
Universidade do Minho
Escola de Engenharia
Departamento de Informática

Lucas Ribeiro Pereira

Analytical Querying
with Typed Linear Algebra:
Integration with MonetDB

December 2021

Universidade do Minho
Escola de Engenharia
Departamento de Informática

Lucas Ribeiro Pereira

Analytical Querying
with Typed Linear Algebra:
Integration with MonetDB

Master dissertation
Integrated Master’s in Informatics Engineering

Dissertation supervised by
José Nuno Oliveira
Alberto José Proença

December 2021

C O P Y R I G H T A N D T E R M S O F U S E F O R T H I R D PA R T Y W O R K

This dissertation reports on academic work that can be used by third parties as long as the internationally accepted
standards and good practices are respected concerning copyright and related rights.

This work can thereafter be used under the terms established in the license below.

Readers needing authorization conditions not provided for in the indicated licensing should contact the author
through the RepositóriUM of the University of Minho.

L I C E N S E G R A N T E D T O U S E R S O F T H I S W O R K :

CC BY
https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/

A C K N O W L E D G E M E N T S

I would like to express my deep gratitude to Professor José Nuno Oliveira and Professor Alberto Proença, my
dissertation supervisors, for all the invaluable assistance and guidance, enthusiastic encouragement and useful
critiques of this work. With their help, I was able to tackle many challenges that came my way.

While doing this work, I held a Research Grant AE2021-0049 awarded by INESCTEC, so I wish to thank
INESCTEC and all the people involved in the project for the opportunity.

A special thank you to Patrícia Moreira, for the unconditional support given throughout this project, for always
being there in the good and not so good moments, and for the encouragement to do the right thing.

I would like also, to thank my parents, my brother Ricardo and my sister Matilde. To my parents, thank you for
investing on my education and for giving me the tools needed to accomplish my endeavours.

Finally, a special thank you to my grandfather José, for the love and affection I received, and for always being in
my mind, giving me strength to achieve my dreams. Thank you, You are missed.

a

S TAT E M E N T O F I N T E G R I T Y

I hereby declare having conducted this academic work with integrity.

I confirm that I have not used plagiarism or any form of undue use of information or falsification of results along
the process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of Minho.

b

A B S T R A C T

Current digital transformations in society heavily rely on safe, easy-to-use, high-performance data storage and
analysis for smart decision taking. This triggered the need for efficient analytical querying solutions and the
columnar database model is increasingly regarded as the most efficient model for data organization in large
data banks. MonetDB is a pioneer in the column-wise database model and is currently at the forefront of high
performance DBMS engine.

A Linear Algebra Querying (LAQ) engine, using a columnar database paradigm and strongly inspired on Typed
Linear Algebra (TLA), was developed in a former MSc. dissertation, with a prototype Web interface. Performance
benchmarking of this engine showed it outperformed conventional referenced DBMS but it failed to beat MonetDB’s
performance.

This dissertation aims to improve the performance of the LAQ engine by following a different path: instead of a
standalone engine, the new approach implements the engine on top of MonetDB extended with RMA (Relational
Matrix Algebra) and inspired by the TLA approach. This enables the use of LAQ scripting to replace the main
stream relational algebra query language approach given by SQL.

Matrix operations commonly used in LAQ/TLA, such as matrix-matrix multiplication, Khatri-Rao product or
Hadamard-Schur product, had to be implemented in RMA to shift from the relational algebra paradigm to TLA.

A thorough analysis of the MonetDB/RMA showed the need to implement key TLA operators that are not
available at the frontend. Such operators were implemented and successfully tested and validated, paving the
way to future benchmarking its performance with TPC-H/OLAP queries and consequent fine tuning of the engine.

K E Y W O R D S OLAP, Columnar DB, Typed Linear Algebra, Relational Matrix Algebra, MonetDB.

c

R E S U M O

Atualmente, as transformações digitais na sociedade confiam fortemente no armazenamento e na análise
de dados seguros, fáceis de usar e de alto desempenho para tomadas de decisão inteligentes. Este facto
desencadeou a necessidade de soluções de consultas analíticas eficientes, em que o modelo de bases de dados
colunar é cada vez mais considerado o modelo mais eficiente para organização de dados em grandes bancos de
dados. MonetDB é um sistema pioneiro no modelo de bases de dados colunar e atualmente está na vanguarda
de DBMS’s de alto desempenho.

Um motor Linear Algebra Querying (LAQ), que usa o paradigma de bases de dados colunar e fortemente
inspirado em Álgebra Linear Tipada (TLA), foi desenvolvido numa antiga dissertação de mestrado em Engenharia
Informática. O benchmarking do desempenho deste motor mostrou que supera DBMS tradicionais, mas não
conseguiu superar o desempenho do MonetDB.

Esta dissertação visa melhorar o desempenho do motor LAQ seguindo um caminho diferente: em vez de
um motor autónomo, a nova abordagem implementa o motor sobre o motor do MonetDB estendido com RMA
(Álgebra Relacional Matricial) e inspirado na abordagem de TLA. Isto permite o uso de scripts LAQ para substituir
a abordagem da linguagem de consulta de álgebra relacional fornecida pelo SQL.

Operações de matrizes comumente usadas em LAQ / TLA, como multiplicação de matrizes, produto Khatri-Rao
ou produto Hadamard-Schur, tiveram de ser implementadas em RMA para mudar do paradigma da álgebra
relacional para TLA.

Uma análise completa do MonetDB / RMA mostrou a necessidade de implementar os principais operadores
de TLA que não estão disponíveis no front-end. Esses operadores foram implementados, testados e validados
com sucesso, abrindo caminho para um futuro benchmarking do seu desempenho com queries TPC-H / OLAP e
consequente, ajuste do motor.

PA L AV R A S - C H AV E OLAP, Base de dados colunar, Álgebra Linear Tipada, Álgebra Relacional Matricial,
MonetDB.

d

C O N T E N T S

Contents iii

1 I N T R O D U C T I O N 3

1.1 Challenges and goals 4

1.2 Dissertation outline 5

2 T Y P E D L I N E A R A L G E B R A F O R O L A P 6

2.1 Foundation of TLA querying and Type Diagrams 6

2.2 Matrices as Arrows 7

2.3 TLA algebraic querying operators 8

2.3.1 Matrix-matrix multiplication 9

2.3.2 Khatri-Rao product 10

2.3.3 Hadamard-Schur product 11

2.3.4 Filter 11

2.3.5 Fold 11

2.3.6 Lift 12

2.4 Query example 13

2.5 Summary 14

3 A R C H I T E C T U R E O F M O N E T D B 15

3.1 The frontend 15

3.1.1 MonetDB Assembly Language and its algebra 16

3.1.2 Query planning 17

3.2 The backend 18

3.3 The kernel 18

3.3.1 Goblin Database Kernel 18

3.3.2 The data model with Binary Association Tables 18

3.4 Summary 19

4 R E L AT I O N A L M AT R I X A L G E B R A 20

4.1 Notation of relations and matrices 20

4.2 Relations and matrices constructors 21

4.3 From relations to matrices and back 22

iii

C O N T E N T S iv

4.4 Operations in RMA 23

4.5 RMA implementation in MonetDB 24

4.5.1 SQL extension 25

4.6 Summary 25

5 T L A E X T E N S I O N I N R M A 27

5.1 The missing operators 27

5.1.1 Identity matrix 28

5.1.2 Matrix transpose 28

5.1.3 Dot product 30

5.1.4 Khatri-Rao product 31

5.1.5 Hadamard product 32

5.2 A query example 33

5.3 Summary 37

6 C O N C L U S I O N S 38

6.1 Projected future work 39

I A P P E N D I C E S

A S U P P O R T W O R K 43

a.1 Jobs and Employees schema script 43

B M A L A L G E B R A C O M P E N D I U M 45

b.1 MAL 45

b.1.1 Operators 45

b.1.2 BAT copying 45

b.1.3 Selecting 45

b.1.4 Sort 46

b.1.5 Unique 47

b.1.6 Join operations 48

b.1.7 Projection operations 48

b.1.8 Common BAT Aggregates 49

b.1.9 Default Min and Max 49

b.1.10 Standard deviation 49

L I S T O F F I G U R E S

Figure 1 Jobs and employees type diagram 7

Figure 2 Relation jsalary 7

Figure 3 Relation jcode 7

Figure 4 Matrix M from type a to type b 8

Figure 5 Jobs TD 9

Figure 6 Example of a matrix-matrix multiplication 9

Figure 7 Dot product TD 10

Figure 8 Khatri-Rao product example 10

Figure 9 Khatri-Rao TD 10

Figure 10 Hadamard-Schur product example 11

Figure 11 Filter TD 11

Figure 12 Dot product between the predicate (̸= SA) and the initial matrix 12

Figure 13 Final result of the filter operation 12

Figure 14 Fold TD 12

Figure 15 Fold example 12

Figure 16 Lifting example 12

Figure 17 Query type diagram 13

Figure 18 Addition over relations r and s 24

Figure 19 Splitting, sorting, morphing eval and merging in query v = addU;T(r, s) 25

Figure 20 Query type diagram 33

v

L I S T O F TA B L E S

Table 1 Jobs and employees tables 6

Table 2 jcode and jdesc sub-tables 8

Table 3 jsalary sub-table 8

Table 4 Query result 13

Table 5 Jobs relation table 19

Table 6 Jobs relation table with BAT representation 19

Table 7 Jobs relation table and matrix M 20

Table 8 Shape types of matrix operations 21

Table 9 Order schema, application schema, order part, application part of relation jcode,

respectively 21

Table 10 Relation constructed from γ(application schema, application part) 22

Table 11 Relation r and s, respectively 22

Table 12 Breakdown in parts of relations r and s 22

Table 13 Application part of relations r and s 23

Table 14 Result of addition operation 23

Table 15 Concatenation of the contextual information with the base result 23

Table 16 Result relation to the query 23

Table 17 Defining available operations in RMA 24

Table 18 Bitmaps of attributes jcode and ejob of the jobs and employees relations 27

Table 19 Relational matrix cross-product betweent jcode and ejob 28

Table 20 Identity matrix with N=3 28

Table 21 jcode bitmap from Jobs relation table and ID with N=3 29

Table 22 Converse of jcode bitmap from Jobs relation table 29

Table 23 Converse of jcode bitmap from Jobs relation table 30

Table 24 jcode relation bitmap from Jobs relation table and ejob relation bitmap from Employees

relation table 31

Table 25 Converse of jcode bitmap from Jobs relation table 31

Table 26 jsalary · jcode◦ · ejob relation bitmap and Identity matrix with size N=5 32

