different configurations. However, as it is an iterative method, it is also computationally

expensive to calculate. Furthermore, it only considers the end effector's position, not its orientation,

limiting this solution's potential. Last, the algorithm's flexibility is even more reduced by the fact that only

one solution can be reached.

In contrast, the second approach offers the level of flexibility and efficiency needed by the application.

First, the position and orientation of the end effector can be controlled by defining the position and

orientation of the tool in relation to the robot's base frame. Then, the fact that multiple solutions can be

computed gives the user different possibilities to reach the same location in the desired orientation.

Furthermore, by directly calculating the joint angles, the computational power needed decreases

significantly, which in turn enhances the application's efficiency. Finally, singularities can be detected

when one or more angles are impossible to calculate.

The disadvantages of the second approach relate more to the application's development time and

scalability. The analytical approach is more difficult to program and only works for robots with the same

configuration as the UR3 and UR10. This means that if a robot with a different configuration wants to be

added, then the inverse kinematics algorithm is no longer valid.

Considering the advantages and disadvantages of both approaches, the analytical approach was chosen.

Development of the Inverse Kinematics algorithm

As described in section 2.2.2, the analytical inverse kinematics algorithm takes as input the

transformation matrix 𝑇6
0. This transformation matrix represents the position and orientation of the tool

in relation to the robot's base frame. This method uses a coordinate system defined by the authors, as

Advantages Disadvantages

Ability to have multiple solutions.
The solution for the inverse kinematics suits only robots
with the same configuration.

Orientation of the end effector is considered
and can be controlled.

Complex equations must be programmed.

Less computational power is needed. -

Singularities are detected. -

52

shown in Figure 2. Some correspondence issues must be addressed for the algorithm to work on Unity's

coordinate system framework.

The correspondence issues relate to the difference between Unity's coordinate system and the coordinate

system used by the authors to solve the inverse kinematics analytically. Unity works upon a left-handed

coordinate system with the y-axis pointing up. On the other hand, the authors use a right-handed

coordinate system, and instead of using the y-axis pointing up, they use the z-axis.

The developed inverse kinematics algorithm uses the process illustrated by Figure 24 to calculate the

joint angles:

Figure 24 - Inverse Kinematics algorithm steps

To start the process of calculating the set of angles that reach the target position and orientation of the

tool, the transformation matrix 𝑇6
0 must be computed. Then, the inverse kinematics algorithm takes it as

input and returns the corresponding angles.

The inverse kinematics equations deducted by the authors work only for the coordinate system used by

them. To generate the transformation matrix on Unity, the function SetTRS is used. This function receives

the desired position, orientation, and scaling and returns the corresponding transformation matrix. As the

position and orientation are read on Unity's world coordinate frame, represented in Figure 25, some

adjustments had to be made.

Figure 25 - Base frame of the robot according to Unity's world coordinate system

By observing the coordinate system used by the authors in Figure 2 and Unity's world coordinate system,

it can be concluded that the direction of the x-axis and the direction of the y-axis face contrary ways.

Definition of the
desired position
and orientation

Generation of the
transformation

matrix

Calculation of the
inverse

kinematics

Solution in joint
space

53

Furthermore, Unity uses the y-axis as the upwards direction. Hence, some transformations must be

performed to generate the transformation matrix according to the coordinate system used by the authors.

Let (𝑂𝑥, 𝑂𝑦, 𝑂𝑧) be the coordinate system used by the authors and (𝑈𝑥, 𝑈𝑦, 𝑈𝑧) the coordinate system

used by Unity. Then:

𝑂𝑥 = −𝑈𝑥

𝑂𝑦 = −𝑈𝑧

𝑂𝑧 = 𝑈𝑦

In terms of rotations, the only transformation done was to change the value of the y-axis for the rotation

of the z-axis, and vice-versa.

Ô𝑥 = Û𝑥

Ô𝑦 = Û𝑧

Ô𝑧 = Û𝑦

This will guarantee that the position and rotation values from Unity match the ones used by the authors

and that the inverse kinematics algorithm correctly calculates the angles.

A system of three Boolean variables was created to control the different possibilities offered by the

algorithm in terms of robot configuration options. These variables are also an input of the inverse

kinematics algorithm and constraint the deducted equations according to their truth value. The variables

created were:

▪ shoulderLeft

▪ elbowDown

▪ wristDown

Throughout the documentation, these variables will be referred to as the robot's configuration variables.

4.1.2 Collision Detection System

Before developing the application's features, a collision detection system had to be thought of and

developed, as it must be used throughout the application to provide information about collisions and

represent them.

As described in chapter 3.3, there are two types of collisions to be registered, environmental collisions

and self-collisions. Unity uses the component Collider to represent, register and manage collisions. This

54

component is invisible during the application run and needs to cover the exact geometry of the object to

have the best accuracy outcomes concerning collision registration. If the collider does not cover the

object's shape correctly, then false collisions can be detected, and some collisions can be ignored.

The colliders can have four different shapes:

▪ Sphere Collider

▪ Capsule Collider

▪ Box Collider

▪ Mesh Collider

The collider used in the project was the capsule collider. The capsule collider adapts best to the robot's

shapes and covers a significant part of the robot's parts geometry. However, some of the robot's parts

are not fully covered by the collider, causing the collision detection system to have some inaccuracy.

Figure 26 and Figure 27 illustrate the collider components integrated into the different parts that compose

the robot's 3D models.

Figure 26 - UR3 Colliders

Figure 27 - UR10 Colliders

To develop the collision detection system, the OnTriggerEnter event was used. The OnTriggerEnter event

is called every time a Game Object collides with another. Both Game Objects must have the collider

component attached for a collision to be registered. Hence, in the OnTriggerEnter event, an algorithm to

look for collisions was developed. The new script was attached to every part of the robot's 3D models.

55

First, the algorithm accesses the spatial awareness system available on the MRTK to get the necessary

information regarding the meshes that perceive the environment. It is important to address that spatial

meshes have mesh collider components; thus, collisions can be detected. After accessing the spatial

awareness system, the algorithm checks if the robot's part in which the script is attached collides with

any of the spatial meshes or with another part of the robot. A Boolean variable is then set to true to

register that the component is colliding. This variable is referred to as the collision detection variable.

To detect when the robot exits the collision, which means that the colliders stop overlapping, the

OnTriggerExit event is used. Here the same algorithm is executed, but instead of setting the collision

detection variable to true, it is set to false.

Collision Visualization

This collision detection system provides information about when the robot is colliding and when the robot

exits a collision. As the physical representation of collisions does not occur, a method to visualize them

was developed.

On the Update method from Unity, an algorithm was developed to change the colliding parts' color to red.

If the collision detection variable is set to true, then a new material is assigned to the colliding components

of the robot. When the collision ends, i.e., the colliders are not overlapping, both parts inherit the original

material. Figure 28 exemplifies a self-collision where the robot's end effector collides with one of its upper

arms. As seen in the figure, both colliding parts become red-colored to signal the collision visually.

Figure 28 - UR10 entering the collision

56

4.2 Development of the application features

This section of the thesis presents a detailed description of the data flow, processes, assets, and

components used to build the application's features. The features to be implemented in the application

were previously defined and deconstructed in section 3.2.

4.2.1 Selection of the testing robot

A menu with different functionalities was developed to select the robot to be tested. The menu comprises

a photo of the robot, the robot's name, a description of the robot's main specifications, and user

instructions, as seen in Figure 29.

Figure 29 - Initial menu

There are two possibilities when interacting with the menu:

▪ Short Click.

▪ Long Click.

The robot is selected for testing if the user performs a short click. On the other hand, a two-second hold

on the button enables the extended click functionality. The long-click functionality provides an animation

of the robot rotating 360 degrees in the user's field of view, giving an overview of the robot's real size. A

progress bar was integrated for the user to know how long he should click on the button to activate this

feature. A timer to measure the amount of clicking time was created to distinguish between both clicks.

These features were implemented using the Button Release event. If the user clicks for more than two

seconds, the animation is shown, and the menu is activated afterward. If not, on the Button Release event,

57

the robot's Game Object is stored, and the menu is disabled. The process is described by the flowchart

represented in Figure 30.

Figure 30 –Data flow of the robot selection process

4.2.2 Positioning of the robot in the environment

This application phase concerns the positioning of the robot in the environment. As defined in section

3.3, it should be intuitive and done by pointing at the location where the user wants to spawn the robot.

Before explaining the robot's positioning process, an overview of this phase's GUI is given.

58

GUI

Before placing the robot, the user must know the actions that he needs to perform. Therefore, a small

instruction textbox shown in Figure 31 was created.

