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Abstract 

Manufacturing companies are trying to affirm their position in the market by introducing new concepts 

and processes to their production systems. For this purpose, new technologies must be employed to 

ensure better performance and quality of their processes. Robotics has evolved a lot in the past years, 

creating new hardware and software technologies to answer the increasing demands of the markets. 

Collaborative robots are seen as one of the emerging and most promising technologies to answer industry 

4.0 necessities. However, the expertise needed to implement these robots is not often found in small and 

medium-sized enterprises that represent a large share of the existing manufacturing companies.  

At the same time, mixed reality represents a new and immersive way to test new processes without 

physically deploying them. To tackle this problem, a mixed reality application is developed from top to 

bottom, aiming to facilitate the research and feasibility studies of new robotic use cases in the pre-study 

implementation phase. This application serves as a proof-of-concept, and it is not developed for the end 

user. First, the application's requirements are set to answer the manufacturing companies’ needs, 

providing two testing robots, an intuitive robot placement method, a trajectory modeling and 

parameterization system, and a result framework. Then the development of the application’s 

functionalities is explained, answering the requirements previously established. A collision detection 

system was defined and developed to perceive self and environmental collisions. Furthermore, a novel 

process to configure the robot based on imitation learning was developed. In the end, a painting tool was 

integrated into the robot's 3D model and used for a use-case study of a painting task. Then, the results 

were registered, and the application was accessed according to the non-functional requirements. Finally, 

a qualitative analysis was made to evaluate the fields where this new concept can help manufacturing 

companies improve the implementation success of new robotic applications. 

Keywords: Collaborative Robots, Industry 4.0, Inverse Kinematics, Mixed Reality 
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Resumo 

As empresas de manufatura estão a tentar afirmar sua posição no mercado introduzindo novos conceitos 

e processos nos seus sistemas de produção. Para isso, novas tecnologias devem ser empregues para 

garantir um melhor desempenho e qualidade dos seus processos. O campo da robótica evoluiu bastante 

nos últimos anos, criando novas tecnologias de hardware e software para atender à crescente procura  

dos mercados. Neste sentido, os robots colaborativos surgem como uma das tecnologias mais 

promissoras para atender às necessidades da indústria 4.0. No entanto, o conhecimento necessário para 

implementar este tipo de robots não é frequentemente encontrado em pequenas e médias empresas 

que representam grande parte das empresas de manufatura existentes.  

Ao mesmo tempo, a realidade mista representa uma maneira nova e imersiva de testar novos processos 

sem implementá-los fisicamente. Para fazer face ao problema, uma aplicação de realidade mista é 

desenvolvida com o objetivo de facilitar a pesquisa e realização de estudos de viabilidade de novos casos 

de uso de robótica na fase de pré-estudo da sua implementação. A aplicação serve como prova de 

conceito e não é desenvolvida para o utilizador final. Primeiramente, os requisitos da aplicação são 

definidos de acordo com as necessidades das empresas de manufatura, sendo fornecidos dois robots 

de teste, um método intuitivo de posicionamento, um sistema de modelagem e parametrização de 

trajetórias e uma estrutura de resultados. Em seguida é apresentado o processo de desenvolvimento das 

funcionalidades da aplicação, tendo em conta os requisitos previamente estabelecidos. Um sistema de 

deteção de colisões foi pensado e desenvolvido para localizar e representar colisões do robot com a sua 

própria estrutura física e com o ambiente real. Além disso, foi desenvolvido um novo processo para definir 

a pose inicial do robot baseado na aprendizagem por imitação. No final, uma ferramenta de pintura foi 

desenvolvida e integrada no modelo 3D do robot com o objetivo de estudar o desempenho da aplicação 

numa tarefa de pintura. Em seguida, os resultados foram registados e a aplicação avaliada de acordo 

com os requisitos não funcionais. Por fim, foi realizada uma análise qualitativa para avaliar os campos 

em que este novo conceito pode ajudar as empresas de manufatura a melhorar o sucesso da 

implementação de novas aplicações robóticas. 

Palavras-chave: Cinemática Inversa, Indústria 4.0, Robots Colaborativos, Realidade Mista
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1 Introduction 

1.1  Motivation 

Industry 4.0 is becoming more and more popular among manufacturing companies as it plays a 

significant role in strategy, taking advantage of the opportunities given by the digitalization of all stages of 

production and service systems [1]. One of the technologies driven by Industry 4.0 are cobots. A cobot is 

a collaborative robot that teams with humans within a shared space to perform a given task. It represents 

a significant pillar of robotics in the industry 4.0 scenario and promises to profoundly change 

manufacturing processes [2]. This idea is corroborated by many manufacturers who see the collaboration 

between humans and robots in production processes as an essential requirement of this new industry 

paradigm [1]. This collaboration comes with many benefits as it combines typical human abilities, such 

as problem-solving, cognitive skills, and adaptability, with the repeatability and accuracy of collaborative 

robots [3]. However, the implementation rates of these applications are lower than expected [4]. 

Meanwhile, in recent years, mixed reality (MR) technology has undergone a profound improvement in 

terms of software and hardware. In return, this technology offers a new and immersive way of visualizing 

and analyzing new methods and processes before physically deploying them. This can provide the 

industry with new capabilities and solutions by creating a symbiosis between the physical and virtual 

worlds [5]. 

1.2 Problem Statement 

Despite being an innovative and advantageous solution to the industry, it is verified that the 

implementation rate of collaborative robots is not following the expected rising trend. This happens 

because expertise and economic resources are scarce for most manufacturing companies, mainly 

represented by small and medium-sized enterprises (SMEs) [4].  

Many resources are needed to study feasible robotic applications, which may never be fully deployed in 

the production system. To test new robotic use cases, resources are spent on acquiring the robot, 

conceptualizing a new work cell, and testing the new robotic application [6]. Furthermore, downtimes and 

constraints to the production system can occur during the implementation process leaving the companies 

even more reluctant to opt for this solution. 
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Therefore, the work conducted intends to answer the question, "Can MR technology be an effective 

solution to facilitate the implementation of new robotic use cases, decreasing implementation time, costs 

and efforts?". 

1.3 Objectives 

The thesis aims to develop an MR application to facilitate the research and deployment of new robotic 

use cases reducing implementation time and costs. The solution consists of an MR interface where the 

user can visualize different robot actions in the real production system and evaluate its performance. The 

aim of the thesis is not to develop an application for the end-user, serving only as a proof of concept.   

The application must show a simulation of different robots performing different trajectories modeled by 

the user to test different use cases and possibilities. Furthermore, to ensure the feasibility of the new 

robotic use case, important KPIs concerning the robot's movement must be shown, providing different 

scenarios and data for the manufacturers to analyze. This will support decision-making and increase 

opportunities, as the benefits of the new robotic application are clearly presented to the top management.  

1.4 Thesis Structure 

This thesis is structured as follows: 

▪ Literature Review: This chapter covers the theoretical concepts used throughout the thesis. 

▪ Concept and Design: The proposed concept is introduced and explained. It concerns the 

definition and design of the application's structure and general process data flow. The workflow 

of the master thesis is also presented. 

▪ Application Development: This chapter presents the development of the application's 

features, processes, and user interface (UI). 

▪ Testing & Evaluation: A practical use case is tested, and the application's performance is 

analyzed on different levels. An analysis of the results and the benefits brought by the application 

is performed.  

▪ Conclusion & Future Work: Discussion of the work done in this project and future work, 
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2 Literature Review 

2.1 Industry 4.0 and Collaborative Robots 

Collaborative robots represent an important pillar of robotics and play a significant role in the industry 4.0 

framework [2]. Thus, some aspects of collaborative robots need to be discussed, especially the 

advantages they bring to the new industry paradigm. As its name implies, what differentiates these robots 

from traditional robots is their ability to share the workspace with humans and work alongside them to 

achieve a common goal [7]. This makes it possible to combine robots and humans in a way that the full 

potential of each one is achieved [8]. On the one hand, human operators have the unique capability of 

knowing how the production system works and the cognitive capacity to analyze problems and find the 

best way to solve them. 

On the other hand, robots perform repetitive and monotonous tasks with a higher level of accuracy and 

consistency. This removes human factors like fatigue or injuries from the equation, increasing productivity 

and product quality. Another advantage of this kind of robot is that it can be easily programmed to perform 

different tasks [2], [9], which allows companies to change the production process nimbly to their needs. 

The lighter weight of these robots, when compared to traditional industrial robots, makes them easy to 

move around the production system, adapting it to the one that best suits the process and client's needs 

[8].  

Traditional robots are designed to perform the same task over and over again with high levels of efficiency. 

As the markets are asking for more sophisticated and customized products within a shorter delivery time, 

flexibility in products and services represents a crucial advantage for manufacturing companies in today's 

industry framework. Traditional industrial robots cannot achieve this as they can only perform one type 

of task and cannot be easily moved to reconfigure the production system [8]. Next, they are challenging 

to program, requiring a high level of expertise to adapt them to new production processes or even 

introducing new products to the system [9]. Finally, their inability to cohabitate with humans in the same 

workplace due to the high speeds, power, and forces applied turns into high investments in protective 

cages and other protection systems to avoid injuries. This does not represent a problem for collaborative 

robots once they are equipped with sensors capable of detecting human presence and stopping the 

robot's motion before colliding with the worker. However, even though the risk of injuries inherent to 

cobots is relatively low, this is still a hot research topic as safety problems may arise in any new use 
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cases. In conclusion, collaborative robots provide companies with the agility and flexibility needed to adapt 

to the new challenges posed by the rapidly changing market and mass customization.  

It is important to acknowledge that there are different collaboration levels between robots and humans. 

Depending on the level of autonomation, the collaboration between men and machine varies [10]. In a 

non-automated environment, the human worker performs all the tasks within the work cell. In a fully 

automated environment, the robot performs all its functions independently [11]. Yet, this is not always so 

linear once collaboration between man and machine is sometimes required to get the desired results. 

When neither the robot nor the worker performs all tasks, their collaboration level needs to be defined. In 

this case, two important aspects to consider are the tasks performed by each and the physical space 

shared by them. [12], propose a classification of the human-robot interaction (HRI) considering a 

definition of cobot that states that any robot operating without a fence or cage working alongside humans 

is a collaborative robot. To classify the HRI, [12] suggest four scenarios where different dependency levels 

and task intersection levels between the operator and robot are considered. The four proposed scenarios 

are as follows: 

▪ Independent: The robot and operator have two different manufacturing processes and work on 

different workpieces independently. The main collaborative element here is that both work in the 

same workplace, and the robot uses intelligent hardware/software to ensure the operator's 

safety.  

▪ Simultaneous: The operator and the robot operate on the same workpiece but perform 

independent processes. However, the robot must be aware of the operator's presence and the 

requirements of its task to respect its workspace.  

▪ Sequential: In the sequential collaboration scenario, the robot and the operator perform 

dependent tasks on the same workpiece, i.e., there is time dependency between both tasks 

where the robot's process for the workpiece is an input for the operator's process. 

▪ Supportive: An operator and a cobot work together towards the same process on the same 

workpiece. There is a high level of dependency between both parties, as the process cannot be 

handled without their cooperative participation. 
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Universal Robots UR10 and UR3 

The UR10 and UR3 robots are two different collaborative robots manufactured by Universal Robots. The 

robots can either be controlled manually through an interface or be programmed to run autonomously.  

The UR10 weighs about 28.9kg having a 190mm diameter footprint. The robot has a reach of 1.3m and 

is capable of lifting up to 10kg payloads. It comprises six joints with a range of +/- 360°. They have a 

speed limit of 120°/s for the base and shoulder joints and a speed limit of 180°/s for the remaining 

joints [13].  

The UR3 is the smallest robot manufactured by Universal Robots. Proportionally, the robot's specifications 

are very different from the UR10, making it adequate for smaller, lighter-weight workpieces. Hence, the 

UR3 weighs about 11kg having a footprint diameter of 128 mm. It has a reach of 0.5m and can lift up to 

3kg payloads. The UR3 also comprises six joints with a rotation range of +/- 360° except for the end 

joint, which has infinite rotation. All wrist joints have a speed limit of 360°/s, while the others have a 

speed limit of 180°/s [14]. 

Figure 1 illustrates the UR3 and UR10 robots, respectively, together with each joint's name and number, 

between brackets.  

 

Figure 1 - The Universal robots UR3 and UR10 

The robotic arm is equipped with a force sensor to detect the external forces acting on it and automatically 

activates an emergency stop when a large force is detected. This feature is available in both autonomous 

and manual modes. There are no sensors other than the force sensor, and no tool is attached to the tip 

of the arms. However, they are structured so that tools, extensions, and sensors can be attached to the 

tip. 
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2.2 Robot Kinematics 

A robotic kinematic chain is a set of rigid bodies connected by joints that provide the ability to perform 

motions and interact with the environment. The rigid bodies standing between the joints are called links 

and provide the robot with the physical structure that connects the joints of the manipulator. The joints, 

in turn, control the angular position of the links by rotating around a local rotational axis. Some of the 

combinations of joint angular displacements are impossible to reach once they can cause collisions with 

the robotic arm or with objects in the environment. The set of combinations of possible joint values forms 

the so-called joint space. On the other hand, the task space, or cartesian space, represents the 

orientations and positions that the end effector can reach in a space broken down into x-y-z coordinates. 

The number of joints in the kinematic chain can be referred to as the number of degrees of freedom 

(DOF).  

The robot kinematics field studies the geometry of robots with multiple DOF and establishes a relationship 

between a robot's joint angular values and spatial arrangement. This provides the ability to transform the 

joint space, where the kinematic chain is defined, to the cartesian space, where the manipulator interacts 

with the environment, and vice-versa.  

2.2.1 Forward Kinematics 

Forward Kinematics refers to the problem of finding the position and orientation of the end effector once 

the parameters of the actuators are given. Forward kinematics makes it possible to transform the 

kinematic information from the joint variable space to the cartesian coordinate space of the final frame.  

Hence, given a robot with m joints having a set of joint values (𝜃1, 𝜃2, … , 𝜃𝑚) it is possible to find the 

end effector's position and orientation in the three-dimensional x-y-z space. When solving the forward 

kinematics problem, the output will be the transformation matrix from joint 0 to joint m, represented by 

the shorthand 𝑇𝑚
0 . This matrix contains information that maps the position and orientation of frame m 

concerning frame 0, according to the joints' angle values [15]. 

Forward Kinematics - UR3 and UR10 

The UR10 and UR3 represent highly flexible and light-weighted six DOF robots. The main difference 

between the robots lies in their specifications, varying in size, payload, weight, and working radius. 

However, it is possible to solve the forward kinematics problem using the same approach since they have 
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the same configuration. For this purpose, the Denavit-Hartenberg (DH) parameters, which serve as input 

for the forward kinematics equations, change for each robot.  

The forward kinematics of the robot arms can be implemented according to the work of Kelsey P. Hawkins 

[16]. Each joint is named according to the roll it performs on the robot arm and goes as follows:  

▪ 𝜃1-  Shoulder pan 

▪ 𝜃2  - Shoulder lift  

▪ 𝜃3  - Elbow 

▪ 𝜃4  - wrist 1 

▪ 𝜃5  - wrist 2 

▪ 𝜃6  - wrist 3 

First, to properly define the forward kinematics problem, it is necessary to represent the position and 

orientation of the end effector as a function of joint angles. This is given by the matrix deducted in equation 

1, where: 

▪ 𝑅6
0 represents the orientation of frame 6 according to frame 0. 

▪ 𝑃6
0 represents the position of frame 6 in relation to frame 0. 

▪ �̂�0
6 represents the unit vector defining the x-axis of frame 6 in relation to frame 0. 

▪ �̂�0
6represents the unit vector defining the y-axis of frame 6 in relation to frame 0.  

▪ �̂�0
6 represents the unit vector defining the z-axis of frame 6 concerning frame 0.  

𝑇6
0(𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5, 𝜃6) = 𝑇1

0(𝜃1)𝑇2
1(𝜃2)𝑇3

2(𝜃3)𝑇4
3(𝜃4)𝑇5

4(𝜃5)𝑇6
5(𝜃6) = [𝑅6

0 𝑃6
0

0 1
]

=  [�̂�0
6 �̂�0

6 �̂�0
6 𝑃6

0

0 0 0 1
] =  

[
 
 
 
 
�̂�0𝑥

6 �̂�0𝑥
6 �̂�0𝑥

6 𝑃6𝑥
0

�̂�0𝑦
6 �̂�0𝑦

6 �̂�0𝑦
6 𝑃6𝑦

0

�̂�0𝑧
6 �̂�0𝑦

6 �̂�0𝑧
6 𝑃6𝑧

0

0 0 0 1 ]
 
 
 
 

 

(1) 

The coordinate frames of the UR robot's joints in its zero position are given in Figure 2. 
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Figure 2 – Coordinate frames of the UR arms. The joints rotate around the z-axes and are pictures in zero position [16]  

At this stage, the DH parameters must also be defined once they are the key elements used in calculating 

the position and orientation of the end effector. The DH parameters for the UR3 and UR10 are defined in 

Table 1 and Table 2, according to the official Universal Robots website [17]. The DH parameters can be 

specified as follows: 

▪ 𝑎𝑖 = distance from 𝑧𝑖  to 𝑧𝑖+1  measured along 𝑥𝑖 

▪ 𝛼𝑖  = angle from 𝑧𝑖  to 𝑧𝑖+1  measured about 𝑥𝑖 

▪ 𝑑𝑖 = distance from 𝑥𝑖−1  to 𝑥𝑖  measured along 𝑥𝑖    

             Table 1 - DH parameters for the UR3 [17] 
 

i 𝒂 [m] 𝒅 [m] 𝜶 [rad] 

1 0 0.1519   

2 -0.2437 0 0 
3 -0.2133 0 0 

4 0 -0.11235   

5 0 -0.08535 −  

6 0 0.0819 0 

Table 2 - DH parameters for the UR10 [17] 
 

i 𝒂 [m] 𝒅 [m] 𝜶 [rad] 

1 0 0.1273   

2 -0.612 0 0 
3 -0.5723 0 0 

4 0 - 0,16394   

5 0 - 0,1157 −  

6 0 0.0922 0 

According to Figure 2, equations 2,3,4,5,6,7,8,9,10, 11, and 12 were deducted to calculate the different 

fields of the transformation matrix 𝑇6
0, which gives the end effector's position and orientation concerning 

the robot's base frame. This will provide a way of directly calculating the robot's forward kinematics 

concerning the robot's joint angles. The shorthand 𝑐𝑖 = 𝑐𝑜𝑠 (𝜃𝑖), 𝑠𝑖 = 𝑠𝑖𝑛(𝜃𝑖) , 𝑐𝑖𝑗 = 𝑐𝑜𝑠(𝜃𝑖 + 𝜃𝑗),  

and 𝑠𝑖𝑗 = 𝑠𝑖𝑛(𝜃𝑖 + 𝜃𝑗) are used. 

