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Abstract: The struggle between humans and pathogens has taken and is continuing to take countless
lives every year. As the misusage of conventional antibiotics increases, the complexity associated with
the resistance mechanisms of pathogens has been evolving into gradually more clever mechanisms,
diminishing the effectiveness of antibiotics. Hence, there is a growing interest in discovering novel
and reliable therapeutics able to struggle with the infection, circumvent the resistance and defend
the natural microbiome. In this regard, nature-derived phenolic compounds are gaining consider-
able attention due to their potential safety and therapeutic effect. Phenolic compounds comprise
numerous and widely distributed groups with different biological activities attributed mainly to
their structure. Investigations have revealed that phenolic compounds from natural sources exhibit
potent antimicrobial activity against various clinically relevant pathogens associated with microbial
infection and sensitize multi-drug resistance strains to bactericidal or bacteriostatic antibiotics. This
review outlines the current knowledge about the antimicrobial activity of phenolic compounds from
various natural sources, with a particular focus on the structure-activity relationship and mechanisms
of actions of each class of natural phenolic compounds, including simple phenols, phenolic acids,
coumarin, flavonoids, tannins, stilbenes, lignans, quinones, and curcuminoids.

Keywords: microbiota; multidrug resistance; alternative therapeutics; natural compounds; phenolic
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1. Introduction

The enthusiasm of antimicrobial discovery has sustained a defeat by the growing
resistance of bacterial strains by virtue of the over usage and maladministration of antibi-
otics for decades [1,2]. Antibiotic resistance stands as an increasing public health concern
that causes nearly 50,000 deaths annually across Europe and the US [3]. Additionally,
according to United Nations Foundation, in the upcoming years, the scenario may pose
dramatic consequences to human health worldwide. Thus, considerable efforts have been
devoted to creating novel antimicrobial agents able to combat microbial infections and
also overcome the antibiotic resistance reported for nearly every antibiotic used in clinical
practice [4]. Besides the fabrication of new antibiotics, which is time-consuming, novel
alternative therapeutic strategies are required to turn the tide in this battle as new resistance
will arise, and there are no treatments on the horizon for particular infections. Therefore,
antibiotic-resistance breakers are urgently needed to fill the void in the development of
novel antibiotics [5]. To achieve this, priority antibiotics and bacteria must be clearly
identified, along with an extensive survey to recognize and categorize potential resistance
breakers for diverse bacterial species and strains. Nevertheless, it is undoubtful that the
key feature to this challenge must surely be beyond the simple development of innovative
drugs and also include a multidisciplinary culture of change [3].
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Antibiotics and/or antimicrobial agents treat infections by affecting the growth or
viability of microbial cells. Bactericidal compounds induce bacterial cell death via inhibit-
ing cell wall synthesis, cell membrane function, or protein/enzyme synthesis, whereas
bacteriostatic compounds suppress bacterial cellular activity and growth [6]. The concept of
bactericidal and bacteriostatic outlines the indications, mechanisms, and contraindications
of antimicrobial agents [7]. Nevertheless, over time, microbial species such as bacteria and
fungi developed the ability to defeat the mechanisms of conventional antibiotics being
designed to kill them. The mechanisms by which microbial pathogens acquire resistance to
antibiotics can be summarized as follows: (i) changing the cellular permeability to inhibit
the entrance of antibiotics into the microbial cells, (ii) changing the molecular targets of
antibiotics so that they are no longer active (iii) enzymatic modification of antibiotics to
make them nonfunctioning, and (iv) expression of efflux pumps to pump out antibiotics
from the cell [8]. At this point, natural-based compounds have the ability to interact with
the microbial cell through multiple antimicrobial mechanisms, making them a top-interest
candidate in combating microbial infections and preventing the emergence of drug-resistant
strains [9,10]. In the scope of this view, this review will be concentrated on the potential
efficiency of natural phenolic compounds to prevent microbial infections owing to their
remarkable features.

This review provides an in-depth survey of the up-to-date knowledge of a broad
assortment of natural phenolic compounds as possible alternatives for antibiotics. For
each class, the antimicrobial mechanism and structure-activity relationship of potential
antimicrobial agent candidates from natural sources will be highlighted with a particular
focus. In addition, a detailed list and description of the prominent and studied natural
phenolic compounds with potential against clinically relevant pathogens will be specified,
which may serve different research dedicated to discovering and resupplying these natural
compounds with active antimicrobial properties. Lastly, we will also address the main
hurdles, future prospects, and issues to overcome.

2. Natural Phenolic Compounds against Microbes

Phenolic compounds are molecules with at least one phenol unit that can be obtained
from bacteria, fungi, and marine organisms, but mostly from plants [11,12]. Based on
their chemical structure, phenolic compounds are subdivided into diverse subcategories,
including simple phenols, phenolic acids, coumarins, flavonoids, tannins, stilbenes, lignans,
quinones, and curcuminoids [13,14]. Natural phenolic compounds exhibit broad-range
biological activities, including antibacterial, antifungal, anti-inflammatory, antiviral, hepato-
protective, antithrombotic, anticarcinogenic, antiallergic, and antioxidant actions [12,15–22].
Therefore, phenolics are considered potential therapeutic agents against diabetes, cancer,
cardiovascular dysfunctions, neurodegenerative diseases, inflammatory diseases, and anti-
aging [23,24]. A summarized catalogue of phenolics and polyphenolics compounds with
antimicrobial properties against a wide panel of microorganisms is disclosed in Table 1.

2.1. Simple Phenols and Phenolic Acids

Simple phenols are described as compounds presenting an aromatic ring with one or
more hydroxyl groups attached [25]. Representative examples of simple phenols include
catechol, hydroquinone, resorcinol, and phloroglucinol, as illustrated in Figure 1 [26].
Although these compounds are hardly found alone in plants, they usually appear joint with
either cinnamic acids or benzoic acid [25,27]. The main benefit of phenolic acids is their
metabolizing capability by natural microbes [27]. Phenolic acids encompass a carboxylic
acid linked to an aromatic compound, a phenol [28]. According to their structure, phenolic
acids comprise two key classes, including benzoic acid and cinnamic acid derivatives [29].
Hydroxycinnamic acids are common phenolic acids within plant species and are generally
derived from cinnamic acid [30]. These natural compounds can be found as their esters,
glycosides, and/or conjugated with proteins [31,32]. The utmost common hydroxycinnamic
acids derivatives are caffeic acid, ferulic acid, and coumaric acid, as shown in their chemical



Future Pharmacol. 2022, 2 462

structure in Figure 1 [25]. Hydroxybenzoic acid (HBA) derivatives are phenolic compounds
with a basic structure of C6-C1. Although HBAs can be identified as free acids, they mainly
occur in conjugated form, generally as esters [33]. The basic skeleton structure of benzoic
acid and the chemical structure of some representative examples of benzoic acid derivatives
isolated from natural sources are shown in Figure 1.
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Figure 1. Representative chemical structures of simple phenol, benzoic acid derivatives and cinnamic
acid derivatives.

As previously mentioned, even though phenolic acids and their derivatives are widely
isolated from the plant kingdom, recent investigations indicated their presence in other
sources, including marine-derived microorganisms, plant-derived endophytic fungus, ma-
rine organisms, and bacterium species [34–37]. Several studies have been conducted to
emphasize the importance of phenolic compounds in the ability to develop resistance in
multidrug-resistant bacteria. As a representative example, two phenolic acids (vanillic acid
as a hydroxybenzoic acid derivative and 2-Hydroxycinnamic acid as a hydroxycinnamic
acid derivative) and an antibiotic (Vancomycin) were exposed continuously to Methicillin-
resistant Staphylococcus aureus (MRSA) and methicillin-susceptible Staphylococcus aureus
(MSSA) bacteria. The resistance ability was assessed by ascertaining the MIC values of
the tested compounds before, during, and after exposure of MRSA and MSSA bacteria to
sub-inhibitory concentrations of these compounds. These data demonstrated that MRSA
and MSSA did not acquire resistance to both vanillic acid and 2-hydroxycinnamic acid; by
contrast, vancomycin caused the acquisition of resistance of both strains [38]. In another
study, benzoic acid, purified from the endophytic fungus strain Neurospora crassa, dis-
played prominent antimicrobial activity against six different multidrug-resistant (MDR)
clinical pathogens (see Table 1) and also confirmed its nontoxicity [39]. These findings indi-
cate the promising aspect of phenolic acids in preventing the emergence of new resistant
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bacterial strains and combating with the MDR pathogens. On the other hand, a clinical
study on Staphylococcus aureus (S. aureus) strains documented that caffeic acid exhibited a
promising antibacterial effect with the MICs ranging between 256 µg/mL and 1024 µg/mL
against reference strains and clinical isolates of MRSA and MSSA from infected wounds. In
addition, the study verified that the combination of caffeic acid with the antibiotics (ery-
thromycin, clindamycin, and cefoxitin) tested caused synergistic activity by sensitizing the
bactericidal and bacteriostatic action of antibiotics. It should be noted that the combination
of caffeic acid with vancomycin did not show a prominent difference [40].

Research towards comprehending antibacterial mechanisms functioning at the molec-
ular level with the purpose of exploiting these bioactive compounds in clinical settings
has also advanced. To date, many studies have documented that phenolic acids and their
derivatives show antimicrobial effects through bactericidal actions. This can be explained
mainly by the fact that phenolic acids are weak organic acids whose lipophilicity differs
from each other. The dissociation constant and lipophilicity affect the solubility of the
compounds in microbial membranes and, thus, their antimicrobial activity [41]. Usually,
the undissociated forms of the phenolic acids cross the cell membrane through passive
diffusion, acidifying the cytoplasm by disrupting the cell membrane, causing the outflow of
essential intracellular constituents and resulting in microbial cell death [41–43]. Moreover,
Lou et al. [44] also assessed the antibacterial activity of p-coumaric acid, where it was
discovered that p-coumaric acid triggered the death of bacterial cells by two main mecha-
nisms, disruption of the microbial cell membrane and/or binding to the microbial genomic
DNA. Another study considering the relationship between pH and bacterial growth of
phenolic acids, including chlorogenic acid and the hydroxycinnamic acids, caffeic acid,
p-coumaric acid, and ferulic acid, reported that all tested hydroxycinnamic acids had a bac-
tericidal effect at pH 4.5 and bacteriostatic effect at higher pH against Listeria Monocytogenes
(L. monocytogenes) [45]. However, further studies on their action mechanisms are needed to
prove the existence of possible bacteriostatic effects.