Figure 31 - User instructions to position the robot in the environment

After placing the robot, a button created with the MRTK prefabs will show up for the user to confirm the

robot's initial position. The prefab used is called Near Menu. This menu provides important UI features

that align with the user experience requirements defined. First, it floats around the user’s body and is

accessible anytime, leaving the target content undisturbed. Furthermore, it can be grabbed, placed, and

pinned to the environment [51]. The default GUI asset available in the MRTK is composed of multiple

buttons. However, only one button was used, while the others were deleted.

A script was added to the button's OnPress event. It is responsible for disabling the spawning algorithm

component, the Bounds Control component from the MRTK (addressed later), and the instruction textbox.

Figure 32 - Button to confirm the robot's initial position

59

Robot Placement Process

The placement of holograms in the real world can be achieved by orienting their local axis with the

surface's normal. Since real-life surfaces are represented by a collection of meshes that shape the

environment, the spatial awareness system must be used.

Besides the spatial awareness system, the input system must also be accessed. The MRTK provides

various input events; one is the OnPointerDown. This event is triggered whenever the user performs the

air tap gesture, which can also be seen as clicking.

The algorithm used to place the robot uses these two systems together once the information from both

is needed. So, when the user points to a surface detected by the spatial awareness system and performs

the air-tap gesture, the OnPointerDown event fires, and the placing algorithm is executed.

First, by accessing the OnPointerDown event data, the algorithm checks if the pointer is hitting the spatial

mesh. If yes, the position where the event occurred and the normal of the mesh on focus are stored.

Then, if disabled, the robot's Game Object is activated, and the robot's position and rotation are updated

to match the position and slope of the surface point clicked by the user.

The algorithm can be executed multiple times until the user confirms the robot's initial position. This

process is illustrated by the flowchart presented in Figure 33.

60

Figure 33 - Data flow of the positioning algorithm

Before confirming the robot's initial position, the user should also be able to rotate it on the y-axis, which

is the one aligned with the surface's normal vector. By rotating around the y-axis, the robot's x and z-axis

remain orthogonal to the surface normal, which means that the robot remains aligned with the surface's

normal.

Bounds Control

Bounds Control is a component from the MRTK package that provides basic functionality for transforming

objects in the MR scene. Bounds Control creates a transparent cube around the hologram with handles

on the corners and borders of the cube that allow scaling or rotating of the object [52].

61

In the case of this part of the application, the component was added to the robot's Game Object for the

user to rotate it around the y-axis. All other rotation axes and the scaling function were disabled. Figure

34 shows the robot placed on the table with the Bounds Control component activated. In the extremities

of the Bounds Control box, four handles can be identified and are used to rotate the robot's hologram on

the y-axis.

Figure 34 - Robot placed with the bounds control component active

4.2.3 Adjustment of the robot's initial configuration

At this stage of the application, the user chooses the desired method to set the robot's starting

configuration. Two methods were developed according to the application's concept definition phase: by

imitation or manually. Before presenting both methods, the GUI concerning this application phase is

presented.

Adjust Configuration GUI

For the user to choose the desired method to set the robot's initial configuration, a Near Menu consisting

of two buttons was created. Different scripts are attached to these buttons' OnPress events and will lead

to the activation of distinct Game Objects and components. This menu is illustrated in Figure 35.

Figure 35 - Menu to choose the desired method to set the robot's configuration

62

Next, the button represented in Figure 36 was also developed. This button should be pressed when the

user reaches the expected configuration for the robot to start the task. This will lead to the next phase of

the application, trajectory generation, and modeling by activating the trajectory. The Near Menu prefab

was once more used to create the button.

Figure 36 - Button to confirm the robot's initial configuration

This button has one crucial function that guarantees that the initial configuration is possible and, therefore,

the feasibility of the following stages of the application. Hence, when clicked, an algorithm checks if the

robot is colliding or if the configuration is valid. If yes, a Dialog Box, a UI overlay provided by the MRTK

and used to notify users of important information, is activated and informs the user of the problem. This

is valid for both approaches and will be further detailed in the following sections.

Adjust the robot's initial configuration by imitation

This method consists in adjusting the configuration of the robot by imitation. It is developed upon two

main components:

▪ Imitation Target

▪ Configuration Menu

Imitation Target

The imitation target stores the position and orientation to be applied to the robot's end effector. It is

represented by a cube that is a child of the robot's base. This is because, this way, the local position and

rotation of the imitation target are read in relation to the robot's base.

The Object Manipulator and Bounds Control scripts were attached to the imitation target's Game Object

so the user could move it around the scene. The imitation target supports near and far interactions, which

means the user can use the pointer to move the cube from a distance or directly grab the cube's

hologram, as shown in Figure 37. The imitation target's rotation can be controlled directly by the user by

63

rotating its wrist. The Bounds Control component was also added to apply rotations locally on the axis

and, therefore, have more control over the imitation target's rotation. Another component integrated into

the imitation target is a label that shows the local coordinates of the end effector.

Figure 37 - Target being grabbed

Configuration Menu

The configuration menu consists of three checkboxes, a GUI asset available on the MRTK package

components, where the user can choose from the eight possible configurations. These checkboxes,

represented in Figure 38, determine the truth value of the configuration variables. Hence, the robot's

shoulder, elbow, and wrist configuration can be changed according to the user's needs. This menu is

anchored above the robot's base. To have the menu always facing the user, the RadialView component

from the MRTK was added to the buttons.

Figure 38 - Configuration Menu

64

Configuring by Imitation Process

A script that controls the whole configuration process was attached to the imitation target. The algorithm

was developed on the Update function from Unity. It is important to address that the imitation target is

activated after the user selects the imitation method to set the initial configuration using the menu

represented in Figure 35.

In this approach, inverse kinematics runs multiple times until the user finds the desired position and

orientation for the end effector. However, before executing the algorithm, it is verified if the configuration

variables or the imitation target 's position and orientation changed from the last to the current frame.

This will reduce the computational power needed to run this functionality.

Hence, when the user manipulates the imitation target or chooses a different configuration for the robot,

a new transformation matrix is calculated using the new position and rotation of the target. Then, the

inverse kinematics function is executed according to the configuration variables selected by the user.

After, the new set of angles is verified to conclude if it represents a valid solution. If the solution is valid,

the imitation target remains green-colored, and the robot's angles are updated. If not, the imitation target

turns red, and the robot's joint angles are set to 0, as shown in Figure 39.

Figure 39 - Red-colored imitation target (robot in zero angle position)

To end the process, the user has to click on the button represented in Figure 36. A component attached

to the button's OnPress event will check whether the imitation target is red-colored or if the robot is

colliding with itself or with the environment. A warning will appear if one or both issues are verified, and

the user must readjust the robot's configuration. If not, the position and orientation of the imitation target

and the configuration variables are stored for later use. Figure 40 gives an overview of the process used.

65

Figure 40- Data flow of the imitation configuration method algorithm

66

Adjust the robot's initial configuration manually

Another method to set the initial configuration of the robot was developed. This method was created to

provide the user with a way of setting the joints' angle values with an exact and predefined value.

Sliders and input field

A set of sliders were developed to adjust the initial configuration manually. The slider system comprises

the slider, the joint affected by the slider, and an input field. The slider used is of type Pinch Slider, a GUI

asset provided by the MRTK. The Pinch Slider's minimum and maximum values are currently hardcoded

to be 0 and 1. So, to have a value range from 0 to 360, the slider's value must always be multiplied by

360. Both the slider and the input field are activated after the user chooses the manual menu to set the

initial configuration of the robot using the menu represented in Figure 35.

The slider and the input value must work together. On the one hand, the input field must update its value

while the user interacts with the slider. On the other hand, when the user inputs a value, the slider must

update its value accordingly. For this system to work, the algorithm accesses two main events:

▪ OnValueUpdate

▪ OnEndEdit

The OnValueUpdate corresponds to a Pinch Slider event triggered whenever the slider's value changes.

So, an algorithm to update the text on the input field is executed whenever this event fires. Here, it was

set that two decimal places were to be shown to the user.

The OnEndEdit is an input field event that triggers when the user finishes inserting the value. So, when

the user inputs the value, an algorithm updates the slider value to match the new value entered by the

user.

Some restrictions were also integrated to avoid errors. For example, if the value introduced by the user is

not between 0 and 360, inclusive, the input field and the slider will be set to zero. Furthermore, the input

field was restricted to integer or decimal-type values between 0 and 360.

In the meantime, the robot joints have a script attached that is enabled while editing the robot's initial

configuration. This script updates the joints' angles according to the slider's value.

Finally, the slider system comprises six sliders and six input fields, one for each of the robot's joints.

Above the slider, a description was added to identify which joint is affected by it, as seen in Figure 41.

67

Figure 41- Sliders/Input field components

Configuring manually Process

When the user uses this method to configure the robot's initial configuration, the data must be processed

differently than in the imitation method. Hence, this method is processed by a script attached to the

OnPress event of the button represented in Figure 36. Its role is to process and store the information.

