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A state-of-the-art inverse modeling strategy was developed, analyzed, and applied in 

two different biological mass transport processes. The strategy was developed in the 

framework of the nonlinear optimization problem in which model parameters were 

estimated by minimizing an appropriate objective function which represents the 

discrepancy between the observed and predicted responses of the biological systems. 

The forward problems were solved numerically using the mass conservative Galerkin 

based linear finite element and finite difference methods. Before incorporating in the 

framework of the inverse code, the numerical simulators were validated with either 

analytical or reference solutions.  

 In the inverse code, the Osborne- Moré extended version of the Levenberg-

Marquardt algorithm was used to determine the search direction. The Jacobian matrix 

was constructed using partial derivatives of the state variables with respect to model 

parameters by one and two-sided finite difference approximations. A mixed 

termination criterion was used to end the optimization. 



  

 The strategy was applied to parameter identification problem in Fluorescence 

Recovery after Photobleaching (FRAP) protocol to estimate the optimized values of 

the mass transport and binding rate parameters for GFP-tagged glucocorticoid 

receptor. Results indicate that the protocol provides enough information to uniquely 

estimate one parameter. It also provides enough information to uniquely estimate the 

individual values of the binding rate coefficients given the value of the molecular 

diffusion coefficient is known. However, the protocol provides insufficient 

information for unique simultaneous estimation of three parameters (diffusion 

coefficient and binding rate parameters) owing to the high intercorrelation between 

the molecular diffusion coefficient and pseudo-association rate parameter. Attempts 

to estimate macromolecule mass transport and binding rate parameters 

simultaneously from FRAP data result in misleading conclusions regarding 

concentrations of free macromolecule and bound complex inside the cell, average 

binding time per vacant site, average time for diffusion of macromolecules from one 

site to the next, and slow or rapid mobility of biomolecules in cells. To obtain unique 

values for molecular diffusion coefficient and binding rate parameters of 

biomolecule, two FRAP experiments should be conducted on the same class of 

macromolecule and cell. One experiment should be used to measure the molecular 

diffusion coefficient independently of binding in an effective diffusion regime and the 

other should be conducted in a reaction dominant or reaction-diffusion regime to 

quantify the binding rate parameters. 

 The inverse modeling strategy was also successfully used to identify hydraulic 

parameters for both single and multi-objective optimization problems in 



  

homogeneous and heterogeneous variably saturated soils. Incorporating both soil 

water content information and soil water pressure head data in the framework of the 

multi-objective parameter optimization, produced excellent result for both soil water 

content and pressure head profiles.  
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CHAPTER 1: INTRODUCTION  

 
                   One knows so much, comprehends so little. 
                    Einstein 
 
 
Transport of mass, energy, and momentum has crucial role in many branches of science 

and engineering. In biological systems, transport phenomena are central to the biological 

processes that take place in different units of organisms. They determine the behavior and 

function of cells, tissues, and organs, and regulate interactions between synthetic agents 

(e.g. drugs) and recipient targets. In bioenvironmental systems, transport processes are 

important to understand, simulate, predict, analyze, and prevent point and non-point 

source pollution. They regulate the delivery of nutrients and water to plants and the 

movement of pesticides, viral and bacterial agents (causes of waterborne diseases) 

through the landscape. Theses phenomena are crucial elements in the design and use of 

biosensors, high density cell culture, filtration units for kidney dialysis, heart-lung bypass 

machine, and membrane oxygenators in human health related arena (Truskey et al., 2004) 

and ion selective electrodes, neutron probe, pH-meter, Electrical conductivity meter, and 

time domain reflectometery used in bioenvironmental systems analysis. Transport 

processes are critical in the removal of toxins from blood, remediation of impaired water 

bodies, bioremediation of contaminated lands, and reclamation of saline and sodic soils.   

 In recent decades public concern has increased over various terminal diseases 

(such as many forms of cancer) and the fate and potential carcinogenic nature of 

agrochemicals and land disposed industrial compounds. This has accelerated the need for 

both drug and bioenvironmental research on i) more advanced and clinically relevant 
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drug and therapeutic agents delivery systems, ii) more accurate predictions of 

carcinogenic chemical transport toward surface and subsurface water resources, iii) 

evaluating the effects of current pharmaceuticals in curing environmentally- induced and 

waterborne diseases, iv) management strategies to decrease the uploads of contaminants 

to environment, v) developing novel therapeutic agents and innovative methods to 

predict, prevent and control the diseases, and vi) finding strategies to remediate the 

impaired water bodies and contaminated lands.  

 In this context, several sophisticated mathematical models have been developed to 

predict and simulate the behavior, effects, and fate of drugs and contaminants in 

biological systems (from cells to landscapes). However, the use of these models is not an 

easy task since they contain numerous parameters that need to be determined before the 

model(s) can be used for the considered situation. The success of model predictions 

depends largely on the proper representation of relevant processes, uncertainty in model 

parameters (Alley et al., 2002), and parameter identification which is a critical step in 

modeling process.  Difficulties in model calibration and parameter identification are quite 

common in modeling mass transport problems in biological systems. 

There are several in vivo, in vitro, laboratory and large scale methods to measure 

fluid flow, mass transport, and reaction rate parameters. However, in vitro and laboratory 

scale results may not be representative of in vivo and large scales transport processes. In-

vivo and large scale measurements, on the other hand, are tedious, time consuming, 

expensive, and often impose unrealistic and simplified initial and boundary conditions on 

transport processes in biological systems. Finally, information regarding parameter 

uncertainty is not readily obtained from these methods unless a very large number of 
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samples and measurements are taken at significant additional cost (Bouwer and Jackson 

1974; Green et al., 1986; Klute and Dirksen1986; Kool et al., 1987; Kaufman and Jain, 

1990; Simunek and van Genuchten, 1996; Finsterle, 2004; Polisetty et al., 2006). To 

overcome these limitations indirect methods, such as parameter optimization by inverse 

modeling, can be used to identify model parameters.  

Inverse modeling is usually defined as estimation of model parameters by 

matching a numerical or analytical model to observed data representing the system 

response at discrete times and spatial locations (Finsterle, 2004). In other words, “inverse 

problems are those where a set of measured results is analyzed in order to get as much 

information as possible on a “model” which is proposed to represent a system in the real 

world” (Sabatier, 2000). Inverse techniques usually combine a numerical or analytical 

model with a parameter optimization algorithm and experimental data set(s) to estimate 

the optimum values of model parameters, imposed initial and boundary condition and 

other properties of the excitation-response relationship of the system. The technique 

searches for the best combination of parameter values in an iterative way, by varying the 

unknown coefficients and comparing the measured response of the system with the 

predicted simulation given by the forward model. The search continues until a global or 

local minimum of the objective function, defined by the differences between the 

measured and simulated values of state variable(s), is obtained. Several optimization 

algorithms have been proposed to numerically solve the inverse problem. They include 

the conjugate gradient method, Newton’s algorithm, global optimization technique, 

Simplex method, quasi-Newton methods, genetic algorithm (Sabatier, 2000), and Monte 

Carlo-Markov Chain (MCMC) method. Among these algorithms, the Newton based 
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optimization approach (especially the Levenberg-Marquardt algorithm) and the quasi-

Newton methods (especially the Hessian update method by DFP (Davidon, 1959; 

Fletcher and Powell, 1963) and BFGS algorithms (Broyden, 1970; Fletcher 1970; 

Goldfarb, 1970; Shanno, 1970)) are the most widely used optimization methods.  

The task seems straightforward, just a matter of selecting a proper mathematical 

model and estimating its parameters via parameter optimization algorithms, but as 

Polisetty et al., (2006) noticed several conceptual and computational difficulties have 

made the implementation of the inverse modeling more challenging: 1) judicious choice 

of a mathematical model (forward model) which is representative enough to simulate the 

behavior of the biological systems, with sufficient accuracy, and at the same time allows 

interpretation of the results beyond pure parameter estimation, 2) the type and quality of 

input data is a crucial prerequisite for successful parameter optimization by inverse 

modeling. The data should provide enough information regarding the excitation-response 

relationship of the system and have reasonable scattering, 3) well-posedness of the 

inverse problem which depends on the model structure, the quality and quantity of the 

input data, and the type of imposed initial and boundary conditions (Russo et al., 1991). 

1.1. Overall Goal of the Study 
 
The overall goal of this study is to develop, apply, validate, and analyze an efficient and 

state-of-the-art inverse modeling strategy for mass transport problems in different 

biological systems. The optimization strategy will be developed by adapting and 

extending methods from the literature. The strategy will be applied to two transport 

processes including mobility and binding of biomolecules in living cells, and water flow 

in partially saturated porous media. The possible ill-posedness of the inverse problem 
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will be analyzed by different techniques. The strategy will be evaluated against 

experimental data and previous optimization techniques.   

1.2. Organization 
 
The organization of this manuscript follows the above objectives. Chapter two reviews 

recent and pertinent literature on estimation of model parameters by optimization 

(minimization/maximization) algorithms, simulation of biomolecule transport in living 

cells, water flow in partially saturated porous media, and analytical and numerical 

solutions of flow equations. Chapter three presents the specific objectives of the study. 

Chapter four describes methods and materials used in the development and application of 

the inverse modeling strategy in different biological mass transport problems. The results 

of the study are presented in chapter five, and this is followed by the summary and 

conclusions (chapter six) and recommendations for future research in chapter seven. 
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CHAPTER 2: REVIEW OF LITERATURE 
 
 
 
         
         Science is a cemetery of dead ideas. 
                                  Miguel de Unamuno 
  
 

The literature review below covers optimization problem, simulation models of 

biomolecule transport in living cells, water flow and pollutant transport in the 

environment, the increasing demand for developing and calibrating sophisticated models, 

advances and challenges in numerical solution of partial differential equations governing 

transport phenomena in different biological systems, and problems associated with model 

calibration and parameter identification. Parameter estimations by direct and indirect 

methods, as well as their limitations, are also reviewed. A detailed review is presented on 

parameter optimization using laboratory and large scale data by inverse modeling.  

2.1. Parameter Optimization by Inverse Modeling  
 
The inverse problem is usually treated as a nonlinear optimization problem in which 

model parameters are estimated by minimizing an appropriate objective function which 

represents the discrepancy between the observed and predicted responses of a system. 

When the measurement errors asymptotically follow a multivariate normal distribution 

with zero mean and covariance matrix,V , the likelihood function can be formulated as 

(Bard, 1974): 

 / 2 1/ 2 * 1 *1( ) (2 ) det[ ] exp[ ( ( )) ( ( ))]
2

N TL V U U V U Uβ π β β− − −= − − −               [2.1] 



 7  

where ( )L β  is the likelihood function, N  is number of observations, β  is vector of the 

parameters being optimized, *U  is a vector and/or matrix of observations, and U  is a 

corresponding vector and/or matrix of model predictions as a function of the parameters 

being optimized which is obtained by solving the forward problem. In this approach, the 

likelihood function is defined as the joint probability density function of the observations 

and is considered a function of the unknown parameters. The maximum likelihood 

estimator is those values of the unknown parameters that maximize the magnitude of the 

same likelihood function (Bard, 1974). Since logarithm is a monotonic increasing 

function of its argument (the value of β  that maximizes ( )L β  also maximizes ln ( )L β ), 

and since ln ( )L β  is simpler and much easier to use than ( )L β  itself, ln ( )L β  is often 

used in optimization: 

 * 1 *1 1ln ( ) ln(2 ) det[ ] ( ( )) ( ( ))]
2 2 2

TNL V U U V U Uβ π β β−= − − − − −               [2.2] 

In equations [2.1] and [2.2] the error covariance matrix is defined as: 

  * *[( ( )) ( ( ))]TV E U U U Uβ β= − −           [2.3] 

where E  is statistical expectation.  

The maximum of the likelihood function must satisfy the set of equations: 

  ln ( ) 0L β
β

∂
=

∂
            [2.4] 

 When the error covariance matrix is known, maximization of equation [2.2] is 

equivalent to the minimization of the following weighted least square problem (i.e. values 

of β  that maximize equation [2.2] also minimize the equation below): 

 * 1 *( ) [( ( )) ( ( ))]TU U V U Uφ β β β−= − −               [2.5] 
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where ( )φ β  is the objective or penalty function.  

 If there is information about the values and distributions of parameters, it can be 

incorporated in the objective function (Simunek and van Genuchten, 1996) as: 

  
^ ^

* 1 * * 1 *( ) [( ( )) ( ( ))] [( ) ( )]T TU U V U U Vβφ β β β β β β β− −= − − + − −           [2.6] 

in which *β  is parameter vector containing the prior information, 
^
β  is the corresponding 

predicted parameter vector, and Vβ  is covariance matrix for parameter vector . This kind 

of optimization is known as Bayesian estimation. The second term in equation [2.6], 

which is sometimes called the plausibility criterion (Carrera and Neuman, 1986) insures 

that the optimized values of the parameters remain in some feasible region around *β . 

Matrices V and Vβ , which are sometimes called weighting matrices, provide information 

about the measurement accuracy as well as any possible correlation between 

measurement errors and between parameters (Kool et al., 1987). 

 An obvious limitation of equation [2.6] is that the error covariance matrix 

generally is not known. A common approach to overcoming this problem is to make 

some a priori assumptions about the structure of the error covariance matrix (Kool and 

Parker, 1988). In the absence of any additional information regarding the accuracy of 

input data, the simplest and most recommended way is to assume observation errors are 

uncorrelated which implies setting V equal to the identity matrix and Vβ  to zero. In this 

case the optimization problem collapses to the well known ordinary least squares 

formulation (Beck and Arnold, 1977): 

  
* 2

1

1 1( ) [ ( )]
2 2

N
T

i
U U r rφ β β

=

= − =∑                     [2.7] 
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where r  is the residual (difference between observed and predicted state variable) 

column vector. 

 Many techniques have been developed in the past to solve the nonlinear 

optimization problems (Bard, 1974; Beck and Arnold, 1977; Seber and Wild, 2004). 

These techniques carry out solution of equation [2.7] iteratively by first starting with an 

initial guess of parameter vector ( iβ ) and updating it in each iteration; 

  1i i iβ β δ+ = +             [2.8] 

where i i iδ α β= ∆   is the parameter vector increment in each iteration, i  is the iteration 

level, β∆  is the search direction (or step direction), and iα  is the search length (or step 

size), until some termination criteria are met: 

  1
1( ) ( )i iφ β φ β δ+ − ≤                     [2.9] 

and: 
  2

iβ δ∆ ≤                                                       [2.10]  
 
Where 1δ  and 2δ  are set to user defined small values. 

 Several optimization algorithms have been proposed to numerically solve the 

optimization problem. They include the steepest descent scheme, conjugate gradient 

method, Newton’s algorithm, Gauss-Newton method, global optimization technique, 

Simplex method, Levenberg-Marquardt algorithm, quasi-Newton methods, genetic 

algorithm (Sabatier, 2000), and Monte Carlo-Markov Chain (MCMC) method. Among 

the optimization algorithms, the Newton method is quadratically convergent and quickly 

converges for most problems (Kool et al., 1987). The problem, however, with this 

method is the evaluation of the Hessian matrix which is usually not available analytically. 

Consequently, this method is not commonly used for optimization problems. Among the 
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alternatives, the quasi-Newton algorithm approximates the Hessian from the available 

information about the value and the first derivative of the objective function using secant 

update method. Another alternative is using the Levenberg-Marquardt (Levenberg, 1943; 

Marquardt, 1961) algorithm: 

( ) ( ) ( ) ( ) ( ) 1 ( ) ( )( ( ) ( ) ( ) ( )) ( ) ( )k k T k k T k k T kJ J D D J rβ β β λ β β β β−∆ = − +       

                   [2.11] 

in which λ  is the Lagrange multiplier or the Marquardt parameter (a Positive scalar) 

which controls both the magnitude and direction of β∆  and 1 2( , ,...., )pD diag d d d=  is a 

positive definite scaling symmetric matrix. For non-zero values of λ , the Hessian 

approximation is always a positive definite matrix which ensures the descent property of 

the algorithm even if the initial guess is not so “smart” (Kool et al., 1987). 

If D  is the identity matrix, the Levenberg-Marquardt algorithm interpolates 

between the steepest descent ( λ → +∞ ) and the Gauss-Newton ( 0λ → ) methods. The 

steepest descent scheme is often too inefficient, requiring a large number of iterations 

which tend to zigzag in a hemstitching pattern and is not recommended for optimization 

(Bard, 1974; Seber and Wild, 2004). Nevertheless, recently some investigators have used 

this algorithm to quantify transmisivity and pollutant transport in groundwater systems 

(Knowles and Lee, 2004; Knowles et al., 2004). The Gauss-Newton formula assumes that 

JJ T  is a sufficient approximation for the Hessian.  

The Levenberg-Marquardt algorithm has been widely used to estimate model 

parameters in optimization problems (Russo et al., 1990; Simunek and van Genuchten, 

1996; Malengier, 2004, among many others). In modern optimization codes, however, 

equation [2.11] is not usually used. Instead the Osborne-Moré adapted version of the 
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Levenberg-Marquardt method (Osborne, 1976; Moré, 1977) which avoids the 

computation of possibly ill-conditioned TJ J  is implemented in the optimization 

algorithm: 

 

2

1
20 ( )

i
i

i i

Jr
min

D
β

λ

β

    + ∆      
∆

        [2.12] 

Note that [2.11] are the normal equations for [2.12]. 

 Equation [2.12] can be easily solved by introducing orthogonal householder 

matrix and applying series of orthogonal Givens rotations. The solution procedure can be 

found in standard optimization textbooks (Golub and van Loan, 1983, among others) and 

will not be covered in this study. 

 In minimization problem, the goal is to minimize ( )φ β  over β . Most 

optimization problems require a global minimum of ( )φ β  such that 
^

( ) ( )φ β φ β≤  for all 

β  in β (where 
^
β  is the minimum). However, a global minimum is only possible for a 

restricted class of functions such as convex functions (Dixon and Szego, 1975 and 1978). 

In most optimization problems the best we can hope is a robust and efficient numerical 

algorithm that will converge to a local minimum (Seber and Wild, 2004). There are two 

types of local minimum: 

1. If for a infinitesimal scalar δ ( 0δ > ) and 
^

β β≠ : 

    
^ ^

( ) ( )β β δ φ β φ β− < ⇒ <  

then 
^
β  is a strong local minimum. 
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2. If
^ ^

( ) ( )β β δ φ β φ β− < ⇒ ≤ , then 
^
β  is a weak local minimum. 

 Assuming that the objective function has continuous first and second derivatives, 

the following criteria can be used to verify the strength of the locality of the minimum: 

1.  
^

( ) 0φ β∇ =  

2.  
^

( )H β  is positive definite. 

These conditions are necessary and sufficient for 
^
β  to become a strong local minimum 

(Seber and Wild, 2004). 

2.2. Biomolecule Transport in Living Cells  
 
The ultimate goal of molecular biology is to understand the biological processes that take 

place in living cells, tissues, and organs. Mathematical modeling of the biological 

processes and innovative experimental techniques are substantial tools to study the 

dynamics of cells. One of the most widely used experimental protocol to understand the 

biological processes and to study transport of biomolecules in small systems such as 

living cells is the Fluorescence Recovery after Photobleaching (FRAP). It is a useful 

technique to study dynamics of living cells and biological processes such as diffusion and 

binding reactions. FRAP is actually a simple and straightforward technique used to 

monitor the movement of the fluorescence molecules. These molecules can absorb light 

of one wavelength (blue for instance) and emit light of other kind (e.g. green). However, 

if exposed to repeated cycles of excitation-emission, they lose their ability to emit 

fluorescence. This phenomenon is called “photobleaching” or “photochemical 

bleaching” (Carrero et al., 2003). In this technique a small region of living cell 
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containing GFP-tagged protein is exposed to a brief but intense laser beam, produced by 

a laser scanning confocal microscope, to irreversibly inactivate fluorescence emission in 

that region. Before exposure to the light, the living cell is in an equilibrium state with 

uniform fluorescents. Photobleaching creates two different populations of the 

fluorescence molecules which are spatially separated in the beginning of the experiment. 

Unbleached molecules from the undisturbed area move toward the bleached region and 

the rate of fluorescent recovery is measured as a function of time. The result is a noisy 

graph as shown in Figure 2.1 which is known as FRAP recovery curve. However, 

because of noisy signals the original graph by itself is not suitable for quantitative study 

of the dynamics of living cells. The FRAP community generally uses a normalized 

average fluorescence recovery curve as represented in Figure 2.2. 

 By analyzing the FRAP curve one can quantify how many photons return to the 

bleached area in comparison to the amount of light that was there before the 

photobleaching. This is known as percent recovery. The other question that can be 

addressed is that of how fast do the fluorophores move toward the bleached area. This is 

a measure of free molecular diffusion coefficient of the biomolecule.  

 The FRAP technique was developed in the 1970’s and initially used to study 

lateral diffusion of lipids through cell membrane (Poo and Cone, 1974; Liebman and 

Entine, 1974; Bretscher and Rafe, 1975; Axelrod et al., 1976; Schlessinger et al., 1976; 

Edidin et al., 1976). At the time biophysicists did not pay much attention to the protocol 

but since late 1990 invention of the Green Fluorescent Protein (GFP) technique, also 

known as GFP fusion protein technology, and development of commercially available 

confocal-microscope-based photobleaching methods, its applications skyrocketed.  
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Figure 2.1. Original FRAP recovery curve 
 

 
Figure 2.2. Normalized FRAP recovery curve 
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 So far most of the FRAP analyses have been qualitative. Some investigators 

studied the interaction of GFP-tagged proteins with binding sites inside living cells 

(McNally et al., 2000; Phair and Misteli, 2000). Some considered faster and slower 

recovery as measures of weaker and tighter binding, respectively. By analyzing the shape 

of a single FRAP curve, others tried to draw conclusion about the underlying biological 

process (Dundre et al., 2002; Kimura et al., 2002; Carrero et al., 2003). Ignoring 

diffusion and presuming a full reaction regime, some researchers performed quantitative 

analyses to identify rate constants for binding (Thompson et al., 1981; Kaufman and Jain, 

1990; Berk et al., 1997; Bulinski et al., 2001; Coscoy et al., 2002; Dundre et al., 2002).  

 One of the first attempts to estimate biomolecule mass transport and binding rate 

parameters using in vivo information was carried out by Kaufmann and Jain (1990 and 

1991). Using eight data points, they tried to estimate four parameters. Then they 

simplified the forward model to diffusion dominant or reaction dominant and tried to 

estimate lumped model parameters.  

 One of the most thorough analyses of the protocol was performed by Sprague et 

al., (2004) who identified under what circumstances one can determine the individual rate 

constants, and where pure diffusion, pure reaction, and diffusion-reaction regimes are 

dominant. Using the biochemical reaction below, they described the binding reactions 

between free biomolecule and binding sites inside living cell during the course of a FRAP 

experiment: 

                  [2.13] 
 
where F  is total concentration of free proteins, S  is total concentration of vacant 

bindingsites on the nuclear matrix, C  is concentration of the bound complex ( )C FS= , 

CF + S 
Ka 

Kd 
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aK  is free protein-vacant binding site association rate constant ( 1T − ), and dK  is 

dissociation rate coefficient ( 1T − ). The equation only describes the binding process. To 

fully describe the reaction-diffusion process inside cell during the course of the FRAP, 

they incorporated diffusion process by writing a set of three coupled nonlinear partial 

differential equations:  

  

2

2

2

F a d

F a d

C a d

F D F K FS K C
t
S D S K FS K C
t
C D C K FS K C
t

∂
= ∇ − +

∂
∂

= ∇ − +
∂
∂

= ∇ + −
∂

        [2.14] 

in which FD , SD , and CD  are the diffusion coefficients ( 2 1L T − ) of free macro-molecule, 

vacant binding sites, and bound complex, respectively.  

To simplify and solve equation [2.14], they made the following assumptions: 

1. Two-dimensional diffusion takes place in the plane of focus. This is a legitimate 

assumption when the bleaching area creates a cylindrical path through the cell 

which is the case in circular bleach spot with reasonable spot size (Kaufman and 

Jain, 1990; Sprague et al., 2004). The assumption eliminates the azimuthal and 

vertical components of the equation.  

2. On the time and length scales of the FRAP experiments of DNA binding 

biomolecules, the binding sites are assumed to be part of a relatively immobile 

and large complex (Kaufman and Jain, 1990; Bulinski et al., 2001; Coscoy 2002; 

Sprague et al., 2004). This means that the diffusion of bound complex is 

negligible ( CD = 0). 

3. The biological system is at the state of equilibrium before photobleaching and it 
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remains so over the time course of the FRAP experiment. This is a reasonable 

assumption because most biological FRAP experiments take about several seconds to 

several minutes whereas the GFP-fusion expression changes over a time course of 

hours (Sprague et al., 2004). This eliminates the second equation in the system of 

three coupled nonlinear partial differential equations and hence Eq. [2.14] collapses 

to one-site-mobile-immobile model (in cylindrical coordinate system):   

   

2
*

2

*

1
F F a d

a d

F F FD D K F K C
t r r r
C K F K C
t

∂ ∂ ∂
= + − +

∂ ∂ ∂
∂

= −
∂

      

             [2.15] 
 
where *

a aK K S=  is the pseudo-association rate coefficient. 

 There have been no analytical solutions for equation [2.14], but for heat 

conduction problem between two concentric cylinders, Carslaw and Jaeger (1959) 

presented an analytical solution involving Bessel functions. Sprague et al., (2002) 

extended the strategy for equation [2.15] and developed a semi-analytical solution in 

Laplace space: 

  
*

1 1
1 [1 2 ( ) ( )][1 ]eq eqa

d d

F CKfrap K qr I qr
s s s K s K

= − − + −
+ +

    [2.16] 

where: 
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         [2.17] 
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  1eq eqC F+ =           [2.20] 
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in which s  is the Laplace transform variable that inverts to yield time. frap  is the 

average of the Laplace transform of the fluorescent intensity within the bleach spot and 

1I  and 1K  are the modified Bessel functions of the first and second kind.  

 Sprague et al., (2004) used equations [2.16] to [2.20] to simulate the mobility of 

GFP-tagged glucocorticoid receptor (GFP-GR) in nuclei of both normal and ATP 

depleted cells. Using the mass of GFP-GR, they assumed an estimated value for the free 

diffusion coefficient and fitted two binding rate constants by a curve fitting procedure. 

Based on these results they concluded that 14 percent of GFP-GR is free and 86 percent 

is bound to DNA or other unknown binding sites. Their strategy, however, failed to 

simultaneously estimate the optimum values of all parameters. They also didn’t report if 

the parameter values were unique.  

 Beaudouin et al., (2006) used the full diffusion-reaction models in FRAP 

experiment to study mobility of five chromatin-interacting proteins inside living cells. 

They found that transient interactions are common for chromatin proteins. Individual 

proteins locally sample chromatin for binding sites rather than diffusing globally 

followed by binding at random nuclear positions. They also concluded that 

complementary procedures are needed to measure transient biochemical interactions in 

living cells.  

What is missing from these comprehensive FRAP analyses is a robust and 

systematic method to extract as much physiochemical information from the protocol as 

possible and to quantify the related in vivo mass transport and reaction rate parameters.  
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2.3. Water Flow through Partially Saturated Porous Media  
 
Historically Richards’ equation (Richards, 1931) has been used to simulate fluid flow in 

variably saturated porous media. Assuming no sink or source terms, for a rigid, isotropic, 

and homogeneous porous material, the “mixed form” of this equation, for single phase, 

non-hysteretic, and transient water flow can be written as: 

 ( ) 0KK h h
t z
θ∂ ∂

− ∇ ⋅ ∇ + =
∂ ∂

        [2.21] 

Where θ  is the volumetric soil moisture content ( 3 3L L− ), h  is the soil water pressure 

head ( L ), ( )K h  is the unsaturated hydraulic conductivity function ( 1LT − ), z  is vertical 

coordinate ( L ), assumed positive downward, and t  denotes time (T ).  Using the chain 

rule of differentiation two other forms of the equation have been developed (Bear, 1972, 

1979; Celia et al., 1990): 

θ -based form: 

  ( ) 0KD
t z
θ θ θ∂ ∂

− ∇ ⋅ ∇ + =
∂ ∂

       [2.22] 

h -based form: 

  ( ) ( ) 0h KC h K h h
t z

∂ ∂
− ∇ ⋅ ∇ + =

∂ ∂
               [2.23] 

in which ( ) ( ) / ( ) / ( )D K h K Cθ θ θ θ θ= ∂ ∂ =  is the soil water diffusivity function ( 2 1L T − ) 

and ( ) /C d dhθ θ=  is the specific soil moisture capacity function ( 1L− ).  

Solution of Richards’ equation and simulation of water flow in partially saturated 

porous media require knowledge of the soil hydraulic conductivity and water content 

versus soil water pressure head. These relationships are known as hydraulic properties of 
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the media. In the present study, van Genuchten’s (1980) closed form equation for soil 

water retention curve and Mualem’s (1976) unsaturated hydraulic conductivity function 

were used to describe the soil hydraulic properties.  The equations are: 

 ( )[1 ( ) ]n m
r s r hθ θ θ θ α −= + − +                    [2.24] 
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= ∫          [2.27]  

Substituting equations [2.24], [2.26], and [2.27] into equation [2.25] and doing 

some mathematical operations yields: 

 1/ 2( ) [1 (1 ) ]m m
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which are known as soil hydraulic functions. In these expressions sθ  is the saturated soil 

moisture content ( 3 3L L− ), rθ  is the residual soil moisture content ( 3 3L L− ), eS  is effective 

saturation ( 0 1eS≤ ≤ ), α  is air entry value ( 1L− ) which is a measure of the first moment 

of the pore size density function, n  is an inverse measure of the second moment of the 

pore size density function (as α  increases, so does the first moment and as n  increases 

the pore size density function becomes narrower (Wise, 1991; Clement et al., 1994)), ι  is 
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pore connectivity index, and nm /11−=  is a curve fitting parameter.   

 Due to the changes in fluid pressure in partially saturated porous media, the 

solution of equation [2.21], [2.22], and [2.23] is not an easy task. Two main reasons for 

this difficulty are: 1) the highly nonlinear nature of the partial differential equations, and 

2) the heterogeneity of the flow domain in the unsaturated region (Bouloutas, 1989). 

Consequently, several investigators, considering simplifying assumptions about initial 

and boundary conditions and soil properties, have developed analytical solutions to 

Richards’ equation. Philip (1957a, 1957b, 1969), in a landmark contribution to the 

theoretical treatment of the unsaturated flow, developed analytical solutions for the 

basedθ −  Richards equation. Using Kirchhoff transformation (Carslaw and Jaeger, 

1959) to linearize Richards equation and assuming that unsaturated hydraulic 

conductivity is an exponential function of pressure head, Warrick (1975) and Lomen and 

Warrick (1974) obtained analytical solutions for one, two, and three-dimensional 

infiltration from point, line, and disk sources. Several other useful analytical solutions 

have been presented by Youngs (1957), Gardner (1958), Smith and Parlange (1978), 

Parlange et al. (1985), Sander et al. (1988), Broadbridge and White (1988), and Philip ( 

1987; 1992), among others.   

2.3.1. Numerical Solution of Flow Equations  
 
While analytical solutions are useful for a number of applications such as verification of 

numerical models and approximate determination of hydraulic properties, their over-

simplified nature reduces their predictive ability (Bouloutas, 1989). Also, the unsaturated 

flow equation is highly nonlinear, therefore numerical solutions are usually the only 

viable procedures to treat flow and transport phenomena in partially saturated porous 
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media. The standard numerical schemes are the finite element and finite difference 

methods which are usually coupled with a backward Euler time discretization. Except for 

the fully explicit forward method, any other Euler time-marching algorithm generates 

nonlinear algebraic equations which should be solved using iterative procedures such as 

Newton (Newton-Raphson) or Picard algorithms.  

 
2.3.1.1. Finite Element Methods  
 
The finite element method was first proposed by Courant (1943) although the term “finite 

element” was not used at the time. The method received its name from the work of 

Turner et al. (1956) in analyzing structural problems where a continuous structure is 

approximated by a series of sub-domains called “finite elements”. Later it was 

rediscovered that the method is associated with the calculus of variation (Remson et al., 

1971). For regular mesh networks, the finite difference and finite element methods 

produce identical difference equations. However, the ability of finite element methods to 

treat irregular geometries, complex boundary conditions, and heterogeneous and 

anisotropic media attracted significant interest in porous media studies. Zienkiewicz 

(1966, 1967) contributed significantly in extending the method in structural analysis and 

indicated that the method can be used to analyze problems in subsurface hydrology. 

Javandel et al. (1968, 1969) played a significant role in application of the procedure to 

transient hydrological problems. Neuman (1973), and Duguid and Reeves (1976) 

developed algorithms to solve two-dimensional problems using pressure head based form 

of the Richards equation. In most of these research works linear triangular or linear 

quadrilateral elements were used to discretize the spatial domain while the standard fixed 

point Picard iteration scheme was used to handle the nonlinearities. 
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Neuman (1975) was first to observe that the consistent mass matrix produced by 

finite element discretization of the time derivative of the Richards’ equation results in 

oscillatory solution that often prevents it from converging to a stable and smooth 

solution. The reason was the highly nonlinear nature of the relationships among soil 

water content, soil water pressure head, unsaturated hydraulic conductivity, and specific 

soil water capacity. Because of these nonlinearities and because of the high sensitivity of 

the Newton-Raphson linearization scheme to initial estimates of pressure head, the 

algorithm failed to converge. To improve the convergence rate and increase 

computational efficiency he proposed a “mass lumping” procedure which significantly 

enhanced the rate of convergence and CPU performance.   

Bruch and Zyvloski (1974) were the first investigators to formulate a finite 

element algorithm to solve the water content based form of the Richards equation. They 

used triangular and rectangular elements in both space and time. By performing 

regression analysis on experimental data, they found that the unsaturated hydraulic 

conductivity and diffusivity are quadratic functions of soil water content. They compared 

the results with other numerical works and found a good agreement. They also, for the 

first time in porous media studies, used the quasi-Newton method to handle the 

nonlinearities of the system of discretized equations.   

Yeh and Ward (1980) developed a finite element solution of the pressure-based 

form of the Richards equation. Using linear basis functions and the Picard iteration 

scheme, Hromadka and Guymon (1980) solved the horizontal, one-dimensional water 

content based form of the Richards equation. They claimed that the best results, in terms 

of accuracy, were obtained by using the consistent mass matrix.  
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In a series of reports and papers van Genuchten (1978, 1982, and 1983) compared 

the performance and computational efficiency of finite difference and finite element 

methods in solving Richards’ and the convective-dispersive-reactive equations in multi-

dimensions simultaneously. He used different basis functions and concluded that the 

Galerkin scheme with Hermitian basis function, which produces solutions for both the 

pressure head and its gradient, and with two point Gaussian integration procedure lagged 

considerably behind the correct solution and showed oscillatory behavior. Using the five 

point Gauss-Lobatto integration generated more accurate solutions. However, even with 

higher quadrature rule the Hermitian basis function showed spatial oscillations of the 

same order of magnitude as those of the linear basis function. He also reported that the 

Hermitian based Galerkin scheme was more accurate than the usual linear basis function 

but at the expense of 2.5 times more computational time.     

To improve the efficiency of finite element methods and by considering an idea 

like block centered values of unsaturated hydraulic conductivity functions in finite 

differences, Huyakorn and Thomas (1984) presented a Galerkin scheme on rectangular 

and triangular elements in conjunction with the use of average value of nonlinear terms 

over an element. Using this method- which they called “influence coefficient matrices”- 

all elemental matrices were calculated as a weighted sum of predefined matrices and 

hence the expensive numerical integration operations were avoided. This method, 

although efficient in comparison to the usual integration over deformed quadrilaterals, 

isn’t accurate. The Newton-Raphson and Picard one point iteration methods were used to 

treat the nonlinearities. They noticed that the former needs greater cost per iteration, but 

because of its quadratic convergence can be comparable in overall cost with the Picard 
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method. They also concluded that when convergence is difficult to obtain using the 

Picard method, the Newton-Raphson method may successfully be used. The surprising 

conclusion of this study is that they obtained these results using a consistent mass matrix. 

In a significant work, Milly (1985) investigated the poor mass balance behavior of 

the h based−  Richards equation with Picard linearization method, and suggested a mass 

conservative algorithm using a new definition of the soil water capacity term. In 

comparison with the standard h based− form, using this algorithm significantly reduced 

the global mass balance error but didn’t totally eliminate it. He also reported that the 

distributed mass matrices did not converge at all or the rate of convergence was painfully 

slow which is in contrast with the results observed by Huyakorn and Thomas (1984). 

In another study, Huyakorn et al. (1986) used the influence coefficient matrices 

method to solve a three-dimensional problem. The standard Picard method and the 

symmetric successive over-relaxation (SSOR) scheme were used to handle the 

nonlinearities and solve the system of linear equations, respectively. They concluded that 

the symmetric successive over-relaxation method with a relaxation factor of one 

converged very quickly (less than ten iterations).  

In a landmark study, Celia et al. (1990) pointed out that the mass balance 

problems of the h based−  Richards’ equation come from the fact that the time 

derivative, / tθ∂ ∂ , and its equivalent ( ) /C h h t∂ ∂ (where ( ) /C h hθ= ∂ ∂  is the specific soil 

moisture capacity) are mathematically equivalent in a continuous partial differential 

equation, their discrete analogs are not.  This inequality is amplified because of the highly 

nonlinear nature of the soil water capacity term. To eliminate the problem they developed 

a “mixed form” Richards equation and modified Picard linearization technique which 
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uses a Taylor series expansion of θ  in the iteration space in order to relate θ  and h .  

This led to perfectly conserved mass and significant numerical solution performance, 

while requiring no additional computer efforts. Since then, this approach has been a 

standard procedure in solving water flow problems in unsaturated porous media in both 

finite difference and finite element methods. They also showed that finite difference is 

superior to the finite element without lumping the mass matrix and in case of mass 

lumping they produce the same results. Celia and Binning (1992) later extended this 

technique to two-phase flow problems. A similar method was employed by Allen and 

Murphy (1986) in the context of finite element collocation method and by Celia et al. 

(1987) in the context of an alternating version of the collocation approximation of space.  

Rathfelder and Abriola (1994) noticed that the standard Picard method in 

conjunction with the h-based form of the Richards’ equation could be equally good as the 

modified Picard scheme for the mixed form equation, if the soil water capacity term was 

evaluated using a chord-slope method.  

Forsyth et al. (1995) developed a numerical method to simulate two-phase 

saturated-unsaturated flow problems using monotone finite element and finite volume 

space discretization and variable substitution. The algorithm uses the water content based 

form of the Richards’ equation in unsaturated regions and switched to the standard h-

based form in and near saturated zones. For very dry initial condition, where there’s a 

steep moisture and/or salt front, the proposed algorithm required an order of magnitude 

less Newton iterations compared to the standard pressure-based form. In problems, where 

the initial state is not very dry, the algorithm was 30 per cent more efficient than the h-

based form and in saturated porous media they were the same. They argued that the 
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method was mass-conservative, strictly monotone for any time step and mesh size (if 

upstream weighting is used), required no special treatments of discontinuities in 

heterogeneous porous media, and could be easily implemented in the context of finite 

element and finite volume methods.  

Lehmann and Ackerer (1998) compared Picard, Modified Picard, and Newton- 

Raphson algorithms in solving the pressure-head based and mixed forms of the Richards’ 

equations. They concluded that modified Picard method produces better results in terms 

of CPU time than the Newton-Raphson method when the Jacobian matrix is calculated 

using a perturbation approach. Having used an analytically calculated Jacobian matrix 

they noticed that the later form is more efficient than the modified Picard method. 

Nevertheless, when they used the modified Picard method at the beginning of the 

iteration procedure and switched to the Newton method as iteration proceeded, they 

obtain good results in terms of accuracy and CPU time. 

A “primary variable substitution” technique similar to that of Forsyth et al. (1995) 

was used by Diersch and Perrochet (1999) in which the water content based form of the 

Richards’ equation was applied in unsaturated regions and the standard h-based form in 

and near saturated zones. Gui et al. (2000) and Hao et al. (2005) reported large mass 

balance error when the mixed form was used to simulate different irrigation operations 

with free drainage boundary condition at the outlet.  

 
2.3.1.2. Finite Difference Methods 
  
The first attempt to solve unsaturated flow problems by numerical means appeared in the 

1960’s. Hanks and Bowers (1962) used a finite difference method with Crank-Nicolson 

time discretization scheme to study one-dimensional flow in a layered soil. Whisler and 



 28  

Klute (1965) applied the finite difference method with Picard linearization to a one-

dimensional flow problem. Liakopolous (1966) and Molz and Remson (1970) considered 

a non-conservative form of Richards equation in which both the gravity and diffusivity 

terms were expanded using the chain rule of differentiation. Rubin (1968) employed 

alternating direction implicit (ADI) finite difference method to solve the two-dimensional 

h based−  Richards equation. The predictive ability of the h based−  form of the 

Richards equation for coupled saturated-unsaturated one-dimensional flow was first 

studied by Freeze (1969) and Hornberger et al. (1969). In a significant study Freeze 

(1971a, 1971b) developed a finite difference model for three-dimensional saturated-

unsaturated flow using Crank-Nicolson time discretization, Picard iteration, and the line 

successive over-relaxation (LSOR) method for solution of the resulting system of 

algebraic equations. Cooley (1971) developed a finite difference model to solve transient 

unsaturated flow problem. The finite difference solution of Freeze (1971) and Cooley 

(1971), however, were not robust and suffered from numerical instability and 

convergence difficulties. These problems stemmed from the inefficiencies of the line 

successive over-relaxation and alternating direction implicit (ADI) methods used to solve 

the two-dimensional h based−  form of the Richards equation and the resulting system of 

algebraic equations (Clement et al., 1994).    

Haverkamp et al. (1977) compared three finite difference schemes for solution of 

the one-dimensional basedθ − and h based−  Richards equation for two sets of soil 

parameters. The time discretization was carried out by: 1) explicit Euler method, 2) fully 

implicit method with explicit linearization, and 3) fully implicit method with implicit 

linearization. They concluded that explicit methods needed to meet severe time step 
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restrictions to ensure stability and also needed 5 to 10 times more computer time than 

implicit methods. The fully implicit method with implicit linearization was superior to 

the fully implicit method with explicit linearization. In another study, Haverkamp and 

Vauclin (1981) compared the performance of the finite difference solution of three forms 

of Richards’ equation: Kirchhoff transformed form, h based−  form, and the non-

conservative form. The three models were compared with the semi-analytical solution of 

Philip. They noticed that the Kirchhoff transformed form was the most accurate. They 

also observed a significant decrease in its efficiency (in terms of CPU time and number 

of iterations) in comparison with the h based−  form. On the other hand the non-

conservative form produced the worst results. 

Ababou (1988) developed a finite difference model for three-dimensional flow in 

heterogeneous porous media. Hills et al. (1989) showed that finite difference solution of 

the water content-based form of the Richards equation can result in significantly 

improved performance compared to the standard pressure-based form when modeling 

infiltration into a very dry and heterogeneous soil.   

Kirkland et al. (1992) presented a finite difference solution for two-dimensional 

partially saturated flow problems. The goal was to develop an efficient model to simulate 

infiltration into a heterogeneous and very dry soil. They used a “transformed” Richards’ 

equation which had the characteristic of water content-based formula in the unsaturated 

region and that of the pressure-based form in or near the saturated zone. The resulting 

system of linear algebraic equations was solved by the preconditioned conjugate gradient 

method (PCG). This model, however, did not include the effect of specific storage and 

therefore could not be used to accurately simulate a wide variety of flow problems such 
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as transient drainage and seepage face in large domains (Clement et al., 1994). To 

overcome this limitation, Clement et al. (1994) developed a finite difference code that 

can be used to simulate different flow scenarios in partially saturated media. They used 

mixed form of the Richards equation with modified Picard linearization technique 

proposed by Celia et al. (1990). The resulting system of linear algebraic equations was 

solved by preconditioned conjugate gradient method. They concluded that this algorithm 

was computationally efficient, highly stable, and required minimum computer storage 

and time.  

Since the mass-lumped linear finite element method leads to the standard finite 

difference approximation of flow equation, Simunek et al. (2005) used finite difference 

method to solve partially saturated flow problem in their HYDRUS1D code.  

2.3.2. Parameter Identification in Water Flow through Porous Media 
 
Despite remarkable efforts to solve partial differential equations governing water flow 

and pollutant transport phenomena in variably saturated soils, there have been relatively 

few attempts to calibrate and validate them against large scale data. The reason is the 

large number of model parameters which requires intensive datasets that are not readily 

available. To calibrate these models one approach is to impose rather restrictive initial 

and boundary conditions on transport properties of the system that allow direct 

computation of the parameters (Kool et al. 1987). Another approach is parameter 

estimation by inverse methods which will be reviewed in the following sections.  

 

2.3.2.1. Direct Methods 
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There are several laboratory and field scale methods to measure hydraulic and transport 

parameters in water flow and contaminant transport through variably saturated soils 

(Bouwer and Jackson 1974; Green et al., 1986; Klute and Dirksen1986). However, 

laboratory scale results may not be representative of field scale transport parameters. 

Field scale measurements, on the other hand, are tedious, time consuming, expensive, and 

often impose unrealistic and simplified initial and boundary conditions on transport 

processes in biological systems. Finally, information regarding parameter uncertainty is 

not readily obtained from these methods unless a very large number of samples and 

measurements are taken at significant additional cost (Kool et al., 1987; Simunek and van 

Genuchten, 1996; Finsterle, 2004). To overcome these limitations indirect methods, such 

as parameter optimization by inverse modeling, can be used to identify mass transport 

and reaction parameters.  

 
2.3.2.2. Indirect Methods: Inverse Modeling 
 
A promising approach for parameter estimation is the use of inverse modeling. Model 

calibration, history matching, nonlinear regression, and optimization are equivalent terms 

for inverse modeling (Finsterle, 2004). In this procedure, laboratory and/or field 

measurements of system variables such as discharge, fluid pressure, and concentrations 

are used to find optimum values for model parameters such as parameters of 

characteristics curve, and contaminant transport. Inverse modeling may be viewed as a 

procedure for converting more easily measured data such as water content and pressure 

head into harder to obtain transport parameters such as kinetic rate constants, saturated 

hydraulic conductivity, dispersion coefficient, retardation factor, degradation and 

production coefficients, and pore water velocity. 



 32  

Unlike direct inversion methods, inverse modeling does not impose any 

constraints on the form or complexity of the forward model, on the choice of initial and 

boundary conditions, on the constitutive relationships, or on the treatment of 

heterogeneities via deterministic or stochastic formulations. Therefore, experimental 

conditions can be chosen based on convenience rather than by a need to simplify the 

mathematics of the process (Kool et al., 1987). Additionally, if information regarding 

parameter uncertainty and model accuracy is needed, it can be obtained from the 

parameter optimization procedure (Yeh et al., 1986; Kool et al., 1987; Ewing and Lin, 

1991; Sun, 1994; McLaughlin and Townly, 1996; Simunek and van Genuchten, 1996; 

Durner et al., 1997; Zimmerman et al., 1998; Hopmans et al., 2002). 

On the other hand, a general problem of parameter optimization via inverse 

modeling is ill-posedness. A problem is ill-posed when it either has no solution at all, no 

unique solution, or the solution is not stable (Tyn Myint-u, 1980). Generally, ill-

posedness arises from non-uniqueness and instability. Instability occurs when the 

estimated parameters are excessively sensitive to the input data. Any small errors in 

measurements will then lead to significant error in estimated values of parameters. If 

boundary conditions are improperly formulated, appreciable errors in parameter 

optimization may arise for the inverse modeling (Yeh, 1986; Kool et al., 1987). Non-

uniqueness occurs when there are multiple parameter vectors that can produce almost the 

same values of the objective function (Yeh, 1986; Kool et al., 1987) thus making it 

impossible to determine the correct and unique solution. This problem is closely related 

to parameter identifiability. In other words, is it possible to obtain accurate values for the 

parameters in a given mathematical model from the available experimental data? 
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Parameter identifiability depends on both the structure of the mathematical model and the 

experimental data used. A common cause for non-identifiability of model parameters is 

high intercorrelation among parameters. In these situations a change in one parameter 

generates a corresponding change in the correlated parameter making it impossible to 

obtain accurate estimate for either of them. Furthermore, even when parameters in a 

mathematical model are independent of each other, the experimental data may produce an 

objective function that is not sensitive enough to one or more parameters. The 

characteristics of the second situation are wide confidence regions on the estimated 

parameters and large estimation variances (Kool et al., 1987). Where the only solution for 

the first case is fixing one of the parameters and estimating the other one, in the second 

case performing multi-objective optimization by coupling different kinds of experimental 

data may lead to unique solution (Kool et al., 1987).    

 
2.3.2.2.1. Laboratory Scale 
 
One of the first attempts to estimate soil hydraulic properties from transient column 

drainage experiment in laboratory scale was that of Zachmann et al. (1981, 1982) who 

used cumulative drainage outflow data to estimate two unknown parameters in a four-

parameter flow model using Ordinary Least Squares (OLS) formulation. They solved the 

pressure head based form of the Richards’ equation (as direct problem) by finite 

differences and used an OLS approach for their parameter estimation procedure. In 

another study carried out by Hornung (1983), an initially saturated soil column was 

subjected to constant infiltration flux at the surface and gravity drainage at the bottom. 

