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A B S T R A C T

Strategic programming is a powerful technique used in language processing to define functions that traverse
abstract syntax trees. With strategies, the programmer only indicates the nodes of the tree where the work has to
be done, and the strategy used to traverse the whole tree and apply the function that works only on the defined
nodes.

In Haskell, there are two libraries that implement strategies: Strafunski and an equivalent library developed
by DI: Ztrategic. Beyond that, we also have the Kiama library which is implemented in the Scala programming
language. The Ztrategic library uses memorization in order to save work. Using memorization, the elimination of
all occurrences of "bad smells" in an abstract tree of a program is done only once!

In this thesis, we present a detailed study of the performance of the Kiama, Ztrategic, and memoized Ztrategic
libraries, using different strategic problems and input languages.

K E Y W O R D S Strategic programming, Attribute grammars, Zippers, Ztrategic.
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R E S U M O

Programação estratégica é uma técnica poderosa usada em processamento de linguagens para definir funções
que atravessam árvores de sintaxe abstracta. Com estratégias o programador apenas indica os nodos da árvore
onde o trabalho tem de ser feito, e depois que estratégia é utilizada para atravessar toda a árvore e aplicar a
função que faz trabalho apenas nos nodos definidos.

Em Haskell existem duas bibliotecas de combinadores que implementam estratégias: Strafunski e uma
biblioteca equivalente desenvolvida no DI: Ztrategic. Existe também outra biblioteca desenvolvida em Scala,
Kiama. A biblioteca Ztrategic usa memorização de modo a poupar trabalho. Usando memorização, a eliminação
de todas a ocorrências do "mau cheiro" numa árvore abstracta de um programa é feita apenas uma vez!

Nesta tese faz-se um estudo detalhado da performance das bibliotecas Kiama, Ztrategic, e memoized Ztrategic,
utilizando diferentes problemas de programação estratégica e diferentes linguagens de input.

PA L AV R A S - C H AV E Programação estratégica, Gramáticas de atributos, Zippers, Ztrategic.
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1

I N T R O D U C T I O N

Since Algol was designed in the ’60s, as the first high-level programming language (van Wijngaarcien et al.,
1977), languages have evolved dramatically. In fact, modern languages offer powerful syntactic and semantic
mechanisms that improve programmers productivity. In response to such developments, the software language
engineering community also developed advanced techniques to specify such new mechanisms.

Strategic term rewriting (Luttik and Visser, 1997) and Attribute Grammars (AG) (Knuth, 1968) have a long
history in supporting the development of modern software language analysis, transformations, and optimizations.
The former relies on strategies (recursion schemes) to traverse a tree while applying a set of rewrite rules, while
the latter is suitable to express context-dependent language processing algorithms. Many language engineering
systems have been developed supporting both AGs (Gray et al., 1992; Reps and Teitelbaum, 1984; Kuiper and
Saraiva, 1998; Mernik et al., 1995; Ekman and Hedin, 2007; Dijkstra and Swierstra, 2005; Van Wyk et al., 2008)
and rewriting strategies (van den Brand et al., 2001; Balland et al., 2007; Lämmel and Visser, 2002; Cordy, 2004;
Sloane et al., 2010; Visser, 2001). These powerful systems, however, are large systems supporting their own AG
or strategic specification language, thus requiring a considerable development effort to extend and combine.

A more flexible approach is obtained when we consider the embedding of such techniques in a general purpose
language. Language embeddings, however, usually rely on advanced mechanisms of the host language, which
makes them difficult to combine. For example, Strafunski (Lämmel and Visser, 2002) offers a powerful embedding
of strategic term rewriting in Haskell, but it can not be easily combined with the Haskell embedding of AGs as
provided in (de Moor et al., 2000; Martins et al., 2013). The former works directly on the underlying tree, while the
latter on a zipper representation of the tree.

1.1 Z I P P I N G S T R AT E G I E S A N D AT T R I B U T E G R A M M A R S

More recently, an embedding of both strategic tree rewriting and attribute grammars in a zipper-based, purely
functional setting as been defined (Macedo et al., 2022b). This embedding relies on generic zippers (Huet,
1997), which is a simple generic tree-walk mechanism to navigate on both homogeneous and heterogeneous
data structures. Traversals on heterogeneous data structures (i.e., data structures composed of different data
structures) is the main ingredient of both strategies and AGs. Thus, zippers provide the building block mechanism
we will reuse for expressing the purely-functional embedding of both techniques. The embedding of the two
techniques in the same setting has several advantages: First, we easily combine/zip attribute grammars and

3



1.2. Research Questions 4

strategies, thus providing language engineers the best of the two worlds. Second, the combined embedding is
easier to maintain and extend since it is written in a concise and uniform setting. This results in a very small library
(200 lines of Haskell code) which is able to express advanced (static) analyses and transformation tasks.