Table 27 Converse of jcode bitmap from Jobs relation table 32

Table 28 Example relations A and B 33

Table 29 Hadamard product between relations A and B 33

Table 30 Relational bitmaps tables from Jobs relation needed to solve the query 34

Table 31 Relational bitmaps tables from Employees relation needed to solve the query 34

vi

L I S T O F TA B L E S vii

Table 32 jcode relation bitmap from Jobs relation table 35

Table 33 jcode◦ · ejob 35

Table 34 jsalary · jcode◦ · ejob 35

Table 35 V ▽ ID 35

Table 36 ebranch◦ 36

Table 37 (V ▽ ID) · ebranch◦ 36

Table 38 ecountry · (V ▽ ID) · ebranch◦ 36

L I S T O F L I S T I N G S

3.1 Simple query example . 16

3.2 MAL program . 16

3.3 Query 2 example . 17

3.4 Query 2 MAL Plan . 17

4.1 SQL extension . 25

5.1 Compute the CPD between jcode and ejob . 28

5.2 Compute the CPD between jcode and ID . 29

5.3 Compute the CPD between jcode and ID . 30

5.4 Compute MMU between jcode◦ and ejob . 31

5.5 Compute KR between V and id5 . 32

5.6 Compute Hadamard product between A and B . 33

5.7 Jobs and Employees SQL query example . 34

5.8 Jobs and Employees RMA query example . 37

viii

1

I N T R O D U C T I O N

According to Salley and Codd (1998), “[...] relational DBMS were never intended to provide the very powerful
functions for data synthesis, analysis and consolidation that is being defined as multi-dimensional data analysis.”

Database systems have been at the forefront of research in computing, fueled by the industry, due to the need
not only for data storage but also for data analysis. In the age of information, more and more companies depend
on services that allow them to make more informative and complete decisions based on their massive information
data banks. The size of such data banks have been growing exponentially over the years and therefore, the need
for reliable and fast services and technologies is a priority in today’s world.

As research progresses and industry makes use of it, many companies opt to implement multidimensional
analysis techniques in their data warehousing (DW) database systems — multiple categories into which the data
are broken down — to maximize the value of the stored data, extracting as much useful information as possible.
For example, a sales company might have several dimensions related to location(country, state), time(year,
month, day), products(food, clothing, brand) and many more. Such a technology, referred to as Online Analytical
Processing (OLAP) (Salley and Codd, 1998) (Chaudhuri and Dayal, 1997), provides a more efficient and robust
way of organizing information leading to a more efficient way of querying such databases. As expected from these
systems, in spite of the complexity and dimensions involved, their main focus is to minimize the querying response
time.

Online analytical processing and its multidimensional analysis is based on the OLAP Hypercube (multidimen-
sional cube) (Datta and Thomas, 1999). The Hypercube is an array-based multidimensional structure that extends
the traditional two-dimensional table model, typically found in relational databases, with additional layers, more
accurately named dimensions. In the example given previously, these would be location, time and products.
Dimensions refer to the qualitative side of the Hypercube.

There is also the quantitative side, being the actual facts of the Hypercube which, referred to as measures,
correspond to consolidated data like number of sales or prices of products. Along with these two distinct sets of
attributes, come operations that can be performed with the Hypercube and its algebra (Datta and Thomas, 1999).

As studied by Macedo and Oliveira (2015) and Oliveira and Macedo (2017), there is a lack of a formal standard
conceptual model for OLAP, able to unify the Hypercube algebra and semantics, both the qualitative side, the
dimensions, and the quantitative side, the measures. As a result, the authors proposed Type Linear Algebra (TLA)
to replace the mainstream Relational Algebra (RA) to encode and resolve OLAP queries. A full understanding of

3

1.1. Challenges and goals 4

RA and its higher abstraction language SQL can be consulted in Afonso (2018). As for TLA, the next chapter
presents an overview of the research and results achieved so far by Macedo and Oliveira (2015) and Oliveira and
Macedo (2017).

Taking such previous work into account, Afonso (2018) developed a novel database management system
(DBMS) based on TLA and named Linear Algebra Querying (LAQ) engine. This engine takes as input the LAQ
scripting language and produce a C++ equivalent version. It implements the building block of Linear Algebra, the
matrix, and a minimal Linear Algebra (LA) kernel. The LAQ engine was tested and validated with queries from a
standard benchmark suite, the TPC-H. When comparing its performance against competitive systems, namely
MonetDB, the results were promising but did not top the latter. One main contribution was a paper submitted to
VLDB (Afonso et al., 2018), whose reviews pointed to relevant clues to improve the work already done. With this
knowledge in hand, MonetDB was taken as the target for a deeper study of its software stack and database kernel.

MonetDB is a state-of-the-art DBMS targeting mainly data warehousing systems. In constant development
and improvement since 1993 (Idreos et al., 2012), MonetDB pioneered the column-wise database storage model
that has reached industry-level usability in various fields, such as business and science. MonetDB is a full-stack
software product which is the focus of Chapter three in this dissertation, which also exposes the "guts" of MonetDB
and its internals, from the front-end layer to the database kernel.

Alongside of MonetDB, there is already database system in development at ETH Zurich that mixes Relational
Algebra in Linear Algebra called Relational Matrix Algebra (RMA) (Dolmatova et al., 2020b). This novel system is
an extension to MonetDB and already integrates some Linear Algebra operators. Through RMA, more operators
will be defined that are needed to implement queries according to TLA theory.

1.1 C H A L L E N G E S A N D G O A L S

The background of this dissertation starts with the work of Macedo and Oliveira (2015), who proposed a way to
replace RA by TLA to encode and resolve OLAP queries. Afonso (2018) developed a novel DBMS based in TLA
with a minimal LA kernel, testing and validating it against the standard TPC-H benchmark suite. The results were
promising but did not top the fully fledged MonetDB DBMS.

This dissertation aims to make a change in the approach followed in such previous work: the goal is to take
advantage of MonetDB and RMA software and address it from a TLA approach, using the web prototype built by
Pereira and Baptista (2019), to bridge the user interface with a strong and fully fledged DBMS.

The key challenges and goals in this dissertation work include:

• to improve the web prototype and build a bridge that connects it to MonetDB;

• to use the key-value pair paradigm data-unit present in MonetDB and its extension RMA, to develop an
approach to LA;

• to develop a minimal set of operations in MonetDB/RMA scripting language for TLA operators;

• to improve the MonetDB performance through TLA, namely in query plan optimization.

1.2. Dissertation outline 5

1.2 D I S S E R TAT I O N O U T L I N E

The current Chapter gave an overview of the work previously developed by the cited authors, helping in under-
standing the multitude of concepts that are embodied in such research work. Chapter 2 "lifts the lid" on what TLA
is and how it works. Chapter 3 is an insightful look and explanation of the MonetDB software layers, the frontend,
the backend and the database kernel. Chapter 4 addresses RMA system architecture, the newly defined matrix
operators and how to integrate them in MonetDB. Chapter 5 goes through the new implemented operators that
were missing, to be able to compute queries in compliance with TLA, including a case study. Chapter 6 concludes
this document with a synthesis of the work carried out and presents suggestions for future work.

2

T Y P E D L I N E A R A L G E B R A F O R O L A P

SQL is beyond doubt the mainstream query language for database engines underlying OLAP operations. However,
as noted previously by Macedo and Oliveira (2015), there is a lack of a formal standard conceptual model for
OLAP that unifies the Hypercube algebra and its semantics. Their proposal of Typed Linear Algebra (TLA) comes
into play to improve RA (and consequently SQL) especially in the quantitative side of the operators, such as data
aggregations or cross-tabulations, which are key opertors to deal with data analysis.

This Chapter provides an overview of the improved and more elegant way of approaching a query through TLA,
with a minimal kernel of LA operators and its data representation. For the interested reader, Macedo and Oliveira
(2015) and Oliveira and Macedo (2017) can be consulted to develop a deeper understanding of TLA.

2.1 F O U N D AT I O N O F T L A Q U E R Y I N G A N D T Y P E D I A G R A M S

As a starting point for describing the TLA approach, consider the following example with two relational tables
(Table 1): a job table with a job code plus its description and monthly salary, and an employees table with an
identification number, a reference to the job assigned to the employee, plus the employee’s name, the branch of
activity and the country.

j_code j_desc j_salary
PR Programmer 1000
SA System Analyst 1100
GL Group Leader 1333

e_id e_job e_name e_branch e_country
1 PR Mary Mobile UK
2 PR John Web UK
3 GL Charles Mobile UK
4 SA Ana Web PT
5 PR Manuel Web PT

Table 1: Jobs and employees tables

These two tables can be combined into a single diagram, more visual appealing to the eye, giving birth to the
so called Type Diagram (TD), Figure 1. TDs abstract from the unnecessary knowledge of the actual facts that
tables contain, allowing a graphical way of representing a full database schema, as also designing and planing
every possible query.

Figure 1, shows two main entities: #j and #e. These entities represent the cardinality of jobs and employees
table records, respectively, and can be seen as the "two centers" of the TD. Surrounding both entities and with the

6

2.2. Matrices as Arrows 7

D

1 #j
jsalary
oo

jcode
��

jdesc

OO

N

K #e
ebranch //

ecountry
��

ename

OO

ejoboo B

C

Figure 1: Jobs and employees type diagram

origin in them, there are multiple arrows, jcode or jdesc for example, referring to every attribute that each entity has,
correlating to each table. At the end point of each arrow are the number of possible values that each attribute
has. In sum, each arrow represents a binary relation between two types. The careful reader may be able to
identify a difference between two notations in the TD, since one stands out for having the correspondent attribute
in exponential (Figure 2), contrasting with all others that are at the index (Figure 3, for example).

1 #j
jsalary
oo

Figure 2: Relation jsalary

K #j
jcode

oo

Figure 3: Relation jcode

This is an important distinction in the notation made to identify the notions of measure and dimension, in
Figures 2 and 3: the quantitative and the qualitative attributes, respectively.

Generally speaking, tables like Table 1 can be broken into sub-tables according to their attributes, giving
rise to a binary relation for each sub-table created. Each binary relation, represented by an arrow, has finite
types associated, given by their cardinalities, with the exception that if the binary relation refers to a measure, its
particular type is the unitary type, one.

2.2 M AT R I C E S A S A R R O W S

In the previous section, one deconstructed the TD from Figure 1 and arrived to the construction of a single arrow.
What if now, one thinks of arrows as a matrices ?