The final pressure head at some fixed positions inside the column and the outflow rate 
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from the column were measured. Soil hydraulic properties were represented by van 

Genuchten’s model. Hornung assumed that ,, rsK θ and sθ  were known and estimated α   

and n  by inverse modeling.   

Using column drainage experiment Kool et al. (1985) estimated ,, rn θ  and α  in 

van Genuchten’s model. Unlike the gravity drainage experiment of Zachmann et al. 

(1981, 1982) and Hornung (1983), soil drainage in this study was initiated by one-step 

change in air pressure at the upper boundary of the soil sample. Kool et al. (1985) 

claimed that except for very coarse material the gravity drainage experiment must be 

carried out in unrealistically long columns in order to get the desired solution.  

Parker et al. (1985) used the one-step outflow experiment to determine soil 

hydraulic properties. Soil cores were assembled in a pressure plate apparatus. After 

increasing pneumatic pressure on the soil samples the cumulative outflow rates were 

measured as a function of time. The parameters ,, rn θ and α  were then estimated by 

inverse modeling. Predicted )(hθ  and )(hK  were compared to independently determined 

soil hydraulic properties for the same soil cores and good agreement was found for all of 

them within the measurement domain. Extrapolation to lower pressure heads, however, 

proved to be less reliable (Parker et al. 1985). van Dame et al. (1990) modified the one-

step outflow method of Parker et al. (1985) into a multi-step procedure for estimating soil 

hydraulic functions. By analyzing parameter response surface, Toorman et al. (1992) 

showed that the one-step method doesn’t provide enough information to uniquely 

estimate the parameters of the characteristic curve. 

Additional studies include Yeh and Yoon (1981) who studied the parameter 

identifiability problem for an aquifer. Cooley (1982 and 1983) who incorporated prior 
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information about the parameters into a nonlinear groundwater flow model. Parker and 

van Genuchten (1984) who applied an inverse technique to laboratory and field scale 

displacement experiment. Carrera and Neuman (1984) who used a maximum likelihood 

method and incorporated the prior information in their parameter optimization procedure 

assuming both steady and transient flow conditions. Yeh (1986) and Kool et al. (1987) 

reviewed general aspects of parameter optimization procedures. Kool and Parker (1988) 

applied an inverse modeling scheme to a flow experiment consisting of infiltration, 

gravity drainage and evaporation at the soil surface. Using transient outflow and soil 

water matric potential head data, Eching and Hopmans (1993) studied optimization of the 

soil hydraulic functions. In another study, Eching et al. (1994) discussed how laboratory 

determined parameters are related to the field scale parameters.  

Some studies introduced geostatistics considerations in the inverse modeling 

procedures (Clifton and Neuman, 1982; Kitanidis and Vomvoris, 1983; Kitanidis, 1995; 

Yeh et al., 1996; Zimmerman et al., 1998), while others combined parameter 

optimization techniques with scaling capabilities (Shouse et al., 1992; Eching et al., 

1994). Also, some research works coupled numerical inverse problems, such as heat 

transport, with unsaturated or saturated flow (Carrera, 1987; Mishra and Parker, 1989; 

Sun and Yeh, 1990). Laboratory scale inverse modeling analyses have also been carried 

out by Hudson et al. (1996), Gariner et al. (1997), Finsterle et al. (1998), Hwang and 

Powers (2002), Bitterlich and Knabner (2002), and Bohne and Salzmann (2002), among 

many others.  

Analyzing infiltration data and parameter response surfaces, Russo et al. (1991) 

concluded that the use of prior information (e.g. regularization) of the model parameters 



 36  

reduces the degree of ill-posedness and might lead to a stable and unique solution even 

when the input data are associated with considerable measurement errors. Carrera and 

Neuman (1986c), Toorman and Wierenga (1992), and Simunek and van Genuchten 

(1996) studied the uniqueness of the inverse problem using generated data. 

 
2.3.2.2.2. Field Scale 
  
While most of the studies on inverse problems in biological systems have been carried 

out on laboratory scale and numerically generated data, the most promising aspect of the 

technique is its potential application to large scale situations (Abbaspour et al., 1999 and 

2000; Jhorar et al., 2002).  Dane and Hruska (1983) developed a parameter optimization 

method to simultaneously determine characteristic curve parameters and hydraulic 

conductivity functions from a transient field experiment. A gravity drainage experiment 

was conducted in a clay loam soil trough. Water contents were measured by neutron 

probe after 7 and 25 days of initiation of drainage. To prevent evaporation, zero flux 

boundary condition was imposed at the top of the soil. By measuring pressure head at the 

depth of 90cm, Dirichlet type boundary condition was applied at the bottom of the 

lysimeter. Before initiation of drainage, the saturated hydraulic conductivity and saturated 

water content were measured by neutron probe. By inspection of the available )(hθ  data 

a “smart guess” was assumed for rθ . They could estimate α  and n  by coupling an 

optimization algorithm with the finite difference solution of the pressure head form of the 

Richards’ equation. They found reasonable agreement between simulated and 

independently measured )(hθ  but observed that the predicted )(hK  overestimated 

measured conductivities by approximately one order of magnitude. Significantly better 

results were obtained, with only small changes in the resulting optimum values of α  and 
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n , when they used SK  values arbitrarily 10 times lower than the measured value. They 

suggested that, in measuring SK  by ponded infiltration, macropore flow caused an 

inflated value for saturated hydraulic conductivity.  

A more general approach would be to takeα , sθ , rθ , sK , and n  as unknown 

vector and determine their values by inverse modeling. The reason is that obtaining 

reliable value for SK  is very difficult, especially in structured media. On the other hand, 

one can obtain a value for rθ  by determining water content at 15=h  atmosphere, which 

is the arbitrary definition of the residual water content. Numerous studies, however, have 

shown that the parameter estimation process is not very sensitive to the value of rθ  (Kool 

et al., 1987). Consequently, one may fix its value and thereby help the convergence of the 

inverse procedure by removing one parameter from the problem. 

  A detailed field experiment was conducted at the Los Alamos National 

laboratory (Abeele, 1984) and the results were used by Kool et al., (1987) to identify the 

unknown parameters SK , rθ , ,n and α . Solving the one-dimensional Richards’ equation 

by a fully implicit and mass-lumped Galerkin-type linear finite element code with 

variable time step and constant node spacing of 5 cm, they successfully estimated the 

unknown parameter vector. The estimated )(hθ  and )(hK  were compared with 

independently measured data and excellent agreement was found. The observed )(hK  

was calculated from the lysimeter drainage experiment using the instantaneous profile 

method. Among four unknowns the estimated saturated hydraulic conductivity was the 

least accurate parameter with wider confidence interval suggesting that obtaining a good 

value for in-situ saturated hydraulic conductivity is quite difficult. This confirms the 
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results of Dane and Hruska (1983). These studies show that in order to get a good 

estimate for in-situ saturated hydraulic conductivity one must have several data points at 

early observation times in drainage experiment and assign them more weight in the 

objective function. They claimed that in order to obtain a unique solution for the inverse 

problem, it is necessary to use water content and pressure head profiles simultaneously in 

the objective function. Mishra and Parker (1989) used synthetic data to simultaneously 

estimate the hydraulic and transport parameters.  

Using flow rate and pressure head data, Gribb (1996) estimated the saturated 

hydraulic conductivity and the soil water matric potential head at air entry point. Using 

water content data, monitored during an infiltration-redistribution event, Zijlstra and 

Dane (1996) estimated the saturated hydraulic conductivity and parameters of soil water 

characteristics curve for both homogeneous and layered systems. Generating synthetic 

data for pressure head and water content during infiltration experiment and coupling them 

with prior information and geostatistical inverse methodology, Yeh and Zhang (1996), 

Zhang and Yeh (1997), and Hughson and Yeh (2000) identified saturated hydraulic 

conductivity and air entry value.  

Abbaspour et al. (1997) developed a sequential uncertainty domain parameter 

optimization procedure. They claimed that the method is general, forward, sequential, 

iterative, and Bayesian in nature. They also reported that the procedure is stable, 

convergent, and proper for global minimization. Abbaspour et al. (1999, 2000) applied 

the technique to estimate the soil water retention curve parameters of a layered field soil.  

However, their experiment imposed artificial conditions such as constant irrigation rate 

and gravel on top of the soil surface to prevent sealing and reduce evaporation. Pan and 
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Wu (1998) measured pressure head during an infiltration experiment and estimated the 

optimized values of saturated hydraulic conductivity and the parameters of soil water 

retention curve. Monitoring water content and pressure in a watershed scale infiltration-

percolation-redistribution event at Yucca mountain and coupling them with prior 

information, Badurraga and Bodvarsson (1999) identified parameters of soil water 

characteristic curve and the saturated hydraulic conductivity. Finsterle (2000), Finsterle et 

al. (2003), and Ghezzehei et al. (2004) identified capillary strength by using seepage rate 

data. Monitoring concentration of nitrate and water pressure, Schmied et al. (2000) 

estimated parameters of the soil water characteristic curve, the saturated hydraulic 

conductivity of the soil, plant water uptake, and nitrogen turnover parameters in a large 

scale agricultural field.  

 Using evaporation and evapotranspiration data, Jhorar et al. (2002) investigated 

the use of inverse modeling for determining soil hydraulic properties of irrigated lands 

with deep groundwater Table. The experiment was repeated for three different soil types. 

The PEST optimization code was used to solve the inverse problem. The results indicated 

that when ET fluxes data are accurate ,α sθ , and n  can be optimized precisely. Inverse 

estimating of these parameters results in effective soil hydraulic properties that reliably 

predict different water balance components for different soil types.  

To estimate transport coefficients Ritter et al. (2003 and 2005) applied WAVE 

(water and agrochemicals in soil, crop and vadose environment) software to a sprinkler 

fertigated banana plantation field data in the north of Tenerife (Canary Islands). Inverse 

modeling in this study suffered from ill-posedness, because nine parameters were 

estimated simultaneously. The algorithm they used could only estimate four unknowns 
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and they could not find the global minimum. To optimize further coefficients more 

measurements were needed. They concluded that when input data are subjected to 

measurements errors, the convergence of the minimization method at several points in the 

parameter space may be very slow due to instability. In these cases, especially when 

over-parameterized models are used, inverse techniques should be complemented with 

prior information obtained by direct measurement methods or other available data.  

In a less restrictive approach, Olyphant (2003) applied inverse modeling to field 

measurements of pressure head and water contents profiles of a field soil and net surface 

flux (infiltration/evaporation). The optimization results indicated that consistent set of 

parameters can be achieved. Wang et al. (2003) and Kowalsky et al. (2004) used water 

content information as input data, obtained through infiltration experiment, and coupled 

them with prior information to estimate hydraulic parameters. The former evaluated 

different conceptual models while the later employed geostatistics and pilot point 

method.  

Recently, Knowles et al. (2004) and Knowles and Yan (2004) used the steepest 

descent scheme to estimate groundwater flow parameters. Using the Levenberg-

Marquardt algorithm, Malengier (2004) estimated the groundwater hydraulic parameters 

in a drainage basin.  

Some investigators extended the use of inverse techniques to parameter 

identification in multiphase flow. Finsterle and Pruess (1995) measured water potential, 

gas pressure, and cumulative evaporation during two-phase flow ventilation experiment 

and coupled the data with a priori information to identify the parameters of soil water 

retention curve and  the saturated hydraulic conductivity. Conducting multi-step outflow 
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experiment and measuring cumulative outflow and pressure, Chen et al. (1999) estimated 

the capillary pressure-saturation relationship parameters for two fluids (oil and water). 

Vasco and Datta-Gupta (1997) and Wu et al. (1999) coupled regularization with water 

cut data and water/oil ratio, pressure, and a geostatistical model to determine hydraulic 

conductivity in the oil reservoir experiment. Engelhardt et al. (2003) measured 

temperature and cumulative outflow during non-isothermal two-phase flow experiment 

(e.g. gas injection into heated column) to inversely estimate thermal conductivity, heat 

capacity, hydraulic conductivity, and matric potential head at air entry value.   

Unlike the laboratory scale experiments, large scale experiments face the problem 

of heterogeneity and over-parameterization. The heterogeneous (e.g. stratified and 

layered) nature of geological deposits has led some researchers to estimate separate 

parameters for each layer. 

2.4. Summary of the Literature Review 
 
The review of literature on inverse modeling can be summarized as follows: 

1. Several techniques have been developed to identify the parameters of 

sophisticated models. Direct inversion methods have been proven inefficient. 

A promising approach is estimation of model parameters using inverse 

modeling that has been increasingly researched during recent years.  

2. The optimization algorithms to solve the inverse problems and find the 

minimum of the objective function have been continually improved and 

refined but the basic idea and difficulties associated with solving the inverse 

problems remain the same. 
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3. The task of parameter estimation in FRAP protocol is the topic of ongoing 

research. So far most of the parameter estimation in FRAP studies have been 

qualitative and merely curve fitting. There have been no ill-posedness analysis 

of the inverse problem in FRAP procedure. 

4. While the use of inverse modeling in saturated flow and transport problems 

has been extensive, its application to unsaturated and transient flow and 

transport problems has been far less extensive with most studies carried out at 

the laboratory scale (especially the one-step and multi-step outflow methods) 

and using the Mualem-van Genuchten water characteristic model parameters. 

A few studies have employed more sophisticated water retention functions 

such as bimodal (Zurmuhl and Durner, 1998) and hysteretic models. 

5. Stochastic inverse modeling approaches, such as those presented by 

Zimmerman et al. (1998), have not been extensively used in unsaturated flow 

and transport problems (except for Daghan, 1985: Yeh and Zhang (1996); 

Zhang and Yeh (1997); Kowalsky et al., 2004). 

6. Only a few studies have used inverse modeling approaches in multi-phase 

flow systems. 

7. A large number of computer codes have been developed to solve optimization 

problems (Moré and Wright, 1993). In geohydrology all of these codes deal 

with the flow and transport problems in the saturated region. A few computer 

codes have been developed to solve inverse problems in unsaturated flow and 

transport problems: ONE-STEP program (Kool et al., 1985; Eching and 

Hopmans, 1993) which determines hydraulic parameters from outflow 
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experiment, HYDRUS software (Simunak et al., 2005), and iTOUGH2 code 

(Finsterle, 2004). These codes don’t guarantee unique and stable solution for 

inverse problems. Any numerical solutions of partial differential equations 

governing flow and transport processes in unsaturated porous media can be 

used in conjunction with the parameter optimization packages such as PEST 

(Doherty, 1994) and UCODE (Poeter and Hill, 1998) or any other commercial 

optimization software. 

8. A potential problem with inverse modeling is ill-posedness, particularly non-

uniqueness. None of the developed codes analyze the posedness of the inverse 

problem.   

Overall, inverse modeling appears to offer the characteristics needed for 

parameter identification in sophisticated models of biological systems. It however 

remains to: 1) evaluate the strategy in systems of coupled nonlinear partial differential 

equations governing mass transport and reaction kinetics across complex biological 

systems, 2) investigate whether judicious selection of calibration data and forward model 

can eliminate potential ill-posedness problems, and 3) evaluate possible ill-posedness of 

the inverse problem with innovative techniques.  

Success in these activities will further permit the evaluation of the uncertainty of 

the identified model parameters. 
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CHAPTER 3: SPECIFIC OBJECTIVES OF THE 
RESEARCH 
 

 

                   Basic research is what I am doing when 
             I don’t know what I am doing. 
             Wernher von Braun 
 
 
The goal of this study is to develop, apply, and analyze a state of the art inverse modeling 

strategy to optimize model parameters of mass transport processes in biological systems. 

The specific objectives are as follows: 

1. To develop an inverse modeling strategy by coupling numerical solution of a 

system of coupled nonlinear partial differential equations governing species 

transport in different biological systems with optimization algorithm and set(s) of 

experimental/synthetic data to inversely estimate model parameters.  

2. To apply the strategy to parameter identification problems in biomolecule 

transport in living cells. 

3. To apply the strategy to parameter optimization problems in fluid flow in 

variably saturated porous media. 

4. To analyze and distinguish possible ill-posedness of the inverse problems by 

innovative techniques.  

 The inverse problem will be treated as a nonlinear optimization problem in 

which model parameters are estimated by minimizing an appropriate objective 

function which represents the discrepancies between the observed and predicted 

responses of the biological systems. Several finite element and finite difference 
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approximations will be compared for their ability to efficiently solve the forward 

problem and the best method will be selected for coupling with the optimization 

algorithm. Several Newton based optimization methods will be compared to find 

the one that is most suitable for solving optimization problems in biological 

systems, which will form the core of the proposed inverse modeling strategy. The 

numerical solution of the forward problem will be validated by either analytical or 

reference solutions. The inverse problem will be validated with synthetic and 

experimental data sets. The solution for forward models will be provided in one-

dimension. Extension to higher dimensions will be left for future research. Also, 

regularization and incorporation of a priori information regarding the parameters 

will be left for future studies. 

The validated inverse modeling strategy will be used to optimization 

problems in different biological systems. The scale of application will range from 

biomolecule transport in living cells to fluid flow in lysimeter. Both homogeneous 

and heterogeneous porous media will be considered. Application of the inverse 

modeling strategy to regional and watershed scales will be left for future research. 

Validation of the strategy with the genetic algorithm and Monte Carlo–Markov 

Chain (MCMC) method will be left for future research. 

 The posedness of the inverse problems will be studied by performing 

stability and uniqueness analysis. An input data perturbation approach will be 

used to study the stability of the inverse problem. Parameter hyper-space will be 

constructed and analyzed to investigate the uniqueness of the inverse problem. 

The commonly used parameter response surfaces analysis will be thoroughly and 
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critically studied. Multi-objective parameter optimization approach and residual 

analysis will be used to distinguish the problem. The use of Liapunov series 

analysis will be left for future research. The use of information theory and the 

Generalized Likelihood Uncertainty Estimation (GLUE) methodology will be left 

for future research.  
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CHAPTER 4: METHODS AND MATERIALS  
 

 

 
                As far as the laws of mathematics refer to reality, 
       they are not certain; and as far as they are certain, 
       they do not refer to reality. 
                    Einstein 
 

This chapter presents the methodology used to develop, apply, and analyze a state-of-the-

art inverse modeling strategy which is applicable to diverse optimization problems in 

biological systems. The solution of the forward problem by means of numerical methods 

and formulation of the inverse problem, in the framework of nonlinear optimization, are 

discussed in detail. Both the finite difference and finite element approximations of partial 

differential equations governing transport phenomena are presented. The application of 

the developed strategy in two different transport problems, in molecular biology and fluid 

flow in partially saturated porous materials, is also described. Both homogeneous and 

heterogeneous porous media are considered. Methods for analyzing the inverse modeling 

technique are then presented. 

4.1. Development of the Inverse Modeling Strategy 
 
The inverse modeling strategy will be developed by identifying the best optimization 

algorithm for its three main components: 1) robustness of the method in finding the 

search direction, 2) controlling the size of the search step, and 3) an efficient stopping 

criterion. The methods used to identify the best techniques for these components are 

described below.    
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4.1.1. Optimization Algorithm 
 
To obtain the search direction in each iteration, ( )φ β  in equation [2.7] is expanded with 

respect to β∆  around iβ  by Taylor series expansion (Kool et al., 1987): 

  2( ) ( ) ( ) ( ) .......
2

T
i i i T iβφ β β φ β φ β β φ β β∆
+ ∆ = + ∇ ∆ + ∇ ∆ +                  [4.1] 

If the derivative of equation [4.1] with respect to β∆  is set to zero, then β∆  is a 

minimizer of the objective function: 

 2 0φ φ β∇ + ∇ ∆ =                                                        [4.2] 

or: 

  2 1( )β φ φ −∆ = −∇ ∇                                                  [4.3] 

To get straightforward expressions for β∆ , one needs to differentiate Eq. [2.7] 

twice with respect to β . Assuming ( )pφ  is twice-continuously differentiable, the gradient 

vector, ( )φ β∇ , and the Hessian matrix, 2 ( )pφ∇ , can be calculated as: 
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and the second derivative: 

            
2 2

2

1 1

( ) ( ) ( ) ( )( ) [ ( )] ( ) ( ) ( )
N N

Ti i i i
i i

i ij i i j i j

r r r rr J J rβ β β βφ β β β β β
β β β β β β= =

∂ ∂ ∂ ∂
∇ = + = +

∂ ∂ ∂ ∂ ∂ ∂∑ ∑      

                   [4.5] 

where J  is the N β×  Jacobian (sensitivity) matrix. 

 Inserting equations [4.4] and [4.5] into Eq. [4.3], one finds the well known 

Newton’s algorithm for updating the unknown vector in each iteration: 
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 As discussed in chapter 2, equation [4.6] is not usually used in nonlinear 

optimization. Alternatively, the general purpose Levenberg-Marquardt algorithm:  

 

     ( ) ( ) ( ) ( ) ( ) 1 ( ) ( )( ( ) ( ) ( ) ( )) ( ) ( )k k T k k T k k T kJ J D D J rβ β β λ β β β β−∆ = − +    

                     [2.11] 

is generally used in nonlinear optimization problems.   

To avoid the computation of possibly ill-conditioned TJ J  in equation [2.11], the 

Osborne-Moré modified version of the LM algorithm (Osborne, 1976; Moré, 1977):  
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will be implemented in the inverse algorithm. The QR  decomposition will be used to 

solve Eq. [2.12].  

 Owing to the nonlinear nature of Eq. [2.7], its minimization was carried out 

iteratively by first starting with an initial guess of parameter vector, ( ){ }kβ  and updating it 

at each iteration until the termination criteria were met: 

  ( 1) ( ) ( ) ( )k k k kβ β α β+ = + ∆              

where ( )kα  is a scalar step length and ( )kp∆  is the direction of search (step direction).  

 All Newton based optimization algorithm require computation of the Jacobian 

matrix: 
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where ( )U β  is obtained by solving the forward problem which is a or a set of coupled 

nonlinear partial differential equation(s) governing the transport phenomena in the 

biological system of interest. The derivatives of ( )U β  with respect to model parameters 

are not available analytically. A combination of “one-sided” and “two-sided” finite 

differences methods will be used to calculate the partial derivatives of the state 

variable(s) with respect to model parameters. At the beginning of the optimization, where 

the search is far from the minimum, the “one-sided” finite difference scheme is used; 
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As optimization proceeds in descent direction, the algorithm switches to more accurate 

but computationally expensive approach in which the partial derivatives are calculated 

using a central finite difference scheme; 
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 The truncation error of equation [4.9] is 
3 4 4( ) /

24
i i iOFβ β β∆ ∂ ∂  (Bard, 1974) but in 

comparison to equation [4.8] it requires solving the forward problem, by means of finite 

element or finite difference approximations, twice for each partial derivative in each 

iteration of the inverse code. 

The scaling matrix and the Lagrange multiplier, in Eq. [2.12], are updated in each 

iteration. Given λ  is a positive scalar, the Hessian matrix must be positive definite in 

order to insure the descent property of the algorithm. To achieve this, the value of D  is 
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initialized using a β β×  unit matrix before the beginning of the optimization loop in the 

inverse code. Then the diagonal elements of D  is updated in every iteration; 

  
0 0

1max( , )

j j

i i i
j j j

d J

d d J−

=

=
 

where j  is the thj column of the Jacobian matrix and i  is the iteration level in inverse 

code. The algorithm below updates D  in each iteration: 

  for 1:i p=  

   ( , ) max( ( (:, ), ( , )))D i i norm J i D i i=  

  end  

4.1.2. Selection of the Efficient Optimization Algorithm 
 
In order to choose the best and the most efficient algorithm, the steepest descent method 

(Eq. [2.11] with λ → +∞  and pD I= ), the Gauss-Newton scheme (Eq. [2.11] with 

0λ = ), equation [2.11], and the developed optimization algorithm (using Eq.[2.12]) will 

be used to identify model parameters in the Convective-Dispersive-Reactive equation, 

 which is used here as a simple optimization problem (Toride et al, 1995):  

  ( ) ( )b w l s b l b s
CC S D J C C S

t z z
θ ρ θ θµ µ ρ θγ ρ γ∂ ∂ ∂

+ = − − − + +
∂ ∂ ∂

     

             [4.10] 

where C  is concentration of the pollutant in the liquid phase ( )3−ML , S  is concentration 

of the pollutant in the adsorbed phase ( )1−MM , wJ  is the volumetric water flux density 

( )1−LT , D  is the dispersion coefficient ( )12 −TL ,θ  is the volumetric water content 

( )33 −LL , bρ  is the soil bulk density ( )3−ML , )( 13 −− TMLlγ and )( 11 −− TMMsγ are zero-
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order source terms for the liquid and adsorbed phases, respectively, lµ and sµ  are first-

order decay coefficients for degradation of the pollutant in the liquid and adsorbed 

phases, respectively )( 1−T , z  is vertical distance from the soil surface downward )(L , and 

t  is time )(T . 

 Assuming contaminant adsorption by the solid phase is described by a linear 

isotherm: 

  dS K C=                  [4.11] 

where dK  is an empirical distribution coefficient ( )31 −− LM , inserting equation [4.11] into 

equation [4.10], and assuming steady state and saturated flow in a homogeneous soil 

yields:  

  
2

2

C C CR D v C
t z z

µ γ∂ ∂ ∂
= − − +

∂ ∂ ∂
       [4.12] 

Where θ/wJv =  is mean pore water velocity and R  is the retardation factor defined by: 

  θρ /1 db KR +=            [4.13] 

and µ  and γ  are combined first and zero-order rate coefficients (Toride et al, 1995): 

  
θγργγ

θ
µρ

µµ

/sbl

sdb
l

K

+=

+=
           [4.14] 

Inspection of equation [4.12] shows that when the first-order degradation coefficients in 

liquid and solid phases are identical, it reduces to: 

  
θγργγ

µµ
/sbl

l R
+=

=
                        [4.15] 

 A backward in time and central in space finite difference discretization of 

equation [4.12] yields: 
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1 1 1 1 1 1
1 1 1 1

2

11 1 1 1
2

2[ ] [ ]
( ) 2

2(1 )[ ] (1 )[ ] [ ]
( ) 2 2

n n n n n n n
i i i i i i i

n n n n n
n ni i i i i
i i

C C C C C C CR Df vf
t z z

C C C C CD f v f C C
z z

µ γ

+ + + + + +
+ − + −

++ − + −

− − + −
= − +

∆ ∆ ∆

− + −
− − − − + +

∆ ∆

   

             [4.16] 
 

where f  is the time-weighting factor ( 1f =  for fully implicit scheme, 1/ 2f =  for 

Crank-Nicolson algorithm, and 0f =  for explicit method). Rearranging equation [4.16] 

one can obtain the following tridiagonal matrix equation: 

1 1 1
1 12 2 2

1 12 2 2

2[ ] [1 ] [ ]
( ) 2 ( ) 2 ( ) 2

(1 ) (1 ) 2 (1 )[ ] [1 ] [ ]
( ) 2 ( ) 2 ( ) 2

n n n
i i i

n n n
i i i

Df t vf t Df t t Df t vf tC C C
R z zR R z R R z zR

D f t v f t D f t t Df t vf tC C C
R z zR R z R R z zR

µ

µ γ

+ + +
− +

− +

∆ ∆ ∆ ∆ ∆ ∆
− − + + + + − + =

∆ ∆ ∆ ∆ ∆
− ∆ − ∆ − ∆ ∆ ∆ ∆

+ + − − + − +
∆ ∆ ∆ ∆ ∆

 

             [4.17] 

which produces a system of linear algebraic equations that can easily be programmed and 

solved. 

 The numerical simulator of the Convective-Dispersive-Reactive equation will be 

validated with the analytical solution of Kreft and Zuber (1978): 

 

 0 1 exp[ ]
2 24 4

C Rx vt vx Rx vtC erfc erfc
DDRt DRt

− +   = +      
       

             [4.18] 

where 0C  is the concentration of tracer ( )3−ML . 

 The numerical simulator will then be coupled with the inverse modeling strategy 

and a synthetic data set to estimate the optimized value of the parameter vector 

],,,[ γµβ vD= . The retardation factor will be kept constant. The synthetic data set will 
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be produced by solving Eq. [4.17] for a hypothetical breakthrough experiment with 

uniform initial condition and first type boundary condition at the inlet and second type 

boundary condition at the outlet using the  parameter values: 2min/4290.3 cmD = , 

min/1345.0 cmv = , 14 min100917.1 −−×=µ , 4100914.4 −×=γ , and 1R = . The 

predicted pollutant concentration values will then be sampled at discrete times for x L= . 

The data set will then be corrupted by adding (0,0.05)N  error term to each 

“measurement”. The noisy synthetic data will then be used as input for parameter 

optimization purpose in the context of the aforementioned optimization algorithms. The 

method producing the best replication of the parameters will then be incorporated in the 

proposed inverse modeling strategy.     

4.1.3. Challenges of the Levenberg-Marquardt Algorithm 
 
The Main challenge in the implementation of the Levenberg-Marquardt algorithm is a 

robust and effective strategy for controlling the size of λ  at each iteration so that it is 

efficient for a broad range of optimization problems. To overcome the challenge, three 

approaches will be tested. 

 In the first approach, two indices will be calculated and compared with each other 

to estimate the relative nonlinearity of the objective function. The first index is the linear 

predicted sum of squares (Mathworks, 2006): 

  ( * ) *( * )T T T
NRf J r J rβ β= ∆ + ∆ +         [4.19] 

The second index is obtained by cubic spline interpolation of the magnitudes of the 

objective function and their slopes (i.e. φ∇ ) in two consecutive iterations and is called 

spf . From the spline interpolation, the search length (α ), which is the estimated length to 



 55  

the minimum, will be calculated. The magnitude of these indices will then be compared 

to choose how λ  should be updated. If NRf  is greater than spf , then λ  is reduced by; 

    
1

λλ
α

=
+

        [4.20] 

otherwise it is increased by; 

    sp NRf f
λ λ

α
−

= +        [4.21] 

The philosophy behind this is that the difference between spf  and NRf  is a measure of the 

effectiveness of the Gauss-Newton algorithm and the linearity of the problem. These 

operations determine whether to use a direction approaching to the steepest descent 

direction or the Gauss-Newton direction. 

 The second approach is starting with a large λ  and decreasing it as the magnitude 

of the objective function decreases. If in an iteration the function value is greater than in 

the previous iteration, then λ  is increased and the algorithm repeats the iteration with the 

new λ  until a considerable reduction in the magnitude of the objective function is 

achieved. The algorithm below will be incorporated in the inverse code: 

   1λ =  
  if 1( ) ( )i iφ β φ β+ <    
   1 *λ ξ λ=  
  else  
   2 *λ ξ λ=  
  end            [4.22] 
 
 where 1 1ξ <  and 2 1ξ > . 

 The third approach is the Hessian update method using the BFGS algorithm 

(Broyden, 1970; Fletcher 1970; Goldfarb, 1970; Shanno, 1970) to estimate the Hessian in 
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each iteration. In this algorithm, the optimization starts by choosing a p p×  identity 

matrix as an initial approximation for the Hessian. The search direction is calculated as 

follows: 

  A β φ∆ = −∇          [4.23] 

where 
^

A H=  is an estimator of the Hessian. Then using line search along β∆  the step 

length,α , is estimated. Finally using: 

  1i i iβ β β+ = + ∆          [4.24] 

 the parameter increment is calculated.  

 To approximate the Hessian matrix at the next iteration, the BFGS update method 

will be used: 

  1

T T T
i i i i i i

i i T T
i i i i i

A AA A
A

γ γ β β
γ β β β+

∆ ∆
= + −

∆ ∆ ∆
       [4.25] 

where;  

  1

1

i i i

i i i

γ φ φ
β β β

+

+

= ∇ − ∇
∆ = ∆ − ∆

         [4.26] 

The iteration process is continued until the termination rule is met. 
 

4.1.4. Termination Criteria for Inverse Code 
 
One of the crucial steps in optimization algorithm is stopping criterion. In this study, 

several rules will be critically evaluated in order to determine the best termination 

criteria. The following stopping rules will be tested: 

1. Sorooshian et al., (1983) suggested a stopping rule based on the changes in the 

parameter values at each iteration:  
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if 1β δ∆ <  
   Stop  
  else  
   Continue Optimization  Loop  

end            [4.27] 
 
 

2. Another criterion is the relative and absolute changes in the magnitude of the 

objective function in every iteration: 

  if 1
2( ) / ( )i iφ β φ β δ+∆ <   &   1( )iφ β δ∆ <  

   Stop  
  else  
   Continue Optimization  Loop  

  end             [4.28] 

3. A third measure of the closeness of the solution to the real minimum is the norm 

of the gradient of the objective function with respect to the parameters at the 

solution (
^

( )
β β

φ β
=

∇ ) which should be zero: 

if
^ 1( )

β β

φ β δ
=

∇ <  

   Stop  
  else  
   Continue Optimization  Loop  

end            [4.29] 
 

 These criteria will be implemented in the inverse code and will be critically 

evaluated to select the most efficient stopping rule for the inverse code. 

4.2. Parameter Optimization in Biomolecule Transport in Living Cells 
 
Having tested the efficiency of the algorithm, the first application of the strategy will be 

in the field of molecular biology where the transport of nuclear proteins in the 

nucleoplasm will be investigated.  
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4.2.1. Formulation of the Forward Problem 
 
The first optimization problem considered in this study is protein transport in living cells. 

To fully describe diffusion-reaction inside cell during the course of the FRAP protocol, a 

system of three coupled non-linear partial differential equations is selected as forward 

problem: 

 

2 2 2

2 2 2 2

2 2 2

2 2 2 2

2 2 2

2 2 2 2

1 1

1 1

1 1

Frr Frr F Fzz a d

Srr Srr S Szz a d

Crr Crr C Czz a d

F F F F FD D D D K FS K C
t r r r r z
S S S S SD D D D K FS K C
t r r r r z
C C C C CD D D D K FS K C
t r r r r z

θθ

θθ

θθ

θ

θ

θ

∂ ∂ ∂ ∂ ∂
= + + + − +

∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂

= + + + − +
∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂

= + + + + −
∂ ∂ ∂ ∂ ∂

  [4.30] 

To develop and solve equation [4.30] the following assumption are made: 

1. The medium is isotropic and homogeneous and the axes of the diffusion tensors 

FD , SD , and CD  are parallel to those of the coordinate system. By these 

assumptions the second-order diffusion tensors collapse to the diffusion 

coefficients FD , SD , and CD .  

2. Two-dimensional diffusion takes place in the plane of focus. This is a legitimate 

assumption when the bleaching area creates a cylindrical path through the cell 

which is the case in circular bleach spot with reasonable spot size (Kaufman and 

Jain, 1990; Sprague et al., 2004). The assumption eliminates the azimuthal and   

vertical components of the equation.  

3. There are no advective velocity fields in the bleached area. Ignoring the 

convective flux will lead to the overestimation of the diffusion coefficient but in 

the presence of binding reaction this overestimation is negligible (in other words, 



 59  

we assume that the Peclet number is less than unity and advection is not 

dominant).  

4. The effects of temperature rise, caused by the absorption of laser by sample and 

  fluorophore, on the macromolecule mass transport and binding parameters are 

 negligible. In other words, we assume isothermal flow of macromolecules toward 

 bleached area form undisturbed regions.  

 An efficient and accurate solution of the forward problem is crucial to the success 

of inverse modeling effort. In this study a fully implicit backward in time and central in 

space finite difference discretization of equation [4.30] in radial direction will be used: 
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∆

         

             [4.31]  

where r∆  is node spacing in the cylindrical coordinate system and n  and m  are the time 

step and iteration level, respectively. Rearranging equation [4.31] one can obtain the 

following block tri-diagonal matrix equation: 
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             [4.32] 

 By setting coefficients of sD  and CD  in equation [4.32] to zero, one can obtain a 

solution for the one-site-mobile-immobile model (equation [2.15]) as well. To solve 

equation [4.32] the following initial and boundary condition will be used: 

  

. . :
0,0

(0, )
,

(0, )

0,0
(0, )

,

eq

eq

eq

I C
r w

F r
F w r R

S r S

r w
C r

C w r R

< ≤
=  < ≤
=

< ≤
=  < ≤

 

where w  is the radius of the bleached area. The initial condition implies that the act of 

bleaching does not changes the concentrations of free protein, bound complex, and vacant 

binding sites in the bleached area of the cell, but it only affects the fluorescence tags on 

the biomolecules by making them invisible to the experiment.  

The boundary conditions will be formulated as:  

  
. . :

0
0

B C

F F
r r Rr r

∂ ∂
= =

= =∂ ∂
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  0
0

S S
r r Rr r

∂ ∂
= =

= =∂ ∂
 

  0
0

C C
r r Rr r

∂ ∂
= =

= =∂ ∂
 

 

which imply that the diffusive biomolecule flux is zero at the center of the bleach spot 

and far beyond the bleached area throughout the course of the FRAP experiment. 

Obviously, for lateral diffusion of lipids, proteins, ions, salt, and water through cell 

membrane or from cytoplasm to nucleus and vice versa these boundary conditions are not 

applicable.  

 The matrix equation of system [4.32] is presented in Figure 4.1. The system of 

algebraic equations produced by [4.32] is nonlinear because of the interaction term 

( aK FS ). Therefore, the equations must be linearized and solved iteratively. In the present 

study, the Picard fixed point iteration method will be used to linearize and solve the 

matrix equation. To decrease the CPU time and maintain small truncation error, an 

adaptive time step procedure will be used. The iterative procedure and adaptive time step 

approach will be discussed in 4.3.1.3 and 4.3.1.4.  

 The solution of equation [4.32] for a parameter vector [ , , , , ]F S C a dD D D K Kβ =  

and the prescribed initial and boundary conditions, produces spatio-temporal distribution 

of free protein ( ( , , )F r tβ ), vacant binding sites ( ( , , )S r tβ ), and bound complex 

( ( , , )C r tβ ) inside bleached area. In the numerical code, the average of the fluorescent 

intensity within the bleach spot is calculated by: 

  
^

2 0

2 [ ( , , ) ( , , )]
w

frap r F r t C r t dr
w

β β= +∫      [4.33] 
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Figure 4.1. Matrix equation of system [4.30] discretized by finite difference method. 
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where 
^

frap  is the model predicted average of the fluorescent intensity within the bleach 

spot. 

 The accuracy of the numerical simulator will be validated with analytical solution. 

To validate the numerical model with the analytical solution, the values of 0cD = , 

0sD =  will be used, which deletes the second partial differential equation from equation 

[4.32] and reduces it to the one-site-mobile-immobile equation. To obtain frap  in semi-

analytical solution of Sprague et al., (2004), the MATLAB routine invlap.m (Hollenbeck, 

1998) will be used to calculate the inverse Laplace transform numerically. 

4.2.2. Formulation of the Inverse Problem: Optimization Scenarios 
 
The developed optimization algorithm along with the verified numerical simulator of the 

forward problem, in the framework of the inverse modeling strategy, will be used to 

simulate transport of GFP-tagged protein inside nucleus of living cell for five 

optimization scenarios described below. Assuming that experimental FRAP, )( itI , can be 

obtained independently for any time step, it , the FRAP data will be used for the nonlinear 

optimization procedure. Let ( , )iI tβ  be the numerically estimated values of )( itI  for any 

time step (i.e. values obtained by solution of Eq. [4.32]) corresponding to a trial vector of 

parameter values [ , , , , ]f a d s cD K K D Dβ = . The inverse problem then is to find an 

optimum combination of parameters that minimizes the objective function: 

  2

1

( ) [ ( ) ( , )]
N

i i
i

I t I tφ β β
=

= −∑                           [4.34] 

where iw  is a weighting function typically given a value other than unity only if prior 
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information suggests giving unequal relative importance to each experimental data point. 

  To determine the mass transport and binding rate parameters of the GFP-tagged 

glucocorticoid receptor (which is a transcription factor), three data sets will be used: 

1. A FRAP experiment data which was conducted on the mouse adenocarcinoma 

cell line 3617 by Sprague et al., (2004) and presented in Table 4.1. This data set 

consists of 43 fluorescent recovery values gathered in the course of a 20-second 

FRAP experiment and post processed to remove noise. 

2.  A generated data set will be obtained by solving Eq. [4.32] for a hypothetical cell 

with prescribed initial and boundary conditions and parameter values: 

2 130fD m sµ −= , 2 10SD m sµ −= , 2 10CD m sµ −= , * 130aK s−= , 10.1108dK s−= , and 

0.5w mµ= . Predicted FRAP recovery values will then be sampled at discrete 

times for bleach spot radius (i.e; 0.5w mµ= ). The data will be corrupted by 

adding (0,0.01)N error term to each “measurement”. They will then be used as 

input for parameter optimization problem and well-posedness analysis of the 

inverse problem. 

3. The third data set is similar to the second one but without perturbation. The data 

will be used to determine what can and what cannot be identified using the FRAP 

data. 

 The five application scenarios are as follow. In scenario A, the developed inverse 

modeling strategy will be used to identify five unknown parameters 

[ fD , aK , dK , sD , cD ]for GFP-GR using the real FRAP data. Statistical assessment of the 

estimation will be carried out by analyzing the goodness-of-fit indices. In scenario B the 

real FRAP data will be used to identify mass transport ( fD ) and reaction rate parameters 
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Table 4.1. Experimental data for GFP-tagged glucocorticoid receptor (GFP-GR) in the 
nucleoplasm of mouse adenocarcinoma cell line 3617 (data from Sprague et al. 2004). 
 
 

Time 
(second) 

Recovery 
 (%) 

Time 
(second) 

Recovery 
 (%) 

Time 
(second) 

Recovery 
 (%) 

0.0090 0.0574 0.6000 0.7438 9.4280 0.9724 
0.0490 0.2230 0.6400 0.6946 10.2160 0.9748 
0.0880 0.2988 0.6790 0.7363 11.0050 0.9845 
0.1280 0.4216 0.7190 0.7055 11.7930 0.9696 
0.1670 0.4536 0.7580 0.7750 12.5810 0.9799 
0.2060 0.4970 1.5460 0.8423 13.3690 0.9804 
0.2460 0.4989 2.3350 0.8988 14.1570 0.9802 
0.2850 0.5300 3.1230 0.9226 14.9460 0.9907 
0.3250 0.5977 3.9110 0.9365 15.7340 0.9635 
0.3640 0.6850 4.6990 0.9471 16.5220 0.9800 
0.4030 0.5796 5.4870 0.9347 17.3100 0.9843 
0.4430 0.6828 6.2750 0.9460 18.0980 0.9768 
0.4820 0.6568 7.0640 0.9526 18.8870 0.9878 
0.5220 0.6715 7.8520 0.9538  
0.5610 0.7314 8.6400 0.9540  

 

 

 ( *
aK  and aK ) for GFP-GR in one-site-mobile-immobile model (Eq. [2.15]).  To test the 

well-posedness of the inverse problem, the optimization will be carried out using 

different initial guesses for the parameter vector ( *[ , , ]f a dD K Kβ = ). In scenario C, two of 

the three parameters in one-site-mobile-immobile model will be kept constant and the 

third parameter will be estimated using the strategy. The goal is to determine whether or 

not the FRAP protocol produce enough information to uniquely estimate one parameter. 

The optimization algorithm will be used to estimate a single parameter for both noise free 

and noisy data. In scenario D, pairs of model parameters, under the assumption that the 

value of the third parameter is known, will be estimated. In the first attempt, the 
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optimized values of the individual binding rate coefficients will be determined given a 

known value of the free molecular diffusion coefficient of the GFP-GR. Again the 

optimization algorithm will be used for both noise free and noisy data. Then, given the 

value of the pseudo-association rate, the optimized values of the molecular diffusion 

coefficient and dissociation rate constant will be estimated. Finally, we’ll assume that the 

“true” value of the dissociation coefficient is known and will try to estimate the 

optimized values of the free molecular diffusion coefficient and the pseudo-association 

rate parameter. Again, the goal is to determine which pairs of parameters, if any, can be 

uniquely estimated using the FRAP data. Finally, in scenario E, three parameters of the 

one-site-mobile-immobile model will be identified for noise free FRAP data. 

4.3. Parameter Optimization in Water Flow through Partially Saturated 
Porous Media 
 
The second optimization problem considered in this study is water flow through porous 

media. Since developing robust and efficient algorithm to solve the flow equations is 

crucial in the parameter identification in flow and transport phenomena in saturated-

unsaturated porous media, therefore, all forms of the Richards’ equations will be solved 

using both the finite element and finite differences methods and their performances will 

be compared with each other and with the “exact solution”. The most efficient, accurate, 

and mass-conservative formulation will be implemented in the inverse code to perform 

parameter optimization in two field scale drainage experiments. 

4.3.1. Formulation of the Forward Problem 
 
The h-based form and the mixed form Richards’ equation will be selected as the direct 

problem in parameter identification in water flow through variably saturated porous  
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media: 

The h-based form: 

  ( ) . ( ) 0h KC h K h h
t z

∂ ∂
− ∇ ∇ + =

∂ ∂
                     [2.3] 

The mixed form: 

  . ( ) 0KK h h
t z
θ∂ ∂

− ∇ ∇ + =
∂ ∂

               [2.1] 

These partial differential equations will be solved using the finite element and 

finite difference approximations which are discussed next. The mass conservation 

properties of the numerical simulators, nodal fluxes, adaptive time step, and iterative 

procedures are also presented below.  

 
4.3.1.1. Finite Element Approximation of Flow Equations 
 
4.3.1.1.1. h-based Richards’ Equation  
 
The first step in solving the h-based form flow equation by finite element method is to 

divide the domain into number of sub-domains called “elements”. Then the weak 

formulation of the dependent variable, h , is developed using an interpolating polynomial 

(with global numbering of nodes): 

  
1

( , ) ( , ) ( ) ( )
eN

j j
j

h z t h z t H t zφ
∧

=

≅ = ∑        [4.35] 

where eN  is number of elements, ( )j zφ  is the selected basis function, and ( )jH t is the 

associated and time-dependent unknown coefficients that represent the solution of flow  

equation at nodes within the domain. Substituting Eq. [4.35] into the weak formulation of 

Eq. [2.3] will not satisfy the partial differential equation and hence will produce a 
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residual (when eN  approaches infinity the approximate solution, ( , )h z t
∧

, converges to the 

exact solution). The goal in finite element approximation is to minimize this error. This 

can be accomplished by introducing the weight function, ( )i zφ , and setting the integral of 

the weighted residuals to zero. In other words, the residuals can be minimized by 

requiring that ( )L h
∧

 (See Eq. [4.36]) be orthogonal to the weighting functions. In 

Galerkin method, which is used in this study, the weighting functions are chosen to be 

identical to the basis function (Pinder and Gray, 1977; Huyakorn and Pinder, 1983). The 

piecewise linear Lagrange polynomial (depicted in Figure 4.2) is chosen as the basis and 

weight functions: 

 
^

0
( ) [ [ ] ] ( ) 0

z

i
h h KL h d C K z dz
t z z z

φ
∧ ∧ ∧

∧ ∧∆

Ω

∂ ∂ ∂ ∂
Ω = − + =

∂ ∂ ∂ ∂∫ ∫               [4.36] 

 

where z∆  is node spacing, and h
∧

, K
∧

, and C
∧

are approximations for h , K , and 

C , respectively. Since there are two nodes in every element, one may develop the 

following approximations within every element (with local numbering of nodes): 

 

2

1
2

1

2

1

( ) ( )

( ) ( )

( ) ( )

l l
l

l l
l

l l
l

h z h z

K z K z

C z C z

φ

φ

φ

∧

=

∧

=

∧

=

=

=

=

∑

∑

∑

           [4.37] 

Performing integration by parts (Green’s theorem), one can reduce the second 

order derivative in Eq. [2.36]:  

0 0 0

( )( ) ( ) ( ) 0
0

z z zi
i i i

z zh h h KC z dz K z K dz z dz
t z z z z

φφ φ φ
∧ ∧ ∧ ∧

∧ ∧ ∧∆ ∆ ∆∆ ∂∂ ∂ ∂ ∂
− + + =

∂ ∂ ∂ ∂ ∂∫ ∫ ∫    [4.38] 
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Figure 4.2. Schematic representation of the piecewise linear Lagrange   

        polynomials. 
 