This concise and multiple paradigm embedding, however, has a key drawback: has shown in (Fernandes et al.,
2019) the resulting AG evaluators re-computes the same attribute instances. As a consequence, those evaluators
do not provide a proper embedding of the AG formalism, which, as expected, result in very inefficient evaluators.
In (Fernandes et al., 2019) memoization of attribute instances has been incorporated to the zipper-based
embedding of AGs, which does improve the evaluators runtime.

In order to combine strategic term re-writing, as presented in (Macedo et al., 2022b), with the runtime efficient
memoized AGs, proposed in (Fernandes et al., 2019), we recently re-wrote the zipper-based strategic library so
that it works on memoized zipper-based trees (Macedo et al., 2022a) To validate our new embedding of strategic
AGs we need both to access its expressiveness and its performance. Thus, we would like to provide answers to
the following research questions.

1.2 R E S E A R C H Q U E S T I O N S

• Research Question 1: Is the combined memoized embedding of Strategic AGs expressive enough to
specify complex language engineering algorithms?

• Research Question 2: How does the performance of memoized strategic AGs compare to the state-of-the-
art defined by Kiama (Sloane et al., 2010)?

In order to answer the first question, we will consider two different language engineering problems: First, we
will consider the let (sub)language that is part of most functional programming languages. We will consider two
usual language processor tasks: name analysis and simple (arithmetic) optimizations. Moreover, we will express
in the Haskell embedding a large and complex optimal pretty printing algorithm, which allows multiple layouts, and
it does perform four traversal over its own data structure to generate the pretties print (Swierstra et al., 1999).

Finally, to answer the third research question, we will consider both the let processor and the optimal pretty
printing algorithm. Moreover, to compare the Haskell embedding to the Kiama we will implement the complex
pretty printing algorithm in Kiama, as well.

1.3 S T R U C T U R E O F T H E T H E S I S

This work describes some libraries for strategic programming and compares them with various examples. More
details of what are attribute grammars and zippers are found in chapter 2, as well as some libraries used for
strategic programming. Chapter 3 presents some examples used to benchmark the performance of the different
libraries. Conclusions can be found on chapter 4.



2

S TAT E O F T H E A R T

2.1 S T R A F U N S K I

Strafunski (Lämmel and Visser, 2003) is a Haskell strategic programming library that makes use of generics to
traverse a data structure. Strategies are made using function combinators. The combinators are qualified as TP
(type preserving) or TU (type unifying) which represent transformations or reductions respectively.

2.2 AT T R I B U T E G R A M M A R S

An attribute grammar is a way to denote syntax trees with semantic attributes. These attributes are associated
with terminal and non-terminal symbols.(Kramer and Van Wyk, 2020)

If we consider the repmin problem, to transform a binary leaf tree of integers into a new one of the same shape
but with all the leaf values replaced by the minimum leaf value of the original tree, the grammar for this problem
can be seen as the data type of the tree.

In Haskell, we consider the following data type:

data Tree = Root Tree

| Fork Tree Tree

| Leaf Int

Listing 2.1: Repmin data type

With attribute grammars, there are two types of attributes, synthesized and inherited. A synthesized attribute
is calculated from the values of the attributes of the children, and an inherited attribute is obtained by using the
attribute values of the parent or siblings. Synthesized attributes serve to pass information up the tree, while
inherited ones allow values to be passed down.(Knuth, 1968)

Therefore, to compute the minimum value for the repmin problem, we define the synthesized attribute lm (local
minimum) associated with the non-terminal Tree.

5



2.3. Zippers 6

Figure 1: lm attribute

As we can see on figure 1, in the Fork production, the min function gets as arguments the synthesized minimum
of the two subtrees, in order to synthesize the minimum of the tree. For the Leaf production, the minimum is as
defined as the Int value stored in there,

With the minimum value synthesized, to compute the new tree, we will need to pass it downwards. For that, we
create an inherited attribute, gm (global minimum) which is inherited by Tree nodes.

In figure 2, we see that the attributes are just copied downwards in the tree.

Figure 2: gm attribute

Kiama and Ztrategic both make use of attribute grammars along with strategic term rewriting. In particular,
Ztrategic uses a library of attribute grammars in Haskell developed at DI(Fernandes et al., 2019), which was
extended with memoization.

2.3 Z I P P E R S

Zippers were conceived to represent a tree, along with a subtree which is the focus of our attention. During
computation, the focus may move within the tree. Manipulation of a zipper is achieved through a set of functions
that allow access to all nodes of the tree.(Martins et al., 2013)

Generic zippers work for both homogeneous and heterogeneous data types and are available as a Haskell
library. They provide a uniform way to navigate in heterogeneous data structures without needing to distinguish
which nodes are being traversed. Any data type with instances of Data and Typeable type classes can be
navigated using generic zippers.