�̂�0𝑥
6 = 𝑐6 (𝑠1𝑠5 +

((𝑐1𝑐234−𝑠1𝑠234)𝑐5)

2
+

(𝑐1𝑐234+𝑠1𝑠234)𝑐5

2
) −

𝑠6((𝑠1𝑐234+ 𝑐1𝑠234)−(𝑠1𝑐234−𝑐1𝑠234))

2
  (2) 
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�̂�0𝑦
6 = 𝑐6(

(𝑠1𝑐234+𝑐1𝑠234)𝑐5

2.0
− 𝑐1𝑠5 +

(𝑠1𝑐234−𝑐1𝑠234)𝑐5

2
+ 𝑠6(

𝑐1𝑐234−𝑠1𝑠234

2
−

𝑐1𝑐234+𝑠1𝑠234

2
)  (3) 

 

�̂�0𝑥
6 = −

𝑐6((𝑠1𝑐234+𝑐1𝑠234)−(𝑠1𝑐234−𝑐1𝑠234))

2
− 𝑠6(𝑠1𝑠5 +

(𝑐1𝑐234−𝑠1𝑠234)𝑐5

2
+

(𝑐1𝑐234+𝑠1𝑠234)𝑐5

2
)  (5) 

 

�̂�0𝑦
6 = 𝑐6 (

𝑐1𝑐234−𝑠1𝑠234

2
−

𝑐1𝑐234+𝑠1𝑠234

2
) − 𝑠6(

(𝑠1𝑐234+𝑐1𝑠234)𝑐5

2
− 𝑐1𝑠5 +

(𝑠1𝑐234−𝑐1𝑠234)𝑐5

2
)  (6) 

 

�̂�0𝑧
6 =

𝑐234𝑐6+𝑠234𝑠6

2
+

𝑐234𝑐6−𝑠234𝑠6

2
− 𝑠234𝑐5𝑠6  (7) 

 

Ẑ0x
6 = 𝑐5𝑠1 −

(𝑐1𝑐234−𝑠1𝑠234)𝑠5

2
−

(𝑐1𝑐234+𝑠1𝑠234)𝑠5

2
  (8) 

 

Ẑ0y
6 = −c1c5 −

(s1c234−s1s234)s5

2
+

(c1s234−s1c234)s5

2
  (9) 

 

Ẑ0z
6 =

c234c5−s234s5

2
−

c234c5+s234s5

2
  (10) 

 

𝑃6𝑥
0 = −

𝑑5(𝑠1𝑐234−𝑐1𝑠234)

2
+

𝑑5(𝑠1𝑐234+𝑐1𝑠234)

2
+ 𝑑4𝑠1 −

𝑑6(𝑐1𝑐234−𝑠1𝑠234)𝑠5

2
−

𝑑6(𝑐1𝑐234+𝑠1𝑠234)𝑠5

2
+ 𝑎2𝑐1𝑐2 + 𝑑6𝑐5𝑠1 + 𝑎3𝑐1𝑐2𝑐3 − 𝑎3𝑐1𝑠2𝑠3  

(11) 

 

𝑃6𝑦
0 = −(

𝑑5(𝑐1𝑐234−𝑠1𝑠234)

2
+

𝑑5(𝑐1𝑐234+𝑠1𝑠234)

2
− 𝑑4𝑐1 −

𝑑6(𝑠1𝑐234+𝑐1𝑠234)𝑠5

2
−

𝑑6(𝑠1𝑐234−𝑐1𝑠234)𝑠5

2
− (𝑑6𝑐1𝑐5 + 𝑎2𝑐2𝑠1 + 𝑎3𝑐2𝑐3𝑠1 − 𝑎3𝑠1𝑠2𝑠3)  

(12) 

 

2.2.2 Inverse Kinematics 

Inverse kinematics is one of the most critical approaches to program and control robot manipulators' 

motion. Robot manipulators are used to reach specific target points or follow trajectories in the cartesian 

space. Furthermore, they are often used to manipulate objects in the working environment in which the 

position is known and expressed by the global coordinate frame. Inverse kinematics approaches the 

problem in a reversed way compared to forward kinematics, transferring the information from the 

�̂�0𝑧
6 =

𝑠234𝑐6 + 𝑐234𝑠6

2
+ 𝑠234𝑐5𝑐6 −

𝑠234𝑐6 − 𝑐234𝑠6

2
 (4) 

𝑃6𝑧
0 = 𝑑1 +

𝑑6(𝑐234𝑐5−𝑠234𝑠5)

2
+ 𝑎3(𝑠2𝑐3 + 𝑐2𝑠3) + 𝑎2𝑠2 −

𝑑6(𝑐234𝑐5+𝑠234𝑠5)

2
− 𝑑5𝑐234  (13) 
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cartesian space to the joint variable space. Hence, given the position and orientation of the end effector, 

it is possible to determine the set of joint values (𝜃1, 𝜃2, … , 𝜃𝑚) of a kinematic chain that produces a 

desired end effector location. This gives the ability to determine how particular configurations change in 

time so that the end effector performs the desired motion with the proper orientation [18]. One of the 

main problems when solving an inverse kinematics problem analytically is the number of possible 

configurations within the joint variable space that match a particular end effector position and orientation, 

especially when dealing with systems having high DOF.  

In this thesis, the method proposed to solve the inverse kinematics problem analytically is based on the 

research work carried out by Rasmus Skovgaard Andersen [19]. The inverse kinematics equations 

deducted by the author aim to calculate the joint angles 𝜃1−6  according to the desired position and 

orientation of the end effector, defined as the transformation from frame 0 to frame 6, 𝑇6
0.  

Finding 𝜃1  

To find 𝜃1 we start by determining the position of the 5th joint (wrist frame) concerning the base frame, 

𝑃5
0. As it can be seen in Figure 3, 𝑃5

0 can be found by translating backward from frame 5 to frame 6 

along 𝑧6, whereas 𝑑6 and 𝑇6
0 are known.  

 

Figure 3 - Finding the origin of frame 5 [19] 

The translation 𝑃5
0 can be calculated by multiplying the transformation matrix by the distance vector 

between frame 6 and frame 5 along the z-axis, as shown in equation 14. 

 To derive 𝜃1, the robot must be examined from above, looking down into 𝑧0, as shown in Figure 4. 

𝑃5
0 = 𝑃6

0 − 𝑑6. �̂�0
6 ⇔ 𝑇6

0. [

0
0

−𝑑6

1

] (14) 
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Figure 4 - Robot (until frame5) seen from above. The robot is shown as grey lines. Note that 𝑧5 should be pointing into the page if all 

angles are 0 [19]. 

First, when looking at the image above, it is necessary to inspect the angles 𝜙1 and 𝜙2, defined in Figure 

4. The angle 𝜙1can be found by examining the triangle with sides 𝑃5𝑥
0  and 𝑃5𝑦

0 , as described in equation 

15. 

Then, the triangle formed by the angle 𝜙2 must also be considered. As shown in Figure 4, this triangle 

has one side equal to 𝑑4 and the other equal to |𝑃5𝑥𝑦
0 |. So 𝜙2 can be found by equation 16: 

The desired value of 𝜃1 is calculated by adding equation 15 and 16. The general formula for the 

calculation of the angle is given by equation 17: 

When calculating the value of 𝜃1  there are two possible solutions that represent different configurations. 

The two configurations represent the shoulder being "left" or "right." 

Finding 𝜃5 

To determine the value of 𝜃5 the robot must be again seen from above, including frame 6, represented 

in Figure 5. 

𝜙1 = 𝑎𝑡𝑎𝑛2(𝑃5𝑦
0 , 𝑃5𝑥

0 ) (15) 

𝜙2 = ±acos(
𝑑4

√(𝑃5𝑥
0 )2 + (𝑃5𝑦

0 )
2
) 

(16) 

𝜃1 = 𝜙1 + 𝜙2 +
𝜋

2
 ⇔ 

𝜃1 = 𝑎𝑡𝑎𝑛2(𝑃5𝑦
0 , 𝑃5𝑥

0 ) ± 𝑎𝑐𝑜𝑠(
𝑑4

√(𝑃5𝑥
0 )2 + (𝑃5𝑦

0 )
2
) +

𝜋

2
   

(17) 
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Figure 5 - Robot (including frame 6) seen from above [19] 

Now that 𝜃1 is known, we can remove 𝑇1
0 from the complete 𝑇6

0 and examine the remaining 

transformation 𝑇6
1 = (𝑇1

0)−1. 𝑇6
0. By looking at Figure 5, 𝑦1 can be traced back to see that the y-

component of 𝑃6
1 is given by equation 18: 

The y-component of 𝑃6𝑦
1  can also be expressed by looking at 𝑃6

1 as a rotation of 𝑃6
0 around 𝑧1, through 

equation 19:   

By combining equation 18 and 19, it is possible to determine the value of 𝜃5 through equation 20: 

Again, when determining the value of 𝜃5, two possible solutions result in different robot configurations. 

These two possible configurations represent the wrist being "up" or "down." The joint sum (𝜃2 + 𝜃3 +

𝜃4) can cause the end effector to be in the same position but with the wrist flipped. The orientation can 

then be “corrected” by 𝜃6. 

 

 

−𝑃6𝑦
1 = 𝑑4 + 𝑑6cos 𝜃5 (18) 

𝑃6
0 = 𝑅1

0. 𝑃6
1  ⇔ 𝑃6

1 = 𝑅1
0𝑇 . 𝑃6

0  ⇔ 

[

𝑃6𝑥
1

𝑃6𝑦
1

𝑃6𝑧
1

] = [
cos (𝜃1) sin (𝜃1) 0
−sin (𝜃1) cos (𝜃1) 0

0 0 1

]  ⇒ 

𝑃6𝑦
1 = 𝑃6𝑥

0  . (− sin 𝜃1) + 𝑃6𝑦
0  . cos 𝜃1   

(19) 

𝜃5 = ± acos ( 
𝑃6𝑥

0 sin 𝜃1 − 𝑃6𝑦
0 cos 𝜃1 − 𝑑4

𝑑6
) (20) 
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Finding 𝜃6 

To determine 𝜃6 , 𝑦1 is examined, seen from frame 6; �̂�1
6; This axis will (ignoring translations) always be 

parallel to �̂�2,3,4
6 , as can be seen in Figure 6. Thus, it will only depend on 𝜃5 and 𝜃6. It turns out that 

−�̂�1
6 can effectively be described using spherical coordinates, where the azimuth is −𝜃6 and the polar 

angle is 𝜃5. 

 

Figure 6: The axis −�̂�1
6 expressed in spherical coordinates with azimuth −𝜃6. For simplicity, −�̂�1

6  is denoted y1 in the Figure. [19]  

Equation 21 shows the transformation of −�̂�1
6 from spherical to cartesian coordinates: 

In equation 21, it is possible to isolate 𝜃6 and have an expression of 𝜃6 in relation to 𝑇1
6. The goal is to 

get an expression of 𝜃6 all the way from 𝑇0
6. To get this, we identify that �̂�1

6 𝑖s given as a rotation of 𝜃1 

in the x, y-plane of frame 0, as shown in equation 22: 

Equating the first two entries of the equation 21 and 22, equation 23 is deducted: 

−�̂�1
6 = [

𝑠𝑖𝑛 𝜃5 𝑐𝑜𝑠(−𝜃6)

𝑠𝑖𝑛 𝜃5 𝑠𝑖𝑛(−𝜃6)
𝑐𝑜𝑠 𝜃5

] ⇔ 

�̂�1
6 = [

−𝑠𝑖𝑛 𝜃5 𝑐𝑜𝑠(−𝜃6)

𝑠𝑖𝑛 𝜃5 𝑠𝑖𝑛(−𝜃6)
− 𝑐𝑜𝑠 𝜃5

] 

(21) 

�̂�1
6 = [

−�̂�0𝑥
6 . 𝑠𝑖𝑛𝜃1 + �̂�0𝑥

6 . 𝑐𝑜𝑠𝜃1 

−�̂�0𝑦
6 . 𝑠𝑖𝑛𝜃1 + �̂�0𝑦

6 . 𝑐𝑜𝑠𝜃1

−�̂�0𝑧
6 . 𝑠𝑖𝑛𝜃1 + �̂�0𝑧

6 . 𝑐𝑜𝑠𝜃1

] (22) 

𝜃6 = ± atan2 (
−�̂�0𝑦

6 . 𝑠𝑖𝑛𝜃1 + �̂�0𝑦
6 . 𝑐𝑜𝑠𝜃1

𝑠𝑖𝑛𝜃5
 ,
�̂�0𝑥

6 . 𝑠𝑖𝑛𝜃1 − �̂�0𝑥
6 . 𝑐𝑜𝑠𝜃1

𝑠𝑖𝑛𝜃5
) (23) 
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There is only one possible solution when determining the angle value of 𝜃6. As seen from the equation 

above, there is no solution when the denominator cos 𝜃5 =  0. The joint axes 2, 3, and 4 are aligned in 

this case. The joint axes 2, 3, and 4 can, on their own, rotate the end effector around its rotational axis 

(𝑧6) without moving it, and the sixth joint, therefore, becomes redundant. In this case, it can be simply 

set to an arbitrary value.  

Finding 𝜃3 

The remaining three joints (2, 3, and 4) are now to be examined. The joint axes of these three joints are 

all parallel, as seen in Figure 7. Together they form a planar 3R-manipulator, as illustrated in the figure 

below. 

 

Figure 7 - Joint 2, 3, and 4 together constitutes a 3R planar manipulator [19] 

We can constrict ourselves to look at 𝑇4
1 (frame 4 seen from frame 1) because 𝑇1

0, 𝑇5
4, and 𝑇6

5 are known 

at this point. This transformation is illustrated in the x, y-plane. From the figure, it is evident that the 

translation's length 𝑃4𝑥𝑦
1  is determined only by 𝜃3, or similarly by  𝜙3. The angle 𝜙3 can be determined 

by using the law of cosine described in equation 24: 

Therefore, equation 25 writes the equation in order to 𝜃3: 

For the calculation of 𝜃3, there are two possible solutions. One represents a configuration with the "elbow 

up" and another with the "elbow down."  

cos𝜙3 = −
 𝑎2

2 + 𝑎3
2 − |𝑃4𝑥𝑦

1 |2 

2𝑎2𝑎3
 (24) 

𝜃3 = ± acos(
|𝑃4𝑥𝑦

1 |2  −  𝑎2
2 − 𝑎3

2

2𝑎2𝑎3
 ) (25) 
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Finding 𝜃2 

The angle 𝜃2 can be calculated as 𝜙1 − 𝜙2. Each one of these expressions is obtained by analyzing 

Figure 7 using the atan2 and sine relations, described in equation 26 and 27: 

and,  

which combined form equation 28,  

Finding 𝜃4 

Finally, the value of 𝜃4 is determined by the angle between 𝑥3and 𝑥4 about  𝑧4 (see Figure 7). It can 

then be easily derived from the last remaining transformation matrix, 𝑇4
3, using its first column, �̂�4

3. This 

way, equation 29 is obtained. 

At this point, the joint values are all defined. Eight possible solutions within the joint space can make the 

robot reach a specific point, as represented in equation 30. The combination of the values calculated for 

the joints gives different configuration possibilities.  

The analytic inverse and forward kinematics provide the following possibilities: 

▪ To calculate the orientation and position of the end effector as a function of the joint angles 

through forward kinematics. 

▪ To calculate the set of angles that reach a desired position and orientation in space. 

▪ To validate if the robot can perform the desired motions by detecting singularities. 

▪ To provide the user with different solutions and configurations to reach the same point in space. 

𝜙1 = 𝑎𝑡𝑎𝑛2(−𝑃4𝑧
1 , −𝑃4𝑥

1 ) (26) 

𝜙2 = asin (
−𝑎3 sin(𝜙3)

| 𝑃4𝑥𝑧
1  |

 ) (27) 

𝜃2 = 𝜙1 − 𝜙2 = 𝑎𝑡𝑎𝑛2(−𝑃4𝑧
1 , −𝑃4𝑥

1 ) −  asin (
−𝑎3 sin(𝜃3)

|𝑃4𝑥𝑧
1 |

 ) (28) 

𝜃4 =  𝑎𝑡𝑎𝑛2(�̂�4𝑦
3  , �̂�4𝑥

3 ) (29) 

2𝜃1
∗  1𝜃2

∗  2𝜃3
∗  2𝜃4

∗  2𝜃5
∗  1𝜃6

= 8 (30) 
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2.2.3 Gradient Descent 

Gradient Descent is a modern method used to minimize an objective function. This method updates the 

objective function parameters to minimize it as far as possible. To do this, the Gradient Descent algorithm 

calculates the function's gradient to know whether it is increasing or decreasing. In mathematical terms, 

the function's gradient can be expressed as the derivative of a function concerning its parameters. The 

derivative provides information about the function's slope that is then used to predict how steep the 

function is at a certain point [20]. However, for a significant percentage of day-to-day problems, there is 

no way of deducting a function's derivative analytically. Thus, it must be estimated by sampling the 

function within two sufficiently close points, applying the analytical formula of derivatives given by equation 

30, where h represents an adequately small value: 

This way, it is possible to calculate an approximation of the direction in which the function is going.  

Another vital aspect of Gradient Descent is the learning rate. The learning rate defines how fast we get 

closer to the optimal solution. However, this does not mean that a high learning rate will give better and 

faster results. When defining the learning rate, it is imperative not to overrate this value once the algorithm 

can overshoot the local minima and fail to converge. On the other hand, a small learning rate requires 

too many iterations to reach a solution which translates into long waiting times and high needs for 

computational power. No formula tells how the learning rate should be calculated, so the correct value is 

often found using a trial-and-error strategy in search of the best solution [21].  

When applying Gradient Descent to inverse kinematics, it is first needed to define the objective function, 

also called the loss function. As we want to implement inverse kinematics, the loss function can be defined 

by the distance between the end effector and the target distance, i.e., the position we want the end 

effector to be positioned in the end. As the end effector position depends on the joint angles, these are 

the parameters to be updated when calculating the offset between the end effector position and joint 

position [22].   

 

𝑓′(𝑥) ≅ lim
ℎ→0

(
𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
) (31) 
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2.3 Implementation of Collaborative Robots 

The implementation process of collaborative robots acts as a critical point for manufacturing companies 

once it often determines the success or failure of these new applications. The literature shows that the 

implementation rates of industrial collaborative robots are lower than expected, and SMEs have a hard 

time finding the time and expertise needed to introduce this technology into their production systems [4]. 