Effectively, this question is the core of TLA. From this point on, every arrow represents a matrix, the latter being
the data representation used by linear algebra. More, arrow notation is usually associated with the representation
of functions, creating the notion that a matrix can be thought of as a function, as shown in Figure 4.

2.3. TLA algebraic querying operators 8

b a
M
oo

Figure 4: Matrix M from type a to type b

Understanding how information initially encapsulated in relations gets converted to matrices is straightforward:
take the jobs table in Figure 1 and, for each attribute, create a sub-table, as shown in Table 2.

jcode 1 2 3
GL 0 0 1
PR 1 0 0
SA 0 1 0

jdesc 1 2 3
Group Leader 0 0 1
Programmer 1 0 0
System Analyst 0 1 0

Table 2: jcode and jdesc sub-tables

The jcode and jdesc are attributes that represent dimensions, and therefore result in matrices that are refereed
as bitmaps. As stated previously, matrices can be thought as functions. In the case of the arrow representing jcode

(Figure 3), it receives an argument of type #j, the cardinality of records in the jobs table, and produces a value of
type K, the cardinality of the distinct values that jcode can assume. In sum, for a given row of the table jobs, its
corresponding column in the matrix jcode identifies the attribute value (K), by checking the row which contains the
value "1".

jsalary 1 2 3
1000 0 0 1
1100 1 0 0
1333 0 1 0

jsalary 1 2 3
1 1000 1100 1333

Table 3: jsalary sub-table

As what concerns jsalary, this attribute of the jobs table represents a measure, and instead of representing
measures as bitmaps (Figure 3 left), these will collapse into a specific matrix structure with only one row (Figure 3
right), the vector.

Arranging all three matrices through their arrow notation, one can build the jobs table TD (Figure 5).

If the same process is applied to the employees table, this will get as a result the TD shown in Figure 1.

2.3 T L A A L G E B R A I C Q U E R Y I N G O P E R AT O R S

Queries in TLA are represented by LA expressions that emerge from TD such as Figure 1. Algebraic expressions
are used to simplify a query, step by step. One can go to a TD of a database schema and "choose a path" that
will represent a query. With this "path chosen" and using TLA algebraic operators, one can start simplifying the
original TD until it reaches a single arrow (algebraic expression).

From the range of the LA operators, three key algebraic operators essential for TLA query resolution are (i) the
dot product, (ii) the Khatri-Rao product and (iii) the Hadamard-Schur product. Complementing these operators are

2.3. TLA algebraic querying operators 9

D

1 #j
jsalary
oo

jcode
��

jdesc

OO

K

Figure 5: Jobs TD

three more derivations: filtering, folding and lifting. Each of these algebraic operators will be briefly explained, first
through their respective TD and later through LA operators.

2.3.1 Matrix-matrix multiplication

C = A . B describes the multiplication of matrices A and B, where each element of the resulting matrix C is the
dot product of a row in A with a column in matrix B. The operator for this matrix multiplication in this document is
referred to as a dot product. As a requirement for this operation, the number of columns in A needs to match the
number of rows in B. Therefore, the dimension of matrix A must be i × k and matrix B must be k × j, where the
first element is the number of rows and the second element is the number of columns. The dimension of the result
matrix C is i × j.

An element in C — cxy, where x represents the row number and y represents the column number — is given
by the following definition of the dot product:

cxy = ax1 × b1y + ax2 × b2y + ... + axk × bky =
k

∑
n=1

axn × bny (1)

A step by step example can be followed below.

1 2
3 4
5 6

 .
[

1 2 3
4 5 6

]
=

1 × 1 + 2 × 4 1 × 2 + 2 × 5 1 × 3 + 2 × 6
3 × 1 + 4 × 4 3 × 2 + 4 × 5 3 × 3 + 4 × 6
5 × 1 + 6 × 4 5 × 2 + 6 × 5 5 × 3 + 6 × 6

 =

 9 12 15
11 26 33
29 40 51

Figure 6: Example of a matrix-matrix multiplication

Figure 7 is the TD representation of the dot product operation.
Thinking of matrices as functions, one can identify a similarity between functional composition and matrix

multiplication. Both have to meet the similar requirement that matrices dimensions have to align just like types in
function composition, allowing the representation of this operator by C = A . B.

2.3. TLA algebraic querying operators 10

k j

i

A
A.B

B

Figure 7: Dot product TD

2.3.2 Khatri-Rao product

C = A ▽ B describes the Khatri-Rao product between matrices A and B with C as result. As a requirement for
this operation, the number of columns in A needs to match the number of columns in B. Therefore, A dimension
must be i × k and B dimension j × k. The dimension of the result matrix C is (i ∗ j)× k.

Values in C are obtained by multiplying each row of A by the whole matrix B, row by row.

A step by step example can be followed below.

[
1 2
3 4

]
.

1 2
3 4
5 6

 =

1 × 1 2 × 2
1 × 3 2 × 4
1 × 5 2 × 6
3 × 1 4 × 2
3 × 3 4 × 4
3 × 5 4 × 6

 =

1 4
3 8
5 12
3 8
9 16

15 24

Figure 8: Khatri-Rao product example

Figure 9 is the TD representation of the Khatri-Rao product operation.

i i × j j

k

BA

π1 π2

A▽B

Figure 9: Khatri-Rao TD

Playing the same analogy game as in the dot product operation, the similarity this time is between the functional
split, defined by (f▽g)x =< f (x), g(x) >. One special property of this operator is that there is no loss in
information, since the original matrices can be retrieved.

2.3. TLA algebraic querying operators 11

2.3.3 Hadamard-Schur product

C = A× B describes the Hadamard-Schur product between matrices A and B with C as result. As a requirement
for this operation, both matrices must have the same dimensions. Therefore, A dimension must be i × j and B
dimension i × j. The dimension of the result matrix C is i × j as well.

Values in C are obtained by multiplying each element of A by the correspondent element in matrix B, being a
point to point matrix multiplication.

A step by step example can be followed below (Figure 10).

[
1 2
3 4

]
.
[

5 6
7 8

]
=

[
1 × 5 2 × 6
3 × 7 4 × 8

]
=

[
5 12
21 32

]

Figure 10: Hadamard-Schur product example

2.3.4 Filter

The filter operation is the equivalent to the relational selection. It filters the columns of a matrix based on the labels
of its corresponding rows. This filter is obtained by combining a predicate and a matrix as input. Applying the
predicate directly to the matrix labels, generates a Boolean vector stating which labels comply with the predicate.
The next step is applying the dot product between the newly created vector and the initial matrix, generating
another Boolean vector, identifying the columns that have a row satisfying the predicate. Figure 11 represents the
filter operation TD.

i j

1

B
f .A=σ(A f)

A

Figure 11: Filter TD

Below, an example of the filter operator is given.

2.3.5 Fold

"!" or bang, is a vector of arbitrary length, with all its elements being "1". It is mainly used to condense information,
reducing a matrix to a single value. Combining bang with dot product, allows for the implementation of aggregation
function such as sum, count, avg, min or max. The TD below (Figure 14) shows how one can combine the
operators.

2.3. TLA algebraic querying operators 12

(̸= SA) =

[
GL PR SA
1 1 0

]
.

1 2 3 jcode
0 0 1 GL
1 0 0 PR
0 1 0 SA

Figure 12: Dot product between the predicate (̸= SA) and the initial matrix

σ(jcode ̸= SA) =

[
1 2 3
1 0 1

]

Figure 13: Final result of the filter operation

i j

1

!◦

A

f old(A)=A.!◦

Figure 14: Fold TD

Figure 15 illustrates one use of the aggregation function sum.

sum(jsalary) =
[
1000 1100 1333

]
.

1
1
1

 = 3433

Figure 15: Fold example

2.3.6 Lift

The lift operator is the application of a mathematical expression to a vector, or a set of vectors, corresponding
to the function arguments. This is done for each element in the provided vector(s), creating a new vector(s) as
shown in Figure 16.

li f t(2 × jsalary) = 2 ×
[
1000 1100 1333

]
=

[
2000 2200 2666

]
Figure 16: Lifting example

2.4. Query example 13

2.4 Q U E R Y E X A M P L E

As an example to illustrate the TLA operators and data model working, the database shown in Figure 1 is going to
be used to perform the following query: obtain the total monthly salary per country/branch, ordering the result by
countries.

This query involves three main attributes from the TD shown in Figure 1: the salary of a job and all the countries
and activity branches of all employees. From this point, one can start cleaning up and preparing the TD from the
specific query to achieve, drawing the specific paths and removing entities that are not necessary, as show in
Figure 17.

1 #j

K #e B

C

jcode

ejob

ecountry

ebranch

Q

V

Figure 17: Query type diagram

One can identify two new arrows in the TD, V and Q. Q is the tabulation that is required between (and from)
activity branches and (to) countries between employees. V is the result of getting every salary of each employee.

Both these results, Q and V, can be combined into a single TLA script:

Q = ecountry . (V ▽ ID) . e◦branch

where V = jsalary . j◦code . ejob
(2)

As seen before in Section 2.2, every arrow (or relation) gives place to a specific matrix and what is show in the
TLA script is indeed a chain of arrows, a path, and therefore a chain of matrices. This path is resolved by TLA
operators, namely dot and Khatri-Rao products of matrices to achieve the result of the query.

ecountry mobile web
PT 0 2100
UK 2333 1000

Table 4: Query result

2.5. Summary 14

2.5 S U M M A R Y

This chapter gave an overview of the TLA proposal for data representation and querying, with an example. TLA
provides the encoding of relational tables into matrices through attribute-wise partitioning of relational data, thus
allowing for an inherently column-wise database approach.

Matrices and their dimensions can be described through the arrow notation, with types being the matrices
dimensions, enabling the use of TD for a graphical and more elegant way of representing database schema and
its queries. Through this notation of matrices seen as function, TLA ensures type correctness by construction.

3

A R C H I T E C T U R E O F M O N E T D B

MonetDB is a state-of-the-art Database Management System (DBMS) developed at the Centrum Wiskunde &
Informatics (CWI, Netherlands) in 1993 and now owned by MonetDB Solutions company. This DBMS is a pioneer
in the development of a column-wise approach to database storage, providing a modern and scalable solution for
the current systems.

Besides the column storage main feature, MonetDB also aimed to innovate all layers of its software stack, with
a CPU-tuned query execution architecture, indexing features, a run-time query optimizer and others, keeping in
mind a good modular software architecture. At the front-end of the software layers, the main interaction language
between a user and the DBMS is SQL, based on the SQL 2003 standard, offering full support for foreign keys,
joins, views, triggers, and stored procedures. MonetDB complies with the ACID standard model and supports a
rich spectrum of programming interfaces such as Java Database Connectivity, Python, C/C++ and others.