 
The second term in the equation is only evaluated for the boundaries and therefore 

is eliminated for the internal nodes. Treatment of the boundary conditions in finite 

element will be discussed later in this section. The following derivations are only for the 

internal nodes. Eliminating the second term and substituting Eq. [4.37] into Eq. [4.38] 

yields:

0 0 0
1 1

( )[ ( ) ( )] ( ) [ ( ) ( )] ( ) 0
e eN Nz z zi

j j i j j i
j j

z KC H t z z dz H t z K dz z dz
t z z z

φφ φ φ φ
∧

∧ ∧∆ ∆ ∆

= =

∂∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂∑ ∑∫ ∫ ∫                  

            [4.39] 

Since we integrate over z ,  terms that are a function of time only come out of the 

integral: 

0 0 0
1 1

( ) ( )( )( ) ( ) ( ) ( ) 0
e eN Nz z zj ji

i j j i
j j

H t zz KC z z dz H t K dz z dz
t z z z

φφφ φ φ
∧

∧ ∧∆ ∆ ∆

= =

∂ ∂∂ ∂
+ + =

∂ ∂ ∂ ∂∑ ∑∫ ∫ ∫  

              [4.40] 

φ 

Z
Zi-1 Zi+1 Zi+2 

1

0 
Zi 
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Equation [4.40] is generally written in matrix form: 

  [ ]{ } [ ]{ } { }dHA H B F
dt

+ =                   [4.41] 

Where: 

0

( )( )[ ]
L ji zzA K dz

z z
φφ∧ ∂∂

=
∂ ∂∫  

0
[ ] [ ( ) ( )

L

i jB C z z dzφ φ
∧

= ∫  

0
{ } ( )

L

i
KF z dz
z

φ
∧

∂
= −

∂∫            [4.42] 

 
 
Using fully implicit backward Euler time-marching algorithm, one can discretize 

the time derivative in equation [4.41] as: 

1,
1,[ ]{ } [ ]{ } { }

n m n
j jn m

j

H H
A H B F

t

+
+ −

+ =
∆

       [4.43] 

where j  represents location in space and n  and m  denote time and iteration levels, 

respectively.  This equation generates system of N nonlinear algebraic equations which 

should be solved iteratively. Detailed evaluation of the integrals in Eq. [4.42] and 

assembly of the stiffness mass and global matrices are given in appendix A.  

 Upon substituting these matrices in Eq. [4.43] the resulting finite element 

approximation for h − based Richards’ equation is: 

1, 1,
1, 1, 1, 11

1 1

1, 1, 1,
1, 1, 1, 1, 11 1

1 1

1, 1,
1, 1, 1

1 1

( )[( ) ]
12 2

( 2 )[( 6 ) ]
12 2

( )[( ) ]
12 2

n m n m
n m n m n mi i
i i i

n m n m n m
n m n m n m n mi i i
i i i i

n m n m
n m n m ni i
i i i

K KzC C h
t z

K K KzC C C h
t z

K KzC C h
t z

+ +
+ + + +−

− −

+ + +
+ + + + +− +

− +

+ +
+ + ++

+ +

+∆
+ +

∆ ∆
+ +∆

+ + + +
∆ ∆

+∆
+ + +

∆ ∆
1, 1

1, 1,
1, 1, 1, 1 1

1 1[( 6 ) ]
12 2

m

n m n m
n m n m n m n i i
i i i i

K KzC C C h
t

+

+ +
+ + + + −

− +

=

−∆
+ + −

∆

         [4.44] 
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4.3.1.1.2. Mixed-form Richards’ Equation 
  
To develop finite element approximation of the “mixed form” Richards’ equation one 

needs to discretize the time derivative of equation [2.1] by finite difference scheme: 

1, 1 1, 1 1,
1,[ ]

n m n n m n m
n mi i i i
i

h KK
t z z z

θ θ+ + + + +
+− ∂ ∂∂

= −
∆ ∂ ∂ ∂

       [4.45] 

The moisture content at the new time and iteration level can be substituted by the 

following Taylor series expansions in which 1, 1n m
iθ + +  is expanded with respect to h  about 

the expansion point 1,n m
ih +  (Celia et al., 1990): 

1,
1, 1 1, 1, 1 1,( ) .....

n m
n m n m n m n mi
i i i i

d h h
dh

θθ θ
+

+ + + + + += + − +       [4.46] 

Ignoring the higher order terms and substituting equation [4.46] into Eq. [4.45] 

yields: 

1,
1, 1, 1 1,

1, 1 1,
1,

( )
[ ]

n m
n m n m n m ni

n m n mi i i i
n m i i
i

d h h h Kdh K
t z z z

θθ θ
+

+ + + +
+ + +

+
+ − − ∂ ∂∂

= −
∆ ∂ ∂ ∂

            [4.47]   

Inserting the interpolating polynomial:  

1

( , ) ( , ) ( ) ( )
eN

j j
j

z t z t t zθ θ θ φ
∧

=

= ∑         [4.48] 

and Eqs. [4.37] into Eq. [4.47] and performing integration by parts to reduce the 

second derivative yields: 

1, 1, 1

0 0 0
1 1

1,
1,

0 0
1 1

( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) 0
0

e e

e e

n m n n mN NL L Lj j j
i j i j i

j j

n mN NL Lj jn m i
j i j i

j j

h Kz z dz C z z dz z dz
t t z

z h Lz hh K dz C z z dz K z
z z t z

θ θ
φ φ φ φ φ

φφ φ φ φ

∧+ + + ∧

= =

∧+∧ ∧ ∧
+

= =

− ∂
+ +

∆ ∆ ∂

∂∂ ∂
+ + + =

∂ ∂ ∆ ∂

∑ ∑∫ ∫ ∫

∑ ∑∫ ∫
                            

                        [4.49] 
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For Dirichlet boundary condition the last term in equation [4.49] can be neglected 

but it must be included in the equation for Neumann condition.  Finally, inserting Eq. 

[4.42] into equation [4.49] and assembling the global matrices, the finite element 

approximation of the mixed form Richards’ equation can be developed as: 

  

1, 1,
1, 1, 1, 11

1 1

1, 1, 1,
1, 1, 1, 1, 11 1

1 1

1, 1,
1, 1, 1

1 1

( )[( ) ]
12 2

( 2 )[( 6 ) ]
12 2

( )[( ) ]
12 2

n m n m
n m n m n mi i
i i i

n m n m n m
n m n m n m n mi i i
i i i i

n m n m
n m n m ni i
i i i

K KzC C h
t z

K K KzC C C h
t z

K KzC C h
t z

+ +
+ + + +−

− −

+ + +
+ + + + +− +

− +

+ +
+ + ++

+ +

+∆
+ +

∆ ∆
+ +∆

+ + + +
∆ ∆

+∆
+ + +

∆ ∆
1, 1

1, 1, 1, , 1, 1, 1,
1 1 1 1

1, 1,
1 1

1 1

[( 6 ) ] [( 4 ) ]
12 6

[( 4 ) ]
6 2

m

n m n m n m n m n m n m n m
i i i i i i i

n m n m
n n n i i
i i i

z zC C C h
t t

K Kz
t

θ θ θ

θ θ θ

+

+ + + + + +
− + − +

+ +
+ −

− +

=

∆ ∆
+ + − + +

∆ ∆
−∆

+ + + −
∆

  

                                  [4.50] 

where the pressure head, h , is the primary variable not the soil moisture 

content,θ . Comparing equations [4.44] and [4.50] reveals that the second and third terms 

in the right hand side of equation [4.50], which treat time derivative term of the Richards’ 

equation, are the only differences between the h -based form and the mixed form 

Richards’ equations.  

 
4.3.1.1.3. Implementation of Boundary Conditions 
  
Two types of boundary conditions will be studied in modeling water flow in saturated-

unsaturated soils. The first kind is the Dirichlet boundary condition which is constant 

pressure head or water content at the inlet.  Because we take z direction being positive 

downward, the nodes are numbered from top of the soil ground to the bottom, where 

node N is located. One notes that any one-dimensional finite element or finite difference 
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discretization of flow equations (using fully implicit Euler backward time discretization) 

generate the following matrix equation: 

1, 1 ,
1,1 1,2 1 1 1

2,1 2,2 2,3

1, 2 1, 1 1,

, 1 ,

0 ... 0
. . . . .

. . . . . . .

. . . ..
0 0 ........

n m n m

i

N N N N N N

N N N N N NN

a a h b h
a a a

b
a a a

a a h hb

+ +

− − − − −

−

      
      
      
      =
      
      
           

    [4.51]  

Where ,i ja  and ib  represent any element of the tridiagonal matrix [ ]A  and known 

vector of coefficient { }B .  

If Dirichlet boundary condition is applied at the top of the domain: 

0(0, )h t h=            [4.52] 

Then the entries of the matrices will be: 

1,1

1,2

1 0

1
0

a
a
b h

=

=

=

 

If it is applied at the bottom of the soil, the entries will be: 

, 1N Na =  

, 1 0N Na − =  

1 0Nb − =  

N Lb h=  
 
For flux boundary condition at the soil surface: 

0
0

[ ( ) ( )] ( )
z

hK h K h q t
z =

∂
− + =

∂
       [4.53a] 

or in term of pressure head gradient: 

0

0

( )1
( )z

q th
z K h=

∂
= −

∂
        [4.53b] 
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for h -based  equation one may write: 

1,1 1 2 1 2

1,2 1 2 1 2

1, 1,1 2 1 2
1 1 2 2 1 2 1

01 2
1 2 2 1 2 1

1(3 ) ( )
12 2

1( ) ( )
12 2

[( ) ]* [(3 ) ]*
12 2 12 2

( )[( ) ]* [(3 ) ]*
12 12 2

n m n m

n n

za C C K K
t z

za C C K K
t z

K K K Kz zb C C h C C h
t z t z

q tK Kz zC C h C C h
t t z

+ +

∆
= + − +

∆ ∆
∆

= + + +
∆ ∆

+ +∆ ∆
= − + + − + −

∆ ∆ ∆ ∆
+∆ ∆

+ + + + + −
∆ ∆ ∆

 

 For the mixed form equation, the entries 1,1a and 1,2a are the same as the h -based 

form but b  is different:  

1, 1, 1,1 2 1 2
1 2 1 2 2

1, 01 2
1 1

[ ]* [ ]* ( 1)
2 2 6

( )( )
3 2

n m n m n n m

n n m

K K K K zb h h
z z t

q tK Kz
t z

θ θ

θ θ

+ + +

+

+ + ∆
= − + + − +

∆ ∆ ∆
+∆

+ − + −
∆ ∆

 

If flux boundary condition is applied at the bottom of the soil: 

[ ( ) ( )] ( )L
z L

hK h K h q t
z =

∂
− + =

∂
       [4.53c] 

or in term of pressure gradient: 

( )1
( )

L

z L

q th
z K h=

∂
= −

∂
        [4.53d] 

the entries of the matrices will be: 

, 1 1
1(3 ) ( )

12 2N N N N N N
za C C K K
t z− −

∆
= + − +

∆ ∆
 

, 1 1 1
1( ) ( )

12 2N N N N N N
za C C K K
t z− − −

∆
= + + +

∆ ∆
 

1, 1,1 1
1 1 1 1

1 1 1 1

[( ) ]* [(3 ) ]*
12 2 12 2

( )1[( ) ]* [(3 ) ]* ( )
12 12 2

n m n mN N N N
N N N N N N

n n L
N N N N N N N N

K K K Kz zb C C h C C h
t z t z

q tz zC C h C C h K K
t t z

+ +− −
− − −

− − − −

+ +∆ ∆
= − + + − + −

∆ ∆ ∆ ∆
∆ ∆

+ + + + − + −
∆ ∆ ∆
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Again for mixed form the entries 1,1a and 1,2a are the same as the h -based form but b  is 
different:  
 

1, 1, 1,1 1
1 1 1 1

1, 1

[ ]* [ ]* ( 1)
2 2 6

( )( )
3 2

n m n m n n mN N N N
N N N N

n n m N N L
N N

K K K K zb h h
z z t

K K q tz
t z

θ θ

θ θ

+ + +− −
− − −

+ +

+ + ∆
= − + + − +

∆ ∆ ∆
+∆

+ − + −
∆ ∆

 

If free drainage boundary condition imposed at the bottom of the domain, the 

boundary condition is: 

0
z L

h
z =

∂
=

∂
         [4.53e] 

where 0 ( )q t  and ( )Lq t  are the imposed upper and lower fluid fluxes. 

 
4.3.1.1.4. Mass Lumping in Finite Element Method 
 
To overcome possible oscillatory behavior and convergence problem in equations [4.44] 

and [4.50], the “mass lumping” approach will be used. The matrix obtained by mass 

lumping is called the “lumped mass matrix”. Mass-lumping can be performed by defining 

the nodal values of the time derivative as weighted averages over the entire flow region 

(van Genuchten, 1978): 

 
0 0

( ) ( )
L Li

i i
HhC z dz C z dz

t t
φ φ∂∂

=
∂ ∂∫ ∫         [4.54]   

 Application of this expression will generate another mass matrix. For linear basis 

function the matrix is:  

1

1 2 3

2 1

1

2 0 0 ... 0
0 4 0 . .

[ ] . . . . .
6

. . . 4 0
0 0 ......... ........................... 2

N N N

N N

C
C C C

zB
C C C

C C
− −

−

 
 + + ∆  =
 

+ + 
 + 
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 Comparing this matrix with the distributed mass matrix, shows that the diagonal 

elements of the “lumped” matrix are identical to the row sums of the entries of the 

distributed matrix. The linear finite element may be further simplified by redefining the 

lumped mass matrix to yield (van Genuchten, 1978): 

 

1

2

1

0 .... ... 0
2
0 .... ...... .

[ ] . . . . .
. . . 0

0 0 ..... .
2

N

N

C

C
B z

C
C

−

 
 
 
 
 = ∆
 
 
 
 
 

 

which is a finite difference scheme.  

 
4.3.1.2. Finite Difference Approximation of Flow Equations 
 
The first step in solution of any differential equations by finite difference scheme is 

discretization of the time and space domains as well as equations. There are several 

differences between finite element and finite difference approximations, the most 

noticeable being that in finite difference methods domains and equation are discretized 

over points and the solution is defined only at these points where in finite element 

methods patches or contiguous regions are used to discretize the spatial domain and 

solution is obtained over the entire flow domain. The other difference is that the finite 

difference is based on the Taylor series expansion while finite element emanates from 

localized polynomial expansions and error minimization principles. 

 
4.3.1.2.1. h-based Richards’ Equation 
  
Using Taylor series expansion one may discretize equation [2.3] as:  
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1, 1, 1 1, 1 1, 1
1, 1

1/ 2

1, 1 1, 1 1, 1,
1, 1 1 1

1/ 2

1 1 1
1/ 2 1/ 2

[ ] [ ( )
2

( )] ( )
2

(1 ) [ ( ) ( )] (1 )(

n m n n m n n m n m
n mi i i i i i
i

n m n m n m n m
n m i i i i
i

n n n n n
n ni i i i i i
i i

C C h h h hf K
t z z

h h K KK f
z z

h h h h K Kf K K f
z z z

+ + + + + + +
+ +

+

+ + + + + +
+ − + −

−

+ − +
+ −

− − −
= −
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             [4.55] 

where f  is weighing factor and subscript i  indicates the position in the finite difference 

mesh and like the finite element approximations, superscripts n  and m  represent time 

step and iteration level, respectively. 0f =  produces the explicit approximation, 1f =  

yields the fully implicit approximation, 0.5f =  results in time centered or semi-implicit 

or Crank-Nicolson approximation. Values in-between produce intermediate forms, 

particularly 2 / 3f =  is equivalent to using linear finite element to approximate time 

domain and is quite well studied in solving diffusion problems.  

 Rearranging equation [4.55] yields the following tridiagonal matrix equation: 
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              [4.56] 

Node spacing, z∆ , is assumed to be constant. Since adaptive time step will be used, the 

time domain discretization will not be nt n t= ∆ , instead it will be 1 2 ...n
nt t t t= ∆ + ∆ + + ∆ . 

 The hydraulic conductivity function will be evaluated half way between adjacent 

node points, in other words the block centered approach will be used. This can be 
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accomplished in one of two ways: 

  1
1/ 2 ( )

2
i i

i
h hK K ±

±

+
=        [4.57a] 

or; 

  1
1/ 2

( ) ( )
2

i i
i

K h K hK ±
±

+
=       [4.57b] 

  

 Zarba (1989) has shown that the later form produces more accurate approximation 

of 1/ 2iK ± . Therefore, in this study the later form is used. 

 
4.3.1.2.2. Mixed-form Richards’ Equation 
  
Similar to the finite element approximation of the mixed form Richards’ equation, using 

Taylor series expansion and the modified Picard approach one can discretize equation 

[2.1] in one-dimension as follow:   
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             [4.58] 

Rearranging Eq. [4.58] leads to the following symmetrical tridiagonal matrix equation: 
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             [4.59] 

Where 
1,

1,
n m

n m i
i

dC
dh

θ +
+ =  indicates the nodal values of the soil water capacity function. 

Note that 1,( )n n m
i iθ θ +−  is known prior to the current iteration and 1, 1 1,( )n m n m

i ih h+ + +−  in the 

left hand side of equation [4.58] should vanish at the end of the iteration process if the 

numerical solution in convergent. 

 
4.3.1.2.3. Implementation of Boundary Conditions 
  
Dirichlet boundary condition is treated in the same manner as in the finite element 

method. A zero flux Neumann boundary condition will be applied at the top of the space 

domain. To simulate this kind of boundary condition, Darcy’s law (Eq. [4.63]) is 

discretized. Defining a virtual node at the top of the spatial domain, discretizing the 

pressure gradient, and writing equation [4.56] for node one, results in the following 

entries for the h-based Richards’ equation (for Crank-Nicolson scheme): 

1, 1
1,1 1,2 1,1 1,21

2,1 2,2 2,3 2,1 2,2 2,3

1, 2 1, 1 1, 1, 2 1, 1 1,

, 1 , , 1 ,

0 ... 0 0 ... 0
. . . ..

. . . . . . . . . ..

. . . ..
0 0 ........ 0 0 ........

n m

N N N N N N N N N N N N

N N N N N N N NN

a a b bh
a a a b b b

a a a b b b
a a b bh

+ +

− − − − − − − − − −

− −

   
  
  
   =
  
  
    

,
1

.

.

.

n m

N

h

h

 
  
  
  
  
  
      

             [4.60] 
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 Using the same procedure, the entries for the fully implicit mixed form Richards’ 

equation will be: 
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4.3.1.3. Iterative Procedure 
 
The system of algebraic equations produced by equations [4.32], [4.44], [4.50], [4.56], 

and [4.59] are nonlinear because of the interaction term ( aK FS ) in Eq. [4.32] and 

dependence of the hydraulic functions K  and C  upon the solution, 1, 1n mh + +  in other matrix 

equations. Therefore, the equations must be linearized and solved iteratively. The 

iteration methods that are generally used are the Picard and Newton (known as Newton-

Raphson method also) algorithms. Theoretically, the Newton-Raphson method converges 

one order of magnitude faster than the Picard scheme, but several studies have shown that 

this method is inferior to the Picard iteration method (Kuiper, 1987; Paniconi et al., 1991; 

Paniconi and Putti, 1994; Zhang et al., 2002 among others). The Newton method 

converges quadratically only in the vicinity of the solution. When the estimated values 

are far from the solution, the method produces severe non-physical oscillation in the 

iteration process and diverges as a consequence of neglecting higher order terms in the 
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Taylor series expansion (which contribute to the right hand side vector of the system of 

linear equations) that are still significant and result in a Jacobian matrix devoid of 

diagonal dominance. In contrast, the Picard method has a diagonally dominant matrix and 

preserves symmetry in the matrix. Furthermore, evaluation of the Jacobian matrix is often 

time consuming especially for highly nonlinear partial differential equations such as 

Richards’ equation and hyperbolic convective-dispersive-reactive equations. Because of 

these limitations, the Newton-Raphson method will not be used in this study. Instead a 

modified version of the Picard method known as the Modified Picard algorithm, that 

makes the Picard method more robust, will be used. In this method the hydraulic 

functions K  and C  are evaluated at the current time but previous iteration level. A 

convergence criterion of 61 10δ −= ×  (unit of the state variable) will be used to end the 

Picard iteration in every time step. 

 Finally, it is a well known practice to use some small nonzero value for soil water 

capacity term at or near saturation (Rogers, 1994). The threshold value of 

5 11*10C cm− −=  will be used in this study.  

 
4.3.1.4. Adaptive Time Step 
 
To decrease the CPU time and maintain small truncation error, an adaptive time step 

approach will be used to solve the matrix equations. The time step starts with a prescribed 

initial time increment then the time increment is increased by 5 percent if the number of 

Picard iteration for the previous time step is less than four and is decreased 5 percent if 

the number of Picard iterations is greater than eight. To avoid oscillatory behavior and 

maintain truncation error acceptably small, two time indices will be implemented in the 

adaptive time step loop. In any time step, if the time increment becomes less than mindt  it 
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is set to mindt dt=  and if the time interval becomes more than maxdt it is set to maxdt dt= . 

The time increment can not exceed these two limits ( min maxdt dt dt≤ ≤ ). 

 
4.3.1.5. Validation of the Numerical Simulators 
 
The numerical simulators of the forward problems will be validated with analytical and 

reference solutions obtained by solving the forward problem for very dense spatial grid 

and very fine time increment. The target problems will be drainage of a fully saturated 

soil and infiltration into very dry soil. The cumulative outflow and temporal and spatial 

distribution of soil water pressure head and soil moisture content will be compared in 

both solutions. The data used for the validation will be synthetic.  

 
4.3.1.6. Mass Conservation Property of the Numerical Simulators 
 
An accurate numerical simulator should maintain the global mass balance property over 

entire spatial domain for all times. The global mass conservation is a necessary but not 

sufficient condition for acceptability of a numerical code. The mass balance is defined as 

the ratio of “the total masses of fluid added to the domain” to “the total net flux into the 

domain”. For the finite difference approximation of the Richards’ equation, this will be 

calculated using:  
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      [4.61] 

where τ  is dummy variable of integration.  
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 For finite element formulation, the mass balance will be calculated as (Celia et al., 

1990): 
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At the end of the time loop, the nodal fluxes will be calculated using Darcy-

Buckingham law (Darcy, 1856; Buckingham, 1907; Hofmann and Hofmann, 1992): 
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At the upper ( 1i = ) and lower ( i N= ) boundaries of the domain, the Darcian fluxes are 

calculated by:  
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4.3.2. Formulation of the Inverse Problem: Optimization Scenarios 
 
The inverse problem will be formulated as a nonlinear optimization problem which 

involves estimating unknown hydraulic parameters from measured system attributes such 

as soil moisture content, soil water matric potential head, and outflow rates. The goal is to 

minimize some functions of the differences between the observed and model predicted 

responses. Both single-objective and multi-objective optimizations in homogeneous and 

heterogeneous partially saturated soil will be considered. Single-objective optimization 
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will be applied in both homogeneous and heterogeneous soils while multi-objective 

optimization will be carried out on the heterogeneous soil (because of the lack of 

additional information). 

 For single-objective optimization the following weighted objective function is 

formulated: 
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( )
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∑
                [4.66] 

Where iU  and 
^

iU  are the measured and predicted soil moisture contents or soil water 

matric potential head and 2
Uσ  is the observation variance. 

 For multi-objective optimization, the following complex weighted objective 

function is used: 
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Where iθ  and 
^

iθ  are the measured and predicted soil moisture contents, ih  and 
^

ih  are the 

measured and predicted soil water matric potential head, 2
θσ  and 2

hσ  are variances of the 

measured soil moisture content and matric potential head, and N and M are number of 

observations for soil moisture content and soil water pressure head, respectively.  

 
4.3.2.1. Water Flow through Homogeneous Partially Saturated Porous Media 
  
The data for this case were taken from the in-situ experiment conducted at the Los 

Alamos National Laboratory and fully described by Abeele (1984). The experiment 

includes free drainage from a 3m diameter by 6m deep lysimeter, filled with crushed 
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Bandelier Tuff, a material with silty sand texture. The lysimeter was equipped with 

tensiometers and neutron probe access tubes at depths 40, 116, 191, 271, 347, and 423 

cm. Before the initiation of free drainage, the lysimeter was ponded by infiltration for 

more than one month and the mean values of the saturated water content and saturated 

hydraulic conductivity were measured as 0.331 and 12.44 1cmday− . The surface of the 

lysimeter was covered during the drainage period yielding zero flux boundary condition 

at the top of the domain. The lysimeter was allowed to freely drain for 100 days during 

which time the temporal and spatial distributions of soil water content and soil water 

matric potential head were monitored.   

 This data set will be used to inversely estimate the optimized values of the 

parameter vector [ , , , , ]s rK nα θ ι  through single-objective and multi-objective 

optimizations. In single objective optimization equation [4.66] will be used as the 

objective function. In multi-objective optimization equation [4.67] will be employed as 

the objective function. 

 
4.3.2.2. Water Flow through Heterogeneous Partially Saturated Porous Media 
  
A 32 2 1.25m× × lysimeter with layered soil was equipped with five time domain 

reflectometry (TDR) probes (three 20cm rods of 0.3cm diameter and with 2.5cm 

separation) to monitor spatio-temporal distribution of soil water contents. The probes 

were inserted horizontally at depths of 10, 30, 50, 70, and 90cm. They were multiplexed 

and connected to a TRASE TDR device (Soilmoisture Inc., Santa Barbara, CA). Figure 

4.3 is a schematic representation of the lysimeter. The lysimeter was saturated by 

providing ponding water at the top of the soil profile and allowing free drainage at the 

bottom for two weeks. Then, the drain tube was blocked and the surface of the lysimeter  
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Figure 4.3. Schematic sketch of the lysimeter and TDR probes. 
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was covered with nylon, providing a zero flux boundary condition at the top of the 

domain. After two weeks, the soil moisture content was measured at five different depths, 

free drainage was initiated by unblocking the drain and was continued for one month. 

The soil moisture contents were measured at different depths frequently. The data are 

presented in Table 4.2. The physical properties of the soil are given in Table 4.3 in which 

gd  and gσ  are geometric mean and standard deviation of soil particles diameter (Shirazi 

and Boresma, 1984; Shirazi et al., 1988).  

 The experimental results will be used to identify hydraulic parameters of the 

heterogeneous soil by single-objective optimization since there is no other additional 

information about other properties of the soil. Equation [4.66] will be used as objective 

function. 
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 Table 4.2. The results of drainage experiment for heterogeneous soil. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
            Table 4.3. The physical properties of the soil at the experimental site. 

 
 

Soil 
Depths 
(cm) 

 
Clay 
(%)  

 
Silt 
(%) 

 
Sand 
(%) 

 
Soil 

Texture 
 

 

gd  
(cm) 

 

gσ  

0 – 20 26 44 30 L 0.034 13.6580 
20– 40 29 45 26 CL 0.027 12.8880 
40 – 60 28 42 30 CL 0.031 14.2780 
60 – 80 21 36 43 L 0.064 14.3290 

80 – 
100 

14 25 61 SL 0.154 12.9830 

100 – 
120 

10 27 63 SL 0.188 10.7780 

 

Time(day)→  

Depth (cm)↓  

 

0.0000 

 

0.7292 

 

1.7292 

 

2.7292 

 

3.7292 

 

4.7292 

 

5.7292 

 

6.7292 

 

10.000 

 

13.75 

 

18.75 

 

23.7917 

 

28.8125 

10 0.4126 0.3902 0.3687 0.3461 0.3334 03200 0.3102 0.3001 0.2824 0.2670 0.2606 0.2543 0.2504 

30 0.4221 0.4056 0.3831 0.3634 0.3503 0.3400 0.3300 0.3215 0.3052 0.2917 0.2805 0.2700 0.2638 

50 0.4293 0.4142 0.3947 0.3801 0.3669 0.3600 0.3501 0.3431 0.3312 0.3203 0.3096 0.2975 0.2891 

70 0.4336 0.4216 0.4081 0.3957 0.3851 0.3765 0.3700 0.3648 0.3517 0.3400 0.3300 0.3211 0.3127 

90 0.4368 0.4257 0.4158 0.4071 0.4004 0.3931 0.3872 0.3801 0.3698 0.3601 0.3509 0.3437 0.3378 
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4.4. Analysis of the Inverse Modeling Strategy 
 
Different measures will be used to analyze the results of the inverse modeling strategy. 

To study the closeness of the solution to the “true” minimum, the gradient of the 

objective function at the solution and the positive definiteness of the Hessian matrix will 

be analyzed. To study the stability of the inverse problem, small perturbation will be 

made on the input data and the inverse code will be rerun to Figure out if the optimized 

values of the parameters change or not. To study the uniqueness of the solution two-

dimensional parameters response surfaces as well as three-dimensional parameter hyper 

space will be constructed and analyzed. 

 Absolute and relative sensitivity will be calculated and analyzed to study the 

sensitivity of the state variables to the changes in the parameters and to recommend a 

sampling strategy for data collection. 

 The reliability and performance of the optimization strategy will be studied using 

statistical goodness-of-fit indices such as variances of the optimized parameters, 

covariance and correlation matrices, confidence intervals on the optimized parameters, 

Root Mean Squared Error (RMSE), and coefficient of determination. 

 A residual analysis will be performed to test possible correlation, trends, and 

oscillations of errors. The Student’s t-test will be used to verify if the residuals have a 

mean of zero. Using the Chi-square and Kolmogorov-Smirnov tests, hypothesis tests will 

be performed to test if residuals are normally distributed. Another hypothesis tests will be 

used to verify if the forward models are biased. Bartlett and Levene tests will be used to 

test if the variance of the residuals is constant. The t-statistic will be applied to verify if 

the residuals are uncorrelated. 
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4.4.1. Statistical Assessment 
 
One of the advantages of the inverse modeling over the commonly used model 

calibration is uncertainty analysis which can be accomplished at the end of the parameter 

optimization procedure. The first-order approximation of the parameter covariance matrix 

is calculated as (Bard, 1974): 

   2 1( )TC s J J −=           [4.68] 

where s  is the estimated error variance: 

  
Tr rs

N p
=

−
                [4.69] 

The second-order approximation of the parameter covariance matrix can be obtained as 

(Bard, 1974): 

   2 1( )C s H −=           [4.70] 

 The diagonal elements of the parameter covariance matrix are variances which 

indicate the estimation uncertainties over the parameters, and the off-diagonal elements 

are covariance between the parameters. Using this matrix, the parameter correlation 

matrix (known as the variance-covariance matrix) is calculated (Bard, 1974; Beck and 

Arnold, 1977; Yeh, 1986; Lehmann and Ackerer, 1997): 

  ( ) ij
ij

ii jj

C
COR P

C C
=         [4.71] 

 Equation [4.71] identifies the degree of correlation between the optimized 

parameters. In other words, the correlation matrix quantifies the nonorthogonality 

between two parameter values. A value of 1±  reflects perfect linear correlation between 

two parameters whereas 0 suggests no correlation at all. The matrix may be used to 
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identify which parameter, if any, is kept constant in the parameter optimization process 

because of high intercorrelation (van Genuchten, 1991). 

 The root mean squared error ( RMSE ) and coefficient of determination ( 2R ) are 

calculated as follows (Daniel and Wood 1976; van Genuchten, 1991): 

  
Tr rRMSE

N p
=

−
            [4.72] 
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      [4.73] 

 

where iU   and 
^

iU  are the observed and predicted state variable, respectively. 

 Confidence intervals on the optimized parameters are calculated using the 

covariance matrix (Kool and Parker, 1988): 

  
^ ^ ^

1/ 2 1/ 2( )ii iipr t C t Cβ β β γ− × ≤ ≤ + × =        [4.74] 

where 
^
β  is the estimated value of the parameter, iiC  is the parameter variances, obtained 

by the covariance matrix, and ,1 / 2vt t α−≡  is the value of the student t  distribution 

(Abramowitz and Stegun, 1964) for confidence level 1γ α= −  and degree of freedom v .  

 As Donaldson and Schnabel (1987) and Kool and Parker (1988) pointed out these 

equations are taken from linear regression and hold only approximately for nonlinear 

optimization problems. Furthermore, to use these equations, 
^
β  should be the true 

minimum and no constraints should be imposed on the parameter space. Under these 

conditions, Donaldson and Schnabel (1987) showed that equations [4.68] to [4.74] show 

reasonable agreement with the nonlinear optimization statistics.  
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4.4.2. Posedness Analysis 
 
As discussed in chapter two, inverse problems are often ill-posed. A problem is ill-posed 

when it either has no solution at all, no unique solution, or the solution is not stable (Tyn 

Myint-u, 1980; Russo et al., 1998). Generally, ill-posedness arises from non-uniqueness 

and instability. To investigate the ill-posedness of the inverse problem, stability and 

uniqueness analyses will be performed.  

 
4.4.2.1. Stability Analysis 
 
To perform stability analysis, a generated data set will be obtained by solving the forward 

problems for hypothetical biological systems with prescribed initial and boundary 

conditions and parameter values. Normally distributed noise with zero mean and standard 

deviation of σ , (0, )N σ , will be added to the data. The inverse modeling strategy will 

then be used to identify the model parameters using these noisy generated data. The result 

will be compared with the original parameter vector and analyzed in terms of relative 

error, possible changes in the magnitudes of the parameters, estimation uncertainties, and 

confidence intervals on the optimized parameters.  

 
4.4.2.2. Uniqueness Analysis 
 
The uniqueness of the inverse problem will be evaluated by construction of two-

dimensional parameter response surfaces of the objective function as a function of pairs 

of parameters being optimized. To further investigate possible non-uniqueness of the 

inverse problem, parameter hyper-spaces will be constructed and analyzed for triplets of 

parameters. 
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4.4.2.2.1. Parameter Response Surface 
 
Response surfaces are two-dimensional plots of the objective function as a function of 

pairs of model parameters, used to fit a model to experimental data (Sorooshian and 

Gupta, 1983). They are useful in providing information about the linearity of the model 

and possibility of multiple minima (or maxima in case of maximization). Three pairs of 

response surfaces will be built to analyze possible ill-posedness of the inverse problem in 

biomolecule transport in living cells. The objective function, ( )frapΦ , will be  calculated 

for three parameter planes: *
f aD K− , *

a dK K− , and f dD K− . The response surfaces will 

be constructed using a rectangular grid with parameter values 121201 −−= smD f µ , 

1* 1201 −−= sK a , and 1101.0 −−= sKd . The domain of each parameter will be discretized 

into 60 discrete points resulting in 3600 grid points for each response surface which 

means solving the direct problem (Eq.[2.32]) 10800 times to generate three plots.  

 Ten pairs of response surfaces will be constructed for parameter vector 

[ , , , , ]s rK nα θ ι  in analyzing the inverse problem in water flow through homogeneous 

variably saturated soil. The domain of each parameter will be discretized into 50 discrete 

points resulting in 2500 grid points for each response surface plot implying that the 

Richards’ equation (direct problem) will be solved 25000 times to generate the ten plots. 

Since information on both of the soil moisture content and soil water pressure head is 

available a complex objective function, ( )hθΦ + , will be used. 

 The same procedure will be followed to analyze possible non-uniqueness of the 

inverse problem in water flow through heterogeneous variably saturated soil. The only 

difference is that the objective function in this case will be ( )θΦ since there are no 
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additional data sets in this case. 

 
4.4.2.2.2. Parameter Hyper-Space 
 
Since response surfaces are only two-dimensional cross sections of a whole 

p dimensional−  parameter domain, analysis of the behavior of the objective function in 

full hyper-space will reveal how the function might behave in the whole space. To gain 

complete perspective about the unique identifiability of the model parameters through 

inverse modeling of biomolecule transport in living cells, three-dimensional parameter 

hyper-spaces in *
f a dD K K− −  will be constructed and analyzed. Domain of each 

parameter will be discretized into 100 discrete points resulting in one million grid points 

for the target hyper-space. This requires solving the forward problem (Eq.[2.32] with 

0CD = , 0SD = ) one million times which takes about two weeks run of a Pentium4 

Processor550 (3.4 GHz) PC. 

 To analyze the behavior of the objective function in case of water flow through 

homogeneous variably saturated soil, five-dimensional hyper spaces should be 

constructed and analyzed which is not possible with state-of-the-technology. However, a 

three-dimensional parameter hyper space will be constructed in sn Kα − − directions. To 

achieve this goal, the domain of each parameter will be discretized into 31 discrete points 

resulting in 29791 grid points for the target plot. This requires solving the Richards’ 

equation (direct problem) 29791 times which is very time consuming and takes about 

nine days using a Pentium4 Processor550 (3.4 GHz) PC. Therefore, it will be constructed 

and analyzed just for water flow through homogeneous variably saturated soil. The 

objective function will be ( )hθΦ + . 
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4.4.3. Sensitivity Analysis 
 
The most accurate parameter estimation, by inverse modeling, is obtained when the state 

variable(s) has the highest sensitivity to the collected data and to the parameters being 

estimated. Parameter sensitivity analysis is an essential guideline for sampling planning, 

experimental data collection and for identifying the discrete points in space and time that 

produce the most sensitive data. To perform the parameter sensitivity analysis, columns 

of the last Jacobian matrix in the optimization algorithm will be used as the absolute 

sensitivities of the state variable(s) with respect to the parameters being optimized. The 

magnitudes, rather than the sign, of the absolute and relative sensitivities are of special 

interest. To compare the sensitivity of the state variable(s) to different parameters, the 

relative sensitivity, rather than absolute sensitivity, will be used. The relative sensitivity 

will be calculated by ( )( )U p
p U

−

∂
∂

, where U  is the state variable. The best index to measure 

the magnitude of the sensitivity is the norm of the columns of the normalized Jacobian 

matrix at the solution (
^

( )( )U p
p U β β

−

=

∂
∂

) which will be calculated, plotted, and compared 

across parameters, time, and spatial locations (where applicable). 

4.4.4. Residual Analysis 
 
Residuals, or errors in parameter optimization, are defined as the difference between the 

observed and simulated state variable(s). An analysis of the residuals is a useful and key 

technique to study possible trends, oscillations, and correlation of errors. It is also 

important in validating the assumptions on which the inverse modeling strategy rests. The 

inverse methodology used in this study is based on the following assumptions: 
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1. Residuals have a mean of zero, 

2. Residuals have constant variance, 

3. Residuals are uncorrelated, 

4. Residuals are normally distributed. 

 When these assumptions are met, the parameter optimization estimates poses 

optimal statistical properties (Bard, 1974). When these conditions are not met the 

parameter optimization method may no longer produce optimal parameter estimates.  

 To analyze the residuals, they will be plotted against the state variables. Since the 

residuals are time and/or space series, their possible correlation will be thoroughly 

analyzed. Error frequency analysis, normal probability plot, and hypotheses tests will be 

discussed. Different tests will be used to make decision about the residuals. The Student’s 

t-test will be used to test if the residuals have a mean of zero. Bartlett’s test (Snedecore 

and Cochran, 1983) and Levene’s test (Levene, 1966) will be applied to determine if the 

residuals have constant variance. To test the normality of the residuals the Chi-square test 

and Kolmogorov-Smirnov one sample test will be used. Finally, the t-statistic will be 

used to test if the residuals are correlated. 

 
4.4.4.1. Hypothesis Test on the Residuals’ Mean 
 
The basic assumption in this test is that the data come from a normally distributed 

population with unknown variance. In this study, the following null and alternative 

hypotheses will be formulated: 

   0 0

0

:
:A

H
H

µ µ
µ µ

=
≠

          [4.75] 

To perform the test the following critical t-statistic ( t ) is used: 
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  0

/
xt
s N

µ
−

−
=           [4.76] 

in which x
−

, s , and N  are the mean, standard deviation, and size of the sample (errors), 

respectively. 0µ  is the mean of the population which is zero. 

 For / 2 / 2t t tα α− < <  the null hypothesis (mean is zero) cannot be rejected at the 

significance level α . The rejection regions / 2t tα< −  or / 2t tα <  indicate that the null 

hypothesis can be rejected at the level of significance α . 

 
4.4.4.2. Hypothesis Test on the Residuals’ Variance 
 
Bartlett’s test will be used to verify if k  samples, taken from the residuals, have equal 

variances. Equal variance across samples is called homogeneity of variances and is 

usually used in several statistical tests such as analysis of variance and nonlinear 

optimization which assumes that the errors have constant variance. 

 The following null and alternative hypotheses will be formulated: 

   
2 2

0 1 2

2 2
1 2

:

:A

H

H

σ σ

σ σ

=

≠
          [4.77] 

Different tests will be used to determine whether the variance of the residuals is 

constant. The Bartlett’s test statistic is used to verify for equality of variances across sub-

groups of a sample against the alternative that variances are not constant (Snedecor and 

Cochran, 1983): 

  

2 2

1

1

( ) ln ( 1) ln

1 1 11
3( 1) 1

k

p i i
i

k

i i

N k s N s
T

k N N k

=

=

− − −
=

 
+ − − − − 

∑

∑
       [4.78] 
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where 2
is  is the variance of the subgroup, iN is the sample size of the subgroup, k  is the 

number of subgroups, and 2
ps  is the pooled variance. This variance is a weighted average 

of the variances: 

  2 2

1
( 1) ln /( )

k

p i i
i

s N s N k
=

= − −∑         [4.79] 

The rejection region is those values of 2
( , 1)kT αχ −>  in which 2

( , 1)kαχ −  is the upper critical 

value of the chi-square distribution with 1k −  degree of freedom at the level of 

significance α . 

 The Bartlett test is sensitive to departure from normality. If residuals are known to 

be not normal then the Levene’s test should be applied as an alternative to the Bartlett 

test. In the present study, the Levene’s test will only be used if the chi-square and 

Kolmogorov-Smirnov one sample tests on the normality of the residuals (will be 

discussed in 4.4.4.4) verify that the errors are not normally distributed. The Levene test 

statistic is defined as (Levene, 1966): 

  

2
.

1

2

1 1

( ) ( ..)

( 1) ( ..)
i

k

i i
i

Nk

i ij
i i

N k N Z Z
W

k N Z Z

− −

=
− −

= =

− −
=

− −

∑

∑ ∑
       [4.80] 

where .iZ
−

are the subgroups means and ..Z
−

is the overall mean of the residuals ( ijZ ).  

 The Levene test rejects the null hypothesis (variances are equal or the random 

variable has constant variance) if: 

  ( , 1, )k N kW F α − −>  

where ( , 1, )k N kF α − −  is the upper critical value of the F-distribution with 1k −  and N k−  
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degrees of freedom at the level of significance α . 

 
4.4.4.3. Hypothesis Test on the Correlation of the Residuals 
 
The following null and alternative hypotheses will be used to test possible correlation 

among the residuals: 

   0 : 0
: 0A

H
H

ρ
ρ

=
≠

          [4.81] 

where ρ  is the correlation coefficient in the population. For 2n >  these hypotheses can 

be tested using the following t-statistic (McCuen, 1986): 

  
21
2

Rt
R

N

=
−

−

          [4.82] 

in which R  is the correlation coefficient. 

 The null hypothesis (correlation coefficient is zero) is rejected when the absolute 

value of the t-statistic is greater than the critical t-value ( / 2t tα< −  or / 2t tα < ) at the level 

of significance α . If the null hypothesis is rejected, the autocorrelation will be studied by 

serial correlation analysis (McCuen, 2003):  

  1 1 1
1/ 2 1/ 22 2

2 2

1 1 1 1

1

( )
1 1( ) ( )

N N N

i i i i
i i i

N N N N

i i
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U U U U
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U U U U
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τ τ

τ
τ

τ τ

τ τ
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τ τ

− −

+
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− −
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−
−=

   
− −   − −   

∑ ∑ ∑

∑ ∑ ∑ ∑
   [4.83] 

where ( )R τ  is the serial correlation coefficient, τ  is the separation distance or lag, and 

iU  and 
^

iU  are the observed and predicted state variable, respectively. 
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4.4.4.4. Hypothesis Test on the Normality of the Residuals 
 
To test the normality of the residuals, the chi-square goodness of fit test, which is based 

on the differences between the observed ( io ) and expected ( ie ) error frequencies will be 

used: 

  
2

2

1

( )k
i i

i i

o e
e

χ
=

−
= ∑          [4.84] 

where k  is the number of intervals or cells.  

 To perform the test, first residuals will be grouped into different cells 

(histograms). The number of residuals in every cell will be counted which is ie . Then 

using the upper limit of the cells, the mean, standard deviation, and the cumulative 

normal distribution (the expected frequencies) will be calculated. The cells will be 

merged when the observed error frequencies are less than 5. Then using equation [4.84], 

the 2χ  index will be calculated and will be compared with 2
(1 , )vαχ − (Abramowitz and 

Stegun, 1965). This information will be used in the hypothesis test. The null and 

alternative hypotheses will be formulated as: 

  0 : ( , )
: ( , )A

H r N
H r N

µ σ
µ σ≠

         [4.85] 

where µ  and σ  are the mean and the standard deviation of the residuals in population.  

 In case of small sample size and very low degrees of freedom, the Kolmogorov- 

Smirnov one sample test will be used to verify normality of the residuals. The results will 

be compared with those of the chi-square test. 
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CHAPTER 5: RESULTS 
     
 
 

 

              Science never solves a problem without creating ten more. 
                              G. B. Shaw 

 

 

5.1. Development of the Inverse Modeling Strategy 

5.1.1. Optimization Algorithm 
 
The flowchart of the code developed to solve the inverse problem is presented in Figure 

5.1. The code was implemented in MATLAB by developing system of m-files that are 

presented in Appendix E. It reads the experimental data file, provides the initial guesses 

for parameters to be optimized, the initial condition, and space-time discretization for the 

numerical simulator of the direct problem. It then calls the numerical simulator to solve 

the forward problem. Having obtained the numerical solution of the forward problem, it 

calculates the residual vector and the magnitude of the objective function, forms the 

Jacobian matrix (by calling the numerical solver 1p +  times in every iteration at the early 

stages of the optimization and 2 1p +  times as iteration approaches the minimum, p  is 

number of model parameters being estimated), updates λ  and D , updates the 

parameters, and compares the solution with the termination criteria. If the termination 

criteria are met it ends the optimization, otherwise it goes to the next iteration. 

The flowchart of the numerical simulator used to solve the direct problem is 

presented in Figure 5.2. The numerical simulator first obtains the data file, the discretized  
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Figure 5.1. Flowchart for solution of the inverse problem. 
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Figure 5.2. Flowchart for solution of the forward problem. 
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spatial and time domains, and the initial guesses for the parameters to be identified from 

the inverse code. It then solves the matrix equations and finds the values of the state 

variable(s). The simulator uses adaptive time stepping to quickly produce results when 

the solution doesn’t change much over time. It was implemented as a system of 

MATLAB m-files. The m-file PROTRANS.m solves the system of three coupled 

nonlinear partial differential equations governing biomolecule transport and binding 

processes inside living cells. The m-file PROINVERSE.m identifies the mass transport 

and binding rate parameters of in vivo biomolecules. The m-files 

WATERFLOW_FUNC1.m and WATERFLOW_FUNC2.m contain the mass-lumped 

Galerkin based linear finite element and fully implicit finite difference solution of the 

flow equation, respectively. The soil hydraulic properties presented in m-files 

VGC_FUNC.m, VGK_FUNC.m, VGTHETA_FUNC.m, and VGD _FUNC.m. The entire 

code is presented in Appendix E. 

5.1.2. Selection of the Efficient Optimization Algorithm 
 
To choose the most efficient optimization algorithm for parameter identification 

problems considered in this study, first the numerical solution of the convective-

dispersive-reactive equation (Eq. [4.17]) was validated with the analytical solution (Eq. 

[4.18]) of Kreft and Zuber (1978). The parameter values 2 10.50 minD cm −= , 0µ = , 

0.5 / minv cm= , 1R = , and 0γ =  were used to generate both the exact and numerical 

solutions. The result presented in Figure 5.3. As the Figure shows there are excellent 

agreements between two solutions.  

 The numerical simulator was then coupled with the generated data (described in 

4.1.2) and the steepest descent method, the Gauss-Newton scheme, equation [4.6], and  
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Figure 5.3. Comparison of the numerical simulator of the convective-dispersive-reactive  
       equation with the analytical solution of Kreft and Zuber (1978). 
 

 

the developed optimization algorithm, to inversely identify model parameters 

],,,[ γµβ vD=  for the convective-dispersive-reactive equation.  

 The steepest descent method was painfully slow and required a lot of iterations 

without significant reduction in the magnitude of the objective function. This confirms 

the reports of Bard (1974) and the optimization toolbox in MATLAB which reported that 

the steepest descent algorithm took 1000 function evaluations in order to converge to the 

solution in Rosenbrock's banana function (Mathworks, 2006). The Gauss-Newton failed 

to obtain the minimum. The reason for failure was computation of the ill-conditioned 

TJ J . In all of the optimization problems considered inthis study, the Gauss-Newton 



 106  

algorithm did not converge to the solution. The Levenberg-Marquardt algorithm 

(Eq.[2.11]) suffered from the singularity of the TJ J  and could not find the minimum. 

However, the Levenberg-Marquardt algorithm could continue several iterations but the 

Gauss-Newton method, due to singularity and rank deficiency, failed at the early stages 

of optimization. 

 The developed algorithm was then applied to identify model parameters using the 

generated data. The results are presented in Figure 5.4 and Table 5.1. As Figure 5.4 

shows the algorithm could successfully find the minimum and the Root Mean Square 

Error ( 0.0488RMSE = ) is about one per cent of the concentration of the hypothetical 

tracer ( 3
0 4.4C mgcm−= ). 

 The results of optimization in Table 5.1 indicate that the estimated values of the  

 

Figure 5.4. Comparison of the simulated concentration with the experimental   
        breakthrough data for a hypothetical tracer. 
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Table 5.1. The results of parameter optimization for a hypothetical tracer using the  
      developed inverse modeling strategy. 
 

