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Abstract: Xanthan gum (XG) production using three Xanthomonas sp. strains (290, 472, and S6) was
evaluated by applying a 23 full factorial central composite design response to study the interactive ef-
fects of the fermentation medium component concentrations as parameters to determine the efficiency
of the gum production in batch experiments. The experimental variables were the carbon source
(demerara sugar or sucrose), potassium phosphate dibasic, and magnesium sulfate. Experimental
results showed the K2HPO4 concentration as the important parameter for XG production by using
Xanthomonas axonopodis pv. manihotis IBSBF 290 and X. campestris pv. campestris IBSBF 472, while
for the Xanthomonas sp. S6 strain, the MgSO4·7H2O concentration was the determining factor in
XG production using demerara sugar or sucrose as a carbon source. The strains of Xanthomonas 472
and S6, using demerara sugar and higher concentrations of salts, exhibited a higher yield of XG (36
and 32%) than when using sucrose and the same concentration of salts. The experimental outcomes
highlighted demerara sugar as a suitable and efficient alternative carbon and micronutrient source
for XG production. Despite the bacterial strain influence, the medium composition is crucial for this
fermentation process. Therefore, the evaluated salts are important factors for XG production, and the
demerara sugar can partially replace this mineral salt requirement as indicated by the face-centered
composite experimental design due to its chemical composition. Overall, demerara sugar provides
promising properties for XG production.

Keywords: xanthan gum; demerara sugar; mineral salts; response surface methodology; fermentation

1. Introduction

Xanthan gum (XG) is a water-soluble microbial exopolysaccharide (EPS) produced by
bacteria of the genus Xanthomonas [1]. The monomeric structure of the XG is formed by two
units of glucose (cellobiose) bonded in the main chain (the backbone) with a branch formed
by two units of mannose and one unit of glucuronic acid (Figure 1) [2,3]. The XG is an EPS,
and a biopolymer, chemically characterized by a structural chain with a molar mass ranging
between 2 × 106 and 20 × 106 Da [4,5]. Furthermore, its molecular weight is influenced
both by bacterium strains and fermentation conditions, producing a variety of gums of
industrial interest [6]. These aspects are important since the XG molecular structure and
conformational state are closely related to its rheology, stability, and function [7,8]. These
properties allow its application as a thickening, dispersant, emulsifier, and viscous aqueous
solution at low concentrations (0.05–1%), and are stable over a wide range of pH values
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and temperatures. Moreover, XG is a dry, tasteless, white-to-cream, and biodegradable
powder, and is less expensive compared to synthetic polymers [9].
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These properties add industrial value and explain the wide commercial acceptance
of this polysaccharide, whereby the xanthan market is constantly expanding to meet its
global demand [7,10]. The global XG market grows at a significant rate of 5.6% since 2019,
predicting that its market value will reach USD 1.2 billion by 2030 [11]. Its demand increase
is due to the growth in processed food consumption, and applications in the agrochemical,
cosmetics, driller fluid, and foam stabilizer segments [7]. This commercial demand is a
key factor that stimulates studies to increase xanthan production on an industrial scale by
sustainable processes to exploit the micro-organism potential [12,13].

Therefore, studies have been carried out analyzing the variables involved in XG pro-
duction to obtain efficient results, since this productivity can be affected by biotic and
abiotic factors [4,7]. Fermentation depends on many parameters and variables, including
micronutrients (e.g., potassium, iron, and calcium salts), macronutrients such as carbon
and nitrogen sources, oxygen transfers, agitation rate, pH, temperature, and fermentation
duration beyond the Xanthomonas strain production efficiency [14,15]. These conditions rep-
resent a pivotal point in XG production by affecting the fermentative medium cost, further
promoting changes in the gum characteristics, downstream processes, and, consequently,
in its productivity [7,16]. In addition, the adjustment of the strains with the conditions
applied in the fermentation are important as they directly influence the characteristics,
techniques, yields, compositions, and structures [7,10] of the XG produced. The different
strains present different productivity levels depending on the factors implemented during
the fermentation [17] The Xanthomonas strains used to produce XG that are most reported
in the literature are X. campestris pv. campestris 629, X. campestris pv. campestris 1078, X.
campestris pv. campestris S6, X. campestris pv. campestris 254, X. sp. 1537, X. campestris pv.
campestris 729, X. campestris pv. campestris 607, X. campestris pv. campestris 1167, X. campestris
pv. mangiferaeindicae 1230, X. campestris pv. arracia 1198, X. axonopodis pv. manihotis 1182,
and X. melonis 68 [18,19].