In Haskell, to navigate using zippers, first we need to use the function toZipper, which given a data type returns
a zipper of that. To traverse the zipper we can functions like down’ :: Zipper a -> Maybe (Zipper a),
that goes down to leftmost child and returns Nothing if no child exists. In order to get the node that we are focusing
on with the zipper, we use the function getHole :: Typeable b =>Zipper a -> Maybe b.

In addition to the generic zippers library, we implemented some simple combinators, that make it easier to write
zipper-based functions. More exactly, we have defined the following:
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• (.$) - access the child of a node given its index (.$1 represents the first child)

• parent - moves the focus to the parent of a node

• (.$<), (.$>) - moves to the left or right n th sibling, respectively (.$<1 moves to the left sibling)

• (.|) - checks whether the current location is a sibling of a tree, or not

2.4 Z T R AT E G I C

Ztrategic is a library which embeds strategic term rewriting and attribute grammars together with generic zippers.
Its API is based on Strafunski’s API but with the added possibility of manipulating the zippers that traverse the tree.
Likewise, the strategies in Ztrategic are classified as TP (type preserving) or TU (type unifying).(Macedo et al.,
2021) The usage of attribute grammars lets us make use of the grammar context, unlike Strafunski.

Some functions provided by Ztrategic are:

• applyTP/applyTU - Apply a given strategy to the problem tree

• full_tdTP/full_tdTU - top-down traversal of the whole tree

• full_buTP/full_buTU - bottom-up traversal of the whole tree

• adhocTP/adhocTU - Joins two functions into a single one

• adhocTPZ/adhocTPZ - Joins two functions into a single one with access to the zipper

• failTP/failTU - Failing function

• idTP/idTU - Identity function

2.4.1 Repmin in Ztrategic

In Ztrategic we will define the previous stated attributes in the following way:

type AGTree a = Zipper Tree -> a

globmin :: AGTree Int

globmin t = case constructor t of

CRoot -> locmin (t.$1)

CLeaf -> globmin (parent t)

CFork -> globmin (parent t)

locmin :: AGTree Int

locmin t = case constructor t of

CLeaf -> lexeme t

CFork -> min (locmin (t.$1))
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(locmin (t.$2))

Listing 2.2: Repmin attributes

In listing 2.2, we make use of the constructor function to look at the zipper and return the node its currently
focused on, that attribute is used to define the behaviour for each node in our attributes.

As previously stated, the locmin attribute will locate the minimum, using the lexeme function when on a Leaf
node to extract its value, and when on a Fork the minimum will be the result of min function applied to the minimum
of its children.

The lexeme function returns the value present in the Leaf.
Then, we define the strategy that will be used to solve this problem:

repmin :: Tree -> Maybe (Zipper Tree)

repmin t = applyTP (full_tdTP step) $ toZipper t

where step = failTP ‘adhocTPZ‘ aux

aux :: Tree -> Zipper Tree -> Maybe Tree

aux (Leaf _) z = Just $ Leaf (globmin z)

aux _ _ = Nothing

Listing 2.3: Repmin Strategy

For the strategy present in listing 2.3, first we convert our tree into a zipper through the function toZipper and
then using applyTP we apply the type preserving strategy to it. With full_tdTP we indicate that we want to traverse
the zipper in a top-down order and apply at every node the step function. This function will make use of aux to
replace the leaf value with its global minimum and its combined with failTP through the use of adhocTPZ so that
in other cases that aux doesn’t cover the strategy fails.

We can also solve this problem without the use of strategies thorugh an attribute that will replace the Leaf value
with the globmal minimum.

replace :: AGTree Tree

replace t = case constructor t of

CRoot -> replace (t.$1)

CLeaf -> Leaf (globmin t)

CFork -> Fork (replace (t.$1))

(replace (t.$2))

Listing 2.4: Replace attribute

The replace attribute found in listing 2.4 will make use of the globmin attribute when in a Leaf node to replace it
with its minimum and for the other cases it will call replace to the children nodes of where we are, thus navigating
the whole tree and applying globmin to all the nodes.
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Beyond that, we can also solve this problem without the use of attribute grammars, using only strategies.
For that, we will define a type unifying strategy that computes the minimum and then build the tree with a type
preserving strategy.

findMin :: Tree -> Int

findMin t = minimum $ applyTU (full_tdTU step) $ toZipper t

where step = failTU ‘adhocTU‘ nodeVal

nodeVal :: Tree -> [Int]

nodeVal (Leaf x) = return x

nodeVal _ = []

repMin :: Tree -> Tree

repMin t = fromZipper $ fromJust $ applyTP (full_tdTP step) $ toZipper t

where step = failTP ‘adhocTP‘ aux

v = findMin t

aux :: Tree -> Maybe Tree

aux (Leaf r) = Just $ Leaf v

aux _ = Nothing

Listing 2.5: Repmin using only strategies

2.5 K I A M A

Kiama is a library developed in the Scala programming language which embeds strategic term rewriting and
attribute grammars. In Kiama attributes are defined as Scala functions, and strategic term rewriting is expressed
on Scala data structures via a set of strategic combinators.