Parameters 2 1( min )D cm −  1( min )v cm −  1(min )µ −  ( )γ −  

True value 3.4290  0.1345  41.0917 10−×  44.0914 10−×  

Optimized value 3.6691 0.1210 41.1627 10−×  43.7641 10−×  

 
 

parameters are very close to the “true” values. Therefore, Eq. [2.12] was implemented in 

the optimization problems considered in this study. 

5.1.3. Challenges of the Levenberg-Marquardt Algorithm 
 
To determine an efficient strategy to control the step size and the Lagrange multiplier in 

each iteration, three approaches were compared with each other. The first approach (Eqs. 

[4.19], [4.20], [4.21]) was always in the descending direction but the calculation of λ  

and α  was extremely time consuming. Furthermore, when the internal loop of the 

algorithm estimated the proper values of λ  and α , there was no significant reduction in 

the magnitude of the objective function in several iterations. After several iterations with 

no reduction in the function value there was a sudden reduction in the magnitude of the 

objective function in the next iteration.  

 The second approach, Eq. [4.22], avoids calculation of λ  and α  and therefore is 

computationally cheap. However the judicious choice of λ and changing it as the 

function value changes, strongly depends on the knowledge and expertise of the user. If 

one chooses a large λ , the algorithm may swing around the minimum. On the other hand, 

if λ  is given a small value at the beginning of the optimization, the algorithm takes a lot 
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of iterations to converge the solution. 

The Hessian update method (Eqs. [4.23] to [4.26]) required a lot of iterations to 

calculate the appropriate step size in each iteration to ensure the positive definiteness of 

the Hessian. Since the step size is calculated by running the internal loop in this algorithm 

in a trial and error manner, the method is very time consuming, swings in different 

iterations, and is frequently not in the descent direction (because the Hessian is not 

always positive-definite). The result is consistent with the reports of the optimization 

toolbox in MATLAB in which this method took 140 function evaluations to converge to 

the solution in the Rosenbrock’s banana function, while the Levenberg-Marquardt took 

90 and the steepest descent took 1000 function evaluations (Mathworks, 2006). 

 Finally, critically evaluating these methods, the second approach was used in this 

study. In order to update λ  in each iteration, the optimization started with a large λ  and 

decreased it as the search approached the solution. The following algorithm was 

implemented in the inverse code to update λ : 

  1λ =  
  if  1( ) 1iφ β + >  
   if  1( ) ( )i iφ β φ β+ <       
    1 *λ ξ λ=  
   else  
    2 *λ ξ λ=  
   end          
  elseif  1( ) 0.1iφ β + >  
   if  1( ) ( )i iφ β φ β+ <       
    3 *λ ξ λ=  
   else  
    4 *λ ξ λ=  
   end  
  elseif  1 2( ) 1 10iφ β + −> ×  
   if  1( ) ( )i iφ β φ β+ <       
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    5 *λ ξ λ=  
   else  
    6 *λ ξ λ=  
   end  
  elseif  1 3( ) 1 10iφ β + −> ×  
   if 1( ) ( )i iφ β φ β+ <       
    7 *λ ξ λ=  
   else  
    8 *λ ξ λ=  
   end  
  else  1 4( ) 1 10iφ β + −> ×  
   if 1( ) ( )i iφ β φ β+ <       
    9 *λ ξ λ=  
   else  
    10 *λ ξ λ=  
   end  
  end           
 
 where 1ξ , 3ξ , 5ξ , 7ξ , and 9ξ  are less than unity ( 1 3 5 7 9ξ ξ ξ ξ ξ< < < < )  and  2 4 6 8, , ,ξ ξ ξ ξ , 

and 10ξ  are greater than unity ( 2 4 6 8 10ξ ξ ξ ξ ξ< < < < ). 

5.1.4. Termination Criteria for Inverse Code 
 
To determine the most efficient stopping criteria, several rules were compared with each 

other. Pre-analysis of equation [4.12] suggests that a stopping rule based on the changes 

in the parameter values at each iteration (Eq. [4.27]) is not a good termination rule since, 

in some cases, parameters don’t change significantly during several iterations then they 

change suddenly and produce significant reduction in the magnitude of the objective 

function. 

 The other termination criterion that was tested was the absolute and relative 

changes in the magnitude of the objective function in each iteration (Eq. [4.28]). 
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However, this is a case dependent rule. For small values of 1δ  and 2δ , the algorithm runs 

repeatedly without significant changes in the magnitude of the function value. For large 

1δ  and 2δ  the solution may not be satisfactory. Therefore, the judicious choice of 1δ  and 

2δ  is operational and case dependent.  

In the optimization problems analyzed in this study, 
^

( )
β β

φ β
=

∇ seldom 

converged to zero yet the solution was quite satisfactory. Large numbers of algorithm 

runs were required to obtain small changes in 
^

( )
β β

φ β
=

∇ without significant changes in 

the values of model parameters being optimized. Carrera and Neuman (1986a, 1986b, 

1986c) reported similar difficulties.  

 Finally, critically evaluating these rules, a combined termination criterion was 

selected to stop the iteration process in the inverse code: 

 if ( ^( )
β β

φ β ζ
=

∇ ≤  &  ( )
( )

φ β η
φ β

∆
≤  &   ( )φ β δ≤ ) 

  Stop  
 else  
  Continue Optimization  Loop  
 end  
 
where ζ , η , and δ  are user defined small values. 

 

5.2. Parameter Optimization in Biomolecule Transport in Living Cells 
 

The developed inverse modeling strategy was used to simulate mobility of the GFP-

tagged glucocorticoid receptor (GFP-GR) in the nucleus of mouse adenocarcinoma cell 
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line 3617 and to estimate the optimized values of the molecular diffusion coefficient and 

binding rate parameters. Before using the numerical model for parameter optimization 

purposes, it was validated by analytical solution (Oreskes et al., 1994). 

5.2.1. Formulation of the Forward Problem 
 
Equation [4.30] was selected as the forward problem to simulate protein transport in the 

nucleus of mouse adenocarcinoma cell line 3617. The matrix equation [4.32] was used to 

solve the forward problem. An adaptive time step was used to solve the matrix equation. 

To validate the numerical model with the semi-analytical solution of Sprague et al., 

(2004), the values of 0cD = , 0sD =  were used, which delete the second partial 

differential equation from equation [4.30] and collapses it to the mobile-immobile 

equation . The numerical solution of the forward problem, i.e. equation [4.32], was then 

compared with the analytical solution and the result depicted in Figures 5.5 and 5.6. As 

these Figures show there is excellent agreement between the analytical and numerical 

solutions. Figure 5.5 presents the average fluorescent intensity in the bleach spot, 

obtained by Eq. [4.33], while Figure 5.6 shows the spatial distribution of the free, 

*( , , , , )f a dF r D K K t ,bound complex , *( , , , , )f a dC r D K K t , and *( , , , , )f a dF C r D K K t+  GFP-

GR inside and outside of bleach spot after photobleaching at times of 0, 0.01, 0.02, 0.05, 

0.1, 0.2, 0.5, 1, and 2 seconds for case 13 in Table 5.3.  

5.2.2. Formulation of the Inverse Problem: Optimization Scenarios 
 
The following scenarios were considered in the optimization procedure: 
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Figure 5.5. Validation of the numerical model with analytical solution. 
 

 
 

Figure 5.6. Spatial and temporal distribution of fluorescent inside bleach spot after photo  
        bleaching (comparison of analytical (lines) and numerical (dots) solutions). 
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5.2.2.1. Scenario A: Estimation of Five Parameters for Full Reaction-Diffusion 
Model  
  
In this case, five model parameters [ fD , aK , dK , sD , cD ] in equation [4.30] were 

estimated using the developed inverse modeling strategy and the experimental data in 

Table 4.1. The results are given in Table 5.2 and Figure 5.7, 5.8, and 5.9. The model 

shows excellent agreement with the experimental data.  

 Analysis of Table 5.2 reveals that the uncertainties in the estimates of fD , aK , 

and dK  are smaller than those of the diffusion coefficients of the binding sites and bound 

complex. The later show higher variances and wider confidence intervals. The Root 

Mean Squared Error (RMSE) and the coefficient of determination are 0.0233 and 0.9914, 

respectively. Equation [4.30] can describe more than 99 per cent of the temporal and 

spatial distributions of the fluorescence molecules inside bleached area of the mouse 

adenocarcinoma cell line 3617 during the course of the FRAP experiment.   

 If Eigenvalues of the Hessian matrix are positive definite and the gradient of the 

objective function at the solution is zero, then the solution is a strong local minimum. 

Table 5.2 shows that the first criterion holds in full but the second one holds only 

approximately. While the fD , aK , and dK  components of the gradient vector at solution are 

almost zero, the sD  and cD  components are not but the solution is quite satisfactory 

( 2 0.9914R =   and  0.0233RMSE = ).  In all of the optimization problems studied in this 

research the gradient vector approached zero but didn’t quite reach this limit value, yet 

the solutions were quite satisfactory with very high coefficient of determinations and very 

low RMSE. 

 Figures 5.8a and 5.8b show the temporal and spatial distributions of free GFP-GR 
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Figure 5.7. Predicted and experimental FRAP recovery for GFP-GR using equation  
       [4.30].  

 
 
 
Table 5.2. The results of parameter optimization for scenario A.  
 
 

Parameter Opt. Value LL* UL* OF∇  ( )eigs H  2
pσ  

2 1( )fD m sµ −  2.1787 1.7332 2.6241 0.0002 0.001 0.0487

1( )aK s−  7.2915 5.8936 8.6893 0.0000 0.0049 0.4798

1( )dK s−  11.4267 10.7358 12.1175 0.0000 0.0090 0.1172

2 1( )sD m sµ −  0.0169 -0.2249 0.2588 0.0221 0.4989 0.0143

2 1( )CD m sµ −  0.0078 -0.0989 0.1146 0.0097 28.5584 0.0028

 * 95% confidence interval on the optimized parameters. 
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Figure 5.8. Temporal and spatial distribution of free GFP-GR (a) and bound complex (b)  
        inside cell after photochemical bleaching. 
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Figure 5.9. Temporal and spatial distribution of total fluorophores (a) and vacant binding  
        sites (b) inside cell after photochemical bleaching. 
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and bound complex inside the cell after photochemical bleaching. The GFP-tagged free 

protein and bound complex move toward bleached area from the unbleached region. At 

the early stages of the experiment, the recovery is very fast but as time goes on the 

recovery becomes slow and finally reaches the state of equilibrium (in terms of 

fluorescent distribution inside cell) that the system had before photobleaching ( at the end 

of the experiment the concentration of free protein and bound complex approach eqF  and 

eqC ). Note that the fluorophores are not completely recovered due to the loss of light 

emission capability in some of the fluorescence molecules. 

 Figure 5.9a presents distribution of total fluorescence molecules (free protein and 

bound complex) inside the nucleus as a function of radial direction over the time course 

of the FRAP experiment. The confocal microscope detects the fluorescent emission from 

both of these transport entities and cannot distinguish them. This is one of the 

shortcomings of the protocol since incorporating the free biomolecule information and 

the bound complex data in the framework of the multi-objective optimization may 

produce unique values for the model parameters (as will be discussed 5.3.2.1.2). Again 

the recovery is very quick at the early stages of the protocol and becomes slow as the 

experiment proceeds.  

 Figure 5.9b indicates temporal and spatial distributions of the vacant binding sites 

inside bleached region during the time course of the FRAP experiment (these four graphs 

are normalized). The Figure shows that during the experiment, the binding sites decrease 

slowly. At the beginning of the protocol ( 0t = ) all of the binding sites are vacant but as 

the experiment proceeds, the free protein from the unbleached zone move toward the 

bleached area and occupy the vacant binding sites. Therefore, it decreases gradually and 
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finally reaches ninety four per cent of the original concentration at the end of the 

experiment.     

  According to Figures 5.7, 5.8, and 5.9 and Table 4.2, the developed numerical 

model (Eq. [4.32]) and the inverse modeling strategy were successfully applied to 

simulate and predict the concentration of free biomolecule, bound complex, and vacant 

binding sites where both of adsorbent and adsorbate are moving transport entities. 

However, the optimized parameter values may be one of the possible solutions due the 

ill-posedness of the inverse problem which will be thoroughly discussed in the following 

sections. 

 
5.2.2.2. Scenario B: Simultaneous Estimation of Mass Transport and Binding Rate 
Parameters for One-Site-Mobile-Immobile Model  
 
In this scenario, the attempt was to simultaneously estimate the transport and binding 

parameters of GFP-GR by coupling the experimental data from Table 4.1, the developed 

optimization algorithm, and the numerical solution of equation [4.30] with 0cD = , 

0sD = (which reduces it to the one-site-mobile-immobile model) through the inverse 

modeling approach. Tables 5.3 and 5.4 lists the initial guesses and the optimized values 

for molecular diffusion coefficient ( fD ), the pseudo- association rate coefficient ( *
aK ), 

and the free protein-vacant binding site(s) dissociation rate coefficient ( dK ). For each 

run, total concentration of free protein ( )eqF , total concentration of bound complex ( )eqC , 

the Root Mean Squared Error (RMSE), and the coefficient of determination are given as 

well. The simulated FRAP recovery is compared with the experimental one in Figure 

5.10.  

 Analysis of Tables 5.3 and 5.4 reveals several points regarding the mobility and 
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Table 5.3.The results of parameter optimization for scenario B. 
 

Initial guesses Optimized values 

run fD  
2 1( )m sµ −  

*
aK  
1( )s−  

dK  
1( )s−

fD  
2 1( )m sµ −

*
aK  
1( )s−  

dK  
1( )s−  

RMSE  2R  

1 1.3970 0.0106 0.2439 1.3454 0.0081 0.2490 0.0241 0.9904 
2 15.0000 500 86.4000 13.5563 806 83 0.0233 0.9912 
3 10.0000 20 50 1.2689 22.8800 538 0.0245 0.9903 
4 1.2600 3000 5 79.7179 1.06*104 168 0.0236 0.9910 
5 12.0000 30 490 1.8558 256 489 0.0244 0.9904 
6 1.2000 200 49 7.4289 200 42.50000 0.0235 0.9911 
7 7.0000 2 470 1.2248 4.7000 540.7200 0.0245 0.993 
8 0.7000 202 0.0470 6.6616 56.3620 38.2500 0.0235 0.9910 
9 1.5000 0.0010 85 1.2127 7*10-5 91.2100 0.0246 0.9902 

10 1.5000 0.1000 1*10-5 1.2127 0.1874 1*10-5 0.0245 0.9903 
11 1.5000 1*10-5 1 1.4652 0.1974 2.1902 0.0251 0.9900 
12 9.2000 500 86.4000 8.3315 468.5600 83.3800 0.0234 0.9911 
13 25.0000 0.0010 100 1.2534 1.3557 44.9400 0.0245 0.9903 
14 0.2500 0.0010 100 1.2236 0.4235 119.7100 0.0245 0.9903 
15 5.0000 400 0.4000 10.1911 396.8000 56.7000 0.0233 0.9911 
16 15.0000 4 1400 1.2205 3.8100 1389 0.0245 0.9903 
17 4.50000 150 385 4.3970 986 380 0.0242 0.9905 
18 10.0000 150 385 8.8610 2458 396 0.0242 0.9905 
19 0.4000  0.5000 0.0030 1.6371 0.5211 3.2000 0.0254 0.9901 

20# - - - 9.2000 500 86.4000 0.0255 0.9886 
   # These values were obtained by Sprague et al. (2004). 
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Table 5.4. Concentration of free GFP-GR and bound complex and average diffusion and  
      binding time for GFP-GR in scenario B. 
 
    

run eqF eqC ( )bt ms ( )dt ms  
1 0.9685 0.0315 4016 1.2345*105 
2 0.0934 0.9066 12.0000 1.2407 
3 0.9592 0.0408 1.9000 44.0000 
4 0.0156 0.9844 6.0000 9.0000 
5 0.6564 0.3436 2.0000 3.9100 
6 0.1753 0.8247 23.5000 5.0000 
7 0.9914 0.0086 1.8000 213.0000 
8 0.4043 0.5957 26.1000 18.0000 
9 1.000 0.0000 11.0000 15.0000 

10 0.0001 0.9999 200 5336 
11 0.9173 0.0827 456.6000 5066 
12 0.1511 0.8489 12.0000 2.0000 
13 0.9707 0.0293 22.3000 738 
14 0.9965 0.0035 8.4000 2361 
15 0.1250 0.8750 17.6000 2.5200 
16 0.9973 0.0027 7.0000 262 
17 0.2782 0.7218 2.6000 1.0000 
18 0.1388 0.8612 2.50000 0.4000 
19 0.8600 0.1400 312.5000 1919 

20* 0.1474 0.8526 11.6000 2.0000 
   *These values were obtained by Sprague et al. (2004)  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 121  

Figure 5.10. Predicted and experimental FRAP recovery curves for GFP-GR using one- 
         site mobile-immobile model.  
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binding of GFP-GR inside the cell nucleus: 

  First, the primary rate kinetics or single-binding site model, Eq. [2.13], can 

satisfactorily describe the binding process of the GFP-GR inside nucleus. Therefore, the 

two-site-mobile-immobile model wasn’t developed to simulate the mobility and binding 

reaction of GFP-GR inside nucleus. 

 Second, the estimated values for transport and binding parameters by Sprague et 

al. (2004) are given as run 20 in Tables 5.3 and 5.4 and Figure 5.10 for comparison 

purpose. As these Tables and Figure 5.10 indicate there is a large number of 

combinations of three parameters that give essentially the same error level or objective 

function magnitude and produce excellent fits (only 20 runs were reported). In other 

words, the inverse problem is not well-posed and doesn’t have a unique solution. This 

explains the conflicting and different parameters values reported in the literature for 

protein mass transport and binding rate parameters (Berg, 1986; Sprague et al., 2004, 

among many others). One of the reasons for the ill-posedness of the inverse problem is 

that the Fluorescence Recovery after Photobleaching protocol, though useful in studying 

the dynamics of cells, doesn’t provide enough information to uniquely estimate the 

transport and binding parameters of biomolecules in living cells, simultaneously.  

 Third, the optimized values of the free molecular diffusion coefficient for GFP- 

GR range from 1.2 to 80 2 1m sµ −  where 55 percent of the estimates are less than 2 2 1m sµ − . 

These values are far smaller than those reported by previous investigators (Sprague et al., 

2004). Since we didn’t take into account the effect of convective flux of biomolecules 

toward bleached area, the optimized values of molecular diffusion coefficient maybe 

somewhat overestimated in comparison to the “true” value.   
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 Fourth, using equations [2.18] and [2.19] Sprague et al. (2004) concluded that 86 

per cent of the GFP-GR is bound and only 14 per cent is free. This study suggests that 

using the FRAP experiment, one cannot identify how much of the biomolecule is free and 

how much is bound. As Table 5.4 shows the total concentration of free GFP-GR can 

range from zero to 100 percent. The same is true for concentration of the bound complex.  

 Fifth, the average binding time per vacant site, calculated by 1/b dt K=  (Sprague 

et al., 2004), varies between 0.72 ms to 4.016 s. Again this is in contrast with the findings 

of Sprague et al., (2004) that the average binding time per vacant site for GFP-GR is 12.7 

mili-second.  

 Sixth, the average time for diffusion of GFP-GR from one site to the next, 

obtained by *1/d at K=  (Berg, 1986), ranges between 0.4 ms to 34.3 hours ( 51.2345 10 s× ) 

while Sprague et al., (2004) reported that it is 2.5 ms and therefore GFP-GR samples the 

binding sites very quickly.   

 Finally, using experimental data from the FRAP protocol and by curve fitting, one 

cannot make conclusions regarding slow or rapid mobility of biomolecules as well as the 

rates of binding reaction.  

 These findings are in sharp contrast with the those by Kaufmann and Jain (1990) 

which claimed that using FRAP, one can simultaneously determine the biomolecule mass 

transport and binding parameters in vivo. The results of this study also do not confirm the 

results of Sprague et al., (2004).  

 To further investigate the reason(s) for the ill-posedness of the inverse problem in 

FRAP experiment, a data set was generated by solving Eq. [4.32] for a hypothetical cell 

with prescribed initial and boundary conditions and parameter values: 2 130fD m sµ −= , 
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2 10SD m sµ −= , 2 10CD m sµ −= , * 130aK s−= , 10.1108dK s−= , and 0.5w mµ= . The 

procedure for data generation and perturbation was described in 4.2.2. The resulting 

signal and noise are depicted in Figure 5.11. The reason for selecting these parameter 

values for data generation and parameter optimization is that they represent a situation in 

which the Damkohler number is almost unity and neither of the diffusion and reaction 

regimes is dominant. Both of these processes are present in the experimental procedure. 

The parameter values also imply that the free GFP-GR molecules are mobile and the 

bound complex and the vacant binding sites are relatively immobile. The data were then 

used for parameter identification in cases C, D, and E below and posedness analysis in 

section 5.4. 

 

Figure 5.11. The generated noise free and noisy signal for FRAP protocol. 
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5.2.2.3. Scenario C: Estimation of Single Parameter for Mobile-Immobile Model 
  
The results for this case are presented in Tables 5.5 to 5.7. As these Tables show, the 

FRAP protocol provides enough information to uniquely estimate one parameter 

provided that the true values of the other two parameters are known. This is true for both 

noise free and noisy data. The other important finding is the robustness and efficiency of 

the developed algorithm which converged to the “true” values of the parameters 

regardless of the initial guess. The initial guesses for the optimization procedure span 

twelve orders of magnitudes, but the developed inverse modeling strategy always 

converged to the “true” parameter values. The values in parentheses are those obtained 

using corrupted data and matched those obtained with noise free data. 

 
5.2.2.4. Scenario D: Estimation of Two Parameters for Mobile-Immobile Model 
  
In this case pairs of model parameters, under the assumption that the value of the third 

parameter was known, were estimated. In the first attempt, the optimized values of the 

binding rate coefficients were determined given a known value of the molecular diffusion 

coefficient of the GFP-GR. Again the optimization algorithm was used for both noise free 

and noisy data and the results are given in Table 5.8. As Table 5.8 indicates using the 

FRAP experiment coupled with the inverse modeling strategy and numerical model, one 

can uniquely estimate the individual values of the binding rate coefficients given the 

value of the molecular diffusion coefficient, for both noise free and noisy data, over a 

wide range of initial guesses. 

 The results for estimation of the free molecular diffusion coefficient and the 

dissociation rate parameter, for both noise free and noisy data, are presented in Table 5.9.  

Analysis of Table 5.9 indicate the FRAP protocol provides enough information to 
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Table 5.5. The results of optimization for scenario C (estimation of molecular diffusion  
      coefficient in FRAP experiment). 

Estimate fD  
Initial guesses Optimized values  

fD  
2 1( )m sµ −  

*
aK  
1( )s−  

dK  
1( )s−  

fD  
2 1( )m sµ −  

*
aK  
1( )s−

dK  
1( )s−  

RMSE  2R  

3 30 0.1108 29.9975 
(29.8032)

30 0.1108 0.00 
(0.01) 

1.0000 
(0.9984) 

5 30 0.1108 29.9968 
(29.7362)

30 0.1108 0.00 
(0.01) 

1.0000 
(0.9984) 

10 30 0.1108 29.9968 
(29.7978)

30 0.1108 0.00 
(0.01) 

1.0000 
(0.9984) 

15 30 0.1108 29.9959 
(29.7483)

30 0.1108 0.00 
(0.01) 

1.0000 
(0.9984) 

20 30 0.1108 29.9972 
(29.7490)

30 0.1108 0.00 
(0.01) 

1.0000 
(0.9984) 

45 30 0.1108 29.9974 
(29.7376)

30 0.1108 0.00 
(0.01) 

1.0000 
(0.9984) 

1000 30 0.1108 29.9973 
(29.7507)

30 0.1108 0.00 
(0.01) 

1.0000 
(0.9984) 

500 30 0.1108 29.9969 
(29.7910)

30 0.1108 0.00 
(0.01) 

1.0000 
(0.9984) 

 
 
Table 5.6. The results of optimization for scenario C (estimation of pseudo-association  
      rate constant in FRAP experiment). 

 Estimate *
aK  

Initial guesses           Optimized values  

fD  
2 1( )m sµ −  

*
aK  
1( )s−  

dK  
1( )s−  

fD  
2 1( )m sµ −

*
aK  
1( )s−  

dK  
1( )s−  

RMSE  2R  

30 3.00 0.1108 30 30.0032 
(30.3523)

0.1108 0.00 
(0.01) 

1.000 
(0.998)

30 31 10−× 0.1108 30 29.9982 
(30.2455)

0.1108 0.00 
(0.01) 

1.000 
(0.998)

30 61 10−× 0.1108 30 30.0031 
(30.2468)

0.1108 0.00 
(0.01) 

1.000 
(0.998)

30 61 10×  0.1108 30 30.0030 
(30.2478)

0.1108 0.00 
(0.01) 

1.000 
(0.998)

30 31 10×  0.1108 30 30.0031 
(30.2507)

0.1108 0.00 
(0.01) 

1.000 
(0.998)

30 300.00 0.1108 30 30.0030 
(30.3188)

0.1108 0.00 
(0.01) 

1.000 
(0.998)

30 10.00 0.1108 30 30.0030 
(30.2115)

0.1108 0.00 
(0.01) 

1.000 
(0.998)

30 0.050 0.1108 30 30.0030 
(30.1655)

0.1108 0.00 
(0.01) 

1.000 
(0.998)
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Table 5.7. The results of optimization for scenario C (estimation of dissociation rate  
      coefficient in FRAP experiment). 
 

Estimate dK  
Initial guesses Optimized values  

fD  
2 1( )m sµ −  

*
aK  
1( )s−  

dK  
1( )s−  

fD  
2 1( )m sµ −

*
aK  
1( )s−

dK  
1( )s−  

RMSE  2R  

30 30 0.0008 30 30 0.1108 
(0.1107)

0.0000 
(0.0102) 

1.000 
(0.998)

30 300 0.8000 30 30 0.1108 
(0.1107)

0.0000 
(0.0102) 

1.000 
(0.998)

30 30 0.0001 30 30 0.1108 
(0.1107)

0.0000 
(0.0102) 

1.000 
(0.998)

30 30 1.0000 30 30 0.1108 
(0.1107)

0.0000 
(0.0102) 

1.000 
(0.998)

30 30 0.0500 30 30 0.1108 
(0.1107)

0.0000 
(0.0102) 

1.000 
(0.998)

30 30 0.0010 30 30 0.1108 
(0.1107)

0.0000 
(0.0102) 

1.000 
(0.998)

30 30 51 10−×  30 30 0.1108 
(0.1108)

0.0000 
(0.0102) 

1.000 
(0.998)

30 30 61 10−×  30 30 0.1108 
(0.1107)

0.0000 
(0.0102) 

1.000 
(0.998)

 

Table 5.8. The results of optimization for scenario D (estimation of two parameters in  
      FRAP experiment: *

aK - dK ). 
Estimate aK and dK  

Initial guesses           Optimized values  

fD  
2 1( )m sµ −  

*
aK  
1( )s−  

dK  
1( )s−  

fD  
2 1( )m sµ −

*
aK  
1( )s−  

dK  
1( )s−  

RMSE  2R  

30 90 0.005 30 30.0246 
(32.7366)

0.1108 
(0.1122)

0.00 
(0.01) 

1.000 
(0.99)

30 20 0.01 30 29.9762 
(28.8955)

0.1108 
(0.1101)

0.00 
(0.01) 

1.000 
(0.99)

30 250 0.01 30 30.0729 
(33.7009)

0.1108 
(0.1128)

0.00 
(0.01) 

1.000 
(0.99)

30 435 0.0005 30 30.1108 
(34.2443)

0.1108 
(0.1131)

0.00 
(0.01) 

1.000 
(0.99)

30 10 0.01 30 29.9576 
(31.8386)

0.1108 
(0.1118)

0.00 
(0.01) 

1.000 
(0.99)

30 100 1 30 30.0027 
(36.0428)

0.1108 
(0.1141)

0.00 
(0.01) 

1.000 
(0.99)

30 100 2*106 30 30.0209 
(33.8034)

0.1108 
(0.1129)

0.00 
(0.01) 

1.000 
(0.99)

30 1000 0.5 30 30.0082 
(32.7609)

0.1108 
(0.1122)

0.00 
(0.01) 

1.000 
(0.99)
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Table 5.9. The results of optimization for scenario D (estimation of two parameters in   
      FRAP experiment: fD - dK ). 

Estimate fD  and dK  
Initial guesses Optimized values  

fD  
2 1( )m sµ −  

*
aK  
1( )s−  

dK  
1( )s−  

fD  
2 1( )m sµ −

*
aK  
1( )s−

dK  
1( )s−  

RMSE  2R  

8 30 0.008 30.0111 
(27.528) 

30 0.1108 
(0.1122)

0.000 
(0.0101) 

1.000 
(0.998)

48 30 0.08 29.9972 
(29.935) 

30 0.1108 
(0.1108)

0.000 
(0.0101) 

1.000 
(0.998)

8 30 1 29.9989 
(28.204) 

30 0.1108 
(0.1118)

0.000 
(0.0101) 

1.000 
(0.998)

80 30 1 30.0100 
(28.294) 

30 0.1108 
(0.1117)

0.000 
(0.0101) 

1.000 
(0.998)

150 30 0.01 30.0156 
(36.477) 

30 0.1108 
(0.1077)

0.000 
(0.0104) 

1.000 
(0.998)

0.150 30 0.1 30.0005 
(27.822) 

30 0.1108 
(0.1120)

0.000 
(0.0101) 

1.000 
(0.998)

15 30 0.001 30.0090 
(24.555) 

30 0.1108 
(0.1143)

0.000 
(0.0102) 

1.000 
(0.998)

150 30 0.001 30.0142 
(188.225) 

30 0.1108 
(0.0946)

0.000 
(0.0133) 

1.000 
(0.998)

 
Table 5.10. The results of optimization for scenario D (estimation of two parameters in  
        FRAP experiment: fD - *

aK ) 

Estimate fD  and *
aK  

Initial guesses Optimized values  

fD  
2 1( )m sµ −  

*
aK  
1( )s−  

dK  
1( )s−  

fD  
2 1( )m sµ −  

*
aK  
1( )s−  

dK
1( )s−  

RMSE  2R  

50 3 0.1108 3.8162 
(6.9081) 

4.1352 
(7.2953) 

0.1108 0.0042 
(0.0104) 

0.9997 
(0.9983) 

3 50 0.1108 47.7952 
(35.6424) 

47.5709 
(35.8541) 

0.1108 0.0003 
(0.0102) 

1.0000 
(0.9984) 

20 25 0.1108 25.2109 
(25.2109) 

25.2769 
(25.2769) 

0.1108 0.0001 
(0.0001) 

1.0000 
(1.0000) 

25 20 0.1108 24.5737 
(24.5737) 

24.6488 
(24.6488) 

0.1108 0.0002 
(0.0002) 

1.0000 
(1.0000) 

28 35 0.1108 34.8874 
(34.8874) 

34.8255 
(34.8255) 

0.1108 0.0001 
(0.0001) 

1.0000 
(1.0000) 

0.1 100 0.1108 89.9205 
(89.9205) 

89.1097 
(89.1097) 

0.1108 0.0005 
(0.0005) 

1.0000 
(1.0000) 

100 0.1 0.1108 8.5511 
(8.5511) 

8.8336 
(8.8336) 

0.1108 0.0017 
(0.0017) 

1.0000 
(1.0000) 

28 28 0.1108 28.2015 
(28.2015) 

28.2282 
(28.2282) 

0.1108 0.0001 
(0.0001) 

1.0000 
(1.0000) 
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uniquely estimate the molecular diffusion coefficient and dissociation rate coefficient. 

 Finally, fixing dK  on the known value, the optimized values of the free molecular 

diffusion coefficient and pseudo-association rate constant were estimated for both noise 

free and noisy data. The results are shown in Table 5.10 which indicates that the FRAP 

experiment doesn’t provide enough information for unique simultaneous estimation of 

the molecular diffusion coefficient and pseudo-association rate constant even for noise 

free data. One needs to have one of them and try to estimate the other one from the FRAP 

data using inverse modeling strategy.   

 It can be argued that the reason for the ill-posedness of the inverse problem lies in 

the relationship between the free molecular diffusion coefficient and the pseudo-

association rate constant. To further investigate the possibility of high inter-correlation 

between these two parameters, the parameter correlation matrix was calculated using 

equation [4.71]:  

  
1.0000    0.9890   -0.2487

( ) 0.9890    1.0000   -0.1196
-0.2487   -0.1196   1.0000

COR P
 
 =  
  

 

Where the diagonal elements of the matrix are correlation of each parameter with itself 

which is unity. Correlation between the molecular diffusion coefficient and the free 

protein-vacant binding site(s) pseudo-association rate constant is very high 

( * 0.989
f aD K

r
−

= ), while those of 
f dD K

r
−

and *
a dK K

r
−

are -0.2487 and -0.1196, respectively.

 The signs of the elements of the correlation matrix are physically reasonable 

because based on the primary rate kinetics, Eq. [2.13], one expects a negative correlation 

between fD  and dK  as well as between aK  and dK . We also expect positive correlation 
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between aK  and fD . 

 Based on these results, it’s clear that the high inter-correlation between the 

molecular diffusion coefficient and the pseudo-association rate constant makes it 

impossible to obtain a unique solution for the inverse problem using the experimental 

data from the FRAP protocol. The common practice in these situations is to fix one of the 

parameter and estimate the other one by parameter optimization algorithms. 

 The biological process behind this phenomenon is of particular interest and 

requires more investigations. Referring to equation [2.13] one may propose a possible 

explanation for this high inter-correlation. As the molecular diffusion coefficient 

increases it promotes the biochemical reaction [2.13] towards right and increases the 

possibility of interaction between free GFP-GR and the vacant binding site(s), and hence 

indirectly increases the free protein–to-vacant binding site(s) association rate. The 

movement of the free GFP-GR toward vacant binding site(s) is a necessary but not 

sufficient condition for interaction. There may be other reasons for this phenomenon 

which needs to be investigated.  

 
5.2.2.5. Scenario E: Estimation of Three Parameters for Noise Free FRAP Data 
  
In this scenario, the attempt was to estimate the optimized values of the mass transport 

and binding rate parameters for noise free data. The results presented in Table 5.12. As 

the Table indicates, it is impossible to obtain unique simultaneous estimation for mass 

transport and binding rate parameters even for noise free data. The reason, as pointed out, 

is the high inter-correlation between the free molecular diffusion coefficient and the 

pseudo-association rate coefficient. 

 The proposed approach to uniquely estimate the mass transport and binding rate 
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parameters from the FRAP protocol would be conducting two FRAP experiments on the 

same class of biomolecule and the same cell in two different regimes. One experiment 

may be used to measure the molecular diffusion coefficient of the biomolecule 

independent of binding under diffusion dominant regime. One way to perform this, is 

using a biomolecule of the same molecular weight and class (but with different surface 

properties) as the biomolecule under study, but one which doesn’t have reaction with the 

vacant binding site(s). Having determined the diffusion coefficient in diffusion dominant 

regime, one can determine the individual values of the reaction rate coefficients under 

either reaction dominant regime or diffusion-reaction regime. Experimentally, this 

approach is a viable procedure for drugs, antigens, and proteins. This procedure coupled 

with the parameter optimization algorithms yields the most clinically relevant parameter 

values to improve the delivery of agents to their targets in cells and tissues. 

 

 

Table 5.11. The results of optimization for case E (estimation of three parameters for  
        noise free FRAP data). 
 

Estimate fD  , dK , and *
aK  

Initial guesses Optimized values  

fD  
2 1( )m sµ −  

*
aK  
1( )s−  

dK  
1( )s−  

fD  
2 1( )m sµ −

*
aK  
1( )s−  

dK  
1( )s−  

RMSE  2R  

20 43 0.01 41.8564 42.7664 0.1112 0.0002 1.0000 
200 43 0.01 170.9403 166.9715 0.1106 0.0006 1.0000 
27 28 0.01 27.7434 27.6444 0.1107 0.0001 1.0000 
29 29 0.01 29.0008 29.0018 0.1108 0.0000 1.0000 
29 29 0.001 21.8680 21.5410 0.1104 0.0002 1.0000 
29 290 0.0001 276.5849 287.3558 0.1117 0.0005 1.0000 
15 500 0.0001 462.2080 491.3985 0.1121 0.0005 1.0000 
15 0.5 0.8 3.65890 3.6106 0.1087 0.0043 0.9997 
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5.3. Parameter Optimization in Water Flow through Partially Saturated 
Porous Media  
 
The second mass transport problem to be optimized was chosen to be fluid flow in 

partially saturated porous media. Fluid flow has crucial role in the delivery of drugs and 

nutrients to cells, tissues, and organs as well as the transport of industrial, agricultural, 

bacterial, and viral pollutants to surface and groundwater resources, and hence causing 

carcinogenic and water borne diseases. Therefore, accurate prediction of fluid flow 

parameters is important in model prediction of fluid flow and species transport in porous 

materials. As an example of the fluid flow through porous media, the water flow in 

variably saturated soil was investigated. Both homogeneous and heterogeneous soils were 

considered.   

 

5.3.1. Formulation of the Forward Problem 
 
Equations [2.21] and [2.23] were selected as forward problem. In the following sections, 

the numerical simulators of these equations were compared with the “exact solution” and 

with each other in terms of accuracy, mass conservation, possible convergence problem, 

and oscillatory behavior. The most efficient, mass-conservative, and accurate simulator 

was selected to be implemented in the framework of the inverse code. The adaptive time 

step procedure, validation of the numerical simulators of different forms of Richards’ 

equation using both the finite element and finite difference approximations, and mass 

conservation properties of the simulators were discussed and analyzed in the following 

sections. 
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5.3.1.1 Adaptive Time Step 
 
To develop an efficient adaptive time step strategy the values of maxdt  and mindt  were 

determined by trial and error. To determine maxdt  in the adaptive time step approach, the 

simulation started with initial time increment of 0.1t∆ = day. As Figure 5.12 indicates the 

finite element simulators (both distributed and lumped stiffness mass matrix) of the h-

form and mixed form Richards’ equations show appreciable discrepancy with the “exact 

solution” except for the early stages of the simulation. The result for the finite difference 

simulation presented in Figure 5.13. Similar to the finite element solution of the 

Richards’ equation, both schemes of the finite difference approximation (fully implicit  

 

 
Figure 5.12. Comparison of the linear finite element solution of the h-based form and  
         mixed form Richards’ equation with the “exact solution” for initial time  
         increment of 0.1t∆ = day. 
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Figure 5.13. Comparison of the finite difference solution of the h-based and mixed forms  
         of the Richards’ equation with exact solution for initial time increment of  
         0.1t∆ = day. 
 

 

and Crank-Nicolson) produced poor results for initial time increment of 0.1t∆ =  day. 

This was more pronounced for the distributed mass matrix formulation in the finite 

element method and the mixed and fully implicit finite difference schemes. Excellent 

results were obtained with 21 10t day−∆ = ×  which will be discussed in the next section on 

the validation of the numerical simulators. Therefore, for the drainage experiment 

considered in this study, the maximum and minimum time increments in the adaptive 

time step loop were set to max 0.085dt day≤  and 4
min 1 10dt day−≥ × , respectively.  
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5.3.1.2. Validation of the Numerical Simulators  
 
5.3.1.2.1. h-form Richards’ Equation  
 
The numerical solution of the forward model was validated by an “exact solution” 

(Oreskes et al., 1994). Since it was very difficult or actually impossible to obtain 

analytical solution for nonlinear Richards’ equation without imposing simplifying 

assumptions about the soil water characteristic relationship, the “exact solution” was 

obtained by numerical solution of the forward model for dense grid with very fine time 

step ( 0.1z cm∆ =  and 91 10t day−∆ = × ) using prescribed initial and boundary conditions. 

The soil water hydraulic parameters were as follow: 112.50sK cmd −= , 10.014cmα −= , 

1.5n = ,  0.33sθ = , 0.05rθ = , and 0.5ι = . The numerical solutions of the different forms 

of the one-dimensional Richards’ equation obtained on coarse grid ( 2.5z cm∆ =  and 

21 10t day−∆ = × ) were then compared with the “exact solution”. The numerical 

simulators were compared with the exact solution in terms of the cumulative outflow, 

calculated by Eq. [4.65], as a function of time.  

 Figure 5.14 presents the comparison of the linear finite element solution of the h-

based form Richards’ equation with the “exact solution”. Both the distributed and mass 

lumped schemes show excellent agreement with the exact solution for initial time 

increment of 0.01t day∆ = . The result is rather surprising for the distributed mass matrix 

because, as discussed in chapter two, there are numerous reports about the convergence 

problem and oscillatory behavior of this scheme. However, as Figure 5.12 indicated 

earlier, this scheme does have the lowest accuracy when the time increment is large. 

 The finite difference solution of the h-based form Richards’ equation is presented 

in Figures 5.15a and 5.15b. Both the fully implicit and Crank-Nicolson approximations 
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Figure 5.14. Comparison of the linear finite element solution of the h-based form      
         Richards’ equation with the “exact solution” for initial time increment of    
         0.01t∆ = day. 
 

show excellent agreement with the “exact solution” for initial time increment of 

0.01t∆ = day, though the Crank-Nicolson approach required more Picard iterations to 

converge due to the contribution of the explicit scheme in the formulation and produced 

poor mass balance for larger time increment which will be discussed in 5.3.1.3. The finite 

difference numerical simulators were also used to produce temporal and spatial 

distributions of soil moisture content and soil water pressure head profiles during 

drainage of a fully saturated soil and infiltration into a homogeneous and very dry soil 

which will be compared with those of  “exact solution” in Figures 5.17, 5.18, and 5.19.   
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Figure 5.15. Comparison of the finite difference solution of the h-based Richards’      
         equation with the “exact solution”: Fully Implicit scheme (a) and Crank- 
         Nicolson method (b). 

a) 

b) 
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5.3.1.2.2. Mixed-form Richards’ Equation 
  
Figure 5.16 presents the comparison of the fully implicit finite difference and the mass 

lumped linear finite element solutions of the mixed form Richards’ equation with the 

“exact solution”. The mass lumped linear finite element solution shows excellent 

agreement with the “exact solution”. However, the finite difference simulator shows 

some discrepancies as drainage proceeds. It slightly overestimates the outflow from the 

soil. The temporal and spatial distributions of the soil water pressure head and soil 

moisture content produced by the linear finite element solution of the mixed form 

Richards’ equation were compared with those of the “exact solution” in Figures 5.17, 

5.18, and 5.19. 

 

 

Figure 5.16. Comparison of the linear finite element and finite difference solutions of the  
         mixed form Richards’ equation with “exact solution”. 
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5.3.1.2.3. Switching Algorithm 
  
Some investigators reported that the mixed form Richards’ equation has shown problems 

in modeling saturated flow (Gui et al., 2002; Hao et al., 2005). Although the mixed form 

was successful in modeling water flow in the optimization problems considered in this 

study, for troublesome situations a mass-conservative switching algorithm was proposed 

and evaluated with the numerical test problems in the present study. The proposed 

switching algorithm uses the mixed form of the Richards’ equation in the unsaturated 

zone and switches to the h-based form at and near the saturated zone. A threshold value 

for soil water pressure head was chosen and incorporated in the code. For soil water 

pressure heads less than the threshold value, the mixed form of the Richards’ equation 

was used. The algorithm switches to the h-based form for soil water pressure heads equal 

or greater than the threshold value. To determine the threshold value, different soil water 

pressure heads were tried and the corresponding mass balance errors were compared with 

each other. The pressure head value of -2.5 cm ( 0 2.5h cm= − ) produced the lowest error. 

Similar idea was also reported by others during the preparation of this manuscript (Hao et 

al., 2005).  

 The proposed algorithm was tested against two numerical test problems. The first 

problem was drainage of a fully saturated soil with zero flux boundary condition at the 

top of the domain and free drainage ( q K= ) boundary condition at the bottom (both 

boundary conditions are Neumann type). The soil hydraulic parameters that were used to 

test the switching algorithm are 10.014cmα −= , 1.5n = , 112.50sK cmd −= , 0.33sθ = , 

0.05rθ = , and 0.5ι = .  

 Figure 5.17 presents the spatial and temporal distributions of the soil water 
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pressure head during the course of a drainage experiment reproduced by the proposed 

switching algorithm for times 0.0, 0.02, 0.1, 0.2, 0.5, 1, 2, 5, 10, and 20 days after the 

initiation of drainage. The solid line shows the reference solution which was obtained by 

solving the h-form of the Richards’ equation using very dense mesh and small time steps 

as outlined before. The points indicate the switching algorithm solved using a coarse 

mesh and larger time steps ( 2.5z cm∆ =  and 21 10t day−∆ = × ). As the Figure indicates 

there are excellent agreements between the two solutions. 

 The second problem is infiltration into a very dry, homogeneous, and semi- 

infinite soil with uniform initial soil water pressure head ( 41 10ih cm= − × ). The same 

 
 
Figure 5.17. Spatial and temporal distributions of soil water pressure head during the  
         course of the drainage experiment generated by the proposed switching  
         algorithm (dots) and the “reference solution”(solid lines). The legend      
         indicates the times after initiation of drainage in days. 
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hydraulic parameters were used to simulate the infiltration experiment. A positive 

pressure head of 2 cm was used on the soil surface. Infiltration tests were asymptotically 

carried out by assuming that the experimental conditions were very close to the one-

dimensional downward flow with Dirichlet boundary condition on the soil surface and 

Neumann boundary condition at the lower end of the domain. Figures 5.18 and 5.19 

indicate the results of the infiltration experiment generated by the “reference solution”, 

the mixed form of the Richards’ equation, and the switching algorithm for infiltration 

times of 0.0, 0.005, 0.02, 0.05, 0.1, 0.2, 0.35, and 0.5 days. The solid lines show the 

“reference solution” while the crosses and points represent the mixed form and the 

proposed switching algorithm, respectively, which were obtained using coarse mesh and 

larger time steps ( 2.5z cm∆ =  and 51 10t day−∆ = × ). Figure 5.18 presents the spatial and 

temporal distribution of the soil water pressure head during infiltration into very dry soils 

while Figure 5.19 indicates the soil water content distributions. As the Figures show the 

proposed switching algorithm has excellent agreement with the “exact solution”. 

 

5.3.1.3. Mass Conservation Property of the Numerical Simulators 
  
The global mass balance error of the “exact solution” is presented in Figure 5.20. The 

graph shows perfect global mass balance over the entire domain and at times. This is not 

the case for the numerical simulators at large time steps. As Figures 5.21 shows both the 

fully implicit and Crank-Nicolson schemes of the h-based form of the Richards’ equation 

suffer from poor mass balance for 0.1t∆ = day and 2.5z cm∆ = . The mass balance error is 

more pronounced for the Crank-Nicolson method while for the fully implicit method it 

starts with 10 percent at the beginning of the simulation and approaches 6 percent as the 
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Figure 5.18. Spatial and temporal distributions of the soil water pressure head during the  
         course of an infiltration experiment. 
 

 
 
Figure 5.19. Spatial and temporal distributions of the soil water content during the course  
         of an infiltration experiment. 
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Figure 5.20. Global mass balance error of the “exact solution” simulating drainage  
         experiment. 
 
 
simulation proceeds. Similar results obtained for the finite element solution of the h-

based form of the Richards’ equation. Figure 5.22 presents the global mass balance error 

of the finite element solution of the h-based Richards’ equation using distributed (Figure 

5.22a) and lumped (Figure 5.22b) stiffness mass matrices. The error is more pronounced 

for the distributed mass matrix finite element approximation which starts with 40 percent 

error at the beginning of the simulation and approaches 10 percent at the end of the 

solution (for 0.1t∆ = day). The lumped stiffness matrix, as expected, shows better results, 

in terms of conservation of mass, in comparison with the distributed mass matrix. 

 Finally, the mass balance property of the mixed form Richards’ equation is 

presented in Figure 5.23. Since the mass-lumped Galerkin based linear finite element 

solution of the mixed form equation produced similar results, it was not included in the 
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Figure 5.21. Global mass balance error of the finite difference solution of the h-based  
          Richards’ equation (a: fully implicit scheme, b: Crank-Nicolson   
          formulation) simulating drainage experiment. 

a) 

b) 
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Figure 5.22. Global mass balance error of the finite element solution of the h-based  
         Richards’ equation (a: distributed mass matrix, b: lumped mass matrix)  
         simulating drainage experiment. 

b) 

a) 
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.   
Figure 5.23. Global mass balance error for the finite difference simulator (fully implicit  
          scheme) of the mixed form Richards’ equation simulating drainage   
          experiment. 
 

analysis of the mass balance property and only the results of the finite difference solution 

are reported here. For 0.1t∆ = day and 2.5z cm∆ =  the formulation shows poor mass 

balance. The mass balance error at the beginning of the simulation is about 23 percent. 

As the simulation proceeds the error becomes smaller but it doesn’t vanish. This is in 

contrast with the findings of Celia et al., (1990) who claimed that the mixed form of the 

Richards’ equation is mass conservative for any time steps and any boundary conditions. 