On an industrial scale, glucose and sucrose are the usual carbon sources for XG
production. Considering that the raw material cost is a factor which burdens its production,
alternative carbon sources have been evaluated to obtain this polysaccharide [20–22].
Regarding Brazil, sucrose as a carbon source is a favorable point for its production since
its soil and climate allow an intense development of sugarcane cultivation [23]. Therefore,
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the binomial XG–sugarcane exhibits a positive effect on profitable income for the agro-
industrial market.

In this regard, sugarcane juice is a raw material option for this gum production
due to the high content of sucrose, minerals, and vitamins [24]. This broth is used to
produce demerara sugar, which, after a brief refinement process, still maintains its rich
chemical composition compared to refined sugar [25]. Considering its cost of production
in Brazil [26], demerara sugar is an alternative carbon source for XG production due to its
nutritional profile and little processing [27]. In addition, as it is an abundant, low-cost, and
little-processed product, it can be considered an economical solution and a possible low-cost
approach to the production of XG, which can contribute to a sustainable bioeconomy [28].

Nonetheless, several variables affect xanthan production, including technical, bio-
chemical, and microbiological aspects, whose evaluation is crucial for potential industrial
implementation [12]. Hence, experimental designs and related statistical methods have
been applied systematically to investigate different problems correlating to development
and production [15,29,30]. These designs include blocking and factorial experiments to de-
termine the steepest climb ascent path to identify the individual factor effect and approach
the neighborhood of the optimal response [17,31,32].

Screening research on alternative or conventional fermentation media for this polymer
synthesis has previously been reported [7,33], for example, agricultural residues and
biomass with lignocellulosic content [20] (such as tapioca pulp [34], sugarcane bagasse [35],
orange peel [36], kitchen waste [37], rice bran [38], chicken feathers [39], coconut shell,
cocoa husk [20], potato crop [40], cellar wastewater [41], and corncob [19]); however, these
studies found some limitations in the pre-treatments and production yields. Furthermore,
there are no studies reporting and describing the use of demerara sugar in XG production.
This raw sugar appears to be a promising source since its chemical composition displays
adequate nutritional requirements for a fermentative medium, allowing it to be an excellent
substrate alternative for the industrial production of XG.

Therefore, the objective of the research was to design and compare XG production
processes and thus maximize its yield through a full central factorial composite design (23).
Furthermore, the interactive effects of MgSO4, K2HPO4, and the carbon source (camera
sugar or sucrose) as variable parameters of the fermentation medium using three strains of
Xanthomonas will be evaluated, thus finding ideal conditions for the biosynthesis of XG,
with a greater yield and using an alternative carbon source to obtain the most effective
operating conditions, and being able to contribute to a bioeconomy sustainable.

2. Materials and Methods
2.1. Strains

Xanthomonas axonopodis pv. manihotis IBSBF 290, X. campestris pv. campestris IBSBF
472, and Xanthomonas sp. S6 from the Cultures Collection of the Biomaterials Laboratory
(Institute of Technology and Research, Aracaju, SE, Brazil) were used as xanthan-producing
micro-organisms. Bacteria were grown on MY-agar medium with the following composition
(g·L−1)—yeast extract, 3.0; malt extract, 3.0; peptone, 5.0; glucose, 10.0; and agar, 20.0—and
subcultured every three weeks. After incubation (25 ◦C/48 h), cultures were stored at
4 ◦C [42]. Inoculum cultures were prepared in MY liquid medium in 125 mL Erlenmeyer
flasks containing 14 mL of culture medium at 28 ◦C, at 100 rpm for 24 h until reaching a log
growth of 1011 CFU/mL [43].