Kiama caches attribute values in a global cache, in order to reuse attribute values computed in the original tree
that are not affected by the rewriting. However, that induces an overhead to maintain it updated because attribute
values discarded by the rewriting process need to be purged from the cache.(Macedo et al., 2021)

2.5.1 Repmin in Kiama

In Kiama, the Repmin problem was already defined as an example, in its solution it uses the following data type:

sealed abstract class RepminTree extends Product

case class Fork(left : RepminTree, right : RepminTree) extends RepminTree

case class Leaf(value : Int) extends RepminTree

Listing 2.6: Repmin data type in Kiama

As with Ztrategic we have the attributes locmin and globmin, these are implemented in a way similar to the
previous implementation in Haskell. To define the attributes, we will use an attr block.
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val locmin : RepminTree => Int =

attr {

case Fork(l, r) => locmin(l).min(locmin(r))

case Leaf(v) => v

}

val globmin : RepminTree => Int =

attr {

case tree.parent(p) =>

globmin(p)

case t =>

locmin(t)

}

Listing 2.7: Repmin attributes in Kiama

With the main attributes implemented, we can solve the problem using strategies or through the use of another
attribute. With an attribute solution, we use the repmin attribute, which applies globmin to the Leafs.

val repmin : RepminTree => RepminTree =

attr {

case Fork(l, r) => Fork(repmin(l), repmin(r))

case t : Leaf => Leaf(globmin(t))

}

Listing 2.8: Repmin attribute

Using a strategic solution, we define a function to apply the attribute globmin to a Leaf Node using a rule
combinator that will pattern match on the term and then return a new one. The everywhere function is the traversal
that we will use on the tree with our aux function, this function will apply aux in top-down fashion to all nodes of
the tree. Other ways to traverse the tree that Kiama lets us use are everywherebu, which behaves the same as
everywhere but in a bottom-up fashion and innermost, which will try to apply a transformation to all its nodes until
it fails.

val aux = {

rule[RepminTree] {

case t@Leaf(_) => Leaf(globmin(t))

}

}

val normal = everywhere(aux)

def rep (r : RepminTree) : RepminTree = {

rewrite(normal)(r)

}
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Listing 2.9: Repmin strategy in Kiama



3

P E R F O R M A N C E O F S T R AT E G I C AT T R I B U T E G R A M M A R S

To compare Ztrategic with Kiama we developed various examples, and then compared and analysed their
performance.

3.1 R E P M I N

As seen in the previous chapters, we developed the Repmin problem in both Ztrategic and Kiama. With it and its
implementations already explained, we benchmarked its performance against our various solutions. To measure
it, we used a function to create a tree, ran repmin for that tree and finally, printed the sum of all the nodes of the
final tree.

For our benchmarks the repmin version used were the original version without memoization using only attributes
(Original) using the attribute in listing 2.4, the memoized version of Original (MemoAG), the version using a type
preserving strategy (Ztrategic - TP), as seen on 2.3, and its memoized version (MemoZtrategic - TP), the one
using a type unifying strategy to compute the minimum and then a type preserving one to construct the tree
(Ztrategic - TU TP), described in listing 2.5 the Kiama version using only attributes (Kiama) and finally, the Kiama
version using a strategy (Kiama Strategy), both in listings 2.8 and 2.9 respectively.

In figures 3 and 4 we show the performance of our repmin solutions, using tree sizes of 5000, 10000, 15000,
20000 and 40000, with its runtime in seconds.

12
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Figure 3: Non-memoized versus Memoized versus Kiama repmin programms

Figure 4: Memoized versus Kiama repmin programms

As seen in the previous figures, the versions of repmin present in figure 4 are all faster than the Original and
Ztrategic - TP implementations, this is due to the fact that all of those versions, except Ztrategic - TU TP, cache its
attributes. The Ztrategic - TU TP version, the one that doesn’t use attributes and only strategies, is the faster as it
only traverses the tree 2 times, one to calculate the minimum and another to replace the tree.

3.2 B L O C K

The list based Block language consists of a list of either a declaration of an identifier, the use of an identifier, or a
nested block. This language allows abstract modelling of how most programming languages declare and use
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variables. The declarations of identifiers are not required to occur before their first use. An identifier can only be
declared once per nesting level, and only declared names can be used.

3.2.1 Block in Haskell

First, define the syntax of the language using the following data types:

data P = Root Its

deriving (Typeable, Data,Eq)

data Its = ConsIts It Its

| NilIts

deriving (Typeable, Data,Eq)

data It = Decl Name

| Use Name

| Block Its

deriving (Typeable, Data,Eq)

type Name = String

Listing 3.1: Haskell data types for Block

We use the It data type to model an instruction, which can be a declaration, usage, or nested block of
instructions. We define a sequence of instructions with the Its constructor, and we use the P constructor to
represent the start of the abstract syntax tree.