The antimicrobial actions of phenolic acids depend on the chain length, and number
and position of substituents on the core benzene ring [46]. The antibacterial behavior of
caffeic acid alkyl esters tends to increase with the increase in alkyl chain length. However,
in the presence of a long alkyl chain, their antimicrobial activity diminishes due to the
possible steric hindrance [47,48]. As mentioned earlier, due to their partly lipophilic
character, the ability of these compounds to acidify the cytoplasm by passing through the
cell membrane by passive diffusion depends on the number of hydroxyls (–OH), methoxy
(–OCH3), carboxyl (−COOH), functional groups and saturation of alkyl side chain [27,43].

2.2. Coumarin

Coumarin (1-benzopyran-2-one) derivatives are chemical compounds of the benzopy-
rone class, comprised of fused benzene and α-pyrone rings, that can be discovered in
bacteria, fungi, and plants [140]. Coumarin is poorly water-soluble; however, thanks to its
4-hydroxy substitution, the compound is water-soluble in slightly alkali conditions [141]. To
date, over 1300 coumarin types have been described and obtained through plant extraction
or microbial synthesis [142,143]. Natural coumarins can be categorized into four primary
classes, including simple coumarins, pyrano coumarins, furanocoumarins, and bicoumarins
(dicoumarin), as illustrated in Figure 2 [144,145]. These compounds are mostly isolated
from plants, nonetheless, some of them can also be produced by microorganisms [146].
The most prominent coumarin members obtained by microbial sources are novobiocin,
clorobiocin, and coumermycin from Streptomyces species. Novobiocin, coumermycin A1
and chlorobiocin are amino-coumarin antibiotics with an antibacterial mechanism of ac-
tion based on bacteriostatic action through the bacterial DNA gyrase inhibition [147,148].
Novobiocin was confirmed as an effective antibiotic for the handling of infections trig-
gered by multiple resistant Gram-positive bacteria, specifically Staphylococcus epidermidis
(S. epidermidis) and S. aureus [149].
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Table 1. Minimum inhibitory concentration (µg/mL) of phenolic and polyphenolic compounds against different pathogenic microorganisms.

Secondary
Metabolite Class Subclasses Compound Source Microorganism Positive Control Ref.

Gram-Positive
Bacteria

Gram-Negative
Bacteria Fungi Gram-Positive

Bacteria
Gram- Negative

Bacteria Fungi

Phenolic acids

Benzoic acid
derivatives

Benzoic acid Neurospora crassa
(Microorganism) SA a (587) EC a (274), PA a (302) CA a (347),

AN a (570)

Streptomycin
SA a (44),

EC a (210), PA a (210)

Ketoconazole
CA a (200),
AN a (200)

[39]

Gallic acid

Caesalpinia mimosoides
Lamk
(Plant)

SA (1250) Streptomycin
SA (0.16) [49]

Diospyros virginiana L.
(Plant)

LM (40),
SA (10), BC c (25)

EC (40),
ST (10),
PA (25)

AN (30),
AV (10),
AF (25)

Streptomycin
LM (150),
SA (250),
BC c (50),

Streptomycin
EC (100),
ST (50),
PA (50)

Ketoconazole
AN (200),
AV (200),
AF (200)

[50]

Mezoneuron
benthamianum

(Plant)
SA c (100) EC c (25), PA c (100) - - [51]

4- Hydroxybenzoic
acid

Ganoderma lucidum
(Plant)

LM (30),
SA (3),
BC (3)

EC (30),
ST (3),
PA (3)

AN (30),
AV (3),

AF c (120)

Streptomycin
LM (170),
SA (40),
BC (90)

Streptomycin
EC (170),
ST (170),
PA (170)

Ketoconazole
AN (200),
AV (200),
AF c (200)

[52]

4-(2′R,
4′-dihydroxybutoxy)

benzoic acid

Penicillium sp. of
Nerium indicum

(Microorganism)
EC (125), PA (125)

Streptomycin
sulfate

EC (7.81),
PA (7.81)

[53]

Vanillic acid Stenoloma chusanum
(Plant)

CA (50),
AN (100),

TR (50)
- [54]

Cinnamic acid
derivatives

Cinnamic acid Ganoderma lucidum
(Plant)

LM (7),
SA (1.5),
BC (1.5)

EC (7),
ST (1.5),
PA (0.7)

AN (30),
AV (7),
AF (7)

Streptomycin
LM (170),
SA (40),
BC (90)

Streptomycin
EC (170),
ST (170),
PA (170)

Ketoconazole
AN (200),
AV (200),
AF (200)

[52]

Caffeic acid Nauclea latifolia leaf
(Plant) SA (5000) EC (625), PA (2500) Streptomycin

SA (125)

Streptomycin
EC (125),
PA (500)

[55]

p-Coumaric acid Stereospermum zenkeri
(Plant) SA a (37.50) Ampicillin

SA a (0.80) [56]

trans-o-coumaric acid
Distichochlamys

benenica
(Plant)

SA (249.5) EC (1001.4),
PA (1001.4)

Ciprofloxacin
SA (0.215)

Ciprofloxacin
EC (0.013),
PA (0.013)

[57]
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Table 1. Cont.

Secondary
Metabolite Class Subclasses Compound Source Microorganism Positive Control Ref.

Gram-Positive
Bacteria

Gram-Negative
Bacteria Fungi Gram-Positive

Bacteria
Gram- Negative

Bacteria Fungi

Coumarins Simple coumarins

Umbelliferone

Loeselia Mexicana
(Plant)

CA (50),
TR (25)

Nystatin
CA (8),
TR (-)

Miconazole
CA (-), TR (4)

[58]

Ferulago Species
(Plant) SA (250) EC (500), PA (250) CA (125) Streptomycin

SA (6.25)

Streptomycin
EC (25),
PA (25)

Ketoconazole
CA (25)

Miconazole
CA (3)

[59]

Osthol

Magydaris tomentosa
(Plant)

SA (64),
SE (32) EC (256), PA (128)

Cefotaxime
SA (2),
SE (0.1)

Cefotaxime
EC (0.1),
PA (1.6)

[60]

Prangos hulusii
(Plant)

SA (125),
MRSA c (16)

Cefotaxime
SA (2), MRSA c (16) [61]

Prangos pabularia
(Plant) MRSA (31.25) PA (31.25) - - [62]

Ferulago Species
(Plant) SA (500) EC (500), PA (250) CA (500) Streptomycin

SA (6.25)
Streptomycin

EC (25), PA (25)

Ketoconazole
CA (25)

Miconazole
CA (3)

[59]

Novobiocin

Nocardiopsis gilva
(Microorganism) SA (64) Kanamycin

SA (4) [63]

Streptomyces strain
(Microorganism) MRSA (0.25) - [64]

Ulopterol

Toddalia asiatica (L.)
Lam.

(Plant)

SA (125),
MRSA c (250),

SE (15.6)

EC c (62.5–250),
ST (125),
SF (62.5),
PA (125)

CA (250),
AF (15.6),
TR (250)

Streptomycin
SA (6.25), MRSA c

(6.25), SE (25)

Streptomycin
EC c (25),
ST (30),

SF (6.25),
PA (25)

Ketoconazole
CA (25),

AF (<12.5),
TR (<12.5)

[65]

Ferulago Species
(Plant) SA (500) EC (500), PA (500) CA (250) Streptomycin

SA (6.25)

Streptomycin
EC (25),
PA (25)

Ketoconazole
CA (25)

Miconazole
CA (3)

[59]
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Table 1. Cont.

Secondary
Metabolite Class Subclasses Compound Source Microorganism Positive Control Ref.

Gram-Positive
Bacteria

Gram-Negative
Bacteria Fungi Gram-Positive

Bacteria
Gram- Negative

Bacteria Fungi

Furanocoumarins

Peucedanin Peucedanum luxurians
(Plant) SA (1500), SE (1750) EC (2750), PA (1400) Netilmicin

SA (4), SE (4)

Netilmicin
EC (10),
PA (88)

[66]

Oxypeucedanin
hydrate

Angelica pancicii Vandas
(Apiaceae) (Plant) LM (1000), SA (1000) EC (1000), ST (1000),

PA (1000)

Streptomycin
LM (170),

SA (40)

Streptomycin
EC (170),
ST (170),
PA (170)

[67]

Angelica lucida
(Plant)

SA (650),
SE (600) EC (650), PA (810) Netilmicin

SA (4), SE (4)

Netilmicin
EC (10),

PA (3)
[68]

(R)-(+) oxypeucedanin
hydrate

Ficus exasperata
(Plant)

MRSA c (78.12), BC c

(9.76)
EC b,c (39.06),
PA b,c (156.25) CA c (39.06)

Gentamicin
MRSA c (4.88),

BC c (4.88)

Gentamicin
EC b,c (4.88), PA b,c

(9.76)

Nystatin
CA c (19.53) [69]

Imperatorin

Heracleum
mantegazzianum

Sommier and Levier
(Apiaceae)

(Plant)

SA (250–1000),
BC (500),
SE (1000)

EC (1000), ST (1000),
PA (1000) CA (250) - - - [70]

Magydaris tomentosa
(Plant)

SA (32),
SE (32)

EC (32),
PA (64)

Cefotaxime
SA (2),
SE (0.1)

Cefotaxime
EC (0.1),
PA (1.6)

[60]

Angelica lucida
(Plant)

SA (45),
SE (35)

EC (25),
PA (70)

Netilmicin
SA (4), SE (4)

Netilmicin
EC (10),

PA (3)
[68]

Prangos pabularia
(Plant) MRSA (62.5) PA (65.5) - - [62]

5-methoxy-3-(3-methyl-
2,3-

Dihydroxybutyl)
psoralen

Dorstenia turbinata
(Plant) MRSA c (39.06) EC b,c (78.12),

PA b,c (39.06)

CA c (19.53),
CG c (39.06),
TR c (9.76)

Gentamycin
MRSA c (9.76)

Gentamycin
EC b,c (4.88),
PA b,c (9.76)

Nystatin
CA c (19.53) [71]

Pyrano coumarins Agasyllin

Ferulago campestris
(Plant) SA a,c (64) PA a,c (125) - Cefotaxime

SA a,c (resistant)
Cefotaxime
PA a,c (32) [72]

Zosima absinthifolia
(Plant) SA (5000) EC (5000) Gentamycin

SA (8)
Gentamycin

EC (8) [73]

Bi-coumarin
(Dicoumarin) Daphnoretin Loeselia mexicana

(Plant)

CA (50),
TR (25),

AN (100)

Nystatin
CA (8), TR (-)

AN (-)
Miconazole

CA (-), TR (4)
AN (8)

[58]



Future Pharmacol. 2022, 2 467

Table 1. Cont.

