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Abstract. This paper is devoted to geodesic completeness of left-invariant metrics for real and
complex Lie groups. We start by establishing the Euler-Arnold formalism in the holomorphic set-
ting. We study the real Lie group SL(2,R) and reobtain the known characterization of geodesic
completeness and, in addition, present a detailed study where we investigate the maximum do-
main of definition of every single geodesic for every possible metric. We investigate completeness
and semicompleteness of the complex geodesic flow for left-invariant holomorphic metrics and, in
particular, establish a full classification for the Lie group SL(2,C).

1. Introduction

The study of left-invariant pseudo-Riemannian metrics on Lie groups and their quotients is an im-
portant topic in differential geometry with applications in cosmology and general relativity, for the
case of Lorentzian signature. Even though the formalism regarding pseudo-Riemanannian geometry
is very similar to the Riemannian one, a fundamental issue in this respect is that pseudo-Riemannian
metrics often fail to be geodesically complete, even in the compact case. In mathematical physics,
incompleteness might initially have been regarded as a failure of the model, however, singulari-
ties have become so common (consider, for instance, the classical Schwarzschild spacetime or the
Penrose-Hawkings singularity theorems) that it is reasonable to expect incompleteness under general
physical assumptions. In fact, the completeness or incompleteness of a metric becomes a fundamen-
tal property of the model (cf. [26] for a survey on geodesic completeness in the context of mechanical
systems).

The notion of geodesic flow on Lie groups can be traced back to Euler’s work on the motion of
rigid bodies in R3 with a fixed point. Euler showed that these motions can be described as geodesics
on the special orthogonal group SO(3). Two centuries later, Arnold showed, in his seminal paper
[1], that the motions of a rigid body with a fixed point can indeed be described as the geodesics of
a left-invariant pseudo-Riemannian metric on a Lie group. Another important result to be noted is
that, only a few years later, Marsden [18] proved that compact pseudo-Riemannian Lie groups (and
more generally homogeneous spaces) are geodesically complete.

The technique introduced by Arnold in [1] lends itself well to investigate the completeness of
left-invariant pseudo-Riemannian metrics. More precisely, Arnold established that these geodesics
are in one-to-one correspondence with integral curves of a certain quadratic (homogeneous) vector
field on the corresponding Lie algebra (cf. Section 4). We will thus refer to this method as the
“Euler-Arnold formalism” and to the quadratic vector field in question as the “Euler-Arnold vector
field”. The Euler-Arnold formalism has a great advantage in the study of completeness of geodesics;
the geodesics become described as the integrals curves of a quadratic (homogeneous) vector field on
Rn. The study of the completeness of a vector field is played on the behavior at infinity. Since Rn

(resp. Cn) has a simple compactification, the projective space RP(n) (resp. CP(n)), this allows us
to have control on this behavior at infinity. Also, the fact that the vector field is algebraic (in fact,
polynomial) is important. Indeed, there is a vast literature on algebraic differential equations that
can be brought to bear. For example, certain ideas from [25] will be used in the course of this work.
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The task of classifying metrics on an arbitrary (non-compact) Lie group remains a daunting one,
even in the semisimple case (see Section 9 for more details). Nevertheless, for the lowest dimensional
simple Lie group SL(2,R) a complete classification can be indeed achieved. As a matter of fact, the
problem of studying (in)complete metrics on SL(2,R) has a history that goes back a few decades. A
first study of completeness of left-invariant pseudo-Riemannian metrics on SL(2,R) was developed
by Guediri-Lafontaine [11] in 1995. Later, in 2008, Bromberg and Medina [4] provided the complete
classification. A more geometric approach to the same problem was given by Tholozan [27] in 2014,
as a part of his Ph.D. thesis.

In this paper, we present an alternative approach to the problem of classification of geodesically
complete left-invariant metrics on SL(2,R). This dynamical approach is build on ideas of [25] to
estimate the size of the domains of definition of the geodesics, which we followed to obtain the
conditions under which such a domain is strictly contained in R. This allowed us to reobtain the
classification of complete left-invariant pseudo-Riemannian metrics previously provided in [4]. In
fact, this allowed us to go further and also present a detailed study of completeness or incompleteness
for every single geodesic of all the metrics in question.

The structure of the paper can be essentially divided into three parts. The first part (Sections
2, 3, 4) is a discussion on (the not so well-known) holomorphic-Riemannian geometry of complex
manifolds with special attention to Lie groups, leading up to the description of the Euler-Arnold
formalism. The second part (Sections 5, 6, 7, 8) concerns the classification of completeness of
left-invariant pseudo-Riemannian metrics on SL(2,R) and the dynamical behavior of their geodesic
flows. The third and final part of the paper (Section 9) is concerned with left-invariant holomorphic
metrics on SL(2,C).

Sections 2 and 3 present the preliminary material necessary in the sequel in order to provide a
self-contained exposition. Since the study of pseudo-Riemannian geometry and of real Lie groups is
more familiar, we present our material in the holomorphic setting, bearing in mind that most of the
constructions can find direct analogues in the real context and pointing out the differences where
needed.

In Section 4, we develop the Euler-Arnold formalism for completeness of holomorphic metrics.
There are several approaches in the literature to establish this result; in our work, we used the
methods (albeit in the real case) proposed by Tholozan [27] since they are more adapted to the
complex setting. In the case of an orthogonal Lie group, the Euler-Arnold equations are more
tractable and can be formulated in terms of a Lax-pair. The added feature that Lax equations (or,
equivalently, that Euler-Arnold equations) come with two first integrals allowed us to establish the
following general result.

Theorem 1.1. Let G be a Lie group equipped with a bi-invariant pseudo-Riemannian metric. Then
G can be endowed with a complete left-invariant pseudo-Riemannian metric of every possible signa-
ture.

In Sections 5–8 we focus on SL(2,R). In Section 5, we present two important lemmas which
allow us to control the orthogonality and bracket relations on sl(2,R). This outlines the special
character of SL(2,R) and makes it possible to have an explicit description of the Euler-Arnold
differential system. The study is conducted in four subcases corresponding to the normal forms
of the isomorphism which relates the metric in question to the Killing form. Sections 6, 7 and 8
are devoted to the detailed study of geodesic (in)completeness for each of the subcases established
in Section 5. For example, it was known that every metric whose associated isomorphism has
a (unique real) eigenvalue with algebraic multiplicity 3 but geometric multiplicity 1 admits an
incomplete geodesic. We show in this paper that, for such a metric, there is no geodesic whose
domain of definition is a finite interval ]a, b[ for some a, b ∈ R with a < b. To be more precise, we
proved the following.

Theorem 1.2. Consider a metric whose associated isomorphism has a (unique real) eigenvalue with
algebraic multiplicity 3 but geometric multiplicity 1. Then there exists an invariant plane for the
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geodesic flow over which all geodesics are complete. Furthermore, all the other geodesics are R+ or
R− complete, although not complete.

This contrasts with the case where the isomorphism associated with the metric has two complex
(non-real) eigenvalues. In this case the domain of definition of almost all geodesics is a finite interval,
]a, b[ for some a, b ∈ R with a < b. In fact, we proved the following.

Theorem 1.3. Consider a metric whose associated isomorphism has two complex (non-real) eigen-
values. Then there exists an invariant plane for the geodesic flow over which all geodesics are
complete. Furthermore, there exists an invariant plane over which some of the geodesics are R+

or R− complete and the others have a finite interval as domain of definition. All the remaining
geodesics are incomplete with a finite interval as domain of definition.

The final section, Section 9, is devoted to the study of SL(2,C). We start by presenting brief
considerations why a direct and similar approach to that of SL(2,R) is unfeasible. We then turn our
attention to the complex Lie group SL(2,C) and obtain a complete characterization for completeness
of holomorphic-Riemannian left-invariant metrics. More precisely, we have the following theorem.

Theorem 1.4. Let q be the holomorphic metric on sl(2,C) defined by q(X,Y ) = B(ΦX,Y ), where
B is the Killing form and Φ is a B-self-adjoint isomorphism. Then, q is a complete holomorphic
metric if and only if Φ has an eigenvalue whose eigenspace has dimension at least 2.

As a corollary, we show that every complex simple Lie group can be endowed with an incomplete
holomorphic metric.

As seen from the example of SL(2,C), complete holomorphic metrics are “rare” and, therefore, the
problem of classifying semicomplete holomorphic metrics becomes more interesting. A vector field
or, equivalently, a differential system, is said to be semicomplete if its solutions admit a maximal
domain of definition in C(that need not coincide with C), see [22]. If a vector field is complete,
then it is necessarily semicomplete. Although the converse does not hold, a semicomplete vector
field can be completed in the sense that it can be realized by a complete vector field on a suitable
space that needs not be a Lie group any more (see [21], [9], [12] for further details). In fact, this
new space is not necessarily Hausdorff. It is perhaps relevant to understand these completions as
they are important in the theory of transformation groups and may be relevant in applications to
physics or other fields of geometry.