Once the user confirms the robot's initial configuration, it is first checked if the robot is colliding with itself

or with the environment. If this is verified, the user is informed through a Dialog Box and needs to adjust

the robot's configuration further.

If the robot is not colliding, the angles are read, and the forward kinematics algorithm is executed to

transform the data from the joint space to the cartesian space. Then inverse kinematics is computed to

get the set of angles that reach that desired position and orientation. Since the robot has eight possible

configurations, all eight solutions provided by the inverse kinematics algorithm must be computed. So, a

function that compares the eight solutions obtained with the values introduced by the user is executed.

Its goal is to find the configuration variables' truth value that reaches the desired configuration. This

includes knowing whether the elbow and wrist are up or down, or the shoulder is left or right.

If no solution is found, the user receives a warning message that informs him of an invalid configuration.

If a solution is found, the relevant information regarding the position, orientation, and configuration

variables are stored for later use.

This approach substantially reduces the computational power required to finish the operation. In this

case, instead of computing the inverse kinematics multiple times, the user just manually sets the value

of each angle, and the inverse kinematics is run afterward. This process is resumed by the flowchart

represented in Figure 42.

68

Figure 42- Data flow of the manual configuration process

69

4.2.4 Trajectory Generation

Trajectory Activation

After confirming the robot's initial configuration comes the trajectory generation phase. In this phase, the

user has the ability to create, visualize, and edit the desired trajectory. As discussed in section 2.5, the

trajectory is defined by a cubic spline connecting several user-defined points. The spline was built on the

editor, and the components needed from the Bezier Solution package were the Bezier Point and the

Bezier Spline. So, a Game Object with the Bezier Spline component attached was created. Another two

Game Objects called Spline Point were added to the hierarchy as a child of the spline, as seen in Figure

43. Both Game Objects contain the Bezier Point component. Hence, when activated, the spline will be

composed of two points.

Figure 43 – Spline Hierarchy in Unity

The Bezier Point component already has integrated features that will be used afterward, especially the

control points. Each point has two control points, one for the previous segment and the other for the

next segment, as represented in Figure 14.

When the trajectory is activated, the first Spline Point is positioned in the exact location of the end

effector and cannot be moved while configuring the path.

Definition of a point design

The design of the point was developed with the help of Unity's prefab system. Unity's prefab system allows

developers to create, configure and store standard Game Objects with all their different components and

properties. They act as a template and can be instantiated at any time in the scene. This system is

advantageous for developing the Spline Points once they can be added and deleted many times when

configuring the trajectory.

The point's design was introduced to ease user interaction while covering every functional aspect defined

in the requirements. Therefore, the points are composed by:

1. Sphere

70

2. Two control points

3. Label

Figure 44 represents the prefab developed. The spheres represent points in the trajectory. So, to enable

user interactions, the Object Manipulator script from the MRTK was added to the sphere Game Object.

This will allow the user to move the point around the scene to shape the spline.

The blue cubes represent the control points. The control point on the left side controls the curvature of

the former segment. In contrast, the control point on the right side influences the curvature of the next

segment. A script was attached to the cubes so that the control points' position updates according to the

cube's position. Hence, when moved, the curvature of the spline will change accordingly, the process of

which is managed by the Bezier Solution package. The Object Manipulator script was also attached to

the cube's Game Object to enable user interactions.

Then, a line was rendered using the Line Renderer component from Unity to connect the control points

with the sphere for a better understanding of the control points' influence on the segments.

Finally, a label was added to inform the user of the point's position concerning the robot's frame. The

Radial View component from the MRTK was added to the label's Game Object to adjust its rotation to face

the user.

Figure 44 - Point Prefab

Segment Rendering

One crucial application phase was rendering the spline's segments that form the curve. The cubic Bézier

Spline is expressed through a mathematical equation that returns the curve's points on each point of its

domain. So, the set of points that form the curve can be used to render the robot's path in the 3D world.

This set of points can be accessed using the GetPoint function available on the Bezier Solution package,

taking as argument the normalized variable of motion time (𝜏), described in section 2.5.

71

The Bezier Solution package already renders a line in edit and run mode. However, this pre-conceived

functionality limits the application as the segment's properties cannot be edited individually. Hence,

another rendering algorithm is used.

The algorithm used to render the curve was developed using the same principle of the algorithm present

in the Bezier Solution package. It uses a set of points to render the line accordingly. Hence, the more

points are used, the smoother the curve will be.

For the application, instead of rendering the spline at once, each segment is rendered separately. This

allows changing the local properties of each segment, e.g., the color.

Segment Validation

Segment validation is not discussed in the requirements but presents a valuable feature for the

application. The concept of this feature is to show the invalid segments to the user, where the robot will

fall in singularities. This poses a significant advantage since most of the trajectory's unfeasible segments

are eliminated immediately. The color coding used in section 0 for the imitation target was used with the

segments to identify invalid segments. Therefore, a valid path is green colored, and an invalid one is red

colored. The validation algorithm was developed according to the process described in Figure 45:

Figure 45 - Segment Validation Process

First, a list of point positions for each segment is created according to the number of testing points. Then,

a transformation matrix is generated according to the orientation of the end effector, which remains the

same throughout the trajectory's execution and is previously stored when confirming the robot's initial

configuration. Afterward, the inverse kinematics algorithm is computed on each point according to the

Set number of
testing points

Get list of points of
the segment

Compute Inverse
Kinematics on each
point considering
the orientation of
the end effector

Validate path
according to the

inverse kinematics
results

72

configuration variables chosen for the segment. Finally, a validation algorithm is executed to look for

impossible values returned by the inverse kinematics algorithm. If no singularities are detected, the path

remains green-colored; else, the path turns red. The path validation feature is represented in Figure 46.

This function, as it is computationally expensive, is only computed whenever the points or the control

points are manipulated.

It is also important to acknowledge the limitations of this feature. As an infinite number of points defines

a curve, this method is not 100% accurate. However, most of the time, it presents a feasible solution. It

was defined that 1000 points are tested on each execution. The algorithm's accuracy could be enhanced

by storing and validating more points. However, this would be more computationally expensive.

Figure 46 – Segment validation feature (green and red-colored segments)

4.2.5 Trajectory Configuration

Trajectory Selection

To edit the trajectory, the user must be able to select either points or segments of the trajectory. The

selection method implemented in the application works by selecting points. To select them, a script was

attached to each trajectory point to manage the selection visually and internally.

The algorithm used accesses the MRTK's input system. Hence, the event OnPointerDown, triggered when

the user performs the air tap gesture, is used to change the properties of the selected sphere. If the user

clicks on the point using far or near interactions, the sphere changes color from white to yellow. At the

same time, a Boolean variable saves the current selection state of the point.

In the application, the selection of points can be accomplished in two ways:

▪ Multiple-point selection.

73

▪ Two-point selection.

Multiple-point selection is only enabled when the trajectory's format is being edited. It is used to select

and delete the number of points the user needs. Figure 47 shows the multiple-point selection feature

where three trajectory points are selected and yellow-colored.

Figure 47 - Multiple Point Selection

On the other hand, the two-point selection feature, illustrated in Figure 48, is used to configure the motion

parameters that the robot is under on one segment or various segments. In this case, the user should

choose the starting and ending point of the segment or segments he wants to edit. When chosen, the

segment or segments between those points will also appear as selected, changing its color to yellow.

Figure 48 - Two-point Selection

74

Trajectory Format Adjustment

The menu to adjust points and edit the trajectory's format can be accessed by clicking on a button called

"Edit Trajectory. " This button has a script attached to the OnPress event, which activates the control

points of the segments, multiple point selection, and the ability to move the points on the environment.

Furthermore, another menu with three different buttons is also enabled.

The sub-menu is responsible for letting the user perform the required actions regarding trajectory

modeling. Three different buttons are part of this menu, as shown in Figure 49:

▪ Add point

▪ Delete Point

▪ Generate linear path

Figure 49 – Trajectory modeling sub-menu

Add Point

The button used to add a point allows the user to generate different points along the trajectory. By adding

a point, a new segment is also created. A script was added to the button's OnPress event so that,

whenever pressed, the prefab conceived previously could be instantiated (illustrated in Figure 44).

The prefab is instantiated with the Bezier Spline Game Object as a parent since it represents a new point

of the spline. The prefab is blue-colored on the spline hierarchy, as shown in Figure 43. Since the prefab

already has the Bezier Point component attached, the Bezier Solution Package will automatically

recognize that a new point was added, and the spline is updated. To avoid overlapping points, the prefab

is instantiated with a 0.2m difference on the x-axis in relation to the last point of the trajectory.

75

Delete Point

To delete trajectory points, the user must first select the ones he wants to delete. Then, an algorithm

responsible for eliminating the points is executed when the button is pressed. The algorithm accesses the

children's objects of the spline, represented in Figure 43, and destroys the Game Objects. This way, the

unwanted points disappear from the scene.