Thus, companies must be aware of the problems faced at each stage of the implementation process. The 

literature provides different definitions for the industrial collaborative robots implementation process, the 

steps needed, and problems faced by manufacturing companies. According to [4] there are only three 

implementation phases, i.e., the decision phase, the implementation phase, and the operation phase. In 

the decision phase, the manufacturing company evaluates the feasibility of introducing the cobot solution 

both from an economic and operational point of view. Second, in the implementation phase, 

the cobot's specifications are clarified according to the task requirements and the industrial environment's 

constraints. Finally, in the operation phase, the robot is already integrated into the production system, 

used to perform the assigned task, and monitored by the operator in charge. However, this poses a 

reductive perspective on the implementation process of cobots once it can be broken down into a more 

detailed procedure. Furthermore, literature related to production technology shows that companies often 

use a five-step implementation process [6]. To address this gap, [6] propose a five-step implementation 

process for collaborative robots’ applications represented by Figure 8:   

 

Figure 8 - Five step implementation process [6] 

This process consists of five phases: pre-study phase, application design phase, factory installation phase, 

start-up phase, and operation phase. 

In the pre-study phase, companies develop the general idea and concept, considering business and 

process requirements. Also, feasibility studies are carried out to assess if the integration of the robot in 

the production environment is possible and beneficial, as well as potential limitations. Still, at this stage, 

companies survey to find a suitable cobot and gripper to perform the task and explore some general 

safety and task planning requirements [3]. For the application design phase, manufacturing companies 

develop and improve the solution's design concept, aiming to achieve a design solution capable of 

performing its purpose and running daily operations. Then, in the factory installation phase, 

manufacturers test the solution within the production environment on simple product variants and 
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operations. These tests are performed to assess the overall performance of the solution iterating it until 

it reaches a higher maturity state. In the start-up and operation phases, the manufacturing company 

increases the number of product variants processed by the cobot and ramps up the production to its 

cruising speed.  

The challenges faced at each implementation stage vary according to the stage that a manufacturing 

company is at. Three decisive areas can be distinguished to assess them qualitatively [3]: 

▪ Safety 

▪ Knowledge 

▪ Functionality 

The safety of industrial collaborative robot applications is strictly related to the HRI. It represents a 

challenging topic once fenceless robots are used more in today's industrial framework. Furthermore, the 

collaboration level between humans and machines is challenging to assess once they vary according to 

the task and the situation. Thus, the safety area tries to ensure the operator's safety when interacting with 

the robot.  

The area related to the knowledge needed to implement these solutions can also be a barrier, especially 

for SMEs, which make up 99% of all enterprises in the manufacturing industry [23]. This happens because 

this technology is often new to managers and operators who lack in knowledge and experience to deploy 

it successfully. Furthermore, the more recent the manufacturing technology is, the more time it requires 

to gather the information and know-how needed to implement it [6].  

Finally, the functionality area concerns all the functional aspects of the industrial collaborative robot 

application that affect the implementation effort, i.e., the maximum speed, the size of the robot, the 

software and hardware used, and others. Table 3 summarizes the challenges faced in three crucial areas 

of the pre-study phase according to the literature. In this thesis, only the pre-study phase will be assessed 

once it is the area of interest of the application. 

 

 

 

Table 3 - Problems faced in the pre-study implementation phase [3], [6] 



 

19 
 

 

During the pre-study phase, there is often a lack of involvement from the operators. Due to this fact, the 

operator's safety cannot be assessed appropriately. This problem then propagates to other 

implementation phases leading to further safety issues later in the process [3], [6]. Furthermore, in the 

knowledge area, it is difficult for companies to understand at such an early stage where the integration of 

collaborative robots in the production system can be most helpful, challenging manufacturers to know 

what needs to be evaluated. This concerns the evaluation of the cycle times, the benefits of having a robot 

perform previous hand-made tasks, and calculating the return on investment [3]. 

Then, many manufacturers feel the need to reduce the evaluation scope of the new robot to only a few 

variants to decrease the complexity of the evaluation. This leads to uncertainty when industrializing the 

concept and scaling up to other product variants [3]. Finally, in the functionality area, manufacturers have 

a hard time figuring out the benefits of implementing these robots when, in some cases, they are slower 

than manual operations. Moreover, potential functional problems related to joint speeds, collisions, 

unreachable configurations, or even choosing the robot that best fits the system’s requirements represent 

a big challenge for manufacturers [6]. 

These problems will be discussed and evaluated correctly so that the development of the application can 

help tackle them, providing the manufacturers with a new and better way to properly assess the 

integration of collaborative robots and potential problems that may arise during the pre-study phase. 

Area Problems 

Safety 
Safety of the robot movements, gripper, and tools is not assessed properly 

The ack of involvement of the operators leads to errors in assessing safety issues 

Knowledge  

Lack of knowledge on how the robot will perform previous hand-made tasks 

High investment difficult to justify 

Lack of knowledge regarding the actual performance of the robot in the production 
system (cycle times) 

Unclear how to industrialize the concept 

Pre-study phase scope is limited to one product variant. 

Functionality 

Difficulty in comparing the speed of manual operations with automated operations 

Difficulty in assessing potential functional problems of the new robot application 

Difficulty in choosing the robot with the best specifications according to the 
requirements of the task 
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2.4 Imitation Learning 

Imitation learning is a technique that is becoming more and more popular among researchers as it has 

the potential to tackle a lot of the problems faced by the industry at the moment. Imitation learning can 

be defined as the process by which an agent uses instances of performed tasks to learn a policy that 

solves a given task [24]. It aims to track and map human behavior so that it can then be used to train an 

agent (learning machine) to perform the task by mimicking the movements and actions. This learning 

process should not be confused with machine learning (ML); although both use the term learning, it has 

different meanings. In the case of imitation learning, it is used in a more general way [25]. 

In contrast, in ML, the term is used as a collection name for algorithms that can learn and adapt according 

to patterns in data. However, ML techniques can be combined with imitation learning to achieve more 

accurate results.  

In robotics and automation, imitation learning can eliminate burdensome and cumbersome code writing 

for every task the robot manipulator must perform. The overall advantages of imitation learning 

mechanisms when comparing it to other techniques are [26]:  

Enhancing the system's adaptability and flexibility - If a robot can mimic and learn helpful 

behaviors, like a simple manipulation movement towards the workpiece, it can then replicate it and take 

advantage of that information to use it in new use cases. This makes the production system far more 

adaptable and flexible whenever a change in the process is needed.  

Improving communication efficiency - Imitation can pose an efficient way for machines and robots 

to communicate as a large amount of information is sent and stored during each action.  

Improving Learning Efficiency - Learning efficiency is one advantage that stands out. As one 

individual acquires a new behavior, it can be spread quickly among the population, increasing the flexibility 

of the entire system.  

Compatible with other learning mechanisms - Imitation learning can be combined with other ML 

and artificial intelligence (AI) techniques to increase the learning capacity of individuals. 

Benefiting from these advantages, imitation learning poses a far more intuitive and user-friendly 

mechanism for robots to develop new skills and adapt to new environments. The imitation learning 

process of robot manipulators can be generally divided into three main parts: demonstration, 

representation, and imitation learning algorithm [26]. There must also be present two principal agents: 
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the teacher, who holds the cognitive capacity and appropriate knowledge to execute the task, and the 

robot, which represents the learning individual. Figure 9 shows the imitation learning framework for robot 

manipulation proposed by [26]. 

 

Figure 9 - Breakdown of the Imitation Learning process (adapted from [26]) 

2.4.1 Demonstration 

Imitation learning works by extracting information from an agent called a teacher. As mentioned before, 

the teacher can create information for the learning agent to learn. An everyday example is a way humans 

learn by imitating the behavior of others; e.g., when someone wants to assemble a particular piece of 

furniture, they use the instructions manual as a source of information to learn how to assemble it. In this 

case, we can state that the learning agent is the person who wants to assemble the furniture, the 

demonstration is the instruction manual, and the teacher is the company that provides the instructions 

manual. This being said, a demonstration is presented as a pair of input and output (x,y), where x 

represents a vector of features describing the state at that instant and y is the action performed by the 

demonstrator [24]. The demonstrations can be seen as a dataset composed of examples of executing a 

task in which the learning agent will use the most important features to perform it. There are two ways of 

obtaining the information to create the demonstration data: 

▪ Direct demonstration is where the demonstration data is obtained directly from the robot, 

either by moving the joints to perform a specific movement or using a teach pendant to have the 

robot perform the desired movement. For example, [27] used teleoperation teaching to collect 



 

22 
 

 

training data for the deep learning algorithm with the final goal of teaching the robot the sweeping 

task.  

▪ Indirect demonstration is where the demonstration data is collected via sensors, cameras, 

and other data-capturing devices and generally captures the teaching agent motion information 

for robots to interpret and generate anthropomorphic operations [24]. For example, [28] used a 

capturing motion system to record a person's movements while assembling a bottom case and 

a mouse shell to obtain the training data for the robot to perform the assembly task.  

Some struggles are worth mentioning concerning the demonstration process. First, when capturing the 

demonstration via sensors, videos, or images, there is a high probability that the instruments used are 

sensitive to noise and errors, which compromise the accuracy of the demonstration and can then lead to 

misleading interpretations by the learner. Then, especially in the indirect demonstration process, there is 

often a correspondence problem between the teacher and the learner. The correspondence problem 

relates to the learner and teacher's unmatching capabilities, DOF, kinematics, skeleton, and others. This 

makes the training process a lot more complex once the features must be matched [24], [26].  

2.4.2 Representation 

When the demonstrations are created, many features define the information present in them. The sample 

may often contain information about the environment that may be redundant and irrelevant to learn a 

determined task. Thus, the representation process relates to extracting and modeling the most important 

and relevant features, such as manipulable objects or the object's area to be grabbed during 

manipulation. Also, in this stage, the correspondence problem between teacher and learner is handled 

to convert the raw demonstration data into valuable data for the robot to learn. However, in some cases, 

the data can be used directly for training if the information contained in it has the appropriate number of 

dimensions and suits the learning algorithm's needs [24].   

Whether the features are used directly from the source or engineered afterward, the main goal of this 

stage of the imitation learning process is to model the demonstration's information and use it as input for 

the learning algorithm to interpret it correctly. 
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2.4.3 Learning Algorithm 

The learning algorithm refers to the process that tries to represent how the learning agent will learn using 

the information collected and subsequently modeled. Several methods can be used: supervised learning, 

reinforcement learning, and deep learning are the most common ones [24], [27]. 

2.5 Path Planning Methods 

Path planning algorithms generate a geometric path on the task or joint space so that the robot's end 

effector moves from the desired starting point to the ending point. In general, it represents the geometric 

description of motion. However, sometimes it is required to add more detail to the robot's motion than 

simply setting a start and ending point. One way to solve this problem is to establish via-points that 

represent configurations the robot must transit during its motion and can be predefined to further adjust 

the end effector's movement [29].  

On the other hand, trajectory planning algorithms take the geometric path as input and generate a 

schedule to follow it, integrating features such as velocity, acceleration, and position of the joints on each 

point of the generated path.  

Trajectories can be planned in the joint space, where the time evolution of the joint values is specified for 

the end effector to reach certain positions and orientations in space. Conversely, trajectories can be 

planned in the cartesian space, where the end effector's position and orientation are specified in each 

trajectory point [15].  

Trajectory defined on Joint Space 

Advantages:  

▪ Inverse kinematics is computed only on via points, so the computational power required to have 

the robot follow a motion on joint space is relatively low.  

▪ Can consider constraints relative to the velocity and acceleration of joint angles. 

Disadvantages: 

▪ Inability to consider workspace restrictions and collision routes.  
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Trajectory defined on Cartesian Space 

Advantages:  

▪ Possibility to obtain a collision-free path considering objects and conditions of the workplace. 

▪ The robot’s motion is predictable. 

Disadvantages: 

▪ Higher computational power is required as the inverse kinematics of the robot must be calculated 

multiple times. 

Whichever method is used to generate the trajectory, there are always constraints related to the 

mechanism dynamics and the process requirements, such as the maximum angular displacement, the 

joint's maximum angular velocity (MAV) or even the need for a constant velocity value for the end effector 

(e.g., gluing operation). Furthermore, constraints related to the objects surrounding the workplace must 

also be considered to generate a collision-free trajectory. These are all essential aspects to consider when 

generating a trajectory [15]. 

Trajectory Requirements 

The basic requirements for trajectory planning are: 

▪ The trajectory of the manipulator should always be defined as the motion of the tool frame in relation 

to the workstation frame [15]. This means that even if the workstation moves, like a conveyer belt, 

the tool's trajectory will not be compromised. The fact that the relative position of the trajectory is 

defined according to the robot's or workstation frame provides the system with more flexibility and 

adaptability.  

▪ A trajectory should be smooth to avoid vibrations and mechanical stress on the robot's joints and the 

payload so that neither the workpiece nor the robot is compromised during manipulation operations.  

▪ A trajectory must respect the time and operational requirements of a task. In most production 

systems, there is a time limit for the robot to perform one task and move to the next, e.g., a robot 

manipulating workpieces on a conveyor belt.  

In this thesis, a trajectory defined in the cartesian space will be considered. The ability to see the trajectory 

of the cartesian space and predict the robot's movement is why this approach is the right one to pick.   
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Point-to-Point Motion 

Trajectory planning for point-to-point motion tracks the position with respect to time between two specified 

points. Velocity and acceleration in any trajectory point can be computed by differentiating the position 

with respect to time. Hence, velocity corresponds to the first derivative of the positioning concerning time, 

and acceleration to the second derivative of the position in relation to time. Consequently, to define a 

smooth path between two points, the velocity and acceleration should be continuous to avoid infinite 

accelerations.  

Bézier Curves 

Bézier Spline, also referred to as Bézier Curve, represents a parametric curve commonly used in computer 

graphics, trajectory generation, and other industrial fields due to its unique properties [30]. The Bézier 

Curve can be expressed, in mathematical terms, by equation 32: 

Where: 

▪ 𝑷(𝜏): represents the Bézier Curve. 

▪ 𝒑𝒊: indicates a vector that consists of the coordinates of the 𝑖𝑡ℎ control point. The Bézier curve 

can be defined in a two-dimensional space or in a three-dimensional space. So,  𝑝𝑖  ∈ ℝ2  for 

planar curves and 𝑝𝑖  ∈ ℝ3 for spatial curves [31]. The number of control points depends on 

the curve's order. The higher the order of the curve, the higher the number of control points it 

will have. So, a Bézier Curve is defined by a set of control points ranging from 𝑝0 to 𝑝𝑛 [32]. 

▪ 𝝉: denotes the normalized variable of motion time. 

▪ 𝑩𝒊,𝒏(𝝉): stands for the 𝑖𝑡ℎ Bernstein polynomials of degree n. 

The base function of the Bézier Curve can be expressed by the Bernstein polynomials of degree n over 

the interval [0,1]. The general formula of the Bernstein polynomials is given by equation 33. 

The Bernstein polynomials form a partition of unity, i.e., the sum of 𝐵𝑖,𝑛 is equal to 1 for any 𝜏 ∈ [0,1] 

[30]. More practically, the Bernstein polynomials can be seen as a weight assigned to each control point 

𝑃(𝜏) =  ∑𝐵𝑖,𝑛(𝜏)𝑝𝑖, 𝑡 ∈ [0,1]

𝑛

𝑖=0

 (32) 

𝐵𝑖,𝑛 = 𝐶𝑛
𝑖 𝜏𝑖(1 − 𝜏)𝑛−𝑖 = 

𝑛!

𝑖! (𝑛 − 𝑖!)
𝑡𝑖(1 − 𝜏)𝑛−𝑖,   𝜏 ∈ [0,1] (33) 
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and vary with the value of 𝜏. According to the weight of each control point, the spline's position and 

curvature change along its domain. 

Figure 10 shows the Bernstein polynomials of degree 4 with five control points. The evolution of the Bézier 

curve along its domain is defined by the weight given by each Bernstein polynomial to its respective 

control point. By analyzing Figure 10, it can also be concluded that for 𝜏 = 0 and 𝜏 = 1, the respective 

Bernstein polynomials are equal to 1. In this case, the spline's starting and ending points are equivalent 

to the position of the first control point and the last control point, respectively. As for the other Bernstein 

polynomials, they never get to one, meaning that the spline interpolates the starting and ending points 

and approximates the remaining control points.  

 

Figure 10 - Bernstein basis functions of degree 4 [30] 

Another important aspect of Bézier Curves is that they always lie within the convex hull defined by the 

control points. This property states that the entire curve, except for the starting and ending points, will be 

inside the region comprehended by the spline's control points. Figure 11 shows a Bézier Curve of degree 

4 with five control points and the area defined by them in a two-dimensional space.  

 

Figure 11 - A Bézier curve of degree 4 contained on the convex hull defined by its five control points [30] 
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In some cases, the Bézier Curve can intersect all control points. In this case, all the control points must 

be collinear. This will result in a spline with no curvature, i.e., a straight line.  

Cubic Bézier Spline 

Cubic Bézier Splines consist of cubic polynomials and are the most used since they provide higher 

flexibility compared to lower-order curves and are less expensive to evaluate and compute when compared 

to higher-order curves. This curve comprises four control points, 𝑝0, 𝑝1, 𝑝2, 𝑝3, that help shape the 

spline. The points  𝑝0 and 𝑝3represent the starting and ending points of the spline. The general formula 

of the cubic Bézier Spline is defined by equation 34: 

This curve was chosen to model the trajectory of the robot. The following section describes the main 

properties that made this curve the right choice for the job. 

Properties  

Some properties are worth mentioning about the Bézier Curve. These properties made this curve, mainly 

the cubic Bézier Curve, the one chosen to model the end effector's trajectory on the cartesian space. The 

main ones are [30], [31]: 

▪ The Curve always intersects 𝑝0 and 𝑝4, making the trajectory's first and end points easy to define. 

▪ The Bézier Curve can be divided into different segments using the Casteljau algorithm. The 

Casteljau algorithm represents a recursive process to divide the Bézier Curve  𝑃[𝜏0,𝜏2] into two 

segments, 𝑃[𝜏0,𝜏1] and 𝑃[𝜏1,𝜏2]. As it is a recursive algorithm, the spline can be repeatedly 

subdivided into different segments, enhancing its flexibility in terms of trajectory definition and 

planning. Furthermore, the curvature of each segment can be controlled and adjusted. This 

property is important for the definition of waypoints and different trajectory curvatures during 

trajectory planning. 

▪ A Bézier Curve can be easily transformed into a line by positioning the control points collinearly. 

If the robot needs to follow a straight line, changing the spline's curvature is easy and intuitive. 

▪ A Bézier Curve is infinitely derivable (C-infinity continuity). It has no discontinuities, meaning that 

the trajectory does not require infinite accelerations, and the end effector can move at a constant 

speed throughout all trajectory points. 

𝑃(𝜏) = (1 − 𝜏3)𝑝0 + 3(1 − 𝜏2)𝜏𝑝1 + (1 − 𝜏)𝜏2𝑝2 + 𝜏3𝑝3, 𝜏 ∈ [0,1] (34) 
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2.6 Mixed Reality  

2.6.1 Definition 

It is important to introduce the reality-virtuality continuum notion to understand the MR concept. The 

reality-virtuality continuum, characterized in Figure 12, represents the interval between the world as it is 

in reality, and a world entirely modeled by computer-based techniques.  