With this example, we aim to implement a function that, for a given Block, produces a list of identifiers containing
errors, i.e., using an identifier which was not declared, or double declaration of an identifier.

With this, we start by creating an attribute, dclo, that will synthesize the list of declared identifiers of a block. For
that function we will also create an inherited attribute, dcli, that contains the accumulated declarations thus far.

type AGTree a = Zipper P -> a

dclo :: AGTree Env

dclo t = case constructor t of

CNilIts -> dcli t

CConsIts -> dclo (t.$2)

CDecl -> (lexeme t,lev t) : (dcli t)

CUse -> dcli t

CBlock -> dcli t

dcli :: AGTree Env

dcli t = case constructor t of

CRoot -> []

CNilIts -> case (constructor $ parent t) of

CConsIts -> dclo (t.$<1)
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CBlock -> env (parent t)

CRoot -> []

CConsIts -> case (constructor $ parent t) of

CConsIts -> dclo (t.$<1)

CBlock -> env (parent t)

CRoot -> []

CBlock -> dcli (parent t)

CUse -> dcli (parent t)

CDecl -> dcli (parent t)

Listing 3.2: Definition of dclo and dcli

The constructor function peeks into the zipper and returns the node the zipper is focused on - we use it to
define different behaviour for different nodes of the tree. The lexeme function returns the name of the identifier
and lev is an inherited attribute that computes the nesting level in which that identifier is.

lev :: AGTree Int

lev t = case constructor t of

CRoot -> 0

CBlock -> lev (parent t)

CUse -> lev (parent t)

CDecl -> lev (parent t)

_ -> case (constructor $ parent t) of

CBlock -> (lev (parent t)) + 1

CConsIts -> lev (parent t)

CRoot -> 0

Listing 3.3: Definition of lev

Now we define an inherited attribute, env, to obtain the environment (available identifiers) of a block.

env :: AGTree Env

env t = case constructor t of

CRoot -> dclo t

CBlock -> env (parent t)

CUse -> env (parent t)

CDecl -> env (parent t)

_ -> case (constructor $ parent t) of

CBlock -> dclo t

CConsIts -> env (parent t)

CRoot -> dclo t

Listing 3.4: Definition of env

With these attributes, we can now synthesise the list of errors. Only two constructors contribute to that list, Decl
and Use. In declarations, the identifier must not be in the accumulated list of declarations on the same level. In
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uses of identifiers, it must be in the environment of its block. Thus, to create the errors attribute, we first define
two auxiliary functions for that purpose.

mustBeIn :: Name -> Env -> Errors

mustBeIn n e = if null (filter ((== n) . fst) e) then [n] else []

mustNotBeIn :: (Name,Int) -> Env -> Errors

mustNotBeIn p e = if p ‘elem‘ e then [fst p] else []

errors :: AGTree Errors

errors t = case constructor t of

CRoot -> errors (t.$1)

CNilIts -> []

CConsIts -> (errors (t.$1)) ++ (errors (t.$2))

CBlock -> errors (t.$1)

CUse -> (lexeme t) ‘mustBeIn‘ (env t)

CDecl -> (lexeme t,lev t) ‘mustNotBeIn‘ (dcli t)

Listing 3.5: Definition of mustBeIn, mustNotBeIn and errors

3.2.2 Block in Kiama

The same example presented in Haskell can also be developed in Scala via Kiama. The implementation in Kiama
is very similar to the one made in Haskell, with only a few changes.

As with Haskell, first we create the syntax of the language.

sealed abstract class BlockTree extends Product

case class Root(its : Its) extends BlockTree

sealed abstract class Its extends BlockTree

case class ConsIts(it : It, its : Its) extends Its

case class NilIts() extends Its

sealed abstract class It extends Its

case class Decl(name : String) extends It

case class Use(name : String) extends It

case class Block(its : Its) extends It

Listing 3.6: Scala classes for Block

After that, we define the previously stated attributes, dcli, dclo, env. In Kiama we define attributes by writing the
code inside an attr block. Another difference is that in Kiama we don’t need the lexeme function as we can access
the identifier name directly.

val dclo : BlockTree => Env =

attr {
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case t@NilIts() => dcli(t)

case ConsIts(_,its) => dclo(its)

case t@Decl(name) => dcli(t) += ((name, lev(t))) : Env

case t@Use(_) => dcli(t)

case t@Block(_) => dcli(t)

case _ => ArrayBuffer.empty

}

Listing 3.7: Definition of dclo in Scala

val errors : BlockTree => Errors = {

attr {

case Root(its) => errors(its)

case NilIts() => ArrayBuffer.empty

case ConsIts(it,its) => errors(it) ++ errors(its)

case Block(its) => errors(its)

case t@Use(name) => mustBeIn(name, env(t))

case t@Decl(name) => mustNotBeIn((name, lev(t)), dcli(t))

case _ => ArrayBuffer.empty

}

}

def mustBeIn(nome:String,env:Env) : Errors = {

val e = env.filter{ case (n,_) => nome == n}

if (e.isEmpty)