Finally, as an unexpected outcome of our work concerning the general theory of semicomplete
vector fields, we provide an example of a family with 2-complex parameters of iso-spectral quadratic
semicomplete vector fields on C3, up to linear conjugation with the terminology of [12], see Theo-
rem 9.3. Note that this family is rather different from the 2-parameter family provided in [13] and
sits closer to the framework of “quadratic elliptic foliations on the complex projective plane” as in
[10].

2. Holomorphic-Riemannian geometry

The foundations of pseudo-Riemannian geometry are well-known and there is extensive literature
on the subject (see, for instance, [20]). In this section. we will briefly establish preliminary notions
and results of its holomorphic counterpart, bearing in mind that most of definitions and results
apply analogously in the smooth real setting. We will follow the approach of LeBrun [16] and point
out the differences where relevant. The topic of holomorphic-Riemannian geometry has been studied
in more recent years in the works of Biswas, Dumitrescu and Zeghib (cf. [3, 6, 7]).

Let M be a complex manifold of (complex) dimension n with holomorphic tangent and cotangent
bundles denoted, respectively, by T0M and T ∗

0M .
A holomorphic-Riemannian metric (or, simply, holomorphic metric) on M is a holomorphic co-

variant symmetric 2-tensor i.e. a holomorphic symmetric section g : M −→ T ∗
0M ⊗ T ∗

0M which is
also non-degenerate.
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In terms of local coordinates, a holomorphic metric g can be expressed as follows. If U is a domain
of M such that we have a chart U −→ Cn with coordinates (z1, · · · , zn), then g|U can be written as

g|U =
n∑

i,j=1

gijdz
i ⊗ dzj

with ∂̄gij = 0 (i.e. g is holomorphic) and gij = gji (i.e. g is symmetric), for every i, j ∈ {1, . . . , n}.
Clearly, such a tensor carries no signature, but it is still possible to define the notion of non-

degenerate metric by prescribing that the map T0M −→ T ∗
0M given by X 7−→ g(X,−) is an

isomorphism between the tangent and the cotangent holomorphic bundles. As in the real setting,
this condition is translated by det[gij ] ̸= 0.

A holomorphic-Riemannian manifold is thus a pair (M, g) where M is a complex manifold and g
is a holomorphic-Riemannian metric on M .

Remark that the notion of holomorphic metric should not be confused with that of Hermitian
metric. Observe also that the real part of a holomorphic metric is a pseudo-Riemannian met-
ric of signature (n, n). Indeed, it is always possible to find a local basis of holomorphic vectors
(X1, · · · , Xn) such that g(Xi, Xj) = δij and then (X1, · · · , Xn, iX1, · · · , iXn) is a local basis for the
underlying real manifold which is orthonormal for Re g with signature (n, n).

It is a well-known fact that a compact Lorenztian manifold has Euler characteristic equal to
zero, and this is simply due to the fact that there must exist a nowhere vanishing (timelike) vector
field. The existence of a holomorphic metric for compact complex manifolds is also restrictive in
terms of its topology, cf. [6]. The existence of such a metric fixes an isomorphism between the
holomorphic tangent and the holomorphic cotangent bundles, which implies that the canonical
bundle K = Λn(T ∗

0M) of M is isomorphic to its dual, the anticanonical bundle K∗, and this yields
the vanishing of the first Chern class of M , since c1(M) = c1(K) = −c1(K∗).

With the notion of holomorphic metric understood, we can now introduce the homolorphic Levi-
Civita connection. It can easily be proved, just like in the real setting that there exists a unique
affine connection, which we will call the Levi-Civita connection, that is torsion-free and preserves
the holomorphic metric, cf. [16]. Moreover, this connection is also defined by the Kozsul formula
as in pseudo-Riemannian geometry.

Given a holomorphic-Riemannian manifold (M, g), an isometry is defined to be a biholomorphic
map ϕ : M −→ M which preserves g, that is, ϕ∗g = g. If the biholomorphism ϕ is defined only
locally (between two open subsets of M) we say that ϕ is a local isometry.

As in the real case, the set of local isometries is a pseudo-group for composition. A similar
proof to that of the classical result of pseudo-Riemannian geometry shows that the following three
statements are equivalent for a holomorphic vector field X.

(i) The (local) flow of X preserves g, i.e., it acts by isometries;
(ii) ∇X is a pointwise g-skew symmetric endomorphism of T0M ;
(iii) LXg = 0, where L represents the Lie derivative.
A vector field which satisfies any of the above conditions is called a Killing vector field. Note

that the set of Killing vector fields forms a Lie algebra with respect to the standard Lie bracket of
holomorphic vector fields.

A notion of parallel transport can also be obtained in a classical fashion. Consider γ : A −→M ,
A ⊆ C, an immersed (i.e. γ̇(t) ̸= 0, for all t ∈ A) holomorphic curve, and let ∇γ̇ denote the covariant
derivative along γ.

Definition 2.1. The curve γ is called a geodesic if γ̇ is parallel along γ, that is, if ∇γ̇ γ̇ = 0.

Using local coordinates and considering the Christoffel symbols Γk
ij , the curve γ is a geodesic of

(M, g) if and only if it satisfies the equations

γ̈k(t) + γ̇j(t)γ̇i(t)Γk
ij(γ(t)) = 0,

which are perfectly analogous to the geodesic equations of pseudo-Riemannian geometry.
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Using the theorem of existence and uniqueness of ordinary differential equations, we know that
given a point p in M and a vector v in the holomorphic tangent space of M at p, there exists a
ball B(0, δ) centered at 0 ∈ C with radius δ > 0 such that γ : B(0, δ) −→M is the unique geodesic
verifying γ(0) = p and γ̇(0) = v.

We can now introduce the notion of completeness and semicompleteness for geodesics.

Definition 2.2. Let (M, g) be a holomorphic-Riemannian manifold and ∇γ̇ γ̇ = 0 be the geodesic
equation of (M, g). We say that the geodesic equation is semicomplete on an open set U ⊆M if for
every p ∈ U and v ∈ TpM , there exists a neighborhood Vp of 0 ∈ C and a curve γ : Vp −→ U which
satisfies the following conditions:

(i) γ(0) = p, γ̇(0) = v and ∇γ̇ γ̇ = 0;
(ii) for every sequence {ti}i∈N ⊂ Vp ⊂ C which converges to a point t̂ in the boundary of Vp, the

sequence {γ(ti)}i∈N escapes from every compact set of U .

Definition 2.3. For a holomorphic-Riemannian manifold (M, g), the geodesic equation is said to
be complete if there is a map Γ: C×M −→M such that for every p in M , the curve γ(t) = Γ(t, p)
satisfies condition (i) of Definition 2.2.

The notion of geodesic completeness is clearly analogous to that of the real setting. Our definition
of geodesic semicompleteness here is a particular case of the general definition for (germs of) vector
fields on complex manifolds, which was introduced by Rebelo in [22]. In fact, Definition 2.2 can be
rephrased by saying that the vector field on TM associated with the geodesic flow is semicomplete
on TU ⊆ TM .

Note that for real ordinary differential equations the definition of semicompleteness is moot and
the notion of maximal domain (or interval) of definition is well understood. This is an important
difference between real and complex ODEs, since for a generic complex ODE the standard gluing
procedure of the local domains of definition might lead to multivalued solutions (for more details,
the reader is referred to the survey [24]). However, in the case where the geodesic equation is
semicomplete on M , owing to condition (ii) of Definition 2.2, we will say that Vp is the maximal
domain of definition of the geodesic γ, and our geodesics are well-defined in the sense of being
univalued.

The following lemma provides an interesting relation between Killing fields and geodesics; it will
also be useful in Section 4.

Lemma 2.4. Let (M, g) be a holomorphic-Riemannian manifold. If X is a Killing field and γ is a
geodesic then g(Xγ(t), γ̇(t)) is constant.

Proof. By definition of connection along a curve we have that d
dtg(X, γ̇) = g(∇γ̇X, γ̇) + g(X,∇γ̇ γ̇).

Since γ is a geodesic the above expression simplifies to d
dtg(X, γ̇) = g(∇γ̇X, γ̇). Since X is a Killing

field then d
dtg(X, γ̇) = −g(X,∇γ̇ γ̇) Thus, using again the fact that γ is a geodesic, d

dtg(X, γ̇) = 0
and g(X, γ̇) is constant.

□

3. Holomorphic-Riemannian Lie groups

We will now focus on the case where our manifold is a Lie group. A very detailed exposition of
this topic, in the (perhaps less familiar) complex setting can be found in the textbook by Lee, [17].
Here we will only recall the basic material needed for our purposes. As in the previous section, we
will make our exposition in the complex case while bearing in mind the analogous definitions and
results for the real case and pointing out the differences where needed.