2.2. Xanthan Gum Production

The xanthan production was performed in 250 mL Erlenmeyer flasks containing
85 mL of the culture medium under experimental conditions of 28 ◦C, 96 h, and 180 rpm.
The fermentation medium was constituted by the carbon source (demerara sugar or su-
crose) ranging from 30 to 70 g·L−1, supplemented with MgSO4·7H2O (ranging from 0.2
to 1.0 g·L−1), K2HPO4 (ranging from 0.01 to 1.0 g·L−1), (NH4)2SO4 (2.2 g·L−1), H3BO3
(0.0066 g·L−1, FeCl3 (0.0026 g·L−1), CaCl2 (0.0022 g·L−1), and ZnSO4 (0.0022 g·L−1). Fer-
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mentation started with an inoculum concentration of 15% (v/v), according to medium
composition conditions established by experimental design.

2.3. Xanthan Gum Recovery

After fermentation, the samples were subjected to centrifugation (9626× g/5 ◦C/60 min)
to remove cells from the fermented broth. Then, the cell-free supernatant was precipitated
with 98% ethanol at a 3:1 (v/v) ratio for biopolymer recovery. After recovery, the precipi-
tated gum was collected and dried at 30 ± 2 ◦C for 72 h. Its production was expressed as
g·L−1 (grams of XG per liter of fermentation broth) [42].

2.4. Experimental Design and Data Analysis

For each Xanthomonas strain used experimentally, a 23 full factorial central composite
design was used to optimize XG production, with variable concentrations of MgSO4·7H2O
(0.2–1 g·L−1), K2HPO4 (0.01–1 g·L−1), and demerara sugar or sucrose (30–70 g·L−1). Table 1
shows the conditions of the performed experiments. All experiments were conducted in
triplicate. For statistical calculation, factor levels (in coded values) were −1, 0, and +1,
where 0 corresponded to the central point. The range and levels of the variables investigated
in this study are depicted in Table 1. The variables were coded using Equation (1):

xi = (Xi − X0)/∆Xi (1)

where xi is the independent variable coded value, Xi is the independent variable real value,
X0 is the independent variable real value on the center point, and ∆Xi is the step change
value.

Table 1. Real and coded values of independent variables according to each 23 full factorial design,
for all strains of Xanthomonas (X. axonopodis pv. manihotis IBSBF 290, X. campestris pv. campestris IBSBF
472, and Xanthomonas sp. S6).

Independent Variable
(Concentration on g·L−1) Symbol

Range and Levels

−1 0 +1

Sucrose or demerara sugar X1 30 50 70
MgSO4·7H2O X2 0.2 0.6 1.0
K2HPO4 X3 0.01 0.50 1.00

The individual and interactive effects of carbon source (demerara sugar or sucrose),
and MgSO4·7H2O and K2HPO4 concentrations on the xanthan production (Y) as response
variables were studied. Thereby, a second-order polynomial model using a least-squares
method was fitted to evaluate the production (Y), resulting in Equation (2):

Y = b0 + b1×1 + b2×2 + b3×3+ b11×1
2 + b22×2

2 + b3×3
2 + b12×1×2 + b13×1×3 + b23×2×3 (2)

where (Y) is the calculated response function; X1, X2, and X3 represent the coded variables
(carbon source, MgSO4·7H2O, and K2HPO4, respectively); and b0, bi, and bij (I, j = 1, 2, 3)
are the coefficient estimates.

The software “Statistic” (version 8.0) was applied for regression and graphical analysis
of experimental data. The statistical significance of the regression coefficients was deter-
mined by the Student t-test, while second-order model equations were determined by the F
test, and the proportions of variance explained by the obtained models were given by the
multiple coefficients of determination, R2.