However, as the spline must always have two points to form a trajectory, the algorithm checks if the user

is trying to delete more points than possible. So, in this situation, if the user presses the button, the

functionality is blocked, and the warning message represented in Figure 50 appears. This message warns

the user that the trajectory must have at least two points.

Figure 50 - Warning message of the delete point feature

Create Linear Path

This functionality is not described in the requirements. Nevertheless, to enhance user experience, it was

integrated into the application. The Bezier Solution package provides a function from the Bezier Spline

class called ConstructLinearPath. By accessing the Bezier Spline component, this function can be called,

and a linear path constructed. This method aligns the control points of the segments collinearly with their

starting and ending points, as described in section 2.5.

Hence, the script was added to the button's OnPress event. Each time the user presses the button, the

control points of each segment align, and a linear path is obtained. It is important to address that this

functionality does not work locally. Instead, all the segments are transformed at the same time.

76

Movement Parameters Adjustment

The two-point selection mode controls the menu to adjust the motion's parameters. The two-point

selection functionality is enabled every time the menu to edit the trajectory's format, represented in Figure

49, is inactive.

So, when the user selects two points, the segments in between become selected, and the menu illustrated

in Figure 51 appears within the user's view. The menu is composed of various buttons that offer different

configuration possibilities. The menu was built upon the functionalities defined in the secondary functional

requirements described in Table 5.

Figure 51 - Menu to configure the motion parameters

The first input field dedicates to the input of the speed in meters per second. Then, the configuration

variables that define the robot's configuration when transiting the segments can be defined by clicking on

the checkboxes. In addition, the user can use a switch button to select the end effector's state (on or off)

while moving through the selected segments.

The number of loops or repetitions is also configured on this menu. To enable the loops' input field, the

user should click on the switch button with the "loop" description. This action will activate the new input

field and a support table, as shown in Figure 52. This table stores the values entered by the user so he

does not lose track of the previously filled values. It shows the first point, the last point, and the number

of repetitions defined. Furthermore, a button to erase the data was created. This button is activated along

with the table and the input field and is responsible for erasing the data.

77

Figure 52 - Loop Data registration

The confirm button present on the menu must be clicked so that the changes are correctly saved and

applied to the segments. The motion parameters are saved on a script attached to each spline point. This

means that the motion values of each segment are stored within the first point of the segment.

To enhance user experience, the menu also shows the motion values of the segments when selected. If

multiple segments have the same speed, for example, the input field will show the speed of the segments.

If segments with different motion parameters are selected, the input field will be empty, and the buttons

will be untoggled.

4.2.6 Trajectory Execution

To execute the designed path, inverse kinematics must be computed at each curve point. To do this, a

new Game Object, called target, was created to store the orientation and position of the robot on each

point and control the robot's motion. This target's initial position and rotation are assigned when the user

confirms the robot's configuration, as represented in the process described in Figure 40 and Figure 42.

GUI

To start executing the path, the user should push the button illustrated in Figure 53 inside the white box.

This button has a script that is executed on the OnPress event. This script is responsible for activating

the target that will make the robot move.

However, before starting the simulation, a verification is made to ensure its feasibility. Hence, it is first

verified if all segments are green-colored before activating the target. If impossible segments are on scene,

a warning message will be shown to the user to inform him to adjust the trajectory until all segments are

green-colored.

78

Figure 53 - Run Simulation button

Trajectory Execution Process

A component was created and attached to the target's Game Object. This component has a method called

FollowSpline, which is called every frame on Update. The purpose of this method is to manage the robot's

motion according to the user's inputs.

The process begins by getting the current segment's index. For this purpose, a variable from the data

type Segment, available on the Bezier Solution package, was created. This variable is used to get the

index of the segment that the target is currently at and is updated at each time step.

Then the values previously inputted by the user for the segment, namely the speed, the configuration

variables, the end effector state, and the loops data, are accessed and stored in variables.

The trajectory execution process uses a system of two global Boolean variables, invertMovement and

changeConfiguration, to verify the need to loop the trajectory or adjust the robot's configuration between

segments. If these variables are true, two different processes occur. These processes are going to be

explained in more detail afterward.

Then, using one of Bezier Solution's utility functions, called MoveAlongSpline, the target's position is

updated according to the speed that the user introduced. This function returns a point in the spline

according to the desired speed. Therefore, when the execution starts, the target's position is updated. At

each time step, the inverse kinematics is computed according to the configuration variables set to the

segment, and the angles of the robot's joints are updated. This will create an animation of the robot

following the trajectory.

To know when the simulation is over, a Boolean variable was created. This variable changes from true to

false when the target reaches the ending point of the spline.

79

It is important to note that the end effector's orientation remains the same throughout the entire trajectory,

so this value is never updated during execution time. Figure 54 provides a more visual and comprehensive

representation of the trajectory execution process data flow employing a flowchart.

80

Figure 54 - Data flow of the trajectory execution primary process

81

Loop Trajectory Process

This method is responsible for changing the truth value of the InvertMovement variable according to the

user's inputs and is called on Update.

Before explaining the process, the inversion of movement handling must be explained. The robot's

standard movement direction is towards the spline's ending point, where the InvertMovement variable is

set to false. When the variable is set to true, the robot moves toward the initial point of the spline.

The motion inversion was accomplished by entering the negative speed value into the MoveAlongSpline

function's arguments. This way, the function returns the points in the opposite direction. So, in the

FollowSpline method, when the truth value of the InvertMovement variable is checked, the speed sign

changes accordingly.

The user inputs are saved on a Data table that holds the information on the starting point, ending point,

and the number of repetitions. Each row contains one input from the user. Before executing the algorithm,

it is verified if the Data table is empty, which means that the user did not loop any segment. If this is

verified, the invertMovement variable is set to false throughout the whole trajectory until the robot reaches

the last trajectory point. If not, the process continues.

A variable from the data type Segment, available on the Bezier Solution package, was created to start the

process. This variable saves the segment index that the target is currently at and is updated at each time

step.

Then, the user inputs previously saved on the Data table are read and saved on variables. Afterward, two

verifications are made. On each time step, it is verified if the index of the current segment is higher than

the segment the user wants to loop. If bigger, the robot will invert the direction of the motion, and the

number of repetitions is decremented.

At the same time, it is also verified if the current index is lower than the segment index the user wants to

loop and if the robot is moving toward the initial point of the spline. If this is verified, the invertMovement

variable is set to false, and the algorithm checks if the number of repetitions reached 0. If yes, then the

next row of the Data table is read, and the process is repeated. If the next Data row is empty, all user

inputs were processed, and the robot moves to the ending point of the trajectory, as defined in Chapter

3.3.

The flowchart, illustrated in Figure 55, summarizes the loop trajectory feature's data flow.

82

Figure 55 - Data flow of the loop trajectory process

83

Configuration Adjustment Process

To adjust the configuration of the robot between segments, two methods were developed:

▪ CheckConfigurationAdjustment

▪ AdjustConfiguration

The first method is responsible for checking if the configuration variables change from the current

segment to the next. If yes, the changeConfiguration variable is set to true. This method is called on

Update and is represented in Figure 56.

On the FollowSpline method, the truth value of this variable is checked on each time step, as shown in

Figure 54. So, when the variable turns true, the target's speed is set to 0, and the AdjustConfiguration

function is called.

This function computes the inverse kinematics of the following configuration. The position and orientation

of the end effector remain the same, but the configuration variables change. This way, a new set of angles

that satisfy the user's input are obtained. Then the angles are smoothly adjusted using the Lerp function

from Unity. This function is used to interpolate between the former and the new angles. When the robot

reaches the new configuration, the target moves again according to the next segment's speed, and the

adjustConfiguration variable is set to false again. This process is represented in Figure 57.

Figure 56 - Data flow of the CheckConfigurationAdjustment method

84

Figure 57 - Data flow of the AdjustConfiguration method

4.2.7 Results

The robot's performance results must be calculated during trajectory execution to provide the user with

the robot's performance assessment and the path's feasibility evaluation. Therefore, a function was

developed for each of the results discussed in the requirements. This section will discuss the reasoning

used to calculate each result value and the GUI used to exhibit the results.

GUI

The results are displayed to the user in a Dialog Box. The Dialog Box prefab was modeled according to

the application's needs. As seen in Figure 58, three buttons were added to the results' Dialog Box to

provide the user with some navigation options. These buttons and their functionalities will be addressed

in section 4.2.8.

The results Dialog Box information was discriminated by the type of results shown. Hence, multiple text

fields were created to design a GUI that correctly shows the information to the user. The GUI for the

results was built according to Figure 58:

85

Figure 58 - Results GUI with text fields

The results GUI comprises the name of the KPIs measured and a text field underneath for the calculated

results. A script that accesses the text field components was developed to fill each result's text field. This

script gathers the information collected and correctly places it in the Dialog Box. Only the values and their

units are shown to have clear and objective results.