The formulation, however, does produce good mass balance results for 0.01t∆ = day. 

 These results were for drainage experiment which is numerically straightforward. 

Numerical simulation of infiltration into very dry soils, however, have been challenging 
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in porous media community (van Genuchten, 1982; Milly, 1985; Celia et al., 1990; 

Kirkland and Hills, 1992; Pan and Wierenga, 1995; Forsyth et al., 1995; Pan et al., 1996; 

Diersch and Perrochet, 1999, among many others). As Figure 5.24 shows numerical 

solution of the h-based form of the Richards’ equation ( 51 10t day−∆ = ×  and 2.5z cm∆ = ) 

shows severe mass balance error while, as Figures 5.25 and 5.26 indicate, the mixed form 

and the proposed switching algorithm maintain excellent mass balance property for 

similar mesh . 

 In conclusion, the distributed mass matrix linear finite element method and the 

Crank-Nicolson scheme of the finite difference approximation produced poor mass 

balance and therefore were not selected as the numerical simulator of the forward 

problem, to simulate water flow in variably saturated porous media, in the framework of 

the inverse problem. Among the remaining formulations, namely, the mass-lumped linear 

Galerkin based finite element approximation, the fully implicit finite difference solution 

of the h-based form and mixed form Richards’ equation and the switching algorithm, the 

optimization uses the mass-lumped Galerkin based linear finite element solution of the 

mixed form Richards’ equation.  

 The inverse modeling strategy was then applied to simulate partially saturated 

flow in homogeneous and heterogeneous soils. 
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Figure 5.24. Mass conservation property of the h-based form of the Richards’ equation  
         for infiltration into very dry soil. 
 
 

 
 
Figure 5.25. Mass conservation property of the mixed form of the Richards’ equation for  
         infiltration into very dry soil. 
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Figure 5.26. Mass conservation property of the proposed switching algorithm for   
         infiltration into very dry soil. 

 

 5.3.2. Formulation of the Inverse Problem: Optimization Scenarios 
 
The optimization scenarios considered in this section were identification of hydraulic 

parameters in water flow through homogeneous and heterogeneous porous media. Both 

single-objective and multi-objective optimizations were considered. In flow through 

homogeneous soil, both experimental soil water content and soil water pressure head time 

and space series were available which made it possible to perform single and multi-

objective optimizations. The data for water flow through heterogeneous variably 

saturated soil contained only information on the soil water content time and space series 

and therefore a single-objective function was used. Three scenarios were considered and 
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analyzed; i) single-objective optimization using the soil water content data, ii) single-

objective optimization using the soil water pressure head data, and iii) multi-objective 

optimization using the soil water content and the soil water pressure head data. 

 To start the optimization, the initial guesses for the parameters were taken from  

Carsel and Parish (1988) and the parameters were updated iteratively until the stopping 

criteria were met. The following constraints were imposed on the parameters: 

 10.01sK cmd −≥  ,   1n >  ,   10cmα −>  ,   0rθ >  ,  50 50ι− ≤ ≤  

These constraints were imposed to reduce potential singularity problems in the 

forward model as all numerical simulators can suffer from singularity when model 

parameters take unrealistic values (for example large saturated hydraulic conductivity and 

large values of the residual soil water content simultaneously), though these cases are rare 

for the soil moisture based  Richards’ equation (results were not shown).  

 
5.3.2.1. Homogeneous Porous Media 
  
In this scenario, the task was to estimate the optimized values of the hydraulic parameters 

,sK α , n , rθ , and ι  , analyze the inverse  problem, and compare them with the results of 

Kool et al., (1987). The data for this case were taken from the drainage experiment on the 

Bandelier Tuff (described in 4.3.2). To solve the forward problem zero flux boundary 

condition at the top and free drainage boundary condition at the bottom of the soil profile 

were applied. The initial soil water content was measured by Abeele (1984) and the 

corresponding uniform initial condition was applied to solve the direct problem. Both 

“single objective optimization” and “multi-objective optimization” were considered. In 

single-objective optimization the information about either the soil water content or soil 

water pressure head was only incorporated in the optimization. In multi-objective 
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optimization both kind of information (the soil water content data and the soil water 

pressure head information) were used in the optimization algorithm. 

 
5.3.2.1.1. Single-Objective Optimization 
 
To estimate the optimized values of the parameters [ , , , ,s rK nα θ ι ], only the soil moisture 

data were inserted in the objective function (Equation [4.66]). Then the strategy was used 

to identify the hydraulic parameters. Some of the optimized parameter values are given in 

Table 5.12. The RMSE for all cases is the same. The gradient of the objective function at 

the solution, given next to the parameter values in Table 5.12, is close to zero implying 

that all of these solutions are strong local minima. The positive definiteness of the 

Hessian (not shown in Table 5.12) confirms this assertion. Table 5.12 shows that the 

optimized values of , ,s rK θ and ι  are almost stable with values of 16.2 ,0.13,cmd −  and 

2.00 , respectively. However, the optimized values of α  changes from 0.0015  to 0.0047  

and  n  varies from 9.70  to 42.23. Comparison of rows three and four in Table 5.12 

indicates a hyperbolic relationship between these two parameters. As α  increases n  

decreases. This is consistent with the results of parameter response surfaces analysis in 

the nα −  plane.   

 One may conclude that coupling optimization algorithms with the numerical 

solution of Richards’ equation, and only soil moisture experimental data may not produce 

unique and stable parameter values for α  and n  in Mualem-van Genuchten soil water 

characteristic formula. One possible approach to overcome the non-uniqueness problem 

regarding α  and n  is to estimate α  separately from the hanging column (Haines 

apparatus) experiment. It should also be noted that except for very coarse texture soils, 

the air entry value or the inflection point (α ) is not a well-defined point. Therefore, the 
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   Table 5.12. The results of parameter optimization for single objective optimization (soil moisture data only). 
 
 
 

Parameter p  OF∇ 1 p  OF∇ 2 p  OF∇ 3 p  OF∇ 4 p  OF∇ 5 
1( )sK cmd −  6.312     0.0000 6.2550 0.0000 6.2458     0.0001 6.2173    0.0000 6.2176    0.0001 

1( )cmα −  0.0047    -0.0081 0.0037 -0.0020 0.0039     0.0197 0.0027    -0.0042 0.0029     0.0252 

n  9.7061    -0.0000 13.6754 0.0000 14.5095     0.0000 19.570    -0.0000 20.6107     0.0000 

rθ  0.1334     0.0000 0.1320 0.0000 0.1321    -0.0001 0.1309    -0.0000 0.1307    -0.0001 

ι  1.8492     0.0001 2.0304 0.0000 2.0153    -0.0003 2.1638    -0.0000 2.1567    -0.0003 

Parameter p  OF∇ 6 p  OF∇ 7 p  OF∇ 8 p  OF∇ 9 p # OF∇ # 
1( )sK cmd −  6.1920     0.0000 6.2024     0.0002 6.1752     0.0000 6.1965     0.0001 25.000   0.0001 

1( )cmα −  0.0019    -0.0095 0.0022     0.0392 0.0013    -0.0227 0.0015     0.0423 0.01433     0.0230 

n  28.4561    -0.0000 29.4979     0.0000 41.8688    -0.0000 42.2334     0.0000 1.5060     0.0127 

rθ  0.1300    -0.0000 0.1296    -0.0001 0.1294    -0.0000 0.1287    -0.0001 0.0000 - 

ι  2.2593    -0.0000 2.2608    -0.0003 2.3257    -0.0000 2.3380    -0.0002 0.5000    -0.0004 

 
  1. [ ( ) 0.0091RMSE θ =  ( ) 1.0950RMSE h m= ]   2. [ ( ) 0.0091RMSE θ =  ( ) 1.1655RMSE h m= ]  
  3. [ ( ) 0.0091RMSE θ =  ( ) 1.1989RMSE h m= ]   4. [ ( ) 0.0091RMSE θ =  ( ) 1.1605RMSE h m= ] 
  5. [ ( ) 0.0091RMSE θ =  ( ) 1.1941RMSE h m= ]   6. [ ( ) 0.0091RMSE θ =  ( ) 1.1808RMSE h m= ] 
  7. [ ( ) 0.0091RMSE θ =  ( ) 1.2274RMSE h m= ]   8. [ ( ) 0.0091RMSE θ =  ( ) 1.1915RMSE h m= ] 
  9. [ ( ) 0.0091RMSE θ =  ( ) 1.2305RMSE h m= ]   
  # These values were obtained by Kool et al., (1987): [ ( ) 0.013RMSE θ =  ( ) 0.3063RMSE h m= ] 
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value obtained by desorption experiment would be a rough estimate. Another possibility 

is incorporating other kind of experimental data in the objective function and performing 

multi-objective optimization which was considered in this study and will be discussed 

later in this chapter. 

 These findings are in contrast with those of Kool et al., (1987) which claimed that 

“the parameter estimation problem for the two parameters α  and n  can be solved 

uniquely using only information on water content profiles during drainage”. They also 

claimed that coupling soil moisture data with soil water pressure head data for one depth 

(six additional data points) they could uniquely identify the four unknown parameters  

(the pore connectivity index was assumed to be ι =0.5). The last two columns of Table 

5.12 present their results. The calculated RMSE for this set of parameters is 0.0131 which 

is 35 percent more than the RMSE (0.0091) of the solutions obtained in this study. 

 In comparison with the measured value of 112.44sK cmday−= , their estimated 

value for sK  (25 cm/day) is too high especially ponded infiltration gives over-estimated 

value for saturated hydraulic conductivity (because of the bypass flow). Furthermore, as 

Figure 5.27 shows this set of parameters produce acceptable fit for water content profile 

but poor fit for the soil water pressure head data. The same is true for the parameters 

obtained in this study using only the soil water content information in the optimization 

procedure. As Figure 5.28 shows the optimized set of parameters produce excellent fit for  

the soil water content profile and poor fit for the soil water pressure head data. 

 To further investigate the efficiency of single-objective optimization to identify 

the hydraulic parameters of the variably saturated flow, only soil water pressure head data 

were used in the objective function. In other words, only the second term in equation  
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Figure 5.27. Observed and simulated soil water content (a) and pressure head (b) profiles  
         during drainage of Bandelier Tuff using the parameters of Kool et al. (1987). 
         The experimental data are from Abeele (1984).  

a) 

b) 
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Figure 5.28. Observed and simulated soil water content (a) and pressure head (b) profiles  
         during drainage of Bandelier Tuff. Only the soil water content data were  
         used in the optimization (data from Abeele (1984)).  

a) 

b) 
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[4.66] was considered in the objective function. The results of the optimization are 

depicted in Figure 5.29 in which the optimized values of the parameters produce 

reasonable fit for the soil water pressure head data but very poor results for the soil water 

content profile. The results reaffirm that the single-objective optimization procedure is 

not a reliable method to identify the hydraulic parameters of the Mualem-van Genuchten 

soil water retention relationship and the unsaturated hydraulic conductivity, diffusivity, 

and soil water capacity functions. 

 
5.3.2.1.2. Multi-Objective Optimization 
 
To identify the hydraulic parameters of the homogeneous soil, the information of the soil 

water content and soil water pressure head were used together in a multi-objective 

optimization framework, embedded in the proposed inverse modeling strategy. For this 

purpose, equation [4.67] was used as a weighted complex objective function. The goal 

was to minimize the objective function so that the optimized hydraulic parameters to be 

unique and stable and produce the best fits for both soil water content and pressure head 

profiles. The results are depicted in Figure 5.30 and show reasonable agreements with the 

soil water content and soil water pressure head profiles. The detailed results of the multi-

objective optimization are presented in Table 5.13. The values inside parentheses in the 

first row are the Mixed Root Mean Squared Error (RMSE) which was calculated using 

equation [4.67]. The only difference with the single objective optimization is the residual 

vector which was defined as follow for multi-objective optimization: 

 
^ ^

( ) ( )h hr
h

θ θ

θ
− −

− −
= +  

 

where θ  and 
^
θ  are the measured and predicted soil water content and h  and 

^
h  are  the 
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Figure 5.29. Observed and simulated soil water content (a) and pressure head (b) profiles  
         during drainage of Bandelier Tuff. Only the soil water pressure head data  
         were used in the optimization (data from Abeele (1984)).  

a) 

b) 
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Figure 5.30. Observed and simulated soil water content (a) and pressure head (b) profiles  
          during drainage of Bandelier Tuff using multi-objective optimization (data  
          from Abeele, 1984).  

b) 

a) 
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   Table 5.13. The results of parameter optimization for multi-objective optimization. 

 
Parameter p  OF∇ 1 

p  OF∇ 2 
p  OF∇ 3 

p  OF∇ 4 
p  OF∇ 5 

1( )sK cmd −  12.15     0.0002 13.56     0.0004 14.56     0.0004 12.2500     0.0003 13.0000    0.0004 

1( )cmα −  0.00186    -0.3420 0.00194    -0.0204 0.0021     0.4599 0.00186    -0.1621 0.00192     0.4348 

n  3.3850    -0.0001 3.4913     0.0010 3.4913     0.0010 3.4000     0.0002 3.4913     0.0009 

rθ  0.0250     0.0000 0.0314    -0.0003 0.0414    -0.0003 0.0250     0.0001 0.0307    -0.0002 

ι  4. 5800     0.0000 4.4056    -0.0009 4.4056    -0.0008 4. 5400    -0.0002 4.4056    -0.0007 

Parameter p  OF∇ 6 p  OF∇ 7 p  OF∇ 8 p  OF∇ 9 p # OF∇ # 
1( )sK cmd −  14.56 0.0001 12.30     0.0003 13.5600     0.0004 12.2500     0.0002 25.000 0.0001 

1( )cmα −  0.0021 -0.1504 0.00187    -0.1805 0.00203     0.0316 0.00186    -0.3987 0.01433 0.0230 

n  3.4913 -0.0006 3.4913     0.0003 3.4913     0.0009 3.4700    -0.0001 1.5060 0.0127 

rθ  0.0614 0.0003 0.0305    -0.0001 0.0314    -0.0004 0.0300     0.0000 0.0000 - 

ι  4.4056 0.0005 4.3900    -0.0004 4.4056    -0.0011 4. 5200    -0.0001 0.5000 -0.0004 

 
  1. [ ( ) 0.0130RMSE θ =   ( ) 0.1458RMSE h m= ]   2. [ ( ) 0.0140RMSE θ =   ( ) 0.1440RMSE h m= ] 
  3. [ ( ) 0.0145RMSE θ =  ( ) 0.1418RMSE h m= ]   4. [ ( ) 0.0130RMSE θ =  ( ) 0.1460RMSE h m= ] 
  5. [ ( ) 0.0135RMSE θ =  ( ) 0.1446RMSE h m= ]   6. [ ( ) 0.0147RMSE θ =  ( ) 0.1418RMSE h m= ] 
  7. [ ( ) 0.0130RMSE θ =  ( ) 0.1470RMSE h m= ]  8. [ ( ) 0.0140RMSE θ =  ( ) 0.1500RMSE h m= ] 
  9. [ ( ) 0.0131RMSE θ =  ( ) 0.1461RMSE h m= ] 
  # These values were obtained by Kool et al., (1987): [ ( ) 0.0130RMSE θ =   ( ) 0.3063RMSE h m= ] 
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measured and predicted soil water pressure head, respectively.  

 As Table 5.13 shows the optimized values of the parameters are stable, physically 

reasonable, and the predicted saturated hydraulic conductivity agrees with the measured 

one. The estimated value for the residual soil water content is also physically realistic. 

The pore connectivity index (ι ) is found to be far greater than the value of 0.5 which has 

been extensively used in unsaturated flow modeling. The optimized value for 1( )cmα −  is 

rather small in comparison to common values for Silt and Silty Sand soils (Carsel and 

Parrish, 1988). The estimated value for n  is reasonable which means that the pore size 

density function is narrow.   

 Except for the α –related element of the gradient vector, the other elements are 

close to zero. The calculated Eigenvalues of the Hessian are: 

  ( ) [0.0001     0.0004    0.0020     0.0046     908.8736]eigs H =  

which confirms that the Hessian is positive definite and the solution is at least a strong 

local minimum because the necessary and sufficient criteria were met. The mixed root 

mean squared error (0.089) is almost one-third of the RMSE obtained using the 

parameters of Kool et al., (1987) and Forsyth et al., (1995). Parameter correlation matrix 

indicates that there are high inter-correlation between nα − , α ι− , and rθ ι− : 

            sK    α       n         rθ   ι      

1.0000    0.2857   -0.6018   -0.4056    0.0451
0.2857    1.0000   -0.8922    0.4397   -0.7805

( ) -0.6018   -0.8922    1.0000   -0.1709   0.6345
-0.4056    0.4397   -0.1709    1.0000   -0.8649
0.0451 

COR P =

  -0.7805    0.6345   -0.8649    1.0000

 
 
 
 
 
 
  
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5.3.2.2. Heterogeneous Porous Media 
  
The developed inverse modeling strategy was also used to estimate the hydraulic 

parameters of a heterogeneous soil. The experimental data and the physical properties of 

the soil are presented in Tables 4.2 and 4.3. The upper and lower boundary conditions are 

the same as for the homogeneous soil but the initial condition is different. The initial 

water content varies as a function of depth as shown in Figure 5.31 and is formulated as: 

   ( ,0) ( )z f zθ =           

A quadratic function was fitted to the water content values in the second column 

of Table 4.2: 

  6 2 4( ,0) -2.9133 10 5.9528 10 0.4069z z zθ = × + × +       

Similar to the homogeneous soil, the forward problem was solved using the mass- 

conservative mixed form algorithm. The equation [4.66] was used as the objective 

function in the optimization procedure. The results of the parameter optimization are 

presented in Table 5.14 and Figure 5.32. Table 5.14 includes the measured and predicted 

soil moisture content for each depth over the course of the experiment and the residual 

vector (the difference between simulated and measured soil moisture contents). 

 As Figure 5.32 shows the developed inverse modeling algorithm can be 

successfully used to identify the hydraulic parameters of the partially saturated 

heterogeneous soils. The coefficients of determinations for depths of 10 cm, 30 cm, 50 

cm, 70 cm, and 90 cm are 0.9918, 0.9919, 0.9905, 0.9868, and 0.9750, respectively. The 

overall coefficient of determination is 0.9908 which implies that the forward model can 

explain 99 percent of the temporal and spatial soil water content distribution during the 

course of drainage experiment. The Root Mean Square Error was found to be 0.0045  
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Figure 5.31. Measured and predicted initial water contents as a function of soil depth. 
 

 

Figure 5.32. Observed and predicted soil water contents during drainage experiment. 
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Table 5.14. Simulated and observed soil moisture contents for heterogeneous soil. 

Depth (cm)           10 cm   30 cm   50 cm   70 cm   90 cm  
Time (day) 

↓   model Exp. Dev. model Exp. Dev. model Exp. Dev. model Exp. Dev. model Exp. Dev. 
0.0000  0.4104 0.4126 0.0022 0.4199 0.4221 0.0022 0.4271 0.4293 0.0022 0.432 0.4336 0.0016 0.4346 0.4368 0.0022
0.7292  0.3786 0.3902 0.0116 0.4031 0.4056 0.0025 0.4144 0.4142 -0.0002 0.4205 0.4216 0.0011 0.4243 0.4257 0.0014
1.7292  0.3553 0.3687 0.0134 0.3828 0.3831 0.0003 0.3988 0.3947 -0.0041 0.4084 0.4081 -0.0003 0.415 0.4158 0.0008
2.7292  0.3402 0.3461 0.0059 0.3679 0.3634 -0.0045 0.3861 0.3801 -0.006 0.3981 0.3957 -0.0024 0.4073 0.4071 -0.0002
3.7292  0.3282 0.3334 0.0052 0.3555 0.3503 -0.0052 0.375 0.3669 -0.0081 0.3888 0.3851 -0.0037 0.4004 0.4004 0 
4.7292  0.3189 0.32 0.0011 0.3455 0.34 -0.0055 0.3656 0.36 -0.0056 0.3809 0.3765 -0.0044 0.3946 0.3931 -0.0015
5.7292  0.3109 0.3102 -0.0007 0.3367 0.33 -0.0067 0.3573 0.3501 -0.0072 0.3739 0.37 -0.0039 0.3895 0.3872 -0.0023
6.7292  0.3041 0.3001 -0.004 0.3291 0.3215 -0.0076 0.3499 0.3431 -0.0068 0.3675 0.3648 -0.0027 0.385 0.3801 -0.0049

10.0000  0.2871 0.2824 -0.0047 0.31 0.3052 -0.0048 0.3311 0.3312 0.0001 0.3514 0.3517 0.0003 0.3736 0.3698 -0.0038
13.7500  0.2735 0.267 -0.0065 0.2946 0.2917 -0.0029 0.3158 0.3203 0.0045 0.3381 0.34 0.0019 0.3644 0.3601 -0.0043
18.7500  0.2615 0.2606 -0.0009 0.281 0.2805 -0.0005 0.3022 0.3096 0.0074 0.3263 0.33 0.0037 0.3562 0.3509 -0.0053
23.7917  0.2535 0.2543 0.0008 0.2721 0.27 -0.0021 0.2932 0.2975 0.0043 0.3185 0.3211 0.0026 0.3509 0.3437 -0.0072
28.8125  0.2483 0.2504 0.0021 0.2663 0.2638 -0.0025 0.2874 0.2891 0.0017 0.3134 0.3127 -0.0007 0.3474 0.3378 -0.0096
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which is very low.  

 Since 5/ 1.73 10T Tr r J J −= ×  is less than 31 10−× , this inverse problem can be 

categorized as the “small residual problem”. In such problems, the Levenberg- Marquardt 

algorithm converges to the solution and its performance is better than quasi- Newton and 

hybrid algorithms (Gill and Murray, 1978; Nazareth, 1980; Dennis and More, 1977;  

Denis et al., 1981a; Seber and Wild, 2004). 

 Table 5.15 presents the optimized values of the hydraulic parameters, 95 percent 

confidence intervals on the parameters, the variances of the parameter estimates, the 

gradient of the objective function at the solution, and the Eigenvalues of the Hessian. 

Except for the pore connectivity index, the 95% confidence intervals are very narrow for 

the optimized parameters. The variances, and the confidence regions of the optimized 

parameters indicate that the hydraulic parameters can be identified with more accuracy 

and small residual errors. Since the estimated value of the residual water content is zero 

the statistical measures were not reported for this parameter in Table 5.15. The optimized 

value for the residual soil water content, however, is quite small relative to the expected 

values.  

 Again the gradient of the objective function at the solution doesn’t reach zero but 

the results are quite satisfactory. Since the Hessian is positive definite the solution is a 

strong local minimum.  
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Table 5.15. The results of parameter optimization for heterogeneous soil. 

 

Parameter Opt. Value LL* UL* OF∇  ( )eigs H  2
pσ  

1( )sK cmd −  5.9388 5.0009 6.8767 -0.0000   85.5013 0.2204

1( )cmα −  0.0308 0.0257 0.0359 -0.0002    0.5400 0.00001

n  1.4429 1.3661 1.5197 -0.0000    0.0332 0.0015

rθ  0.0000 - - 0.0001    0.0001 0.0018

ι  -4.6735 -6.7135 -2.6335 0.0000    0.0000 1.0428

 *95% confidence interval on the optimized parameters. 

 

5.4. Analysis of the Inverse Modeling Strategy 
 
Different techniques were used to analyze the results of the parameter optimization via 

inverse modeling strategy. First posedness of the inverse problem, in terms of stability 

and uniqueness, was studied for two mass transport problems. Then the sensitivity of the 

state variables with respect to model parameter was analyzed followed by the statistical 

and residual analysis.  

5.4.1. Posedness Analysis 
 
To investigate possible ill-posedness of the inverse problem three elements of the 

posedness, namely existence, stability, and uniqueness of the solution should be 

analyzed. Existence is not usually a major problem in inverse modeling since there is 

always a or a set of solutions for inverse problem. Therefore, the uniqueness and stability 

of the solution were analyzed.  
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5.4.1.1. Stability Analysis 
 
To perform the stability analysis in inverse problem of GFP-GR (FRAP) a generated data 

set obtained by solving equation [4.32] for a hypothetical cell with prescribed initial and 

boundary conditions and parameter values: 2 130fD m sµ −= , 130aK s−= , 10.1108dK s−= , 

0cD = , 0.5r mµ= ,  and 0sD = . Simulated FRAP recovery values were sampled at 

discrete times for the bleach spot. The data set was then corrupted by adding (0,0.02)N  

error term to each “measurement”. These noisy “measurements” were then used as input 

for parameter optimization algorithm and well-posedness analysis of the inverse problem. 

The results are given in Tables 5.5 to 5.10 in parentheses. As these Tables show small 

changes in the input data don’t generate significant changes in the optimized values of the 

parameters. Therefore, the cause of the ill-posedness of the inverse problem in case of 

GFP-GR is not instability. 

The same procedure was followed for water flow in variably saturated soils. Both 

single-objective and multi-objective optimizations were considered. Five percent error 

with normal probability distribution function, )05.0,0(N , was added to the soil moisture 

and soil water pressure head data. Table 5.16 presents the results of stability analysis for 

water flow in heterogeneous soil in which the single-objective optimization was used 

(only soil moisture information was incorporated in the objective function). Perturbation 

of the input data didn’t change the optimized values of the saturated hydraulic 

conductivity ( sK ), n , and the residual moisture content ( rθ ), but it widened the 95 

percent confidence intervals on the parameters and increased the variances of estimation 

from 0.2204, 0.0015, and 0.0018 to 31.4259, 1.0144, and 0.1960, respectively. The 

changes were pronounced forι , and α  where they changed from -4.6735 and 0.0308 to -
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1.6115 and 0.0199, respectively. The estimation uncertainties increased drastically as the 

scattering increased in the input data. 

 Similar results were obtained for stability analysis of homogeneous soil (Table 

5.17). In this case multi-objective optimization (soil moisture content data and soil water 

pressure head information incorporated in the objective function) was used. Small 

changes in input data cause drastic variations in the optimized values of air entry value 

(α ), residual moisture content ( rθ ), and pore connectivity index (ι ). Other model 

parameters didn’t change significantly (Table 5.17). The RMSE for corrupted data 

( 0.1511RMSE = ) is almost two times more than the original data ( 089.0=RMSE ; See 

Table 5.13). Adding noise to the data increases the variances of parameter estimation 

which are given in last column of Table 5.17.  

The instability analysis clearly demonstrates the importance of the quality of the 

input data for successful parameter optimization in mass transport problems. 

Nevertheless, being stable doesn’t automatically guarantee that the inverse problem is 

well-posed. Stability is a necessary but not sufficient criterion for well-posedness of the 

inverse problem. In addition to being stable, the inverse solution must also be unique in 

order to be considered well-posed.    

 



 168  

Table 5.16. The results of stability analysis of the inverse problem for heterogeneous soil. 

Parameter Opt. Value LL* UL* OF∇  2
pσ  

1( )sK cmd −  5.6403 (5.9388) -5.2602 17.1378 0.0000 31.4259

1( )cmα −  0.0199 (0.0308) -0.0031 0.0429 0.0025 0.00004

n  1.6365 (1.4429) -0.5692 3.4550 -0.0003 1.0144

rθ  0.0000 (0.0000) - - 0.0010 0.1906

ι  -1.6115 (-4.6735) -17.9792 8.6322 -0.0000 44.3610

      
      *95% confidence interval on the optimized parameters. 
 
 
 
 
Table 5.17. The results of stability analysis of the inverse problem for homogeneous      
        soil#. 
 

Parameter Opt. Value LL* UL* OF∇  2
pσ  

1( )sK cmd −  14.6861 10.9745 22.3228 0.0229  7.8939

1( )cmα −  0.0051 0.0036 0.0077 2604 0.00000

n  2.9500 2.9917 3.0074 6838   0.0000

rθ  0.0137 -0.3005 0.3653 0.8727   0.0271

ι  5.1901 -5.98886 17.9421 0.0254 35.1032

 
      # Data from Abeele (1984) 
     * 95% confidence interval on the optimized parameters. 
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5.4.1.2. Uniqueness Analysis 
 
The uniqueness of the inverse problem was first evaluated by construction and analysis of 

two-dimensional parameter response surfaces of the objective function as a function of 

pairs of parameters being optimized. Then the three-dimensional parameter hyper-spaces 

were constructed and analyzed in 5.4.1.2.2. 

 
 5.4.1.2.1. Parameter Response Surface 
 
Figures 5.33 and 5.34 represent the response surfaces of the objective function for 

corrupted synthetic data. The *
f aD K−  (Figure 5.33) plane indicates a well-defined valley 

which starts at low values of both parameters and extends linearly to the entire parameter 

domain. The Figure clearly shows a linear relationship between the molecular diffusion 

coefficient and the pseudo-association rate constant, thus confirming the high inter-

correlation between them and indicates the difficulty of finding unique values for them. 

Indeed, an infinite number of combinations of the parameters fD  and *
aK  (inside the 

valley) can give the same objective function value and produce excellent fit. This can be 

confirmed by a three-dimensional cross section of the fD - *
aK - dK  hyper space in Figure 

5.34 (shown as f on offD K K− − ). In this Figure the value of the dissociation rate 

coefficient is fixed at the known value ( 10.1108dK s−= ) for the synthetic data (the plot is 

in logarithmic scale). Any combinations of fD  and *
aK  in the dark blue area produces the 

same magnitude for the objective function which makes it impossible to obtain a unique 

solution for the inverse problem. Both Figures show a strong linear positive correlation 

between fD  and *
aK  confirming the result of the parameter variance-covariance matrix.  



 170  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.33. Contours of the objective function, ( )frapΦ , in *

f aD K−  plane (generated  
         data). 
 

 

Figure 5.34. A cross section of three-dimensional parameter hyper space (generated data). 
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Figure 5.35. Contours of the objective function, ( )frapΦ , in f dD K− (a) and *

a dK K− (b)  
          planes (generated data). 

b) 

a) 
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 The contours of the objective function for FRAP in f dD K−  and *
a dK K−  planes 

are presented in Figure 5.35a and 5.35b. Figures indicate that for small values of the 

biomolecule-free binding site(s) dissociation rate, the objective function is not sensitive 

to the molecular diffusion coefficient which yields an elongated valley, though closed, in 

the fD  direction. As dK  increases the objective function becomes sensitive to the 

changes in the free molecular diffusion coefficient which makes it possible to identify 

this mass transport parameter. For large values of dK , the objective function becomes 

insensitive to the dissociation coefficient which produces an elongated valley in the dK  

direction. In a small region where the objective function is sensitive to both parameters, it 

is possible to identify both parameters easily. Parameter optimization in this zone will 

produce small estimation variance and narrow confidence intervals. 

 The contours of the objective function for FRAP in *
a dK K−  plane shows that the 

objective function is not sensitive to the pseudo-association rate coefficient when *
aK  

increases but it becomes more sensitive when *
aK  decreases. When both parameters are 

small, there are good chances to identify them with less uncertainty. This is in contrast 

with the findings of Sprague et al. (2004) which reported very high values for these 

parameters (run 20 in Table 5.1).  

A rather surprising feature of the plot in Figure 5.35b is the weak positive linear 

relationship between *
aK  and dK  which is in contrast with the results of the parameter 

correlation matrix which gives negative correlation between the two parameters 

( * 0.1196
a dK K

r
−

= − ). The negative correlation between *
aK  and dK  is physically sound 
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because according to equation [2.13] when *
aK   increases it promotes the reaction 

towards right, but when dK  increases the biochemical reaction proceeds in the reverse 

direction. 

A possible explanation could be instantaneous binding between GFP-GR and the 

vacant binding site(s) where adsorption and desorption processes take place dynamically. 

In other words, the binding process during the experimental course of the  FRAP protocol 

(which take several seconds to several minutes) has a dynamic nature. 

 Figure 5.33 shows several apparent local minima when both the free molecular 

diffusion coefficient and the pseudo-association rate constant are small. To further 

investigate the possibility of obtaining local minimum for inverse problem when the 

model parameters are small, one of the possible solutions ( 2 1 * 13 , 0.03 ,f aD m s K sµ − −= =  

and 10.1824dK s−= ) was used to construct response surfaces. The results are depicted in 

Figures 5.36 and 5.37. The important implication of these Figures is that the bound 

response surface doesn’t automatically guarantee a unique solution for inverse problem. 

In other parts of the parameter domain, another set or sets of parameters may produce a 

local minima or even global minimum. The second finding is that the behavior of the 

objective function varies in different sub-spaces of the parameter domain. 

 These findings were also confirmed by analysis of the two-dimensional response 

surfaces for water flow in homogeneous and heterogeneous soils. Uniqueness analysis of 

the inverse problem in case of water flow in heterogeneous soil was accomplished by 

constructing ten pairs of response surfaces for the parameter vector [ , , , , ]s rK nα θ ι  as 

discussed in 4.4.2.2.1. The results are presented in Figures 5.38 to 5.42. The only 

available data for this case was the soil water content information which was used as  
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Figure 5.36. Contours of the objective function, ( )frapΦ , in *

f aD K−  (a) and f dD K−  (b) 
          planes (experimental data). 

b 

a
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Figure 5.37. Contours of the objective function, ( )frapΦ , in *
a dK K−  plane (experimental 

         data). 
 
 
 
objective function. The magnitude of the objective function (denoted as Level) along 

with the minimum values of the parameters (denoted as X and Y ) are given in the plots. 

 The sK α−  and sK n−  planes in Figures 5.38a and 5.38b show well defined 

valleys which start at small value of sK  and large values of α  and n  and extend in 

parabolic shape in sK  direction. The response surfaces show an inverse relationship 

between sK  and α  as well as sK  and n  in terms of their effects on the objective 

function ( )θΦ . An increase in sK  in higher subspace of the parameter space and 

corresponding decrease in α  and n  in lower subspace will produce the same behavior in 

the objective function, ( )θΦ .   
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Figure 5.38. Contours of the objective function, ( )θΦ , for heterogeneous soil in sK α−   
         (a) and sK n−  (b) planes. 

b 

a
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 Analysis of the hyperbolic shape of ( )θΦ  in Figure 5.38a suggests that for higher 

values of α  (lower values of sK ), the objective function becomes insensitive to α  but in 

lower subspace of α  (higher values of sK ) it becomes insensitive to sK . In middle part 

of the parameter space both parameters are more identifiable ( 10.025 0.036,cmα −< < and 

15 7,sK cmday−< < ). 

 The hyperbolic behavior of the objective, ( )θΦ , in Figure 5.38b indicates that sK  

is more identifiable in the middle part of the domain of n  (1.385 1.45n< < ). It also 

suggests that n  is more identifiable in the relatively small subspace of sK  

( 14 7,sK cmday−< < ). The objective function becomes insensitive to sK  in lower values 

of n  (higher values of sK ) and actually extends parallel to sK  direction. On the other 

hand, ( )θΦ  becomes insensitive to n  in lower values of sK  and higher values of n  

( 12sK cmday−< ). The plot in this region is almost parallel to n . 

 Figure 5.39a presents the response surface plot of the objective function ( )θΦ  in 

nα −  direction. Again, the response surfaces show an inverse relationship between α  

and n  in terms of their effects on the objective function. An increase in α  in higher 

subspace of the parameter domain and corresponding decrease in n  in lower subspace 

cause the same response in the objective function, ( )θΦ . The hyperbolic shape of ( )θΦ  

suggests that for higher values of α  (lower values of n ), the objective function becomes 

insensitive to α  but in lower subspace of α  (higher values of n ) it becomes insensitive 

to n . In middle part of the plot, both parameters are more identifiable but there are an 

infinite combinations of parameters α  and n  around the error level ( ) 0.0099θΦ =   
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Figure 5.39. Contours of the objective function, ( )θΦ , for heterogeneous soil in nα −  (a) 
         and s rK θ−  (b) planes. 

b

a
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(denoted as 0.0099164Level =  in the plot) that can produce almost ( ) 0.0099θΦ = . This 

indicates that the bottom of the objective function at the vicinity of the solution is very 

flat and it is very difficult or essentially impossible to obtain unique values for α  and n . 

Note that values of n  between almost 1.41 1.45n< <  and values of α  between almost  

10.025 0.04cmα −< <  produce the function value (error level) of ( ) 0.0099θΦ =  which 

confirms that the bottom of the penalty function is flat near to the solution (any points 

inside the internal ellipsoid in Figure 5.39a produce ( ) 0.0099θΦ =  with minor 

differences in the sixth or seventh digit). This conclusion is consistent with the result of 

Table 5.12, which itself is a result of single-objective parameter optimization in which 

just the soil moisture content data were used in the formulation of the objective function. 

Table 5.12 showed that using only the soil moisture data in the parameter optimization 

procedure, produce stable values for sK , ι , and rθ  while different initial guesses for the 

parameters produced different optimized values for α  and n .  

 Figure 5.39b shows the response surface plot of the objective function ( )θΦ  in 

the s rK θ−  plane. The plot shows well defined minimum. sK  and rθ  in all of the 

response surfaces converged to 15.9cmday−  and zero which are their optimized values 

obtained through inverse modeling (see Table 5.15). In other words, the inverse modeling 

and the response surfaces produced the same values for the saturated hydraulic 

conductivity and residual water content. In some of the response surfaces the optimized 

value of rθ  was negative, which is physically unrealistic. The reason for these minor 

differences is that the constrained optimization was used to identify the hydraulic 

parameters. In the inverse code lower and upper constraints were imposed on the 
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parameters being optimized. In case of the residual water content, if it becomes less than 

0.001, the algorithm replaces it with zero and continues to run. Without these limitations, 

the algorithm may find negative value for rθ . 

 This is again consistent with the result of Table 5.12 in which stable optimized 

values were obtained for sK  and rθ  using the developed inverse modeling strategy 

regardless of the initial guesses for the parameters. 

 Figures 5.40a, 5.40b, and 5.41a show the response surface plots of the objective 

function ( )θΦ  in the r nθ − , rθ α− , and rι θ−  planes. The objective function have very 

well defined minimum in all of the three plots. In other words, the soil water content data 

produces useful information to identify rθ  with. This is somewhat expected since the 

residual water content, by definition, is the water content at 1500kPa soil water matric 

potential head. Therefore, it should be better estimated by the soil moisture data. This is 

consistent with the results of hydraulic parameter optimization (see Table 5.15) and also 

with the results of parameter sensitivity analysis which will be discussed later in 5.4.2.2. 

Contours of the objective function, ( )θΦ , in nι − , sKι − , and ι α−   planes are 

presented in Figures 5.41b, 5.42a, and 5.42b. The nι −  plane in Figure 5.41b shows a 

well defined valley which starts at low ι  and middle n  and extends in logarithmic shape 

through almost the entire parameter space. The response surfaces show a direct 

relationship between ι  and n  in terms of their effects on the objective function. An 

increase in n  and higher value of ι  generates the same response in the objective 

function, ( )θΦ  which makes it very difficult to obtain a unique solution for ι  and n . 

Again, this is somewhat expected since both of these parameters are exponents in the 

Mualem-van Genuchten models (ι  is exponent in the Mualem’s equation (2.25) and n  in  
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Figure 5.40. Contours of the objective function, ( )θΦ , for heterogeneous soil in r nθ −    
          (a) and rθ α−  (b) planes. 

aa 

b 
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Figure 5.41. Contours of the objective function, ( )θΦ , for heterogeneous soil in rι θ−  (a)  
          and nι −  (b) planes. 

a

b
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Figure 5.42. Contours of the objective function, ( )θΦ , for heterogeneous soil in sKι −  (a) 
         and ι α−  (b) planes. 

a

b
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the van Genuchten’n empirical formula (2.24)). Furthermore, there is high inter-

correlation between these two parameters thus making them less identifiable. Any values 

inside the internal ellipsoid produce an objective function value of 00895.0)( =Φ θ . 

Indeed, there are infinite combinations of parameters ι  and n  inside the ellipsoid that can 

produce the same error level. This indicates that the objective function is insensitive to ι  

since for parameter values of n  between 1.4 and 1.5 ( 5.14.1 << n ), the pore connectivity 

index (ι ) varies form -7 to -1 ( 17 −<<− ι ). These inferences are consistent with the 

results of Table 5.15 in which the parameter confidence interval for ι  is wider than other 

parameters ( 6335.26735.47135.6 −<−=<− ι ) and the estimation variance for this 

parameter ( 0428.12 =ισ ) is the highest among the optimized values of the hydraulic 

parameters. The finding is also consistent with the results of parameter sensitivity 

analysis, will be discussed in 5.4.2.2, which showed that ( )θΦ  is almost insensitive to 

the pore connectivity index (ι ) in the Mualem’s model. 

 Other explanation for the wide valley in Figure 5.41b, which produces very small 

function value, is that the bottom of the objective function at the vicinity of the solution is 

very flat and it is very difficult to find unique values for the pore connectivity index (ι ).  

  Figure 5.42a shows the response surface plot of the objective function ( )θΦ  in 

the sKι −  plane. The response surfaces indicate a logarithmic relationship between ι  and 

sK  in terms of their effects on the objective function. A higher value of ι  and an increase 

in sK  yields the same response in the objective function, ( )θΦ , which makes it very 

difficult to obtain a unique set for ι  and sK . Again, any combinations of ι  and sK  inside 

the well-defined internal ellipsoid will produce an objective function value (error level) 
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of 008947.0)( =Φ θ which is very small. This is another indication that the objective 

function is very flat in the sKι − direction.  

Figure 5.42b shows contours of the objective function ( )θΦ  in the ι α−   plane. 

Analysis of the logarithmic shape of ( )θΦ  in Figure 5.42b suggests that for higher values 

of α  andι , the objective function becomes insensitive to α  but in lower values of α  

and ι , it becomes insensitive to ι . Indeed, in higher values of α  it becomes parallel to α  

and in lower values of this parameter it becomes parallel to ι . In middle part of the 

parameter domain, both parameters are more identifiable (( 037.0027.0 << α ) and 

5.35.5 −<<− ι ) ) and the objective function produces a well-defined minimum. 

Another ten pairs of response surfaces were constructed for the homogeneous soil 

using the soil water content and the pressure head information in a multi-objective 

function ( ( )hθΦ + ) framework. The data for developing these response surfaces were 

taken from Abeele (1984). These planes are depicted in Figures 5.43 through 5.47. While 

the combined objective function is not sensitive to rθ , it produces well-defined minimum 

for sK n− , sK ι− , s rK θ− , nι − , ι α− , and other planes. Using more information 

clearly increases the identifiability of the model parameters. Except for the s rK θ−  plane, 

which generates a well-defined minimum, the contours of the objective 

function ( )hθΦ + , in rα θ− , rn θ− , and rι θ−  planes are almost parallel with the rθ  

direction thus implying that this parameter is very difficult to identify from the available 

soil moisture content and pressure head information through parameter optimization 

approach. The best way to identify this parameter is to measure it in pressure plate 

apparatus at 1500kP  pneumatic pressure. 
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Figure 5.43. Contours of the objective function, ( )hθΦ + , for homogeneous soil in  
         sK α−  (a) and sK n−  (b) planes. 

a

b
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Figure 5.44. Contours of the objective function, ( )hθΦ + , for homogeneous soil in sK ι−  
         (a) and  s rK θ−  (b) planes. 

a 

b 
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Figure 5.45. Contours of the objective function, ( )hθΦ + , for homogeneous soil in rα θ−  
          (a) and rn θ−  (b) planes. 

a

b 
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Figure 5.46. Contours of the objective function, ( )hθΦ + , for homogeneous soil in rι θ−   
         (a) and nι −  (b) planes. 

a 

b 
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Figure 5.47. Contours of the objective function, ( )hθΦ + , for homogeneous soil in ι α−   
          (a) and nα −  (b) planes. 

a 

b 
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The nα −  plane in Figure 5.47 shows a small local minimum next to the main 

well defined ellipsoid. This and other small local minima may be caused by minor 

oscillations of the numerical solution of the partial differential equations governing mass 

transport processes in porous media.  

 The important findings from the analysis of the two-dimensional parameter 

response surfaces can be summarized as: 

First, the objective function ( )frapΦ  is not sensitive enough to the fluorescent 

recovery data to easily and reliably identify the mass transport coefficients through 

inverse modeling approach. In response surfaces this lack of sensitivity is characterized 

by elongated valley parallel to the direction of the diffusion coefficient. 

Second, the soil moisture content information and combination of the soil water 

pressure head and the soil water content provide enough information to identify the 

saturated hydraulic conductivity of partially saturated soil. 

Third, response surfaces, though very useful in analyzing the identifiability of the 

parameters being optimized, are only two-dimensional cross sections of a full 

p dimensional− parameter hyper-space. Other local minima may exist in different 

regions of the parameter space which don’t show up in the response surfaces. A well-

defined minimum in two-dimensional planes doesn’t automatically guarantee that no 

other minima exist and that the inverse problem is unique. 

Fourth, several small local minima in the two-dimensional plane may be produced 

by minor oscillation of the numerical simulator. Care should be exercised in interpreting 

these minima. 
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Fifth, the response surfaces should be constructed and studied in conjunction with 

the parameter sensitivity analysis, residual analysis, and goodness of fit measures. 

Otherwise it may lead to misleading results regarding the uniqueness of the inverse 

problem. 

 
5.4.1.2.2. Parameter Hyper-Space 
 
Since response surfaces are only two-dimensional cross sections of a whole 

p dimensional− parameter domain, analysis of the behavior of the objective function in 

full hyper-space will reveal how the function might behave in the whole space. To gain a 

broader perspective about the identifiability of the model parameters through inverse 

modeling, a three-dimensional parameter hyper-space was constructed for the FRAP 

experimental data (Table 4.1) and depicted in Figure 5.48 (note that the image is in 

logarithmic scale). The graph shows the behavior of the objective function in whole 

parameter space and presents envelops on which the magnitude of the objective function 

is the same. The 3-D image shows that the minimum is a plane or envelop (not a 

distinctive point). The dark blue area shows parameter values which produce the lowest 

function value. In very small values of fD  the objective function extends almost linearly 

throughout dK  direction implying that ( )frapΦ  is insensitive to dK  (this confirms the 

results obtained by two-dimensional response surfaces in Figure 5.36b). In very large 

values of fD  (and very small values of dK ) the objective function extends parallel to fD  

axis and becomes insensitive to this parameter (any values of fD  in the light blue area 

produces the same error value). This is consistent with the results of Figure 5.35a. The 
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Figure 5.48. Three-dimensional parameter hyper-space of the objective function ( )frapΦ  
          in *

f a dD K K− −  direction. 

a) 

b) 
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hyper-space also shows that the minimum is in lower subspace of  *
aK  and fD . Note that 

the blue area, which has the lowest error value, coincides with * 11aK s−<  and 

2 110fD m sµ −< .  

 The graph clearly shows that it is impossible to obtain a unique solution for model 

parameters in one-site mobile-immobile model. The result obtained by parameter hyper-

space is consistent with the results of two-dimensional parameter response surface plot.  

 To fully understand the behavior of the objective functions ( )hθΦ + , ( )θΦ , and 

)(hΦ  in whole parameter space a 5-dimensional hyper-space should be constructed and 

demonstrated which is not technically plausible in foreseeable future. However, the 

behavior of the objective function ( )hθΦ +  in sK nα− −  direction was constructed and 

presented in Figure 5.49 in two different perspectives.  

 The three-dimensional parameter hyper-space in sK nα− −  indicates that even 

using multi-objective optimization does not result in unique solution for inverse problem 

in case of water flow through homogeneous soil but the range of optimized values for 

model parameters are smaller than the single-objective optimization which is consistent 

with the parameter optimization (compare Tables 5.12 and 5.13). The optimum value of 

the saturated hydraulic conductivity is between 10 15sK≤ ≤ ( 1cmd − ), that of α  is 

between 3 31 10 2 10α− −× ≤ ≤ ×  ( 1cm− ), and that of n  is between 3 8n≤ ≤ . Note that the 

residual soil moisture content ( rθ ) and pore connectivity index (ι ) were kept at the 

optimized values. 

 Two-dimensional slices of the objective function ( )hθΦ +  in nα − , sK n− , and 

sK α−  directions are given in Figure 5.50. There are well defined minimum planes in 
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Figure 5.49. Three-dimensional parameter hyper-space of the objective function ( )hθΦ +  
          in sK nα− −  direction. 

a) 

b) 
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Figure 5.50. Two-dimensional slices of the objective function ( )hθΦ +  in (a): sK nα− −  
          direction, b): nα −  direction ( sK  is constant), c): sK n−  direction (α  is  
          constant), and sK α−  direction ( n  is constant). 
 
 
 

sK n−  and sK α−  directions but in nα −  direction there is a well defined hyperbola 

similar to the response surface plot in Figure 5.47b. The result of parameter slices is 

consistent with the parameter response surface plots and parameter hyper-space. All of 

them show that the optimized values of the saturated hydraulic conductivity in 

conjunction with the air entry value (α ) and n  can be well estimated using soil moisture 

content and soil water pressure head information in the context of the inverse modeling 

strategy. However, simultaneous unique estimation of  α  and n  is difficult.   

a) b)

c) d)
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5.4.2. Sensitivity Analysis 
 
5.4.2.1. Biomolecule Transport in Living Cells 
 
The relative sensitivity of the laser beam recovery, frap , with respect to changes in free 

molecular diffusion coefficient ( fD ) of GFP-GR, the pseudo-association rate constant 

( *
aK ), and the dissociation rate constant ( dK ) is presented in Figures 5.51, 5.52, and 5.53. 