3. Results and Discussion

The xanthan production by the three selected strains (X. axonopodis pv. manihotis IBSBF
290, X. campestris pv. campestris IBSBF 472, and Xanthomonas sp. S6) was developed using
six experimental designs (two for each strain). Thus, the 23 full factorial central composite



Sustainability 2023, 15, 5080 5 of 14

design with five replicates at the center point comprised a set of 78 experiments. The design
matrix of the variables in coded units is depicted in Table 2, as well as the predicted and
experimental values of the response factor (xanthan production).

Table 2. 23 full factorial central composite design with five replicates at the center point along with
the experimental values of xanthan gum production.

Runs X1 X2 X3

Production of Xanthan Gum (g·L−1)

Strain 290 Strain 472 Strain S6

Sucrose Demerara
Sugar Sucrose Demerara

Sugar Sucrose Demerara
Sugar

1 −1 −1 −1 0.2993 0.3192 0.2857 0.3931 0.1528 0.4533
2 −1 −1 +1 0.5166 0.2465 0.7171 1.2739 0.0200 0.0600
3 −1 +1 +1 0.5992 0.2070 0.8308 1.3075 0.9382 1.3839
4 −1 +1 −1 0.2847 0.2317 0.2585 0.3619 0.5968 0.4644
5 +1 +1 +1 0.2784 0.3924 0.5254 0.3750 0.0712 0.3219
6 +1 −1 +1 0.6840 0.2741 1.0034 0.6109 0.0920 0.3996
7 +1 −1 −1 0.1127 0.2263 0.3713 0.1373 0.0619 0.4166
8 +1 +1 −1 0.1454 0.1811 0.4683 0.8674 0.9255 0.3644
9 0 0 0 0.4926 0.3761 0.3480 0.7854 0.4634 0.7212

10 0 0 0 0.2859 0.4738 0.3436 0.6200 0.5775 0.7488
11 0 0 0 0.4182 0.4273 0.2495 0.4562 0.6876 0.6121
12 0 0 0 0.2750 0.3885 0.2326 0.6213 0.4677 0.6193
13 0 0 0 0.3010 0.4708 0.2875 0.6315 0.7182 0.6533

The concentration of demerara or sucrose sugar, and the concentration of MgSO4·7H2O
and and K2HPO4 are important factors that influence the efficiency of the fermentation
process for XG production. The conditions of these experiments and the results obtained
are listed in Table 2.

As seen in Table 1, the lowest XG production was achieved with the Xanthomonas S6
strains in experiment 2 (0.0600 g·L−1), where lower concentrations of demerara sugar and
MgSO4·7H2O were used, and higher concentrations of K2HPO4. Silva et al. [16] also did
not find significant effects in relation to the concentration of MgSO4·7H2O; in addition, the
presence of K2HPO4 improved the yield of XG production. The improvement in extraction
was observed when the MgSO4·7H2O concentration increased up to 1 g·L−1 in experiment
3, where the highest XG production in this study was obtained for strains 472 and S6
(1.3075 and 1.3839 g·L−1, respectively). These results agree with Jesus et al. [19], which
achieved higher yields of XG production using the S6 strain supplemented with salts and
a hemicellulose fraction obtained by the alkaline hydrolysis of corncob. Furthermore,
MgSO4·7H2O at lower concentrations 0.2 g·L−1and 30 g·L−1 of demerara sugar showed
similar results for strain 472. It was verified that the highest productions of XG for strains
Xanthomonas 290 and 472, when using sucrose as the main source of carbon, were obtained
in the tests containing higher levels of K2HPO4 and sucrose (experiment 6, 0.6840 and
1.0034 g·L−1, respectively). However, for strain 290, the best results were obtained in
the conditions applied in the central points (50, 0.6, and 0.50 g·L−1 of demerara sugar,
MgSO4·7H2O, and K2HPO4, respectively). In addition, the lowest concentration of XG
produced by this strain using demerara sugar was obtained in experiment 8 or more; there
were no significant differences between the other experiments. Other authors [44] state
in the literature that the most promising culture medium for producing XG is sucrose
supplemented with salts. On the other hand, in this study, it is observed that demerara
sugar has a higher XG production compared to the experiments with the same conditions
using sucrose as a carbon source, making it a very important factor for producing XG.