The only exceptions are the CDR and the MAV results. For the collisions, the name of the components

that collided will be shown. Then, the type of collision that occurred is also shown as self-collision,

environment collision, or both. Concerning the maximum angular speed results, each joint's name is

inserted before the value to identify the data perfectly, as shown in Figure 59.

Figure 59 - Results' Dialog Box

86

Active end effector time

The process of calculating the time that the tool is activated is straightforward. For this purpose, a function

was developed and called on Update.

While executing the trajectory, the method verifies, on each frame, if the end effector is enabled on the

current segment, according to the user's previous inputs. If the end effector is active, a variable is

incremented using Time.deltaTime, which represents the completion time in seconds since the last frame.

If not, then the variable will not be incremented. The time is presented in seconds.

Trajectory length

A variable is incremented during trajectory execution to calculate the TL. This method is called on Update.

The distance is calculated by measuring the distance between the end effector's point on the previous

and current frames. This calculation is done multiple times during the trajectory execution. As the value

is incremented on every frame, the total distance of the spline is calculated. The trajectory is measured

in meters.

The Bezier Solution package already offers a function called GetLengthAproximatelly, that calculates the

spline's length. However, as mentioned in Chapter 3.3, the actual length of the spline is different from

the distance traveled by the robot's end effector because of the feature of looping segments. Hence, the

method used ensures that the distance is calculated according to the total distance traveled by the end

effector. The trajectory's length is calculated in meters.

Travel time

The TT was calculated using a timer. Hence, the method developed is called on Update, and a variable

is incremented using Time.deltaTime. The variable starts incrementing when the robot starts the motion.

When the end effector reaches the ending point of the trajectory, the variable stops incrementing, and

the total transit time is obtained. The TT is calculated in seconds.

Average velocity of the end effector

The AVEE is calculated on the same method as the distance traveled. The end effector's speed was

calculated using equation 35:

�̅� =
∆𝑑

∆𝑡
 (35)

87

As the distance is calculated on every frame and Time.deltaTime represents the time that passed since

the last frame, the velocity can be calculated. The velocity values are stored on a list to get the average

speed, calculated at the end of trajectory execution. The unit used for the velocity is expressed in meters

per second.

Maximum angular velocity

To calculate the MAV of the joints, a method was developed using the same principle as the calculation

of the velocity of the end effector. Equation 36 was used to calculate the average angular velocity on each

trajectory point:

The script was attached to each joint of the robot. When the simulation starts, the component created is

activated. Then, on the Update method, the angle displacement, in degrees, is calculated on each frame.

Furthermore, the time passed between frames is accessed using Time.deltaTime. Finally, the formula is

applied, and a maximum algorithm is executed to save the highest value registered. The values of the

MAV of each joint are expressed in degrees per second.

Collision detection results

A method was developed to store the information relative to collisions during trajectory execution. This

method verifies whether the robot collided with the spatial mesh or an integral part of the robot. If the

robot hits the spatial mesh, a variable is set to true. If the robot hits one of its components, a different

variable is set to true. This way, it is possible to know the type of collisions that occurred.

Furthermore, a list was created to store the name of the components of the robot that suffered collisions

to inform the user afterward through the results' Dialog Box. The list is filled by verifying if the collision

detection variable, addressed in section 4.1.2, turns true during trajectory execution. As this is a string

type of output no unit is needed.

4.2.8 User Navigation Options

In the results' Dialog Box, illustrated in Figure 59, three buttons were created to provide the user with

different options. The three buttons developed are:

1. Reset button

2. See collisions button

𝜔𝑖̅̅ ̅ =
∆𝜃𝑖

∆𝑡
 (36)

88

3. Quit button

The "Reset" button redirects the user to the menu shown in Figure 60, where he has the option to access

the robot selection menu or go back to the trajectory modeling and configuration process. It also contains

a return button if the user wishes to return to the result window. Each button has a script attached to the

OnPress event, responsible for activating the necessary Game Objects and resetting the required variables

to go back to the desired application's processes. The "Reset" button is responsible for providing the

navigation options described in Chapter 3.3.1.

Figure 60 - User Navigation Menu

The See Collisions button present in the results' Dialog Box activates a feature using a timer, where the

menu is disabled, and the colliding parts of the robot turn red. This way, if the user cannot identify the

name of the robot's parts shown on the collision results, he can visualize the components affected by the

collisions.

Finally, the Quit button has a script attached to the OnPress event responsible for quitting the application.

For this purpose, the Quit method from Unity was used.

89

5 Testing & Evaluation

This chapter concerns the testing and evaluation of the application. Two different aspects are assessed

in this chapter. First, an analysis of the application's performance considering the non-functional

requirements is developed. Then, on a more qualitative level, it is discussed how the application solves

some of the problems manufacturers face when implementing new robotic use cases, listed in Table 3.

5.1 Setting up the testing environment

In this sub-section, the preparation of the testing environment is explained. First, the tool must be

developed in Unity's environment for the task to be tested. Then, the application must be deployed to the

HoloLens 2, the HMD chosen to run and test the application. Finally, the real environment and the

workpiece must be defined to establish the scenario where the application will be tested.

Selection & Development of the tool

On the application, some minor changes were made to cover the necessities of the use case chosen. So,

it was established that a painting task would be tested. In this direction, a tool was created and added to

the robot's hierarchy in Unity. Once the tool must be connected to the last joint of the robot, it was added

as a child of the last joint's Game Object. The tool is represented by a cylinder, which defines the structure

of the paint sprayer. Unity's Particle System component was also added and configured to represent the

paint. This component is a robust particle effect system used to simulate liquids, smoke, clouds, and

other effects. Figure 61 shows the painting tool integrated into the robot in Unity's 3D environment.

Furthermore, the FollowSpline component was extended to activate and deactivate the Particle System

according to the end effector's on or off state.

Figure 61 - 3D representation of the robot's painting tool

90

Deployment to the HoloLens 2

After selecting and developing the tool for the use case, the application had to be deployed to the HoloLens

2. So, the project was first built in Unity, targeting the Windows Universal Platform. Then, the solution

was opened in Visual Studio, and a package for the HoloLens 2 was created. The build configuration used

to create the package was the ARM64 architecture, the recommended architecture for MR applications

targeting the HoloLens 2. Finally, the HoloLens 2 device portal was accessed, and the package, along

with the dependencies file, was installed into the HoloLens 2.

The testing and evaluation of the application's performance were done using this device.

Setting up the real environment

A new use case was defined to evaluate the application's performance. The scenario constructed intends

to simulate the task of painting the airplane's fuselage. So, a whiteboard will represent a small piece of

the airplane's fuselage, and the table will be the surface where the robot will be placed to execute the

task, as represented in Figure 62.

Figure 62 - Testing Environment

5.2 Testing the Application

First, the UR10 was chosen since the UR3's dimensions are more suitable for smaller workpieces. Then,

the robot was placed on the table, and the robot's initial configuration was set. The configuration was

established using the imitation method, described in section 4.2.3. The robot was configured to have the

shoulder left, the elbow up, and the wrist down. This is a standard configuration in the industrial

Placing Surface

Workpiece

91

environment and was used to execute the task. The process of setting the initial robot's configuration is

illustrated in Figure 63.

Figure 63 - Setting the robot's initial configuration

After placing and configuring the robot, the trajectory must be defined. Seven segments were created to

define the trajectory needed to paint the panel, as seen in Figure 64. It was set that the workpiece's

painting is done horizontally, with the vertical segments working as an adjustment to the next area of the

workpiece to paint. Furthermore, when painting, it was also defined that the robot loops the segments

once to apply three coats of paint. Hence, on the horizontal segments of the trajectory, the tool was set

to active.

Figure 64 - Path modeling and parameterization

After going through the process of positioning and configuring the robot and the trajectory, the simulation

was started. The trajectory was executed ten times, and the results were registered. Figure 65 shows the

robot executing the fifth trajectory segment with the painting tool activated.

92

Figure 65 - Painting task execution

5.2.1 Non-functional requirements analysis

In section 3.2.3, the non-functional requirements of the application were defined. Hence, they were

considered in this phase to assess the application's overall performance after finishing the development

phase. The five areas contemplated on the non-functional requirements will be assessed individually.

A. Consistency

To analyze the consistency of the results, the trajectory was executed ten times, and the results were

registered in Table 9. The results are shown in the table with the order they are presented throughout the

work.