MonetDB features a three-level software stack. The first level contains a SQL interpreter and a translator, the
second level is a combination of query plan tactical optimizers and the last level is a columnar abstract-machine
kernel. Good modularity at all layers allows for external developers and researchers to build on top of MonetDB or
even modify one or more layers.

MonetDB shines in applications where the database hot-set can largely fit in main-memory, exploiting cache-
awareness algorithms to further improve its performance. Due to the columnar approach, MonetDB takes great
advantage of its multi-core parallel execution.

3.1 T H E F R O N T E N D

The first layer of MonetDB contains the SQL interpreter and a translator to a domain specific language. Through a
client program, a user can interact with the server, using SQL as the input language. Upon receiving a SQL query,
the client program translates it into a MonetDB Assembly Language (MAL) query. Appendix A.1 shows a script
that loads the database schema used in chapter two into MonetDB.

15

3.1. The frontend 16

3.1.1 MonetDB Assembly Language and its algebra

MAL is the Domain Specific Language (DSL) of the database kernel. This DSL reflects the virtual machine
architecture of the kernel libraries, being designed for speed of parsing, ease of analysis and ease of target
compilation by query compilers. A MAL program is considered of an intended computation and data flow behaviour,
adopting a functional style definition of actions.

MAL is the target language for query compilers at the frontend layer. Even simple SQL queries, as the one
showed in Listing 3.1, can generate a long sequence of MAL instructions, as shown in Listing 3.2.

SELECT e_name

FROM "empl";

Listing 3.1: Simple query example

1 function user.main():void;

2 querylog.define("explain\nselect e_name\nfrom \"empl\";":str, "default_pipe

":str, 19:int);

3 barrier X_80:bit := language.dataflow();

4 X_24:bat[:str] := bat.pack("sys.empl":str);

5 X_25:bat[:str] := bat.pack("e_name":str);

6 X_26:bat[:str] := bat.pack("char":str);

7 X_27:bat[:int] := bat.pack(15:int);

8 X_28:bat[:int] := bat.pack(0:int);

9 X_4:int := sql.mvc();

10 C_5:bat[:oid] := sql.tid(X_4:int, "sys":str, "empl":str);

11 X_17:bat[:str] := sql.bind(X_4:int, "sys":str, "empl":str, "e_name":str, 0:

int);

12 X_22:bat[:str] := algebra.projection(C_5:bat[:oid], X_17:bat[:str]);

13 exit X_80:bit;

14 sql.resultSet(X_24:bat[:str], X_25:bat[:str], X_26:bat[:str], X_27:bat[:int

], X_28:bat[:int], X_22:bat[:str]);

15 end user.main;

Listing 3.2: MAL program

Listing 3.2 is effectively the MAL program of the SQL query in Listing 3.1. One can obtain such description by
prepending the EXPLAIN statement to the query script. With this statement, one can have every translation from
a SQL query to a MAL program, in a step by step way.

A MAL program can be broken essentially into three parts: (i) a group of setup operations, (ii) another group
with real computations using MAL algebra, and (iii) a return statement with the query result. If one takes a look
to Listing 3.2, it is possible to identify the groups within these statements. From line 2 to line 10, this group of
statements corresponds to the setup statements.

3.1. The frontend 17

The bat.pack operation materializes the received as argument into a Binary Association Table (BAT) which is
the key data structure for the columnar representation of MonetDB. BATs will be explained in a section ahead.
The sql.mvc operation is a loading mechanism of the SQL subsystem of MonetDB. As for the sql.tid operation,
this gives the knowledge to the database of what tables are actually visible to operate on given the user that is
using the client. Finally closing the setup group statements, the operation sql.bind loads the table received as an
argument to a BAT, effectively materializing it.

Jumping to the MAL algebra group, line 12, one encounters the algebra.projection. In this example it is easy to
compare the original SQL query to this operation since this is just a attribute selection, but for the purpose of a
simple demonstration of what a MAL program is, choosing the most simple query possible is the optimal solution
given that MAL programs can grow disproportionally while comparing to the SQL version.

The final group is the single statement in line 14, sql.resultSet operation prepares the result table that is going
to be sent to the front-end client.

All these mentioned operators are just a small part of a much bigger set of operators that are implemented in
MonetDB. A full compendium of the MAL algebra operators can be found in the appendix B.

3.1.2 Query planning

Alternatively to the EXPLAIN statement, one can use the PLAN statement. This results in a more simpler view of
how the query will carry its execution.

Query plans are much more compact then query traces and therefore a more complex query (in Listing 3.3)
can be used to demonstrate how the result query is shown to the user.

SELECT e_branch, e_country, sum(j_salary)

FROM empl, jobs

WHERE j_code = e_job

GROUP BY e_country, e_branch

ORDER BY e_country;

SELECT e_name

Listing 3.3: Query 2 example

1 project (

2 | group by (

3 | | join (

4 | | | table("sys"."empl")

5 | | | table("sys"."jobs")

6 | |) ["empl"."%empl_e_job_fkey" NOT NULL = "jobs"."%TID%" NOT NULL JOINIDX "

sys"."empl"."empl_e_job_fkey"]

7 |) ["empl"."e_country" NOT NULL, "empl"."e_branch" NOT NULL] ["empl"."

e_country" NOT NULL, "empl"."e_branch" NOT NULL, "sys"."sum" no nil ("jobs".

"j_salary" NOT NULL) NOT NULL as "%1"."%1"]

3.2. The backend 18

8) ["empl"."e_branch" NOT NULL, "empl"."e_country" NOT NULL, "%1"."%1" NOT NULL

] ["empl"."e_country" ASC NOT NULL]

Listing 3.4: Query 2 MAL Plan

With a careful observation of Listing 3.4, one can understand it straightforwardly and make a good comparison
with the SQL query.

3.2 T H E B A C K E N D

After processing the SQL query and translating it into a MAL program, the MonetDB server has a pipeline
mechanism to improve that same MAL program. This pipeline of optimizers has operations like removing dead
code or garbage collection of temporary variables.

3.3 T H E K E R N E L

3.3.1 Goblin Database Kernel

The innermost library of the MonetDB database system is formed by the library called the Goblin Database Kernel
(GDK). Its development was originally rooted in the design of a pure active-object-oriented programming language,
before development was shifted towards a re-usable database kernel engine.

GDK is a C library that provides ACID properties, using main-memory database algorithms built on virtual-
memory OS primitives and multi-threaded parallelism. The GDK implements operators that work directly with
MonetDB data unit, the BAT, and supports one built-in search accelerator for hash tables, to accelerate lookup
and search in BATs, given that hash tables implementation is efficient for main-memory.

3.3.2 The data model with Binary Association Tables

A BAT is a self-descriptive main-memory structure that represents the binary relationship between two atomic
types, being implement as an array.

BATs are built on the concept of heaps, but if the system grows out of memory, GDK supports operations that
cluster BAT heaps, to improve the performance of its main-memory. All BATs are registered in the BAT buffer pool.
This directory is used to guide swapping in and out of BATs. Table 5 and 6 show how a relational table can be
represented in a BAT form.

3.4. Summary 19

j_code j_desc j_salary
PR Programmer 1000
SA System Analyst 1100
GL Group Leader 1333

Table 5: Jobs relation table

OID j_code
100 PR
101 SA
102 GL

OID j_desc
100 Programmer
101 System Analyst
102 Group Leader

OID j_salary
100 1000
101 1100
102 1333

Table 6: Jobs relation table with BAT representation

3.4 S U M M A R Y

This chapter was devoted to dissecting the MonetDB architecture and its internals. Binary Association Tables
are a key finding for the development of this work, because a BAT is essentially a key-value pair data structure,
effectively bringing MonetDB and TLA closely together.

4

R E L AT I O N A L M AT R I X A L G E B R A

The Relational Matrix Algebra system, RMA, is effectively an extension to MonetDB developed at ETH Zurich by
Dolmatova et al. (2020a), Dolmatova et al. (2020b). The authors proposed an extension to the relational model
with matrix operations, without modifying the MonetDB main data structure, the BATs, or its process pipeline,
leading to not affecting the existing functionality and proven performance.

The first iteration of RMA implements a set of basic operations such as matrix addition or matrix cross-product.
These operations were carefully chosen in order to develop a set of performance benchmarks to be compared
with the original DBMS MonetDB. Its notation and theory will be briefly described, with the concern of trying to
find parallel concepts to the TLA theory. Chapter 5 will specifically address which characteristics appear to have
similarities and what was done to further explore this concept of using LA in the relational model.

The extension was done on all the three layers in MonetDB, from the frontend — extending the SQL interface to
be able to recognize the new matrix operators — to the backend and, consequently, the Goblin Database Kernel,
adding functionally at the level of the MAL.

4.1 N O TAT I O N O F R E L AT I O N S A N D M AT R I C E S

Consider a relation like the one in Table 7, with m tuples.

jcode jdesc jsalary

PR Programmer 1000
SA System Analyst 1100
GL Group Leader 1333

m 1
1 PR
2 SA
3 GL

Table 7: Jobs relation table and matrix M

RMA defines some notations and operators that are necessary to better understand the new concepts:

• the schema of relation jcode is the set of attributes {jcode, jdesc, jsalary};

• |jcode| denotes the number of tuples and # jcode denotes the number of columns (attributes) in relation
jcode;

20

4.2. Relations and matrices constructors 21

• column cast of attribute U, ▽U, is a operation that creates a set of ordered values of an attribute U that
forms a key in a relation and is to generate a schema, for example, ▽jcode = (PR, SA, GL);

• schema cast of set U, △U, is a operation that creates a matrix with a single column from the attributes of
a set, for example, considering the set U = (PR, SA, GL), △U creates matrix M in Table 7;

• matrix concatenation, |A □ B|, is the operation of concatenating matrix A, with |A| = m and #A = k, and
matrix B, with |B| = n and #B = k;

• matrix operations are shape restricted, meaning, the number of result rows is equal to the number of rows
of one of the input matrices (r), the number of columns of one of the input matrices (c), or one (1). The
same holds for the number of result columns;

• this shape restriction defines the shape type of the matrix operations, writing r1 if the dimension of the
result is equal to the number of rows in the first matrix, r2 if the dimension of the result is equal to the
number of rows in the second matrix, and r∗ if the result dimension is equal to the number of rows in the
first and second matrix (meaning, r1 = r2); the same notation holds for the number of columns.