Secondary
Metabolite Class Subclasses Compound Source Microorganism Positive Control Ref.

Gram-Positive
Bacteria

Gram-Negative
Bacteria Fungi Gram-Positive

Bacteria
Gram- Negative

Bacteria Fungi

Flavonoids

Flavonols

Myricetin Diospyros virginiana L.
(Plant)

LM (10),
SA (5),

BC c (2.5)

EC (15),
ST (15),
PA (150)

AN (5),
AV (2.5),
AF (2.5)

Streptomycin
LM (150),
SA (250),
BC c (50)

Streptomycin
EC (100),
ST (50),
PA (50)

Ketoconazole
AN (200),
AV (200),
AF (200)

[50]

Quercetin

Diospyros virginiana L.
(Plant)

LM (10),
SA (1),

BC c (2.5)

EC (15),
ST (15),
PA (200)

AN (5),
AV (2.5),
AF (2.5)

Streptomycin
LM (150),
SA (250),
BC c (50)

Streptomycin
EC (100),
ST (50),
PA (50)

Ketoconazole
AN (200),
AV (200),
AF (200)

[50]

Nauclea latifolia
(Plant) SA (156) EC (2500), PA (1250) Streptomycin

SA (125)

Streptomycin
EC (125),
PA (500)

[55]

Euphorbia schimperiana
(Plant)

LM (450), SA (420),
BC (430) EC (430), PA (420) - - [74]

Macaranga conglomerate
(Plant) SA (500) EC (500), PA (500) Ciprofloxacin

SA (15.6)

Ciprofloxacin
EC (1.0),
PA (15.6)

[75]

Monanthotaxis littoralis
(Plant) SA (16) EC (16),

PA (16)
CA (16),
CN (8)

Vancomycin
SA (0.5)

Vancomycin
EC (32),
PA (16)

Fluconazole
CA (1.0),
CN (2.0)

[76]

Flavones

6,7,4′-trimethyl flavone Wulfenia amherstiana
(Plant) SA (127.06–128.94) PA (510.98–513.02)

CA
(127.37–128.63),

CG
(255.18–256.82),

FS
(511.02–512.98)

- - - [77]

Luteolin Diospyros virginiana L.
(Plant)

LM (1.5), SA (1.5),
BC c (2.5)

EC (15),
ST (20),
PA (200)

AN (10),
AV (5),
AF (2.5)

Streptomycin
LM (150),
SA (250),
BC c (50)

Streptomycin
EC (100),
ST (50),
PA (50)

Ketoconazole
AN (200),
AV (200),
AF (200)

[50]

Flavanols
(Flavan-3-ols)

(+)-Catechin-3′-O-
rhamnopyranoside

Neocarya macrophylla
(Sabine) Prance

(Chrysobalanaceae)
(Plant)

SA c (25) PA c (25), EC c (25) CA c (6.25) - - - [78]

(−)-Catechin Prunus avium L.
(Plant)

LM (100), SA a (100),
BC a (100) EC (100) - - [79]
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Table 1. Cont.

Secondary
Metabolite Class Subclasses Compound Source Microorganism Positive Control Ref.

Gram-Positive
Bacteria

Gram-Negative
Bacteria Fungi Gram-Positive

Bacteria
Gram- Negative

Bacteria Fungi

Isoflavones

Myrsininone A Ficus auriculata (Plant) BC (2.03), SE (0.51) EC (2.03), PA (4.06)
Streptomycin sulfate

BC (0.23),
SE (0.23)

Streptomycin
sulfate

EC (0.45),
PA (0.45)

[80]

Daidzein Spatholobus parviflorus
(Plant) BC (64) PA (128) Vancomycin

BC (0.25)
Gentamycin

PA (1.0) [81]

Lupalbigenin Maclura cochinchinensis
(Lour.) Corner (Plant) SA (1), MRSA (1) CA (4) Vancomycin

SA (0.5), MRSA (1.0)
Ampicillin
CA (0.25) [82]

Flavanones
Lupinifolin Derris reticulata Craib

(Plant)
SA (12.5), BC (12.5),

SE (25)

Penicillin G
SA (0.05),
BC (ND),
SE (0.05)

[83]

7-O-(2,2-dimethylallyl)-
aromadendrin

Maclura cochinchinensis
(Lour.) Corner (Plant) SA (32), MRSA (32) CA (64) Vancomycin

SA (0.5), MRSA (1.0)
Ampicillin
CA (0.25) [82]

Tannins

Gallotannins Penta-O-galloylglucose Rhus trichocarpa Miquel
(Plant)

SA (64–128),
MRSA (64–128),
BC (32), SE (32)

CA (64)

Vancomycin
SA (0.25–1), MRSA

(0.25–1),
BC (>64), SE (1)

Vancomycin
CA (32) [84]

Ellagitannins

Punicalagin Punica granatum L.
(Plant)

SA (0.6),
SE (0.6)

EC (1.2),
PA (0.6) CA (1.2) - - - [85]

3,3′-di-O-methylellagic
acid

Euphorbia schimperiana
(Plant)

LM (450), SA (450),
BC (450) EC (450), PA (430) - - [74]

Isorugosins B Liquidambar formosana
(Plant) MRSA (32.46–63.96) Oxacillin

(128.05–256.1) [86]

Vescalagin Cork
(Plant)

SA (500), MRSA (125) PA (1000)
- -

[87]
Castalagin - -

Condensed
tannins

A
type-proanthocyanidin

Quercus ilex
(Plant)

LM (100.72),
SA (100.72),

BC c (100.72)

EC (100.72),
ST (100.72),
PA (100.72)

AN (100.72),
AF (100.72),
AV (100.72)

Streptomycin
LM (150.04),
SA (100.03),
BC c (25.01)

Streptomycin
EC (100.03),
ST (100.03),
PA (100.03)

Ketoconazole
AN (201.94), AF

(201.94), AV
(201.94)

[88]

Phlorotannins

Fucofuroeckol-A Eisenia bicyclis
(Marine algae) CA b,c (512)

Fluconazole
CA b,c

(512–8197)
[89]

Dieckol Ecklonia stolonifera
(Marine algae) MRSA a,c (64–128)

EC (256),
ST (256),
SF (256)

Ampicillin
MRSA a,c (128–512)

Vancomycin
EC (512),
ST (512),
SF (256)

[90]
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Table 1. Cont.

Secondary
Metabolite Class Subclasses Compound Source Microorganism Positive Control Ref.

Gram-Positive
Bacteria

Gram-Negative
Bacteria Fungi Gram-Positive

Bacteria
Gram- Negative

Bacteria Fungi

Stilbenes Stilbene
Monomers

Resveratrol

Mezoneuron
benthamianum

(Plant)
SA c (25) EC c (25), PA c (25),

PA (200) - - [51]

Nauclea pobeguiinii
(Plant)

EC b,c (32–128),
PA a,c (256)

Chloramphenicol
EC b,c (64),
PA a,c (256)

[91]

Gnetum gnemon L.
(Plant) EC (>3000) SC (2000) - - [92]

Bacillus sp. N strain
(Microorganism) SA (32) EC (32),

PA (64) CA (64)

Ciprofloxacin
SA (5)

Cefotaxime
SA (250)

Ciprofloxacin
EC (5),
PA (10)

Cefotaxime
EC (100),
PA (500)

Amphotericin B
CA (50) [93]

Piceatannol

Mezoneuron
benthamianum

(Plant)
SA c (25) EC c (25), PA c (300), - - [51]

Spirotropis longifolia
(Plant)

CA c (2),
CG c (4),
TR c (8)

Fluconazole
CA c (>64),
CG c (8),
TR c (2)

[94]

Pterostilbene Commercial Product
LM (64),
SA (4),
BC (16)

EC (512), PA (512)

Chlorhexidine
LM (8),
SA (32),
BC (8)

Chlorhexidine
EC (32),
PA (32)

[95]

Oxyresveratrol

Spirotropis longifolia
(Plant)

CA c (>64),
CG c (8),
TR c (16)

Fluconazole
CA c (>64),

CG c (8),
TR c (2)

[94]

Morus alba L.
(Plant) TR (500)

Miconazole
nitrat
TR (1)

[96]

Chiricanine A Arachis hypogaea
(Plant) MRSA (12.5) - [97]

3,5-Dihydroxy-4-
isopropylstilbene

Bacillus sp. N strain
(Microorganism) SA (8) EC (>1000),

PA (>1000) CA (24)

Ciprofloxacin
SA (5)

Cefotaxime
SA (250)

Ciprofloxacin
EC (5),
PA (10)

Cefotaxime
EC (100),
PA (500)

Amphotericin B
CA (50) [93]
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Table 1. Cont.

Secondary
Metabolite Class Subclasses Compound Source Microorganism Positive Control Ref.