The definition of a complex Lie group is very similar to that of a real Lie group, but instead
of considering smooth group operations, we must consider holomorphic ones. More precisely, a
connected complex manifold G which is also equipped with a group structure is said to be a complex
Lie group if the multiplication and the inversion operations are holomorphic maps.
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Let G be a complex Lie group with identity e ∈ G. As usual, we will denote by Lg (resp. Rg,
Cg) the left translation (resp. right translation, conjugation) map by g ∈ G on G.

Take X to be a vector field on the Lie group G. Recall that X is said to be left-invariant (resp.
right-invariant) if it coincides with its pullback by left translations (resp. right translations).

Naturally, given a vector x ∈ TeG, it can be extended to a left-invariant vector field X by left-
translating the tangent vector x to other points of G. This allows us then to identify the tangent
space of G at the identity, g = TeG, with the space of left-invariant vector fields on G. Also, it is
simple to see that such an identification is a C-linear map, thus endowing g with the structure of a
complex Lie algebra.

Let us recall the adjoint representation and the infinitesimal adjoint representation of a Lie group
G which we will denote, as usual, by Ad and ad, respectively.

The adjoint representation of G is the map Ad : G −→ GL(g) where Adg is the linear map
satisfying Adg(x) = (DeCg)(x). Thus, the adjoint representation of G is the derivative at the
identity of the conjugation map Cg (viewed as an element of Aut(G), the automorphism group of
G). Note that, with the standard complex structure on GL(g) ≃ GL(n,C), where n = dimG, it is
possible to prove that Ad is a holomorphic map.

The infinitesimal adjoint representation of G (or, equivalently, the adjoint representation of the
Lie algebra g associated to G) is the map ad : g −→ End(g) where adx is defined as adxy =
(DeAd(x))(y). The infinitesimal adjoint representation of G is then the derivative at the identity of
the adjoint representation. Moreover, we have the remarkable fact that

adxy = [X,Y ]e

where x, y are vectors in TeG and X,Y are the left-invariant vector fields associated to x and y in
the identification of g = TeG with the Lie algebra of left-invariant vector fields. From henceforth,
we will simply write, where convenient and as is standard, adxy = [x, y].

Remark 3.1. If G is a matrix group, that is, a Lie subgroup of the general linear group GL(m,C),
for some m ∈ N, then the adjoint representation is simply given by Adg(x) = gxg−1, for every
g ∈ G and x ∈ g; also the infinitesimal adjoint representation is simply the usual commutation of
matrices, i.e., for every x, y ∈ g , adx(y) = xy − yx.

Consider now a holomorphic-Riemannian metric q on the complex Lie group G. The metric q is
said to be left-invariant if all left translations are isometries, that is, if (Lg)

∗q = q, for all g ∈ G or,
more concretely, if

qh(x, y) = qgh ((DhLg)x, (DhLg)y) ,

for all points g, h of G and all vectors x, y of ThG. Analogously, a metric q is right-invariant if the
right translations are isometries.

It is easy to see that there is a one-to-one correspondence between left-invariant holomorphic-
Riemannian metrics on the groupG and non-degenerate complex bilinear forms on the corresponding
Lie algebra g.

Let us also recall the special case of bi-invariant metrics. A holomorphic-Riemannian metric is
said to be bi-invariant if it is both left-invariant and right-invariant. Note that, for a connected
group G, this is equivalent to having adx be skew-symmetric with respect to q, that is,

(1) q(adxy, z) + q(y, adxz) = 0

for all x, y, z ∈ g.
The bilinear form κ defined by κ(x, y) = Tr(adx ◦ ady) for every x, y ∈ g, where Tr stands for the

trace of an endomorphism g −→ g, is called the Killing form of the Lie algebra g.
The Killing form always satisfies the ad-invariance condition of Equation (1). Also, a famous

result of Cartan tells us that G is a semisimple Lie group if and only if its Killing form is non-
degenerate. Therefore, for complex semisimple Lie groups we have a preferred bi-invariant holomorphic-
Riemannian metric.
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Consider now any Lie group (real or complex, not necessarily semisimple) with Lie algebra g
that can be equipped with a bi-invariant metric B. In the real setting, such groups are known
as orthogonal, quadratic or quasi-classical Lie groups, [19]. We will now show that the set of left-
invariant metrics q on g is in one-to-one correspondence with B-self-adjoint isomorphisms Φ : g −→ g
via the equality

q(x, y) = B(Φx, y),

for every x, y ∈ g. Given a B-self-adjoint isomorphism Φ, it is clear that the equation above defines
a non-degenerate symmetric bilinear form (possibly of different signature than that of B, in the
real setting) on g. Conversely, given a metric q we can define the isomorphism Φ by the following
commutative diagram

g g∗

g g∗

Aq

Φ id

AB

where Aq (resp. AB) is the standard isomorphism between g and g∗ given by q (resp. B).
For a Lie group G equipped with a left-invariant metric, the following lemma is an immediate

consequence of the definitions but yet a noteworthy fact.

Lemma 3.2. If X is a right-invariant vector field then X is a Killing field.

Proof. LetX be a right-invariant vector field. We start by observing that if φ(t) is the one-parameter
subgroup of Xe ∈ g then the flow Ψt

X of X is given by Ψt
X(g) = φ(t)g = Lφ(t)g. By definition of

Lie derivative,

LXq = lim
t→0

1

t

(
(Ψt

X)∗q − q
)

But (Ψt
X)∗q = L∗

φ(t)q from the above and L∗
φ(t)q = q since the metric is left-invariant. The claim

then follows. □

4. The Euler-Arnold formalism

In his celebrated article of 1966, [1], Arnold showed that the motions of a rigid body with fixed
point can be seen as geodesics of a Lie group equipped with a left-invariant metric. This was a
generalization of the result obtained by Euler for the particular case of rigid motions on R3. For
this reason, the result of Theorem 4.1 (Equation (2) below) is known as the Euler-Arnold equation
for geodesics of Lie groups. For the proofs, we will follow the approach of N. Tholozan in his Ph.
D. thesis [27], which is very suitable to our complex setting.

Let A be an open domain in C and γ : A −→ G be an immersed holomorphic curve in G. Using
left translations, we can define the associated curve x : A −→ g in the Lie algebra g of G, for every
t ∈ A, as follows

x(t) = Dγ(t)Lγ−1(t)γ̇(t).

Theorem 4.1 (Arnold, [1, 2]). Let (G, q) be a holomorphic-Riemannian Lie group. The curve
γ : A −→ G is a geodesic if and only if the associated curve x : A −→ g satisfies, for every t ∈ A,
the equation

(2) ẋ(t) = ad†x(t)x(t),

where ad†x(t)denotes the formal adjoint of adx(t) with respect to q.

Proof. For simplicity, we will present the proof for matrix groups only. We recall that, by Ado’s
theorem, every Lie algebra is isomorphic to the Lie algebra of a matrix group with the usual
commutator, so we trust that the reader will not find our proof too restrictive.
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If G is a matrix group and γ : A −→ G is a curve in G then its associated curve x : A −→ g is
simply given by the expression x(t) = γ−1(t)γ̇(t).

Suppose that γ : A −→ G is a geodesic. Let z be any element in the Lie algebra g. By Lemma
3.2, the right-invariant vector field Zγ(t) := zγ(t) is a Killing field along the curve γ. Also, according
to Lemma 2.4, q(Zγ(t), γ̇(t)) is constant. Since the metric q is left-invariant, then

c = q
(
Zγ(t), γ̇(t)

)
= q

(
γ−1(t)Zγ(t), γ

−1(t)γ̇(t)
)
= q

(
Adγ−1(t)z, x(t)

)
for some c ∈ C and for all t ∈ A. Taking the derivative with respect to t, we have that

0 =
d

dt
q
(
Adγ−1(t)z, x(t)

)
= q

(
ẋ(t),Adγ−1(t)z

)
+ q

(
x(t),

d

dt
Adγ−1(t)z

)
.

From the equation above, by taking derivatives and noting that d
dtγ

−1(t) = −γ−1(t)γ̇(t)γ−1(t) and
thus d

dtAdγ−1(t)z = γ−1(t)zγ̇(t)− γ−1(t)γ̇(t)γ−1(t)zγ(t), we get

q
(
ẋ(t),Adγ−1(t)(z)

)
= −q

(
x(t), γ−1(t)zγ̇(t)− γ−1(t)γ̇(t)γ−1(t)zγ(t)

)
.

Now using the definitions of Ad and of x(t) we can rearrange our equation to

q
(
ẋ(t),Adγ−1(t)z

)
= −q

(
x(t),

(
Adγ−1(t)z

)
x(t)− x(t)

(
Adγ−1(t)z

))
.