The graphs were generated for several possible solutions in Table 5.3 and the result will 

only be presented for one solution of the parameter space. The absolute sensitivity of 

frap  with respect to model parameters is presented in Appendix B.   

 Figure 5.51 indicates that the relative sensitivity of the frap  with respect to 

changes in fD  increases from the beginning of the FRAP experiment and reaches its 

peak in less than one second after the initiation of experiment. Then, it rapidly decreases 

as the experiment proceeds. Indeed after one second it becomes insensitive to the 

molecular diffusion coefficient ( fD ) of GFP-GR and it will be very difficult or 

essentially impossible to identify fD  from the FRAP protocol. 

 Figure 5.52 presents the distribution of the sensitivity of frap  with respect to 

changes in *
aK  over time course of the FRAP experiment. The sensitivity rapidly 

increases at the beginning of the experiment and during a time span less than two seconds 

it reaches its peak. As time of experiment increases frap  becomes insensitive to the 

changes in pseudo-association rate constant. Again, frap becomes insensitive to the 

experimental data in the middle and late stages of the FRAP procedure so that it is very 

difficult to quantify the pseudo-association rate constant from the protocol by inverse 
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Figure 5.51. Distribution of the relative sensitivity of frap  with respect to changes in fD   
          over time course of the FRAP experiment. 
 

modeling.  

 Finally, Figures 5.53 shows the time distribution of the relative sensitivity of 

frap  with respect to changes in dK . Again, the sensitivity quickly increases at the initial 

periods of the FRAP experiment and reaches its peak in less than two seconds. Then it 

sharply decreases and eventually becomes insensitive to the dissociation rate constant. 

Except for the early stages of the experiment, the protocol doesn’t provide useful 

information to estimate the dissociation rate by nonlinear parameter optimization 

algorithms. 

Parameter sensitivity analysis of the FRAP protocol indicates that:  
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Figure 5.52. Distribution of the relative sensitivity of frap  with respect to changes in *
aK  

          over time course of the FRAP experiment. 
 
 
 

 First, the protocol provides the most useful and sensitive information at the early 

stages of the experiment. For reliable and accurate parameter estimation, more data 

should be collected at the early stages of the experiment. For GFP-GR the effective time 

to perform FRAP experiment is less than five seconds. After that it regains the state of 

equilibrium which it had before the photochemical bleaching and becomes insensitive to 

model parameters. This poses enormous challenges in developing innovative techniques 

to improving the quality of the protocol and to gathering sufficient data points at the 

beginning of the experiment. One of the shortcomings of the protocol, at the present time, 

is that the procedure cannot collect enough data points at the early stages of the  
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Figure 5.53. Distribution of the relative sensitivity of frap with respect to changes in dK    
         over time course of the FRAP experiment. 
 

 

experiment.  

  Second, in parameter optimization by inverse modeling more weight should be 

given to the data in the early stages of the experiment. 

 Third, sensitivity of frap  with respect to different parameters varies by several 

orders of magnitude. Comparing the norm of the sensitivity and the shape of the graphs in 

Figures 5.51, 5.52, and 5.53 indicate that dK  is the most sensitive and the most 

identifiable parameter followed by fD  and *
aK . This is consistent with the results of 



 201  

Tables 5.5 to 5.10 where in all of the optimization scenarios, the optimized value of the 

dissociation rate coefficient approached the “true” value.  

 
5.4.2.2. Water Flow through Partially Saturated Porous Media 
  
Parameter sensitivity analysis was performed for both single objective and multi-

objective optimization. In single objective optimization, the sensitivities of the soil water 

content to changes in model parameters , , ,s rK nα θ , and ι  were calculated and are 

depicted in Figures 5.54b, 5.55b, 5.56b, 5.57b, and 5.58b. The norm of the columns of 

the last normalized Jacobian matrix in the optimization procedure was used as a measure 

to compare the sensitivity of the soil water content with respect to changes in different 

hydraulic parameters. The soil depths in which measurements were made, are given in 

the legend. 

 The same procedure was followed for multi-objective optimization in which the 

objective function is the weighted soil water content and weighted soil water pressure 

head ( ( )hθΦ + ). The sensitivity of ( )hθΦ +  with respect to changes in the hydraulic 

parameters is depicted in Figures 5.54a, 5.55a, 5.56a, 5.57a, and 5.58a. The results are 

first given for the Los Alamos National Lab data (Abeele, 1984) in which all of the soil 

characteristics (soil texture, measurements, initial and boundary conditions, etc) are 

similar except for the objective functions. Since the relative sensitivity is dimensionless, 

one can compare the sensitivity of the state variables with respect to different parameters 

and sensitivity of different parameters with each other.   

 Comparing Figures 54a and 54b, the following remarks can be made about the 

sensitivity of the objective functions with respect to parameters: 
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Figure 5.54. Time-depth distribution of the relative sensitivity of ( )hθΦ +  and ( )θΦ with 
          respect to changes in sK  for multi-objective (a) and single-objective     
          optimization (b).  

a) 

b)
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  Sensitivity of ( )θΦ  and ( )hθΦ +  with respect to changes in sK  is highest at the 

early stages of the drainage experiment. As drainage proceeds the sensitivity of ( )θΦ  and 

( )hθΦ +  with respect to changes in sK  decreases. The rate of decrease for the surface 

layer ( z = 40cm) is faster than for the subsurface layers. Therefore, to obtain reliable 

estimate for sK  more data points should be collected at the beginning of the experiment 

or more weight should be given to the early data points in the parameter optimization 

algorithm. Comparing Figures 5.54a and 5.54b and the norms of the sensitivities in the 

single objective and multi-objective optimizations indicate that adding additional 

information (soil water matric potential head data) to the soil water content data doesn’t 

increase the identifiability of sK  which is surprising. This suggests that saturated 

hydraulic conductivity should be better identified using the soil moisture content data 

(with more data at the early stages of drainage) rather than both soil moisture and soil 

water pressure head data to ( )θΦ . 

 Comparing Figures 5.55a and 5.55b and the norms of the relative sensitivities 

indicate that additional information increases the identifiability of α  by four order of 

magnitude. α  is the most sensitive and identifiable parameter for both single and multi-

objective optimization. This is consistent with the narrow 95 percent confidence interval 

on the parameter in Tables 5.14 and 5.15. As drainage proceeds the sensitivity of the 

objective function with respect to α  decreases in the upper layers of coarse texture soil 

but it stays constant for lower layers of sand. Again the sensitivity analysis indicates that 

the information gathered at the surface layers and at the early stages of drainage 

experiment increases the identifiability of the parameter.  
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Figure 5.55. Time-depth distribution of the relative sensitivity of ( )hθΦ + and ( )θΦ  with 
          respect to changes in α  for multi-objective (a) and single-objective      
          optimization (b). 

a) 

b) 
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 Since n  is exponent in the van Genuchten soil water retention model (Eq. [2.24]), 

one expects the highest sensitivity for this parameter, but according to Figure 5.56 the 

relative sensitivity of ( )hθΦ +  with respect to n  is less than α . As soil becomes drier 

the sensitivity increases but the rate of increase is not high in comparison with α , and 

stays constant over the time course of the drainage experiment for multi-objective 

optimization. For single-objective optimization, after a drastic increase in the sensitivity, 

it decreases as drainage proceeds. The sensitivity curves for n  do not have a well-defined 

peak in multi-objective optimization but they do in single-objective optimization. 

Another surprising result is that additional information does not increase the 

identifiability of n  as much as α . However, comparison of the norms of the sensitivities 

for the two cases, in Figure 5.56, reaffirms that adding soil water pressure head data to 

soil moisture content data increases the identifiability of the parameter two-folds. 

 Comparing norms the sensitivities in Figure 5.57 indicates that additional 

information actually decreases the identifiability of rθ . This is somewhat expected 

because rθ  is the residual soil water content and it should be well identified by the soil 

moisture data in very dry zone of the soil water characteristic curve rather than with the 

soil water pressure head data. As drainage proceeds the sensitivities of ( )θΦ  and 

( )hθΦ +  with respect to rθ  increase. The rate of increase for ( )θΦ  in the surface layer 

( z = 40cm) is greater than ( )hθΦ +  in subsurface layers. It doesn’t have a well-defined 

peak in both multi-objective and single-objective optimizations. Figure 5.57 clearly 

shows that the identifiability of rθ  is high in the drier part of the soil water characteristic 

curve. 
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 Figure 5.56. Time-depth distribution of the relative sensitivity of ( )hθΦ +  and ( )θΦ   
           with respect to changes in n  for multi-objective (a) and single-objective  
           optimization (b). 

a) 

b) 
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Figure 5.57. Time-depth distribution of the relative sensitivity of ( )hθΦ +  and ( )θΦ   
          with respect to changes in rθ  for multi-objective (a) and single-objective  
          optimization (b). 

b) 

a) 
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Figure 5.58. Time-depth distribution of the sensitivity of ( )hθΦ +  and ( )θΦ  with   
          respect to changes in ι  for multi-objective (a) and single-objective   
          optimization (b).  

a) 

b) 
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 Sensitivity of ( )θΦ  and ( )hθΦ +  with respect to changes in pore connectivity 

index (ι ) increases during the course of the drainage experiment. The increase is more 

pronounced for surface layer indicating that for successful estimation of ι  more data 

should be collected at the surface layer and in dry parts of the soil. Additional 

information to the objective function slightly decreases the identifiability of ι . This can 

be shown by comparing Figures 5.58a and 5.58b and comparing the norm of the 

sensitivities.  

 The relative sensitivity of soil moisture content with respect to changes in model 

parameters , , ,s rK nα θ , and ι , for heterogeneous soil, is presented in Figures 5.59, 5.60, 

5.61, 5.62, and 5.63. Comparing the norms of the sensitivities, the same inferences can be 

made. Again α  is the most sensitive model parameter followed by the residual soil 

moisture content. The remaining parameters have almost the same identifiability.  

Overall, the saturated hydraulic conductivity is more identifiable using soil 

moisture content data in the wetter range of the soil water characteristic curve (early 

times in the drainage experiment) while the identifiability of other parameters increases 

as soil becomes drier. It implies that more data points should be collected at the 

beginning of the drainage experiment to reliably identify sK  and at the same time more 

data sets should be used from the upper layer of soil during time course of the drainage 

experiment. To make soil more drier one option is to use a bare soil surface. This will 

however add the evaporation flux as another unknown that must be identified through the 

inverse modeling strategy. This is not recommended. Instead collecting more data points 

in layers close to soil surface and giving them more weight may increase the 

identifiability of the hydraulic parameters. 
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Figure 5.59. Time-depth distribution of the relative sensitivity of ( )θΦ  with respect to  
          changes in sK  for single-objective optimization for heterogeneous soil.  

 
Figure 5.60. Time-depth distribution of the relative sensitivity of ( )θΦ  with respect to  
          changes in α  for single-objective optimization for heterogeneous soil.  
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Figure 5.61. Time-depth distribution of the relative sensitivity of ( )θΦ  with respect to  
          changes in n  for single-objective optimization for heterogeneous soil.  

 
Figure 5.62. Time-depth distribution of the relative sensitivity of ( )θΦ  with respect to  
          changes in rθ  for single-objective optimization for heterogeneous soil.  
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Figure 5.63. Time-depth distribution of the relative sensitivity of ( )θΦ  with respect to  
          changes in ι  for single-objective optimization for heterogeneous soil.  
 

 In conclusion, sensitivity analysis of the state variable(s) with respect to model 

parameters should be used as a prerequisite and starting point for the design of 

experiment, data collection, and sampling plan. It also should be done before the 

consideration of inverse modeling for a case study since it reveals what can and what 

cannot be identified by optimization. 

5.4.3. Residual Analysis 
 
Different means were used to analyze the residuals of the state variables. The errors were 

plotted against the state variables to visually examine possible trends, oscillations, 

correlations, equality of variances, and to determine whether the mean of the residuals is 
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zero and if they are normally distributed. These qualitative methods were coupled with 

the quantitative hypotheses tests which are discussed below. 

 
5.4.3.1. Hypothesis Test on the Residuals’ Mean 
 
The t-statistic was used to verify if the mean of the residuals is zero. The residuals are 

given in appendix C. For FRAP experiment the following null and alternative hypotheses 

were stated: 

  0 : 0
: 0A

H
H

µ
µ

=
≠

         

 The mean and standard deviation of the residuals in case of FRAP experiment 

with five unknown parameters (full reaction-diffusion model) were 0.0012  and 0.0224  

with sample size 43=n . The t-statistic was calculated as: 

  0.0012 0 0.3478
0.0224 / 43

t −
= =  

  In case of FRAP experiment with three unknown parameters (one-site-mobile-

immobile model), the mean and standard deviation of residuals were 0029.0−  and 

0234.0  with sample size 43=n . The t-statistic was calculated as: 

8127.0
43/0234.0
00029.0

−=
−−

=t  

 For 42 degrees of freedom, the tabled t-values for different levels of significance 

are given in Table 5.18. The calculated t-statistic was then compared with the tabled t-

values at different levels of significance and the results summarized in Table 5.18. As the 

Table indicates the null hypothesis (mean of the residuals is zero) can not be rejected 

even at 20 per cent level of significance. The possibility of committing error type one is 

extremely slim. 
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Table 5.18. The results of hypothesis test on the residuals’ mean in FRAP model. 

 α  0.01 0.05 0.1 0.2 

t-value 2.8120 2.0175 1.6820 1.3020 

Decision Accept 0H  Accept 0H  Accept 0H  Accept 0H  

 

 

In case of water flow through homogeneous soil (data from Abeele, 1984), the 

mean and standard deviation of the residuals for soil moisture content data were 0023.0−  

and 0120.0 . The mean and standard deviation of the residuals for soil water pressure 

head data were 0.0025m−  and 0.0188m . The sample size for both cases was 36. The t-

statistic was calculated as: 

For soil moisture content data: 

1467.1
36/0120.0
00023.0

−=
−−

=t  

For soil water pressure head data: 

1094.0
36/01371.0
00025.0

−=
−−

=t  

For different levels of significance and degree of freedom 351 =−= nν  the 

tabled t-values are given in Table 5.19. 

As the Table indicates the null hypothesis (mean of the residuals is zero) can not 

be rejected even at 20 per cent level of significance for both data sets. Again, the 

possibility of committing error type one is unlikely. 
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Table 5.19. The results of hypothesis test on the residuals’ mean in case of water flow  
        through homogeneous soil. 
 

α  0.01 0.05 0.1 0.2 

t-value 2.7240 2.03 1.69 1.306 

Decision on θ  Accept 0H Accept 0H  Accept 0H Accept 0H  

Decision on h  Accept 0H Accept 0H  Accept 0H Accept 0H  

 

In case of water flow through heterogeneous soil, the mean, standard deviation, 

and the sample size were 4106615.7 −× , 0046.0 , and 65 , respectively. The t-statistic was 

calculated as: 

   
47.6615 10 0 1.3428

0.0046 / 65
t

−× −
= =  

 For degree of freedom 64, the tabled t-values for different levels of significances 

are given in Table 5.20. The null hypothesis cannot be rejected even at 10 per cent level 

of significance.  

 In conclusion, hypothesis tests on the mean of the residuals show that the errors 

have zero mean and therefore, the first criterion for development and use of the nonlinear 

optimization, through least square method, was met. 

 
Table 5.20. The results of hypothesis test on the residuals’ mean in case of water flow  
        through heterogeneous soil. 
 

α  0.01 0.05 0.1 0.2 

t-value 2.6540 1.9970 1.6690 1.295 

Decision Accept 0H  Accept 0H  Accept 0H  Reject 0H  
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5.4.3.2. Hypothesis Test on the Equality of the Residuals’ Variance 
 
To verify if residuals have constant variance they were divided into different sections. In 

FRAP experiment, one of the possible residuals (from Appendix C) was chosen and the 

residual plot versus laser beam recovery was divided into three regions. The variance in 

each region was calculated and compared with each other using the Bartlett test. The 

residuals were divided into three groups as:    

  

2 2 4
1
2 2 4
2
2 2 5
3

( (1: 5)) 9.2651 10

( (6 : 24)) 9.3655 10

( (25 : 33)) 9.3126 10

S S residuals

S S residuals

S S residuals

−

−

−

= = ×

= = ×

= = ×

 

The pooled weighted variance was found to be (using Eq. [4.79]) 2 47.1030 10pS −= × . The 

Bartlett’s statistic was calculated as 9.5454T = which is less than the upper critical value 

of the 2χ  for two degrees of freedom ( 3k = ) at one per cent level of significance 

( 2
(0.01,2) 10.60χ = ). It is, however, more than the tabled value for five per cent level of 

significance. At one percent level of significance the null hypothesis (the residuals have 

constant variance) cannot be rejected. Based on this test and analysis of residual plot 

versus laser beam recovery, it is concluded that the residuals, in case of GFP-GR 

transport in living cells, have equal variance.  

 In case of soil moisture data in water flow through homogeneous soil (drainage 

of Bandelier tuff, data from Abeele, 1984) the residuals were divided into three 

subsections: 

522
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The pooled weighted variance was found to be 52 1022.4 −×=pS . The Bartlett 

statistic was calculated by Eq. [4.78] and was found to be 2.3348. For degree of freedom 

2, the upper critical values of the chi-square distribution are given in Table 5.21 for 

different levels of significance. As the Table indicates the null hypothesis (residuals have 

constant variance) cannot be rejected even at twenty per cent level of significance. 

Therefore, the residuals of soil moisture profiles in case of water flow through 

homogeneous soil have constant variance. 

 

Table 5.21. The results of hypothesis test on the equality of the residuals’   
          variance in case of water flow through homogeneous soil (soil  
          moisture content data). 

 
α  0.01 0.05 0.1 0.2 

critical 10.60 7.380 5.99 4.61 

Decision Accept 0H  Accept 0H  Accept 0H  Accept 0H  

 

The same procedure was followed for residuals of soil water pressure head. The 

residuals were divided into three subsections and the corresponding variances were 

calculated: 

 

2 2
1
2 2
2
2 2
3

( (1:8)) 0.0057

( (9 :14)) 0.0078

( (14 : 24)) 0.0086

S S residuals m

S S residuals m

S S residuals m

= =

= =

= =

 

The pooled variance was calculated and obtained as mS p 0175.02 = . The 

Bartlett’s statistic was found to be 5.9186. For three degrees of freedom ( 3k = ) the 

critical values of the 2χ  are given in Table 5.22. As the Table shows the null hypothesis 
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(residuals of soil water pressure head have constant variance) cannot be rejected even at 

20 per cent level of significance. Therefore, the errors in soil water pressure head data 

and soil moisture content profile have constant variance. 

 In case of soil moisture content data for water flow through heterogeneous soil, 

the residuals were categorized into five cells with sample size of 13=iN  (initial total 

sample size was 65=N ). The Bartlett’s statistic was found to be 4470.10=T  which is 

less than 14.112
)4,05.0( =χ  and 86.142

)4,01.0( =χ . Therefore, the null hypothesis cannot be 

rejected implying that the residuals of soil moisture content profile have constant 

variance. 

 Since the residuals in all three optimization problems considered in this study 

were normally distributed (will be discussed in 5.4.3.3), the Levene test was not used to 

verify the equality of variances. In conclusion, the second criterion of the nonlinear 

optimization, which assumes that the residuals have constant variance, was met. 

 
Table 5.22. The results of hypothesis test on the equality of the residuals’ variance  
         in case of water flow through homogeneous soil (soil water pressure   
         head profile). 
 

α  0.01 0.05 0.1 0.2 

critical 12.84 9.35 7.81 6.25 

Decision Accept 0H  Accept 0H  Accept 0H  Accept 0H  

 

5.4.3.3. Hypothesis Test on the Correlation of the Residuals 
 
To test possible correlation among residuals, the following hypothesis test was stated:  

   0 : 0
: 0A

H
H

ρ
ρ

=
≠
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In the case of FRAP experiment with five unknown parameters the residuals were 

divided into two sub-groups: 

   1

2

(1: 1)
(2 : )

r r end
r r end

= −
=

 

 The correlation coefficient ( 0.2569R = ) was then calculated and was used to 

obtain the critical t-statistics (with sample size 42n = ): 

   0.2569 1.6812
1 0.066

42 2

t = =
−

−

 

  In case of FRAP experiment with three unknown parameters the same procedure 

was followed and the critical t-statistics was calculated as: 

 0.1931 1.2447
1 0.0373

42 2

t = =
−

−

 

 These critical t-statistics were then compared with the tabled t-values at different 

levels of significances and the results presented in Table 5.23. As the Table indicates the 

null hypothesis (residuals are uncorrelated) can not be rejected even at the 20 per cent 

level of significance. The possibility of having error type one is almost zero. 

In case of water flow through homogeneous soil the same procedure was followed 

for both residuals of soil moisture content ( 0.4117R = ) and soil water pressure head 

( 0.4170R = ) data (with sample size 42n = ). The t-statistics was calculated as: 

For soil moisture content data: 

   0.4117 2.5952
1 0.1695

35 2

t = =
−

−

 

For soil water pressure head data: 
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   0.4170 2.6357
1 0.1739

35 2

t = =
−

−

 

For different levels of significance and degree of freedom 2 33nν = − = , the 

tabled t-values are presented in Table 5.24. 

As the Table indicates the null hypothesis (residuals are uncorrelated) can not be 

rejected at one per cent level of significance for both data sets but at five and more per 

cent level of significance the alternative hypothesis (residuals are correlated) can be 

accepted.  

Table 5.23. The results of hypothesis test on the correlation of residuals in FRAP   
         model. 
 

 α  0.01 0.05 0.1 0.2 

t-value 2.7040 2.0210 1.6820 1.3030 

Decision Accept 0H  Accept 0H  Accept 0H  Accept 0H  

 
 
Table 5.24. The results of hypothesis test on correlation of residuals in case of   
        water flow through homogeneous soil. 
 

α  0.01 0.05 0.1 0.2 

t-value 2.7350 2.035 1.6936 1.3084 

Decision on θ  Accept 0H  Reject 0H  Reject 0H  Reject 0H  

Decision on h  Accept 0H  Reject 0H  Reject 0H  Reject 0H  

 

The same procedure was followed to test possibility of correlation among 

residuals in case of water flow through heterogeneous soil. The correlation coefficient 

was calculated ( 0.7256R = ) and inserted in the critical t-statistics formula:  
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   0.7256 8.3029
1 0.5265

64 2

t = =
−

−

 

The results are summarized in Table 5.25. Since the critical t-value is greater than 

the tabled values in any levels of significance, the null hypothesis is rejected which 

means that the errors are correlated.  

 
Table 5.25. The results of hypothesis test on correlation of residuals in case of   
        water flow through heterogeneous soil. 
 

α  0.01 0.05 0.1 0.2 

t-value 2.6540 1.9970 1.6690 1.295 

Decision Reject 0H  Reject 0H  Reject 0H  Reject 0H  

 

 To investigate the reasons for correlation among the residuals the errors were 

plotted against the state variables and presented in Figures 5.64, 5.65, and 5.66. As these 

Figures show there are no visible trends or oscillations for residuals in case of full 

reaction-diffusion and one-site-mobile-immobile FRAP models. However, for water flow 

through homogeneous soil there is a slightly visible trend and in case of water flow 

through heterogeneous soil the trend is more visible (Figure 5.66). Since the data in 

theses cases are space and time series, one may expect autocorrelation among state 

variable(s) and among the corresponding residuals in different time and/or space scales.  

 To further investigate possibility of significant autocorrelation among the 

residuals, the serial correlation coefficients were calculated for both time series and space 

series and the results summarized in Tables 5.26 and 5.27. In time series, for a selected  
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Figure 5. 64. Residuals versus normalized laser beam recovery in FRAP experiment: a)  
          the full reaction-diffusion model b) one-site-mobile-immobile model. 

a) 

b) 
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Figure 5.65. Residuals of soil water content (a) and soil water pressure head (b) profiles  
         in drainage of homogeneous soil using multi-objective optimization. 

a) 

b) 
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Figure 5.66. Residuals of soil water content profiles in drainage of heterogeneous soil. 
 

 

depth the serial correlations were calculated for different time steps (i.e. depth one over 

all times, depth two over all times, and so on). In space series, the serial correlations were 

calculated for selected time over all depths.  

 First the serial correlation coefficients for time series of water flow through 

homogeneous soil are discussed. The means, standard deviations, and serial correlation 

coefficients are presented in Tables 5.26 and 5.27 for six different depths over all 

measurement times. The standard deviations for all depths are almost equal except for 

two depths 391cm and 423cm. For soil moisture content data, the serial correlation 

coefficients are high and the null hypothesis is rejected (except for depths 391cm and 
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423cm) at the levels of significance 5,0.050.05( 0.7290)tα = =  and 5,0.010.01( 0.882)tα = = . 

This means that there are significant correlations among residuals in different time 

increments.  

 As Table 5.27 indicates, for soil water pressure head data the serial correlation 

coefficient are not significant even at the level of significance 5,0.010.01( 0.882)tα = =  

which confirms the residual distribution pattern in Figure 5.65b. The serial correlation 

coefficient for depth 271cm is exceptionally high which is not acceptable from the 

statistical point of view (because it is against the trend).   

 The same procedure was followed to verify if there is significant serial correlation 

among soil moisture content and soil water pressure head data in space series. The results 

summarized in Tables 5.28 and 5.29. For soil moisture data (Table 5.28) the serial 

correlation coefficients are not significant at both levels of significance 

( 5,0.050.05( 0.7290)tα = =  and 5,0.010.01( 0.882)tα = = ). Therefore, the null hypothesis 

(the residuals are uncorrelated) cannot be rejected in space series. 

 For soil water pressure head data, the means, standard deviations, and the serial 

correlation coefficients are given in Table 5.29. The Table shows that there are not 

significant serial correlations among soil water pressure head data in different depths at a 

given time. In other words, the null hypothesis (the errors are uncorrelated) cannot be 

rejected at the level of significance 5,0.050.05( 0.7290)tα = =  and 5,0.010.01( 0.882)tα = = .  

 In case of water flow through heterogeneous soil, the same procedure was applied 

and the means, standard deviations, and serial correlation coefficients are presented in 

Table 5.30 for five different depths over all measurement times. For this case, the serial 

correlation coefficients in time series are significant and the null hypothesis (the errors  
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Table 5.26. The results of serial correlation analysis for time series in case of water flow  
        through homogeneous soil (soil moisture data). 
 
 

Depth (cm) 
( )x

−

−   
s  R  Decision 

40 0.0045 0.0058 0.9139 Reject 0H  

116 0.0037 0.0077 0.9262 Reject 0H  

191 0.0099 0.0061 0.9811 Reject 0H  

271 0.0009 0.0092 0.9879 Reject 0H  

391 0.0088 0.0184 -0.0162 Accept 0H  

423 0.0169 0.0132 0.2230 Accept 0H  

 
 
 
Table 5.27. The results of serial correlation analysis for time series in case of water flow  
        through homogeneous soil (soil water pressure head data). 
 
 

Depth (cm) 
( )x cm

−

  
( )s cm  R  Decision 

40 0.0150 0.0529 0.1978 Accept 0H  

116 0.0600 0.0695 0.0865 Accept 0H  

191 0.0248 0.0729 0.3271 Accept 0H  

271 0.0507 0.1046 0.9529 Reject 0H  

391 0.0908 0.1542 0.1192 Accept 0H  

423 0.1603 0.1617 -0.2466 Accept 0H  
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Table 5.28. The results of serial correlation analysis for space series in case of water flow 
         through homogeneous soil (soil moisture data). 
 
 

Time (day) 
( )x

−

−   
s  R  Decision 

1 -0.1010 0.0057 -0.2864 Accept 0H  

4 -0.1274 0.2285 0.6865 Accept 0H  

10 0.0024 0.1358 -0.1874 Accept 0H  

20 0.0380 0.0073 0.4180 Accept 0H  

40 0.0470 0.0073 0.6908 Accept 0H  

100 0.0561 0.0091 0.7418 Accept 0H  

 

 

Table 5.29. The results of serial correlation analysis for space series in case of water flow 
         through homogeneous soil (soil water pressure head data). 
 
 

Time (day) 
( )x cm

−

  
( )s cm  R  Decision 

1 0.7324 0.5712 0.0077 Accept 0H  

4 0.8211 2.2333 0.6509 Accept 0H  

10 -0.2831 0.6057 0.3107 Accept 0H  

20 -0.6034 0.6060 0.0695 Accept 0H  

40 -0.1530 0.7538 -0.2797 Accept 0H  

100 0.7933 1.7058 0.0483 Accept 0H  
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Table 5.30. The results of serial correlation analysis for time series in case of water flow  
        through heterogeneous soil (soil moisture data). 
 

Depth (cm) 
x
−

  
s  R  Decision 

10 0.003 0.0066 0.7953 Reject 0H  

30 0.0009 0.0036 0.7838 Reject 0H  

50 0.00075 0.0048 0.7174 Reject 0H  

70 0.0015 0.0027 0.6787 Reject 0H  

90 0.0005 0.0039 0.9282 Reject 0H  

 

 

are uncorrelated) is rejected at the level of significance 5,0.05)0.05( 0.4760)tα = = . This 

mans that there is significant correlations among residuals in different time increments 

for a given depth.  

 The result of serial correlation analysis for space series (in case of water flow 

through heterogeneous soil) are presented in Table 5.31. Since the calculated serial 

correlation coefficients are less than the tabled one (Pearson test) at the level of 

significance 12,0.05)0.05( 0.805)tα = = , the null hypothesis cannot be rejected. This 

implies that there is no significant correlation among the residuals in space series. The 

serial correlation coefficient for the second time is abnormally high which is against the 

observed trend and is not statistically acceptable. 

 In conclusion, correlation analysis shows that the residuals are uncorrelated in 

cases of FRAP experiment data, soil water pressure head data (both time series and space 
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series), and soil moisture content data in space series. However, the soil moisture content 

data are correlated in time series. 

 
5.4.3.4. Hypothesis Test on the Normality of the Residuals 
 
One of the assumptions of the least squares theory is the normality of the residuals. In 

other words, it is assumed that the errors are normally distributed. To analyze the 

normality of the errors two qualitative and two quantitative methods were used: 1) Error 

frequency analysis and normal probability plots, and 2) Hypothesis tests on the normality 

of the residuals using the chi-square and Kolmogorov-Smirnov one sample tests. 

 Error frequency analysis was first performed for the FRAP experiment by 

constructing residuals histograms. The histograms are presented in Figures 5.67a and 

5.67b for the full reaction-diffusion model and one-site-mobile-immobile equation, 

respectively. The Figures visibly show that the errors are normally distributed. This was 

confirmed by the analysis of the normal probability plots and the chi-square hypothesis 

test on the normality of the random variable. The normal probability plots were 

constructed and depicted in Figures 5.68a (for the full reaction-diffusion model) and 

5.68b (for one-site-mobile-immobile model). Again, the normal probability plots suggest 

that the residuals are normally distributed. 

 Residual frequency analysis and normal probability plots, though useful in 

figuring out the underlying probability distribution function, are only qualitative means to 

study possible normal distribution of random variable. To verify normality of the errors 

in case of FRAP experiment, the chi-square test was used and the following hypotheses 

were stated: 
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Table 5.31. The results of serial correlation analysis for space series in case of water flow 
        through heterogeneous soil (soil moisture data). 
 
 

Time (day) 
( )x cm

−

 
( )s cm  R  Decision 

0.0000 0.0063 0.00025 -0.6067 Accept 0H  

0.7292 0.006 0.0048 0.8090 Reject 0H  

1.7292 0.0038 0.0064 0.2827 Accept 0H  

2.7292 -0.0004 0.0043 -0.1641 Accept 0H  

3.7292 -0.0018 0.0046 -0.6951 Accept 0H  

4.7292 -0.0058 0.0024 -0.2940 Accept 0H  

5.7292 -0.0014 0.0022 -0.1144 Accept 0H  

6.7292 -0.003 0.0017 0.0567 Accept 0H  

10.0000 -0.0052 0.0029 0.2080 Accept 0H  

13.7500 -0.0008 0.0049 0.1765 Accept 0H  

18.7500 0.0021 0.0049 -0.7277 Accept 0H  

23.7917 0.0022 0.0041 -0.2857 Accept 0H  

28.8125 -0.0020 0.0037 -0.3514 Accept 0H  
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Figure 5.67. Histograms of residuals for FRAP experiment: a) full reaction-diffusion  
         model, and b) one-site-mobile-immobile model. 

a) 

b) 
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Figure 68. Normal probability plot for FRAP experiment: a) full reaction-diffusion  
      model, and b) one-site-mobile-immobile model. 

b) 

a) 
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 Since the calculated 2χ  (3.6190) is less than the tabled value ( 2
(0.80,2)χ = 4.61), the 

null hypothesis (the residuals are normally distributed) cannot be rejected even at 20 per 

cent level of significance implying that the residual are normally distributed. Similarly, 

the result of chi-square test for residuals of the one-site-mobile-immobile model showed 

that errors are strongly normally distributed. 

 In case of water flow through homogeneous soil, the histograms of errors (for 

multi-objective optimization) are depicted in 5.69a and 5.69b. The corresponding normal 

probability plots are given in Figures 5.70a and 5.70b. These Figures do not show 

apparent normal distribution for residuals of soil moisture content and soil water pressure 

head. To verify the normal distribution of errors in soil moisture content profile, the chi- 

square test was used and the following null and alternative hypotheses were stated: 

 Since the calculated 2χ  (3.8795) is less than the tabled value ( 2
(1 , )vαχ − = 5.9915) 

the null hypothesis (residuals are normally distributed) cannot be rejected at 5 per cent 

level of significance which means that the residuals in soil water content data (data from 

Abeele, 1984) are normally distributed. 

 For soil water pressure head profile in case of multi-objective optimization of 

water flow through homogeneous soil (drainage of Bandelier tuff), the following 

hypotheses were tested: 

)0137.0,0025.0(:
)0137.0,0025.0(:0

−≠
−=
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Figure 5.69. Error frequency histograms for: (a) soil water content profile and (b) soil  
          water pressure head profile in drainage of homogeneous soil (multi-  
          objective optimization). 

a) 

b) 
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Figure 5.70. Normal probability plot for: (a) soil water content profile and (b) soil water  
         pressure head profile in drainage of homogeneous soil (multi-objective  
         optimization). 

a) 

b) 
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Figure 5.71. a) Histograms of residuals for soil water content profile in drainage of  
              heterogeneous soil, and Normal probability plot. 

b) 

a) 
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 The same procedure was followed to calculate the observed and expected error 

frequencies and merge the cells when the observed frequency was less than five. Since 

the calculated 2χ (5.5156) is less than the tabled critical value at 10 percent level of 

significance ( 2
(1 , )vαχ − = 5.9915), the null hypothesis (errors are normally distributed) is 

accepted indicating that the residuals in soil water pressure head data are normally 

distributed. 

 The chi-square test is a powerful test when the sample size is large. However, 

combining cells when the expected error frequencies are less than five looses information 

and hence decreases the power of the test. Furthermore for very small samples this test is 

not applicable (McCuen, 2003). To overcome these limitations, the Kolmogorov-Smirnov 

one sample test is usually used since it treats each observation separately and does not 

loose information through merging of categories. This test is more powerful than the chi-

square test when sample size is not large. 

 The Kolmogorov-Smirnov one sample test was used to verify if the residuals in 

soil moisture content and soil water pressure head data (in case of drainage of Bandelier 

tuff: Data from Abeele, 1984) are normally distributed (in case of FRAP experiment, the 

Kolmogorov-Smirnov one sample test was not used because the evidence (normal 

probability plot, error frequency analysis, and chi-square test) strongly indicate that the 

residuals are normally distributed). The detailed calculation and analysis of the test are 

given in Appendix C. The results are only highlighted here: 

For soil moisture content data 

Sample test statistic  =    0.140 
 

     α    Critical    Decision 
 --------   ---------    ----------- 
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   0.20       0.178    Accept 0H  
   0.15       0.190    Accept 0H  
   0.10       0.203    Accept 0H  
   0.05       0.227    Accept 0H  
   0.01       0.272    Accept 0H  

  

For soil water pressure head data: 

     Sample test statistic   =    0.150 
 

   α     Critical    Decision 
 -------   --------    -------- 
   0.20       0.178    Accept 0H  
   0.15       0.190     Accept 0H  
   0.10       0.203    Accept 0H  
   0.05       0.227    Accept 0H  
   0.01       0.272    Accept 0H  

 

These results indicate that the null hypothesis (the errors are normally distributed) 

cannot be rejected even at twenty per cent level of significance. Therefore, the residuals 

in both cases are concluded to be strongly normally distributed. 

Finally, for residuals of the drainage experiment in heterogeneous soil the error frequency 

and normal probability plot were constructed and depicted in Figures 5.71a and 5.71b. 

Both Figures show visible normal probability distribution function for the residuals. 

However, to verify that the residuals are normally distributed, in a quantitative way, the 

following hypotheses were tested: 

  
)0046.0,106615.7(:

)0046.0,106615.7(:
4

4
0

−

−
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×=
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 For this case there were seven cells. Since the information regarding the mean and 

standard deviation were taken from sample (not provided by population), therefore the 
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degree of freedom is 2 1 4v k= − − = . 

 The calculated chi-square statistic ( 2χ  = 11.6606) for this case is greater than the 

critical value at five per cent level of significance ( 2
(0.05,4) 11.14χ = ). Therefore the null 

hypothesis (errors are normally distributed) cannot be accepted at 5 per cent level of 

significance and the alternative hypothesis (errors are not normally distributed) is 

accepted which implies that the residual are not normally distributed. However, the 

calculated 2χ  is less than the tabled value at one per cent level of significance 

( 2
(0.01,4) 14.86χ = ). This implies that the null hypothesis should be accepted and, therefore, 

the residuals are normally distributed. 

 This is a typical situation showing the power of the chi-square test. The sample 

size is initially large ( 65=n ), but combining the categories with expected probabilities 

less than five, leads to seven cells ( 7=k ). Furthermore, by reducing two degrees of 

freedom for mean and standard deviation of the sample, more information is lost. 

 To overcome the uncertainty, the Kolmogorov-Smirnov one sample test was used 

to verify that the residuals are normally distributed. The detailed results are given in 

Appendix C. The highlights of the test can be summarized as: 

 
Sample test statistic  =     0.096 
 
        α     Critical    Decision 
      --------   ---------- ----------- 
        0.20       0.133    Accept 0H  
        0.15       0.141    Accept 0H  
        0.10       0.151    Accept 0H  
        0.05       0.169    Accept 0H  
        0.01       0.202    Accept 0H  
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The Kolmogorov-Smirnov one sample test indicates that the null hypothesis (the 

errors are normally distributed) cannot be rejected even at the 20 per cent level of 

significance implying that the residuals are strongly normally distributed. 

 In conclusion, detailed residual analysis indicates that: 

1) Residuals have zero mean, 

2) Residuals have constant variance, 

3) Residuals are normally distributed, 

4) Residuals are uncorrelated (except for time series of water flow in homogeneous 

and heterogeneous soil at 5 or more per cent levels of significance). 

 Therefore, the necessary and sufficient criteria for least square parameter 

optimization, which were used in this study, were met except, to some extent, in the 

heterogeneous soil optimization. 
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CHAPTER 6: SUMMARY AND CONCLUSION 
 
 
 

         ........Carrying a few books like a beast. 
            Sa’adi 

6.1. Summary 
 
The objectives of this study were to develop, evaluate, apply, and analyze an inverse 

modeling strategy to identify model parameters in mass transport problems in different 

biosystems. An important goal of the study was to formulate an inverse modeling 

methodology which is capable of solving single and multi-objective optimization 

problems. The strategy treated model parameters identification problem as a nonlinear 

optimization problem in which the forward model was solved iteratively until satisfactory 

results were obtained. 

 The forward problem consisted of one or more nonlinear partial differential 

equations governing mass transport phenomena in different biological systems. The 

problem was solved numerically by means of both the Galerkin based linear finite 

element method and the finite difference approximation. The accuracy and mass 

conservation properties of the numerical simulators were verified against exact and 

reference solutions prior to apply as forward model in the inverse problem. An adaptive 

time stepping approach was used to decrease CPU time, maintain small truncation error, 

and increase efficiency of the numerical simulators. 

 In inverse problem, the partial derivatives of the objective function with respect to 

model parameters were approximated by one-sided and two-sided finite difference 

approximations. At the beginning of the optimization, the strategy uses the former, which 
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is computationally cheap but not accurate, and as the solution approaches the minimum it 

switches to the later which is more accurate but computationally expensive. These 

derivatives were used to form the Jacobian matrix and to obtain the gradient of the 

objective function in each iteration. The Osborne-Moré extended version of the 

Levenberg-Marquardt algorithm was used in the inverse code. Using and critically 

analyzing different termination criteria to asses the accuracy of the inverse results, a 

mixed termination criterion was used to stop the algorithm. The developed inverse 

modeling strategy was then applied to identify model parameters in two different 

biological mass transport problems.    

   In the field of molecular biology, the experimental data from Fluorescence 

Recovery after Photobleaching (FRAP) protocol was coupled with the optimization 

algorithm and the numerical solution of a system of three coupled nonlinear partial 

differential equations to identify the optimized values of the mass transport and binding 

parameters for GFP-tagged glucocorticoid receptor. The following results were obtained:  

1. The FRAP protocol provides enough information to uniquely estimate one 

parameter.  

2. Coupling the experimental data obtained by the FRAP protocol with the inverse 

modeling strategy one can uniquely estimate the individual values of the binding 

rate coefficients (rather than their ratio) given the value of the molecular diffusion 

coefficient.  

3. The FRAP experiment doesn’t provide enough information for unique 

simultaneous estimation of the molecular diffusion coefficient and the pseudo-

association rate constant. One needs to have one of them and to estimate the other 
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one from the FRAP data using the parameter optimization approach via inverse 

modeling strategy. This issue results from high inter-correlation between 

molecular diffusion coefficient and the pseudo-association rate parameter. The 

high intercorrelation makes it impossible to obtain unique solution for inverse 

problem using the experimental data from FRAP protocol.  

4. The cause of the ill-posedness of the inverse problem was non-uniqueness not 

instability. Small changes in the input data didn’t induce significant changes in 

the optimized values of the model parameters. 

5. One possible approach to uniquely estimate the mass transport and binding 

parameters from the FRAP protocol is conducting two FRAP experiments on the 

same class of biomolecule and cell in two different regimes. One experiment may 

be used to measure the molecular diffusion coefficient of the biomolecule 

independent of binding in diffusion dominant regime. A way to perform this is 

using a biomolecule of the same molecular weight, class, and surface charge 

properties as of the biomolecule under study which doesn’t have reaction with the 

vacant binding site(s). Having determined the diffusion coefficient, one can 

determine the individual values of the reaction rate parameters by conducting 

other FRAP experiment in reaction dominant or diffusion-reaction dominant 

regime. 

 The second mass transport problem investigated was water flow in partially 

saturated porous media. The developed parameter optimization strategy could 

successfully be used to identify hydraulic parameters for both single and multi-objective 

optimization problems in homogeneous and heterogeneous soils. In case of 
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heterogeneous soil, only soil water content information was available which was used in 

the framework of the single objective optimization to identify the hydraulic parameters. 

The results showed excellent agreement with the experimental data. In case of 

homogeneous soil, using only the soil moisture content data in the objective function 

produced good fit for soil moisture content profiles but poor results for soil water 

pressure head profiles. Also, the optimized values of n  and  1( )cmα −  (in the van 

Genuchten model) were not unique. On the other hand, incorporating only soil water 

pressure head information in the objective function yielded excellent fit for soil water 

pressure head profiles but poor results for soil water content profile. Incorporating both 

kind of information in the objective function, in the framework of multi-objective 

optimization, produced excellent result for both soil water content and pressure head 

profiles. The optimized parameter values were stable. 

 Posedness of the inverse problem was investigated using stability and uniqueness 

analyses. To study the stability of the inverse problem, input data were perturbated. They 

were then used in the optimization algorithm and the results were compared with the 

optimized parameters. It was found that instability was not the cause of ill-posedness of 

the inverse problem in case of protein transport in living cells. The uniqueness of the 

inverse problem was studied by construction and analysis of parameter response surfaces 

and parameter hyper spaces. It was found that closed parameter response surfaces don’t 

automatically guarantee a unique solution for the inverse problem. To fully understand 

the behavior of the objective function in whole parameter space, 

p dimensional− parameter hyper-spaces should be constructed and analyzed.   

 A Parameter sensitivity analysis was carried out to determine where and when the 
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objective function has the highest sensitivity to the collected data and with respect to the 

changes in the model parameters being estimated. Parameter sensitivity analysis of the 

FRAP protocol indicated that the procedure provides the most sensitive information at the 

early stages of the experiment. Therefore, in parameter optimization, more weight should 

be given to the data in the beginning of the experiment. The dissociation rate coefficient 

is the most sensitive and hence the most identifiable parameter followed by the pseudo-

association rate and free molecular diffusion coefficients. For GFP-GR the effective time 

to perform FRAP experiment is less than five seconds. After that the system essentially 

regains the state of equilibrium which it had before the photobleaching. 

 Sensitivity analysis, in case of water flow through partially saturated porous 

media, indicated that the sensitivity to the saturated hydraulic conductivity is highest in 

the wet region of the soil water characteristic curve. To obtain reliable estimate for this 

parameter, more data points should be collected at the beginning of the experiment or 

more weight should be given to early data points in the parameter optimization algorithm. 

 Comparing the norm of the sensitivities in single objective and multi-objective 

optimization indicated that additional information increases the identifiability of the air 

entry value (α ) drastically. Additional information about the system (soil water pressure 

head data) remarkably increased the identifiability of α . The air entry value is the most 

sensitive and the most identifiable parameter for both single and multi-objective 

optimizations. This is confirmed by narrow confidence interval of the parameter obtained 

by the optimization.  

Additional information slightly increased the identifiability of n  and ι  but it did 

not increase the sensitivity of the saturated hydraulic conductivity. It also decreased the 
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identifiability of the residual soil water content ( rθ ). The parameter can be well identified 

using soil moisture data from dry zone of the soil water characteristic curve. 

 Residual analysis indicates that the errors are uncorrelated, and have constant 

variance and almost zero mean. Hypothesis test on the error probability density function 

shows that the residuals are normally distributed.  

6.2. Conclusion 
 
The development of the inverse modeling strategy was successful in incorporating a 

mass-conservative, efficient, and accurate numerical simulator (to solve the forward 

problem), an efficient optimization algorithm, a mixed stopping rule, and an efficient 

strategy to control the direction and size of the search in each iteration. The application of 

the strategy was successful in modeling protein transport in living cells and identifying 

model parameters in the Fluorescence Recovery after Photobleaching. The developed 

inverse modeling strategy was also successfully applied to quantify hydraulic parameters 

in water flow through homogeneous and heterogeneous partially saturated porous media, 

with both single-objective and multi-objective optimizations. The optimization algorithm 

was successfully used to analyze the posedness of the inverse problem in two mass 

transport optimization problems in different biological systems using parameter three-

dimensional hyper-spaces and two-dimensional response surfaces. Parameter sensitivity 

analysis, residual analysis, and hypotheses tests on the normality of the error probability 

density function, and error variance indicated that the errors are uncorrelated, normally 

distributed, and have constant variance. Overall, the objectives of this study, which were 

“develop, apply, and analyze an inverse modeling strategy to identify model parameters 

in mass transport problems in different biological systems”, were met successfully. 
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CHAPTER 7: RECOMMENDATIONS FOR FUTURE 
RESEARCH 
 
 

With them the seed of wisdom did I sow 
And with my own hand labour’d it to go 

     And this was all the Harvest that I reap’d 
    “I came like water, and like wine I go”. 

                  Khayyam 
 
 

The inverse modeling strategy described in this study was developed, validated, 

analyzed, and applied in two different biological mass transport problems. The 

strategy offers the characteristics needed for parameter identification in sophisticated 

models and systems of partial differential equations governing transport phenomena 

in porous materials. However, ill-posedness of the inverse problems remains a major 

challenge. Future research should be aimed at tackling ill-posedness problems and 

developing innovative techniques to collect experimental data.  

Specific recommendations are as follows:  

1. Developing state-of-the-art techniques to study in vivo molecular dynamics (e.g. 

extending non-invasive methods to gather more information from biological 

systems) and collect more experimental data at the early stages of the FRAP 

protocol which are not feasible with current state of the techniques.  

2. Further investigations are required to explain the high intercorrelation between the 

molecular diffusion coefficient and the pseudo-association rate coefficient, and to 

understand the underlying biological process behind this phenomenon. 

3. Future research should focus on the comparison of the gradient based inverse 

modeling strategies with the large scale genetic algorithm and Monte Carlo–
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Markov Chain (MCMC) methods in modeling flow and transport processes in 

biological systems. 

4. Regularization and incorporation of a priori information regarding model 

parameters should be a focus of the future research in modeling biomolecule 

transport in living cells, tissues, and organs and variably saturated flow and 

transport through porous media. 