Gram-Positive
Bacteria

Gram-Negative
Bacteria Fungi Gram-Positive

Bacteria
Gram- Negative

Bacteria Fungi

Photorhabdus
luminescens

(Microorganism)

CN (12),
AF (12) - [98]

Stilbene Dimers

Monalittorin
Monanthotaxis

littoralis
(Plant)

SA (64) EC (65),
PA (64)

CA (16),
CN (16),

Vancomycin
SA (0.5)

Vancomycin
EC (32),
PA (16)

Fluconazole
CA (1.0),
CN (2.0)

[76]

Gnetin D Spirotropis longifolia
(Plant)

CA c (64),
CG c (32),
TR c (8)

Fluconazole
CA c (>64),

CG c (8),
TR c (2)

[94]

Gnetin C Gnetum gnemon L.
(Plant) EC (1000) SC (500) - - [92]

Longistylin A Cajanus cajan (Plant) SA (1.56),
BC (25), MRSA (1.56) EC (>100)

Vancomycin
SA (1.56),

BC (50), MRSA (0.78)

Vancomycin
EC (50) [99]

Monalittorin Monanthotaxis littoralis
(Plant) SA (64) EC (64),

PA (64)
CA (16),
CN (16)

Vancomycin
SA (0.5)

Vancomycin
EC (32),
PA (16)

Fluconazole
CA (1.0),
CN (2.0)

[76]

Stilbene
Oligomers

Rockiol A and
Rockiol B

Paeonia rockii
(Plant) SA (25) EC (200), PA (200) Penicillin G

SA (10)

Penicillin G
EC (20),
PA (10)

[100]

Upunaphenol D Dryobalanops lanceolata
(Plant) SA (45.3), SE (22.7)

EC (>906.9),
ST (>906.9),
SF (453.4)

Chloramphenicol
SA (0.008), SE (0.008)

Chloramphenicol
EC (323.132),
ST (323.132),

SF (0.010)

[101]

Heyneanol A
Vitis thunbergii var.

taiwaniana
(Plant)

SA (2), MRSA (2)

Vancomycin
SA (1),

MRSA (1)
Oxacillin

SA (2),
MRSA (64–128)

[102]
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Table 1. Cont.

Secondary
Metabolite Class Subclasses Compound Source Microorganism Positive Control Ref.

Gram-Positive
Bacteria

Gram-Negative
Bacteria Fungi Gram-Positive

Bacteria
Gram- Negative

Bacteria Fungi

Lignans

Tetrahydrofuran
Lignans

Matairesinol

Centaurea scabiosa
(Plant)

SA (10),
MRSA (1000),

SE (10)

EC (10),
PA (10)

Ciprofloxacin
SA (2.5 × 10−4), MRSA

(2.5 × 10−4),
SE (2.5 × 10−5)

Ciprofloxacin
EC (2.5 × 10−4),

PA (0.0025)
[103]

Centaurea raphanina ssp.
Mixta

(Plant)

AN (100),
AV (100)

Miconazole
AN (1.5),

AV (2)
[104]

Lariciresinol

Rubia philippinensis
(Plant) SA (125) EC (250) - - [105]

Sambucus williamsii
(Plant) CA (25) Amphotericin B

CA (6.25) [106]

Iso-
hydroxymatairesinol Punica granatum L.

(Plant)

SA (1500), SE (190) EC (560), PA (1500) - -
[107]

Punicatannin C SA (1500), SE (750) EC (1120) - -

Furofuran Lignans

Sesamin
Zanthoxylum

paracanthum Kokwaro
(Plant)

SA (500) Omacilin
(0.49) [108]

Phillyrigeninside B Forsythia suspensa
(Plant) SA (10) EC (20) CA (20) Gentamicin

SA (4)
Gentamicin

EC (4)
Gentamicin

CA (4) [109]

Pinoresinol

Cinnamomum Camphora
(Plant) SA (15.60) EC (31.25),

PA (7.80) - - [110]

Sambucus williamsii
(Plant) CA (12.5) Amphotericin B

CA (6.5) [111]

Arylnaphthalene
Lignan

2,3-dimethyl-4-(4′-
hydroxy-3′ ,5′-

dimethoxyphenyl)-6-
hydroxy-7-methoxy-

naphthalene

Ganoderma lipsiense
(Microorganism) SA (1.25), SE (>10) EC (10) CA (>10)

Ciprofloxacin
SA (0.156),
SE (0.156)

Ciprofloxacin
EC (0.156)

Ciprofloxacin
CA (0.156) [112]

Arylnaphthalene-
lactone
Lignan

Justicidin B Nocardia sp.
(Microorganism)

SA (1),
BC (2.5)

EC (0.5),
PA (0.2)

CA (4.5),
CN (0.5),
AN (0.2)

- - - [113]

Dibenzocyclo-
octadiene

Lignan
Manglisin B Manglietiastrum sinicum

(Plant)
SA (0.025),

MRSA (0.025)

Vancomycin
hydrochloride

SA (1.63 × 10−3),
MRSA (8.02 × 10−4)

[114]
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Table 1. Cont.

Secondary
Metabolite Class Subclasses Compound Source Microorganism Positive Control Ref.

Gram-Positive
Bacteria

Gram-Negative
Bacteria Fungi Gram-Positive

Bacteria
Gram- Negative

Bacteria Fungi

Quinones

Benzoquinones

Oncocalyxone A
Auxemma oncocalyx

(Allem) Taub
(Plant)

LM (37.75),
SA (18.87), MRSA

(18.87–37.75),
SE (9.43–37.75)

EC (>151), PA (>151)
CA (>151),
CN (>151),
AF (>151)

Vancomycin
LM (<2.0),

SA (1.0), MRSA (1.0),
SE (2.0)

Meropenem
EC (<0.1),
PA (<0.39)

Itraconazole
CA (0.25),
CN (0.06),
AF (0.125)

[115]

2-methyl-6-(-3-methyl-
2-butenyl)benzo-1,4-

quinone

Gunnera perpensa
(Plant)

SA (39), BC (18),
SE (9.8) EC (>6250) CA (130), CN

(70)

Ciproflaxin
SA (0.31),
BC (2.5),
SE (1.25)

Ciproflaxin
EC (0.63)

Amphotericin B
CA (1.25),
CN (2.5)

[116]

3,5- dimethoxy-2-
methylthio)cyclohexa-

2,5
diene-1,4-dione

Diplocentrus melici
(Animal) SA (4) Ampicillin

SA (0.5) [117]

2,6-Dimethoxy-1,4-
Benzoquinone

Wood tar
(Plant) SA (32) EC (64),

ST (32)
Chloramphenicol

SA (32)

Chloramphenicol
EC (32),
ST (32)

[118]

Naphthoquinones

Plumbagin

Diospyros bipindensis
(Plant) SA (20) Ampicillin

SA (0.7) [119]

Plumbago zeylanica L.
(Plant) MRSA (4–8) [120]

Diospyros crassiflora
(Plant)

CA c (0.78),
CG c (3.12),
CN c (1.56),
AN c (0.78)

Ketoconazole
CA c (0.25),

CG c (5),
CN c (0.25),
AN c (0.25)

[121]

Plumbago zeylanica
(Plant) SA (0.5) EC (8),

PA (8) CA (2)

Ciprofloxacin
SA (1.0)

Amoxicillin
SA (0.5)

Ciprofloxacin
EC (0.5),
PA (0.5)

Amoxicillin
EC (4),
PA (128)

Ketoconazole
CA (256) [122]

Plumbago indica (Plant) SA (3.12), SE (0.018)
Tetracycline HCl

SA (0.38),
SE (0.048)

[123]

2-methyl-1,4-
naphthoquinone

(vitamin K3)

Pulsatilla koreana
(Plant) SA (2.6–4) PA (4) CA (32–96),

CG (8)
Tetracycline

SA (0.5)
Tetracycline

PA (0.22–0.38)

Ketoconazole
CA (10.6–16),
CG (8–13.4)

[124]

2-Methoxy-1,4-
naphthoquinone

Impatiens balsamina L.
(Plant)

SA (16),
BC (64)

CA c

(0.62–2.50),
CA a,c

(0.62–1.25),
AF c (0.31)

Chloramphenicol
SA (8),
BC (8)

Amphotericin B
CA c (1.1),
CA a,c (90),
AF c (1.1)

[125]
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Table 1. Cont.

Secondary
Metabolite Class Subclasses Compound Source Microorganism Positive Control Ref.

Gram-Positive
Bacteria

Gram-Negative
Bacteria Fungi Gram-Positive

Bacteria
Gram- Negative

Bacteria Fungi

Bluemomycin Streptomyces sp.
(Microorganism)

SA (NA), MRSA c

(10.6–39.4), SE
(35.6–64.4)

EC a,c (8.9–39.4),
ST (8.9–16.1),
SF (5.3–19.7),
PA (5.3–19.7)

CA c

(46.4–53.6),
TR (NA)

Streptomycin
SA (2.65–9.85),

MRSA c (6.25–20.65),
SE (17.8–32.2)

Streptomycin
EC a,c (10.6–39.4),

ST (17.8–32.2),
SF (2.65–9.85),
PA (10.6–39.4)

Ketoconazole
CA c (10.6–39.4),

TR (<26.9)

[126]

5-hydroxy-3,6-
dimethoxy-7-methyl-
1,4-naphthalenedione

Xanthium sibiricum
(Plant) SA (2.78), BC (22.2) EC (5.55) Ciprofloxacin

SA (1.39), BC (5.55)
Ciprofloxacin

EC (0.69) [127]

Anthraquinones

Zenkequinone A Stereospermum zenkeri
(Plant)

EC a (37.50),
PA a (18.75)

Ampicillin
EC a (0.40),
PA a (0.80)

[56]

Emodin

Rumex abyssinicus
(Plant) SA (8), MRSA (32) SF (8),

PA (16) CA (8), CN (8) Ciprofloxacin
SA (0.5), MRSA (4)

Ciprofloxacin
SF (8),
PA (0.5)

Fluconazole
CA (1), CN (2) [128]

Cassia occidentalis
(Plant) SA (3.9) EC (>50) Neomycin

SA (6.3)
Neomycin

EC (1.6) [129]

Physcion Rumex abyssinicus
(Plant) SA (8), MRSA (16) SF (8),

PA (8) CA (8), CN (8) Ciprofloxacin
SA (0.5), MRSA (4)

Ciprofloxacin
SF (8),
PA (0.5)

Fluconazole
CA (1), CN (2) [128]

Isoversicolorin C Aspergillus nidulans
(Microorganism) EC (32) Chloramphenicol

EC (1) [130]

2,3-dihydroxy-9,10-
anthraquinone

Streptomyces galbus
(Microorganism)

SA (>100),
MRSA c (12.5),

SE (>100)

EC c (50),
ST (12.5),
SF (25),
PA (12.5)

CA (50)

Streptomycin
SA (6.25),

MRSA c (6.25),
SE (12.5)

Streptomycin
EC c (25),
ST (6.25),
SF (6.25),
PA (25)

Ketoconazole
CA (25) [131]

5-Hydroxy ericamycin Actinoplanes sp.
(Microorganism)

SA b,c (<0.06)
MRSA (0.016)

MRSA c (<0.06),
SE b,c (<0.06)

EC (4),
EC b,c (16),

PA (16)

Vancomycin
SA b,c (1.0–8.0),

MRSA (2.0),
MRSA c (1.0),

SEb,c (2.0)

Vancomycin
EC (>64),

EC b,c (>64),
PA (ND)

[132]
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Table 1. Cont.