Recalling that for matrix groups the adjoint map ad is given by the commutator, we obtain

q
(
ẋ(t),Adγ−1(t)z

)
= q

(
x(t), adx(t)Adγ−1(t)z

)
.

Finally by taking the formal adjoint, we can write

q
(
ẋ(t),Adγ−1(t)z

)
= q

(
ad†x(t)x(t),Adγ−1(t)z

)
.

Now using the fact that z is a generic element in g and Adg is surjective for all g ∈ G and also
that q is non-degenerate, we can conclude that ẋ(t) = ad†x(t)x(t).

Conversely, suppose that x(t) is an integral curve of the Euler-Arnold equation and take v = x(0).
There exists a unique geodesic γ in G such that γ(0) = e and γ̇(0) = v. Then, by the statement
proved above, y(t) = γ−1(t)γ(t) is also an integral curve of the Euler-Arnold equation. Since
y(0) = γ−1(0)γ̇(0) = v, by uniqueness, we conclude that x(t) = y(t), in an open neighborhood of
0 ∈ C. Thus x is an associated curve in g of a geodesic of G. □

We remark that the theorem above, which we will call, as is usual in the literature, the Euler-
Arnold theorem, is valid for any Lie group equipped with a left-invariant metric. For Lie groups
which can be equipped with a bi-invariant metric, we have the following simplification of the Euler-
Arnold equation.

Proposition 4.2. Let G be an orthogonal Lie group equipped with the bi-invariant metric B. Let q be
a left-invariant metric on G and Φ be the B-self-adjoint isomorphism defined by q(y, z) = B(Φy, z),
for all y, z ∈ g. A curve γ : A −→ G is a geodesic in G if and only if its associated curve x : A −→ g
in g is an integral curve of Φẋ(t) = [Φx(t), x(t)].

Proof. Let z be any element in g. Since x(t) satisfies the Euler-Arnold equation, we have that
q(ẋ(t), z) = q(ad†x(t)x(t), z). It thus follows that B(Φẋ(t), z) = B(Φx(t), adx(t)z). Since B is bi-
invariant we can write that B(Φẋ(t), z) = B([Φx(t), x(t)], z) and hence the claim follows. □

Recall that a first integral of a complex differential equation is a holomorphic function which is
constant along its solutions. The Euler-Arnold equation comes with the following first integrals.

Proposition 4.3. The functions I(x) = B(Φx, x) and J(x) = B(Φx,Φx) are first integrals of the
Euler-Arnold equation Φẋ(t) = [Φx(t), x(t)].
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Proof. It suffices to prove that d
dtI(x(t)) = 0 and d

dtJ(x(t)) = 0. We have that
d

dt
I(x(t)) =

d

dt
B(Φx(t), x(t)) = B(Φẋ(t), x(t)) +B(Φx(t), ẋ(t)).

Using the fact that Φ is B-self-adjoint and also the Euler-Arnold equation, we get that
d

dt
I(x(t)) = 2B(Φẋ(t), x(t)) = 2B([Φx(t), x(t)], x(t))

and since B is bi-invariant then d
dtI(x(t)) = 0. The result is analogous for J(x(t)). □

The following result is known as the Lax-pair formulation of the Euler-Arnold equation.

Corollary 4.4. Let G be an orthogonal Lie group as formulated above. The geodesics of G are in
one-to-one correspondence with curves in g which satisfy the equation

ż(t) = [z(t),Φ−1z(t)] .

Furthermore, the functions F (z) = B(z, z) and G(z) = B(z,Φ−1z) are first integrals of the Lax-pair
equation ż(t) = [z(t),Φ−1z(t)].

Proof. This is immediate from the two previous propositions by taking z = Φx. □

As can be seen from the discussion above, for orthogonal Lie groups with a pseudo or holomorphic-
Riemannian metric, the geodesic equation, which is for general manifolds an ODE of order 2,
becomes an ODE of order 1 (or, equivalently, a vector field) in Euclidean space which comes with
the added feature of having two first integrals. This allows us to prove the following result in the
real setting.

Theorem 4.5. Let G be a Lie group equipped with a bi-invariant pseudo-Riemannian metric B.
Consider the set of left-invariant metrics for which the isomorphism Φ is diagonalizable. Then,
for every possible signature, there is an open set of eigenvalues of Φ which corresponds to a set of
complete left-invariant pseudo-Riemannian metrics.

Proof. Suppose that B has signature (p, q) with p+ q = n, where n = dimG. Fix, for the remain-
der of the proof, an orthogonal basis (e1, · · · , ep, f1, · · · , fq) such that B(ei, ei) = 1 = −B(fj , fj).
Consider a pseudo-Riemannian metric q such that q(x, y) = B(Φx, y) where Φ is a linear isomor-
phism which is represented by a diagonal matrix with respect to our fixed basis. Supposing that
Φ−1 = diag(ν1, · · · , νp, µ1, · · · , µq) then q is represented by diag(1/ν1, · · · , 1/νp,−1/µ1, · · · ,−1/µq).
Notice that the signature of q is determined by the signs of νi, µj .

If (z1, · · · , zp, w1, · · · , wq) stands for the chosen coordinates of z ∈ g then the first integrals of
Corollary 4.4 are given by

I1(z) = z21 + · · ·+ z2p − w2
1 − · · · − w2

q

I2(z) = ν1z
2
1 + · · ·+ νpz

2
p − µ1w

2
1 − · · · − µqw

2
q ,

and they are linearly independent for a generic metric.
Suppose that q has signature (p + r, q − r) where 0 ≤ r ≤ q. Such a signature can be obtained

by taking, for instance,

ν1, · · · , νp > 1, µ1, · · · , µr < 0 and 0 < µr+1, · · · , µq < 1.

Consider then the new first integral for the Lax-pair system given by J = I2 − I1. More precisely,

J(z) = (ν1 − 1)z21 + · · ·+ (νp − 1)z2p + (1− µ1)w
2
1 + · · ·+ (1− µp)w

2
p

which, with our choices, is clearly a quadratic positive definite first integral. This implies that the
integral curves are all contained in a compact part of Rn and the associate geodesics are, therefore,
complete curves.

For metrics with signature (p − r, q + r) where 0 ≤ r ≤ p the proof follows by an analogous
argument or, simply, by symmetry by replacing the metric q with −q. □

Notice that, in particular, this proves Theorem 1.1 presented in the Introduction section.
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5. Lax-pair equations on SL(2,R)

Let us consider the semisimple (in fact, simple) Lie group G = SL(2,R) and its corresponding
Lie algebra sl(2,R) equipped with a left-invariant metric q. Let Φ : sl(2,R) −→ sl(2,R) be the
(unique) B-self-adjoint isomorphism satisfying q(x, y) = B(Φx, y), for every x, y ∈ sl(2,R), where
B stands for the Killing form of sl(2,R).

Let us mention that, in this section, a particular normalization for the Killing form will be taken.
More precisely, we let B(x, y) = 1

2Tr(adx ◦ ady). Since, up to a constant, there can only be one
bi-invariant bilinear form on a simple Lie algebra, we can conclude that B(x, y) = 2Tr(xy). Also,
it can easily be checked that B has signature (2, 1).

Definition 5.1. Let v = (vk) be a basis of sl(2,R). We say that v = (vk) is B-orthonormal if, up
to reordering its elements, we have

(3) B(v1, v1) = B(v2, v2) = −B(v3, v3) = 1 and B(vk, vl) = 0 , ∀k ̸= l.

In turn, we say that v = (vk) is B-pseudo-orthonormal if, up to reordering its elements, we have

(4) B(v1, v1) = B(v2, v3) = 1 and B(v1, vk) = B(vk, vk) = 0 for k = 2, 3 .

The next result, relating B-(pseudo-)orthonormality and bracket relations, is a well-known but
remarkable property of sl(2,R), which is essentially due to the fact that it is a 3-dimensional Lie
algebra. More precisely, we have the following.

Lemma 5.2. Let v = (vk) be a basis of sl(2,R). We have that v = (vk) is a B-orthonormal basis
satisfying condition (3) if and only if

(5) [v1, v2] = δv3 , [v1, v3] = δv2 and [v2, v3] = −δv1 ,
with δ ∈ {−1, 1}. Analogously, v = (vk) is a B-pseudo-orthonormal basis satisfying condition (4) if
and only if

(6) [v1, v2] = δv2 , [v1, v3] = −δv3 and [v2, v3] = δv1 ,

again with δ ∈ {−1, 1}.
Proof. Let v = (vk) be a basis of sl(2,R) and assume that their elements satisfy the bracket relations
(5) with δ ∈ {−1, 1}. The linear maps advk can then be readily calculated and since B(x, y) =
1
2Tr(adx ◦ ady), a simple computation allows us to check that v = (vk) is, indeed, a B-orthonormal
basis satisfying condition (3).