Table 8 presents the shape types of the newly added matrix operations in RMA.

Cardinality Shape type Operations
|a1 × b1|, |a1 × b1| −→ |a1 × b1| (r∗, c∗) ADD
|a1 × b1| −→ |a1 × b1| (r1, c1) QQR
|a1 × b1|, |a1 × 1| −→ |b1 × 1| (r∗, c∗) SOL
|a1 × b1|, |a1 × b2| −→ |b1 × b2| (c1, c2) CPD

Table 8: Shape types of matrix operations

Additionally, a relation can always be divided in four parts: order schema - containing the attributes, one or
more, that form the key of the relation; application schema - containing all the attributes that are not key in the
relation; order part - contains the values (or tuples if the key has more then one attribute) of the order schema;
application part - contains all the tuples formed by the application schema. Table 9 is the example of all the parts
that relation jcode can be divided in.

jcode jdesc jsalary
PR
SA
GL

Programmer 1000
System Analyst 1100
Group Leader 1333

Table 9: Order schema, application schema, order part, application part of relation jcode, respectively

4.2 R E L AT I O N S A N D M AT R I C E S C O N S T R U C T O R S

To define the relational matrix operations, two relevant definitions are needed to make the switch from relations to
matrices and vice versa: the matrix constructor and the relation constructor.

4.3. From relations to matrices and back 22

A matrix constructor, µ, takes a set of values and constructs a matrix from them. For instance, looking at the
order schema of the relation jcode, µjcode jcode returns the matrix containing the values of the set that is the order
part of the relation (Table 9).

Relation constructor, γ takes a matrix and a schema and builds a relation from these two. For instance, Table 9
has a set in application schema and a matrix in application part. γ(application schema, application part)
creates the relation that can be found in Table 10.

jdesc jsalary

Programmer 1000
System Analyst 1100
Group Leader 1333

Table 10: Relation constructed from γ(application schema, application part)

With these two key constructors definitions plus the the previous mentioned notations and definitions, the matrix
relational operators are now ready to be defined.

4.3 F R O M R E L AT I O N S T O M AT R I C E S A N D B A C K

Consider relations r, s and the following query: perform addition on relations r and s. The result relation is
composed from the order schema, order part, application schema and application part, with the help of the
constructors of relations and matrices.

U X Y
A 1 2
B 3 4

T W Z
C 4 1
D 1 2

Table 11: Relation r and s, respectively

Tables in 12 and 13 are the result of breaking down relations r and s with matrix constructors.

U X Y
1

1 A
2 B

T W Z
1

1 C
2 D

Table 12: Breakdown in parts of relations r and s

4.4. Operations in RMA 23

With both relations applications part, the addition operator can now be applied to both matrices, with the result
shown in Table 14.

1 2
1 1 2
2 3 4

1 2
1 4 1
2 1 2

Table 13: Application part of relations r and s

1 2
1 5 3
2 4 6

Table 14: Result of addition operation

Once the operation in the application parts is concluded, the contextual information necessary in order to keep
the result coherent needs to fall in place. For this to happen, the concatenation operator, □, is used to "glue"
back together the order part from both relations r and s to the result of the addition. After the concatenation, the
result is a matrix, Table 15, with the contextual information needed and the result of the addition. One more step is
needed in order for the result to be a valid relation and not a matrix.

1 2 3 4
1 A C 5 3
2 B D 4 6

Table 15: Concatenation of the contextual information with the base result

The last step is building a relation through the relation constructor, γ. This constructor for the addition operator
takes as argument the matrix in Table 15 and schemas U and T and returns the final and valid result.

U T X Y
A C 5 3
B D 4 6

Table 16: Result relation to the query

Figure 18 illustrates the big picture of how RMA breaks down a query in order to solve it and return a valid
result.

4.4 O P E R AT I O N S I N R M A

Table 17 shows all available relational matrix operations available in RMA. RMA currently has one unary operation,
matrix qr decomposition (qqr), and 3 binary operations, matrix addition (add), solve equation system (sol) and the
matrix cross-product (cpd). Every relational matrix operation is defined with the relation or relations that is going
to work on and their specific schemas.

4.5. RMA implementation in MonetDB 24

Figure 18: Addition over relations r and s

Shape type Operation Definition

(r∗,c∗) add opU;T(r, s) = γ(µU(r) □ µT(s)□ OP(µU(r), µT(s)), U ◦ V ◦ U)

(r1,c1) qqr opU(r) = γ(µU(r) □ OP(µU(r)), U ◦ U)

(c1,c2) sol opU;T(r, s) = γ(∆U □ OP(µU(r), µT(s)), (C) ◦ T)

(c1,c2) cpd opU;T(r, s) = γ(∆U □ OP(µU(r), µT(s)), (C) ◦ T)

Table 17: Defining available operations in RMA

Notice that RMA has no relational matrix operation for matrix multiplication nor matrix transpose.

4.5 R M A I M P L E M E N TAT I O N I N M O N E T D B

The implementation of relational matrix operations includes the processing of context information and the
calculation of basic results. Context information is processed internally in MonetDB, and the calculation of basic
results can be done in MonetDB or delegated to an external library (such as Math Kernel Library). The integration
of each relational matrix operation required extensions in the entire system, but with the key point that no new
data structures are created neither changes to the query processing pipeline.

Figure 19 illustrates the algorithm that computes the addition over two relations, on the desired attributes:

• splitting separates the contextual information from the application part of both relations;

• sorting orders application parts according to the sorted contextual information;

• morphing puts together the contextual information according to the relation matrix addition definition in
table 17;

4.6. Summary 25

Figure 19: Splitting, sorting, morphing eval and merging in query v = addU;T(r, s)

• eval computes the matrix addition; this operation can be computed inside MonetDB or can be delegated to
an outside library;

• merging constructs a valid result through the relation constructor concept, as seen in section 4.2.

4.5.1 SQL extension

MonetDB SQL parser was extend to make the relational matrix operations available, using the FROM clause.

SELECT *
FROM (r on X,Y) add (s on W,Z);

Listing 4.1: SQL extension

Listing 4.1, illustrates how queries are accepted as input in the RMA extension to MonetDB system. In the
FROM clause, the user needs to specify what attributes of both relations the RMA should perform the matrix
addition. RMA supports nested SELECT clauses for more complex queries.

The WITH .. AS clause is also very useful for query "cleanness" and "readability", as the reader will notice in
Chapter 5.

4.6 S U M M A R Y

This chapter was devoted to dissecting the RMA theory and how it is implemented in MonetDB. TLA and RMA
appear to share similar aims although through different approaches. RMA still has the strong component of
relational algebra that comes from MonetDB. This component in TLA is somewhat hidden behind composing
matrices or other operations, and its strong type system. Some examples are shown of how a query is computed.

4.6. Summary 26

In particular, relational matrix operation cross-product, cpd, is going to be very relevant for the work described in
chapter 5.

5

T L A E X T E N S I O N I N R M A

This Chapter describes how TLA query plans and operators can be implemented in RMA, and consequently on
MonetDB. The main goal is to see if there are any benefits to the alternative query plans that are proposed by
TLA, since these queries represent a different approach in the sense that they both aim to maximize the use of
linear algebra.

Since RMA does not have all matrix operations necessary for working with TLA, these operations had to be
derived from existing relational matrix operations, namely the cross-product. Section 5.2 will give the reader the
opportunity to follow along the use of the newly derived operations with an example, the same example that was
introduced in Section 2.4.

5.1 T H E M I S S I N G O P E R AT O R S

As seen in Chapter 2, two operations in TLA are essential to build queries and to "follow paths" in type diagrams: the
matrix transpose, or matrix converse, and the dot product in matrices, which correlates to functional composition.
Both are based on the definition of the relational matrix cross-product, present in RMA.

jcode c1 c2 c3
GL 0 0 1
PR 1 0 0
SA 0 1 0

ejob c1 c2 c3 c4 c5
GL 0 0 1 0 0
PR 1 1 0 0 1
SA 0 0 0 1 0

Table 18: Bitmaps of attributes jcode and ejob of the jobs and employees relations

Given two relations, X and Y, in which both application parts are numerical, the relational matrix cross-product
between these relations is given by:

CPD(X, Y) = X◦ · Y (3)

To compute the relational matrix cross-product between relations jcode and ejob (Table 18), the following query
is executed in the RMA system:

27

5.1. The missing operators 28

SELECT *
FROM (jcode on c1,c2,c3) cpd (ejob on c1,c2,c3,c4,c5);

Listing 5.1: Compute the CPD between jcode and ejob

The produced result is shown in Table 19.

jcode◦ · ejob c1 c2 c3 c4 c5
c1 1 1 0 0 1
c2 0 0 0 1 0
c3 0 0 1 0 0

Table 19: Relational matrix cross-product betweent jcode and ejob

5.1.1 Identity matrix

Although RMA has no definition to transpose a matrix or to multiply two matrices, these two operations are being
internally computed in the algorithm of relational matrix cross-product. This key finding is going to be leveraged to
produce and define new relational matrix operations.

A key concept to derive these new operations is the use of the Identity matrix, ID. The Identity matrix of size N
is the square matrix with N rows, N columns and with ones on the diagonal and zeros everywhere else, as shown
in Table 20.

1 0 0
0 1 0
0 0 1

Table 20: Identity matrix with N=3

In linear algebra, identity matrices act as the neutral element in dot-product operations. This property is going
to prove useful when deriving the relational matrix transpose (converse) and the dot product operations.

5.1.2 Matrix transpose

In linear algebra, the transpose of a matrix is an operation that "mirrors the input matrix over its diagonal". In other
words, for each element of that matrix, it switches the element row and column indexes.

Effectively, when defining relational matrix transpose in RMA, there are two problems that need to be solved:
the need to keep contextual information consistent, and to perform the matrix transpose on the application part of
the relation that is being transposed.

5.1. The missing operators 29

Given a relation X, the relational matrix transpose of X can be obtained by:

TRA(X) = CPD(X, ID) (4)

In fact, once the equality of Equation (4) is expanded, one can see how from the relational matrix cross-product
the relational matrix transpose operation is obtained:

TRA(X) = CPD(X, ID) where CPD(X, Y) = X◦ · Y

TRA(X) = X◦ · ID

TRA(X) = X◦

(5)

Let us now extrapolate this definition into the RMA system. Take the jcode relation bitmap from Jobs table and
the relation that represents the Identity matrix with N=3, as shown in Table 21.

jcode c1 c2 c3
GL 0 0 1
PR 1 0 0
SA 0 1 0

id3 c1 c2 c3
l1 1 0 0
l2 0 1 0
l3 0 0 1

Table 21: jcode bitmap from Jobs relation table and ID with N=3

First, one must create an Identity matrix that needs to be compatible with executing the dot product operation.
Therefore, the Identity matrix needs to be defined with N = 3.