Secondary
Metabolite Class Subclasses Compound Source Microorganism Positive Control Ref.

Gram-Positive
Bacteria

Gram-Negative
Bacteria Fungi Gram-Positive

Bacteria
Gram- Negative

Bacteria Fungi

Curcuminoids
Curcumin

Zingiber spectabile
(Plant) SA (500), BC (125) EC (NA)

Tetracycline
SA (3.91),
BC (1.95)

Tetracycline
EC (NA) [133]

Curcuma longa Linné MRSA (125–250),
MRSA c (125–250)

Oxacillin
MRSA (500–1000,

>1000),
MRSA c (500–1000)

Ciprofloxacin
MRSA (7.8–250.0),
MRSA c (1.95–15.6)

[134]

Commercial product SA (25) PA (50) - [135]

Commercial product
from Curcuma longa L.

(Plant)

SA (125–500),
MRSA (>4500),
SE (500–2000)

EC (2000),
EC c (1500),

PA (62.5–5000)

CA
(1000–5000),

SC (5000)
- - - [136]

Commercial product SA (450) PA (500) - - [137]

Commercial product
from Curcuma longa

CA (1000),
CG (125)

Ketoconazole
CA (62.5),
CG (1.95)

[138]

Commercial product SA (0.03), BC (0.05) EC (0.225) - - [139]

Demethoxycurcumin Zingiber spectabile
(Plant) SA (125), BC (125) EC (500)

Tetracycline
SA (3.91),
BC (1.95)

Tetracycline
EC (NA) [133]

(-): not tested; a: multidrug-resistant strain; b: drug-resistant strain; c: clinical isolate; ND: not determine; NA: no activity; LM: Listeria monocytogenes; SA: Staphylococcus aureus; MRSA:
Methicillin-resistant Staphylococcus aureus; BC: Bacillus cereus; SE: Staphylococcus epidermidis; EC: Escherichia coli; ST: Salmonella typhimurium; SF: Shigella flexneri; PA: Pseudomonas aeruginosa;
CA: Candida albicans; CG: Candida glabrata; SC: Saccharomyces cerevisiae; CN: Cryptococcus neoformans; AN: Aspergillus niger; AF: Aspergillus fumigatus; AV: Aspergillus versicolor; FS: Fusarium
solani, TR: Trichophyton rubrum.
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Figure 2. Representative chemical structures of different classes of coumarin and nature-derived
coumarin.

The MIC values of coumarins in different subclasses, such as umbelliferone, osthol,
peucedanin, imperatorin, etc., isolated from natural sources are presented in Table 1. It can
be easily seen that the antimicrobial activity of these representative compounds was less
than those of the antibiotics given in the related studies. Although the several studies on
the antibacterial mechanism of action of coumarin and its derivatives have depicted that
their antibacterial action occurs primarily through bacteriostatic effects by binding the B
subunit of microbial DNA gyrase and preventing DNA supercoiling by blocking ATPase
activity [150–152], further work is necessary to understand the antimicrobial mechanism of
these nature-derived coumarins. Additionally, recent studies based on the toxicological
properties of coumarins in humans indicates that these compounds have a tolerable dose
intake (TDI) of 0.1 mg/kg of body weight [153]. However, it should be noted that the
toxicity of natural and synthetic coumarins depends on the position and chemical structure
of the substituents groups connected to the coumarin core [154].

Various studies on the antibacterial action and structure relationship of coumarins and
their derivatives revealed the action of these compounds on the antibacterial effects of the
number and binding position of substituents such as the thiazole ring, halogen, methyl,
methoxy, hydroxyl, and amino, attached to the basic skeleton [155,156]. For example, the
electron-donating substituents of the phenyl ring such as –OCH3, –CH3, and electron-
withdrawing substituents such as NO2 and halogen groups play a remarkable effect on
their action [157]. Ben Jannet et al. isolated two coumarins, marmesin and scopoletin, from
a plant, Ferula lutea (Poir.) Maire and synthesized their synthetic derivatives from these nat-
ural compounds. The isolated and synthesized compounds were evaluated for antibacterial
activity against Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa), Enterococcus
faecalis and S. aureus. Due to the nature of the acyl group and the aryl ring attached to
the isoxazole moiety included in both marmesin and scopoletin, the synthesized deriva-
tives exhibited potent antibacterial activity when compared to nature-derived coumarins.
Marmesin was esterified with a series of acid chlorides, resulting in the formation of new
ester derivatives. The phenyl group substituted with the ester moiety improved the activity
compared to the methyl group against the tested Gram-positive bacteria. In addition,
the presence of one or more chlorine atoms on branched-chain methyl esters provided
more antibacterial activity; the chlorination of straight-chain methyl esters did not. For
scopoletin and their derivatives, antibacterial data indicated that introducing the isoxazole
moiety into scopoletin improved the antibacterial action. In addition, the antibacterial
activity of a synthesized compound bearing p-Cl-phenyl attached to its isoxazole moiety
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is profitable because of the introduction of a halogen, which is an electron-withdrawing
substituent, into the structure. On the other hand, the study revealed that the derivatives
that maintain electron-donating substituents, isopropyl, ethyl, methyl, and furan, exhibited
less antibacterial activity [158]. In accordance with conducted structure-activity studies,
naturally derived coumarins and their substitution with various functional groups can be
considered an essential step for the development of antibacterial agents [159–161].

2.3. Flavonoids

Flavonoids are a wide class of polyphenolic compounds based on a basic structure
of 2-phenyl chroman [162]. On the other side, isoflavonoids own a basic structure of
3-phenyl-chroman which is biogenetically derived from the 2-phenyl chroman skeleton of
flavonoids [163]. Until now, more than 8000 flavonoid derivatives have been recognized in
nature, as both free state and conjugated state, as ester or glycosidic derivatives [164–166].
Flavonoids are generally discovered in plant sources, but they may innately occur in certain
microalgae and fungi [167]. As described by Jin et al., based on the oxidation degree of
the main heterocycle, flavonoids are categorized into seven subclasses: flavonols, flavones,
isoflavones, anthocyanidins, flavanones, flavanols, and chalcones (see Figure 3) [168].
Flavonoids and ısoflavanoids are promising antimicrobial mediators that target different
microbial cells and can inhibit virulence features in drug-resistant strains [169,170]. Var-
ious studies have proposed that the compounds in this class can display antimicrobial
activity through both bacteriostatic and bactericidal effects. Their bacteriostatic effects
are associated with their ability to form complexes with the bacterial cell wall to inhibit
the growth of bacteria. In detail, they can suppress cell growth by inhibiting microbial
cell energy metabolism, nucleic acid synthesis, or cytoplasmic membrane function [171].
Their bactericidal activities are considered to be associated with irreversible damage to
the cytoplasmic membrane. As a representative example, Voutquenne-Nazabadioko et al.
reported the antimicrobial skills of the purified flavonoid glycosides obtained from Grapto-
phyllum grandulosum plant against Vibrio cholerae, S. aureus, Candida albicans (C. albicans), and
Cryptococcus neoformans (C. neoformans) [172]. Their antibacterial mechanism is based on
cytoplasmic membrane damage by disturbing the membrane permeability and causing the
leakage of cellular constituents. In another study scrutinizing the anti-P. aeruginosa activity
and possible mechanism of a flavonoid isolated from Trianthema decandra, 2—(3′, 4′ dihy-
droxyphenyl) 3, 5, 7—trihydroxy-chromen-4 displayed a bactericidal effect by constraining
the FabZ enzyme, according to molecular docking studies, although additional findings are
wanted to fully elucidate its mechanism [173]. Additionally, some flavonoids exhibit the
aptitude to boost the therapeutic effect when pooled with existing antibiotic drugs [174].
For example, Sathiya Deepika et al. investigated the anti-biofilm efficacy of rutin from
Citrus sinensis peels and its synergistic effects in combination with conventional bactericidal
antibiotic gentamicin against multidrug-resistant P. aeruginosa. Rutin and a combination
of rutin-gentamicin prevented biofilm development by inducing reactive oxygen species
(ROS) generation in P. aeruginosa, which led to oxidative stress, induction of cell wall dis-
ruption, and eventually to bacteria killing. A synergistic effect was further observed by
combining gentamicin with rutin. Herein the bactericidal effect of the flavonoids is related
to their antioxidant properties. They act as pro-oxidants against microbial pathogens and
cause oxidative stress by generating ROS to induce cell death [175]. Additionally, Table 1
provides the list of MIC values of flavonoids obtained from different plant species. As can
be seen in Table 1, some flavonoids exhibit higher antimicrobial activity than conventional
antibiotics, indicating their potential to prevent microbial infections. On the other hand,
it should be noted that flavonoids with higher MICs than antibiotics can display possible
enhanced effects in combination with antibiotics due to their multiple target mechanisms.
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2.4. Tannin