5. More attention should be paid to stochastic inverse modeling approaches in 

modeling transport phenomena in biological systems. 

6. Future investigations are required regarding the applications of inverse modeling 

approaches in multi-phase flow systems. 

7. Sophisticated water retention functions such as bimodal and hysteretic models 

should be incorporated in the framework of the inverse modeling of flow and 

transport through partially saturated porous media. 

8. Information theory, Generalized Likelihood Uncertainty Estimation (GLUE) 

methodology, and equifinality are suggested to be focal points of future research 

in modeling complex and highly heterogeneous bioenvironmental systems.  
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Appendix A 

 

Matrix Assembly in Finite Element Methods 
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Referring to Figure 4.2 one can identify the linear basis function in every element. Since 

the descending slope line passes through the points 1 1( , ) (0,1)x y =  and 2 2( , ) ( ,0)x y z= ∆ , 

the linear basis function for this part of the element (i.e., the first node) can be developed 

as: 

1i
z
z

φ = −
∆

 

Using the same idea the linear basis function for ascending slope is (note that the 

ascending slope line passes through points 1 1( , ) (0,0)x y =  and 2 2( , ) ( ,1)x y z= ∆ : 

 j
z
z

φ =
∆

 

Using these linear basis functions, one can assemble the stiffness mass and global 

matrices in the finite element approximation of the Richards’ equation. First, the stiffness 

mass matrix is assembled: 

 
^

2

1

( ) ( )i i
i

h hC h C z
t t

φ
=

∂ ∂
≅

∂ ∂∑  

Element 1: 

 
1 2 1 20

1 2 1 20

{ ( )[ ( ) ( )]* [ ( ) ( )]}

{ ( )[ ( ) ( )]* [ ( ) ( )]}

L

i i j i j

L

j i j i j

z C z C z h z h z dz
t

z C z C z h z h z dz
t

φ φ φ φ φ

φ φ φ φ φ

∂
+ + +

∂
∂

+ +
∂

∫

∫
 

 
1 20

1 20

1:

( )[ ( ) ( )][ ( ) ( )]

2 :

( )[ ( ) ( )][ ( ) ( )]

L

i i j i j

L

j i j i j

Node

z C z C z z z dz

Node

z C z C z z z dz

φ φ φ φ φ

φ φ φ φ φ

+ +

+ +

∫

∫

 

 
11 1 20 0

12 1 20 0

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

L L

i i i i j i

L L

i i j i j j

B z C z z dz z C z z dz

B z C z z dz z C z z dz

φ φ φ φ φ φ

φ φ φ φ φ φ

= +

= +

∫ ∫
∫ ∫
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21 1 20 0

22 1 20 0

3 2
11 1 20 0

3 2
1 20 0

2
12 1 20

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

(1 / ) (1 / ) ( / )

( ) ( )

L L

j i i j j i

L L

j i j j j j
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i i j
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L

i j
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B C z z dz C

φ φ φ φ φ φ

φ φ φ φ φ φ

φ φ φ

φ φ φ
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= +

= + =

− ∆ + − ∆ ∆

= +

∫ ∫
∫ ∫

∫ ∫
∫ ∫

∫ 2

0
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1
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L
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L L
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φ

φ φ φ φ
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=
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∫
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∫ ∫
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) ( / )
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( ) ( )
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( ) ( )
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L L
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∆
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∆
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∆
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∆
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Element 2: 

2 30

2 30

1:

( )[ ( ) ( )][ ( ) ( )]

2 :

( )[ ( ) ( )][ ( ) ( )]

L

i i j i j

L

j i j i j

Node

z C z C z z z dz
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z C z C z z z dz

φ φ φ φ φ

φ φ φ φ φ

+ +

+ +

∫

∫

 

:or  

22 2 30 0

23 2 30 0

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

L L

i i i i j i

L L

i i j i j j

B z C z z dz z C z z dz

B z C z z dz z C z z dz

φ φ φ φ φ φ

φ φ φ φ φ φ

= +

= +

∫ ∫
∫ ∫
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32 2 30 0

33 2 30 0

3 2
22 2 30 0

3 2
2 30 0

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

:
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L L
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φ φ φ φ φ φ

φ φ φ φ φ φ

φ φ φ
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− ∆ + − ∆ ∆

∫ ∫
∫ ∫

∫ ∫
∫ ∫
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2
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L
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φ φ φ
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− ∆ ∆ + − ∆ ∆
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∫ ∫
∫ ∫

∫ ∫
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∫ 3

0
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=

∆
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∆
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∆
= ∆ + = +

∆
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∫

 

Continuing the same procedure will lead to the formation of the stiffness mass 

matrix: 

1 2 1 2

1 2 1 2 3 2 3

2 1 2 1 1

1 1

3 0 ... 0
6 . .

[ ] . . . . .
12

. . 6
0 0 ........ 3

N N N N N N N

N N N N

C C C C
C C C C C C C

zB
C C C C C C C

C C C C
− − − − −

− −

+ + 
 + + + + ∆  =
 

+ + + + 
 + + 

 

It must be mentioned that in assembling the mass matrix the upper limit of 

integration of the basis function is z∆ , and the following integrals are equivalent: 
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2 2

0 0

3 3

0 0

(1 / )( / ) (1 / ) ( / )
12 12

( / ) ( / )
4 4

L L

L L

L zz z z z dz z z z z dz

L zz z dz z z dz

∆
− ∆ ∆ = − ∆ ∆ = =

∆
∆ = ∆ = =

∫ ∫

∫ ∫
 

Similarly the matrix [ ]A  is assembled to form: 

 

1

1 2 1 2

1 2 1 2 3 2 3

2 1 2 1

1 1

0 ... 0
2 . .

1 . . . . .[ ]
2 . . 2

0 0 ........
NN N N N N N

N N N N

K K K K
K K K K K K K

A
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− −

+ − − 
 − − + + − − 
 =
 ∆

− − + + − − 
 − + 

 

 

And finally the driving force vector { }F  can be written as: 
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1 1

1
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. .
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..
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   
   −= +
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   
   
   
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   −−   

 

 
 

where 0 ( )q t  is the net flux (precipitation + irrigation - evapotranspiration) at the 

soil surface, and ( )Lq t  is the imposed drainage flux at the bottom of the soil (van 

Genuchten, 1978). 
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Appendix B 

 

Sensitivity Matrices 

and 

Absolute Sensitivities of the State Variables 
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 The absolute and relative sensitivities of the state variables: laser beam recovery 

in the Fluorescence Recovery after Photobleaching (FRAP), soil moisture content, soil 

water pressure head were calculated using the columns of the last Jacobian matrix at the 

end of the optimization. The Jacobian matrices for three state variables are presented in 

Tables B1, B2, B3, B4, and B5. The absolute sensitivities of the state variables with 

respect to changes in model parameters are presented in the following Figures. 

 
 

 
 
 
 
 
 
Figure B1. Distribution of the absolute sensitivity of frap  with respect to changes in fD   
       over time course of the FRAP experiment. 
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Table B1. Sensitivity matrix for one-site-mobile-immobile model in FRAP experiment. 
   

   
fD

frap
∂

∂
−

  
aK

frap
∂

∂
−

    
dK

frap
∂

∂
−

   

 
    0.0391   -0.4315    0.0188 
    0.0880   -0.9916    0.0433 
    0.1132   -1.3082    0.0573 
    0.3150   -1.5621    0.0046 
    0.1144   -1.7420    0.0764 
    0.1502   -1.8953    0.0846 
    0.1493   -2.0290    0.0902 
    0.1507   -2.1381    0.0956 
    0.1497   -2.2329    0.1003 
    0.1479   -2.3115    0.1043 
    0.1454   -2.3785    0.1078 
    0.1424   -2.4372    0.1111 
    0.1392   -2.4860    0.1139 
    0.1358   -2.5288    0.1164 
    0.1324   -2.5643    0.1187 
    0.1291   -2.5945    0.1207 
    0.1257   -2.6208    0.1226 
    0.1225   -2.6422    0.1243 
    0.1193   -2.6605    0.1259 
    0.1163   -2.6751    0.1273 
    0.0806   -2.7695    0.1314 
    0.0557   -2.3575    0.1407 
    0.0442   -2.0577    0.1369 
    0.0368   -1.7784    0.1298 
    0.0316   -1.5286    0.1213 
    0.0277   -1.3103    0.1122 
    0.0247   -1.1219    0.1028 
    0.0222   -0.9602    0.0935 
    0.0202   -0.8225    0.0846 
    0.0185   -0.7053    0.0762 
    0.0171   -0.6058    0.0683 
    0.0158   -0.5214    0.0610 
    0.0147   -0.4497    0.0544 
    0.0138   -0.3890    0.0483 
    0.0129   -0.3376    0.0429 
    0.0122   -0.2939    0.0380 
    0.0115   -0.2569    0.0336 
    0.0109   -0.2253    0.0298 
    0.0104   -0.1985    0.0263 
    0.0099   -0.1757    0.0233 
    0.0094   -0.1562    0.0206 
    0.0090   -0.1395    0.0182 
    0.0086   -0.1252    0.0161
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Table B2. Sensitivity matrix for diffusion-reaction model in FRAP experiment. 
   

fD
frap

∂
∂

−

    
aK

frap
∂

∂
−

    
dK

frap
∂

∂
−

   
SD

frap
∂

∂
−

   
CD

frap
∂

∂
−

 

 
    0.0064   -0.0002    0.0008    0.0000    0.0941 
    0.0165   -0.0013    0.0054    0.0017    0.1852 
    0.0220   -0.0022    0.0081    0.0049    0.1975 
    0.0256   -0.0028    0.0097    0.0096    0.2043 
    0.0273   -0.0031    0.0105    0.0141    0.2080 
    0.0281   -0.0033    0.0108    0.0193    0.2110 
    0.0283   -0.0034    0.0109    0.0246    0.2133 
    0.0280   -0.0035    0.0108    0.0290    0.2148 
    0.0274   -0.0035    0.0106    0.0344    0.2164 
    0.0265   -0.0034    0.0103    0.0399    0.2178 
    0.0256   -0.0034    0.0100    0.0454    0.2190 
    0.0245   -0.0033    0.0096    0.0511    0.2203 
    0.0237   -0.0033    0.0094    0.0557    0.2213 
    0.0226   -0.0032    0.0090    0.0614    0.2226 
    0.0218   -0.0031    0.0088    0.0662    0.2237 
    0.0208   -0.0031    0.0084    0.0720    0.2250 
    0.0200   -0.0030    0.0082    0.0766    0.2261 
    0.0192   -0.0030    0.0080    0.0813    0.2272 
    0.0185   -0.0029    0.0078    0.0860    0.2284 
    0.0177   -0.0028    0.0075    0.0916    0.2298 
    0.0100   -0.0021    0.0052    0.1609    0.2457 
    0.0065   -0.0015    0.0038    0.1923    0.2460 
    0.0040   -0.0009    0.0022    0.2019    0.2368 
    0.0018   -0.0001    0.0002    0.2008    0.2238 
   -0.0000    0.0008   -0.0019    0.1948    0.2097 
   -0.0015    0.0018   -0.0042    0.1870    0.1961 
   -0.0027    0.0027   -0.0065    0.1788    0.1836 
   -0.0036    0.0037   -0.0087    0.1706    0.1722 
   -0.0043    0.0045   -0.0108    0.1630    0.1621 
   -0.0048    0.0054   -0.0127    0.1559    0.1530 
   -0.0052    0.0061   -0.0145    0.1495    0.1450 
   -0.0054    0.0069   -0.0163    0.1434    0.1376 
   -0.0055    0.0075   -0.0178    0.1380    0.1311 
   -0.0056    0.0081   -0.0193    0.1330    0.1252 
   -0.0056    0.0087   -0.0207    0.1284    0.1199 
   -0.0056    0.0092   -0.0219    0.1243    0.1152 
   -0.0055    0.0097   -0.0230    0.1204    0.1109 
   -0.0055    0.0102   -0.0241    0.1168    0.1069 
   -0.0054    0.0106   -0.0250    0.1135    0.1033 
   -0.0052    0.0109   -0.0260    0.1104    0.0999 
   -0.0051    0.0113   -0.0268    0.1076    0.0969 
   -0.0050    0.0116   -0.0275    0.1049    0.0940 
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Table B3. Sensitivity matrix for multi-objective optimization (data from Abeele, 1984). 
 

    
sK∂

∂θ       
α
θ

∂
∂         

n∂
∂θ         

rθ
θ

∂
∂       

ι
θ

∂
∂  

 
    0.0017    6.7314    0.0045   -0.0007   -0.0014 
    0.0019    8.0445    0.0093   -0.0020   -0.0048 
    0.0018    7.3365    0.0110   -0.0030   -0.0073 
    0.0016    6.5745    0.0116   -0.0037   -0.0089 
    0.0014    5.8277    0.0118   -0.0044   -0.0102 
    0.0012    4.9776    0.0116   -0.0051   -0.0113 
    0.0015    2.6184    0.0020   -0.0003   -0.0007 
    0.0020    4.6760    0.0065   -0.0014   -0.0038 
    0.0019    4.5771    0.0087   -0.0024   -0.0065 
    0.0017    4.1623    0.0096   -0.0032   -0.0084 
    0.0015    3.6962    0.0100   -0.0039   -0.0099 
    0.0013    3.1462    0.0101   -0.0047   -0.0114 
    0.0013    0.8296    0.0009   -0.0001   -0.0003 
    0.0019    3.1229    0.0051   -0.0011   -0.0029 
    0.0019    3.3823    0.0075   -0.0020   -0.0058 
    0.0018    3.1493    0.0086   -0.0028   -0.0078 
    0.0016    2.8139    0.0092   -0.0035   -0.0095 
    0.0014    2.3919    0.0095   -0.0044   -0.0112 
    0.0011   -0.2195    0.0003    0.0000   -0.0001 
    0.0019    2.0300    0.0041   -0.0008   -0.0023 
    0.0019    2.5889    0.0067   -0.0017   -0.0051 
    0.0018    2.5058    0.0079   -0.0025   -0.0072 
    0.0017    2.2684    0.0087   -0.0033   -0.0090 
    0.0015    1.9331    0.0091   -0.0041   -0.0109 
    0.0010   -0.8208   0.0000     0.0000    0.0000 
    0.0019    1.1881    0.0033   -0.0006   -0.0018 
    0.0020    1.9889    0.0060   -0.0015   -0.0045 
    0.0019    2.0423    0.0074   -0.0023   -0.0067 
    0.0017    1.8911    0.0083   -0.0031   -0.0087 
    0.0015    1.6255    0.0088   -0.0040   -0.0106 
    0.0009   -1.2067   -0.0001    0.0000    0.0000 
    0.0018    0.4050    0.0027   -0.0005   -0.0015 
    0.0020    1.3894    0.0055   -0.0014   -0.0041 
    0.0019    1.5820    0.0070   -0.0021   -0.0063 
    0.0017    1.5255    0.0079   -0.0029   -0.0083 
    0.0015    1.3363    0.0085   -0.0038   -0.0104 
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Table B4. Sensitivity matrix for single-objective optimization (soil moisture data, data 
from Abeele, 1984). 
 

     
sK∂

∂θ        
α
θ

∂
∂        

n∂
∂θ        

rθ
θ

∂
∂        

ι
θ

∂
∂  

 
    0.0063    0.3903    0.0012   -0.0358   -0.0016 
    0.0075    0.9417    0.0044   -0.2746   -0.0107 
    0.0058    0.7647    0.0049   -0.4796   -0.0163 
    0.0045    0.5928    0.0046   -0.6021   -0.0180 
    0.0034    0.4510    0.0041   -0.6976   -0.0180 
    0.0023    0.3119    0.0034   -0.7922   -0.0165 
    0.0031   -0.2368   -0.0004    0.0179    0.0006 
    0.0085    0.3688    0.0020   -0.0674   -0.0035 
    0.0076    0.4822    0.0040   -0.2881   -0.0124 
    0.0061    0.3986    0.0043   -0.4465   -0.0170 
    0.0048    0.3065    0.0041   -0.5759   -0.0191 
    0.0033    0.2104    0.0036   -0.7072   -0.0191 
    0.0015   -0.2067   -0.0004    0.0119    0.0004 
    0.0078    0.0732    0.0006    0.0157    0.0003 
    0.0085    0.3538    0.0032   -0.1736   -0.0084 
    0.0071    0.3215    0.0040   -0.3473   -0.0148 
    0.0056    0.2519    0.0041   -0.4963   -0.0185 
    0.0039    0.1726    0.0037   -0.6506   -0.0198 
    0.0007   -0.1277   -0.0002    0.0059    0.0002 
    0.0064   -0.1097   -0.0003    0.0455    0.0018 
    0.0090    0.2564    0.0024   -0.0887   -0.0048 
    0.0078    0.2708    0.0037   -0.2676   -0.0123 
    0.0063    0.2183    0.0040   -0.4307   -0.0174 
    0.0045    0.1499    0.0038   -0.6032   -0.0200 
    0.0003   -0.0708   -0.0001    0.0028    0.0001 
    0.0049   -0.1874   -0.0006    0.0481    0.0020 
    0.0091    0.1808    0.0017   -0.0306   -0.0021 
    0.0084    0.2354    0.0033   -0.2067   -0.0101 
    0.0068    0.1965    0.0039   -0.3792   -0.0162 
    0.0049    0.1355    0.0039   -0.5655   -0.0198 
    0.0001   -0.0334   -0.0000    0.0011    0.0000 
    0.0036   -0.1848   -0.0007    0.0416    0.0017 
    0.0090    0.1410    0.0011    0.0124    0.0000 
    0.0088    0.2097    0.0030   -0.1559   -0.0080 
    0.0072    0.1805    0.0038   -0.3348   -0.0149 
    0.0052    0.1253    0.0039   -0.5326   -0.0195 
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Table B5. Sensitivity matrix for water flow through heterogeneous soil. 
 

     
sK∂

∂θ        
α
θ

∂
∂         

n∂
∂θ       

rθ
θ

∂
∂        

ι
θ

∂
∂  

 
    0.0000   -0.0000    0.0000   -0.0000    0.0000 
    0.0035    0.3461    0.1080   -0.0541   -0.0017 
    0.0050    0.6374    0.1756   -0.0970   -0.0029 
    0.0058    0.8057    0.2188   -0.1263   -0.0039 
    0.0064    0.9381    0.2552   -0.1524   -0.0047 
    0.0067    1.0340    0.2819   -0.1730   -0.0054 
    0.0069    1.1141    0.3032   -0.1906   -0.0060 
    0.0070    1.1783    0.3188   -0.2047   -0.0064 
    0.0070    1.3856    0.3557   -0.2461   -0.0072 
    0.0065    1.5986    0.3745   -0.2815   -0.0074 
    0.0054    1.9225    0.3807   -0.3269   -0.0066 
    0.0042    2.1858    0.3735   -0.3598   -0.0054 
    0.0032    2.3933    0.3622   -0.3841   -0.0041 
    0.0000   -0.0000    0.0000   -0.0000    0.0000 
    0.0028   -0.0465    0.0516   -0.0121   -0.0006 
    0.0048    0.0978    0.1122   -0.0378   -0.0017 
    0.0060    0.2416    0.1576   -0.0603   -0.0028 
    0.0068    0.3886    0.1989   -0.0833   -0.0039 
    0.0074    0.5148    0.2308   -0.1030   -0.0048 
    0.0077    0.6309    0.2569   -0.1209   -0.0055 
    0.0079    0.7286    0.2762   -0.1357   -0.0060 
    0.0079    1.0464    0.3231   -0.1814   -0.0072 
    0.0074    1.3520    0.3482   -0.2217   -0.0076 
    0.0061    1.7790    0.3593   -0.2734   -0.0069 
    0.0047    2.1055    0.3538   -0.3106   -0.0057 
    0.0035    2.3546    0.3428   -0.3381   -0.0044 
    0.0000   -0.0000    0.0000   -0.0000    0.0000 
    0.0019   -0.0768    0.0258   -0.0028   -0.0000 
    0.0040   -0.0718    0.0700   -0.0152   -0.0007 
    0.0053   -0.0034    0.1077   -0.0292   -0.0014 
    0.0063    0.1016    0.1450   -0.0455   -0.0023 
    0.0070    0.2148    0.1754   -0.0610   -0.0031 
    0.0074    0.3338    0.2013   -0.0760   -0.0039 
    0.0077    0.4419    0.2211   -0.0890   -0.0044 
    0.0079    0.8167    0.2714   -0.1317   -0.0058 
    0.0074    1.1803    0.3008   -0.1710   -0.0064 
    0.0061    1.6724    0.3180   -0.2226   -0.0061 
    0.0048    2.0370    0.3165   -0.2600   -0.0052 
    0.0036    2.3103    0.3081   -0.2878   -0.0041 
    0.0000   -0.0001    0.0000    0.0000    0.0000 
    0.0014   -0.0535    0.0147   -0.0008    0.0001 
    0.0031   -0.0896    0.0449   -0.0070   -0.0001 
    0.0043   -0.0542    0.0727   -0.0161   -0.0005 
    0.0053    0.0298    0.1011   -0.0278   -0.0010 
    0.0059    0.1340    0.1250   -0.0395   -0.0015 



 262  

    0.0064    0.2503    0.1458   -0.0513   -0.0020 
    0.0066    0.3590    0.1622   -0.0618   -0.0024 
    0.0069    0.7419    0.2059   -0.0969   -0.0035 
    0.0065    1.1109    0.2341   -0.1301   -0.0042 
    0.0054    1.6011    0.2545   -0.1743   -0.0044 
    0.0043    1.9589    0.2576   -0.2068   -0.0039 
    0.0032    2.2249    0.2531   -0.2313   -0.0032 
    0.0000   -0.0002    0.0000    0.0000    0.0000 
    0.0011   -0.0333    0.0096   -0.0003    0.0002 
    0.0024   -0.0387    0.0280   -0.0047    0.0002 
    0.0032    0.0137    0.0456   -0.0117    0.0001 
    0.0039    0.1109    0.0632   -0.0207   -0.0000 
    0.0043    0.2197    0.0779   -0.0296   -0.0002 
    0.0046    0.3334    0.0909   -0.0384   -0.0004 
    0.0047    0.4349    0.1012   -0.0460   -0.0006 
    0.0049    0.7720    0.1301   -0.0708   -0.0013 
    0.0046    1.0803    0.1507   -0.0936   -0.0018 
    0.0039    1.4781    0.1683   -0.1239   -0.0023 
    0.0031    1.7645    0.1734   -0.1464   -0.0022 
    0.0023    1.9761    0.1725   -0.1635   -0.0019 
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Figure B2. Distribution of the absolute sensitivity of frap  with respect to changes in *

aK   
       (a) and  dK  (b) over time course of the FRAP experiment. 
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Figure B3. Time-depth distribution of the absolute sensitivity of the objective function  
          with respect to sK  for multi-objective (a) and single-objective optimization  
          (b).  

b) 
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Figure B4. Time-depth distribution of the absolute sensitivity of the objective function  
          with respect to α  for multi-objective (a) and single-objective optimization    
          (b).  
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Figure B5. Time-depth distribution of the absolute sensitivity of the objective function  
          with respect to n  for multi-objective (a) and single-objective optimization  
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Figure B6. Time-depth distribution of the absolute sensitivity of the objective function  
          with respect to rθ  for multi-objective (a) and single-objective optimization  
          (b). 
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Figure B7. Time-depth distribution of the sensitivity of the objective function with  
          respect to ι  for multi-objective (a) and single-objective optimization (b). 
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Appendix C 

 

Residuals of the State Variables 
(Laser beam Recovery, Soil Moisture Content, and Soil water Pressure Head) 
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Residuals of the FRAP Recovery for Reaction-Diffusion Model 
 

   
     0.0347    0.0325    0.0140    0.0440   -0.0066   -0.0057   -0.0021 
     0.0103    0.0234    0.0158   -0.0157    0.0127   -0.0057   -0.0112 
      0.0193   -0.0149   -0.0293    0.0173    0.0068   -0.0133    0.0174 
    -0.0292   -0.0761   -0.0281   -0.0014    0.0047    0.0035    0.0022 
    -0.0160    0.0523    0.0334   -0.0047    0.0070   -0.0050   -0.0009 
    -0.0128   -0.0304    0.0030   -0.0052    0.0093   -0.0039    0.0078  -0.0021   
 
 
Residuals of the FRAP Recovery for One-Site-Mobile-Immobile Model 

 
Run 1: 
 
   -0.0516   -0.0276   -0.0106   -0.0366    0.0053    0.0006   -0.0021 
   -0.0285   -0.0278   -0.0116    0.0238   -0.0152    0.0005    0.0073 
   -0.0344    0.0121    0.0345   -0.0093   -0.0102    0.0081   -0.0208 
    0.0249    0.0753    0.0341    0.0062   -0.0087   -0.0086   -0.0052 
    0.0065   -0.0513   -0.0270    0.0068   -0.0117    0.0002   -0.0016 
    0.0076    0.0324    0.0041    0.0055   -0.0143   -0.0007   -0.0098  0.006 
 
 
Run 2: 
 
   -0.0525   -0.0300   -0.0112   -0.0357    0.0081    0.0015   -0.0019 
   -0.0304   -0.0299   -0.0119    0.0249   -0.0128    0.0013    0.0074 
   -0.0368    0.0103    0.0345   -0.0060   -0.0082    0.0087   -0.0208 
    0.0223    0.0738    0.0344    0.0098   -0.0070   -0.0081   -0.0051 
    0.0039   -0.0525   -0.0265    0.0102   -0.0103    0.0005   -0.0016 
    0.0050    0.0315    0.0048    0.0087   -0.0132   -0.0004   -0.0099   0.0005  
 
 
Run 3: 
 
   -0.0495   -0.0226   -0.0104   -0.0406   -0.0027   -0.0019   -0.0025 
   -0.0242   -0.0234   -0.0122    0.0192   -0.0220   -0.0015    0.0071 
   -0.0291    0.0156    0.0331   -0.0197   -0.0159    0.0066   -0.0210 
    0.0306    0.0780    0.0320   -0.0051   -0.0134   -0.0098   -0.0052 
    0.0123   -0.0495   -0.0297   -0.0038   -0.0155   -0.0007   -0.0015 
    0.0131    0.0334    0.0007   -0.0038   -0.0174   -0.0013   -0.0097   0.0008  
 
 
Run 4: 
 
   -0.0288   -0.0228   -0.0118   -0.0425   -0.0036   -0.0024   -0.0029 
   -0.0186   -0.0239   -0.0138    0.0173   -0.0228   -0.0019    0.0067 
   -0.0263    0.0149    0.0315   -0.0215   -0.0166    0.0061   -0.0213 
    0.0320    0.0771    0.0303   -0.0065   -0.0141   -0.0102   -0.0055 
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    0.0130   -0.0506   -0.0315   -0.0050   -0.0161   -0.0011   -0.0018 
    0.0132    0.0321   -0.0011   -0.0048   -0.0180   -0.0017   -0.0099   0.0005  
 
Run 5: 
   
 -0.0473   -0.0223   -0.0102   -0.0406   -0.0027   -0.0019   -0.0026 
   -0.0234   -0.0231   -0.0121    0.0192   -0.0220   -0.0015    0.0070 
   -0.0286    0.0159    0.0332   -0.0197   -0.0159    0.0066   -0.0210 
    0.0310    0.0783    0.0321   -0.0051   -0.0134   -0.0098   -0.0052 
    0.0127   -0.0493   -0.0296   -0.0038   -0.0155   -0.0007   -0.0016 
    0.0134    0.0336    0.0008   -0.0038   -0.0175   -0.0014   -0.0097   0.0008 
Run 6: 
 
   -0.0094   -0.0217   -0.0138   -0.0456   -0.0054   -0.0035   -0.0036 
    0.0008   -0.0236   -0.0160    0.0140   -0.0244   -0.0029    0.0060 
   -0.0158    0.0146    0.0290   -0.0249   -0.0181    0.0052   -0.0219 
    0.0381    0.0763    0.0276   -0.0095   -0.0154   -0.0110   -0.0061 
    0.0166   -0.0519   -0.0344   -0.0075   -0.0173   -0.0019   -0.0024 
    0.0154    0.0305   -0.0041   -0.0070   -0.0191   -0.0025   -0.0105   0.0000 
 
 
Run 7: 
 
   -0.0495   -0.0221   -0.0099   -0.0402   -0.0026   -0.0019   -0.0025 
   -0.0240   -0.0229   -0.0118    0.0196   -0.0219   -0.0014    0.0071 
   -0.0288    0.0161    0.0336   -0.0194   -0.0158    0.0066   -0.0209 
    0.0310    0.0785    0.0325   -0.0048   -0.0133   -0.0097   -0.0051 
    0.0127   -0.0490   -0.0293   -0.0036   -0.0155   -0.0007   -0.0015 
    0.0135    0.0339    0.0011   -0.0037   -0.0174   -0.0013   -0.0096   0.0008 
 
 
Run 8: 
 
   -0.0573   -0.1759   -0.1471   -0.1552   -0.0294   -0.0158   -0.0119 
   -0.0985   -0.1761   -0.1450   -0.0921   -0.0451   -0.0143   -0.0018 
   -0.1423   -0.1350   -0.0958   -0.0888   -0.0363   -0.0054   -0.0294 
   -0.1042   -0.0697   -0.0932   -0.0547   -0.0317   -0.0209   -0.0132 
   -0.1338   -0.1938   -0.1512   -0.0424   -0.0320   -0.0112   -0.0092 
   -0.1384   -0.1071   -0.1173   -0.0354   -0.0325   -0.0112   -0.0170   0.0063 
 
 
Run 9: 
 
   -0.0136    0.0896    0.1088    0.0700    0.0305    0.0158    0.0095 
    0.0386    0.0923    0.1060    0.1281    0.0070    0.0150    0.0185 
    0.0498    0.1337    0.1502    0.0577    0.0098    0.0219   -0.0101 
    0.1218    0.1974    0.1477    0.0533    0.0097    0.0046    0.0052 
    0.1125    0.0704    0.0843    0.0429    0.0054    0.0128    0.0084 
    0.1202    0.1532    0.1131    0.0350    0.0017    0.0114   -0.0001   0.0099 
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Run 10: 
  
   -0.0457   -0.0087    0.0027   -0.0296   -0.0006   -0.0008   -0.0018 
   -0.0156   -0.0094    0.0005    0.0298   -0.0202   -0.0005    0.0077 
   -0.0183    0.0297    0.0456   -0.0136   -0.0143    0.0075   -0.0203 
    0.0428    0.0919    0.0441   -0.0009   -0.0120   -0.0089   -0.0046 
    0.0254   -0.0358   -0.0180   -0.0006   -0.0142    0.0001   -0.0010 
    0.0267    0.0469    0.0121   -0.0013   -0.0163   -0.0006   -0.0091   0.0013 
 
Run 11: 
 
   -0.0457   -0.0087    0.0027   -0.0296   -0.0006   -0.0008   -0.0018 
   -0.0156   -0.0094    0.0005    0.0298   -0.0202   -0.0005    0.0077 
   -0.0183    0.0297    0.0456   -0.0136   -0.0143    0.0075   -0.0203 
    0.0428    0.0919    0.0441   -0.0009   -0.0120   -0.0089   -0.0046 
    0.0254   -0.0358   -0.0180   -0.0006   -0.0142    0.0001   -0.0010 
    0.0267    0.0469    0.0121   -0.0013   -0.0163   -0.0006   -0.0091    0.0013 
 
 
Run 12: 
 
   -0.0189   -0.0220   -0.0119   -0.0430   -0.0041   -0.0027   -0.0031 
   -0.0126   -0.0233   -0.0140    0.0167   -0.0232   -0.0022    0.0065 
   -0.0231    0.0153    0.0312   -0.0223   -0.0170    0.0059   -0.0214 
    0.0342    0.0773    0.0300   -0.0072   -0.0144   -0.0104   -0.0056 
    0.0145   -0.0505   -0.0319   -0.0056   -0.0164   -0.0013   -0.0020 
    0.0143    0.0321   -0.0016   -0.0054   -0.0183   -0.0019   -0.0101   0.0004 
 
 
Run 13: 
 
   -0.0485   -0.0221   -0.0100   -0.0404   -0.0027   -0.0019   -0.0025 
   -0.0231   -0.0229   -0.0119    0.0194   -0.0220   -0.0014    0.0071 
   -0.0284    0.0161    0.0335   -0.0195   -0.0159    0.0066   -0.0209 
    0.0312    0.0785    0.0324   -0.0050   -0.0134   -0.0098   -0.0052 
    0.0129   -0.0490   -0.0294   -0.0037   -0.0155   -0.0007   -0.0015 
    0.0136    0.0338    0.0010   -0.0037   -0.0174   -0.0013   -0.0096   0.0008 
 
 
Run 14: 
  
   -0.0485   -0.0221   -0.0100   -0.0404   -0.0027   -0.0019   -0.0025 
   -0.0231   -0.0229   -0.0119    0.0194   -0.0220   -0.0014    0.0071 
   -0.0284    0.0161    0.0335   -0.0195   -0.0159    0.0066   -0.0209 
    0.0312    0.0785    0.0324   -0.0050   -0.0134   -0.0098   -0.0052 
    0.0129   -0.0490   -0.0294   -0.0037   -0.0155   -0.0007   -0.0015 
    0.0136    0.0338    0.0010   -0.0037   -0.0174   -0.0013   -0.0096   0.0008 
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Run 15: 
 
   -0.0106   -0.0205   -0.0116   -0.0433   -0.0045   -0.0030   -0.0033 
   -0.0044   -0.0221   -0.0138    0.0164   -0.0236   -0.0024    0.0064 
   -0.0183    0.0163    0.0313   -0.0230   -0.0174    0.0057   -0.0216 
    0.0373    0.0782    0.0300   -0.0079   -0.0148   -0.0106   -0.0058 
    0.0169   -0.0498   -0.0320   -0.0062   -0.0167   -0.0015   -0.0021 
    0.0162    0.0326   -0.0018   -0.0059   -0.0186   -0.0021   -0.0102   0.0002 
 
 
Run 16: 
    
-0.0497   -0.0227   -0.0104   -0.0407   -0.0027   -0.0019   -0.0025 
   -0.0243   -0.0235   -0.0123    0.0191   -0.0220   -0.0015    0.0071 
   -0.0292    0.0156    0.0331   -0.0197   -0.0159    0.0066   -0.0210 
    0.0305    0.0780    0.0320   -0.0051   -0.0134   -0.0098   -0.0052 
    0.0122   -0.0495   -0.0298   -0.0038   -0.0155   -0.0007   -0.0015 
    0.0130    0.0334    0.0007   -0.0038   -0.0174   -0.0014   -0.0097   0.0008 
 
 
Run 17: 
    
-0.0432   -0.0223   -0.0105   -0.0409   -0.0029   -0.0020   -0.0026 
   -0.0223   -0.0232   -0.0124    0.0189   -0.0222   -0.0016    0.0070 
   -0.0280    0.0158    0.0330   -0.0200   -0.0161    0.0065   -0.0210 
    0.0314    0.0781    0.0319   -0.0054   -0.0136   -0.0099   -0.0052 
    0.0128   -0.0494   -0.0299   -0.0040   -0.0157   -0.0008   -0.0016 
    0.0135    0.0334    0.0005   -0.0040   -0.0176   -0.0014   -0.0097    0.0007 
 
 
Run 18: 
 
   -0.0426   -0.0232   -0.0114   -0.0417   -0.0031   -0.0022   -0.0027 
   -0.0225   -0.0241   -0.0133    0.0181   -0.0224   -0.0017    0.0069 
   -0.0285    0.0149    0.0321   -0.0206   -0.0163    0.0064   -0.0211 
    0.0307    0.0772    0.0310   -0.0058   -0.0137   -0.0100   -0.0053 
    0.0121   -0.0504   -0.0308   -0.0044   -0.0158   -0.0009   -0.0017 
    0.0126    0.0325   -0.0004   -0.0043   -0.0177   -0.0015   -0.0098   0.0007 
 
 
Run 19: 
 
   -0.0495   -0.0242   -0.0112   -0.0433   -0.0083   -0.0051   -0.0048 
   -0.0245   -0.0247   -0.0132    0.0161   -0.0270   -0.0044    0.0050 
   -0.0302    0.0147    0.0319   -0.0277   -0.0204    0.0038   -0.0230 
    0.0290    0.0773    0.0305   -0.0133   -0.0175   -0.0124   -0.0071 
    0.0104   -0.0502   -0.0316   -0.0111   -0.0193   -0.0032   -0.0034 
    0.0113    0.0327   -0.0015   -0.0102   -0.0209   -0.0037   -0.0114   -0.0009 
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Run 20: 
 
   -0.0223   -0.0380   -0.0273   -0.0564   -0.0074   -0.0044   -0.0043 
   -0.0217   -0.0395   -0.0290    0.0037   -0.0261   -0.0038    0.0054 
   -0.0349   -0.0009    0.0165   -0.0307   -0.0196    0.0044   -0.0225 
    0.0206    0.0612    0.0156   -0.0134   -0.0167   -0.0118   -0.0067 
   -0.0003   -0.0664   -0.0460   -0.0104   -0.0185   -0.0026   -0.0030 
   -0.0012    0.0165   -0.0153   -0.0093   -0.0202   -0.0032   -0.0110   -0.0005 
 

 
Residuals of the Soil Moisture Content Data in Case of Water Flow Through 
Homogeneous Soil  

 
 
   -0.0016   -0.0073   -0.0072   -0.0145   -0.0116   -0.0096 
    0.0058    0.0059    0.0110   -0.0017   -0.0398   -0.0356 
    0.0048    0.0061    0.0124    0.0024    0.0084   -0.0239 
    0.0034    0.0049    0.0115    0.0028    0.0029   -0.0088 
    0.0020    0.0034    0.0099    0.0022   -0.0029   -0.0090 
    0.0010    0.0020    0.0083    0.0016   -0.0095   -0.0132 

 
 
 

Residuals of the Soil Water Pressure Head Data in Case of Water Flow Through 
Homogeneous Soil  
 

 
    0.0710   -0.0319   -0.0158    0.1136    0.0892     0.0735 
   -0.0734   -0.1738   -0.1472   -0.0343    0.3473     0.3050 
   -0.0663   -0.1505   -0.1170   -0.0969    0.0100    -0.0130 
   -0.0875   -0.1540   -0.1059   -0.1621   -0.0546    -0.0035 
   -0.0101   -0.0663   -0.0077   -0.1431   -0.0565     0.0776 
    0.0827    0.0528    0.1019   -0.1171     0.0783     0.3974 
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Residuals of the Soil Moisture Content Data in Case of Water Flow Through 
Heterogeneous Soil  

 
 
     0.0063    0.0064     0.0065    0.0059    0.0065 
     0.0144    0.0056     0.0026    0.0036    0.0037 
     0.0148    0.0024   -0.0022    0.0014    0.0025 
     0.0067   -0.0028   -0.0044   -0.0010    0.0013 
     0.0067   -0.0026   -0.0055   -0.0015    0.0020 
     0.0030   -0.0024   -0.0025   -0.0018    0.0008 
     0.0013   -0.0035   -0.0039   -0.0010    0.0002 
    -0.0026   -0.0050   -0.0041   -0.0004   -0.0027 
    -0.0037   -0.0025    0.0026    0.0026   -0.0016 
    -0.0070   -0.0024    0.0054    0.0029   -0.0029 
    -0.0010    0.0005     0.0089    0.0054   -0.0032 
    -0.0001   -0.0021    0.0049    0.0037   -0.0053 
      0.0003   -0.0034    0.0014   -0.0003   -0.0080 
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Appendix D 

 

Kolmogorov-Smirnov One Sample Test on the Normality of the 
Residuals 
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Table D1. Kolmogorov-Smirnov One Sample Test on the Normality of the Residuals in 
Case of Water Flow through Homogeneous Soil – Soil Moisture Data (data from 

Abeele, 1984).  
 
 
                        Sample      Expected      Absolute 
 CELL             X        probability  probability   difference 
 -----     ------------------       ----------------   -----------------   ----------------- 
    1  -43823.00000       0.02778       0.00100       0.02678 
    2  -39544.00000       0.05556       0.00267       0.05289 
    3  -26596.00000       0.08333       0.03304       0.05029 
    4  -17137.00000       0.11111       0.12558       0.01447 
    5  -13749.00000       0.13889       0.18402       0.04513 
    6  -11463.00000       0.16667      0.23163       0.06496 
    7  -10994.00000       0.19444       0.24224       0.04780 
    8   -9357.00000       0.22222       0.28109      0.05886 
    9   -7628.00000       0.25000       0.32512       0.07512 
   10   -6949.00000       0.27778       0.34313       0.06535 
   11   -6208.00000       0.30556      0.36324      0.05768 
   12   -5701.00000       0.33333       0.37720       0.04387 
   13   -3453.00000       0.36111       0.44086       0.07975 
   14   -1036.00000       0.38889       0.51104       0.12215 
   15    -422.00000       0.41667       0.52886       0.11219 
   16     374.00000        0.44444       0.55190       0.10746 
   17    2478.00000       0.47222       0.61185       0.13962 
   18    2722.00000       0.50000       0.61861       0.11861 
   19    2915.00000      0.52778       0.62397       0.09619 
   20    3164.00000       0.55556       0.63087       0.07532 
   21    5223.00000       0.58333       0.68595       0.10261 
   22    5318.00000       0.61111      0.68839       0.07728 
   23    5476.00000       0.63889       0.69251       0.05362 
   24    5966.00000       0.66667       0.70493       0.03826 
   25    6676.00000       0.69444       0.72255       0.02811 
   26    6946.00000       0.72222       0.72916      0.00694 
   27    7247.00000       0.75000       0.73639      0.01361 
   28    8138.00000       0.77778      0.75712       0.02065 
   29    8187.00000       0.80556       0.75823       0.04732 
   30    8237.00000       0.83333      0.75936       0.07397 
   31   10317.0000       0.86111       0.80404       0.05707 
   32   10546.00000       0.88889       0.80862       0.08027 
   33   11027.00000      0.91667       0.81807       0.09860 
   34   12634.00000       0.94444       0.84738       0.09707 
   35   13852.00000       0.97222       0.86739      0.10483 
   36   15704.00000      1.00000       0.89429       0.10571 
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Sample test statistic  =      0.140 
 
     α    Critical    Decision 
 --------   ---------    ----------- 
   0.20       0.178    Accept Ho 
   0.15       0.190    Accept Ho 
   0.10       0.203    Accept Ho 
   0.05       0.227    Accept Ho 
   0.01       0.272    Accept Ho 
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Table D2. Kolmogorov-Smirnov One Sample Test on the Normality of the Residuals in 
Case of Water Flow through Homogeneous Soil – Soil Water Pressure Head Data 
(data from Abeele, 1984).  
 
 
                        Sample      Expected      Absolute 
 CELL           X        probability  probability   difference 
 --------   ------------   --------------  -----------   ---------- 
    1           0.02778       0.12093       0.09316 
    2          0.05556       0.12664       0.07108 
    3          0.08333       0.12697       0.04363 
    4          0.11111       0.13097       0.01986 
    5          0.13889       0.13781       0.00108 
    6          0.16667       0.16455      0.00212 
    7           0.19444       0.16929       0.02515 
    8  -75266.0000       0.22222       0.22878       0.00656 
    9  -74887.0000      0.25000       0.22966       0.02034 
   10  -56341.0000       0.27778       0.27499       0.00278 
   11  -49348.0000       0.30556       0.29311       0.01244 
   12  -39911.0000       0.33333       0.31842       0.01491 
   13  -39237.0000       0.36111       0.32028       0.04083 
   14  -23379.0000       0.38889       0.36481       0.02408 
   15  -10011.0000       0.41667      0.40389      0.01278 
   16   -7186.00000       0.44444       0.41222      0.03222 
   17   -2603.00000       0.47222       0.42600       0.04622 
   18    6298.00000      0.50000       0.45278       0.04722 
   19    6911.00000      0.52778       0.45466       0.07312 
   20    7170.00000       0.55556       0.45545       0.10011 
   21    9338.00000       0.58333       0.46204       0.12130 
   22   23234.00000       0.61111           0.50442       0.10669 
   23   25095.00000       0.63889       0.51012       0.12877 
   24   27320.00000      0.66667       0.51690       0.14976 
   25   43784.00000      0.69444      0.56684       0.12760 
   26   49562.00000       0.72222       0.58418       0.13804 
   27   69726.00000       0.75000       0.64313       0.10687 
   28   85632.00000       0.77778       0.68739       0.09039 
   29   90578.00000      0.80556      0.70068       0.10488 
   30   94553.00000       0.83333       0.71119       0.12215 
   31  103813.0000     0.86111      0.73493       0.12618 
   32  114227.0000       0.88889       0.76028       0.12860 
   33  131490.0000       0.91667       0.79935       0.11731 
   34  339524.0000       0.94444       0.99253       0.04808 
   35  384937.0000       0.97222       0.99729       0.02507 
   36  389861.0000      1.00000       0.99757       0.00243 
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Sample test statistic   =    0.150 
 
   α     Critical    Decision 
 -------   --------    -------- 
   0.20       0.178    Accept Ho 
   0.15       0.190     Accept Ho 
   0.10       0.203    Accept Ho 
   0.05       0.227    Accept Ho 
   0.01       0.272    Accept Ho 
.



 281  

Table D3. Kolmogorov-Smirnov One Sample Test on the Normality of the Residuals in 
Case of Water Flow through Heterogeneous Soil – Soil Moisture Data (data from 
Table 4.2).  
 