The quadratic regression models in terms of a coded factor expressed by Equations
(3)–(5) represent the XG productions (Y) as a function of the sucrose (X1), MgSO4·7H2O
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(X2), and K2HPO4 (X3) concentrations reached by each of the Xanthomonas strains (290, 472,
and S6), respectively.

Y = 0.0105 X1
2 − 0.0599 X1 − 0.0381 X2 + 0.1545 X3 − 0.0551 X1X2 + 0.0215 X1X3 − 0.0426 X2X3 + 0.3545 (3)

Y = 0.2653 X1
2 + 0.0345 X1 − 0.0368 X2 + 0.2116 X3 − 0.0584 X1X2 − 0.0393 X1X3 − 0.0543 X2X3 + 0.2922 (4)

Y = −0.2256 X1
2 − 0.0696 X1 + 0.2756 X2 − 0.0769 X3 − 0.0649 X1X2 - 0.1291 X1X3 − 0.0513 X2X3 + 0.5823 (5)

Regarding the carbon source alteration in fermentation, the quadratic regression
models in terms of a coded factor indicating the gum production (Y) as a function of
demerara sugar (X1), MgSO4·7H2O (X2), and K2HPO4 (X3) concentrations are expressed
by Equations (6)–(8), also achieved with each studied strain (290, 472, and S6), respectively.

Y = −0.1675 X1
2 + 0.0087 X1 − 0.0067 X2 + 0.0202 X3 + 0.0250 X1X2+ 0.0446 X1X3 + 0.2064 X2X3 + 0.4273 (6)

Y = 0.0430 X1
2 − 0.1682 X1 + 0.0621 X2 + 0.2260 X3 + 0.0615 X1X2 − 0.2306 X1X3 − 0.1126 X2X3+ 0.6229 (7)

Y = −0.1879 X1
2 − 0.1074 X1 + 0.1506 X2 + 0.0583 X3 − 0.1831 X1X2 − 0.0732 X1X3+ 0.1609 X2X3 + 0.6709 (8)

3.1. Analysis of Variance (ANOVA)

The statistical significance of the main interaction effects of the factors on the depen-
dent variable was assessed by the F test of the analysis of variance (ANOVA). Tables 3 and 4
depict the experiments with sucrose and demerara sugar, respectively, showing significant
results at a 95% confidence level.

Table 3. Analysis of variance (ANOVA) for the model regression representing xanthan gum pro-
duction (Y) using sucrose by X. axonopodis pv. manihotis 290, X. campestris pv. campestris 472, and
Xanthomonas sp. S6, respectively.

SS dF MS F p-Value

Strain 290
(1) sucrose (L) 0.028716 1 0.028716 1.97056 0.219346
sucrose (Q) 0.000339 1 0.000339 0.02327 0.884727
(2) MgSO4·7H2O (L) 0.011621 1 0.011621 0.79742 0.412776
(3) K2HPO4 (L) 0.190993 1 0.190993 13.10634 0.015215
1L by 2L 0.024299 1 0.024299 1.66746 0.253072
1L by 3L 0.003720 1 0.003720 0.25524 0.634884
2L by 3L 0.014544 1 0.014544 0.99802 0.363654
Error 0.072863 5 0.014573
Total SS 0.347094 12
Strain 472
(1) sucrose (L) 0.009543 1 0.009543 0.63434 0.461891
sucrose (Q) 0.216603 1 0.216603 14.39851 0.012699
(2) MgSO4·7H2O (L) 0.010841 1 0.010841 0.72066 0.434676
(3) K2HPO4 (L) 0.358239 1 0.358239 23.81361 0.004553
1L by 2L 0.027320 1 0.027320 1.81604 0.235625
1L by 3L 0.012364 1 0.012364 0.82187 0.406201
2L by 3L 0.023555 1 0.023555 1.56582 0.266171
Error 0.075217 5 0.015043
Total SS 0.733682 12
Strain S6
(1) sucrose (L) 0.038809 1 0.038809 0.67477 0.448775
sucrose (Q) 0.156573 1 0.156573 2.72232 0.159867
(2) MgSO4·7H2O (L) 0.607753 1 0.607753 10.56694 0.022679
(3) K2HPO4 (L) 0.047370 1 0.047370 0.82362 0.405737
1L by 2L 0.033722 1 0.033722 0.58632 0.478413
1L by 3L 0.133334 1 0.133334 2.31827 0.188357
2L by 3L 0.021033 1 0.021033 0.36570 0.571750
Error 0.287573 5 0.057515
Total SS 1.326168 12