We now check that the converse holds. Let us consider the particular basis (ek) of sl(2,R), where

(7) e1 =

(
1/2 0
0 −1/2

)
, e2 =

(
0 1/2

1/2 0

)
, e3 =

(
0 1/2

−1/2 0

)
.

The basis in question is clearly B-orthogonal and satisfies the bracket relations in (5) with δ = 1.
Furthermore, any other B-orthogonal basis v = (vk) is obtained from the present basis (ek) through
the action of the orthogonal group, OB, of B which is isomorphic to the classical group O(2, 1).
Consider also the automorphism group of the Lie algebra sl(2,R), the group Aut(sl(2,R)).

Claim: Aut(sl(2,R)) is isomorphic to SO(2, 1).

Proof of the Claim. Take any basis v = (vk) satisfying condition (5) and let M be the matrix of
φ ∈ Aut(sl(2,R)) with respect to this basis. The equation [φx, φy] = φ[x, y] is easily seen, by direct
computation, to be equivalent to

c(M) = I2,1MI2,1
where c(M) is the cofactor matrix of M and I2,1 = diag(1, 1,−1). Then by taking transposes and
multiplying by det(M), we get that

det(M)M−1 = I2,1M
tI2,1 .

This implies that det(M) = 1 and the above equation is equivalent to having M tI2,1M = I2,1. Thus
M ∈ SO(2, 1) and the claim is proved. □
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Returning now to our main argument, we have that the bracket relations of a B-orthonormal
basis of sl(2,R) are parametrized by the quotient space OB/Aut(sl(2,R)) ≃ O(2, 1)/SO(2, 1). This
space is discrete and has two elements. Our first equivalence has thus been proved.

In order to finish the proof of our lemma, it remains to check that conditions (4) and (6) are
equivalent. The proof that (6) implies (4) is, again, a direct computation using the definition of B.
Conversely, to prove that (4) implies (6), take the change of basis

u1 = v1 , u2 =
v2 + v3√

2
, u3 =

v2 − v3√
2

.

and apply the result previously proved in this lemma.
□

Recall the B-self-adjoint isomorphism Φ : sl(2,R) −→ sl(2,R) which defines the left-invariant
metric q via the identity q(x, y) = B(Φx, y), for every x, y ∈ sl(2,R). Let ma(λ) and mg(λ) stand,
respectively, for the algebraic and the geometric multiplicity of an eigenvalue λ of Φ. By means of
Jordan’s normal form theorem, there exists a basis v = (vk) of R3 where Φ is represented by one of
the following matrices:

Case 1: diagonalλ1 0 0
0 λ2 0
0 0 λ3


Case 3: a real eigenvalue λ such that
ma(λ)−mg(λ) = 1µ 0 0

0 λ ζ
0 0 λ

 , ζ ̸= 0

Case 2: two complex eigenvaluesµ 0 0
0 α β
0 −β α

 , β ̸= 0

Case 4: a real eigenvalue λ such that
ma(λ)−mg(λ) = 2λ 0 ζ

ζ λ 0
0 0 λ

 , ζ ̸= 0

The fact that Φ is B-self-adjoint allows us to characterize the basis v = (vk) for each one of the
above normal forms. This is the content of the following lemma.

Lemma 5.3. The basis in which the normal form of Φ is represented can be made:
(a) B-orthonormal in cases 1 and 2;
(b) B-pseudo-orthonormal in case 3 and normalized so that ζ = q(v3, v3);
(c) B-pseudo-orthonormal in case 4 and normalized so that ζ > 0.

Proof. We are going to consider separately the four different cases above.
Case 1: We start by assuming that the three eigenvalues of Φ are real and pairwise distinct. In this
case, the B-self-adjointness of Φ immediately implies that B(vk, vl) = 0 whenever k ̸= l. It now
suffices to normalize the vectors vk so that we obtain a B-orthonormal basis.

Suppose now that there exists an eigenvalue with (algebraic) multiplicity 2. Concretely, suppose
that λ1 = λ2 and λ3 ̸= λ1. A similar argument to the one applied above shows that v3 is orthogonal
to Span(v1, v2), the space spanned by v1 and v2. Then Span(v1, v2) is either a Euclidean plane
or a Lorentzian plane and we can use a Gram-Schmidt process to get a B-orthonormal basis of
eigenvectors. Finally, if there is an eigenvalue of (algebraic) multiplicity 3, then Φ is a multiple of
the identity and the result is immediate.
Case 2: Let µ be the real eigenvalue and Λ,Λ be the two complex conjugate eigenvalues of Φ with
Λ = α + iβ, β ̸= 0. Consider sl(2,R) + isl(2,R) the complexification of sl(2,R), and H and Ω the
complex extensions, by linearity, of B and Φ, respectively. Note that H is non-degenerate and Ω is
H-self-adjoint.

Let v1, V, V be (non-zero) eigenvectors associated to the eigenvalues µ,Λ,Λ of Ω, respectively,
where V = v2 + iv3 for some real vectors v2, v3 ∈ sl(2,R). The fact that Ω is H-self-adjoint implies
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that the basis (v1, V, V ) is H-orthogonal. This, in turn, implies that B(v1, v2) = B(v1, v3) = 0 and
also that B(v2, v2)+B(v3, v3) = 0. Furthermore, the non-degeneracy of B implies that B(v1, v1) ̸= 0
and, therefore, we must have B(v1, v1) > 0, otherwise Span(v2, v3) would be a Euclidean plane
meaning that Φ would be diagonalizable. Finally, we use the non-degeneracy of H to conclude that
H(V, V ) ̸= 0 and we normalize V so that H(V, V ) = 2. This implies that B(v2, v2)−B(v3, v3) = 2
and B(v2, v3) = 0. Summing all up, we get that v = (vk) is a B-orthonormal basis.
Case 3: Assume that Φ has a (real) eigenvalue λ such that ma(λ)−mg(λ) = 1. Let then v = (vk)
be a basis for which Φ is represented by the corresponding normal form with ζ = 1.

From the fact that Φ is B-self-adjoint, we can conclude that B(v1, v2) = 0 = B(v2, v2). Since B
is non-degenerate, we get that B(v2, v3) ̸= 0 and also that B(v1, v1) ̸= 0, otherwise the restriction
of B to Span(v1, v2) would vanish identically. If M is the matrix associated to B, the fact that
det(M) < 0 implies that B(v1, v1) > 0. Taking

u1 =
v1√

B(v1, v1)
− B(v1, v3)

B(v2, v3)
√
B(v1, v1)

v2 , u2 =
v2

B(v2, v3)
, u3 = v3 −

B(v3, v3)

2B(v2, v3)
v2 ,

it can be easily checked that u = (uk) is a B-pseudo-orthornormal basis. If the eigenvalues λ and µ
are such that λ ̸= µ, it can be additionaly proved that B(v1, v3) = 0. In either case, we can check
that Φ maintains its normal form but now with ζ = B(v2, v3) (= B(Φu3, u3) = q(u3, u3)).

Case 4: Assume that Φ has a (real) eigenvalue λ such that ma(λ)−mg(λ) = 2 and let v = (vk) be
a basis for which Φ is represented by the corresponding normal form with ζ = 1.

Since Φ is B-self-adjoint, there follows that B(v1, v2) = B(v2, v2) = 0 and B(v1, v1) = B(v2, v3).
In turn, the non-degeneracy of B implies B(v1, v1) = B(v2, v3) ̸= 0. Consider then the basis given
by the vectors

u1 = v1 +Kv2 , u2 = v2 , u3 = v3 +Kv1 + Lv2

where

K = − B(v1, v3)

2B(v1, v1)
and L = −B(v3, v3) + 2KB(v1, v3) +K2B(v1, v1)

2B(v2, v3)
.

By what precedes, it can be checked that B(u1, u2) = B(u1, u3) = B(u2, u2) = B(u3, u3) = 0. We
can deduce, in addition, that B(u1, u1) = B(u2, u3) ̸= 0. Furthermore, we must have B(u1, u1) > 0,
otherwise Span(u2, u3) would be a Euclidean plane and therefore could not contain null vectors.
Now, by letting

w1 =
u1√

B(u1, u1)
, w2 =

u2
B(u2, u3)

, w3 = u3.

we obtain a B-pseudo-orthornormal basis, w = (wk), with respect to which the isomorphism Φ

maintains its normal form but now with ζ =
√
B(u1, u1) =

√
B(v1, v1) > 0. □

Equipped with these hands-on results about the structure of sl(2,R), we will reobtain, in Sections
6,7, 8 and by different methods, the well-known result of Bromberg and Medina.