Table 9 - Result's framework

Result 1 2 3 4 5 6 7 8 9 10 Mean Variance

TL 6.44 6.44 6.44 6.43 6.44 6.43 6.42 6.42 6.43 6.43 6.44 0.00

TT 129.14 129.28 129.15 129.16 129.08 129.07 128.97 128.66 128.88 128.90 129.03 0.03

AEET 114.97 115.04 114.76 115.01 115.17 115.03 115.01 114.92 114.92 114.86 114.97 0.01

ATV 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.00

MAV
Joint1

8.3 8.2 8.4 8.3 8.2 8.2 8.1 8.0 8.1 8.1 8.19 0.01

MAV
Joint2

5.4 5.3 5.4 5.5 5.4 5.4 5.5 5.5 5.5 5.6 5.45 0.01

MAV
Joint 3

8.2 8.2 8.3 8.4 8.3 8.3 8.4 8.4 8.4 8.3 8.32 0.01

MAV
Joint 4

6.1 6.1 6.3 6.3 6.4 6.3 6.3 6.2 6.2 6.3 6.25 0.01

MAV
Joint 5

7.7 7.7 7.5 7.5 7.7 7.7 7.6 7.5 7.5 7.5 7.59 0.01

MAV
Joint 6

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0.01

CDR
No

colisions
No

colisions
No

colisions
No

colisions
No

colisions
No

colisions
No

colisions
No

colisions
No

colisions
No

colisions
- -

93

As seen in Table 9, the results present a consistent framework. It was set on the non-functional

requirements that the result's variance should always be under 5%. This means that the collected data

should present a low variability, with the values very close to each other and the mean. The TT, which

represents the time required to finish the trajectory, has the highest variance, of about 3%. The CDR does

not present a variance since the results are measured qualitatively. However, the results obtained are the

same for each test performed, where no collisions were detected.

In conclusion, the application delivers a satisfactory consistency level, having a maximum variation of just

3%. This way, the non-functional requirements related to consistency were successfully reached.

B. Performance

Two aspects of the application were defined to assess its performance. First, it was set that the application

should start up to 15 seconds after initiation. Then, the frame rate must also be evaluated to determine

if the application is too heavy for the HoloLens 2.

Ten measurements were made to test the time needed for the application to load and start. A timer was

set from the moment the application's icon was clicked until the initial menu of the application appeared

on the scene. The results concerning the ten tests made and the respective result are summarized in

Table 10.

Table 10 - Time required to initialize the application

As seen in the sample values, the application needs, on average, 9 seconds to initialize. This value is far

below the target initially set on the non-functional requirements. Hence, the requirement was successfully

met, and the HoloLens 2 can quickly load the application.

The frame rate evaluates the performance of the application throughout all its processes. Throughout the

application testing phase, the medium frame rate presented by the application is around 30 fps. By 30

fps, the MR experience is not compromised, but there are some noticeable lumps in the scene.

C. Portability

The application can also be deployed to the HoloLens 1. However, before compiling the solution, the x86

architecture should be used. Regarding the application's features and performance, the HoloLens 2 offers

a much better hand-tracking system and a wider field of view, ultimately providing a better user

Test 1 2 3 4 5 6 7 8 9 10 Mean

Time required to start
the application (s)

9.76 8.82 9.83 9.24 8.15 8.19 9.12 8.56 9.07 9.27 9.00

94

experience. Furthermore, the HoloLens' second generation comprises a wider range of gestures and

manipulation options with the holograms, providing both near and far interactions. Hence, the application

works on the HoloLens 1, but some features may be compromised since it was developed to target

HoloLens 2.

In conclusion, two packages were created, one with the x86 architecture and the other with the ARM64

architecture, to target HoloLens 1 and HoloLens 2, respectively. Their average size is about 80 Megabytes.

The HoloLens device portal must be accessed to install the packages. As they are not very big, the

installation process can be performed rapidly on both devices, and the application can be executed right

after it.

D. Reliability

The results shown in Table 9 prove that the simulation was executed ten times, always consistent with

the user inputs and without any registered issues. Therefore, the reliability of the application was

successfully confirmed. Even though the application was tested for ten simulations, it should present

reliable results for more than ten simulations.

E. Usability

The non-functional requirements concerning usability relate to the user's experience. It was defined in

Table 6 that the GUI must be intuitive and always within the user's field of view. Furthermore, some

navigation options must also be made available for the user to test other robots or edit the trajectory to

investigate new use cases.

Throughout the application's development phase, the menus and buttons were created, tailoring user

experience. As the MRTK already provides a range of components and assets for GUI, already tuned to

enhance user experience, these building blocks were used and successfully tested in the result phase.

Furthermore, the user navigation options confirmed its function.

However, when testing the application, it was verified that sometimes, as the spatial awareness system

is activated throughout the processes, the GUI gets hidden by the spatial mesh. Nevertheless, most of

the buttons, menus, warning messages, and instruction fields update the position of the GUI according

to the user. This way, by moving away from obstacles, they can be accessed and visualized again.

In conclusion, for the best experience, the application should be used in open places where the spatial

mesh has less probability to be overlapping the buttons, menus, warning messages, and instruction fields.

95

5.2.2 Qualitative Assessment of the application

The information gathered in section 2.3 is used to assess the application qualitatively. Table 3

summarizes the problems faced by manufacturers in the early stage of implementing new robotic use

cases. This table comprises three crucial areas: safety, knowledge, and functionality. Each of these areas

will be discussed separately to conclude how the application helped solve the problems encountered in

the industry.

Safety Area

The first point present in this area is that the safety of the robot's movements, gripper, and tools are not

appropriately assessed. At this stage, only one tool was added to the application, making the end effector's

safety a reductive assessment. However, it was effectively demonstrated that the robot's movements

could be represented and studied to avoid possible injuries or collisions with the worker.

The second point of the safety area is that there is often a lack of involvement of the worker in the pre-

study phase. With the application, the worker can be more involved in the process by visualizing the task's

execution and predicting the robot's behavior, understanding the hazards and forces applied. This way,

safety questions can be raised by the worker and engineer, combining both points of view to have the

best safety assessment outcome. Also, correct planning of the operator's safe and hazardous zones can

be made from the beginning of the implementation process. This will decrease the chances of propagation

of safety issues to further implementation phases.

Finally, as the application offers many features regarding the robot's motion, extreme tests and use cases

can be explored to cover different possibilities that may compromise the worker's safety.

Knowledge Area

The knowledge area relates to the lack of understanding and expertise in collaborative robots. This

technology is relatively recent, and not every company has the means to perform a profound study on

how the technology works. Hence, the application tries to offer a comprehensive and interactive interface

for companies with insufficient know-how in this area.

The first point in the knowledge area is the uncertainty of how the robot will perform the previous hand-

made tasks. The application offers a range of features, e.g., trajectory modeling and motion parameters

configuration, to provide different testing options and answer this problem. This way, manufacturing

companies can test different scenarios to choose the best methodology to perform the tasks. One example

is the painting task described in section 5.2, where the painting can be done horizontally or vertically.

96

Next, the investment in these robots is difficult to justify since not much information on the benefits they

bring is available. The application provides reliable information to tackle this issue. For example, as the

time needed to perform the trajectory is calculated, an estimation of the number of workpieces processed

can be made. Furthermore, knowing the time that the end effector was activated, in the cases where the

tool consumes material (e.g., gluing or painting), the amount of raw material used can also be calculated.

These aspects, provided by the application's results, give companies an essential framework for

preliminary calculating the return on investment. This will result in founded decisions and a higher

acceptance probability by the top management on investing in these applications.

The third point present in the knowledge area is the lack of knowledge regarding the robot's performance

in the production system. The production system is, most of the time, a dynamic environment, and

therefore different situations can occur. The application can create, simulate, and assess different

situations to have a holistic view of the robot's performance. The results, especially the collisions, speed,

and the time needed to cross the path, will then provide the information needed to conclude if the robot

accomplishes a good performance level.

The fourth point relates to not understanding how the concept can be industrialized. The application gives

an overview of how the process can be automated and provides information to help companies

industrialize the new concept.

Finally, in the pre-study phase, the scope is limited to only one product variant to decrease the complexity

of the study. Different products can be tested with the application, as the trajectory can be modeled to

match the workpiece's requirements. For example, the trajectory can be modeled as a straight line to

place glue on a linear surface. On the other hand, for a circular workpiece, the trajectory can be

transformed into a curve that matches the workpiece's geometry. The level of flexibility offered in trajectory

modeling and motion parameterization, along with the performance assessment, makes it possible for

companies to increase the scope of the new robotic application's study.

Functionality Area

The functionality area concerns all the functional aspects of the robot that affect the implementation

efforts. There are three issues listed in Table 3 related to this area. The first difficulty marked is not being

able to compare the speed of manual operations with automated operations. Besides providing the

simulation of task execution, the application also delivers results on how fast task execution was. As most

companies know the status quo of their processes, the performance of both operations can be compared.