SELECT * FROM (jcode ON c1,c2,c3) cpd (id3 ON c1,c2,c3);

Listing 5.2: Compute the CPD between jcode and ID

Secondly, if we create the SQL script and execute it directly in RMA, as shown in Listing 5.2, one faces with the
first problem mentioned before. Although the transposition of the application part and order part is successful, one
part of the contextual information gets lost in the computation of CPD, the application schema, as can be seen in
Table 22.

jcode c1 c1 c1
c1 0 1 0
c2 0 0 1
c3 1 0 0

Table 22: Converse of jcode bitmap from Jobs relation table

This problem is solved by using WITH..AS clause of SQL and renaming the part to the correct application
schema.

5.1. The missing operators 30

WITH

T1(jcode,GL,PR,SA) as (SELECT *
FROM (jcode ON c1,c2,c3) CPD (id3 ON c1,c2,c3,c4,c5));

SELECT * FROM T1;

Listing 5.3: Compute the CPD between jcode and ID

Listing 5.3 shows the proposed solution for defining relational matrix transpose and Table 23 is the result
achieved when properly resolving the relational matrix transpose for the jcode relation bitmap of the Jobs relation.

jcode◦ GL PR SA
c1 0 1 0
c2 0 0 1
c3 1 0 0

Table 23: Converse of jcode bitmap from Jobs relation table

5.1.3 Dot product

The matrix-matrix multiplication, here referred as dot product, is an operation that multiplies a matrix with another
matrix, using formally dot products. As seen in Section 2.3.1, there are some requirements for this operation to be
successful, or in other words, matrices "need to type" according to TLA theory.

To define the relational matrix dot product in RMA, the use of the relational matrix transpose is going to be
useful.

Given two relations X and Y, the relational matrix multiplication of X with Y can be obtained in RMA as follows:

MMU(X, Y) = CPD(CPD(X, ID), Y) (6)

Once the equality in Equation (6) is expanded, one can see how from the relational matrix cross-product, the
relational matrix multiplication operation is obtained:

MMU(X, Y) = CPD(CPD(X, ID), Y) where TRA(X) = CPD(X, ID) = X◦

MMU(X, Y) = CPD(X◦, Y) where CPD(X, Y) = X◦ · Y

MMU(X, Y) = X · Y

(7)

Let us now extrapolate this definition into the RMA system. Take the jcode◦ relation bitmap in Table 23 obtained
from using the newly defined TRA operations on relation jcode.

Listing 5.4 shows the SQL script that is executed in RMA. Note that T1 is the query result that comes from
executing the SQL script in Listing 5.2.

5.1. The missing operators 31

jcode◦ GL PR SA
c1 0 1 0
c2 0 0 1
c3 1 0 0

ejob c1 c2 c3 c4 c5
GL 0 0 1 0 0
PR 1 1 0 0 1
SA 0 0 0 1 0

Table 24: jcode relation bitmap from Jobs relation table and ejob relation bitmap from Employees relation table

WITH

T2 (jcodet,c1,c2,c3) as (SELECT * FROM (T1 ON gl,pr,sa) cpd (id3 ON c1,c2,c3)),

T3 as (SELECT * FROM (T2 ON c1,c2,c3) cpd (ejob ON c1,c2,c3,c4,

c5)),

SELECT * FROM T3;

Listing 5.4: Compute MMU between jcode◦ and ejob

Listing 5.4 shows the proposed solution for defining relational matrix multiplication and Table 25 is the result
achieved when properly resolving the relational matrix multiplication in the jcode◦ and ejob relational bitmaps.

jcode◦ · ejob c1 c2 c3 c4 c5
c1 1 1 0 0 1
c2 0 0 0 1 0
c3 0 0 1 0 0

Table 25: Converse of jcode bitmap from Jobs relation table

5.1.4 Khatri-Rao product

The Khatri-Rao multiplication between two matrices is an operation that distributes and multiplies each row of the
first matrix by all the rows of the second matrix. As seen in Section 2.3.2, there are some requirements for this
operation to be successful the same way that relational matrix dot product has requirements.

To define the relational matrix Khatri-Rao product in RMA, the use of the relational CROSS JOIN and scalar
multiplication is going to be useful. There is no need to use any RMA operations to define these new operations,
since relacional SQL already provides all needed operations.

5.1. The missing operators 32

Take the jsalary · jcode◦ · ejob relation bitmap in Table 26, obtained from using the newly defined TRA
and MMU operations on relations jcode, ejob and jsalary. Take as well the Identity matrix relation defined with
N=5, also in Table 26.

jsalary · jcode◦ · ejob c1 c2 c3 c4 c5
1 1000 1000 1333 1100 1000

id5 c1 c2 c3 c4 c5
l1 1 0 0 0 0
l2 0 1 0 0 0
l3 0 0 1 0 0
l4 0 0 0 1 0
l5 0 0 0 0 1

Table 26: jsalary · jcode◦ · ejob relation bitmap and Identity matrix with size N=5

Listing 5.5 shows the SQL script that is executed in RMA. For purposes of readability, relational bitmap
jsalary · jcode◦ · ejob is going to be referred as V.

SELECT c1*c1,c2*c2,c3*c3,c4*c4,c5*c5 FROM V,id5;

Listing 5.5: Compute KR between V and id5

Listing 5.5 shows the proposed solution for defining relational matrix Khatri-Rao product and Table 27 is the
produced result.

V ▽ id5 c1 c2 c3 c4 c5
l1 1000 0 0 0 0
l2 0 1000 0 0 0
l3 0 0 1333 0 0
l4 0 0 0 1100 0
l5 0 0 0 0 1000

Table 27: Converse of jcode bitmap from Jobs relation table

An important observation is that relational matrix Khatri-Rao can be used to transform a vector in a diagonalized
matrix, as seen in the previous example.

5.1.5 Hadamard product

The Hadamard product between two matrices is an operation that multiplies each element of the first matrix by
the correspondent element of the second matrix, as seen in Section 2.3.3.

To define the relational matrix Hadamard product in RMA, the use of the relational JOIN and scalar multiplication
is going to be useful. As it happens in defining relational matrix Khatri-Rao product, here too there is no need to
use any RMA operations to define this new operation, since relational SQL already provides all needed operations.

Take, for example, the A and B relations in Table 28.

5.2. A query example 33

A c1 c2 c3
l1 2 3 1
l2 1 5 2
l3 3 4 1

B c1 c2 c3
l1 4 1 5
l2 2 3 1
l3 6 1 3

Table 28: Example relations A and B

Listing 5.6 shows the SQL script that is executed in RMA.

SELECT a.c1*b.c1,a.c2*b.c2,a.c3*b.c3 FROM A JOIN C ON a.A=b.B;

Listing 5.6: Compute Hadamard product between A and B

Listing 5.6 shows the proposed solution to define the relational matrix Hadamard product and Table 29 is the
produced result.

A × B c1 c2 c3
l1 8 3 5
l2 2 15 2
l3 18 4 3

Table 29: Hadamard product between relations A and B

5.2 A Q U E R Y E X A M P L E

Back to the query example shown in Section 2.4, one can now think of implementing it on top of RMA equipped
with the newly created operations.

The following query should run in RMA: get the total monthly salary per country/branch, ordering the result by
countries. This query is in a TLA script shown below 8 that is extracted from the type diagram shown in Figure 20.

1 #j

K #e B

C

jcode

ejob

ecountry

ebranch

Q

V

Figure 20: Query type diagram

5.2. A query example 34

Q = ecountry . (V ▽ ID) . e◦branch

where V = jsalary . j◦code . ejob
(8)

Listing 5.7 shows the equivalent SQL query linked to the TLA script.

SELECT e_branch, e_country, sum(j_salary)

FROM empl, jobs

WHERE j_code = e_job

GROUP BY e_country, e_branch

ORDER BY e_country;

Listing 5.7: Jobs and Employees SQL query example

Database bitmaps

It should be stressed that TLA theory works with dimensions represented by bitmap matrices. This notion is ported
to RMA by working on relations that are bitmaps, as previously shown when defining new RMA operations.

Tables 30 and 31 illustrate all the required relational bitmaps to solve this specific query, from the Jobs and
Employees relations, respectively.

jcode c1 c2 c3
GL 0 0 1
PR 1 0 0
SA 0 1 0

jsalary c1 c2 c3
typeone 1000 1100 1333

Table 30: Relational bitmaps tables from Jobs relation needed to solve the query

ejob c1 c2 c3 c4 c5
GL 0 0 1 0 0
PR 1 1 0 0 1
SA 0 0 0 1 0

ebranch c1 c2 c3 c4 c5
Mobile 1 0 1 0 0
Web 0 1 0 1 1

ecountry c1 c2 c3 c4 c5
PT 0 0 0 1 1
UK 1 1 1 0 0

Table 31: Relational bitmaps tables from Employees relation needed to solve the query

5.2. A query example 35

Solving the TLA script step-by-step

As the initial step for solving the TLA script, let us address the where clause section:

V = jsalary . j◦code . ejob (9)

Using TRA on relation bitmap jcode,

jcode◦ GL PR SA
c1 0 1 0
c2 0 0 1
c3 1 0 0

Table 32: jcode relation bitmap from Jobs relation table

applying MMU to jcode◦ and ejob,

jcode◦ · ejob c1 c2 c3 c4 c5
c1 1 1 0 0 1
c2 0 0 0 1 0
c3 0 0 1 0 0

Table 33: jcode◦ · ejob

applying MMU again to jsalary and jcode◦ · ejob,

jsalary · jcode◦ · ejob c1 c2 c3 c4 c5
typeone 1000 1000 1333 1100 1000

Table 34: jsalary · jcode◦ · ejob

and the first part of the script is now solved.
Advancing now to the main part of the TLA script, first we need to diagonalize the previous table.
To implement the diagonalization, several steps are applied, starting by the KR operation,

V ▽ ID c1 c2 c3 c4 c5
l1 1000 0 0 0 0
l2 0 1000 0 0 0
l3 0 0 1333 0 0
l4 0 0 0 1100 0
l5 0 0 0 0 1000