Theorem 5.4 ([4]). The completeness of a left-invariant pseudo-Riemannian metric on SL(2,R)
is characterized in terms of its associated isomorphism Φ as follows.

- In case 1, the metric q is complete if and only if
(

1
λ2

− 1
λ3

)(
1
λ3

− 1
λ1

)
≤ 0.

- In case 2, the metric q is incomplete.
- In case 3, the metric q is complete if and only if

(
1
µ − 1

λ

)
ζ ≤ 0.

- In case 4, the metric q is incomplete.

Furthermore, we will present a detailed study of completeness or incompleteness of every single
geodesic of the metrics in question while, in addition and in the case of an incomplete geodesic, we
estimate the size of its maximal domain of definition.
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From the representation theory of SL(2,R), it can be seen that every non-compact semisimple
Lie group contains a Lie subgroup that is isomorphic to SL(2,R). This well-known fact and the
previous theorem can be combined to prove the following.

Corollary 5.5. Let G be a non-compact semisimple Lie group. Then G can be endowed with
incomplete left-invariant pseudo-Riemannian metrics.

Proof. Let g be the Lie algebra of G. Consider h a copy of sl(2,R) inside g and write g = h ⊕ V .
Take a left-invariant pseudo-Riemannian metric q with associated isomorphism Φ such that Φ(h) ⊆ h
and the restriction of q to h is one of the incomplete metrics of Theorem 5.4. By construction, the
geodesic flow leaves the Lie subalgebra h invariant and we have incomplete integral curves of the
Euler-Arnold vector field contained in h and therefore in g. □

6. Characterization of geodesics in case 1

Let us start by assuming that the isomorphism Φ is diagonalizable. It was proved in Lemma 5.3
that there exists a B-orthonormal basis v = (vk) with respect to which Φ is a diagonal matrix
Φ = diag (λ1, λ2, λ3). Thus Φ−1 = diag (ν1, ν2, ν3), with νi = 1/λi. Fix an element z ∈ sl(2,R)
and let (z1, z2, z3) stand for its coordinates with respect to the basis v = (vk). Recall that the
geodesics associated to q on SL (2,R) are in one-to-one correspondence with the integral curves on
sl(2,R) of the differential system ż = [z,Φ−1z], z ∈ sl(2,R). Being v = (vk) a B-orthonormal
basis, up to reordering its elements we can assume that B(v1, v1) = B(v2, v2) = −B(v3, v3) = 1 and
B(vi, vj) = 0 whenever i ̸= j. From Lemma 5.2 there follows that the differential system above can
be written, in the affine coordinates (z1, z2, z3) ∈ R3, asż1ż2

ż3

 =

δ(ν2 − ν3)z2z3
δ(ν3 − ν1)z1z3
δ(ν2 − ν1)z1z2

 ,(8)

for δ ∈ {−1, 1}. Naturally, it suffices to consider the case where δ = 1, since if φ = φ(t) is a solution
of the system for δ = 1, then ψ = ψ(t) = φ(−t) is a solution for δ = −1. In particular, one system
is complete if and only if so is the other. So, let us assume in what follows that δ = 1. By letting
a = ν2−ν3, b = ν3−ν1 and c = ν2−ν1 = a+ b, the system of differential equations (8) is in natural
correspondence with the vector field

(9) E = az2z3
∂

∂z1
+ bz1z3

∂

∂z2
+ cz1z2

∂

∂z3
,

which will be called Lax vector field or, by abuse of language, Euler-Arnold vector field.

6.1. Characterization of geodesically complete metrics. The characterization of the geodesi-
cally complete left-invariant pseudo-Riemannian metrics q in this case can be easily described in
terms of the eigenvalues of Φ or, equivalently, Φ−1. More precisely, we have the following.

Theorem 6.1. The left-invariant pseudo-Riemannian metric q is geodesically complete if and only
if ab ≤ 0.

To prove Theorem 6.1 we may consider separately the cases where ab > 0 and ab ≤ 0. With
respect to the case where ab > 0 we can prove the existence of the so-called idempotents (cf. [4]),
which correspond to straight lines through the origin that are invariant by the foliation induced by
E and such that the restriction of E to them does not vanish identically. The restriction of E to
an idempotent is a quadratic (homogeneous) vector field (in dimension 1) and, consequently, the
solution of the associated differential equation is not complete. In the case where ab ≤ 0 we will
prove that the integral curves of E are contained in a compact part of R3. The solutions of the
differential system associated to E must then be complete. Let us begin with the case ab > 0.

Proposition 6.2. If ab > 0 then there exists at least one geodesic that is incomplete.
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Proof. Recall that the geodesics are the integral curves of the system of differential equations as-
sociated with the Euler-Arnold vector field E. Since E is a polynomial vector field on R3, it then
follows that E admits a rational extension to RP(3), the compactification of R3 by adjunction of
the plane at infinity ∆∞ = RP(3) \ R3. The singular foliation F induced by this extension on
RP(3) is however analytic since, locally, the foliation is still represented by a polynomial vector
field. Furthermore, ∆∞ is invariant for the foliation in question since E is a homogeneous vector
field distinct from a multiple of the radial vector field.

Let us consider affine coordinates (x1, x2, x3) nearby ∆∞. More precisely, consider the affine
coordinates (x1, x2, x3) related to (z1, z2, z3) through the map Ψ on R3 \ {x3 = 0} defined by

(10) Ψ(x1, x2, x3) =

(
x1
x3
,
x2
x3
,
1

x3

)
= (z1, z2, z3)

Since the vector field E will be represented in several different coordinates, it is convenient to denote
some of these representations by a different letter so as to avoid misunderstanding. In particular,
let X denote the vector field E in the coordinates (x1, x2, x3) so that

(11) X =
1

x3

[
x2(a− cx21)

∂

∂x1
+ x1(b− cx22)

∂

∂x2
− cx1x2x3

∂

∂x3

]
.

Recalling that c = a + b, the fact that ab > 0 ensures that all of a, b and c have the same sign.
Therefore, it can easily be checked that the intersection of the singular set of F with the plane at
infinity, in the considered affine chart, is constituted by 5 singular points, namely

(0, 0, 0),
(√

a/c,
√
b/c, 0

)
,
(√

a/c,−
√
b/c, 0

)
,
(√

a/c,−
√
b/c, 0

) (
−
√
a/c,−

√
b/c, 0

)
.

The straight line “above” the singular point (0, 0, 0), i.e. the line given by {x1 = x2 = 0}, is contained
in the singular set of X. The same, however, does not occur with respect to the lines above the
remaining singular points. The restriction of X to the straight line “above” (

√
a/c,

√
b/c, 0), i.e.

to the line L = {x1 =
√
a/c, x2 =

√
b/c}, is the constant vector field XL = −c

√
a/c
√
b/c ∂/∂x3.

In particular, XL is regular at the origin, which means that L “crosses” the plane at infinity, given
by {x3 = 0}, in finite time. The corresponding geodesic is therefore incomplete and the result
follows. □

Consider now the case ab ≤ 0 where the following can be proved.

Proposition 6.3. If ab ≤ 0 then all geodesics are complete.

Proof. Consider first the case where ab = 0. It can then be assumed without loss of generality that
a = 0, which is equivalent to saying that the eigenvalues ν2 and ν3 coincide. The first equation of
the differential system (8) reduces then to ż1 = 0, which means that z1(t) = k, with k ∈ R, for all
t ∈ R. Thus, the Euler-Arnold differential system reduces to a linear system in the variables z2, z3,
namely (

ż2
ż3

)
=

(
bkz3
ckz2

)
,

which is clearly complete.
Assume now that ab < 0. This is equivalent to having ν3 < min{ν1, ν2} or ν3 > max{ν1, ν2}.

Next, recall that I1(z) = B(z, z) and I2(z) = B(z,Φ−1z) are first integrals for the Lax-pair equation.
In particular, so is λI1+βI2 for every λ, β ∈ R. By using the fact that v = (vk) is a B-orthonormal
basis, we get that

I1(z1, z2, z3) = z21 + z22 − z23 and I2(z1, z2, z3) = ν1z
2
1 + ν2z

2
2 − ν3z

2
3 .

Assume that ν3 < min{ν1, ν2} (resp. ν3 > max{ν1, ν2}). Then, we have that, for every β > 0 (resp.
β < 0), λ+ βν3 is smaller than both λ+ βν1 and λ+ βν2. In particular, λ and β can be chosen so
that λ+βν3 is negative, while λ+βν1 and λ+βν2 are both positive. For such parameters λ and β,
we have that λI1+βI2 is a quadratic positive definite first integral, which implies that all geodesics
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are contained in a compact part of R3. The geodesics are therefore complete and the result follows
in that case. □

Note that the existence of a quadratic positive definite first integral does not prevent the existence
of invariant straight lines through the origin for F . Nonetheless, if such invariant lines exist, they
must be contained in the singular set of X so that every single point of the straight line in question
is a geodesic. A left-invariant pseudo-Rimannian metric as above is then complete if and only if the
Euler-Arnold system does not admit idempotents (cf. [4]).