97

The next issue registered is the difficulty in assessing potential functional problems. The application

provides a significant improvement in this area. First, the segment validation feature, driven by the

analytical inverse kinematics algorithm, can be used to predict invalid trajectories and configurations

during task execution. Next, excessive speeds can be detected as the joints' maximum angular speed is

constantly monitored throughout task execution. Then the robot's size can be evaluated and positioned

in different parts of the production system to assess potential problems, mainly collisions with the

environment. This provides manufacturing companies with a comprehensive framework for reckoning

and evaluating potential functionality problems.

Finally, companies have difficulty choosing the robot that best fits the task requirements. The application

tackles this problem by integrating two different testing robots on the application. The specifications are

very different, making them usable for wildly different situations. Both robots' performances can be equally

evaluated to see the one that performs the task in the best way. Hence, companies can choose the one

that best fits their needs.

98

6 Conclusion & Future work

6.1 Conclusion

Profound insights are obtained throughout this whole project regarding the usage of MR technology in the

robotic field. These insights are obtained by addressing the research question exposed in the problem

statement: "Can MR technology be an effective solution to facilitate the implementation of new robotic

use cases, decreasing implementation time, costs, and efforts?". In this project, the development of a

new application from top to bottom, i.e., from the requirement definition phase to the development and

testing of the solution, provides a holistic view of the solution proposed to answer the research question.

The application's requirements were defined according to the literature review, where multiple articles

about collaborative robots and the difficulties faced by manufacturers when implementing them were

analyzed. It was set that the application should only be used for tasks that compensate for low accuracy

and precision values, like simple pick and place tasks, surface vacuum cleaning, and paint or glue

applications. This decision was made based on the current status of the MR software and hardware

specifications.

Before starting the application, the analytical inverse kinematics of the robot was developed, providing

various advantages to the application's features. In the first place, the challenge of matching the

coordinate system used in the article where the analytical inverse kinematics equations were deducted,

and Unity's coordinate system framework had to be overcome. After, a feasible inverse kinematics

calculation system was accomplished, where eight possible configurations can reach the desired location

and orientation of the tool. Furthermore, a collision detection system was developed to register, manage

and represent collisions. This system represents the collisions visually by changing the color of the robot's

components that collide. The inverse kinematics system represents the foundation of the application as

it is used in the most critical features of the application.

The features provided by the application start by offering a comprehensive menu, showing relevant

information concerning the UR3 and the UR10 robots. Then, an intuitive placing method is proposed to

spawn the robot on real-life surfaces with different formats and slopes, providing a realistic visualization

of the robot in the environment. Furthermore, a novel process to set the robot's initial pose, taking

advantage of the inverse kinematics' algorithm flexibility, is presented, where the user can grab the end

effector and place it in the desired position in space. Moreover, a manual method was developed to

99

configure the robot's angles offering more solutions to the user. Here, he can introduce the exact value

intended for the joints or use a slider to update the angles.

After, a trajectory modeling and parameterization system was developed with the aid of an external

package available on Unity's asset store, Bezier Solution. In this application phase, a method to configure

the trajectory's format is presented where several configuration options are developed. Then, a

comprehensive motion parameterization methodology is proposed to configure the robot's motion where

the speed, loops, configuration, and the end effector's state (on/off) can be entered by the user. A

simulation of the robot executing the path is then shown to the user according to the motion parameters

added. In the end, a set of KPIs are exhibited to provide the user with information to assess the robot's

performance and behavior.

Finally, to test the application, the painting task was chosen. The testing environment was constructed

upon a whiteboard representing a part of an aircraft's fuselage and a small table serving as the robot's

placing surface. The application was then deployed to the HoloLens 2 via a package, and the task was

executed ten times to register and analyze the results.

Overall, after testing, the application delivers all the features proposed in the concept definition phase. A

consistent result framework was achieved, which is crucial to validate the relevance of

the application. In the end, it is proved that MR helps in different areas of

the initial implementation phase of robots and provides valuable information to ensure the success of

new use cases, decreasing the chances of problems propagating downstream of the implementation

process. This can ultimately help manufacturers to decrease implementation costs, time, and effort. This

idea complies with the industry 4.0 concept, where a symbiosis between digital and physical forms a

production system with enriched information and predictive capabilities, enhancing the ability of

companies to deliver quality products with cost and time-effective processes.

As a final verdict, MR must be viewed as an emerging technology with numerous opportunities in the

industrial and robotic field to help companies progress and update their processes according to the

market's needs. This is very important to ensure the company's future and sustainability. The investment

time and expertise needed to implement new robotic use cases are high, but they can be reduced through

interactive and information-rich three-dimensional visual feedback from MR technology.

100

6.2 Future Work

In this thesis, the application is developed as a proof-of-concept. Many new functionalities and

improvements can be integrated to make this application a future solution for manufacturing companies

to test new robotic use cases.

First, the aspect of accuracy and stability of the MR technology is improving steadily with each new

iteration of hardware setup, sensor technology, and software algorithm on which the technology is built.

Therefore, in the future, new AI and ML-driven algorithms could be implemented to enhance the

technology's accuracy, increasing the scope of the application to higher accuracy tasks.

Furthermore, more robots from different manufacturers with different configurations and specifications

can be added to the application for better benchmarking and performance assessment. This way, a new,

consistent, centralized system for robot feasibility testing can be developed to help renew older processes

and improve efficiency. New tools and grippers can be integrated to test novel processes and match the

requirements of a larger audience.

To what concerns the application, an acceleration profile for the trajectory could be developed to mirror

the robot's behavior more accurately and get results closer to reality. In the application, the acceleration

is always 0 since the tool's velocity remains the same when traveling the segment. The only exception is

when the robot enters a segment with a different speed. In this case, the robot changes the speed

instantly, which would require infinite acceleration. Hence, to further develop the point-to-point motion,

an acceleration profile could be used to enhance the representation of real-life physics, opening the

possibility of testing more complex use cases.

Finally, robot programming could also be integrated into the application by automatically generating the

robot code needed to perform the tasks. This would provide companies with a holistic solution, from robot

selection and trajectory definition and parameterization to task execution on the shop floor.

101

References

[1] A. Ustundag and E. Cevikcan, “Industry 4.0: Managing The Digital Transformation,” U. Duc
Truong Pham, University of Birmingham, Birmingham, Ed. Cham: Springer International
Publishing, 2018, pp. 187–213.

[2] D. Kleeman, “Robots in industry,” Electron. Syst. News, vol. 1983, no. 3, pp. 51–61, Mar.
1983.

[3] S. K. L. Andersson, A. Granlund, J. Bruch, and M. Hedelind, “Experienced Challenges When
Implementing Collaborative Robot Applications in Assembly Operations,” Int. J. Autom. Technol.,
vol. 15, no. 5, pp. 678–688, Sep. 2021.

[4] T. Kopp, M. Baumgartner, and S. Kinkel, “Success factors for introducing industrial human-robot
interaction in practice: an empirically driven framework,” Int. J. Adv. Manuf. Technol., vol. 112,
no. 3–4, pp. 685–704, Jan. 2021.

[5] S. Rokhsaritalemi, A. Sadeghi-Niaraki, and S.-M. Choi, “A Review on Mixed Reality: Current
Trends, Challenges and Prospects,” Appl. Sci., vol. 10, no. 2, p. 636, Jan. 2020.

[6] S. K. Lennart Andersson, J. Bruch, M. Hedelind, and A. Granlund, “Critical Factors Supporting
the Implementation of Collaborative Robot Applications,” in 2021 26th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA), 2021, pp. 01–07.

[7] F. Sherwani, M. M. Asad, and B. S. K. K. Ibrahim, “Collaborative Robots and Industrial
Revolution 4.0 (IR 4.0),” in 2020 International Conference on Emerging Trends in Smart
Technologies, ICETST 2020, 2020, pp. 1–5.

[8] M. KNUDSEN and J. KAİVO-OJA, “Collaborative Robots: Frontiers of Current Literature,” J. Intell.
Syst. Theory Appl., vol. 3, no. 2, pp. 13–20, 2020.

[9] P. Poor, T. Broum, and J. Basl, “Role of collaborative robots in industry 4.0 with target on
education in industrial engineering,” in Proceedings - 2019 4th International Conference on
Control, Robotics and Cybernetics, CRC 2019, 2019, pp. 42–46.

[10] A. Kolbeinsson, E. Lagerstedt, and J. Lindblom, “Foundation for a classification of collaboration
levels for human-robot cooperation in manufacturing,” Prod. Manuf. Res., vol. 7, no. 1, pp.
448–471, 2019.

[11] D. Mukherjee, K. Gupta, L. H. Chang, and H. Najjaran, “A Survey of Robot Learning Strategies
for Human-Robot Collaboration in Industrial Settings,” Robot. Comput. Integr. Manuf., vol. 73, p.
102231, 2022.