 

Figure 12 - Mixed Reality Continuum [33] 

Different definitions and approaches on what MR is and what it encompasses. For example, some authors 

consider the far end of the spectrum, Virtual Reality (VR), as part of MR, while others do not [34]. 

Furthermore, MR can also be seen as a synonym of Augmented Reality (AR) or a "strong AR," which 

understands MR as a more efficient and effective method than AR. Despite these different interpretations 

found in the literature, the definition that best suits this thesis is the one proposed by [33]. Harashima 

argues that MR encompasses everything ranging from AR, where computer-generated objects are overlaid 

on the real world augmenting it, and Augmented Virtuality, where reality features are implemented to 

augment completely graphic display environments. MR can be understood as the blend of the physical 

and virtual worlds in a way that real and virtual objects are combined to enhance the user's perception of 

the world. The main goal of MR is to create an environment where both worlds merge into one giving the 

user the ability to interact in real time with digital and physical objects to create different scenarios. Due 

to the advancements in the areas of information technologies and computer science, the number of 

applications of this technology promises to increase in areas ranging from Engineering, Architecture, or 

even Medicine, promising to improve the user's perception of the environment [5].  

2.6.2 Mixed Reality Output Devices 

There are several ways in which a user can experience an MR application. The devices used vary 

according to the application’s specifications and goals and can be broken down into two major categories 

[35]: 
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▪ Head Mounted Displays (HMD). 

▪ Handheld Displays (HHD). 

It is important to acknowledge that other output devices can be used to experience MR, but the ones 

listed above are the most used to interact with an MR environment. 

HMD: HMDs are among the most successful devices for MR applications. After the analysis carried out 

by [35], it becomes clear that this is the device of choice for many developers and researchers. The HMD 

consists of one or two visual display units together with an optical compensation system that prevents 

the virtual objects from being located at the wrong perspective of the user even though the display is very 

close to the user’s eyes. HMDs can often be used in VR, but they only let the user perceive what is being 

shown on display placed inside of it, and a merge between both real and virtual worlds does not occur. 

On MR devices, the real world can be captured by a camera (video-see through HMD) or simply be 

perceived by the user via a semi-transparent mirror for an optical combination of both worlds (optical see-

through HMD) [36]. In the first, the virtual world is captured via a camera. The video image is then 

superimposed with the virtual content in the proper perspective and displayed on the device. 

On the other hand, in the optical see-through HMD, the user perceives the real world in real-time through 

the transparent lens. These devices must have a separate display for each eye or use a stereoscopic 

display to adjust the perspective of each eye. An essential aspect of the use of HMDs is that they require 

tracking of the user’s head position and orientation such that the correct render of the virtual images can 

be performed.  

HHD: HHDs are used for MR by using the metaphor of a magic lens because of the ability to enrich reality 

with virtual elements [36]. The image of the real world is captured via cameras (video see-through) and 

then merged with the virtual image. The position and orientation of the HHD must also be tracked to 

generate virtual images correctly. HHDs are becoming more popular since they are easy to implement 

and are less expensive than HMDs. One example of this is the number of MR applications available for 

smartphones. The hardware already available on the market sets a very promising scenario to escalate 

the deployment of this kind of applications. 

Microsoft HoloLens  

HoloLens is an HMD developed and manufactured by Microsoft as a solution for MR Applications. It is 

composed of a pair of transparent glasses that allow projecting an image from the user’s point of view 

superimposing it on the real-world environment. The user perceives the real-world environment via the 
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glasses, which makes this device part of the optical see-through HMD category. Two generations of the 

HMD were launched, namely HoloLens1 and HoloLens 2. The hardware chosen for the MR application 

is the HoloLens 2, illustrated in Figure 13.  

 

Figure 13 - HoloLens 2 [37] 

HoloLens 2 runs the Windows Holographic OS, which is built based on the Windows 10 operating system. 

It represents a more ergonomic device than the first generation due to its lighter and better-distributed 

weight. Furthermore, it provides the users with an increased field of view, increasing from 30 x 17,5 to 

43 x 29 and maintaining the same image resolution of about 47 pixels per degree of sight [38]. 

The main features of the HoloLens 2 are divided into Hand tracking, Eye tracking, Voice commands, and 

Spatial Mapping [37]. First, to detect the user’s actions and gestures, the HoloLens comes with a hand-

tracking system. This system enables the user to interact with holograms in real-time and change their 

position and orientation using the gestures and actions supported by HoloLens. Then, eye-tracking, 

introduced by HoloLens 2, allows developers to enhance the user experience by collecting information 

concerning the direction the user is looking at. For this feature to work correctly, the user must perform 

a calibration before being able to profit from it. 

Moreover, it also offers users the ability to use voice commands to operate and navigate the HoloLens 

applications when the user cannot use his hands to interact with them. Finally, accurate spatial mapping 

is performed by HoloLens 2. This feature is one of the most important due to its impact on the MR 

experience. The prominent role of this feature is to provide a clear representation of the real world to 

diminish the gap between the real and virtual worlds. Thus, this feature helps to identify surfaces where 

holograms can be placed and anchored in real-world surfaces providing developers with valuable 

information about the real world [39]. 



 

31 
 

 

2.7 Software Used 

2.7.1 Blender 

Blender is a free and open-source 3D software that offers a broad range of essential tools for 3D creation 

– modeling, rigging, animation, simulation, rendering, compositing, and motion tracking [40]. 

In this thesis, the purpose of using the Blender software is to adapt the imported 3D model to the needed 

conditions. This includes setting the rotational axes of the joints and defining the correct coordinate 

system for each object. This will allow importing the model into Unity in a ready-to-use stage. 

2.7.2 Unity 

Unity is a cross-platform game engine that is mainly used to develop video games. It is free for non-

commercial use and is widely used by game developers due to its intuitive interface and ability to target 

different game platforms. Also, Unity allows users to develop projects in a three-dimensional or two-

dimensional environment. On top of the development platform, Unity has a large community and offers 

an Asset Store where developers share and sell their import-ready models, animations, scripts, and 

others, making this an even more attractive platform for users to explore. Furthermore, many new features 

and platforms have been integrated to increasingly facilitate the development of AR and VR games and 

simulations, making this program the best choice for developing the application. Unity also has native 

support for the .blend format, which enables to direct import of files from Blender to Unity [41]. 

Finally, Unity uses C# as the default programming language. C# is a high-level object-orientated 

programming language with different application possibilities, such as mobile apps, cloud-based services, 

and websites. In Unity, it controls the different attributes of the game objects by attaching the script to 

the object the user wants to control. 

In this thesis, the three-dimensional environment is to be used. The 3D view and object manipulation are 

similar to Blender, and the space is defined by the Euclidean coordinate system on both. However, Unity 

uses a left-handed coordinate system with the y-axis pointing up, and Blender uses a right-handed 

coordinate system with the z-axis pointing up. 
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2.7.3 Mixed Reality Toolkit 

The Mixed Reality Toolkit (MRTK) is a Microsoft-driven project aiming to provide users with tools and 

features to accelerate the cross-platform development of MR applications in Unity. The main goal of this 

open-source project is to provide developers with the building blocks to create MR applications. It provides 

compatibility with different HMDs, such as the Microsoft HoloLens 1 and 2, and even Android and IOS 

devices [42].  

The MRTK provides a wide range of features to facilitate the development of new MR applications. The 

most important features offered by the MRTK are: 

a. Building blocks for Spatial interactions 

b. Building blocks for UI 

c. Holographic Remoting 

The MRTK provides a comprehensive framework for MR applications on different levels. First, the building 

blocks for spatial interactions represent scripts or components that can be added to 3D objects. By having 

these pre-conceived components, the objects will gain important properties for user interactions. 

As for UI, some building blocks are also available on the MRTK. These represent pre-developed buttons, 

menus, and other components that can be edited according to the developer's needs.  

Finally, holographic remoting enables developers to rapidly prototype and test the application. Holographic 

remoting streams the application's content directly from the computer to the HoloLens. This significantly 

increases developers' productivity, as deploying the applications to the HMD is unnecessary.  

2.7.4 Bezier Solution 

Bezier Solution is a free-of-charge package available on Unity's Asset Store. It helps to create Bézier 

Splines visually in the editor mode and by scripting when running an application.  

The package has two main components: the Bezier Spline and the Bezier Point. The Bezier Spline 

component manages the whole curve and provides a UI for the editor mode, where various features can 

be edited. The Bezier Point component represents the points of the spline and carries the information 

about the curve's points. On the scene view, the points can be translated, rotated, scaled, deleted, etc. 

Each point has two control points that can be translated, as seen in Figure 14 [43]. 
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A spline is initialized when a Game Object with the Bezier Spline component and two child objects with 

the Bezier Point Component is created. This can also be done automatically by clicking Game Object - 

Bezier Spline on the editor's menu. 

 

Figure 14 - End Point Handles (control points) [43] 

Some utility functions are also included, like finding specific points on the spline or traveling the spline at 

a constant speed. These functions provide a fully integrated and developed trajectory modeling system 

according to the developer’s needs.  

The flexibility offered by this extension asset is very important for this thesis. It helps to reduce application 

development time by eliminating the need to program the Bézier Spline using its mathematical formula. 
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3 Concept & Design 

3.1 Application Goals 

This chapter presents the concept and design development of the MR application. The application's 

primary purpose is to give manufacturers the possibility to assess new robotic use cases before 

implementing them in their production system. The application is thought to present a trustworthy 

representation of the robotic arm performing a task in the environment. It should be used as a source of 

data that supports decision-making early in the implementation process.  

So, before starting to develop the application, some main goals were defined: 

1. Development and implementation of the forward and inverse kinematics of the robots. 

2. Environment Mapping. 

3. Trajectory generation and manipulation. 

4. Assessment of the robot’s performance. 

The development of the analytic inverse and forward kinematics represents the foundation of the 

application. For the robot to properly and realistically follow the trajectory generated on the cartesian 

space, the inverse kinematics should be computed multiple times on each point transited by the robot.  

Then, the environment mapping also poses a key goal for the application's success. The spatial awareness 

system provided by the MRTK will deliver a detailed representation of real-world surfaces so that the user 

can see the robot interacting with real-world objects. From the user's point of view, this poses a significant 

advantage because of the possibility of having an accurate representation of the way the robot will perform 

and interact with the production system (e.g., visualize collisions). 

As mentioned in section 2.5, the application will use trajectories defined in the cartesian space. The goal 

of the application is to have a new and intuitive way to create trajectories and let the user configure them 

in the way he desires. This includes creating different segments, editing the speeds of different segments, 

and even adjusting each segment's configuration and repetitions.  

Finally, after the robot performs the movements set by the user, some simulation results should be shown. 

These results will enable the user to assess the robot's performance on different levels and make 

decisions according to the level of efficiency presented by the robot.  
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Application Scope  

The scope of the application was defined considering some limitations, mainly related to the inaccuracy 

of the HMD, especially HoloLens 2. Research shows that the accuracy of any MR application, SDK, or 

even equipment is hard to pin down on an exact dataset. The number of factors that directly affect the 

accuracy performance of a system is so large that a correct evaluation is arduous to perform. 

For the to-be-developed MR application, the primary source of inaccuracy lies in spatial mapping and 

hologram anchoring. The inaccuracy of the HoloLens is influenced by multiple factors such as lightning 

conditions, the distance of the targets, camera and sensor calibration, sudden moves performed by the 

user, and others.  

The HoloLens has been used in industry to program robots and fulfill other higher-accuracy purposes. 

However, it is more suitable and performs better on lower-accuracy applications [44]. For high accuracy 

purposes, AI and ML approaches are often used to model and correct the data obtained by the HoloLens 

depth sensors. Nevertheless, this viewpoint is not covered in the present work. 

According to this review, the scope of the application is reduced only to tasks where the level of accuracy 

needed is relatively low. Some examples of tasks that can be tested using the application are gluing, 

painting, and scanning.  

3.2 Requirements 

This section concerns the formulation of the design requirements. The requirements of the application 

are divided into functional and non-functional requirements. The functional requirements focus more on 

the functions, i.e., a process that the application should be able to perform. In contrast, the non-functional 

requirements focus more on nonbehavioral aspects of the system, including portability, scalability, 

reliability, efficiency, and others [45]. 

The functional requirements were divided into primary and secondary according to their degree of 

specificity. The primary functional requirements derive from the main goals of the application, which were 

set after reviewing the state-of-the-art reports about the struggles encountered by manufacturers in the 

early implementation phase of new collaborative robot use cases. Then, the secondary requirements were 

based on the deconstruction of the former, representing more detailed features that the application must 

have to lead to a feasible solution. 
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These requirements will be crucial in developing the main features that present a solution to the problem 

of the lack of knowledge and resources to implement new robotic use cases successfully. 

3.2.1 Primary Requirements 

The primary requirements are essential since they represent the main features that must be developed 

to ensure the application's success.  

First, the user must be able to choose different robots to perform the tasks to have an overview of the 

overall performance of at least two different robots with different specifications. Then, the application 

should be flexible to the point where the user can place the robot on various surfaces with different 

formats and slopes. Furthermore, the user must be able to choose from different positions on the surface 

to test the one that brings the most benefits to the new robotic use case.  

A feature to adjust the initial configuration of the robot must also be available. It will allow the user to 

choose the robot's initial pose when it starts performing the task. The robot's initial configuration will 

provide the desired starting position and orientation for the end effector to follow the trajectory.  

One of the goals of the application is trajectory generation and manipulation. Therefore, a must-have 

requirement is the trajectory's definition, configuration, and visualization in the cartesian space. For the 

application to be intuitive, the user must visualize the trajectory to model it in the desired way. This will 

provide a way of predicting the end effector's motion and configuring it considering workplace constraints. 

Furthermore, the user can consider some task requirements and restrictions by configuring a range of 

properties that affect the robot's motion. 

Finally, the application should be able to show the simulation by animating the robot's movement 

according to the user's input. In the end, important KPIs regarding the robot's performance must be 

calculated and delivered to the user for later comparison of scenarios.  

Table 4 summarizes the primary requirements. 
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Table 4 - Primary Functional Requirements 

Number  Primary functional Requirements 

A1 The user can test different robots.  
A2 The user can place the robot on real-life surfaces. 
A3 The user can choose different starting configurations. 
A4 The user can define a trajectory for the end effector to follow. 
A5 The user can visualize the trajectory of the robot in space. 
A6 The user can see the robot executing the trajectory in real-time. 

A7 
The user has access to different results regarding the feasibility of the motion and 
performance of the robot after executing the task. 

3.2.2 Secondary Requirements 

To develop the application, the primary requirements represent a reductive framework. Thus, the 

secondary requirements provide a deep dive to get more in detail. The reasoning used to define these 

requirements was to ask how the primary requirements should be achieved and what features will help 

to reach them. Therefore, the secondary functional requirements are more connected to the user 

experience and the application's range of features. 

First, by analyzing requirement A1, established in Table 4, it becomes clear that the user should have a 

range of testing robots to choose from. However, before picking them, some information should be shown 

to support the user's decision to select the respective robot. This can be provided by a menu showing a 

photo of the robot together with its primary specifications. Furthermore, as the user cannot see the robot's 

actual dimensions, a feature that allows the user to preview the robot's real dimensions should be 

developed.  

Then, in requirement A2, it is essential to define how the user will be able to place the robot, i.e., in what 

way. First, an approach using markers was studied. This approach consisted of having a marker to target 

the robot's position in the environment, providing accurate tracking and detection of the spawning 

position. However, this approach had several disadvantages in terms of user experience and portability. 

So, a marker-free process was considered.  

The marker-free method should work by pointing and clicking on the location of the surface where the 

user wants to position the robot using the HoloLens pointer input model. After placing the robot, the user 

should also be given the option to orient the robot according to the position he wants it to be facing. 

Requirement A3 was defined by the need to have different possible desired configurations to start a task. 

As this functionality can be given to the user in various ways, it was necessary to specify what features 
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are to be implemented to configure the robot's initial configuration. So, two possible features were defined. 

On the first one, the user can input a specific angle value for each joint, which is advantageous when it 

already has the robot's starting configuration in mind. The second approach consists of grabbing the end 

effector and manipulating it until it reaches the position and orientation desired by the user.  

The deconstruction of requirements A4 and A5 was done parallelly as they both cover the same goal: 

trajectory generation and configuration. For this requirement, defining the options given to the user when 

setting up the trajectory was necessary. Therefore, some features were introduced to provide a wide range 

of options. First, the user should be able to add and delete segments. Then, he should also be able to 

control the curvature of each segment intuitively either to avoid obstacles or to meet the task 

requirements, e.g., get around a workpiece when painting it.   

Concerning the configuration of motion parameters, which represent the motion conditions the robot is 

under while transiting different segments, it was defined that the speed, configuration, number of 

repetitions, and state of the tool on individual or multiple segments can be edited by the user. For the 

user to perform different actions, the points should be selectable.     

As for requirements A6 and A7, they are self-explanatory and do not need further deconstruction.  

Table 5 summarizes the secondary functional requirements, which will be considered throughout the 

project. 

Table 5 - Secondary Functional Requirements 

Number  Secondary Functional Requirements 

A1.1 The user can preview the robot before choosing it. 
A1.2 The user can see the robot’s specifications. 
A2.1 The user can point at the location he wants to spawn the robot (marker-free solution). 
A2.2 The robot sits on the surface according to its slope and format. 
A2.3 The user can adjust the direction the robot is facing after spawning it. 
A3.1 The user can adjust the position and orientation of the end effector by imitation. 
A3.2 The user can input the values of the angles manually. 

A3.3 The user can add and delete different waypoints. 
A4.1 The user can select waypoints. 
A4.2 The user can move waypoints. 
A4.3 The user can define the curvature of the trajectory’s segments. 
A4.4 The user can set the speed of each segment of the trajectory. 
A4.5 The user can change the configuration of the robot in different segments. 
A4.6 The user can define how many times the robot should loop a segment. 
A4.7 The user can set the state of the tool (On/Off) on each segment. 



 

39 
 

 

3.2.3 Non-Functional Requirements 

The non-functional requirements are fundamental as they can make or break the success of a software 

system. Even if all functional requirements work correctly, if the application fails to deliver the required 

quality outcomes, it will fail to please the user. So, the non-functional requirements cover areas related 

to the quality properties intrinsic to the software to meet users' expectations.  

The non-functional requirements were divided into five main sub-areas, each covering different system 

properties. It is important to note that there are different sub-areas for non-functional requirements, the 

next five ones considered the most important for the current context: 

▪ Consistency, which describes the application's ability to deliver the same outputs in the same 

conditions. 

▪ Performance, which measures how effectively the system operates by using minimal resource 

consumption. 

▪ Portability, which measures the ease that an application can be transferred from one operating 

environment to another. 

▪ Reliability, that measures the ability of a solution to perform without failure. 

▪ Usability, which is integrally linked to the user experience and how quickly he learns to use the 

new application. 

The main non-functional requirements are divided into these five categories and are listed in Table 6. 