   
                          Sample  Expected          Absolute 
 CELL            X                    probability         probability   Difference 
 ------     ---------------         ---------------       --------------   -------------- 
    1     -80.00000        0.01538       0.02821       0.01283 
    2     -70.00000        0.03077       0.04546       0.01469 
    3     -55.00000        0.04615       0.08628       0.04012 
    4     -53.00000       0.06154       0.09335       0.03181 
    5    -50.00000        0.07692       0.10469      0.02777 
    6     -44.00000        0.09231       0.13043       0.03812 
    7     -41.00000        0.10769       0.14481       0.03712 
    8     -39.00000        0.12308       0.15492       0.03185 
    9    -37.00000        0.13846       0.16550       0.02704 
   10     -35.00000        0.15385       0.17660       0.02275 
   11     -34.00000        0.16923       0.18229       0.01306 
   12     -32.00000       0.18462       0.19405       0.00944 
   13     -29.00000        0.20000       0.21253       0.01253 
   14     -28.00000        0.21538       0.21884       0.00346 
   15    -27.00000        0.23077      0.22531       0.00546 
   16     -26.00000        0.24615       0.23192       0.01423 
   17     -26.00000        0.26154       0.23192      0.02962 
   18     -25.00000        0.27692       0.23867       0.03825 
   19     -25.00000        0.29231       0.23867       0.05364 
   20     -24.00000        0.30769       0.24543       0.06226 
   21     -24.00000        0.32308       0.24543      0.07765 
   22    -22.00000       0.33846      0.25931       0.07915 
   23     -21.00000        0.35385       0.26639       0.08745 
   24     -18.00000        0.36923       0.28828       0.08095 
   25     -16.00000        0.38462      0.30332       0.08130 
   26     -15.00000        0.40000       0.31101       0.08899 
   27    -10.00000        0.41538       0.35045       0.06493 
   28     -10.00000        0.43077       0.35045       0.08032 
   29     -10.00000        0.44615       0.35045       0.09570 
   30      -4.00000        0.46154       0.39992       0.06162 
   31      -3.00000        0.47692      0.40832      0.06860 
   32      -1.00000        0.49231       0.42539      0.06692 
   33      2.00000        0.50769      0.45106       0.05663 
   34      3.00000        0.52308       0.45974       0.06334 
   35      5.00000        0.53846       0.47706       0.06141 
   36      8.00000        0.55385       0.50308       0.05076 
   37      12.00000       0.56923       0.53777       0.03146 
   38      13.00000        0.58462       0.54642       0.03819 
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Cont.    
                      Sample  Expected          Absolute 
 CELL           X                          probability       probability   Difference 
 ------     ---------------         ---------------       --------------   -------------- 
   39      14.00000        0.60000      0.55503      0.04497 
   40      14.00000        0.61538      0.55503      0.06035 
   41      20.00000        0.63077       01.60600       0.02476 
   42      24.00000        0.64615       0.63910       0.00706 
   43      25.00000        0.66154       0.64719       0.01435 
   44      26.00000        0.67692      0.65525       0.02168 
   45      26.00000        0.69231       0.65525       0.03706 
   46      26.00000        0.70769       0.65525       0.05245 
   47      29.00000        0.72308       0.67896       0.04411 
   48      30.00000       0.73846       0.68673       0.05173 
   49      36.00000       0.75385      0.73151      0.02234 
   50      37.00000        0.76923       0.73860       0.03063 
   51      37.00000       0.78462       0.73860       0.04601 
   52      49.00000       0.80000       0.81599       0.01599 
   53      54.00000        0.81538       0.84360       0.02821 
   54      54.00000        0.83077       0.84360      0.01283 
   55      56.00000        0.84615       0.85373       0.00757 
   56      59.00000        0.86154       0.86819       0.00665 
   57      63.00000        0.87692       0.88592       0.00900 
   58      64.00000        0.89231       0.89011       0.00220 
   59     65.00000       0.90769       0.89415       0.01355 
   60      65.00000        0.92308       0.89415       0.02893 
   61      67.00000       0.93846       0.90188       0.03659 
   62      67.00000        0.95385      0.90188      0.05197 
   63      89.00000        0.96923       0.96171       0.00753 
   64     144.00000        0.98462       0.99850      0.01388 
   65     148.00000       1.0000      0.99890       0.00110 
 
 
 Sample test statistic  =     0.096 
 
   α     Critical    Decision 
 --------   ---------- ----------- 
   0.20       0.133    Accept Ho 
   0.15       0.141    Accept Ho 
   0.10       0.151    Accept Ho 
   0.05       0.169    Accept Ho 
   0.01       0.202    Accept Ho 
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% FINAL_FRAP_CODE   identifies biomolecule transport parameters  

% This code optimizes biomolecular transport and binding rate parameters.  
% The code uses 1) the Osborne-More adapted version of the Levenberg- 
% Marquardt optimization algorithm, 2)an adaptive strategy to build the  
% Jacobian matrix, and 3) a mixed termination criterion.  
% The code calls the m-file frap_inverse_func which solves the forward  
% problem (a system of three coupled nonlinear partial differential  
% equations). 
%   
% Inputs consist of: an experimental data set obtained by FRAP technique 
% and initial guesses for parameters to be optimized. 
%  
% Copyright 2006 Kouroush Sadegh Zadeh  
% Bioengineering Department, University of Maryland at College Park, MD   
 
%=============================================================== 
%                     Insert Experimental data (data from McNally, personal 
%                     communication) 
%=============================================================== 
tout = [0.009 0.049 0.088 0.128 0.167 0.206 0.246 0.285 0.325 0.364 0.403 ... 
    0.443 0.482 0.522 0.561 0.60 0.64 0.679 0.719 0.758 1.546 2.335 3.123 ... 
    3.911 4.699 5.487 6.275 7.064 7.852 8.64 9.428 10.216 11.005 11.793 ... 
    12.581 13.369 14.157 14.946 15.734 16.522 17.31 18.098 18.887]; 
y = [0.0574 0.2231 0.2988 0.4216 0.4536 0.4970 0.4989 0.53 0.5978 0.6850... 
    0.5796 0.6828 0.6568 0.6715 0.7315 0.7438 0.6946 0.7363 0.7056 0.775... 
    0.8423 0.8989 0.9226 0.9365 0.9471 0.9347 0.946 0.9526 0.9538 0.9546... 
    0.9724 0.9748 0.9845 0.9696 0.9799 0.9804 0.9802 0.9907 0.9635 0.98... 
    0.9843 0.9768 0.9878]; 
%=============================================================== 
%                      Set the initial guess for parameters 
%=============================================================== 
parms_vec = [56 10 1.24 0.001 0.001]; 
w = 1.1;                                     % Micro-meter/sec 
Df = parms_vec(1);                       % Micro-meter^2/sec 
kon = parms_vec(2);                     % 1/sec 
koff = parms_vec(3);                     % 1/sec 
Ds = parms_vec(4);                       % Micro-meter/sec 
Dc = parms_vec(5);                       % Micro-meter/sec 
Ceq = kon/(kon + koff); 
Feq = koff/(kon + koff); 
N = length(y); 
tmax = tout(end); 
maxerror = 1e-3; 
deltaobjfunc = 2*maxerror; 
obj_func = 1000; 
grad = 100*[1 1 1 1 1]; 
lambda = 1; 
p = 5;%length(parms_vec); 
D = zeros(p); 
parms_vec_new = parms_vec'; 
================================================================ 
                 Start Optimization 
================================================================ 
while (abs(grad)>maxerror*[1 1 1 1 1]) & (deltaobjfunc>1e-4) 
    parms_vec = parms_vec_new; 
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    frap = frap_inverse_func(tout,Df,kon,koff,Ds,Dc,Feq,Ceq,w); 
    r = y - frap; 
    dDf = 0.01*Df; 
    dkon = 0.01*kon; 
    dkoff = 0.01*koff; 
    dDc = 0.01*Dc; 
    dDs = 0.01*Ds; 
    v1 = -(frap_inverse_func(tout,Df+dDf,kon,koff,Ds,Dc,Feq,Ceq,w) - frap)/dDf; 
    v2 = -(frap_inverse_func(tout,Df,kon+dkon,koff,Ds,Dc,Feq,Ceq,w) - frap)/dkon; 
    v3 = -(frap_inverse_func(tout,Df,kon,koff+dkoff,Ds,Dc,Feq,Ceq,w) - frap)/dkoff; 
    v4 = -(frap_inverse_func(tout,Df,kon,koff,Ds,Dc+dDc,Feq,Ceq,w) - frap)/dDc; 
    v5 = -(frap_inverse_func(tout,Df,kon,koff,Ds+dDs,Dc,Feq,Ceq,w) - frap)/dDs; 
    j = [v1' v2' v3' v4' v5']; 
    grad = r*j; 
    for i=1:p; 
        D(i,i) = max(norm(j(:,i)),D(i,i)); 
    end 
    oldobj_func = obj_func; 
    obj_func =  r*r'; 
    deltaobjfunc = abs(obj_func - oldobj_func); 
    if obj_func > oldobj_func 
        parms_vec = parms_vec; 
        lambda = 1.5*lambda; 
    else 
        lambda = 0.25*lambda; 
    end 
    B = [j ; sqrt(lambda)*D]; 
    q = [-r' ; zeros(5,1)]; 
    deltap = B\q; 
    parms_vec_new = parms_vec + deltap; 
    [parms_vec_new' r*r' lambda] 
    grad 
    minparms = [0.01 1e-4 1e-5 1e-5 1e-5]; 
    maxparms = [20 3e3 1e2 1e1 1e1]; 
    parms_vec_new = max(min(real(parms_vec_new),maxparms'),minparms'); 
    Df = parms_vec_new(1); 
    kon = parms_vec_new(2); 
    koff = parms_vec_new(3); 
    Dc = parms_vec_new(4); 
    Ds = parms_vec_new(5); 
end 
while (abs(grad) > (0.1*maxerror*[1 1 1 1 1])) & (deltaobjfunc > 1e-6) 
    parms_vec = parms_vec_new; 
    frap = frap_inverse_func(tout,Df,kon,koff,Ds,Dc,Feq,Ceq,w);; 
    r = y - frap; 
    dDf = 0.01*Df; 
    dkon = 0.01*kon; 
    dkoff = 0.01*koff; 
    dDc = 0.01*Dc; 
    dDs = 0.01*Ds; 
    v1=-(frap_inverse_func(tout,Df+dDf,kon,koff,Ds,Dc,Feq,Ceq,w)-frap_inverse_func(tout,Df-  
dDf,kon,koff,Ds,Dc,Feq,Ceq,w))/(2*dDf); 
    v2= -(frap_inverse_func(tout,Df,kon+dkon,koff,Ds,Dc,Feq,Ceq,w) - frap_inverse_func(tout,Df,kon-
dkon,koff,Ds,Dc,Feq,Ceq,w))/(2*dkon); 
    v3=-(frap_inverse_func(tout,Df,kon,koff+dkoff,Ds,Dc,Feq,Ceq,w)- 
frap_inverse_func(tout,Df,kon,koff-dkoff,Ds,Dc,Feq,Ceq,w))/(2*dkoff); 
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    v4=-(frap_inverse_func(tout,Df,kon,koff,Ds,Dc+dDc,Feq,Ceq,w)- 
frap_inverse_func(tout,Df,kon,koff,Ds,Dc-dDc,Feq,Ceq,w))/(2*dDc); 
    v5=-(frap_inverse_func(tout,Df,kon,koff,Ds+dDs,Dc,Feq,Ceq,w)- 
frap_inverse_func(tout,Df,kon,koff,Ds-dDs,Dc,Feq,Ceq,w) )/(2*dDs); 
    j = [v1' v2' v3' v4' v5']; 
    grad = r*j; 
    for i=1:p; 
        D(i,i) = max(norm(j(:,i)),D(i,i)); 
    end 
    oldobj_func = obj_func; 
    obj_func =  r*r'; 
    deltaobjfunc = abs(obj_func - oldobj_func); 
    if obj_func > oldobj_func 
        parms_vec = parms_vec; 
        lambda = 1.5*lambda; 
    else 
        lambda = 0.5*lambda; 
    end 
    B = [j ; sqrt(lambda)*D]; 
    q = [-r' ; zeros(5,1)]; 
    deltap = B\q; 
    parms_vec_new = parms_vec + deltap; 
    [parms_vec_new' r*r' lambda] 
    grad 
    minparms = [0.01 1e-3 1e-5 1e-5 1e-5]; 
    maxparms = [20 3e2 1e2 1e1 1e1]; 
    parms_vec_new = max(min(real(parms_vec_new),maxparms'),minparms'); 
    Df = parms_vec_new(1); 
    kon = parms_vec_new(2); 
    koff = parms_vec_new(3); 
    Dc = parms_vec_new(4); 
    Ds = parms_vec_new(5); 
end 
Df = parms_vec_new(1); 
kon = parms_vec_new(2); 
koff = parms_vec_new(3); 
Dc = parms_vec_new(4); 
Ds = parms_vec_new(5); 
phi = r'*r/norm(j'*j); 
H = j'*j + lambda*(D'*D) 
j'*j 
display(['gradient:']) 
grad 
norm(grad) 
display(['Eigenvalues of Hessian:']) 
eig(H) 
display(['Eigenvalues of JJ:']) 
eig(j'*j) 
Se = r*r'/(N-p); 
% Parameter Covariance Matrix(C). 
COV_P = Se*inv(j'*j); 
% Parameter Correlation Matrix: 
for i = 1:p; 
    for k = 1:p; 
        COR_P(i,k) = COV_P(i,k)/((sqrt(COV_P(i,i)))*sqrt(COV_P(k,k))); 
    end 



 288  

end 
%95 confidence region around the optimized parameters 
prob95 = 0.05; 
df = N - 1; 
for ii = 1:p 
    conf_95(ii,ii) = (tinv(1-prob95/2,df))*sqrt(COV_P(ii,ii)); 
end 
 
%============================================================== 
%                           Summary of statistics 
%============================================================== 
RMSE = sqrt(r*r'/(N-p)) 
R_Square = 1-var(r)/var(y) 
mean_resdual = mean(r) 
std_res = std(r) 
full(COV_P) 
full(COR_P) 
display(['%95 confidence intervals on optimized parameters: Df, kon, koff']) 
[Df-conf_95(1,1) Df+conf_95(1,1)] 
[kon-conf_95(2,2) kon+conf_95(2,2)] 
[koff-conf_95(3,3) koff+conf_95(3,3)] 
[Dc-conf_95(4,4) Dc+conf_95(4,4)] 
[Ds-conf_95(5,5) Ds+conf_95(5,5)] 
 
%============================================================== 
%                            Plot the results 
%============================================================== 
figure(1) 
plot(tout,y,'.') 
hold on 
plot(tout,frap,'r') 
xlabel('time, (seconds)') 
ylabel('Normalized Laser Beam Recovery, (-)') 
legend('Exp','model') 
axis([-0.5 20 0 1.05]) 
 
figure(2) 
plot(frap,r,'+') 
ylabel('residuals, (-)') 
xlabel('FRAP Recovery, (-)') 
axis([0 1 -0.1 0.1]) 
 
figure(3) 
hist(r) 
xlabel('residuals, (-)') 
ylabel('Frequency, (-)') 
axis([-0.1 0.1 0 20]) 
 
figure(4) 
res = normplot(r); 
xlabel('residuals, (-)') 
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% frap_inverse_func solves theforward problem in FRAP  
%  
% This function solves the system of three coupled nonlinear partial  
% differential equations governing macro-molecule transport and reaction  
% inside living cells. The solver uses the fully implicit finite difference  
% scheme to form the matrix equations and the Picard iteration method to  
% solve the system of nonlinear algebraic equations. 
%  
% Inputs are observation time series on FRAP (tout), diffusion coefficients  
% of free macro-molecule (Df ), bound complex (Dc ), vacant binding sites ( Ds),  
% bleach spot radius (w ), and rate parameters (kon and koff ) . 
% The user should insert the bleach spot radius, time series, and initial  
% guesses for model parameters. 
%  
% Outputs are a matrix whose rows are the concentrations of free macro- 
% molecule, vacant binding sites, and bound biomolecules inside cell.  
% The columns are the observation times (tout).   
 
% Copyright 2006 Kouroush Sadegh Zadeh  
% Bioengineering Department, University of Maryland at College Park, MD   
 
 
function r = frap_inverse_func(tout,Df,kon,koff,Ds,Dc,Feq,Ceq,w) 
 
tmax = tout(end); 
dt = 1e-3;                                  % seconds 
R = 11; 
nr = 111; 
dr = R/(nr+1); 
r = linspace(0,R,nr); 
r(1) = 1e-6; 
error_tol = 1e-7; 
% I.C. 
bleach_spot = find(r<=w); 
F0 = Feq*ones(nr,1); 
F0(bleach_spot) = 0; 
S0 = ones(nr,1); 
C0 = Ceq*ones(nr,1); 
C0(bleach_spot) = 0; 
sol_vec = [F0 S0 C0]; 
sol_vec = sol_vec'; 
sol_vec = sol_vec(:); 
F = []; 
S = []; 
C = []; 
the_times = 0; 
thetout = []; 
tout = [tout 100*tmax]; 
kout = 1; 
while the_times < tmax 
    old_sol_vec = sol_vec; 
    max_error = 1e4; 
    picard_iter_counter = 0; 
    while max_error > error_tol 
        s_star = sol_vec(2:3:end); 
        a1 = -Df*dt/dr^2 + Df*dt./(2*r*dr); 
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        a2 = -Ds*dt/dr^2 + Ds*dt./(2*r*dr); 
        a3 = -Dc*dt/dr^2 + Dc*dt./(2*r*dr); 
        b1 = 1 + 2*Df*dt/dr^2 + kon*dt*s_star; 
        b2 = (ones(nr,1) + 2*Ds*dt/dr^2); 
        b3 = (ones(nr,1) + 2*Dc*dt/dr^2 + koff*dt); 
        g1 = -Df*dt/dr^2 - Df*dt./(2*r*dr); 
        g2 = -Ds*dt/dr^2 - Ds*dt./(2*r*dr); 
        g3 = -Dc*dt/dr^2 - Dc*dt./(2*r*dr); 
        aa = [a1; a2; a3]; 
        aa =aa(:); 
        bb = [b1 b2 b3]'; 
        bb = bb(:); 
        gg = [g1; g2; g3]; 
        gg = gg(:); 
        mat1 = [zeros(nr,1) zeros(nr,1) -kon*dt*s_star]; 
        mat1 = mat1'; 
        mat1 = mat1(:); 
        mat2 = [zeros(nr,1) kon*dt*s_star zeros(nr,1)]; 
        mat2 = mat2'; 
        mat2 = mat2(:); 
        mat3 = [zeros(nr,1) -koff*dt*ones(nr,1) zeros(nr,1)]; 
        mat3 = mat3'; 
        mat3 = mat3(:); 
        mat4 = [-koff*dt*ones(nr,1) zeros(nr,1) zeros(nr,1)]; 
        mat4 = mat4'; 
        mat4 = mat4(:); 
        LHS = spdiags([gg mat4 mat3 bb mat2 mat1 aa],-3:3, 3*nr, 3*nr)'; 
        % B.C. at r=0 
        LHS(1,4) = -2*Df*dt/dr^2; 
        LHS(2,5) = -2*Ds*dt/dr^2; 
        LHS(3,6) = -2*Dc*dt/dr^2; 
        % DB.C. at r = R 
        LHS(end-2,:) = 0; 
        LHS(end-2,end-2) = 1; 
        LHS(end-1,:) = 0; 
        LHS(end-1,end-1) = 1; 
        LHS(end,:) = 0; 
        LHS(end,end) = 1; 
        new_sol_vec = LHS\old_sol_vec; 
        max_error = max(abs((new_sol_vec - sol_vec))); 
        sol_vec = new_sol_vec; 
        picard_iter_counter = picard_iter_counter + 1; 
    end 
    the_times = the_times + dt; 
    if picard_iter_counter < 4 
        dt = 1.05*dt; 
    elseif picard_iter_counter < 8 
        dt = dt; 
    else 
        dt = 0.98*dt; 
    end 
    if dt < 1e-3 
        dt = 1e-3; 
    elseif dt > 0.5 
        dt = 0.5; 
    end 
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    if the_times >= tout(kout) 
        kout = kout + 1; 
        thetout = [thetout the_times]; 
        F = [F sol_vec(1:3:end)]; 
        S = [S sol_vec(2:3:end)]; 
        C = [C sol_vec(3:3:end)]; 
    end 
end 
r_node = r(bleach_spot); 
f_node = F(bleach_spot,:);   
c_node = C(bleach_spot,:);   
int_cylinder = r_node*(f_node + c_node)*2*dr/w^2; 
r = int_cylinder; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 292  

% Mult_Obj_inv   identifies hydraulic parameters of porous media  
% 
% This code estimates the hydraulic parameters of partially saturated 
% porous media using a Multi-objective optimization approach. The code uses 
% 1) the Osborne-More adapted version of the Levenberg-Marquardt 
% optimization  algorithm, 2) an adaptive strategy to build the Jacobian  
% matrix, and 3) a mixed termination criterion. It calls the m-file  
% forward_func which solves the mixed form Richards' equation. 
%   
% Inputs consist of: 1) experimental time/space series of fluid content of a  
% porous medium, 2) fluid pressure head profiles, 3) the spatio-temporal  
% domain, and 4) initial guesses for parameters to be optimized. 
% 
% Copyright 2006 Kouroush Sadegh Zadeh  
% Bioengineering Department, University of Maryland at College Park, MD   
 
 
close all 
clear all 
clc 
 
%====================================================== 
%       Insert Experimental data (Data from Abeel (1984), Table-3, pp:11) 
%====================================================== 
tout = [1 4 10 20 40 100];             % day 
theta_exp = [ 0.29345   0.31176   0.31889   0.33100   0.33100   0.33100 
    0.24628   0.26198   0.26691   0.28739   0.33100   0.33100 
    0.21935   0.23352   0.23730   0.25538   0.25538   0.29250 
    0.20095   0.21407   0.21710   0.23356   0.23932   0.25580 
    0.18409   0.19623   0.19862   0.21360   0.22427   0.23491 
    0.16396   0.17492   0.17659   0.18981   0.20583   0.21368]; 
h_exp = 100*[0.27 0.25   0.17   0   0   0 
    0.91   0.79   0.64   0.44   0.00   0.00 
    1.40   1.19   0.99   0.85   0.66   0.62 
    1.89   1.60   1.35   1.26   1.05   0.92 
    2.37   2.00   1.70   1.66   1.45   1.22 
    3.15   2.65   2.30   2.30   1.95   1.51]; 
theta_exp = theta_exp(:); 
h_exp = h_exp(:); 
N1 = length(theta_exp); 
N2 = length(h_exp); 
N = N1 + N2; 
%===================================================== 
%                       Start optimization 
%===================================================== 
% parms_vec = [Ks a n tr b] 
parms_vec = [16.32  0.0297  1.5781  0.098  -2]; 
ks = parms_vec(1);               % Saturated Hydraulic Conductivity (cm/day) 
a = parms_vec(2);                 % a in van Genuchten's model (1/cm) 
n = parms_vec(3);                 % n in van Genuchten's model 
tr = parms_vec(4);                 % Residual water content 
b = parms_vec(5);                  % Pore connectivity index in Mualem's model 
ts = 0.3310;                             % Saturated water content (measured) 
maxerror = 1e-4; 
deltaRMSE = maxerror; 
RMSE = 1000; 
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phi = 1000; 
grad = 100*[1 1 1 1 1]; 
lambda = 1; 
p = 5;                                % Number of parameters to be optimized 
D = zeros(p);                           % D: positive definite scaling matrix 
parms_vec_new = parms_vec'; 
while deltaRMSE>1e-4 
    parms_vec = parms_vec_new; 
    h = Abeel_rich1d_mixed_Imp_func(tout,ks,ts,tr,a,n,b); 
    theta = VGTHETA(h,ts,tr,a,n); 
    r = (theta_exp - theta)/mean(theta_exp) + 0.5*(h_exp - h)/mean(h_exp); 
    dks = 0.01*ks; 
    da = 0.01*a; 
    dn = 0.01*n; 
    dtr = 0.01*tr; 
    db = 0.01*b; 
    v1 = -(Abeel_rich1d_mixed_Imp_func(tout,ks+dks,ts,tr,a,n,b) - h)/dks; 
    v2 = -(Abeel_rich1d_mixed_Imp_func(tout,ks,ts,tr,a+da,n,b) - h)/da; 
    v3 = -(Abeel_rich1d_mixed_Imp_func(tout,ks,ts,tr,a,n+dn,b) - h)/dn; 
    v4 = -(Abeel_rich1d_mixed_Imp_func(tout,ks,ts,tr+dtr,a,n,b) - h)/dtr; 
    v5 = -(Abeel_rich1d_mixed_Imp_func(tout,ks,ts,tr,a,n,b+db) - h)/db; 
    j = [v1 v2 v3 v4 v5]; 
    grad = (j'*r)'; 
    for i=1:p; 
        D(i,i) = max(norm(j(:,i)),D(i,i)); 
    end 
    oldRMSE = RMSE; 
    RMSE =  sqrt(r'*r/(N-p)); 
    deltaRMSE = abs(RMSE - oldRMSE); 
    if RMSE > oldRMSE 
        parms_vec = parms_vec; 
        lambda = 1.25*lambda; 
    else 
        lambda = 0.2*lambda; 
    end 
    B = [j ; sqrt(lambda)*D]; 
    q = [-r ; zeros(5,1)]; 
    deltap = B\q; 
    parms_vec_new = parms_vec + deltap; 
    [parms_vec_new' RMSE lambda] 
    minparms = [1.1 1e-4 1.002 1e-4 -25]; 
    maxparms = [500 0.8 150 0.75*ts 25]; 
    parms_vec_new = max(min(real(parms_vec_new),maxparms'),minparms'); 
    ks = parms_vec_new(1); 
    a = parms_vec_new(2); 
    n = parms_vec_new(3); 
    tr = parms_vec_new(4); 
    b = parms_vec_new(5); 
end 
while (abs(grad) > (0.01*maxerror*[1 1 1 1 1])) & (deltaRMSE > 1e-6) 
    parms_vec = parms_vec_new; 
    h = Abeel_rich1d_mixed_Imp_func(tout,ks,ts,tr,a,n,b); 
    theta = VGTHETA(h,ts,tr,a,n); 
    r = (theta_exp - theta)/mean(theta_exp) + 0.5*(h_exp - h)/mean(h_exp); 
    var1 = -(Abeel_rich1d_mixed_Imp_func(tout,ks+dks,ts,tr,a,n,b)-Abeel_rich1d_mixed_Imp_func(tout,ks-
dks,ts,tr,a,n,b))/(2*dks); 
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    var2 = -(Abeel_rich1d_mixed_Imp_func(tout,ks,ts,tr,a+da,n,b)-
Abeel_rich1d_mixed_Imp_func(tout,ks,ts,tr,a-da,n,b))/(2*da); 
    var3 = -(Abeel_rich1d_mixed_Imp_func(tout,ks,ts,tr,a,n+dn,b)-
Abeel_rich1d_mixed_Imp_func(tout,ks,ts,tr,a,n-dn,b))/(2*dn); 
    var4 = -(Abeel_rich1d_mixed_Imp_func(tout,ks,ts,tr+dtr,a,n,b)-
Abeel_rich1d_mixed_Imp_func(tout,ks,ts,tr-dtr,a,n,b))/(2*tr); 
    var5 = -(Abeel_rich1d_mixed_Imp_func(tout,ks,ts,tr,a,n,b+db)-
Abeel_rich1d_mixed_Imp_func(tout,ks,ts,tr,a,n,b-db))/(2*db); 
    j = [var1 var2 var3 var4 var5]; 
    for i=1:p; 
        D(i,i) = max(norm(j(:,i)), D(i,i)); 
    end 
    oldRMSE = RMSE; 
    RMSE = sqrt(r'*r/(N-p)); 
    deltaRMSE = abs(RMSE - oldRMSE); 
    if RMSE > oldRMSE 
        parms_vec = parms_vec; 
        lambda = 1.25*lambda; 
    else 
        lambda = 0.7*lambda; 
    end 
    B = [j ; sqrt(lambda)*D]; 
    q = [-r ; zeros(5,1)]; 
    deltap = B\q; 
    parms_vec_new = parms_vec + deltap; 
    minparms = [1.5 1e-5 1.02 1e-4 -35]; 
    maxparms = [500 0.5 6 0.8*ts 35]; 
    parms_vec_new = max(min(real(parms_vec_new),maxparms'),minparms'); 
    ks = parms_vec_new(1); 
    a = parms_vec_new(2); 
    n = parms_vec_new(3); 
    tr = parms_vec_new(4); 
    b = parms_vec_new(5); 
    grad = (j'*r)' 
    [parms_vec_new RMSE lambda] 
end 
ks = parms_vec_new(1) 
a = parms_vec_new(2) 
n = parms_vec_new(3) 
tr = parms_vec_new(4) 
b = parms_vec_new(5) 
H = j'*j + lambda*(D'*D) 
j'*j 
display(['gradient:']) 
grad 
norm(grad) 
display(['Eigenvalues of Hessian:']) 
eig(H) 
display(['Eigenvalues of JJ:']) 
eig(j'*j) 
%========================================= 
%                           Goodness_of_fit indices: 
%========================================= 
depth = [0.4 1.16 1.91 2.71 3.47 4.23];           % meter 
tout = [1 4 10 20 40 100];                        % day 
theta = reshape(theta,length(tout),length(depth)); 
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theta_exp = reshape(theta_exp,length(tout),length(depth)); 
h_reshaped = reshape(h,length(tout),length(depth)); 
h_exp = reshape(h_exp,length(tout),length(depth)); 
Se = r'*r/(N-p); 
for i = 1:length(depth) 
    R(i) = 1 - Se/var(theta(:,i)); 
end 
Coef_det_overal = 1-Se/(mean(var(theta_exp(:)))); 
C1 = Se*inv(j'*j); 
for i = 1:p; 
    for k = 1:p; 
        A1(i,k) = C1(i,k)/((sqrt(C1(i,i)))*sqrt(C1(k,k))); 
    end 
end 
prob95 = 0.05; 
prob99 = 0.01; 
df = N - 1; 
for ii = 1:p 
    conf_95(ii,ii) = (tinv(1-prob95/2,df))*sqrt(C1(ii,ii)); 
    conf_99(ii,ii) = (tinv(1-prob99/2,df))*sqrt(C1(ii,ii)); 
end 
%======================================= 
%               Summary of goodness-of-fit indices 
%======================================= 
residusl_mean = mean(r) 
residual_variance = var(r) 
display(['Coefficients of determination for different days']) 
[R] 
display(['Overall Coefficient of determination']) 
[Coef_det_overal] 
display(['Parameter Covariance Matrix']) 
C1 
display(['Parameter Correlation Matrix']) 
A1 
display(['variance of optimized parameters: ks,a,n,tr,b']) 
[diag(C1(1,1)) diag(C1(2,2)) diag(C1(3,3)) diag(C1(4,4)) diag(C1(5,5))] 
display(['%95 confidence intervals on optimized parameters: ks,a,n,tr,b']) 
[ks - conf_95(1,1) ks + conf_95(1,1)] 
[a - conf_95(2,2) a + conf_95(2,2)] 
[n - conf_95(3,3) n + conf_95(3,3)] 
[tr - conf_95(4,4) tr + conf_95(4,4)] 
[b - conf_95(5,5) b + conf_95(5,5)] 
display(['%99 confidence intervals on optimized parameters: ks,a,n,tr,b']) 
[ks - conf_99(1,1) ks + conf_99(1,1)] 
[a - conf_99(2,2) a + conf_99(2,2)] 
[n - conf_99(3,3) n + conf_99(3,3)] 
[tr - conf_99(4,4) tr + conf_99(4,4)] 
[b - conf_99(5,5) b + conf_99(5,5)] 
 
%===================================== 
%                             Plot the results 
%====================================== 
hh=ts*ones(6,1); 
t_exp = [theta_exp(:); hh]; 
t_exp = reshape(t_exp,length(tout),length(depth)); 
theta = reshape(theta,length(tout),length(depth)); 
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r = theta - t_exp; 
 
figure(1) 
for i= 1:length(depth) 
    plot(t_exp(i,:),-depth,'*k') 
    hold on 
    plot(theta(i,:),-depth,'r') 
    ylabel('Depth(m)') 
    ylabel('Soil Depth, (meter)') 
    xlabel('Volumetric Soil Moisture Content, (cm^3/cm^3)') 
    axis([0.15 0.35 -6.05 0]) 
end 
 
figure(2) 
plot(t_exp(1,:),-depth,'o') 
hold on 
plot(t_exp(3,:),-depth,'p') 
plot(t_exp(4,:),-depth,'v') 
plot(t_exp(5,:),-depth,'s') 
plot(t_exp(6,:),-depth,'d') 
plot(theta(1,:),-depth,'r') 
plot(theta(3,:),-depth,'r') 
plot(theta(4,:),-depth,'r') 
plot(theta(5,:),-depth,'r') 
plot(theta(6,:),-depth,'r') 
ylabel('Soil Depth, (meter)') 
xlabel('Volumetric Soil Moisture Content, (cm^3/cm^3)') 
legend('day 1','day 4','day 10','day 40','day 100','model') 
axis([0.0 0.35 -6.05 0]) 
 
figure(3) 
plot(theta(:),r(:),'+') 
ylabel('residuals, (cm^3/cm^3)') 
xlabel('Volumetric Soil Moisture Content(\theta), (cm^3/cm^3)') 
 
hold off 
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% forward_func  solves the mixed form Richards’ equation 
%  
% This function solves the mixed form Richards’ equation by mass lumped,  
% Galerkin based, linear finite element approximation, and the Picard iteration  
% method 
%  
% Inputs are values of hydraulic parameters in the Mualem- 
% van genuchten formula, and time and space domains. 
%  
% Outputs are profiles of fluid content of a porous medium at discret times (tout) and  
% selected depths  
 
% Copyright 2006 Kouroush Sadegh Zadeh  
% Bioengineering Department, University of Maryland at College Park, MD   
 
function r = forward_func(tout,ks,ts,tr,a,n,b) 
 
x = 600;                            % cm 
nx = 601; 
dx = x/(nx - 1);                    % cm 
tmax = tout(end); 
max_iter = 50;           
err_tolerance = 1e-5;    
m = 1- 1/n; 
dt = 1e-2; 
% I.C. 
h = -ones(nx,1); 
theta = VGTHETA(h,ts,tr,a,n); 
h_new = h; 
theta_new = theta; 
thetime = 0; 
thetout = 0; 
wc = []; 
tout = [tout 2*tmax]; 
kout = 1; 
while thetime < tmax 
    max_error = 1e5; 
    picard_iter_counter = 0; 
    h_old = h_new; 
    theta_old = theta_new; 
    while ((max_error > err_tolerance) & (picard_iter_counter < max_iter)) 
        k = VGK(h_new,ks,a,n,b); 
        c = VGC(h_new,ts,tr,a,n); 
        cmean = (VGC(h_new,ts,tr,a,n)+VGC(h_old,ts,tr,a,n))/2; 
        AA_vec = (k(1:end-1)+ k(2:end))/(2*dx); 
        AAr = [AA_vec; 0]; 
        AAl = [0; AA_vec]; 
        AAc = AAr + AAl; 
        AA_mat = spdiags([-AAr AAc -AAl], -1:1, nx,nx)'; 
        BBc = cmean*dx; 
        BBc(1) = cmean(1)*dx/2; 
        BBc(end) = cmean(end)*dx/2; 
        BB_mat = spdiags(BBc,0, nx,nx); 
        thet_vec_old = (theta_old(1:end-1)+ theta_old(2:end))*dx/6; 
        thet_vec_old_r = [thet_vec_old; 0]; 
        thet_vec_old_l = [0; thet_vec_old]; 
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        thet_vec_old_c = thet_vec_old_r + thet_vec_old_l + 2*theta_old*dx/6; 
        thet_vec_old_c(1) = (2*theta_old(1) + theta_old(2))*dx/6; 
        thet_vec_old_c(end) = (2*theta_old(end) + theta_old(end-1))*dx/6; 
        thet_vec_new = (theta_new(1:end-1)+ theta_new(2:end))*dx/6; 
        thet_vec_new_r = [thet_vec_new; 0]; 
        thet_vec_new_l = [0; thet_vec_new]; 
        thet_vec_new_c = thet_vec_new_r + thet_vec_new_l + 2*theta_new*dx/6; 
        thet_vec_new_c(1) = (2*theta_new(1) + theta_new(2))*dx/6; 
        thet_vec_new_c(end) = (2*theta_new(end) + theta_new(end-1))*dx/6; 
        Driving_force_vec = gradient(k); 
        LHS = AA_mat + BB_mat/dt; 
        RHS = BB_mat/dt; 
        % B.C. at the upper boundary 
        q_top = 0; 
        Driving_force_vec(1) = (k(2)+k(1))/2 + q_top; 
        % BC at the lower boundary 
        LHS(end,:) = 0; 
        LHS(end,end) = 1; 
        RHS(end,:) = 0; 
        RHS(end,end) = 1; 
        Driving_force_vec(end) = 0; 
        thet_vec_old_c(end) = 0; 
        thet_vec_new_c(end) = 0; 
        h_new_c = LHS\(RHS*h_new - Driving_force_vec + (thet_vec_old_c - thet_vec_new_c)/dt); 
        max_error = max(abs(h_new_c - h_new)); 
        h_new = h_new_c; 
        theta_new = VGTHETA(h_new,ts,tr,a,n); 
        picard_iter_counter = picard_iter_counter + 1; 
    end 
    % Adaptive time step 
    thetime = thetime + dt; 
    if picard_iter_counter < 5 
        dt = 1.05*dt; 
    elseif picard_iter_counter < 10 
        dt = dt; 
    else 
        dt = 0.99*dt; 
    end 
    if thetime >= tout(kout) 
        kout = kout + 1; 
        thetout = [thetout thetime]; 
        wc = [wc theta_new]; 
    end 
end 
r1 = wc(40,:)'; 
r2 = wc(116,:)'; 
r3 = wc(191,:)'; 
r4 = wc(271,:)'; 
r5 = wc(347,:)'; 
r6 = wc(423,:)'; 
r = [r1 r2 r3 r4 r5 r6]; 
r = r(:); 
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% Single_Obj_inv   identifies hydraulic parameters of porous media   
% 
% This code estimates the hydraulic parameters of partially saturated 
% porous media using a single-objective optimization approach. The code uses 
% 1) the Osborne-More adapted version of the Levenberg-Marquardt 
% optimization  algorithm, 2) an adaptive strategy to build the Jacobian  
% matrix, and 3) a mixed termination criterion. The code calls the m-file  
% forward_func which solves the mixed form Richards' equation. 
%   
% Inputs consist of: experimental time/space series of fluid content of a  
% porous medium and initial guesses for parameters to be optimized. 
 
% Outputs are the optimized values of the Mualem-van genuchten hydraulic  
% parameters 
 
% Copyright 2006 Kouroush Sadegh Zadeh  
% Bioengineering Department, University of Maryland at College Park, MD   
 
 
 
close all 
clear all 
clc 
%==================================================== 
%       Insert Experimental data (Data from Abeel(1984), Table-3, pp:11) 
%==================================================== 
tout = [1 4 10 20 40 100];              % day 
theta_exp = [ 0.29345   0.31176   0.31889   0.33100   0.33100   0.33100 
    0.24628   0.26198   0.26691   0.28739   0.33100   0.33100 
    0.21935   0.23352   0.23730   0.25538   0.25538   0.29250 
    0.20095   0.21407   0.21710   0.23356   0.23932   0.25580 
    0.18409   0.19623   0.19862   0.21360   0.22427   0.23491 
    0.16396   0.17492   0.17659   0.18981   0.20583   0.21368]; 
h_exp = 100*[0.27 0.25   0.17   0   0   0 
    0.91   0.79   0.64   0.44   0.00   0.00 
    1.40   1.19   0.99   0.85   0.66   0.62 
    1.89   1.60   1.35   1.26   1.05   0.92 
    2.37   2.00   1.70   1.66   1.45   1.22 
    3.15   2.65   2.30   2.30   1.95   1.51];   % cm 
theta_exp = theta_exp(:); 
h_exp = h_exp(:); 
N1 = length(theta_exp); 
N2 = length(h_exp); 
N = N1 + N2; 
%==================================================== 
%                       Start optimization 
%==================================================== 
% parms_vec = [Ks a n tr b] 
parms_vec = [16.32  0.0297  1.5781  0.098  -2]; 
ks = parms_vec(1);               % Saturated Hydraulic Conductivity (cm/day) 
a = parms_vec(2);                % a in van Genuchten's model (1/cm) 
n = parms_vec(3);                % n in van Genuchten's model 
tr = parms_vec(4);               % Residual water content 
b = parms_vec(5);                % Pore connectivity index in Mualem's model 
ts = 0.3310;                      % Saturated water content (measured) 
maxerror = 1e-3; 
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deltaRMSE = 100*maxerror; 
RMSE = 1000; 
grad = 100*[1 1 1 1 1]; 
lambda = 1; 
p = 5;                                % Number of parameters to be optimized 
D = zeros(p);                     % D: positive definite scaling matrix 
parms_vec_new = parms_vec'; 
while (abs(grad) > (0.01*maxerror*[1 1 1 1 1])) & (deltaRMSE > 1e-4) 
    parms_vec = parms_vec_new; 
    theta = forward_func(tout,ks,ts,tr,a,n,b); 
    r = theta_exp - theta; 
    dks = 0.01*ks; 
    da = 0.01*a; 
    dn = 0.01*n; 
    dtr = 0.01*tr; 
    db = 0.01*b; 
    v1 = -(forward_func(tout,ks+dks,ts,tr,a+da,n,b) - theta)/dks; 
    v2 = -(forward_func(tout,ks,ts,tr,a+da,n,b) - theta)/da; 
    v3 = -(forward_func(tout,ks,ts,tr,a,n+dn,b) - theta)/dn; 
    v4 = -(forward_func(tout,ks,ts,tr+dtr,a,n,b) - theta)/dtr; 
    v5 = -(forward_func(tout,ks,ts,tr,a,n,b+db) - theta)/db; 
    j = [v1 v2 v3 v4 v5]; 
    grad = (j'*r)'; 
    for i=1:p; 
        D(i,i) = max(norm(j(:,i)),D(i,i)); 
    end 
    oldRMSE = RMSE; 
    RMSE =  sqrt(r'*r/(N-p)); 
    deltaRMSE = abs(RMSE - oldRMSE); 
    if RMSE > oldRMSE 
        parms_vec = parms_vec; 
        lambda = 1.25*lambda; 
    else 
        lambda = 0.2*lambda; 
    end 
    B = [j ; sqrt(lambda)*D]; 
    q = [-r ; zeros(5,1)]; 
    deltap = B\q; 
    parms_vec_new = parms_vec + deltap; 
    [parms_vec_new' RMSE lambda] 
    minparms = [1.1 1e-4 1.002 1e-4 -25]; 
    maxparms = [500 0.8 150 0.75*ts 25]; 
    parms_vec_new = max(min(real(parms_vec_new),maxparms'),minparms'); 
    ks = parms_vec_new(1); 
    a = parms_vec_new(2); 
    n = parms_vec_new(3); 
    tr = parms_vec_new(4); 
    b = parms_vec_new(5); 
end 
while (abs(grad) > (1e-3*maxerror*[1 1 1 1 1])) & (deltaRMSE > 1e-6) 
    parms_vec = parms_vec_new; 
    theta = forward_func(tout,ks,ts,tr,a,n,b); 
    r = (theta_exp - theta); 
    var1 = -(forward_func(tout,ks+dks,ts,tr,a,n,b)... 
           -forward_func(tout,ks-dks,ts,tr,a,n,b))/(2*dks); 
    var2 = -(forward_func(tout,ks,ts,tr,a+da,n,b)... 
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           -forward_func(tout,ks,ts,tr,a-da,n,b))/(2*da); 
    var3 = -(forward_func(tout,ks,ts,tr,a,n+dn,b)... 
           -forward_func(tout,ks,ts,tr,a,n-dn,b))/(2*dn); 
    var4 = -(forward_func(tout,ks,ts,tr+dtr,a,n,b)... 
           -forward_func(tout,ks,ts,tr-dtr,a,n,b))/(2*tr); 
    var5 = -(forward_func(tout,ks,ts,tr,a,n,b+db)... 
           -forward_func(tout,ks,ts,tr,a,n,b-db))/(2*db); 
    j = [var1 var2 var3 var4 var5]; 
    for i=1:p; 
        D(i,i) = max(norm(j(:,i)), D(i,i)); 
    end 
    oldRMSE = RMSE; 
    RMSE = sqrt(r'*r/(N-p)); 
    deltaRMSE = abs(RMSE - oldRMSE); 
    if RMSE > oldRMSE 
        parms_vec = parms_vec; 
        lambda = 1.25*lambda; 
    else 
        lambda = 0.7*lambda; 
    end 
    B = [j ; sqrt(lambda)*D]; 
    q = [-r ; zeros(5,1)]; 
    deltap = B\q; 
    parms_vec_new = parms_vec + deltap; 
    minparms = [1.5 1e-5 1.02 1e-4 -35]; 
    maxparms = [500 0.5 6 0.8*ts 35]; 
    parms_vec_new = max(min(real(parms_vec_new),maxparms'),minparms'); 
    ks = parms_vec_new(1); 
    a = parms_vec_new(2); 
    n = parms_vec_new(3); 
    tr = parms_vec_new(4); 
    b = parms_vec_new(5); 
    grad = (j'*r)' 
    [parms_vec_new' RMSE lambda] 
end 
ks = parms_vec_new(1) 
a = parms_vec_new(2) 
n = parms_vec_new(3) 
tr = parms_vec_new(4) 
b = parms_vec_new(5) 
H = j'*j + lambda*(D'*D) 
display(['gradient:']) 
grad 
norm(grad) 
display(['Eigenvalues of Hessian:']) 
eig(H) 
display(['Eigenvalues of JJ:']) 
eig(j'*j) 
%==================================================== 
%                           Goodness_of_fit indices: 
%==================================================== 
depth = [0.4 1.16 1.91 2.71 3.47 4.23];            % meter 
tout = [1 4 10 20 40 100];                        % day 
h = VG_h_theta(theta,ts,tr,a,n) 
theta = reshape(theta,length(tout),length(depth)); 
t_exp = reshape(theta_exp,length(tout),length(depth)); 
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head = reshape(h,length(tout),length(depth)); 
h_exp = reshape(h_exp,length(tout),length(depth)); 
r1 = theta - t_exp; 
r2 = head - h_exp; 
Se = r'*r/(N-p); 
for i = 1:length(depth) 
    R(i) = 1 - Se/var(theta(:,i)); 
end 
Coef_det_overal = 1-Se/(mean(var(theta_exp(:)))); 
C1 = Se*inv(j'*j); 
for i = 1:p; 
    for k = 1:p; 
        A1(i,k) = C1(i,k)/((sqrt(C1(i,i)))*sqrt(C1(k,k))); 
    end 
end 
prob95 = 0.05; 
prob99 = 0.01; 
df = N - 1; 
for ii = 1:p 
    conf_95(ii,ii) = (tinv(1-prob95/2,df))*sqrt(C1(ii,ii)); 
    conf_99(ii,ii) = (tinv(1-prob99/2,df))*sqrt(C1(ii,ii)); 
end 
%==================================================== 
%               Summary of goodness-of-fit indices 
%==================================================== 
residusl_mean = mean(r) 
residual_variance = var(r) 
display(['Coefficients of determination for different days']) 
[R] 
display(['Overall Coefficient of determination']) 
[Coef_det_overal] 
display(['Parameter Covariance Matrix']) 
C1 
display(['Parameter Correlation Matrix']) 
A1 
display(['variance of optimized parameters: ks,a,n,tr,b']) 
[diag(C1(1,1)) diag(C1(2,2)) diag(C1(3,3)) diag(C1(4,4)) diag(C1(5,5))] 
display(['%95 confidence intervals on optimized parameters: ks,a,n,tr,b']) 
[ks - conf_95(1,1) ks + conf_95(1,1)] 
[a - conf_95(2,2) a + conf_95(2,2)] 
[n - conf_95(3,3) n + conf_95(3,3)] 
[tr - conf_95(4,4) tr + conf_95(4,4)] 
[b - conf_95(5,5) b + conf_95(5,5)] 
display(['%99 confidence intervals on optimized parameters: ks,a,n,tr,b']) 
[ks - conf_99(1,1) ks + conf_99(1,1)] 
[a - conf_99(2,2) a + conf_99(2,2)] 
[n - conf_99(3,3) n + conf_99(3,3)] 
[tr - conf_99(4,4) tr + conf_99(4,4)] 
[b - conf_99(5,5) b + conf_99(5,5)] 
 
%==================================================== 
%                               Plot the results 
%==================================================== 
figure(1) 
plot(t_exp(1,:),-depth,'*k') 
hold on 
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plot(t_exp(2,:),-depth,'ok') 
plot(t_exp(3,:),-depth,'pk') 
plot(t_exp(4,:),-depth,'vk') 
plot(t_exp(5,:),-depth,'sk') 
plot(t_exp(6,:),-depth,'dk') 
plot(theta(1,:),-depth,'r') 
plot(theta(2,:),-depth,'r') 
plot(theta(3,:),-depth,'r') 
plot(theta(4,:),-depth,'r') 
plot(theta(5,:),-depth,'r') 
plot(theta(6,:),-depth,'r') 
ylabel('Soil Depth, (meter)') 
xlabel('Volumetric Soil Moisture Content, (cm^3cm^-^3)') 
legend('day 1','day 4','day 10','day 20','day 40','day 100','model') 
axis([0.05 ts+0.02 -4.5 0]) 
 
figure(2) 
plot(-h_exp(1,:)/100,-depth,'*k') 
hold on 
plot(-h_exp(2,:)/100,-depth,'ok') 
plot(-h_exp(3,:)/100,-depth,'pk') 
plot(-h_exp(4,:)/100,-depth,'vk') 
plot(-h_exp(5,:)/100,-depth,'sk') 
plot(-h_exp(6,:)/100,-depth,'dk') 
plot(-head(1,:)/100,-depth,'r') 
plot(-head(2,:)/100,-depth,'r') 
plot(-head(3,:)/100,-depth,'r') 
plot(-head(4,:)/100,-depth,'r') 
plot(-head(5,:)/100,-depth,'r') 
plot(-head(6,:)/100,-depth,'r') 
ylabel('Soil Depth, (meter)') 
xlabel('Soil Water Pressure Head, (meter)') 
legend('day 1','day 4','day 10','day 20','day 40','day 100','model') 
axis([-4.5 0.15 -4.5 0]) 
 
figure(3) 
plot(theta(:),r1(:),'+') 
ylabel('Residuals, (cm^3/cm^3)') 
xlabel('Volumetric Soil Moisture Content(\theta), (cm^3/cm^3)') 
 
figure(4) 
plot(head(:),r2(:),'+') 
ylabel('Residuals, (m)') 
xlabel('Soil Water Matric Potential Head, (m)') 
 
hold off 



 304  

% VGK(h,ks,a,n,b) -- unsaturated hydraulic conductivity function  
% from the Mualem-van Genuchten's relationship. 
 
function rr = VGK(h,ks,a,n,b) 
m = 1 - 1 ./ n; 
ah = abs(a.*h); 
nu = 1 - ah.^(n-1) ./ (1 + ah.^n).^m; 
rr = ks .* nu.^2 ./ (1+ah.^n).^(m/2); 
 
% VGC(h,ts,tr,a,n)—Soil water capacitance function  
% from the van Genuchten's relationship. 
 
function r1 = VGC(h,ts,tr,a,n) 
h(find (h>-1e-4)) = -1e-4; 
m = 1 - 1 ./ n; 
ah = abs (a.*h); 
nu = ah.^ (n-1) ./ (1 + ah.^n).^(m+1); 
r1 = (n-1).*a.*(ts-tr).*nu; 
 
% VG_h_theta(theta,ts,tr,a,n) -- Soil water matric potential head from the van Genuchten's relationship. 
 
function r = VG_h_theta(theta,ts,tr,a,n) 
m = 1 - 1/ n; 
find (theta <=tr) = tr + 1e-4; 
se = (theta-tr)/(ts-tr); 
r = ((se.^(-1/m) - 1).^1/n)/a; 
 
 
% VGTHETA(h,ts,tr,a,n) -- Soil water contentfrom the van Genuchten's relationship. 
 
function r = VGTHETA(h,ts,tr,a,n) 
m = 1 - 1 ./ n; 
ah = abs(a.*h); 
r = (ts-tr)./(1 + ah.^n).^m + tr; 
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