SS: sum of squares; DF: degrees of freedom; MS: mean square.
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Table 4. Analysis of variance (ANOVA) for the model regression representing xanthan gum produc-
tion (Y) using demerara sugar by X. axonopodis pv. manihotis 290, X. campestris pv. campestris 472, and
Xanthomonas sp. S6, respectively.

SS dF MS F p-Value

Strain 290
(1) Demerara sugar (L) 0.000604 1 0.000604 0.30652 0.604
Demerara sugar (Q) 0.086340 1 0.086340 43.83216 0.001
(2) MgSO4·7H2O (L) 0.000363 1 0.000363 0.18436 0.685
(3) K2HPO4 (L) 0.003268 1 0.003268 1.65925 0.254
1L by 2L 0.005005 1 0.005005 2.54089 0.172
1L by 3L 0.015887 1 0.015887 8.06512 0.036
2L by 3L 0.005592 1 0.005592 2.83865 0.153
Error 0.009849 5 0.001970
Total SS 0.126907 12
Strain 472
(1) Demerara sugar (L) 0.226397 1 0.226397 6.05021 0.057
Demerara sugar (Q) 0.005688 1 0.005688 0.15200 0.713
(2) MgSO4·7H2O (L) 0.030826 1 0.030826 0.82380 0.406
(3) K2HPO4 (L) 0.408427 1 0.408427 10.91476 0.021
1L by 2L 0.030233 1 0.030233 0.80795 0.410
1L by 3L 0.425595 1 0.425595 11.37356 0.020
2L by 3L 0.101520 1 0.101520 2.71301 0.160
Error 0.187099 5 0.037420
Total SS 1.415786 12
Strain S6
(1) Demerara sugar (L) 0.092257 1 0.092257 1.930789 0.223
Demerara sugar (Q) 0.108667 1 0.108667 2.274231 0.192
(2) MgSO4·7H2O (L) 0.181533 1 0.181533 3.799212 0.109
(3) K2HPO4 (L) 0.027226 1 0.027226 0.569801 0.484
1L by 2L 0.268242 1 0.268242 5.613882 0.064
1L by 3L 0.042881 1 0.042881 0.897424 0.387
2L by 3L 0.207143 1 0.207143 4.335177 0.092
Error 0.238909 5 0.047782
Total SS 1.166857 12

SS: sum of squares; DF: degrees of freedom; MS: mean square.

The Xanthomonas growth time can vary according to the fermentation conditions.
Xanthan production is closely related to the carbon source consumption up to its maximum
concentration. Afterward, the enzymatic polysaccharide hydrolysis starts to restore the
carbon source in the culture medium as an attempt to maintain bacterial viability [45].
Therefore, the carbon source is a critical factor in any bioproduct formation, including
XG [46]. Thereby, it is noteworthy to evaluate each carbon source interaction with respect
to the other variables in the medium composition independently, to establish the carbon-
source–micronutrient interactions, such as MgSO4·7H2O and K2HPO4 [14].