Table 6 - Non-Functional Requirements 

Number  Non-functional requirements 
A Consistency 

NF1 
If a robot performs the same trajectory with the same motion parameters more than 
once, the results should not have a variance higher than 5%. 

B  Performance 

NF2 The application should start up within 15 seconds after initiation. 

NF3 The application should not have a low frame rate. 
C Portability 

NF4 The MR application can be deployed in HoloLens 2 and 1. 
D  Reliability 

NF6 The application can run a simulation ten times without malfunctioning. 
E  Usability  

NF7 The graphical user interface (GUI) should be intuitive. 
NF8 The GUI should always be within the user's field of view, facing him. 
NF9 The user can return to the main menu after the simulation. 
NF10 The user can edit the trajectory after performing the simulation. 
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3.3 Process Planning  

In this section, the application flow is defined. The definition of the process flow is fundamental because 

it represents the different stages the user will go through from the start to the end of the application. 

Furthermore, it will help to define the application's data flow and the user inputs needed to advance from 

each stage of the application to the other. The application is divided into six primary operational levels 

represented by Figure 15: 

 

Figure 15 – The application's core processes 

Robot Selection 

When starting the application, the first action that the user must take is to choose between the robots 

available to test. There are two robots that the user can choose from, both manufactured by Universal 

Robots. The robots selected were the UR3 and the UR10. The reason why these robots were chosen was 

because of the difference between their specifications.   

▪ UR3 and UR10 

The UR3 and the UR10 are two six DOF robotic arms manufactured by Universal Robots. According to 

their technical specifications, the UR3 weighs 11 kg, reaches 0.5m, and can lift up to 3Kg payloads. On 

the other hand, the UR10 weighs 28.9kg, reaches 1.3m, and can lift up to 10kg payloads. As can be 

seen, despite having the same configuration, these robots can be used for different use cases. According 

to the user's needs, it can choose the one that adapts best to its needs, considering operational and 

economic constraints. An essential point of interest of both robots is the end effector, which dictates the 

position and orientation of the tool that is used to perform a task.  

 

Figure 16 - The robotic arm's point of interest [46] 
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For the application, this poses a crucial point once the user should be able to manipulate the position 

and orientation of the end effector freely. By tracking the end effector's position and orientation, the 

inverse kinematics can be computed correctly to determine the set of joint angles to reach it. This process 

will be essential to configure the robot's starting configuration and execute the trajectory.  

Robot Placement 

In the application, the robot's placement in the environment is done by accessing the spatial awareness 

system available in the MRTK. The spatial awareness system creates a collection of meshes that represent 

the geometry of the environment. This system intends to enhance the user experience by better merging 

the real and virtual worlds and having a better interaction between them.  

From the user's point of view, the placement of the robot should be done in the most intuitive way possible. 

HoloLens 2 supports several types of user input models. Point and commit with hands represent an input 

model that enables users to select and manipulate objects outside of the user's reach. This provides a 

more efficient and effective way to interact with the world. This input model employs hand rays that shoot 

out from the user's palm with a donut-shaped cursor that intersects the targeted object, as illustrated in 

Figure 17.   

 

Figure 17 - Point and commit gesture [47] 

For the robot placement process, the user should only have to point with his index finger to a location on 

the surface where he wants the robot to be placed. Then, using the air-tap gesture, represented in Figure 

17, the robot should spawn in the position where the cursor hits the surface. Here, the user must also 

have the possibility to spawn the robot on multiple surfaces and points of the surfaces until it finds the 

best positioning solution.  

The robot must be in an orientation that matches the slope of the surface so that it is perfectly placed on 

it. Furthermore, after having the robot placed, the user should also be able to adjust the direction faced 

by the robot. 
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Selection of the Initial Configuration of the Robot 

At this stage, the user has chosen the robot he wants to use for testing, and it is already placed. The next 

step is to select the starting configuration of the robot by setting the position and orientation of the robot's 

tool. It was defined that this process can be done in two ways: 

▪ Set initial configuration by imitation 

This work proposes an intuitive method for positioning the end effector. This method works by having a 

manipulable target that dictates the end effector's position and orientation. This user can manipulate this 

target to update the end effector's position and orientation according to the user's actions. Moving the 

cube, the end effector should follow it to match the desired position. Rotating the cube, the end effector 

should update its rotation accordingly to match user expectations. 

This process is particularly interesting in use cases where the user wants to examine different 

configuration possibilities to find the most feasible one. As this method is very intuitive, not much 

knowledge is needed, and different configuration possibilities can be nimbly tested.  

▪ Set initial configuration manually 

The other method consists of manually introducing the values of the joint angles with the help of sliders 

or input fields. The field where the values are introduced must be a hybrid of an input field and an 

information provider. This is because the sliders and the input field must work together to give the user 

two possibilities. One is to introduce the precise angle values of each joint directly. The other is to adjust 

the angles using a slider, having access to the current value of the joints.  

This method enables the user to have a precise and effective way of introducing the exact starting angles 

of the joints to start the task. This is very important to meet user expectations and enhance the 

application's flexibility by delivering features for all kinds of situations.  

Trajectory Generation and Configuration 

This part of the application comes after having the configuration of the robot already defined. The first 

trajectory point must be clamped to the end effector's position to have a trajectory ready for the user to 

edit. Furthermore, as a trajectory only exists with a starting and ending point, another point must be 

created to generate the initial path. So, when the user goes from the previous step to the current phase, 

a trajectory consisting of one segment and two points should be generated. 

Regarding the trajectory configuration process, it can be sub-divided into two different processes: 
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▪ Configuration of the trajectory's format. 

▪ Configuration of the trajectory's motion parameters. 

As the trajectory is expressed in the cartesian space, a line between the points must be rendered to obtain 

the trajectory's 3D representation. To properly configure the trajectory format, the user must be able to 

add different points to create new segments. In the same way, it should also be able to delete points 

which in turn will delete segments. Furthermore, the user must be able to change the position of the 

waypoints and the curvature of the segment. The only point that can never be manipulated is the starting 

point since the robot should start the motion in the initial position set previously by the user. All these 

features are related to the trajectory's format. 

The configuration of the trajectory's motion parameters concerns another aspect. In this part, the user 

must define the motion constraints on which the robot will perform the trajectory on each segment. As 

defined in the requirements, the user must be able to change the end effector's speed, the number of 

repetitions, the robot's configuration, and the end effector's on-and-off state on single and multiple 

segments. Thus, the user will input the data used to run the simulation afterward. 

Trajectory Execution 

Trajectory execution represents the fifth stage of the application. At this stage, with the trajectory and 

motion constraints defined, the user should be able to see an animation of the robot performing the 

desired path. The data provided by the user will be the foundation for this stage. Therefore, suitable data 

structures must be chosen to save and use the information in this part of the process.  

One of the assumptions made in this part of the project is that the robot's motion starts on the first 

trajectory point and ends on the last trajectory point. So, the execution of the path cannot end before 

reaching the final point defined by the user. 

Results 

After visualizing the robot executing the trajectory, the user must be aware of some important KPIs that 

give an overview of the robot's performance. The results should cover two different areas:  

▪ Performance Evaluation 

This result section evaluates the robot's efficiency when performing the task. By analyzing Table 3, which 

provides an overview of the problems faced in the early stages of the implementation process of the 
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robots, some essential results were defined. They give some key measurements for later benchmarking 

and comparison of scenarios. Hence, the four measurements related to performance assessment are: 

a. Travel time  

Travel time (TT) relates to the time required to finish the task. This time value should be measured from 

when the robot starts the motion until it reaches the ending point of the trajectory.  

b. Trajectory length 

The trajectory length (TL) measures the distance traveled by the end effector from the trajectory's initial 

point to its final point. It is important to consider that this measure is not always equivalent to the actual 

trajectory's length. In some situations, depending on the user's inputs, the robot can repeat segments or 

even the whole course. This leads to an increase in the distance the end effector needs to travel. 

c. Average Velocity of the end effector 

The average velocity of the end effector (AVEE) provides the user with a way of knowing how fast the 

overall motion was. This speed should relate to the end effector's speed at each trajectory point.  

d. Active end effector time 

The active end effector time (AEET) relates to the end effector's time on an on-state during trajectory 

execution. It is advantageous to know how much time the end effector was activated. In the case of gluing 

or painting operations, where resources are being consumed, an estimation of the amount of material 

used can be done. For this, the rate of consumption of the tool must be known.   

▪ Feasibility of the path 

The results related to the feasibility of the path provide the user with information related to the validity of 

the trajectory performed. For this purpose, the specifications of the robot must be considered. In the case 

of the UR10 and UR3, all joints have a range of +/-360 degrees. However, the velocity of each of the 

joints varies and is restricted by an upper limit. These limits are set by the manufacturer and must be 

respected to avoid damaging the robotic arm. So, at each trajectory point, each joint's angular velocity 

must be calculated to ensure that the MAV value set to the joint is not exceeded and, therefore, the 

integrity of the robot is guaranteed.  

On the other hand, looking for collisions is crucial when studying the path's feasibility. Crashes in the 

workplace can occur in two ways: self-collision and environmental collisions. Self-collisions happen when 
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the robot, to reach a particular position and orientation, collides with its rigid body damaging the robot 

and potentially the workpiece. Environmental collisions occur more often and happen every time the robot 

hits an object in its surroundings. These objects include the surface where the robot is on, objects that 

are part of the workspace, and the workpiece. Therefore, collision detection results (CDR) must be shown. 

3.3.1 User Experience 

In the application's development phase, the user experience is one important aspect to consider. For the 

user to have a good experience, the application should offer a wide range of features and respect the non-

functional requirements listed in sub-chapter 3.2.3. The user experience relates not only to the 

intuitiveness of the GUI but also to the navigation options given to him. Therefore, two navigation options 

were defined as described in Figure 18: 

 

Figure 18 - User navigation options on the application's core processes 

As the diagram describes, when the user gets the performance results of the robot, two different options 

must be given. One is to get back to the selection menu, where he can choose another robot to test, and 

the other is to get back to the trajectory generation and configuration process.  

If the user chooses to go back to the initial menu, then the process of placing the robot, configuring the 

robot, and modeling the trajectory must be repeated.  

On the other hand, the user can go back to perform changes to the trajectory or repeat the same 

trajectory. Here, the inputs given before by the user concerning the trajectory's modeling and motion 

parameters should be the same. This way, the user can test the same task under the same motion and 

modeling constraints. Depending on its needs, the user can also make minor or significant changes to 

the trajectory and input different values to test new use cases. 
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3.3.2 Process and Data Flow 

With all the processes and navigation options properly defined, an overview of the application's process 

flow can be developed. So, the flow chart in Figure 19 describing the application's processes, and data 

flow was created. This provides a guideline for application development, where the different processes 

and options provided to the user are considered.  

 

Figure 19 - The application's data flow 
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3.4 Project Workflow 

The work in this project is divided into two main parts: application development and testing and results. 

In the application development phase, the environment setting was first presented. This includes the 

installation of external packages, importing the robot's 3D models, selecting the inverse kinematics 

method to be used, and creating a visual collision detection system. Then, a detailed description of the 

development of the application's functionalities is explained, as well as the GUI. Each application's process 

is covered, and the data flow of the most critical and complex features is presented.  

After developing the application, a practical use case is presented to assess different aspects of the 

application. First, the non-functional requirements are analyzed to evaluate whether they were met. Then, 

a qualitative assessment is presented to give an overview of how the application can help manufacturers 

in the early stage of the deployment of new robotic use cases. Figure 20 provides an overview of the 

project workflow.  

 

Figure 20 - The project's workflow 
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4 Application Development 

This chapter concerns the development of the application in all its different functional areas. This comes 

after the definition of the concept and requirements of the application. First, an overview of the 

environment set-up for the application is given. This includes getting the 3D models of the robots, 

modeling them to have them ready to use for the application, and installing the external packages needed 

to develop the application. Then, the development process of each feature of the application is properly 

described and explained.  

The application was developed in Unity. Unity uses C# as its native programming language, which was 

used throughout the application's development. 

4.1 Setting up the application environment  

Installation of external packages 

Some external packages were installed into Unity so that some crucial features that support the 

development of the application were made available. The packages installed help in two main areas of 

the application: 

▪ Trajectory Generation and Manipulation. 

▪ MR features. 

The Bezier Solution was obtained on Unity's asset store and later installed via the package manager, 

which oversees installing, removing, and updating the packages of a Unity project. This package's two 

most important components are the Bezier Spline and the Bezier Point. The Bezier Spline component 

represents the spline, while the Bezier Point component represents a point on the spline. They both have 

different properties and methods that help to define and edit the spline.  

In turn, the MRTK was downloaded on GitHub. To install the package, the installation guide available on 

the MRTK documentation was followed [48]. The MRTK is a crucial package to develop the application 

since it provides the building blocks and features needed to create a MR system.  

3D Models  

The first step taken to create the simulation environment is to import and configure the 3D models of the 

robots so that they can be used in the required way. For this project, the UR10 and the UR3 were imported 

from previous open-source projects available online [49], [50]. However, they had to be modeled to 
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answer the application's necessities. This modeling is done on Blender, where each joint's local coordinate 

systems and pivot points can be defined. The pivot point represents the location for rotating and scaling 

an object. Therefore, the pivot points' location of the joints must be correctly defined for the correct motion 

of the robot. Furthermore, the rotations of each joint were defined to match the robot's zero-angle position, 

according to the Universal Robots' official website. Figure 21 shows the end result of the robot's modeling 

process in Blender. 

 

Figure 21 - UR3 modeled in Blender 

With the pivot points, local axis, and angles defined, the models are ready to be imported to Unity. In 

Unity, the robot's models can be positioned in the 3D environment, and the material of each part can be 

added. The materials are mainly used to give the right texture and color to the mesh. For the application, 

the textures of the robot and other physical properties are discarded. Hence, materials are essentially 

used to give different colors to the robot for better visualization and recognition of parts. Figure 22 shows 

the robot's 3D model in Unity's 3D environment with the respective materials assigned to the robot's 

parts.  

 

Figure 22 - The UR3 after importing to Unity 

Figure 23 resumes the modeling process of the robot’s models using Blender and Unity software. 
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Figure 23 - Process of modeling and importing the Objects to Unity 

4.1.1 Selection and Development of the Inverse Kinematics 

The inverse kinematics of the robots was developed before integrating the MR features into the 

application. As this is the foundation of the application, it had to be appropriately studied, developed, and 

implemented. 

Selection of the inverse kinematics approach  

In section 2.2, two different approaches for calculating the inverse kinematics were studied. The first 

approach uses numerical optimization to update the joint angles and reach the desired position in space 

according to the distance between the end effector and the target point.  On the other hand, the robot's 

inverse kinematics can be obtained directly from its geometry. This approach is frequently used in robotics 

to obtain a straightforward analytical solution for the robot's inverse kinematics.  

Before choosing the method that best suits the application's needs, some advantages and disadvantages 

of each method were listed in Table 7 and Table 8. 

Table 7 - Advantages/Disadvantages of Gradient Descent 

Advantages Disadvantages 

General approach that can be implemented 
in different robots. 

Inability to control the orientation of the end effector. 

Simple and easy to implement. It only provides one solution for the joint angle values. 

 - The algorithm can fail to converge. 

 - 
If the inverse kinematics is computed multiple times, the 
computational power needed is very high. 
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Table 8 - Advantages/Disadvantages of Analytic inverse kinematics 

The most significant advantage of the Gradient Descent method is that it can be implemented similarly 

for robots with different configurations. However, as it is an iterative method, it is also computationally 

expensive to calculate. Furthermore, it only considers the end effector's position, not its orientation, 

limiting this solution's potential. Last, the algorithm's flexibility is even more reduced by the fact that only 

one solution can be reached.  

In contrast, the second approach offers the level of flexibility and efficiency needed by the application. 

First, the position and orientation of the end effector can be controlled by defining the position and 

orientation of the tool in relation to the robot's base frame. Then, the fact that multiple solutions can be 

computed gives the user different possibilities to reach the same location in the desired orientation. 

Furthermore, by directly calculating the joint angles, the computational power needed decreases 

significantly, which in turn enhances the application's efficiency. Finally, singularities can be detected 

when one or more angles are impossible to calculate.  

The disadvantages of the second approach relate more to the application's development time and 

scalability. The analytical approach is more difficult to program and only works for robots with the same 

configuration as the UR3 and UR10. This means that if a robot with a different configuration wants to be 

added, then the inverse kinematics algorithm is no longer valid.  

Considering the advantages and disadvantages of both approaches, the analytical approach was chosen.  

Development of the Inverse Kinematics algorithm 

As described in section 2.2.2, the analytical inverse kinematics algorithm takes as input the 

transformation matrix 𝑇6
0. This transformation matrix represents the position and orientation of the tool 

in relation to the robot's base frame. This method uses a coordinate system defined by the authors, as 

Advantages Disadvantages 

Ability to have multiple solutions. 
The solution for the inverse kinematics suits only robots 
with the same configuration. 

Orientation of the end effector is considered 
and can be controlled. 

Complex equations must be programmed. 

Less computational power is needed.  - 

Singularities are detected.  - 
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shown in Figure 2. Some correspondence issues must be addressed for the algorithm to work on Unity's 

coordinate system framework.  

The correspondence issues relate to the difference between Unity's coordinate system and the coordinate 

system used by the authors to solve the inverse kinematics analytically. Unity works upon a left-handed 

coordinate system with the y-axis pointing up. On the other hand, the authors use a right-handed 

coordinate system, and instead of using the y-axis pointing up, they use the z-axis.  

The developed inverse kinematics algorithm uses the process illustrated by Figure 24  to calculate the 

joint angles: 

 

Figure 24 - Inverse Kinematics algorithm steps 

To start the process of calculating the set of angles that reach the target position and orientation of the 

tool, the transformation matrix 𝑇6
0 must be computed. Then, the inverse kinematics algorithm takes it as 

input and returns the corresponding angles.  

The inverse kinematics equations deducted by the authors work only for the coordinate system used by 

them. To generate the transformation matrix on Unity, the function SetTRS is used. This function receives 

the desired position, orientation, and scaling and returns the corresponding transformation matrix. As the 

position and orientation are read on Unity's world coordinate frame, represented in Figure 25, some 

adjustments had to be made.  

 

Figure 25 - Base frame of the robot according to Unity's world coordinate system 

By observing the coordinate system used by the authors in Figure 2 and Unity's world coordinate system, 

it can be concluded that the direction of the x-axis and the direction of the y-axis face contrary ways. 

Definition of the 
desired position 
and orientation

Generation of the 
transformation 

matrix

Calculation of the 
inverse 

kinematics

Solution in joint 
space
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Furthermore, Unity uses the y-axis as the upwards direction. Hence, some transformations must be 

performed to generate the transformation matrix according to the coordinate system used by the authors. 