It is known, from [4], that the metrics associated to diagonalizable isomorphisms are geodesically
incomplete in the case where ab > 0 and the proof goes as above, i.e. they proved that a particular
geodesic is incomplete. The completeness of the remaining leaves has not been discussed and its
study is the content of the rest of this section. More precisely, in what follows we will determine the
maximal domain of definition of every single geodesic for these incomplete metrics. The approach
that we will follow is based on a method introduced in [25] to investigate the maximal domain of
definition in C of the solutions of a complex differential equation.

The method goes as follows. Recall that the geodesics are in correspondence with the leaves of
the foliation F associated with the Euler-Arnold vector field E. Since E is polynomial, it admits
a rational extension to RP(3). Furthermore, being E a homogeneous vector field distinct from a
multiple of the radial vector field, the plane at infinity is invariant by F . The homogeneity of E
ensures the existence of invariant cones for F through the origin, and each one of these cones cuts
∆∞ along a curve that is a leaf for the foliation induced by the extension of E to ∆∞. We start
by describing the foliation induced by this extension to ∆∞. Next, we study the foliation over the
invariant “cones” above every single leaf of the foliation on ∆∞. More precisely, for every single
leaf on a fixed cone, we will study the “height” function of the leaf with respect to the plane at
infinity. If the “height” function is bounded from below by a strictly positive constant, then the
leaf remains in a compact part of R3 and, then, the corresponding geodesic is thus complete. If the
“height” function can be made arbitrarily close to zero (i.e. the associated geodesic escapes from
every compact subset of R3) we will decide on the completeness or incompleteness of the geodesic
by taking the integral of the associated time-form along the leaf. The time-form induced by E on
a leaf L is the 1-form dT satisfying dT.X|L ≡ 1. Furthermore, if p, q are two points on a same leaf
and c is the path joining these two points, then

∫
c dT measures the time to go from p to q. We will

then investigate the convergence of the integral of the time-form over the entire leaf to decide on
its completeness (cf. [25] for more details).

6.2. Study of geodesics for ab > 0. In this subsection we will determine the maximal domain
of definition of every single geodesic, in the case ab > 0, by following the approach previously
described. As mentioned before, we may start by describing the foliation induced by E on ∆∞. Let
us then fix one of the charts nearby ∆∞, namely let us consider the affine coordinates (x1, x2, x3)
related to (z1, z2, z3) through the map Ψ on R3 \ {x3 = 0} defined by (10). It has already been
mentioned that the vector field E in the coordinates (x1, x2, x3) is given by (11)

X =
1

x3

[
x2(a− cx21)

∂

∂x1
+ x1(b− cx22)

∂

∂x2
− cx1x2x3

∂

∂x3

]
.

A representative vector field for F∞, the foliation induced by F on ∆∞, is naturally given by

X∞ = x2(a− cx21)
∂

∂x1
+ x1(b− cx22)

∂

∂x2
.(12)

We claim that X∞ admits a non-constant first integral. In fact, although the first integrals I1 and
I2 for F , given in the affine coordinates (x1, x2, x3) of R3 by I1(x1, x2, x3) = (x21 + x22 − 1)/x23 and
I2(x1, x2, x3) = (ν1x

2
1 + ν2x

2
2 − ν3)/x

2
3, are not defined over ∆∞, their quotient is well defined and

it naturally corresponds to a first integral for F∞

(13) I(x1, x2, x3) =
x21 + x22 − 1

ν1x21 + ν2x22 − ν3
.
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The leaves of F∞ are then contained in the level sets of I, which naturally satisfy

(14) (1−Kν1)x
2
1 + (1−Kν2)x

2
2 = 1−Kν3 ,

for K ∈ R. Each leaf is then contained in a certain conic and the type of the conic in the present
coordinates depends on the value of K. To completely describe the leaves of F∞ on ∆∞ ≃ RP(2),
two more charts should be considered. So, let (y1, y2) and (u1, u2) be affine coordinates related with
(x1, x2) as follows

ψ(y1, y2) =

(
y1
y2
,
1

y2

)
= (x1, x2)

ϕ(u1, u2) =

(
1

u1
,
u2
u1

)
= (x1, x2)

A vector field representing F∞ in the affine coordinates (y1, y2) is then given by

Y∞ = y2(a− by21)
∂

∂y1
+ y1(c− by22)

∂

∂y2

while, in the affine coordinates (u1, u2) is given by

U∞ = u2(c− au21)
∂

∂u1
+ u1(b− au22)

∂

∂u2
.

The foliation F∞ induced by the Euler-Arnold vector field on ∆∞ has then a total of 7 singular
points, namely p1, p2, p3 and p4 given, respectively, in the affine coordinates (x1, x2, x3) by(√

a/c,
√
b/c, 0

)
,
(
−
√
a/c,

√
b/c, 0

)
,
(
−
√
a/c,−

√
b/c, 0

) (√
a/c,−

√
b/c, 0

)
.

and qx, qy and qu standing, respectively, for the origin of the affine coordinates (x1, x2), (y1, y2) and
(u1, u2). The dynamics of F∞ on each one of the affine coordinates is summarized in the picture
below.

Dynamics on (x1, x2) Dynamics on (y1, y2) Dynamics on (u1, u2)

Recall just that the “cone above” every leaf of F∞ is invariant by F . The dynamics of the
foliation over these invariant cones play a role in the proof of the proposition below, where the
maximal domain of definition of every single geodesic is given.

Proposition 6.4. Let L be a leaf of F and L∞ its projection on ∆∞. The geodesic associated with
L is complete if its projection coincides with one of the singular points qx, qy or qu and is incomplete
in all the other cases. An incomplete geodesic is, in fact, R+ or R− complete if and only if L∞ joins
a singular point pi to a singular point qj or if it reduces to one of the points pi.

Proof. Recall that the leaves of F∞ are contained in the level sets of the function I on (13) and,
consequently, their points satisfy Equation (14) for some K, which means that they are contained
in a certain conic in the affine coordinates (x1, x2, x3).

Let us first discuss the case where the projection of a leaf L of F coincides with one of the singular
points of F∞. Note that the argument to prove that the straight line “above” p1 is an incomplete
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geodesic can also be applied to the straight lines “above” the singular points p2, p3 and p4. The
restriction of the Euler-Arnold vector field to the mentioned leaves is a (non-zero) constant multiple
of the vector field x23 ∂/∂x3 so that the geodesics are, in fact, R+ or R− complete. In turn, the
straight line “above” the singular point qx, given by l ≃ {x1 = x2 = 0}, is contained in the singular
set of F . The restriction of X to l vanishes identically and, therefore, the geodesic passing through
every single point of l reduces to the point itself and hence it is complete. The same holds for the
straight line “above” the singular points qy and qu.

Next, note that every single leaf of F∞ goes from one singular point of F∞ to another singular
point of F∞. Furthermore, since the vector field is homogeneous, F has no singular points away from
the above mentioned straight lines. Thus, the only chance for a leaf L of F on R3 (i.e. a geodesic) to
approach infinity, is when its projection on ∆∞ approaches one of the 7 singular points. Therefore,
in order to study the completeness of the remaining geodesics, it is sufficient to study the domain
of definition of the solutions nearby each one of the 7 singular points. In fact, it will be sufficient
to consider the behavior of the solutions nearby the singular points p1 and qx since the pull-back of
X by rotation of angle π on the variables (x1, x2) or by reflection on the coordinate axes of affine
coordinates (x1, x2) coincides with X or with −X, respectively. Furthermore, the expressions of
X∞, Y∞ and U∞ nearby the origin ensure as well that the behavior nearby qx is similar to the
behavior nearby qy and qu. So, let us fix once and for all the affine coordinates (x1, x2, x3) nearby
∆∞ and let us study the behavior and the domain of definition of the geodesics accumulating at p1
and/or at qx.

With respect to px, there are just four leaves of F∞ accumulating at the point in question, namely
the straight lines joining qx to each one of the singular points p1, p2, p3 and p4. In turn, from the
symmetries previously described, it suffices to consider the leaf L∞ joining qx to p1. This leaf is
parameterized by H0(x1) = (x1,

√
b/a x1, 0), x1 ∈]0,

√
a/c[, so that a leaf L on the cone above L∞

is parameterized by H(x1) = (x1,
√
b/a x1, x3(x1)) where x3 satisfies

dx3
dx1

=
−cx1
a− cx21

x3 so that x3(x1) = x03

√
a− cx21
a− c(x01)

2
.