The statistical study using an ANOVA-linked Fisher (F) test was applied to determine
the significant variables, whose significance degree was ranked based on the F-ratio value.
In fact, the greater the magnitude of the F value and the lower the “Prob < F” value, the
more significantly displayed the corresponding model and individual coefficient. The
p-value serves as a tool to check the significance of each of the coefficients, also indicating
the interaction strength between the parameters. Low p-values (<0.05) denote a greater
correlation of the significance between corresponding coefficients [32,47].

Hence, in the study using sucrose as a carbon source (Table 3), a significant linear effect
(p < 0.05) of K2HPO4 was observed with strain 290 (p = 0.015) and strain 472 (p = 0.004), and
of MgSO4·7H2O with strain S6 (p = 0.023). Silva et al. [16] and Niknezhad et al. [47] also
reported potassium as a significant factor in fermentations using cheese whey, K2HPO4,
and MgSO4 for xanthan production. Notwithstanding, Umashankar et al. [48] observed the
nutrient influence on X. campestris growth under a high phosphate concentration, which
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inhibited gum production. Nonetheless, the sucrose quadratic term coefficients (p = 0.013)
were significant for strain 472, indicating that both the concentration and carbon source
type are important for the cells during the fermentation process for xanthan production.
This result is consistent with that reported by Demirci et al. [21], verifying the significant
glucose effect on polymer production.

The demerara sugar concentration evaluation depicted in Table 4 shows the ANOVA
statistical analysis concerning the influence of this sugar concentration, K2HPO4, and
MgSO4·7H2O on xanthan production. The effects of MgSO4·7H2O associated with the
demerara sugar rate displayed no statistical significance for the strains tested. However,
the significant effect (p < 0.05) on the response for strain 290 was the demerara sugar
concentration quadratic term (p = 0.001), while the linear term of the K2HPO4 concentration
(p = 0.021) was significant for strain 472. Furthermore, the interaction between demerara
sugar and the K2HPO4 concentration exhibited a significant effect (p = 0.036 and p = 0.020)
for the 290 and 472 strains, respectively.

The measures of the models’ goodness-of-fit were confirmed by the determination
coefficients (R2), with R2 values of 0.79008, 0.89748, and 0.78316 by the 290, 472, and S6
strains, respectively, for the sucrose experiments, while for the demerara sugar experiments,
the R2 values for the 290, 472, and S6 strains were 0.92239, 0.86785, and 0.79525, respectively.
The R2 value provides a variability measure in the observed response values, which can
be explained by the experimental parameters and their interactions. R2 values close to 1
indicate the best correlation between the experimental and predicted values and the better
predictive response model [32]. Therefore, the R2 predicted values > 0.78 for all strains
pointed to a reasonable agreement between the experimental and predicted values for
xanthan production.

3.2. Response Surface Methodology (RSM)

The response surface methodology (RSM) is often applied in order to provide effective
tools for optimization since it involves many critical factors for determining high accu-
racy [32,49]. Figures 2 and 3 represent the response surfaces of the regression study using
sucrose.
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Figure 3. Response surface plot representing the sucrose and MgSO4·7H2O concentration effect and
their mutual effects on xanthan production by Xanthomonas sp. S6.

Figure 2a,b show the response surface plots for xanthan production at different con-
centrations of sucrose and K2HPO4 for the Xanthomonas 290 and 472 strains, respectively.
Likewise, Figure 2 depicts the relationship between the MgSO4·7H2O concentrations with
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sucrose for the S6 strain. According to the response surface plots, the xanthan production
yield rises with the increased K2HPO4 concentration relative to the 290 and 472 strains,
while an increased MgSO4·7H2O concentration promoted a higher yield by the S6 strain.
In both cases, the independent variables MgSO4·7H2O and K2HPO4 significantly affected
xanthan production in each Xanthomonas strain.

The results show the importance of screening the Xanthomonas strains in association
with a fermentation variable study since the culture medium composition can promote
different behaviors on the strains used for production. Therefore, the response surface
methodology aimed to detect the experimental parameters responsible for signals superior
to those caused by noise. The phosphate addition to the medium can increase xanthan gum
production by acting as a buffering agent, minimizing pH fluctuations [50].