Let (𝑂𝑥, 𝑂𝑦, 𝑂𝑧) be the coordinate system used by the authors and (𝑈𝑥, 𝑈𝑦, 𝑈𝑧) the coordinate system 

used by Unity. Then: 

𝑂𝑥 = −𝑈𝑥 

𝑂𝑦 = −𝑈𝑧 

𝑂𝑧 = 𝑈𝑦 

In terms of rotations, the only transformation done was to change the value of the y-axis for the rotation 

of the z-axis, and vice-versa. 

Ô𝑥 = Û𝑥 

Ô𝑦 = Û𝑧 

Ô𝑧 = Û𝑦 

This will guarantee that the position and rotation values from Unity match the ones used by the authors 

and that the inverse kinematics algorithm correctly calculates the angles. 

A system of three Boolean variables was created to control the different possibilities offered by the 

algorithm in terms of robot configuration options. These variables are also an input of the inverse 

kinematics algorithm and constraint the deducted equations according to their truth value. The variables 

created were:  

▪ shoulderLeft 

▪ elbowDown 

▪ wristDown 

Throughout the documentation, these variables will be referred to as the robot's configuration variables. 

4.1.2 Collision Detection System 

Before developing the application's features, a collision detection system had to be thought of and 

developed, as it must be used throughout the application to provide information about collisions and 

represent them.  

As described in chapter 3.3, there are two types of collisions to be registered, environmental collisions 

and self-collisions. Unity uses the component Collider to represent, register and manage collisions. This 
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component is invisible during the application run and needs to cover the exact geometry of the object to 

have the best accuracy outcomes concerning collision registration. If the collider does not cover the 

object's shape correctly, then false collisions can be detected, and some collisions can be ignored.  

The colliders can have four different shapes: 

▪ Sphere Collider 

▪ Capsule Collider 

▪ Box Collider 

▪ Mesh Collider 

The collider used in the project was the capsule collider. The capsule collider adapts best to the robot's 

shapes and covers a significant part of the robot's parts geometry. However, some of the robot's parts 

are not fully covered by the collider, causing the collision detection system to have some inaccuracy. 

Figure 26 and Figure 27 illustrate the collider components integrated into the different parts that compose 

the robot's 3D models. 

 

Figure 26 - UR3 Colliders 

 

Figure 27 - UR10 Colliders 

To develop the collision detection system, the OnTriggerEnter event was used. The OnTriggerEnter event 

is called every time a Game Object collides with another. Both Game Objects must have the collider 

component attached for a collision to be registered. Hence, in the OnTriggerEnter event, an algorithm to 

look for collisions was developed. The new script was attached to every part of the robot's 3D models. 
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First, the algorithm accesses the spatial awareness system available on the MRTK to get the necessary 

information regarding the meshes that perceive the environment. It is important to address that spatial 

meshes have mesh collider components; thus, collisions can be detected. After accessing the spatial 

awareness system, the algorithm checks if the robot's part in which the script is attached collides with 

any of the spatial meshes or with another part of the robot. A Boolean variable is then set to true to 

register that the component is colliding. This variable is referred to as the collision detection variable.  

To detect when the robot exits the collision, which means that the colliders stop overlapping, the 

OnTriggerExit event is used. Here the same algorithm is executed, but instead of setting the collision 

detection variable to true, it is set to false. 

Collision Visualization 

This collision detection system provides information about when the robot is colliding and when the robot 

exits a collision. As the physical representation of collisions does not occur, a method to visualize them 

was developed.  

On the Update method from Unity, an algorithm was developed to change the colliding parts' color to red. 

If the collision detection variable is set to true, then a new material is assigned to the colliding components 

of the robot. When the collision ends, i.e., the colliders are not overlapping, both parts inherit the original 

material. Figure 28 exemplifies a self-collision where the robot's end effector collides with one of its upper 

arms. As seen in the figure, both colliding parts become red-colored to signal the collision visually.  

 

Figure 28 - UR10 entering the collision 
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4.2 Development of the application features 

This section of the thesis presents a detailed description of the data flow, processes, assets, and 

components used to build the application's features. The features to be implemented in the application 

were previously defined and deconstructed in section 3.2. 

4.2.1 Selection of the testing robot 

A menu with different functionalities was developed to select the robot to be tested. The menu comprises 

a photo of the robot, the robot's name, a description of the robot's main specifications, and user 

instructions, as seen in Figure 29. 

 

Figure 29 - Initial menu 

There are two possibilities when interacting with the menu: 

▪ Short Click. 

▪ Long Click. 

The robot is selected for testing if the user performs a short click. On the other hand, a two-second hold 

on the button enables the extended click functionality. The long-click functionality provides an animation 

of the robot rotating 360 degrees in the user's field of view, giving an overview of the robot's real size. A 

progress bar was integrated for the user to know how long he should click on the button to activate this 

feature. A timer to measure the amount of clicking time was created to distinguish between both clicks. 

These features were implemented using the Button Release event. If the user clicks for more than two 

seconds, the animation is shown, and the menu is activated afterward. If not, on the Button Release event, 
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the robot's Game Object is stored, and the menu is disabled. The process is described by the flowchart 

represented in Figure 30. 

 

Figure 30 –Data flow of the robot selection process 

4.2.2 Positioning of the robot in the environment 

This application phase concerns the positioning of the robot in the environment. As defined in section 

3.3, it should be intuitive and done by pointing at the location where the user wants to spawn the robot. 

Before explaining the robot's positioning process, an overview of this phase's GUI is given.  
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GUI 

Before placing the robot, the user must know the actions that he needs to perform. Therefore, a small 

instruction textbox shown in Figure 31 was created. 

 

Figure 31 - User instructions to position the robot in the environment 

After placing the robot, a button created with the MRTK prefabs will show up for the user to confirm the 

robot's initial position. The prefab used is called Near Menu. This menu provides important UI features 

that align with the user experience requirements defined. First, it floats around the user’s body and is 

accessible anytime, leaving the target content undisturbed. Furthermore, it can be grabbed, placed, and 

pinned to the environment [51]. The default GUI asset available in the MRTK is composed of multiple 

buttons. However, only one button was used, while the others were deleted.  

A script was added to the button's OnPress event. It is responsible for disabling the spawning algorithm 

component, the Bounds Control component from the MRTK (addressed later), and the instruction textbox. 

 

Figure 32 - Button to confirm the robot's initial position  
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Robot Placement Process  

The placement of holograms in the real world can be achieved by orienting their local axis with the 

surface's normal. Since real-life surfaces are represented by a collection of meshes that shape the 

environment, the spatial awareness system must be used.  

Besides the spatial awareness system, the input system must also be accessed. The MRTK provides 

various input events; one is the OnPointerDown. This event is triggered whenever the user performs the 

air tap gesture, which can also be seen as clicking.  

The algorithm used to place the robot uses these two systems together once the information from both 

is needed. So, when the user points to a surface detected by the spatial awareness system and performs 

the air-tap gesture, the OnPointerDown event fires, and the placing algorithm is executed.  

First, by accessing the OnPointerDown event data, the algorithm checks if the pointer is hitting the spatial 

mesh. If yes, the position where the event occurred and the normal of the mesh on focus are stored. 

Then, if disabled, the robot's Game Object is activated, and the robot's position and rotation are updated 

to match the position and slope of the surface point clicked by the user.  

The algorithm can be executed multiple times until the user confirms the robot's initial position. This 

process is illustrated by the flowchart presented in Figure 33. 
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Figure 33 - Data flow of the positioning algorithm 

Before confirming the robot's initial position, the user should also be able to rotate it on the y-axis, which 

is the one aligned with the surface's normal vector. By rotating around the y-axis, the robot's x and z-axis 

remain orthogonal to the surface normal, which means that the robot remains aligned with the surface's 

normal.  

Bounds Control 

Bounds Control is a component from the MRTK package that provides basic functionality for transforming 

objects in the MR scene. Bounds Control creates a transparent cube around the hologram with handles 

on the corners and borders of the cube that allow scaling or rotating of the object [52].  
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In the case of this part of the application, the component was added to the robot's Game Object for the 

user to rotate it around the y-axis. All other rotation axes and the scaling function were disabled. Figure 

34 shows the robot placed on the table with the Bounds Control component activated. In the extremities 

of the Bounds Control box, four handles can be identified and are used to rotate the robot's hologram on 

the y-axis. 

 

Figure 34 - Robot placed with the bounds control component active 

4.2.3 Adjustment of the robot's initial configuration 

At this stage of the application, the user chooses the desired method to set the robot's starting 

configuration. Two methods were developed according to the application's concept definition phase: by 

imitation or manually. Before presenting both methods, the GUI concerning this application phase is 

presented.  

Adjust Configuration GUI 

For the user to choose the desired method to set the robot's initial configuration, a Near Menu consisting 

of two buttons was created. Different scripts are attached to these buttons' OnPress events and will lead 

to the activation of distinct Game Objects and components. This menu is illustrated in Figure 35. 

 

Figure 35 - Menu to choose the desired method to set the robot's configuration 
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Next, the button represented in Figure 36 was also developed. This button should be pressed when the 

user reaches the expected configuration for the robot to start the task. This will lead to the next phase of 

the application, trajectory generation, and modeling by activating the trajectory. The Near Menu prefab 

was once more used to create the button. 

 

Figure 36 - Button to confirm the robot's initial configuration  

This button has one crucial function that guarantees that the initial configuration is possible and, therefore, 

the feasibility of the following stages of the application. Hence, when clicked, an algorithm checks if the 

robot is colliding or if the configuration is valid. If yes, a Dialog Box, a UI overlay provided by the MRTK 

and used to notify users of important information, is activated and informs the user of the problem. This 

is valid for both approaches and will be further detailed in the following sections.  

Adjust the robot's initial configuration by imitation 

This method consists in adjusting the configuration of the robot by imitation. It is developed upon two 

main components: 

▪ Imitation Target 

▪ Configuration Menu 

Imitation Target 

The imitation target stores the position and orientation to be applied to the robot's end effector. It is 

represented by a cube that is a child of the robot's base. This is because, this way, the local position and 

rotation of the imitation target are read in relation to the robot's base. 

The Object Manipulator and Bounds Control scripts were attached to the imitation target's Game Object 

so the user could move it around the scene. The imitation target supports near and far interactions, which 

means the user can use the pointer to move the cube from a distance or directly grab the cube's 

hologram, as shown in Figure 37. The imitation target's rotation can be controlled directly by the user by 
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rotating its wrist. The Bounds Control component was also added to apply rotations locally on the axis 

and, therefore, have more control over the imitation target's rotation. Another component integrated into 

the imitation target is a label that shows the local coordinates of the end effector. 

 

Figure 37 - Target being grabbed  

Configuration Menu 

The configuration menu consists of three checkboxes, a GUI asset available on the MRTK package 

components, where the user can choose from the eight possible configurations. These checkboxes, 

represented in Figure 38, determine the truth value of the configuration variables. Hence, the robot's 

shoulder, elbow, and wrist configuration can be changed according to the user's needs. This menu is 

anchored above the robot's base. To have the menu always facing the user, the RadialView component 

from the MRTK was added to the buttons. 

 

Figure 38 - Configuration Menu 
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Configuring by Imitation Process 

A script that controls the whole configuration process was attached to the imitation target. The algorithm 

was developed on the Update function from Unity. It is important to address that the imitation target is 

activated after the user selects the imitation method to set the initial configuration using the menu 

represented in Figure 35. 

In this approach, inverse kinematics runs multiple times until the user finds the desired position and 

orientation for the end effector. However, before executing the algorithm, it is verified if the configuration 

variables or the imitation target 's position and orientation changed from the last to the current frame. 

This will reduce the computational power needed to run this functionality. 

Hence, when the user manipulates the imitation target or chooses a different configuration for the robot, 

a new transformation matrix is calculated using the new position and rotation of the target. Then, the 

inverse kinematics function is executed according to the configuration variables selected by the user. 

After, the new set of angles is verified to conclude if it represents a valid solution. If the solution is valid, 

the imitation target remains green-colored, and the robot's angles are updated. If not, the imitation target 

turns red, and the robot's joint angles are set to 0, as shown in Figure 39.  

 

Figure 39 - Red-colored imitation target (robot in zero angle position) 

To end the process, the user has to click on the button represented in Figure 36. A component attached 

to the button's OnPress event will check whether the imitation target is red-colored or if the robot is 

colliding with itself or with the environment. A warning will appear if one or both issues are verified, and 

the user must readjust the robot's configuration. If not, the position and orientation of the imitation target 

and the configuration variables are stored for later use. Figure 40 gives an overview of the process used. 
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Figure 40- Data flow of the imitation configuration method algorithm 
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Adjust the robot's initial configuration manually 

Another method to set the initial configuration of the robot was developed. This method was created to 

provide the user with a way of setting the joints' angle values with an exact and predefined value.  

Sliders and input field 

A set of sliders were developed to adjust the initial configuration manually. The slider system comprises 

the slider, the joint affected by the slider, and an input field. The slider used is of type Pinch Slider, a GUI 

asset provided by the MRTK. The Pinch Slider's minimum and maximum values are currently hardcoded 

to be 0 and 1. So, to have a value range from 0 to 360, the slider's value must always be multiplied by 

360. Both the slider and the input field are activated after the user chooses the manual menu to set the 

initial configuration of the robot using the menu represented in Figure 35.  

The slider and the input value must work together. On the one hand, the input field must update its value 

while the user interacts with the slider. On the other hand, when the user inputs a value, the slider must 

update its value accordingly. For this system to work, the algorithm accesses two main events: 

▪ OnValueUpdate 

▪ OnEndEdit 

The OnValueUpdate corresponds to a Pinch Slider event triggered whenever the slider's value changes. 

So, an algorithm to update the text on the input field is executed whenever this event fires. Here, it was 

set that two decimal places were to be shown to the user. 

The OnEndEdit is an input field event that triggers when the user finishes inserting the value. So, when 

the user inputs the value, an algorithm updates the slider value to match the new value entered by the 

user. 

Some restrictions were also integrated to avoid errors. For example, if the value introduced by the user is 

not between 0 and 360, inclusive, the input field and the slider will be set to zero. Furthermore, the input 

field was restricted to integer or decimal-type values between 0 and 360. 

In the meantime, the robot joints have a script attached that is enabled while editing the robot's initial 

configuration. This script updates the joints' angles according to the slider's value. 

Finally, the slider system comprises six sliders and six input fields, one for each of the robot's joints. 

Above the slider, a description was added to identify which joint is affected by it, as seen in Figure 41. 
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Figure 41- Sliders/Input field components 

Configuring manually Process 

When the user uses this method to configure the robot's initial configuration, the data must be processed 

differently than in the imitation method. Hence, this method is processed by a script attached to the 

OnPress event of the button represented in Figure 36. Its role is to process and store the information.  

Once the user confirms the robot's initial configuration, it is first checked if the robot is colliding with itself 

or with the environment. If this is verified, the user is informed through a Dialog Box and needs to adjust 

the robot's configuration further.  

If the robot is not colliding, the angles are read, and the forward kinematics algorithm is executed to 

transform the data from the joint space to the cartesian space. Then inverse kinematics is computed to 

get the set of angles that reach that desired position and orientation. Since the robot has eight possible 

configurations, all eight solutions provided by the inverse kinematics algorithm must be computed. So, a 

function that compares the eight solutions obtained with the values introduced by the user is executed. 

Its goal is to find the configuration variables' truth value that reaches the desired configuration. This 

includes knowing whether the elbow and wrist are up or down, or the shoulder is left or right. 

If no solution is found, the user receives a warning message that informs him of an invalid configuration. 

If a solution is found, the relevant information regarding the position, orientation, and configuration 

variables are stored for later use.  

This approach substantially reduces the computational power required to finish the operation. In this 

case, instead of computing the inverse kinematics multiple times, the user just manually sets the value 

of each angle, and the inverse kinematics is run afterward. This process is resumed by the flowchart 

represented in Figure 42. 
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Figure 42- Data flow of the manual configuration process 
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4.2.4 Trajectory Generation 

Trajectory Activation 

After confirming the robot's initial configuration comes the trajectory generation phase. In this phase, the 

user has the ability to create, visualize, and edit the desired trajectory. As discussed in section 2.5, the 

trajectory is defined by a cubic spline connecting several user-defined points. The spline was built on the 

editor, and the components needed from the Bezier Solution package were the Bezier Point and the 

Bezier Spline. So, a Game Object with the Bezier Spline component attached was created. Another two 

Game Objects called Spline Point were added to the hierarchy as a child of the spline, as seen in Figure 

43. Both Game Objects contain the Bezier Point component. Hence, when activated, the spline will be 

composed of two points. 

 

Figure 43 – Spline Hierarchy in Unity  

The Bezier Point component already has integrated features that will be used afterward, especially the 

control points. Each point has two control points, one for the previous segment and the other for the 

next segment, as represented in Figure 14. 

When the trajectory is activated, the first Spline Point is positioned in the exact location of the end 

effector and cannot be moved while configuring the path. 

Definition of a point design 

The design of the point was developed with the help of Unity's prefab system. Unity's prefab system allows 

developers to create, configure and store standard Game Objects with all their different components and 

properties. They act as a template and can be instantiated at any time in the scene. This system is 

advantageous for developing the Spline Points once they can be added and deleted many times when 

configuring the trajectory. 

The point's design was introduced to ease user interaction while covering every functional aspect defined 

in the requirements. Therefore, the points are composed by: 

1. Sphere 
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2. Two control points 

3. Label  

Figure 44 represents the prefab developed. The spheres represent points in the trajectory. So, to enable 

user interactions, the Object Manipulator script from the MRTK was added to the sphere Game Object. 

This will allow the user to move the point around the scene to shape the spline. 

The blue cubes represent the control points. The control point on the left side controls the curvature of 

the former segment. In contrast, the control point on the right side influences the curvature of the next 

segment. A script was attached to the cubes so that the control points' position updates according to the 

cube's position. Hence, when moved, the curvature of the spline will change accordingly, the process of 

which is managed by the Bezier Solution package. The Object Manipulator script was also attached to 

the cube's Game Object to enable user interactions.  

Then, a line was rendered using the Line Renderer component from Unity to connect the control points 

with the sphere for a better understanding of the control points' influence on the segments. 

Finally, a label was added to inform the user of the point's position concerning the robot's frame. The 

Radial View component from the MRTK was added to the label's Game Object to adjust its rotation to face 

the user. 

 

Figure 44 - Point Prefab 

Segment Rendering 

One crucial application phase was rendering the spline's segments that form the curve. The cubic Bézier 

Spline is expressed through a mathematical equation that returns the curve's points on each point of its 

domain. So, the set of points that form the curve can be used to render the robot's path in the 3D world. 

This set of points can be accessed using the GetPoint function available on the Bezier Solution package, 

taking as argument the normalized variable of motion time (𝜏), described in section 2.5. 
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The Bezier Solution package already renders a line in edit and run mode. However, this pre-conceived 

functionality limits the application as the segment's properties cannot be edited individually. Hence, 

another rendering algorithm is used. 

The algorithm used to render the curve was developed using the same principle of the algorithm present 

in the Bezier Solution package. It uses a set of points to render the line accordingly. Hence, the more 

points are used, the smoother the curve will be.  