[12] S. El Zaatari, M. Marei, W. Li, and Z. Usman, “Cobot programming for collaborative industrial
tasks: An overview,” Rob. Auton. Syst., vol. 116, pp. 162–180, 2019.

[13] “UR10 Technical specifications,” 2009. [Online]. Available: https://www.universal-
robots.com/media/50895/ur10_en.pdf. [Accessed: 01-Apr-2022].

[14] “UR3 Technical Specifications,” 2009. [Online]. Available: https://www.universal-
robots.com/media/240787/ur3_us.pdf. [Accessed: 01-Apr-2022].

[15] J. Craig, ROBOTICS, Second Edi. Addison Wesley Longman, 2005.

102

[16] K. P. Hawkins, “Analytic Inverse Kinematics for the Universal Robots,” 2013.

[17] “DH PARAMETERS FOR CALCULATIONS OF KINEMATICS AND DYNAMICS.” [Online]. Available:
https://www.universal-robots.com/articles/ur/application-installation/dh-parameters-for-
calculations-of-kinematics-and-dynamics/. [Accessed: 08-Apr-2022].

[18] A. Morecki and J. Knapczyk, “The Inverse Kinematics of Manipulators,” in Basics of Robotics,
vol. 402, Vienna: Springer Vienna, 1999, pp. 55–56.

[19] R. S. Andersen, “Kinematics of a UR5,” 2018.

[20] V. Akbarzadeh, J.-C. Lévesque, C. Gagné, and M. Parizeau, “Efficient Sensor Placement
Optimization Using Gradient Descent and Probabilistic Coverage,” Sensors, vol. 14, no. 8, pp.
15525–15552, Aug. 2014.

[21] S. Ruder, “An overview of gradient descent optimization algorithms,” ArXiv, vol. abs/1609.0,
Sep. 2016.

[22] Alan Zucconi, “Inverse kinematics for robotic arms,” 2021. [Online]. Available:
https://www.alanzucconi.com/2017/04/10/robotic-arms/. [Accessed: 16-Apr-2022].

[23] O. Heimann and J. Guhl, “Industrial Robot Programming Methods: A Scoping Review,” in 2020
25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA),
2020, pp. 696–703.

[24] A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne, “Imitation Learning,” ACM Comput. Surv., vol.
50, no. 2, pp. 1–35, Mar. 2018.

[25] A. Skoglund, “Programming by Demonstration of Robot Manipulators,” (Doctoral Dissertation,
Örebro University), 2009.

[26] B. Fang, S. Jia, D. Guo, M. Xu, S. Wen, and F. Sun, “Survey of imitation learning for robotic
manipulation,” Int. J. Intell. Robot. Appl., vol. 3, no. 4, pp. 362–369, Dec. 2019.

[27] H. Sasatake, R. Tasaki, T. Yamashita, and N. Uchiyama, “Imitation Learning System Design with
Small Training Data for Flexible Tool Manipulation,” Int. J. Autom. Technol., vol. 15, no. 5, pp.
669–677, Sep. 2021.

[28] H. Hu, Z. Zhao, X. Yang, and Y. Lou, “A Learning from Demonstration Method for Robotic
Assembly with a Dual-Sub-6-DoF Parallel Robot,” in 2021 WRC Symposium on Advanced
Robotics and Automation (WRC SARA), 2021, pp. 73–78.

[29] A. Gasparetto, P. Boscariol, A. Lanzutti, and R. Vidoni, “Path Planning and Trajectory Planning
Algorithms: A General Overview,” in Mechanisms and Machine Science, vol. 29, Springer,
Cham, 2015, pp. 3–27.

[30] B. Sabetghadam, R. Cunha, and A. Pascoal, “Real-time Trajectory Generation for Multiple
Drones using Bézier Curves,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 9276–9281, 2020.

[31] B. Song, Z. Wang, and L. Zou, “An improved PSO algorithm for smooth path planning of mobile
robots using continuous high-degree Bezier curve,” Appl. Soft Comput., vol. 100, p. 106960,
Mar. 2021.

[32] “Bezier Curve.” [Online]. Available: https://javascript.info/bezier-curve#:~:text=As the algorithm
is recursive,lines glue several curves together. [Accessed: 03-May-2022].

103

[33] H. Harashima, “Special Issue on Networked Reality,” IEICE Trans. Inf. Syst., vol. 77, no. 12, pp.
1321–1329, 1994.

[34] M. Speicher, B. D. Hall, and M. Nebeling, “What is Mixed Reality?,” in Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems, 2019, pp. 1–15.

[35] R. Anthony J. de Belen, H. Nguyen, D. Filonik, D. Del Favero, and T. Bednarz, “A systematic
review of the current state of collaborative mixed reality technologies: 2013–2018,” AIMS
Electron. Electr. Eng., vol. 3, no. 2, pp. 181–223, 2019.

[36] E. Costanza, A. Kunz, and M. Fjeld, “Mixed Reality: A Survey,” in Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 5440 LNCS, 2009, pp. 47–68.

[37] “Hololens 2-Overview, Features and Specs | Microsoft HoloLens.” [Online]. Available:
https://www.microsoft.com/en-us/hololens/hardware. [Accessed: 15-May-2022].

[38] Scooley, “Hardware hololens 2 | Microsoft Learn.” [Online]. Available:
https://docs.microsoft.com/it-it/hololens/hololens2-hardware. [Accessed: 27-May-2022].

[39] “Spatial mapping - mixed reality. Mixed Reality | Microsoft Learn.” [Online]. Available:
https://docs.microsoft.com/en-us/windows/mixed-reality/design/spatial-mapping. [Accessed:
18-Jun-2022].

[40] “About blender.org.” [Online]. Available: https://www.blender.org/about/. [Accessed: 10-May-
2022].

[41] “Wondering what Unity is? Find out who we are, where we have been and where we are going |
Unity.” [Online]. Available: https://unity.com/our-company. [Accessed: 02-May-2022].

[42] “MRTK2-Unity Developer Documentation - MRTK 2 | Microsoft Learn.” [Online]. Available:
https://learn.microsoft.com/en-us/windows/mixed-reality/mrtk-unity/mrtk2/?view=mrtkunity-
2022-05. [Accessed: 19-May-2022].

[43] Yasirkula, “GitHub - yasirkula/UnityBezierSolution: A bezier spline solution for Unity 3D with
some utility functions (like travelling the spline with constant speed/time).” [Online]. Available:
https://github.com/yasirkula/UnityBezierSolution.

[44] I. Soares, R. B. Sousa, M. Petry, and A. P. Moreira, “Accuracy and Repeatability Tests on
HoloLens 2 and HTC Vive,” Multimodal Technol. Interact., vol. 5, no. 8, p. 47, Aug. 2021.

[45] D. K. Nguyen, W.-J. van den Heuvel, M. P. Papazoglou, V. de Castro, and E. Marcos,
“Conceptual Modeling: Foundations and Applications,” Concept. Model. Found. Appl., vol. 5600,
no. January, pp. 293–318, 2009.

[46] “Robot Arms for Research and Education | MYBOTSHOP.DE.” [Online]. Available:
https://www.mybotshop.de/Robot-arms. [Accessed: 27-Apr-2022].

[47] “Point and commit with hands - Mixed Reality | Microsoft Learn.” [Online]. Available:
https://learn.microsoft.com/en-us/windows/mixed-reality/design/point-and-commit. [Accessed:
01-Jun-2022].

[48] “Installation Guide | Mixed Reality Toolkit Documentation.” [Online]. Available:
https://hololabinc.github.io/MixedRealityToolkit-Unity/Documentation/Installation.html.
[Accessed: 25-May-2022].

104

[49] “GitHub - rparak/Unity3D_Robotics_UR: A digital-twin of the Universal Robots UR3 integrated
into the Unity3D development platform.” [Online]. Available:
https://github.com/rparak/Unity3D_Robotics_UR. [Accessed: 02-May-2022].

[50] I. Mehrez, E. Gross, and W. Barz, “Research & Simulation Of An Automation Solution For The
Assembly Of Aircraft Doors,” (Master Thesis, Technische Universität Hamburg-Harburg), 2019.

[51] “Near menu - MRTK 2 | Microsoft Learn.” [Online]. Available: https://learn.microsoft.com/en-
us/windows/mixed-reality/mrtk-unity/mrtk2/features/ux-building-blocks/near-
menu?view=mrtkunity-2022-05. [Accessed: 07-Jul-2022].

[52] “Bounds control - MRTK 2 | Microsoft Learn.” [Online]. Available:
https://learn.microsoft.com/en-us/windows/mixed-reality/mrtk-unity/mrtk2/features/ux-
building-blocks/bounds-control?view=mrtkunity-2022-05. [Accessed: 16-Jul-2022].

	CAPA-Dissertacao-Mestrado-EE_Tiago-Carvalho.pdf
	Thesis_TC_Final.pdf