Tannins are a heterogeneous class of high-molecular-weight polyphenolic substances [176].
Previously, tannins have been categorized as hydrolyzable tannins and condensed tannins.
Accordingly, it was assumed that hydrolyzable tannins included two sub-groups, as gallotan-
nins and ellagitannins. Nevertheless, the existence of some ellagitannins, which cannot be
hydrolyzed on account of more additional C-C bonding of the polyphenolic moieties with
the polyol unit, caused an update in their classification. Thus, the revised classification of
these compounds is sub-categorized into five groups, gallotannins, ellagitannins, condensed
tannins (proanthocyanidins), complex tannins and phlorotannins (see Figure 4) [177]. Gal-
lotannins form by one or more galloyl units bounded to a polyol, triterpenoid or catechin unit,
while ellagitannins are composed of hexahydroxydiphenoyl esters coupled to sugar, mostly
glucose [178,179]. Condensed tannins exist in the plants as a form that is free or bound to
protein and fiber [180]. Their chemical structure is formulated of flavan-3-ols that are bound
through single C-C bonds, which are typically C4 → C6′ or C4 → C8′ (B-type) or doubly
coupled with a further bond at C2→ O→ C7′ (A-type) [181,182]. On the other hand, complex
tannins are a class of tannins with high molecular weight in which a catechin unit is linked
to either gallotannins or ellagitannins [176]. In the last two decades, investigations on their
isolations and biological activities have been limited because of, presumably, their complex
structure. Melasquanins A–D can be exemplified as complex tannins, which were isolated from
Melaleuca squarrosa, but their biological properties need to be elucidated [183]. Additionally, the
particular type of tannins, commonly isolated from marine algae, is named phlorotannins due
to their occurrence by polymerizing phloroglucinol units [184]. Tannins are naturally found
in higher plants and marine algea and also possess a defensive function for the plant against
diverse environmental factors, pathogens, or herbivores [179]. Inspired by the biochemical
shield against herbivores and pathogens offered by tannins existing in plants, the interest of the
scientific community arises on their usage as an antimicrobial agent [185–188]. Previous studies
have revealed the tannins to display several biological features, such as antimicrobial activity.
This feature is rooted in their chemical structure, allowing them to own antimicrobial activity
through bacteriostatic or bactericidal actions [189]. In detail, the chemical nature of tannins
owns plenty of hydroxyl groups, providing them with a hydrophilic character. This mainly
allows the tannins to form complexes with proteins or enzymes of microbial cell membrane by
hydrogen bonds and hydrophobic interactions, which can affect the morphology of the cell wall
and increasing membrane permeability [190]. Another purposed antimicrobial mechanism is
the generation of complexes between metal ions and tannins. Tannins may chelate many metal
ions, hindering the accessibility of such indispensable ions for microorganisms [189,191].

As mentioned earlier, the phlorotannins discovered in marine algae led to a need
for more investigations into their biological potential. Recently, Kim et al. reported that
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phlorofucofuroeckol-A, extracted from brown alga Eisenia bicyclis, displayed anti-MRSA
activity by blocking the production or function of penicillin-binding protein 2a, which is
regarded as the primary reason for methicillin resistance [192]. Hereby, this compound
can be considered a promising candidate due to its potential in inhibiting the growth
of antibiotic resistance related to mediating suppressive effects on methicillin resistance-
associated genes. In another study, persimmon tannins from young astringent persimmon
fruit showed antibacterial activity with an MIC value of 1000 µg/mL against some MRSA
isolates from pork. Performed studies on the mechanism of antibacterial action indi-
cated that persimmon tannins showed bactericidal and bacteriostatic activities by multiple
mechanisms, including damage to cell wall and membrane, leading to membrane hyperpo-
larization, reduction of intracellular ATP concentration, losing bacterial membrane integrity,
whole cell protein, and cell cycle depression [187]. Anti-MRSA molecular mechanisms of
persimmon tannins were elucidated deeply using transcriptome and metabolome analyses
by the same research group. Results demonstrated that persimmon tannins adversely
affected the cell membrane permeability and integrity, amino acid, and energy metabolism
and also caused iron deprivation [193]. A survey of recently reported antimicrobial ac-
tivities of representative compounds in different classes of tannins is given in Table 1.
Considering the MIC values of the tannin compounds and the relevant antibiotics, further
investigations should be concentrated on in vivo assays and clinical trials to depict the
effectiveness of these antimicrobial agents in clinical settings.
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2.5. Stilbenes

Stilbenes are widely found in plants, but also, their basic forms or various substitu-
tions can be isolated from the pathogenic strains [194]. Although stilbenes are typically
encountered in the plant kingdom, several studies on their isolation from microorganisms
and marine organisms have also been reported [98,195,196]. In general, these metabo-
lites are unearthed in plants as both free and glycosylated forms [197]. Their chemical
structure comprises a 1,2-diphenylethylene core with substituted hydroxyl groups on the
aromatic rings [198]. The sorting of different subclasses of stilbenes is a challenge owing
to their broad structural diversity; we basically classified them into four main subclasses:
monomeric, dimeric, oligomeric, and miscellaneous stilbenes. Although stilbenes stand
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out in multiple fields owing to their antitumoral [199], antioxidant [200], cardioprotec-
tive [201], hypolipidemic [202], and immunosuppressive [203] activities, their antimicrobial
properties occupy a noteworthy position in combating various microbial infections. Resver-
atrol, piceatannol, isorhapontigenin, pinosylvin, and oxyresveratrol are widely recognized
monomeric stilbenes (see Figure 5). Among the representative monomeric stilbenes, resver-
atrol and pterostilbene were commercially available on the bench due to their prominent
properties such as antihypertensive, antioxidant, anti-inflammatory, and anti-cancer activ-
ities. Thus, investigations on the discovery and biological potential of naturally derived
stilbenes are in progress. Various reports on their antimicrobial mechanism have docu-
mented that stilbenes induce cell membrane damage and DNA degradation mediated by
oxidative stress and increase cell membrane permeability, causing the leakage of intra-
cellular nucleic acids and proteins [204–208]. As a representative example, Longistylin
A, a pinosylvin-derived monomeric stilbene isolated from the leaves of Cajanus cajan (L.)
Millspaugh, was tested against MRSA, S. aureus, E. coli. and Bacillus cereus (B. cereus). This
compound exhibited notable antibacterial activity against tested gram-positive bacterial
strains (see Table 1). Moreover, studies on the underlying mechanism of anti-MRSA action
revealed that Longistylin A demonstrated bactericidal activity by disrupting bacterial
membranes and increasing membrane permeability. Furthermore, Longistylin A exhibited
much faster bactericidal activity (3-log reduction in MRSA survival within 8 h) compared
to vancomycin used as a positive control, indicating the promising potency of Longistylin
A in fighting with MRSA-associated infections [99].
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Dimeric stilbenes occur from two monomeric units; for instance, Gnetin C is formed
from two resveratrol monomers, or Longusol A arose from two distinct monomeric units,
a resveratrol unit and a piceatannol unit [209]. Gnetin D, a dimeric stilbene, was isolated
from the roots of Spirotropis longifolia and showed effective antifungal activity against,
especially, C. albicans, Candida parapsilosis, and Candida krusei (C. krusei) strains among the ten
different tested fungal stains (see Table 1) [94]. Another study on the antibacterial activity
of fifteen resveratrol-derived stilbenoids verified that the dehydro-δ-viniferin, a stilbene
dimer, displayed the most potent antibacterial activity among others. The mechanism of
action of this compound against L. monocytogenes was demonstrated to be accomplished
by more than one specific mechanism, including membrane depolarization followed by
damaging the cytoplasmic membrane and the destruction of membrane integrity and
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severe morphological changes [95]. Oligomeric stilbenes are generated by a coupling
reaction between monomeric units of stilbenes following the pattern of a homogeneous or
heterogeneous oligomerization [210]. Miscellaneous oligomeric stilbenes were described as
complex stilbene oligomers with diverse structural skeletons comprising distinct stilbene
units excepting resveratrol and oxyresveratrol units in the comprehensive study where
Shen et al. updated the classification of stilbenes [211]. In recent decades, prenylated
stilbenes, which are considered a class of miscellaneous stilbenes, have been attracting
widespread interest due to their unique structures and biological potential. For instance,
denticulatains A and B, prenylated stilbenes with stilbene-diterpene type skeleton were
isolated from a plant species Macaranga denticulata [210]. In another study, prenylated
stilbenes, cajanusins A-D and their derivatives were isolated from Cajanus cajan (See the
structure of cajanusin B in Figure 5) [212]. Besides the extensive research on the isolation of
these compounds from various natural sources, the studies on their antimicrobial aptitude
is still scarce.

Interactions of stilbenoids, particularly resveratrol, with conventional antibiotics have
been investigated as combinatorial therapy, which can potentially improve the effective-
ness of antimicrobials and hinder the emergence of resistant strains due to the synergistic
effect. In vitro antibacterial activity of resveratrol was assessed alone and in combination
with the bactericidal antibiotic, colistin, against a collection of colistin-resistant (COL-
R) Gram-negative pathogens, including E. coli, Klebsiella pneumoniae, Enterobacter cloacae,
Stenotrophomonas maltophilia, Citrobacter braakii, and polymyxin-resistant enterobacterial
species [213]. The results revealed that the 512 mg/L concentration of resveratrol did not
show antimicrobial activity against all Gram-negative pathogens tested. Nevertheless, in
the combination, resveratrol (at 128 mg/L) potentiated the bactericidal effect of colistin
(0.5 ×MIC and 1 ×MIC) against all strains tested except for one of the E. coli strains [213].
However, the synergistic mechanism of resveratrol and colistin against COL-R strains has
not been elucidated. In a study investigating the antibacterial activity of the structural
analogues of resveratrol, the dimeric compound of the 4,4′ dihydroxy stilbene revealed a
strong antibacterial effect with 10 µg/mL of MIC value against S. aureus [208]. Thereupon,
the same research group investigated the synergistic effect of this dimeric stilbene com-
pound with antibiotics in their further study [214]. The combination of dimeric stilbene
compound with the antibiotics targeting protein synthesis led to the decreased MIC values
of antibiotics, including kanamycin, tobramycin, chloramphenicol, tetracycline, musiporin,
and erythromycin, indicating the in vitro synergistic effect. The same synergistic effect
was also established by combining the dimeric stilbene and kanamycin against kanamycin-
resistant laboratory strains and kanamycin-resistant clinical strains. Furthermore, in vivo
studies confirmed that the dimeric stilbene ameliorates S. aureus infection in mice, both
alone and in combination with kanamycin [214]. However, the mechanism underlying this
synergistic outcome has not been ascribed.