Concerning Figure 4a,b, the response surface displays the relationship between the
K2HPO4 concentrations and demerara sugar for the Xanthomonas 290 and 472 strains,
respectively. High K2HPO4 concentrations provided a significant xanthan production
increase, previously observed in fermentations using sucrose. Moreover, it was observed
that the Xanthomonas strain 290 grown in demerara sugar, even with a low K2HPO4 content,
kept gum production close to its highest level when grown in demerara sugar at the central
point level. The data suggest that the demerara sugar and K2HPO4 use provided a high
potassium content, affecting gum production. The experiment performed with maximum
values of demerara sugar and MgSO4·7H2O and a minimum value of K2HPO4 displayed
the third-largest gum production by the Xanthomonas 472 strain. Therefore, demerara sugar
could supply the potassium amount required for gum production.
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Overall, these results are supported by Faria et al. [51] on the influence of the initial
sucrose concentration on xanthan production, and by García-Ochoa et al. [4] on the effects
of nitrogen, phosphorus, and magnesium on bacterial growth and polymer production.
Micronutrients may be required for pyruvilation, although the literature reports several
results regarding its effect on the pyruvilation degree in the xanthan molecular structure [14].
Pyruvate influences the polymer–polymer interaction increase related to the affinity with
the neighboring xanthan molecules, promoting more viscous aqueous solutions [52].

The significant effects of K2HPO4 were similar to those described by Silva et al. [16]
and Mesomo et al. [53] These authors evaluated the combined effects of K2HPO4 and
MgSO4·7H2O with the cheese whey addition, observing the higher xanthan production
with the maximum K2HPO4 supplementation by X. campestris pv. mangiferaeindicae 1230 and
X. campestris pv. manihotis 1182. Kalogiannis et al. [50] also reported the maximal production
using pretreated beet molasses (carbon source), supplemented with K2HPO4, yeast extract,
and Triton 80. Moreover, potassium can significantly increase the xanthan viscosity [54]
which, in the form of K2HPO4 and KH2PO4, are significant medium components, acting as
buffering agents as well as nutrients for Xanthomonas growth [55].

Despite evidence showing the influence of the microbial strain, time, and fermentation
medium composition on XG production, no alternative medium has even replaced the use
of sucrose or glucose with a significant effect on the polysaccharide quality and productivity.
Nevertheless, the results with demerara sugar showed its efficiency as a carbon source in
gum production due to its nutritional richness, which can partially replace the evaluated
salt addition. Even so, further studies with demerara sugar or other potential substrates
are required, whose nutrient content can provide operational and economic advantages for
a xanthan production process since the analyzed variables are significant for the polymer-
producing strains.
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4. Conclusions

This study evaluated the possibility of supplementing the fermentation medium with
mineral salts, using demerara sugar or sucrose as substrates, in XG production. Thereby,
the sucrose or demerara sugar, K2HPO4, and MgSO4·7H2O concentration effects on its
production were explored by an experimental design and a response surface analysis. The
proposed model studies pointed out a reasonable experimental agreement for xanthan
production, indicating specific nutritional requirements for each Xanthomonas strain. The
three selected strains displayed a different influence from the fermented conditions for
xanthan production. Statistical significance values suggested that the sugar concentration
and K2HPO4 played an important role for this production by the Xanthomonas 472 strain,
using sucrose or demerara sugar as a carbon source. Regarding the S6 strain, MgSO4·7H2O
played a significant role in gum synthesis with sucrose but not with demerara as a carbon
source. With strain 290, the demerara sugar concentration increases the XG but with
sucrose as the carbon source, the production is higher with K2HPO4. The evaluated salts
are important factors for XG production, and the demerara sugar can partially replace
this mineral salt requirement. Economically, the experimental data show the relevance of
demerara sugar as an efficient and low-cost alternative source of carbon in the production
of XG compared to a carbon source used industrially. These results contribute to the
production of XG through sustainable biotechnology, efficient in the context of the circular
bioeconomy.
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