For the application, instead of rendering the spline at once, each segment is rendered separately. This 

allows changing the local properties of each segment, e.g., the color.  

Segment Validation   

Segment validation is not discussed in the requirements but presents a valuable feature for the 

application. The concept of this feature is to show the invalid segments to the user, where the robot will 

fall in singularities. This poses a significant advantage since most of the trajectory's unfeasible segments 

are eliminated immediately. The color coding used in section 0 for the imitation target was used with the 

segments to identify invalid segments. Therefore, a valid path is green colored, and an invalid one is red 

colored. The validation algorithm was developed according to the process described in Figure 45: 

 

Figure 45 - Segment Validation Process 

First, a list of point positions for each segment is created according to the number of testing points. Then, 

a transformation matrix is generated according to the orientation of the end effector, which remains the 

same throughout the trajectory's execution and is previously stored when confirming the robot's initial 

configuration. Afterward, the inverse kinematics algorithm is computed on each point according to the 

Set number of 
testing points

Get list of points of 
the segment

Compute Inverse 
Kinematics on each 
point considering 
the orientation of 
the end effector

Validate path 
according to the 

inverse kinematics 
results
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configuration variables chosen for the segment. Finally, a validation algorithm is executed to look for 

impossible values returned by the inverse kinematics algorithm. If no singularities are detected, the path 

remains green-colored; else, the path turns red. The path validation feature is represented in Figure 46.  

This function, as it is computationally expensive, is only computed whenever the points or the control 

points are manipulated.   

It is also important to acknowledge the limitations of this feature. As an infinite number of points defines 

a curve, this method is not 100% accurate. However, most of the time, it presents a feasible solution. It 

was defined that 1000 points are tested on each execution. The algorithm's accuracy could be enhanced 

by storing and validating more points. However, this would be more computationally expensive. 

 

Figure 46 – Segment validation feature (green and red-colored segments) 

4.2.5 Trajectory Configuration 

Trajectory Selection  

To edit the trajectory, the user must be able to select either points or segments of the trajectory. The 

selection method implemented in the application works by selecting points. To select them, a script was 

attached to each trajectory point to manage the selection visually and internally.  

The algorithm used accesses the MRTK's input system. Hence, the event OnPointerDown, triggered when 

the user performs the air tap gesture, is used to change the properties of the selected sphere. If the user 

clicks on the point using far or near interactions, the sphere changes color from white to yellow. At the 

same time, a Boolean variable saves the current selection state of the point. 

In the application, the selection of points can be accomplished in two ways: 

▪ Multiple-point selection. 



 

73 
 

 

▪ Two-point selection. 

Multiple-point selection is only enabled when the trajectory's format is being edited. It is used to select 

and delete the number of points the user needs. Figure 47 shows the multiple-point selection feature 

where three trajectory points are selected and yellow-colored. 

 

Figure 47 - Multiple Point Selection 

On the other hand, the two-point selection feature, illustrated in Figure 48, is used to configure the motion 

parameters that the robot is under on one segment or various segments. In this case, the user should 

choose the starting and ending point of the segment or segments he wants to edit. When chosen, the 

segment or segments between those points will also appear as selected, changing its color to yellow.  

 

Figure 48 - Two-point Selection 
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Trajectory Format Adjustment 

The menu to adjust points and edit the trajectory's format can be accessed by clicking on a button called 

"Edit Trajectory. " This button has a script attached to the OnPress event, which activates the control 

points of the segments, multiple point selection, and the ability to move the points on the environment. 

Furthermore, another menu with three different buttons is also enabled.  

The sub-menu is responsible for letting the user perform the required actions regarding trajectory 

modeling. Three different buttons are part of this menu, as shown in Figure 49: 

▪ Add point 

▪ Delete Point 

▪ Generate linear path 

 

Figure 49 – Trajectory modeling sub-menu 

Add Point 

The button used to add a point allows the user to generate different points along the trajectory. By adding 

a point, a new segment is also created. A script was added to the button's OnPress event so that, 

whenever pressed, the prefab conceived previously could be instantiated (illustrated in Figure 44). 

The prefab is instantiated with the Bezier Spline Game Object as a parent since it represents a new point 

of the spline. The prefab is blue-colored on the spline hierarchy, as shown in Figure 43. Since the prefab 

already has the Bezier Point component attached, the Bezier Solution Package will automatically 

recognize that a new point was added, and the spline is updated. To avoid overlapping points, the prefab 

is instantiated with a 0.2m difference on the x-axis in relation to the last point of the trajectory.  
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Delete Point 

To delete trajectory points, the user must first select the ones he wants to delete. Then, an algorithm 

responsible for eliminating the points is executed when the button is pressed. The algorithm accesses the 

children's objects of the spline, represented in Figure 43, and destroys the Game Objects. This way, the 

unwanted points disappear from the scene.  

However, as the spline must always have two points to form a trajectory, the algorithm checks if the user 

is trying to delete more points than possible. So, in this situation, if the user presses the button, the 

functionality is blocked, and the warning message represented in Figure 50 appears. This message warns 

the user that the trajectory must have at least two points. 

 

Figure 50 - Warning message of the delete point feature 

Create Linear Path 

This functionality is not described in the requirements. Nevertheless, to enhance user experience, it was 

integrated into the application. The Bezier Solution package provides a function from the Bezier Spline 

class called ConstructLinearPath. By accessing the Bezier Spline component, this function can be called, 

and a linear path constructed. This method aligns the control points of the segments collinearly with their 

starting and ending points, as described in section 2.5. 

Hence, the script was added to the button's OnPress event. Each time the user presses the button, the 

control points of each segment align, and a linear path is obtained. It is important to address that this 

functionality does not work locally. Instead, all the segments are transformed at the same time. 
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Movement Parameters Adjustment 

The two-point selection mode controls the menu to adjust the motion's parameters. The two-point 

selection functionality is enabled every time the menu to edit the trajectory's format, represented in Figure 

49, is inactive.  

So, when the user selects two points, the segments in between become selected, and the menu illustrated 

in Figure 51 appears within the user's view. The menu is composed of various buttons that offer different 

configuration possibilities. The menu was built upon the functionalities defined in the secondary functional 

requirements described in Table 5.  

 

Figure 51 - Menu to configure the motion parameters 

The first input field dedicates to the input of the speed in meters per second. Then, the configuration 

variables that define the robot's configuration when transiting the segments can be defined by clicking on 

the checkboxes. In addition, the user can use a switch button to select the end effector's state (on or off) 

while moving through the selected segments.  

The number of loops or repetitions is also configured on this menu. To enable the loops' input field, the 

user should click on the switch button with the "loop" description. This action will activate the new input 

field and a support table, as shown in Figure 52. This table stores the values entered by the user so he 

does not lose track of the previously filled values. It shows the first point, the last point, and the number 

of repetitions defined. Furthermore, a button to erase the data was created. This button is activated along 

with the table and the input field and is responsible for erasing the data. 
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Figure 52 - Loop Data registration 

The confirm button present on the menu must be clicked so that the changes are correctly saved and 

applied to the segments. The motion parameters are saved on a script attached to each spline point. This 

means that the motion values of each segment are stored within the first point of the segment.  

To enhance user experience, the menu also shows the motion values of the segments when selected. If 

multiple segments have the same speed, for example, the input field will show the speed of the segments. 

If segments with different motion parameters are selected, the input field will be empty, and the buttons 

will be untoggled.  

4.2.6 Trajectory Execution 

To execute the designed path, inverse kinematics must be computed at each curve point. To do this, a 

new Game Object, called target, was created to store the orientation and position of the robot on each 

point and control the robot's motion. This target's initial position and rotation are assigned when the user 

confirms the robot's configuration, as represented in the process described in Figure 40 and Figure 42.  

GUI 

To start executing the path, the user should push the button illustrated in Figure 53 inside the white box. 

This button has a script that is executed on the OnPress event. This script is responsible for activating 

the target that will make the robot move.  

However, before starting the simulation, a verification is made to ensure its feasibility. Hence, it is first 

verified if all segments are green-colored before activating the target. If impossible segments are on scene, 

a warning message will be shown to the user to inform him to adjust the trajectory until all segments are 

green-colored.  



 

78 
 

 

 

Figure 53 - Run Simulation button 

Trajectory Execution Process 

A component was created and attached to the target's Game Object. This component has a method called 

FollowSpline, which is called every frame on Update. The purpose of this method is to manage the robot's 

motion according to the user's inputs. 

The process begins by getting the current segment's index. For this purpose, a variable from the data 

type Segment, available on the Bezier Solution package, was created. This variable is used to get the 

index of the segment that the target is currently at and is updated at each time step.  

Then the values previously inputted by the user for the segment, namely the speed, the configuration 

variables, the end effector state, and the loops data, are accessed and stored in variables.  

The trajectory execution process uses a system of two global Boolean variables, invertMovement and 

changeConfiguration, to verify the need to loop the trajectory or adjust the robot's configuration between 

segments. If these variables are true, two different processes occur. These processes are going to be 

explained in more detail afterward. 

Then, using one of Bezier Solution's utility functions, called MoveAlongSpline, the target's position is 

updated according to the speed that the user introduced. This function returns a point in the spline 

according to the desired speed. Therefore, when the execution starts, the target's position is updated. At 

each time step, the inverse kinematics is computed according to the configuration variables set to the 

segment, and the angles of the robot's joints are updated. This will create an animation of the robot 

following the trajectory.  

To know when the simulation is over, a Boolean variable was created. This variable changes from true to 

false when the target reaches the ending point of the spline.  
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It is important to note that the end effector's orientation remains the same throughout the entire trajectory, 

so this value is never updated during execution time. Figure 54 provides a more visual and comprehensive 

representation of the trajectory execution process data flow employing a flowchart. 
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Figure 54 - Data flow of the trajectory execution primary process 
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Loop Trajectory Process 

This method is responsible for changing the truth value of the InvertMovement variable according to the 

user's inputs and is called on Update.  

Before explaining the process, the inversion of movement handling must be explained. The robot's 

standard movement direction is towards the spline's ending point, where the InvertMovement variable is 

set to false. When the variable is set to true, the robot moves toward the initial point of the spline.  

The motion inversion was accomplished by entering the negative speed value into the MoveAlongSpline 

function's arguments. This way, the function returns the points in the opposite direction. So, in the 

FollowSpline method, when the truth value of the InvertMovement variable is checked, the speed sign 

changes accordingly. 

The user inputs are saved on a Data table that holds the information on the starting point, ending point, 

and the number of repetitions. Each row contains one input from the user. Before executing the algorithm, 

it is verified if the Data table is empty, which means that the user did not loop any segment. If this is 

verified, the invertMovement variable is set to false throughout the whole trajectory until the robot reaches 

the last trajectory point. If not, the process continues.  

A variable from the data type Segment, available on the Bezier Solution package, was created to start the 

process. This variable saves the segment index that the target is currently at and is updated at each time 

step.  

Then, the user inputs previously saved on the Data table are read and saved on variables. Afterward, two 

verifications are made. On each time step, it is verified if the index of the current segment is higher than 

the segment the user wants to loop. If bigger, the robot will invert the direction of the motion, and the 

number of repetitions is decremented.  

At the same time, it is also verified if the current index is lower than the segment index the user wants to 

loop and if the robot is moving toward the initial point of the spline. If this is verified, the invertMovement 

variable is set to false, and the algorithm checks if the number of repetitions reached 0. If yes, then the 

next row of the Data table is read, and the process is repeated. If the next Data row is empty, all user 

inputs were processed, and the robot moves to the ending point of the trajectory, as defined in Chapter 

3.3.  

The flowchart, illustrated in Figure 55, summarizes the loop trajectory feature's data flow.  
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Figure 55 - Data flow of the loop trajectory process 
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Configuration Adjustment Process 

To adjust the configuration of the robot between segments, two methods were developed:  

▪ CheckConfigurationAdjustment 

▪ AdjustConfiguration 

The first method is responsible for checking if the configuration variables change from the current 

segment to the next. If yes, the changeConfiguration variable is set to true. This method is called on 

Update and is represented in Figure 56. 

On the FollowSpline method, the truth value of this variable is checked on each time step, as shown in 

Figure 54. So, when the variable turns true, the target's speed is set to 0, and the AdjustConfiguration 

function is called. 

This function computes the inverse kinematics of the following configuration. The position and orientation 

of the end effector remain the same, but the configuration variables change. This way, a new set of angles 

that satisfy the user's input are obtained. Then the angles are smoothly adjusted using the Lerp function 

from Unity. This function is used to interpolate between the former and the new angles. When the robot 

reaches the new configuration, the target moves again according to the next segment's speed, and the 

adjustConfiguration variable is set to false again. This process is represented in Figure 57. 

 

Figure 56 - Data flow of the CheckConfigurationAdjustment method 
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Figure 57 - Data flow of the AdjustConfiguration method 

4.2.7 Results 

The robot's performance results must be calculated during trajectory execution to provide the user with 

the robot's performance assessment and the path's feasibility evaluation. Therefore, a function was 

developed for each of the results discussed in the requirements. This section will discuss the reasoning 

used to calculate each result value and the GUI used to exhibit the results.  

GUI 

The results are displayed to the user in a Dialog Box. The Dialog Box prefab was modeled according to 

the application's needs. As seen in Figure 58, three buttons were added to the results' Dialog Box to 

provide the user with some navigation options. These buttons and their functionalities will be addressed 

in section 4.2.8. 

The results Dialog Box information was discriminated by the type of results shown. Hence, multiple text 

fields were created to design a GUI that correctly shows the information to the user. The GUI for the 

results was built according to Figure 58: 
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Figure 58 - Results GUI with text fields 

The results GUI comprises the name of the KPIs measured and a text field underneath for the calculated 

results. A script that accesses the text field components was developed to fill each result's text field. This 

script gathers the information collected and correctly places it in the Dialog Box. Only the values and their 

units are shown to have clear and objective results.  

The only exceptions are the CDR and the MAV results. For the collisions, the name of the components 

that collided will be shown. Then, the type of collision that occurred is also shown as self-collision, 

environment collision, or both. Concerning the maximum angular speed results, each joint's name is 

inserted before the value to identify the data perfectly, as shown in Figure 59. 

 

Figure 59 - Results' Dialog Box 
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Active end effector time 

The process of calculating the time that the tool is activated is straightforward. For this purpose, a function 

was developed and called on Update.  

While executing the trajectory, the method verifies, on each frame, if the end effector is enabled on the 

current segment, according to the user's previous inputs. If the end effector is active, a variable is 

incremented using Time.deltaTime, which represents the completion time in seconds since the last frame. 

If not, then the variable will not be incremented. The time is presented in seconds.  

Trajectory length 

A variable is incremented during trajectory execution to calculate the TL. This method is called on Update.  

The distance is calculated by measuring the distance between the end effector's point on the previous 

and current frames. This calculation is done multiple times during the trajectory execution. As the value 

is incremented on every frame, the total distance of the spline is calculated. The trajectory is measured 

in meters. 

The Bezier Solution package already offers a function called GetLengthAproximatelly, that calculates the 

spline's length. However, as mentioned in Chapter 3.3, the actual length of the spline is different from 

the distance traveled by the robot's end effector because of the feature of looping segments. Hence, the 

method used ensures that the distance is calculated according to the total distance traveled by the end 

effector. The trajectory's length is calculated in meters.  

Travel time  

The TT was calculated using a timer. Hence, the method developed is called on Update, and a variable 

is incremented using Time.deltaTime. The variable starts incrementing when the robot starts the motion. 

When the end effector reaches the ending point of the trajectory, the variable stops incrementing, and 

the total transit time is obtained. The TT is calculated in seconds. 

Average velocity of the end effector 

The AVEE is calculated on the same method as the distance traveled. The end effector's speed was 

calculated using equation 35: 

�̅� =  
∆𝑑

∆𝑡
 (35) 
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As the distance is calculated on every frame and Time.deltaTime represents the time that passed since 

the last frame, the velocity can be calculated. The velocity values are stored on a list to get the average 

speed, calculated at the end of trajectory execution. The unit used for the velocity is expressed in meters 

per second.  

Maximum angular velocity 

To calculate the MAV of the joints, a method was developed using the same principle as the calculation 

of the velocity of the end effector. Equation 36 was used to calculate the average angular velocity on each 

trajectory point: 

The script was attached to each joint of the robot. When the simulation starts, the component created is 

activated. Then, on the Update method, the angle displacement, in degrees, is calculated on each frame. 

Furthermore, the time passed between frames is accessed using Time.deltaTime. Finally, the formula is 

applied, and a maximum algorithm is executed to save the highest value registered. The values of the 

MAV of each joint are expressed in degrees per second. 

Collision detection results  

A method was developed to store the information relative to collisions during trajectory execution. This 

method verifies whether the robot collided with the spatial mesh or an integral part of the robot. If the 

robot hits the spatial mesh, a variable is set to true. If the robot hits one of its components, a different 

variable is set to true. This way, it is possible to know the type of collisions that occurred.  

Furthermore, a list was created to store the name of the components of the robot that suffered collisions 

to inform the user afterward through the results' Dialog Box. The list is filled by verifying if the collision 

detection variable, addressed in section 4.1.2, turns true during trajectory execution. As this is a string 

type of output no unit is needed.  

4.2.8 User Navigation Options  

In the results' Dialog Box, illustrated in Figure 59, three buttons were created to provide the user with 

different options. The three buttons developed are: 

1. Reset button 

2. See collisions button 

𝜔𝑖̅̅ ̅ =  
∆𝜃𝑖

∆𝑡
 (36) 
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3. Quit button 

The "Reset" button redirects the user to the menu shown in Figure 60, where he has the option to access 

the robot selection menu or go back to the trajectory modeling and configuration process. It also contains 

a return button if the user wishes to return to the result window. Each button has a script attached to the 

OnPress event, responsible for activating the necessary Game Objects and resetting the required variables 

to go back to the desired application's processes. The "Reset" button is responsible for providing the 

navigation options described in Chapter 3.3.1. 

 

Figure 60 - User Navigation Menu 

The See Collisions button present in the results' Dialog Box activates a feature using a timer, where the 

menu is disabled, and the colliding parts of the robot turn red. This way, if the user cannot identify the 

name of the robot's parts shown on the collision results, he can visualize the components affected by the 

collisions.  

Finally, the Quit button has a script attached to the OnPress event responsible for quitting the application. 

For this purpose, the Quit method from Unity was used.  
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5 Testing & Evaluation 

This chapter concerns the testing and evaluation of the application. Two different aspects are assessed 

in this chapter. First, an analysis of the application's performance considering the non-functional 

requirements is developed. Then, on a more qualitative level, it is discussed how the application solves 

some of the problems manufacturers face when implementing new robotic use cases, listed in Table 3. 

5.1 Setting up the testing environment 

In this sub-section, the preparation of the testing environment is explained. First, the tool must be 

developed in Unity's environment for the task to be tested. Then, the application must be deployed to the 

HoloLens 2, the HMD chosen to run and test the application. Finally, the real environment and the 

workpiece must be defined to establish the scenario where the application will be tested.  