Table 35: V ▽ ID

5.2. A query example 36

then applying TRA to ebranch,

ebranch◦ Mobile Web
l1 1 0
l2 0 1
l3 1 0
l4 0 1
l5 0 1

Table 36: ebranch◦

followed by applying MMU to (V ▽ ID) with e◦branch,

(V ▽ ID) · ebranch◦ Mobile Web
l1 1000 0
l2 0 1000
l3 1333 0
l4 0 1100
l5 0 1000

Table 37: (V ▽ ID) · ebranch◦

and finally by applying MMU to ecountry with (V ▽ ID) · e◦branch

ecountry · (V ▽ ID) · ebranch◦ Mobile Web
PT 0 2100
UK 2333 1000

Table 38: ecountry · (V ▽ ID) · ebranch◦

5.3. Summary 37

Final SQL query

Listing 5.8 illustrates the SQL script that is executed in RMA.

with

t1(jcode,gl,pr,sa) as (SELECT * FROM (jcode ON a1,a2,a3) cpd (id3 ON i1,i2,i3)),

t2(jcodet,a1,a2,a3) as (SELECT * FROM (t1 ON gl,pr,sa) cpd (id3 ON i1,i2,i3)),

t3 as (SELECT * FROM (t2 ON a1,a2,a3) cpd (ejob ON a1,a2,a3,a4,a5)),

t4(jsalary,typeone) as (SELECT * FROM (jsalary ON a1,a2,a3) cpd (id1 ON i1)),

t5 as (SELECT * FROM (t4 ON typeone) cpd (t3 ON a1,a2,a3,a4,a5)),

t6(ebranch,mobile,web) as (SELECT * FROM (ebranch ON a1,a2,a3,a4,a5) cpd (id2 ON

i1,i2)),

t7(ecountry,a1,a2,a3,a4,a5) as (SELECT ecountry,c1*a1,c2*a2,c3*a3,c4*a4,c5*a5

FROM ecountry,t5),

t8(ecountry,pt,uk) as (SELECT * FROM (t7 ON a1,a2,a3,a4,a5) cpd (id2 ON i1,i2)),

t9 as (SELECT * FROM (t8 ON pt,uk) cpd (t6 ON mobile,web))

SELECT * FROM t9;

Listing 5.8: Jobs and Employees RMA query example

5.3 S U M M A R Y

This chapter was devoted to the developing and understanding the creation of new relational matrix operations:
relational matrix transpose, TRA; relational matrix dot product, MMU; relational matrix Khatri-Rao product, KR;
relational matrix Hadamard product, HM. After defining all the new operators, the RMA system is now ready to
implement new scripts acording to TLA theory. The example explored in Section 2.4 was translated to a RMA
script with a step-by-step explanation.

6

C O N C L U S I O N S

TLA (Chapter 2) is a new approach to querying database systems. In comparison to traditional systems it is a
fresh, simple and straightforward way of interacting and querying a database. However, thus far its implementation
lacks in performance when compared to MonetDB, as reported by Afonso (2018).

MonetDB (Idreos et al., 2012), a de facto standard in database performance, has thus become a comparison
target for this project. It turns out that MonetDB’s core system is inherently columnar, due to its data model
(Binary Association Tables), and this brings it closer to the already developed LAQ engine. MonetDB exhibits great
performance for analytical type queries due to being a highly optimized system tailored to a specific purpose with
years of investment in development. The downside, in the author’s view, is that it still carries around at frontend
level the Relational Model supported by SQL, which is a breakaway from TLA theory and the LAQ engine.

Such conceptual mismatch of the software stack of MonetDB at frontend level has led to the discovery of
Relational Matrix Algebra (Dolmatova et al., 2020a,b). As TLA does, RMA emphasizes the use of Linear Algebra
operators in analytical querying. As of its first iteration, RMA implements four operations that are integrated and
can be computed over MonetDB: relational matrix addition, relational matrix QR decomposition, relational matrix
system solving and relational matrix cross-product.

A shortcoming of RMA with respect to TLA is the fact that important linear algebra operators such as matrix
multiplication and transpose are not available in the frontend. Nevertheless, the relational matrix cross-product
(CPD) is available, from which such operations could be derived and implemented. Matrix converse and matrix
composition (i.e. multiplication) are essential to TLA because they allow a "navigation style" in queries, a kind of
"follow the path in the type diagram" thinking. Other TLA operations followed the implementation of the previous
operations, namely the relational matrix Khatri-Rao product and relational matrix Hadamard-Schur product, which
were derived from the relational matrix cross-product operation that already can be found in the RMA system.

The implementation of such new TLA operations in RMA was not a straightforward task. RMA is a new and
complex theory expressed in a somewhat convoluted notation. Moreover, RMA is still a prototype which runs on a
specific OS subject to specific requirements that need to be understood and met.

Such difficulties delayed the implementation of TLA on top of RMA/MonetDB. The downside of this late success
is that it prevented the author from fully automating the translation from TLA scripts to RMA scripts, which are an

38

6.1. Projected future work 39

extension of standard SQL, let alone benchmarking the whole framework against the TPC-H standard, as initially
planned.

6.1 P R O J E C T E D F U T U R E W O R K

As stated in the title of this dissertation, its main goal is to integrate TLA in the MonetDB stack. Although part of
this objective was achieved (implement TLA queries over MonetDB), benchmarking the current implementation
using industry standards will be a hard task without developing some process automation beforehand.

The main future work, therefore, revolves around the automation of a life-cycle that is currently done manually.
Given a TLA script, this script must be parsed and translated into the corresponding RMA script to be loaded in
the RMA system. There is a need to develop a parser for the DSL language defined by Afonso (2018) but this
time tuned to the RMA target.

With such DSL parser tailored to LAQ scripting in hand, one can further improve the automation process with
shell scripting in order to finally perform benchmarks in a HPC cluster.

B I B L I O G R A P H Y

João M. Afonso, Gabriel D. Fernandes, João P. Fernandes, Filipe Oliveira, Bruno M. Ribeiro, Rogério Pontes,
José N. Oliveira, and Alberto J. Proença. Typed linear algebra for efficient analytical querying. CoRR,
abs/1809.00641, 2018. URL http://arxiv.org/abs/1809.00641.

João Afonso. Towards an efficient linear algebra based olap engine. Master’s thesis, University of Minho, 2018.

Surajit Chaudhuri and Umeshwar Dayal. An overview of data warehousing and OLAP technology. SIGMOD Rec.,
26(1):65–74, 1997. doi: 10.1145/248603.248616. URL https://doi.org/10.1145/248603.
248616.

Anindya Datta and Helen M. Thomas. The cube data model: a conceptual model and algebra for on-line analytical
processing in data warehouses. Decis. Support Syst., 27(3):289–301, 1999. doi: 10.1016/S0167-9236(99)

00052-4. URL https://doi.org/10.1016/S0167-9236(99)00052-4.

Oksana Dolmatova, Nikolaus Augsten, and Michael H. Böhlen. Preserving contextual information in relational
matrix operations. In 36th IEEE International Conference on Data Engineering, ICDE 2020, Dallas, TX,
USA, April 20-24, 2020, pages 1894–1897. IEEE, 2020a. doi: 10.1109/ICDE48307.2020.00197. URL
https://doi.org/10.1109/ICDE48307.2020.00197.

Oksana Dolmatova, Nikolaus Augsten, and Michael H. Böhlen. A relational matrix algebra and its implementation
in a column store. In David Maier, Rachel Pottinger, AnHai Doan, Wang-Chiew Tan, Abdussalam Alawini, and
Hung Q. Ngo, editors, Proceedings of the 2020 International Conference on Management of Data, SIGMOD
Conference 2020, online conference [Portland, OR, USA], June 14-19, 2020, pages 2573–2587. ACM, 2020b.
doi: 10.1145/3318464.3389747. URL https://doi.org/10.1145/3318464.3389747.

Stratos Idreos, Fabian Groffen, Niels Nes, Stefan Manegold, K. Sjoerd Mullender, and Martin L. Kersten. Monetdb:
Two decades of research in column-oriented database architectures. IEEE Data Eng. Bull., 35(1):40–45, 2012.
URL http://sites.computer.org/debull/A12mar/monetdb.pdf.

Hugo Daniel Macedo and José Nuno Oliveira. A linear algebra approach to OLAP. Formal Aspects Comput.,
27(2):283–307, 2015. doi: 10.1007/s00165-014-0316-9. URL https://doi.org/10.1007/
s00165-014-0316-9.

José Nuno Oliveira and Hugo Daniel Macedo. The data cube as a typed linear algebra operator. In Tiark
Rompf and Alexander Alexandrov, editors, Proceedings of The 16th International Symposium on Database
Programming Languages, DBPL 2017, Munich, Germany, September 1, 2017, pages 6:1–6:11. ACM, 2017.
doi: 10.1145/3122831.3122834. URL https://doi.org/10.1145/3122831.3122834.

40

http://arxiv.org/abs/1809.00641
https://doi.org/10.1145/248603.248616
https://doi.org/10.1145/248603.248616
https://doi.org/10.1016/S0167-9236(99)00052-4
https://doi.org/10.1109/ICDE48307.2020.00197
https://doi.org/10.1145/3318464.3389747
http://sites.computer.org/debull/A12mar/monetdb.pdf
https://doi.org/10.1007/s00165-014-0316-9
https://doi.org/10.1007/s00165-014-0316-9
https://doi.org/10.1145/3122831.3122834

B I B L I O G R A P H Y 41

Lucas Pereira and Tiago Baptista. LAQ-OLAP - design of a columnar database system based on linear algebra
querying, 2019. LEI Final Report, M.Sc. in Informatics Engineering, University of Minho.