ArrayBuffer(nome)

else

ArrayBuffer.empty

}

def mustNotBeIn(x:(String,Int),env:Env) : Errors = {

if (env.contains(x))

ArrayBuffer(x._1)

else

ArrayBuffer.empty

}

Listing 3.8: Definition of mustBeIn, mustNotBeIn and errors in Scala

With all the other attributes defined, we create the functions mustBeIn and mustNotBeIn and finally the errors
attribute.
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3.2.3 Benchmark

We measured the performance of the errors attribute in Ztrategic (with and without memoization) and Kiama. For
this, we use a function that, given an input number n, will output a Block value with n nesting levels.

The chart below shows the time in seconds of the errors attribute running for block sizes between 50 and 300.

Figure 5: Non-memoized versus Memoized versus Kiama block programms

As seen in the chart, the normal version of Ztrategic is extremely slow compared to the memoized version of
Ztrategic and Kiama. This happens because both Kiama and memoized Ztrategic cache its attributes.

3.3 L E T

For this example, we consider the Let expressions that are present in Haskell. The semantics of Let do not require
that declarations of variables occur before their first use. Likewise, a variable can only be declared once per
nesting level, and only declared names can be used.

Here, we present an example of a Let expression:

let a = b - 16

c = 8

w = let z = a + b

in z + b

b = (c + 3) - c

in c + a - w
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Listing 3.9: Let expression

3.3.1 Let in Ztrategic

We begin by defining the data type for the Let expressions:

data Let = Let List Exp

data List

= NestedLet Name Let List

| Assign Name Exp List

| EmptyList

data Exp = Add Exp Exp

| Sub Exp Exp

| Neg Exp

| Var Name

| Const Int

Listing 3.10: Let data type

With its data types now defined, we wish to perform name analysis on our let expressions and produce a list of
the variables containing errors, using a variable that was not declared, or double declaration.

The implementation of the name analysis for the Let expressions is very similar to the one done on the previous
example, having the same attributes to solve the problem, but for this example we will use strategies to solve the
problem.

First, we define a function that verifies that the declared variables are not in the accumulated list of declarations
on the same level and another that checks if variables that are being used in the environment of its let. With these
functions defined, we create a type unifying strategy that will traverse the abstract tree of the Let expression in a
top-down order and apply them to its nodes.

type Name = String

type Errors = [Name]

decls :: List -> Zipper Root -> [Name]

decls (Assign s _ _) z = mNBIn (lexeme_Name z, lev z) (dcli z)

decls (NestedLet s _ _) z = mNBIn (lexeme_Name z, lev z) (dcli z)

decls _ _ = []

uses :: Exp -> Zipper Root -> [Name]

uses (Var i) z = mBIn (lexeme_Name z) (env z)

uses _ z = []
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errors :: Zipper Root -> [Name]

errors t = applyTU (full_tdTU step) t

where step = failTU ‘adhocTUZ‘ uses ‘adhocTUZ‘ decls

semantics :: Root -> Errors

semantics p = errors (mkAG p)

Listing 3.11: Name analysis startegy

With this example, we also wish to implement an arithmetic optimizer for our language. For that we define
a function that will define some optimizations: the elimination of additions with 0, the sum of two Const values,
replacing a subtraction with a sum, eliminate double negatives and turn a Neg (Const x) into its respective negative
number (-x). Thus, we define the attribute as follows:

expr :: Exp -> Maybe Exp

expr (Add e (Const 0)) = Just e

expr (Add (Const 0) t) = Just t

expr (Add (Const a) (Const b)) = Just (Const (a+b))

expr (Sub a b) = Just (Add a (Neg b))

expr (Neg (Neg f)) = Just f

expr (Neg (Const n)) = Just (Const (-n))

expr _ = Nothing

Listing 3.12: Exp optimization

Then, we define an optimization that, given a variable x, if it’s found in the environment by the env attribute, it
will replace the Var x with its corresponding expression.

expC :: Exp -> Zipper Root -> Maybe Exp

expC (Var i) z = expand (i, lev z) (env z)

expC _ z = Nothing

expand :: (Name,Int) -> Env -> Maybe Exp

expand (i, l) e = case results of

((nE, lE, eE):_) -> eE

_ -> Nothing

where results = sortBy (\(nE1, lE1, _) (nE2, lE2, _) -> compare lE2 lE1) $

filter (\(nE, lE, _) -> nE == i && lE <= l) e

Listing 3.13: Expand optimization

These optimization rules we just implemented were first defined in (Kramer and Van Wyk, 2020), there it were
defined 7 rules to the let optimization. The first 6 can be found in the listing 3.12 and the last one in listing 3.13.
Because the expC function needs the context of the zipper in order to work, for the lev and env attributes, we
separate the first 6 rules from the last. The Ztrategic library provides combinators that let us access the zipper,
therefore make use of attributes like the ones referenced before with strategies.
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Having defined our optimazions for Let we create the strategy that will apply them to our expressions.