In addition, stilbenes have potential synergistic activities to combat microbial infection
in combination with conventional antibiotics; it has also been reported that combining
these compounds with antibiotics can lead to antagonistic interactions [215,216]. The
mechanism of antagonism is proposed to involve a reduction in ROS by stilbenes due to
their antioxidant properties. Increased ROS production by antibiotics causes oxidative
stress, DNA damage, and, eventually, cell death in bacteria. However, in some cases,
the ROS produced by bactericidal antibiotics may be suppressed through the scavenging
of free radicals by stilbenes, depending on the concentration of stilbene and the target
bacterial species.

To provide deep insight into the antimicrobial activity of stilbenes, several structure-
activity relationship studies have been performed to date [194,208,217]. The study on
resveratrol structural analogs concluded that the presence of hydroxyl groups on the
aromatic rings of stilbenes plays a key role on their antimicrobial activity [208]. However,
an increasing number of hydroxy groups did not provoke higher antimicrobial activity.
Additionally, the presence of the methoxy group along with the hydroxy group resulted
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in more potent antibacterial activity. Converting all the active hydroxy groups to acetoxy
group or methoxy group caused a drastically reduced antibacterial activity. The partial
transformation of hydroxy group to methoxy group resulted in enhanced antibacterial
activity as a result of oxidative stress and membrane damage. Additionally, the studied
stilbenes are less active against Gram-negative bacteria, as they are taken out of the cell by
the efflux pump in Gram-negative bacteria. Though, surprisingly, pinosylvin and 4-Bromo
resveratrol were effective even in the presence of efflux pump. This was presumably related
to the fact that these compounds cause cell damage within a short time before being pumped
out by the efflux pump or they are weak substrates for the efflux pump [208]. Additionally,
halogenation and dimerization cause enhanced antibacterial and antifungal properties [218].
However, it should be noted that halogenation might increase cytotoxicity [219].

2.6. Lignans

Lignans are formed from the dimerization of two phenylpropanoid units through
oxidative coupling reactions [220]. Their wide structural diversity has resulted in differ-
ences in their nomenclature and classification. In detail, lignans can be categorized as
lignans, neolignans, or norlignans in accordance with the bonding positions of the two
phenylpropanoid units and the case of lack of carbon from the parent lignan skeleton.
As can be seen in Figure 6, while the basic lignan structure is composed of two phenyl-
propanoid (C6C3) units linked by a β-β’ (C8-C8′) bond, neolignan contains dimerization of
C6C3 units linked in a form other than β-β’ (C8–C8′) bond [221]. On the other hand, the
term ‘norlignans’ is defined as lignans that couple two phenylpropanoid units with a β-β’
bond and have one or more carbon atoms missing than those of the basic lignan skeleton.
Interestingly, it should be noted that the missing carbon is assigned in the nomenclature
of norlignans, as shown in Figure 1 [222–224]. According to the dissimilarities of carbon
skeletons, a recent study by Tan et al. classified lignans into six subclasses: dibenzylbutane,
tetrahydrofuran, arylnaphthalene, arylnaphthalenelactone, furofuran, and dibenzocyclooc-
tadiene [222]. These compounds are frequently discovered in plants, but they may also be
metabolized by gut microbiota in mammals [225]. Plant lignans exist as secoisolariciresinol,
matairesinol, lariciresinol, and pinoresinol in a diversity of food sources [226,227]. Lignans
from plants are metabolized into mammalian lignans, such as enterolignans, enterodiol,
and enterolactone, by intestinal bacteria [228]. The mammalian and plant lignans are
distinguished from each other by the presence of phenolic hydroxy groups only in the
meta-position of the aromatic rings [229]. Additionally, mammalian lignans are gifted to
bind to estrogen receptors owing to their chemical structural similarity to estrogen and
thus can serve as antioxidant agents [230]. Many efforts are still being made on the antimi-
crobial potential of lignans obtained from diverse origins such as microorganisms, and
plants because of their various biological potential [231,232]. As a representative example,
pinoresinol, one of the structurally basic lignans, was extracted from Cinnamomum camphora
leaves and exhibited more potent antibacterial activity against Bacillus subtilis (B. subtilis)
and P. aeruginosa than S. aureus, E. coli, and Salmonella enterica [110]. In addition, studies on
its mechanism of antibacterial action have reported that pinoresinol displayed bactericidal
activity by increasing the permeability of bacterial plasma membrane and damaging the cell
wall of B. subtilis and P. aeruginosa [110]. As an example of an arylnaphthalide lignans, justi-
cidin B was previously extracted from various plant families, including Justicia pectoralis,
Linum leonii, Phyllanthus polyphyllus, Sesbania drummondii, and Justicia procumbens [233–236].
However, Jaspars et al. isolated for the first time this compound from a microbial species, a
marine-derived bacterium Nocardia sp. ALAA 2000 and reported its remarkable and potent
antimicrobial properties (see Table 1) against fourteen microbial strains, demonstrating the
promising bioactive aspect of compounds from different sources [113]. In another study,
Hwang et al. [106] also isolated an enterolignan precursor, Lariciresinol, from Sambucus
williamsii herb and confirmed it to exhibit fungicidal activities by disrupting the fungal
plasma membrane of C. albicans (see Table 1). To date, many researchers have demonstrated
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the antimicrobial activity of lignans and their derivatives from natural sources [237,238],
but research to elucidate the mechanisms of action at the molecular level remains unclear.

An in-depth evaluation of their structure-antimicrobial activity relationship is essen-
tial for the assessment of these compounds and their use in the design as antimicrobial
agents. Koba et al. investigated the association of antimicrobial activity and structure
among compounds containing different benzylic oxidation degree and stereochemistry.
These compounds exhibit antibacterial activity against the tested Gram-positive bacteria.
However, the presence of a carbonyl group at C-9′ of tetrahydrofuran lignans decreased
antibacterial activity in the absence of benzylic oxygen. In addition, full oxidation of the
benzylic positions on 2,3-dibenzyl-4-butanolide triggers more potent antibacterial activity
than that of 2,3-dibenzyl-4-butanolide, thus indicating the importance of benzylic carbonyl
groups for a prominent antibacterial effect [239]. Another study investigating the structure-
activity relationship of tetrahydrofuran lignan, 9-O,9′-O-demethyl (+)-virgatusin indicated
that the antibacterial activity might vary on the presence and location of methoxy substi-
tutions. For example, the 3’-methoxy group contributed to higher effective antibacterial
activity than that of the 4’-substituent. Additionally, the existence of the 3,4-methylenedioxy
group on the 7-phenyl group played an essential role in the enhanced antibacterial ac-
tivity [240]. Similarly, a study on virgatusin and its derivatives supported the aforemen-
tioned results. For these tetrahydrofuran lignans, two methoxy groups at C-9/9′ and
a 3,4-methylenedioxyphenyl group at C-7 improved antifungal activity. Additionally,
among virgatusin and its derivatives, the substitution of the 4-methoxyphenyl group at
C-7′ resulted in the highest antifungal activity [241]. Further investigations are in need
of elucidating the structure-activity relationship, especially addressing other subclasses
of lignans.
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2.7. Quinones

Quinones are structurally defined as cyclohexadiendiones possessing carbonyl groups
in the 1,2 or 1,4 positions relative to each other [242]. These compounds are found in nu-
merous natural sources, including plants, bacteria, fungi [243], and marine organisms [244]
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but can also be found in some animals such as aphids, sea urchins, lac insects, and certain
scale insects [245,246]. Quinones are divided into four subclasses that include benzo-
quinones, naphthoquinones, anthraquinones and phenanthraquinones (see Figure 7) [14].
To date, benzoquinones and naphthoquinones derivatives have been isolated from innumer-
able plant sources and reported to show significant antimicrobial activities [116,124,247].
Phenanthrenequinone derivatives have also been extracted from various plants, such as
Pleione bulbocodioides and Cannabis sativa [248,249]. Nevertheless, a major deficit in the
literature subsists regarding the antimicrobial activities of phenanthrenequinones.
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2.8. Curcuminoids 

Curcuminoids are linear, diarylheptanoid molecules consisting of curcumin, 

demethoxycurcumin, bisdemethoxycurcumin and their analogues [255,256]. 

Curcuminoids are commonly isolated from turmeric, a member of the ginger family 

(Zingiberaceae), and other plant species, such as Curcuma zedoaria, Curcuma manga, Costus 

speciosus, Curcuma aromatica, Curcuma xanthorrhiza, Curcuma phaeocaulis, Zingiber 

cassumunar and Etlingera elatior [257–259]. Among the curcuminoids, curcumin has been 

applied in several studies as an outcome of its various biological properties, such as anti-

inflammatory [260,261], antimicrobial [262,263], and antitumoral [264,265] activities. 

Clinical studies disclosed that curcumin is non-toxic to humans at high dosages, but its 

low bioavailability hinders its therapeutic applications [266,267]. Several strategies have 

been performed to enhance the bioavailability of curcumin, including the usage of 

liposomal curcumin, nanocurcumin and more recently deep eutectic solvents [268–271]. 

As mentioned above, curcumin, which stands out with its various biological benefits, is 

commercially available. Therefore, Table 1 includes MIC values that evaluate the 

antibacterial activity of commercial curcumin along with curcumin isolated from natural 

Figure 7. Representative chemical structures of different classes of quinones.