C. Salley and E. F. Codd. Providing OLAP to user-analysts: An it mandate. 1998.

Part I

A P P E N D I C E S

A
S U P P O R T W O R K

A.1 J O B S A N D E M P L OY E E S S C H E M A S C R I P T

START TRANSACTION;

CREATE TABLE "jobs" (

"j_code" char(15) NOT NULL,

"j_desc" char(50),

"j_salary" decimal(15,2) NOT NULL

);

CREATE TABLE "empl" (

"e_id" integer NOT NULL,

"e_job" char(15) NOT NULL,

"e_name" char(15),

"e_branch" char(15) NOT NULL,

"e_country" char(15) NOT NULL

);

INSERT INTO "jobs" values (’PR’, ’Programmer’, 1000);

INSERT INTO "jobs" values (’SA’, ’System Analyst’, 1100);

INSERT INTO "jobs" values (’GL’, ’Group Leader’, 1333);

INSERT INTO "empl" values (1, ’PR’, ’Mary’, ’Mobile’, ’UK’);

INSERT INTO "empl" values (2, ’PR’, ’John’, ’Web’, ’UK’);

INSERT INTO "empl" values (3, ’GL’, ’Charles’, ’Mobile’, ’UK’);

INSERT INTO "empl" values (4, ’SA’, ’Ana’, ’Web’, ’PT’);

INSERT INTO "empl" values (5, ’PR’, ’Manuel’, ’Web’, ’PT’);

ALTER TABLE "jobs" ADD PRIMARY KEY ("j_code");

ALTER TABLE "empl" ADD PRIMARY KEY ("e_id");

ALTER TABLE "empl" ADD FOREIGN KEY ("e_job")

REFERENCES "jobs" ("j_code");

COMMIT;

43

A.1. Jobs and Employees schema script 44

B
M A L A L G E B R A C O M P E N D I U M

B.1 M A L

B.1.1 Operators

MAL Address Comment

groupby ALGgroupby Produces a new BAT with groups indentified by the head column. (The
result contains tail times the head value, ie the tail contains the result
group sizes.)

find ALGfind Returns the index position of a value. If no such BUN exists return OID-nil.

fetch ALGfetchoid Returns the value of the BUN at x-th position with 0 <= x < b.count

project ALGprojecttail Fill the tail with a constant

projection ALGprojection Project left input onto right input.

projection2 ALGprojection2 Project left input onto right inputs which should be consecutive.

B.1.2 BAT copying

MAL Address Comment

copy ALGcopy Returns physical copy of a BAT.

exist ALGexist Returns whether ’val’ occurs in b.

B.1.3 Selecting

The range selections are targeted at the tail of the BAT.

MAL Address Comment

Continued on next page

45

B.1. MAL 46

Continued from previous page

MAL Address Comment

select ALGselect1 Select all head values for which the tail value is in range. Input is a
dense-headed BAT, output is a dense-headed BAT with in the tail the
head value of the input BAT for which the tail value is between the values
low and high (inclusive if li respectively hi is set). The output BAT is sorted
on the tail value.

select ALGselect2 Select all head values of the first input BAT for which the tail value is
in range and for which the head value occurs in the tail of the second
input BAT. The first input is a dense-headed BAT, the second input is a
dense-headed BAT with sorted tail, output is a dense-headed BAT with in
the tail the head value of the input BAT for which the tail value is between
the values low and high (inclusive if li respectively hi is set). The output
BAT is sorted on the tail value.

select ALGselect1nil With unknown set, each nil != nil

select ALGselect2nil With unknown set, each nil != nil

selectNotNil ALGselectNotNil Select all not-nil values.

thetaselect ALGthetaselect1 Select all head values for which the tail value obeys the relation value OP
VAL. Input is a dense-headed BAT, output is a dense-headed BAT with in
the tail the head value of the input BAT for which the relationship holds.
The output BAT is sorted on the tail value.

thetaselect ALGthetaselect2 Select all head values of the first input BAT for which the tail value obeys
the relation value OP VAL and for which the head value occurs in the
tail of the second input BAT. Input is a dense-headed BAT, output is a
dense-headed BAT with in the tail the head value of the input BAT for
which the relationship holds. The output BAT is sorted on the tail value.

B.1.4 Sort

MAL Address Comment

sort ALGsort11 Returns a copy of the BAT sorted on tail values. The order is descending
if the reverse bit is set. This is a stable sort if the stable bit is set.

sort ALGsort12 Returns a copy of the BAT sorted on tail values and a BAT that specifies
how the input was reordered. The order is descending if the reverse bit is
set. This is a stable sort if the stable bit is set.

Continued on next page

B.1. MAL 47

Continued from previous page

MAL Address Comment

sort ALGsort13 Returns a copy of the BAT sorted on tail values, a BAT that specifies how
the input was reordered, and a BAT with group information. The order is
descending if the reverse bit is set. This is a stable sort if the stable bit is
set.

sort ALGsort21 Returns a copy of the BAT sorted on tail values. The order is descending
if the reverse bit is set. This is a stable sort if the stable bit is set.

sort ALGsort22 Returns a copy of the BAT sorted on tail values and a BAT that specifies
how the input was reordered. The order is descending if the reverse bit is
set. This is a stable sort if the stable bit is set.

sort ALGsort23 Returns a copy of the BAT sorted on tail values, a BAT that specifies how
the input was reordered, and a BAT with group information. The order is
descending if the reverse bit is set. This is a stable sort if the stable bit is
set.

sort ALGsort31 Returns a copy of the BAT sorted on tail values. The order is descending
if the reverse bit is set. This is a stable sort if the stable bit is set.

sort ALGsort32 Returns a copy of the BAT sorted on tail values and a BAT that specifies
how the input was reordered. The order is descending if the reverse bit is
set. This is a stable sort if the stable bit is set.

sort ALGsort33 Returns a copy of the BAT sorted on tail values, a BAT that specifies how
the input was reordered, and a BAT with group information. The order is
descending if the reverse bit is set. This is a stable sort if the stable bit is
set.

B.1.5 Unique

MAL Address Comment

unique ALGunique2 Select all unique values from the tail of the first input. Input is a dense-
headed BAT, the second input is a dense-headed BAT with sorted tail,
output is a dense-headed BAT with in the tail the head value of the input
BAT that was selected. The output BAT is sorted on the tail value. The
second input BAT is a list of candidates.

unique ALGunique1 Select all unique values from the tail of the input. Input is a dense-headed
BAT, output is a dense-headed BAT with in the tail the head value of the
input BAT that was selected. The output BAT is sorted on the tail value.

B.1. MAL 48

B.1.6 Join operations

Crossproduct

MAL Address Comment

crossproduct ALGcrossproduct2 Returns 2 columns with all BUNs, consisting of the head-oids from ’left’
and ’right’ for which there are BUNs in ’left’ and ’right’ with equal tails

Joining

MAL Address Comment

join ALGjoin Join

join ALGjoin1 Join; only produce left output

leftjoin ALGleftjoin Left join with candidate lists

leftjoin ALGleftjoin1 Left join with candidate lists; only produce left output

outerjoin ALGouterjoin Left outer join with candidate lists

semijoin ALGsemijoin Semi join with candidate lists

thetajoin ALGthetajoin Theta join with candidate lists

bandjoin ALGbandjoin Band join: values in l and r match if r - c1 <[=] l <[=] r + c2

rangejoin ALGrangejoin Range join: values in l and r1/r2 match if r1 <[=] l <[=] r2

difference ALGdifference Difference of l and r with candidate lists

intersect ALGintersect Intersection of l and r with candidate lists (i.e. half of semi-join)

B.1.7 Projection operations

MAL Address Comment

firstn ALGfirstn Calculate first N values of B

reuse ALGreuse Reuse a temporary BAT if you can. Otherwise, allocate enough storage
to accept result of an operation (not involving the heap)

slice ALGslice\oid Return the slice based on head oid x till y (exclusive).

slice ALGslice Return the slice with the BUNs at position x till y

slice ALGslice\int Return the slice with the BUNs at position x till y

slice ALGslice\lng Return the slice with the BUNs at position x till y

subslice ALGsubslice\lng Return the oids of the slice with the BUNs at position x till y

B.1. MAL 49

B.1.8 Common BAT Aggregates

These operations examine a BAT, and compute some simple aggregate result over it.

MAL Address Comment

count ALGcount\bat Return the current size (in number of elements) in a BAT.

count ALGcount\nil Return the number of elements currently in a BAT ignores BUNs with
nil-tail iff ignorenils==TRUE.

count ALGcountCND\bat Return the current size (in number of elements) in a BAT.

count ALGcountCND\nil Return the number of elements currently in a BAT ignores BUNs with
nil-tail iff ignorenils==TRUE.

countnonil ALGcountno\nil Return the number of elements currently in a BAT ignoring BUNs with
nil-tail

countnonil ALGcountCND\no\nil Return the number of elements currently in a BAT ignoring BUNs with
nil-tail

B.1.9 Default Min and Max

Implementations a generic Min and Max routines get declared first. The @emph{min()} and @emph{max()}
routines below catch any tail-type. The type-specific routines defined later are faster, and will override these any
implementations.

• cardinality - ALGcard

• min - ALGminany, ALGminanyskipnil

• max - ALGmaxany, ALGmaxanyskipnil

• avg - CMDcalcavg

B.1.10 Standard deviation

The standard deviation of a set is the square root of its variance. The variance is the sum of squares of the
deviation of each value in the set from the mean (average) value, divided by the population of the set.

• stdeb - ALGstdev

• stdevp - ALGstdevp

• variance - ALGvariance

B.1. MAL 50

• variancep - ALGvariancep

• covariance - ALGcovariance

• covariancep - ALGcovariancep

• corr - ALGcorr

INESCTEC Grant AE2021-0049

	Contents
	1 Introduction
	1.1 Challenges and goals
	1.2 Dissertation outline

	2 Typed Linear Algebra for OLAP
	2.1 Foundation of TLA querying and Type Diagrams
	2.2 Matrices as Arrows
	2.3 TLA algebraic querying operators
	2.3.1 Matrix-matrix multiplication
	2.3.2 Khatri-Rao product
	2.3.3 Hadamard-Schur product
	2.3.4 Filter
	2.3.5 Fold
	2.3.6 Lift

	2.4 Query example
	2.5 Summary

	3 Architecture of MonetDB
	3.1 The frontend
	3.1.1 MonetDB Assembly Language and its algebra
	3.1.2 Query planning

	3.2 The backend
	3.3 The kernel
	3.3.1 Goblin Database Kernel
	3.3.2 The data model with Binary Association Tables

	3.4 Summary

	4 Relational Matrix Algebra
	4.1 Notation of relations and matrices
	4.2 Relations and matrices constructors
	4.3 From relations to matrices and back
	4.4 Operations in RMA
	4.5 RMA implementation in MonetDB
	4.5.1 SQL extension

	4.6 Summary

	5 TLA extension in RMA
	5.1 The missing operators
	5.1.1 Identity matrix
	5.1.2 Matrix transpose
	5.1.3 Dot product
	5.1.4 Khatri-Rao product
	5.1.5 Hadamard product

	5.2 A query example
	5.3 Summary

	6 Conclusions
	6.1 Projected future work

	 Appendices
	A Support Work
	A.1 Jobs and Employees schema script

	B MAL Algebra Compendium
	B.1 MAL
	B.1.1 Operators
	B.1.2 BAT copying
	B.1.3 Selecting
	B.1.4 Sort
	B.1.5 Unique
	B.1.6 Join operations
	B.1.7 Projection operations
	B.1.8 Common BAT Aggregates
	B.1.9 Default Min and Max
	B.1.10 Standard deviation