opt’’ :: Zipper Root -> Maybe (Zipper Root)

opt’’ r = applyTP (innermost step) r

where step = failTP ‘adhocTPZ‘ expC ‘adhocTP‘ expr

Listing 3.14: Optimization strategy

For this strategy we use an innermost traversal, this strategy will try to apply the transformation to all its nodes
until it fails. As the expC function requires the zipper to work properly, we use the adhocTPZ function which will
provide the zipper to our function.

3.3.2 Let in Kiama

As with the previous example, the attributes implement for name analysis in Let are very similar to the ones in
Block, therefore next we show how to use strategies in Kiama to solve the problem.

var vars = ArrayBuffer[String]()

val uses = {

query[Exp] {

case t@Var(i) => vars = vars ++ mustBeIn(i, env(t))

}

}

val decls = {

query[List] {

case t@Assign(s, _, _) => vars = vars ++ mustNotBeIn((s, lev(t)), dcli(t))

case t@NestedLet(s, _, _) => vars = vars ++ mustNotBeIn((s, lev(t)), dcli(t

))

}

}

def errs(e: LetTree): ArrayBuffer[String] = {

everywhere(decls <+ uses)(e)

vars

}

Listing 3.15: Name analysis strategy in Kiama

For this strategy, we will use a query in both Exp and List data types to obtain our error list. In Kiama, a query
is combinator that always succeeds and is run to extract information without changing the tree. Then, we define
our strategy, we use an everywhere traversal (top-down) and the combinator <+ to apply both functions, if decls
fails then uses will be applied insted.
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Next, for our optimazion strategy we start by defining the expand function, that will work the same way as in
Ztrategic, and then implement the expr and expC functions to be used by the strategy.

val expand : Expand => Option[Exp] = {

attr {

case (_, -1, _) => None

case (n, l, e) => expandAux((n,l),e) match {

case None => expand((n, l-1, e))

case t => t

}

}

}

def expandAux(x : (String, Int), env : Env) : Option[Exp] = {

if (env.isEmpty)

None

else

if (x._1 == env.head._1 && x._2 == env.head._2)

env.head._3

else

expandAux(x, env.tail)

}

val expr =

rule[Exp] {

case Add(e, Const(0)) => e

case Add(Const(0), t) => t

case Add(Const(a), Const(b)) => Const(a + b)

case Sub(a, b) => Add(a, Neg(b))

case Neg(Neg(f)) => f

case Neg(Const(n)) => Const(-n)

}

val expC = {

strategy[Exp] {

case t@Var(i) => expand((i, lev(t), env(t)))

}

}

val normal1 = innermost(expr <+ expC)

def evaluate1(e: LetTree): LetTree =

rewrite(normal1)(e)

}

Listing 3.16: Optimization strategy in Kiama
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Our expr function will use the rule combinator for the Exp data type, this combinator will performs pattern
matching on the subject term and, depending on the result of the match, return a new subject term. The expC
functions uses the strategy combinator which operates similarly to rule excepet that the argument of strategy must
be an Option, in this case Option[Exp]. In order to apply this strategy we use the rewrite function.

3.3.3 Benchmark

To compare the different versions of let, a function was defined to generate let expressions. This function was built
in Haskell and Scala and takes as input the number of nesting we want, the number of nested lets for each level
and a list of variables to use. Here we show the implementation in Haskell:

testTree :: Int -> Int -> [Name] -> Root

testTree a b c = Root $ genLet a b c

genLet :: Int -> Int -> [Name] -> Let

genLet x y l = Let (genList x y l) (Add (aux x y) (genExp l))

where aux 0 _ = Const 0

aux _ 0 = Const 0

aux x y = Add (Var ("nest" ++ show x ++ show y)) (aux x (y-1))

genList :: Int -> Int -> [Name] -> List

genList x y d = aux d

where aux [] = genNest x y d

aux (h:t) = Assign h (Const 1) (aux t)

genExp :: [Name] -> Exp

genExp [] = Const 0

genExp [h] = Var h

genExp (h:t) = Add (Var h) (genExp t)

genNest :: Int -> Int -> [Name] -> List

genNest 0 _ _ = EmptyList

genNest _ 0 _ = EmptyList

genNest x y d = NestedLet ("nest" ++ show x ++ show y) (Let (genList (x-1) y d) (