According to previously reported studies, quinones display antibacterial activity by
bacteriostatic and/or bactericidal modes [250–252]. Although the mechanism by which
quinone causes antimicrobial activity is complex, it has been reported that quinones gen-
erate ROS through redox cycling with their semiquinone radicals, causing intracellular
oxidative stress and, thus, cell membrane damage [253,254]. A list of recently published
investigations indicating good and moderate antimicrobial properties of representative
compounds in different quinone classes is provided in Table 1. The discovery of these
compounds provides new insight into novel antimicrobial agents for pharmaceutical devel-
opment. However, more analyses are desirable on the structure-function and antimicrobial
mechanisms of quinones.

2.8. Curcuminoids

Curcuminoids are linear, diarylheptanoid molecules consisting of curcumin, demethoxycur-
cumin, bisdemethoxycurcumin and their analogues [255,256]. Curcuminoids are commonly iso-
lated from turmeric, a member of the ginger family (Zingiberaceae), and other plant species, such
as Curcuma zedoaria, Curcuma manga, Costus speciosus, Curcuma aromatica, Curcuma xanthorrhiza,
Curcuma phaeocaulis, Zingiber cassumunar and Etlingera elatior [257–259]. Among the curcumi-
noids, curcumin has been applied in several studies as an outcome of its various biological prop-
erties, such as anti-inflammatory [260,261], antimicrobial [262,263], and antitumoral [264,265]
activities. Clinical studies disclosed that curcumin is non-toxic to humans at high dosages, but
its low bioavailability hinders its therapeutic applications [266,267]. Several strategies have
been performed to enhance the bioavailability of curcumin, including the usage of liposomal
curcumin, nanocurcumin and more recently deep eutectic solvents [268–271]. As mentioned
above, curcumin, which stands out with its various biological benefits, is commercially available.
Therefore, Table 1 includes MIC values that evaluate the antibacterial activity of commercial
curcumin along with curcumin isolated from natural sources. The antimicrobial mechanism
of curcuminoids has been widely investigated [272–276]. For example, Sivasothy et al. [133]
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isolated five different flavonoids and curcuminoids from the rhizomes of Zingiber spectabile.
The antibacterial data indicated that curcuminoids present higher antibacterial activity than
flavonoid-derived compounds [133]. In another promising study, Adamczak et al. [136] evalu-
ated the usefulness of commercial curcumin from Curcuma longa L. against more than 100 strains
from 19 different species, as represented in Table 1.

To date, curcuminoids have been the subject of numerous investigations and have
been reviewed deeply. In particular, curcumin has been reported to own antibacterial
activity by bacteriostatic and bactericidal modes against a wide range of bacterial strains.
The bactericidal action of curcumin has been attributed to its diffusion across the bacterial
membrane of S. aureus and E. coli due to its amphipathic and lipophilic character, increasing
membrane permeability, leaking of intracellular constituents, and ultimately causing cell
death [276].

Investigations on the bacteriostatic mechanism of curcumin at the molecular level
proposed that curcumin inhibits bacterial growth by attacking different targets such as the
DNA, protein, cell wall, cell membrane and quorum-sensing systems in the bacteria. As
a representative example, the bacteriostatic action of curcumin against B. subtilis was re-
ported to occur by increasing the GTPase activity of protein FtsZ, which plays an essential
role in the division of bacterial cells, depending on the concentration [274]. Addition-
ally, as curcumin is a photosensitizer, several reports surveyed its usage in antimicrobial
photodynamic therapy [269,277–283]. The bactericidal action of curcumin-based photody-
namic inactivation therapy against L. monocytogenes was proven to be membrane protein
degradation and increased membrane permeability triggered by oxidative stress through
intracellular ROS production [284]. In addition, another study elucidating the antibacterial
mechanism of L. monocytogenes ascertained that the bactericidal efficacy of curcumin-based
photodynamic inactivation therapy is a result of cytoplasmic DNA and protein dam-
age [285]. According to the previous studies on curcumin, it should be noted that the
mechanism of antibacterial action of curcumin may differ depending on the strain tested.

Besides their antibacterial activities, many studies have also investigated the fungistatic
and fungicidal activities of curcumins against various fungal strains as potential antifungal
agents. A study on the in vitro antifungal activity of curcumin has demonstrated its anti-
fungal activity against Candida species, including C. albicans, Candida glabrata (C. glabrata),
and C. krusei, and also indicated that curcumin displayed fungistatic activity by binding to
the membrane ergosterol of C. albicans. However, the same mechanism was not observed
against C. glabrata and C. krusei, indicating that the interaction of curcumin-ergosterol is
not a single mechanism of action for curcumin [138]. As a fungicidal agent, it has been
proposed that curcuminoids bind to residues on the fungal cell membrane, causing cell
membrane disruption, leakage of intracellular contents, and, eventually, cell death.

In addition to functioning as an antimicrobial compound by itself, curcumin has
also been scrutinized for potential effects in combination with conventional antibiotics.
Curcumin may have synergistic effects in combination with bacteriostatic antibiotics and
fungistatic drugs to improve antimicrobial activity. For C. albicans, Ferreira-Pereira et al. re-
ported that curcumin potentiates synergistically the antifungal effect of fluconazole against
a clinical isolate of C. albicans possessing a multiple drug resistance phenotype [286]. in
another study, the combination of curcumin with conventional fungicidal drugs, including
fluconazole, ketoconazole, miconazole, itraconazole, voriconazole, amphotericin B, and
nystatin proved a 10–35-fold reduction in the MIC80 values of drugs against 21 clinical
C. albicans isolates [287]. The mechanism of synergistic activity of curcumin with ampho-
tericin B and fluconazole was hypothesized to occur through the accumulation of ROS since
the addition of an antioxidant could reverse it [287]. Moreover, various in vitro studies
revealed the synergistic activity of curcumin with conventional antibiotics against several
bacterial strains, such as S. aureus, MRSA, E. coli, P. aeruginosa [134,288–293].

On the other side, the combination of curcumin with the bactericidal antibiotic,
ciprofloxacin, antagonized the bactericidal activity of ciprofloxacin against Salmonella Typhi
and Salmonella Typhimurium (S. Typhimurium). Furthermore, the studies on the elucidation
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of the antogination mechanism indicated that curcumin reduces the antibacterial effect of
the antibiotic due to its antioxidant properties. Accordingly, the oxidative stress induced
by ciprofloxacin is suppressed by lowering ROS-induced filamentation in S. Typhimurium
in the presence of curcumin [294]. These results are a significant warning against the
unexpected consequences of the combination of antibiotics, which function by increasing
oxidative stress, with antioxidants such as curcumin.

In accordance with the molecular structure of curcuminoids, the presence of phenolic
hydroxyl groups acts as an electron donating group, interacts with the bacterial membrane,
and thus increases the permeability of the bacterial membrane, enabling the targeting of
antibacterial agents to bacterial cells [135]. In addition, the β-diketone moiety of curcumi-
noids might form a hydrogen bond containing a six-membered ring through keto−enol
tautomerism as illustrated in Figure 8 [295,296]. The formed six-membered ring is a poten-
tial substrate for the aldo-keto reductase (AKR) enzymes, which are NADPH-dependent
oxidoreductases. So, curcuminoids can be bound to the bacterial membrane and cause an
increase in its AKR activity, the deficit of intracellular NADPH, and henceforward increase
membrane permeability and bacterial cell death [297]. Although there are various studies
on the contribution of the phenolic methoxy group in demethoxycurcumin and curcumin
to their anti-inflammatory, anticancer and antioxidant activity [298–301], there remains a
need for elucidation of the contribution of the methoxy group to antimicrobial activity.
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3. Limitations in the Therapeutic Usage of Natural Phenolic Compounds

Many natural compounds show various biological properties such as antimicrobial,
antioxidant, antitumor, and anti-inflammatory activities. However, as a result of their poor
water solubility and stability, these compounds can not be transported in the organism to the
target site, significantly limiting their application. Alternative strategies for enhancing the
efficacy of natural antimicrobials, or overcoming their limitations to use, have been explored
and are still being developed. These have included encapsulation of the antimicrobial
compound in varied manners, and modification of polar functional groups chemically or
enzymatically to the relative compound, etc.

On the other hand, the conspicuous challenge is to overcome existing limitations on the
use of natural phenolic compounds for therapeutic use, such as supply and identification
of materials, scaled-up production, high throughput screening assays and possible safety
issues [302–306]. In the isolation of large quantities of a particular natural compound,
some circumstances may be challenging, such as low product yields or long growing
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periods [307]. In addition, considering the problematic issue of the extinction of plants and
other organisms due to environmental change, the large-scale supply of plants, marine
organisms, or animals for industrial-scale production could have dire consequences on
the ecological balance. Although progress has been made, the supply problem affecting
the industrial-scale manufacture can be unraveled by developing an artificial biosynthetic
pathway in cooperation with genetic engineering strategies.

Validation, characterization, and standardization of discovered natural compounds are
critical for their approval into mainstream medicine. The quality of chemical components in
a plant species can be impacted by different factors such as the age of the plant, geographical
and seasonal variations, time, method of collection, etc. Hence, quality evaluation of
the source product is time-consuming and costly, as the safety, efficacy, and quality of
the isolated compound depend on the quality of the source product [308]. Efforts to
provide a reliable and sustainable source product for the desired quantity and quality of
the pharmacologically active substance are needed in combination with modern genetic
engineering and agricultural technological methods [309].

4. Conclusions

Natural phenolic compounds with multiple-target mechanisms stand out as promising
candidates for microbial infections. The mechanisms surveyed and specified in detail for
each subclass include multiple mechanisms such as the hindrance of microbial cell wall
biosynthesis, protein synthesis, nucleic acids synthesis, metabolic pathways, and disruption
of cell membrane integrity. Hence, natural phenolic compounds do not present a specific
target mechanism but multiple antibacterial mechanisms that have already been discovered
and/or have yet to be discovered. The latest improvements in the therapeutic usage of
nature-based compounds reveal their tremendous potential. The clinical applicability
of these bioactive compounds requires a multi-disciplinary approach and synchronized
actions of various fields. To date, there are still many aspects to be clarified regarding
the structure-function relationships of many compounds that have been discovered or
are yet to be discovered. The consequence of such novel therapeutic endeavors will open
new doors in the health and pharmaceutical sector to cope with many diseases, including
infections instigated by multidrug-resistant organisms.
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