Selection & Development of the tool  

On the application, some minor changes were made to cover the necessities of the use case chosen. So, 

it was established that a painting task would be tested. In this direction, a tool was created and added to 

the robot's hierarchy in Unity. Once the tool must be connected to the last joint of the robot, it was added 

as a child of the last joint's Game Object. The tool is represented by a cylinder, which defines the structure 

of the paint sprayer. Unity's Particle System component was also added and configured to represent the 

paint. This component is a robust particle effect system used to simulate liquids, smoke, clouds, and 

other effects. Figure 61 shows the painting tool integrated into the robot in Unity's 3D environment.   

Furthermore, the FollowSpline component was extended to activate and deactivate the Particle System 

according to the end effector's on or off state.  

 

Figure 61 - 3D representation of the robot's painting tool 

 



 

90 
 

 

Deployment to the HoloLens 2  

After selecting and developing the tool for the use case, the application had to be deployed to the HoloLens 

2. So, the project was first built in Unity, targeting the Windows Universal Platform. Then, the solution 

was opened in Visual Studio, and a package for the HoloLens 2 was created. The build configuration used 

to create the package was the ARM64 architecture, the recommended architecture for MR applications 

targeting the HoloLens 2. Finally, the HoloLens 2 device portal was accessed, and the package, along 

with the dependencies file, was installed into the HoloLens 2.  

The testing and evaluation of the application's performance were done using this device. 

Setting up the real environment 

A new use case was defined to evaluate the application's performance. The scenario constructed intends 

to simulate the task of painting the airplane's fuselage. So, a whiteboard will represent a small piece of 

the airplane's fuselage, and the table will be the surface where the robot will be placed to execute the 

task, as represented in Figure 62.  

 

Figure 62 - Testing Environment 

5.2 Testing the Application 

First, the UR10 was chosen since the UR3's dimensions are more suitable for smaller workpieces. Then, 

the robot was placed on the table, and the robot's initial configuration was set. The configuration was 

established using the imitation method, described in section 4.2.3. The robot was configured to have the 

shoulder left, the elbow up, and the wrist down. This is a standard configuration in the industrial 

Placing Surface 

Workpiece 
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environment and was used to execute the task. The process of setting the initial robot's configuration is 

illustrated in Figure 63. 

 

Figure 63 - Setting the robot's initial configuration  

After placing and configuring the robot, the trajectory must be defined. Seven segments were created to 

define the trajectory needed to paint the panel, as seen in Figure 64. It was set that the workpiece's 

painting is done horizontally, with the vertical segments working as an adjustment to the next area of the 

workpiece to paint. Furthermore, when painting, it was also defined that the robot loops the segments 

once to apply three coats of paint. Hence, on the horizontal segments of the trajectory, the tool was set 

to active.  

 

Figure 64 - Path modeling and parameterization  

After going through the process of positioning and configuring the robot and the trajectory, the simulation 

was started. The trajectory was executed ten times, and the results were registered. Figure 65 shows the 

robot executing the fifth trajectory segment with the painting tool activated.  
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Figure 65 - Painting task execution 

5.2.1 Non-functional requirements analysis 

In section 3.2.3, the non-functional requirements of the application were defined. Hence, they were 

considered in this phase to assess the application's overall performance after finishing the development 

phase. The five areas contemplated on the non-functional requirements will be assessed individually. 

A. Consistency   

To analyze the consistency of the results, the trajectory was executed ten times, and the results were 

registered in Table 9. The results are shown in the table with the order they are presented throughout the 

work. 

Table 9 - Result's framework 

Result 1 2 3 4 5 6 7 8 9 10 Mean Variance 

TL  6.44 6.44 6.44 6.43 6.44 6.43 6.42 6.42 6.43 6.43 6.44 0.00 

TT 129.14 129.28 129.15 129.16 129.08 129.07 128.97 128.66 128.88 128.90 129.03 0.03 

AEET 114.97 115.04 114.76 115.01 115.17 115.03 115.01 114.92 114.92 114.86 114.97 0.01 

ATV  0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.00 

MAV 
Joint1  

8.3 8.2 8.4 8.3 8.2 8.2 8.1 8.0 8.1 8.1 8.19 0.01 

MAV 
Joint2  

5.4 5.3 5.4 5.5 5.4 5.4 5.5 5.5 5.5 5.6 5.45 0.01 

MAV 
Joint 3 

8.2 8.2 8.3 8.4 8.3 8.3 8.4 8.4 8.4 8.3 8.32 0.01 

MAV 
Joint 4  

6.1 6.1 6.3 6.3 6.4 6.3 6.3 6.2 6.2 6.3 6.25 0.01 

MAV 
Joint 5 

7.7 7.7 7.5 7.5 7.7 7.7 7.6 7.5 7.5 7.5 7.59 0.01 

MAV 
Joint 6  

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00 0.01 

CDR 
No 

colisions 
No 

colisions 
No 

colisions 
No 

colisions 
No 

colisions 
No 

colisions 
No 

colisions 
No 

colisions 
No 

colisions 
No 

colisions 
- - 
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As seen in Table 9, the results present a consistent framework. It was set on the non-functional 

requirements that the result's variance should always be under 5%. This means that the collected data 

should present a low variability, with the values very close to each other and the mean. The TT, which 

represents the time required to finish the trajectory, has the highest variance, of about 3%. The CDR does 

not present a variance since the results are measured qualitatively. However, the results obtained are the 

same for each test performed, where no collisions were detected.  

In conclusion, the application delivers a satisfactory consistency level, having a maximum variation of just 

3%. This way, the non-functional requirements related to consistency were successfully reached. 

B. Performance 

Two aspects of the application were defined to assess its performance. First, it was set that the application 

should start up to 15 seconds after initiation. Then, the frame rate must also be evaluated to determine 

if the application is too heavy for the HoloLens 2. 

Ten measurements were made to test the time needed for the application to load and start. A timer was 

set from the moment the application's icon was clicked until the initial menu of the application appeared 

on the scene. The results concerning the ten tests made and the respective result are summarized in 

Table 10.  

Table 10 - Time required to initialize the application 

As seen in the sample values, the application needs, on average, 9 seconds to initialize. This value is far 

below the target initially set on the non-functional requirements. Hence, the requirement was successfully 

met, and the HoloLens 2 can quickly load the application.  

The frame rate evaluates the performance of the application throughout all its processes. Throughout the 

application testing phase, the medium frame rate presented by the application is around 30 fps. By 30 

fps, the MR experience is not compromised, but there are some noticeable lumps in the scene. 

C. Portability 

The application can also be deployed to the HoloLens 1. However, before compiling the solution, the x86 

architecture should be used. Regarding the application's features and performance, the HoloLens 2 offers 

a much better hand-tracking system and a wider field of view, ultimately providing a better user 

Test 1 2 3 4 5 6 7 8 9 10 Mean 

Time required to start 
the application (s) 

9.76 8.82 9.83 9.24 8.15 8.19 9.12 8.56 9.07 9.27 9.00 
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experience. Furthermore, the HoloLens' second generation comprises a wider range of gestures and 

manipulation options with the holograms, providing both near and far interactions. Hence, the application 

works on the HoloLens 1, but some features may be compromised since it was developed to target 

HoloLens 2.  

In conclusion, two packages were created, one with the x86 architecture and the other with the ARM64 

architecture, to target HoloLens 1 and HoloLens 2, respectively. Their average size is about 80 Megabytes. 

The HoloLens device portal must be accessed to install the packages. As they are not very big, the 

installation process can be performed rapidly on both devices, and the application can be executed right 

after it.  

D. Reliability 

The results shown in Table 9 prove that the simulation was executed ten times, always consistent with 

the user inputs and without any registered issues. Therefore, the reliability of the application was 

successfully confirmed. Even though the application was tested for ten simulations, it should present 

reliable results for more than ten simulations. 

E. Usability  

The non-functional requirements concerning usability relate to the user's experience. It was defined in 

Table 6 that the GUI must be intuitive and always within the user's field of view. Furthermore, some 

navigation options must also be made available for the user to test other robots or edit the trajectory to 

investigate new use cases.  

Throughout the application's development phase, the menus and buttons were created, tailoring user 

experience. As the MRTK already provides a range of components and assets for GUI, already tuned to 

enhance user experience, these building blocks were used and successfully tested in the result phase. 

Furthermore, the user navigation options confirmed its function. 

However, when testing the application, it was verified that sometimes, as the spatial awareness system 

is activated throughout the processes, the GUI gets hidden by the spatial mesh. Nevertheless, most of 

the buttons, menus, warning messages, and instruction fields update the position of the GUI according 

to the user. This way, by moving away from obstacles, they can be accessed and visualized again.  

In conclusion, for the best experience, the application should be used in open places where the spatial 

mesh has less probability to be overlapping the buttons, menus, warning messages, and instruction fields. 
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5.2.2 Qualitative Assessment of the application 

The information gathered in section 2.3 is used to assess the application qualitatively. Table 3 

summarizes the problems faced by manufacturers in the early stage of implementing new robotic use 

cases. This table comprises three crucial areas: safety, knowledge, and functionality. Each of these areas 

will be discussed separately to conclude how the application helped solve the problems encountered in 

the industry.  

Safety Area 

The first point present in this area is that the safety of the robot's movements, gripper, and tools are not 

appropriately assessed. At this stage, only one tool was added to the application, making the end effector's 

safety a reductive assessment. However, it was effectively demonstrated that the robot's movements 

could be represented and studied to avoid possible injuries or collisions with the worker. 

The second point of the safety area is that there is often a lack of involvement of the worker in the pre-

study phase. With the application, the worker can be more involved in the process by visualizing the task's 

execution and predicting the robot's behavior, understanding the hazards and forces applied. This way, 

safety questions can be raised by the worker and engineer, combining both points of view to have the 

best safety assessment outcome. Also, correct planning of the operator's safe and hazardous zones can 

be made from the beginning of the implementation process. This will decrease the chances of propagation 

of safety issues to further implementation phases.  

Finally, as the application offers many features regarding the robot's motion, extreme tests and use cases 

can be explored to cover different possibilities that may compromise the worker's safety. 

Knowledge Area 

The knowledge area relates to the lack of understanding and expertise in collaborative robots. This 

technology is relatively recent, and not every company has the means to perform a profound study on 

how the technology works. Hence, the application tries to offer a comprehensive and interactive interface 

for companies with insufficient know-how in this area.  

The first point in the knowledge area is the uncertainty of how the robot will perform the previous hand-

made tasks. The application offers a range of features, e.g., trajectory modeling and motion parameters 

configuration, to provide different testing options and answer this problem. This way, manufacturing 

companies can test different scenarios to choose the best methodology to perform the tasks. One example 

is the painting task described in section 5.2, where the painting can be done horizontally or vertically.  
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Next, the investment in these robots is difficult to justify since not much information on the benefits they 

bring is available. The application provides reliable information to tackle this issue. For example, as the 

time needed to perform the trajectory is calculated, an estimation of the number of workpieces processed 

can be made. Furthermore, knowing the time that the end effector was activated, in the cases where the 

tool consumes material (e.g., gluing or painting), the amount of raw material used can also be calculated. 

These aspects, provided by the application's results, give companies an essential framework for 

preliminary calculating the return on investment. This will result in founded decisions and a higher 

acceptance probability by the top management on investing in these applications.  

The third point present in the knowledge area is the lack of knowledge regarding the robot's performance 

in the production system. The production system is, most of the time, a dynamic environment, and 

therefore different situations can occur. The application can create, simulate, and assess different 

situations to have a holistic view of the robot's performance. The results, especially the collisions, speed, 

and the time needed to cross the path, will then provide the information needed to conclude if the robot 

accomplishes a good performance level.  

The fourth point relates to not understanding how the concept can be industrialized. The application gives 

an overview of how the process can be automated and provides information to help companies 

industrialize the new concept.  

Finally, in the pre-study phase, the scope is limited to only one product variant to decrease the complexity 

of the study. Different products can be tested with the application, as the trajectory can be modeled to 

match the workpiece's requirements. For example, the trajectory can be modeled as a straight line to 

place glue on a linear surface. On the other hand, for a circular workpiece, the trajectory can be 

transformed into a curve that matches the workpiece's geometry. The level of flexibility offered in trajectory 

modeling and motion parameterization, along with the performance assessment, makes it possible for 

companies to increase the scope of the new robotic application's study. 

Functionality Area 

The functionality area concerns all the functional aspects of the robot that affect the implementation 

efforts. There are three issues listed in Table 3 related to this area. The first difficulty marked is not being 

able to compare the speed of manual operations with automated operations. Besides providing the 

simulation of task execution, the application also delivers results on how fast task execution was. As most 

companies know the status quo of their processes, the performance of both operations can be compared.  
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The next issue registered is the difficulty in assessing potential functional problems. The application 

provides a significant improvement in this area. First, the segment validation feature, driven by the 

analytical inverse kinematics algorithm, can be used to predict invalid trajectories and configurations 

during task execution. Next, excessive speeds can be detected as the joints' maximum angular speed is 

constantly monitored throughout task execution. Then the robot's size can be evaluated and positioned 

in different parts of the production system to assess potential problems, mainly collisions with the 

environment. This provides manufacturing companies with a comprehensive framework for reckoning 

and evaluating potential functionality problems. 

Finally, companies have difficulty choosing the robot that best fits the task requirements. The application 

tackles this problem by integrating two different testing robots on the application. The specifications are 

very different, making them usable for wildly different situations. Both robots' performances can be equally 

evaluated to see the one that performs the task in the best way. Hence, companies can choose the one 

that best fits their needs. 
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6 Conclusion & Future work 

6.1 Conclusion 

Profound insights are obtained throughout this whole project regarding the usage of MR technology in the 

robotic field. These insights are obtained by addressing the research question exposed in the problem 

statement: "Can MR technology be an effective solution to facilitate the implementation of new robotic 

use cases, decreasing implementation time, costs, and efforts?". In this project, the development of a 

new application from top to bottom, i.e., from the requirement definition phase to the development and 

testing of the solution, provides a holistic view of the solution proposed to answer the research question.  

The application's requirements were defined according to the literature review, where multiple articles 

about collaborative robots and the difficulties faced by manufacturers when implementing them were 

analyzed. It was set that the application should only be used for tasks that compensate for low accuracy 

and precision values, like simple pick and place tasks, surface vacuum cleaning, and paint or glue 

applications. This decision was made based on the current status of the MR software and hardware 

specifications.  

Before starting the application, the analytical inverse kinematics of the robot was developed, providing 

various advantages to the application's features. In the first place, the challenge of matching the 

coordinate system used in the article where the analytical inverse kinematics equations were deducted, 

and Unity's coordinate system framework had to be overcome. After, a feasible inverse kinematics 

calculation system was accomplished, where eight possible configurations can reach the desired location 

and orientation of the tool. Furthermore, a collision detection system was developed to register, manage 

and represent collisions. This system represents the collisions visually by changing the color of the robot's 

components that collide. The inverse kinematics system represents the foundation of the application as 

it is used in the most critical features of the application. 

The features provided by the application start by offering a comprehensive menu, showing relevant 

information concerning the UR3 and the UR10 robots. Then, an intuitive placing method is proposed to 

spawn the robot on real-life surfaces with different formats and slopes, providing a realistic visualization 

of the robot in the environment. Furthermore, a novel process to set the robot's initial pose, taking 

advantage of the inverse kinematics' algorithm flexibility, is presented, where the user can grab the end 

effector and place it in the desired position in space. Moreover, a manual method was developed to 



 

99 
 

 

configure the robot's angles offering more solutions to the user. Here, he can introduce the exact value 

intended for the joints or use a slider to update the angles.  

After, a trajectory modeling and parameterization system was developed with the aid of an external 

package available on Unity's asset store, Bezier Solution. In this application phase, a method to configure 

the trajectory's format is presented where several configuration options are developed. Then, a 

comprehensive motion parameterization methodology is proposed to configure the robot's motion where 

the speed, loops, configuration, and the end effector's state (on/off) can be entered by the user. A 

simulation of the robot executing the path is then shown to the user according to the motion parameters 

added. In the end, a set of KPIs are exhibited to provide the user with information to assess the robot's 

performance and behavior.  

Finally, to test the application, the painting task was chosen. The testing environment was constructed 

upon a whiteboard representing a part of an aircraft's fuselage and a small table serving as the robot's 

placing surface. The application was then deployed to the HoloLens 2 via a package, and the task was 

executed ten times to register and analyze the results.  

Overall, after testing, the application delivers all the features proposed in the concept definition phase. A 

consistent result framework was achieved, which is crucial to validate the relevance of 

the application. In the end, it is proved that MR helps in different areas of 

the initial implementation phase of robots and provides valuable information to ensure the success of 

new use cases, decreasing the chances of problems propagating downstream of the implementation 

process. This can ultimately help manufacturers to decrease implementation costs, time, and effort. This 

idea complies with the industry 4.0 concept, where a symbiosis between digital and physical forms a 

production system with enriched information and predictive capabilities, enhancing the ability of 

companies to deliver quality products with cost and time-effective processes.  

As a final verdict, MR must be viewed as an emerging technology with numerous opportunities in the 

industrial and robotic field to help companies progress and update their processes according to the 

market's needs. This is very important to ensure the company's future and sustainability. The investment 

time and expertise needed to implement new robotic use cases are high, but they can be reduced through 

interactive and information-rich three-dimensional visual feedback from MR technology.  
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6.2 Future Work 

In this thesis, the application is developed as a proof-of-concept. Many new functionalities and 

improvements can be integrated to make this application a future solution for manufacturing companies 

to test new robotic use cases.  

First, the aspect of accuracy and stability of the MR technology is improving steadily with each new 

iteration of hardware setup, sensor technology, and software algorithm on which the technology is built. 

Therefore, in the future, new AI and ML-driven algorithms could be implemented to enhance the 

technology's accuracy, increasing the scope of the application to higher accuracy tasks.  

Furthermore, more robots from different manufacturers with different configurations and specifications 

can be added to the application for better benchmarking and performance assessment. This way, a new, 

consistent, centralized system for robot feasibility testing can be developed to help renew older processes 

and improve efficiency. New tools and grippers can be integrated to test novel processes and match the 

requirements of a larger audience.  

To what concerns the application, an acceleration profile for the trajectory could be developed to mirror 

the robot's behavior more accurately and get results closer to reality. In the application, the acceleration 

is always 0 since the tool's velocity remains the same when traveling the segment. The only exception is 

when the robot enters a segment with a different speed. In this case, the robot changes the speed 

instantly, which would require infinite acceleration. Hence, to further develop the point-to-point motion, 

an acceleration profile could be used to enhance the representation of real-life physics, opening the 

possibility of testing more complex use cases.  

Finally, robot programming could also be integrated into the application by automatically generating the 

robot code needed to perform the tasks. This would provide companies with a holistic solution, from robot 

selection and trajectory definition and parameterization to task execution on the shop floor. 
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