Add (aux x y) (genExp d))) (aux2 (y-1))

where aux 1 _ = Const 0

aux _ 0 = Const 0

aux x y = Add (Var ("nest" ++ show (x - 1) ++ show y)) (aux x (y-1)

)

aux2 0 = EmptyList

aux2 yy = NestedLet ("nest" ++ show x ++ show yy) (Let (genList (x

-1) y d) (Add (aux x y) (genExp d)) ) (aux2 (yy-1))

Listing 3.17: Let generator
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If we call this function with 1 nest, 2 nested lets per level and with variables a and b, we will obtain a let like this:

let a = 1

b = 1

nest12 = let a = 1

b = 1

in 0 + a + b

nest11 = let a = 1

b = 1

in 0 + a + b

in nest12 + nest11 + 0 + a + b

Listing 3.18: Let generator example

In our benchmarks we always use 2 nests and the variables a,b and c, only changing the number of nested
lets per level. This graphs show us the performance of name analysis(name), optimization(opt), and both
together(name - opt) for the normal version of Ztrategic, memo Ztrategic and Kiama, using 5, 10 and 20 nested
lets per level.

Figure 6: Non-memoized versus Memoized let programms
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Figure 7: Memoized versus Kiama let programms

Looking at figures 6 and 7 we see that the kiama implemention is the slowest one. As we are using relatively
small let examples, the attribute caching Kiama does is not being usefull to these expressions. If we use bigger let
examples, we expect that kiama will be faster than our normal, non memoized version. Between our Ztrategic
implementations, as expected, the memoized version has better performance than our normal one.

3.4 P R E T T Y P R I N T I N G

The pretty printing algorithm that we present in this section was first defined and implemented in Swierstra et al.
(1999). This is a very big and complex algorithm that allows us to print our texts in various ways, even allowing
multiple layouts, that is, we can define different ways to print our text and the algorithm will pick the best one based
on the space given to print it.

Some of the basic combinators for this algorithm are:

• text - converts a string to the data type used by the algorithm

• indent - indents the text by a given number

• empty - no text

• (>|<) - places two arguments besides each other

• (>-<) - places two arguments above each other
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• (>#<) - places two arguments besides each other, with a space inbetween

To print our text, we use the function render that given the text and the page size, renders the text to the
screen. For example, if we wanted to print "Hello World!" using our pretty printing algorithm, we would do so in the
following way.

x = (text "Hello") >#< (text "World!")

render x 10

Listing 3.19: Pretty printing example

In listing 3.19, we use the text function to convert our text to the data type used by the algorithm and then join
the text using >#< for it to render side by side with a space inbetween. The render function will take our text and
the size of where it will print, in this case the size given was 10.

We implemented our pretty printing in both Ztrategic and Kiama and then, using the problem in section 3.3 we
tried to print some let expressions with both our implementations.

Using the following let example, we measured the performance of our different versions.

let a = b + -16

c = 8

w = let z = a + b

in z + b

b = c + 3 - c

t = let a = b + -16

c = 8

w = let z = a + b

in z + b

b = c + 3 - c

in c + a - w

t = let a = b + -16

c = 8

w = let z = a + b

in z + b

b = c + 3 - c

in c + a - w

t = let a = b + -16

c = 8

w = let z = a + b

in z + b

b = c + 3 - c

in c + a - w

t = let a = b + -16

c = 8

w = let z = a + b

in z + b

b = c + 3 - c
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in c + a - w

in c + a - w

Listing 3.20: Pretty print let example

With Ztrategic, we could print this let in less than a second, more precisely, in 0,03 seconds. On the other hand,
with Kiama, we got times of around 102 seconds (1,7 minutes).
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C O N C L U S I O N S

In this thesis, we have studied the combination of strategic programming with attribute grammar programming. We
implemented several language engineering algorithms using both AGs and strategies. Furthermore, we have
benchmarked the Ztrategic library and compared it with the state of the art Kiama library. The results of this study
allow us to answer our original research questions.

• Research Question 1: Is the combined memoized embedding of Strategic AGs expressive enough to
specify complex language engineering algorithms?

Answer : We have expressed in the combined embedding of strategic term re-writing and AGs a large and
complex algorithm: the optimal pretty printing algorithm presented in Swierstra et al. (1999). This is a
non-trivial four traversal algorithm which was expressed in our setting in the elegant AG programming style.
Moreoever, we also expressed this algorithm in the Kiama setting.

• Research Question 2: How does the performance of memoized strategic AGs compare to the state-of-the-
art defined by Kiama (Sloane et al., 2010)?

Answer : We benchmarked both our and Kiama’s when specifying well-known language processing tasks.
Our results show that our memoized embedding of strategies and AGs is already faster than the state-of-
the-art Kiama system. Moreover, when considering the four traversal optimal pretty printing algorithm, the
Kiama solution is very inefficient taking too long to pretty print a small example.

28
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