Thus, for L distinct from L∞, the absolute value of x3 = x3(x1) is bounded from below by a strictly
positive constant nearby x1 = 0. Thus, the associated geodesic remains away from ∆∞ (it goes to
a singular point of F on the straight line “above” qx) so that it is, at least, R+ or R− complete,
depending on weather the geodesic is approaching or moving away from the singular point as t
increases. To prove that the geodesic is, in fact, incomplete we go as follows. First, note that
x3 = x3(x1) goes to zero when x1 goes to the singular point

√
a/c, which means that L approaches

∆∞. Next, consider the time-form associated with X along L, which is given by

dT =
x3(x1)

x2(x1)(a− cx21)
dx1 =

C

x1
√

|a− cx21|
dx1 ,

for some constant C ∈ R∗. The time it takes to go from a point (x01, x
0
2, x

0
3) to p1 along L is given

by
∫√a/c

x0
1

dT and so, to decide whether the geodesic reaches ∆∞ in finite time or not, we just

need to decide on the convergence or divergence of the mentioned integral. Since a − cx21 may be

written as a(1 −
√
c/a x1)(1 +

√
c/a x1) and since

∫√a/c

x0
1

1√
1−
√

c/a x1

dx1 converges, there follows

that
∫√a/c

x0
1

dT converges as well and the corresponding geodesic is incomplete.

From now on let us focus on the foliation nearby p1. We claim first that the geodesics associated
with the leaves in the invariant plane {x2 =

√
b/a x1} are R+ or R− complete. In fact, this is

the case for those where x1 ∈]0,
√
a/c[. As for the remaining leaves, the claim follows from similar

calculations along with the previously mentioned symmetry arguments. Consider then the invariant
plane {x2 =

√
b/c} and assume first that L∞ is such that −

√
a/c < x1 <

√
a/c. If L is a leaf of F
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away from ∆∞ and projecting on L∞, then the variable x3 satisfies

dx3
dx1

= − cx1
a− cx21

x3 so that x3(x1) = x03

√
a− cx21
a− c(x01)

2
.

We have that x3 goes to zero as x1 goes to ±
√
a/c, which means that L approaches ∆∞. Let us

then check that the associated geodesic reaches infinity in finite time, so that it is incomplete. The
time-form associated with X along L is given by

dT =
x3(x1)

x2(x1)(a− cx21)
dx1 =

C√
|a− cx21|

dx1 ,

for some constant C ∈ R∗. Again, the time it takes to go from the point (x01, x02, x03) to p1 along L is

given by
∫√a/c

x0
1

dT . Again, this integral converges if and only if so does
∫√a/c

x0
1

1√
1−
√

c/a x1

dx1 and,

since the later is clearly convergent, the associated geodesic is incomplete. Taking into account the
previously described symmetries, the geodesic is neither R+ nor R− complete. In other words, the
maximal interval of definition is a bounded open interval.

The study of the remaining leaves on the invariant plane {x2 =
√
b/c} is similar, with the

exception of the fact that their projection onto ∆∞ escapes from every compact subset of the affine
chart (x1, x2). If L is a leaf on this plane with x1 >

√
a/c, then the argument above allows us to say

that L reaches ∆∞ in finite time when its projection approaches the singular point p1. In turn, to
discuss R+ or R− completeness of the leaf, either we consider the affine charts (w1, w2, w3) related
with (z1, z2, z3) through the map

(15) Λ(w1, w2, w3) =

(
1

w1
,
w2

w1
,
w3

w1

)
= (z1, z2, z3) ,

and where the divisor at infinity is represented by {w1 = 0}, or we study directly the time-form in
the present coordinates. Following the second approach, we may note that∫ +∞

x0
1

dT =

∫ +∞

x0
1

C√
|a− cx21|

dx1 =

∫ 1/x0
1

0

C

s
√
|as2 − c|

ds

clearly diverges since
√
|as2 − c| is bounded in the considered interval. The leaf L is then R+ or

R− complete. The study of the leaves on the invariant plane {x1 =
√
a/c} is analogous.

Assume now that L is a leaf whose projection L∞ is contained in an ellipse and accumulates at
p1. The leaf L∞ can thus be parameterized by H(θ) = (α1 cos θ, α2 sin θ), where αi =

√
1−Kν3
1−Kνi

,
i=1,2, for some K such that all 1−Kνi, i = 1, 2, 3, have the same sign. Furthermore, we can assume
that θ belongs to ]θ1, θ2[, where θi is such that H(θi) = pi. The cone S above L∞ then admits a
natural parametrization by (θ, x3) and the pull-back of X through this parametrization is given by

1

x3

[(
−aα2

α1
+ cα1α2 cos

2 θ

)
∂

∂θ
− x3cα1α2 cos θ sin θ

∂

∂x3

]
.

Thus, it can easily be checked that

x3(θ) = x03

√
−aα2 + cα2

1α2 cos2 θ

−aα2 + cα2
1α2 cos2 θ0

.

The height function |x3| = |x3(θ)| goes to zero as θ goes to θ1 (and to θ2 as well), which means that
L approaches ∆∞. The time-form over L is given by

dT =
C√

| − aα2 + cα2
1α2 cos2 θ|

dθ ,

for some C ∈ R∗ (naturally assuming L distinct from L∞). Now, we have the following.
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Claim: There exists ε, with 0 < ε < θ2 − θ1, and M > 0 such that

0 ≤M |θ − θ1| ≤
∣∣−aα2 + cα2

1α2 cos
2 θ
∣∣

for every θ ∈]θ1, θ1 + ε[.

Proof of the Claim. Consider the function u(θ) = −aα2 + cα2
1α2 cos

2 θ. Since u vanishes at θ = θ1,
the claim immediately follows if u′(θ1) ̸= 0. In fact, if this is the case, it suffices to take M =

|f ′(θ1)|/2. Since u′(θ) = −2cα2
1α2 sin θ cos θ and recalling that α1 cos θ1 =

√
a/c and α2 sin θ1 =√

b/c, we get that u′(θ1) = 2α1

√
ab. The value of u′(θ1) is clearly non-zero and the result follows. □

As an immediate consequence of the previous claim, we have∫ θi+ε

θi

∣∣∣∣∣ C√
| − aα2 + cα2

1α2 cos2 s|

∣∣∣∣∣ ds ≤
∫ θi+ε

θi

∣∣∣∣∣ C√
M |s− θ1|

∣∣∣∣∣ ds < ∞ .

In other words, the corresponding geodesic reaches infinity in finite time and hence the geodesic
is incomplete. In fact, there follows from the previously mentioned symmetries that the maximal
domain of definition is an open interval.

The case where L is a leaf whose projection L∞ is part of a hyperbola accumulating at p1 is left
to the reader - the calculations for the case of an ellipse apply equally well to this case. □

Let us finish this section by making some comments on the dynamics of F when ab < 0. Recall
that, when ab < 0, the leaves of F are contained in a compact part of R3. This is in contrast with
the case where ab > 0, were geodesics escaping from every compact subset of R3 naturally appear
associated with the so-called idempotents. In turn, an idempotent induces a singular point for the
foliation induced in ∆∞. In the case where ab < 0 we have no idempotents. In fact, if c ̸= 0,
there are only 3 singular points for F∞, namely the origin of each one of the three charts considered
above. Each straight line “above” them, although invariant for F , is constituted by singular points
of F . If c = 0, the origin of the affine coordinates is the only singular point for F and the straight
line “above” it is also constituted by singular points.

Note that in the case where c = 0, the leaves of F∞ in the affine coordinates (x1, x2) are nothing
but circles centered at the origin and the line at infinity of the mentioned chart is a leaf as well.
In particular, the foliation has no singular points on the other charts. The leaves on the invariant
cones are all closed from Proposition 6.3. As for the case where c ̸= 0

1. the foliation F∞ has a center at the origin of the affine coordinates (x1, x2);
2. the foliation F∞ has a center at the origin of the affine coordinates (y1, y2) and a saddle at

the origin of the affine coordinates (u1, u2) in the case where ac < 0;
3. the foliation F∞ has a saddle at the origin of the affine coordinates (y1, y2) and a center at

the origin of the affine coordinates (u1, u2) in the case where ac > 0;
The figure below exhibits the leaves of F∞ in the case 0 < ν1 < ν2 < ν3 where, in particular, we
have ac < 0.

Dynamics on (x1, x2) Dynamics on (y1, y2) Dynamics on (u1, u2)

Again, the leaves over each invariant cone are closed.
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7. Characterization of geodesics in case 3

Let us now consider the case where the isomorphism Φ admits a (real) eigenvalue λ such that
ma(λ) −mg(λ) = 1. It has been proved in Lemma 5.3 that there exists a B-pseudo-orthonormal
basis v = (vk), satisfying B(v1, v1) = B(v2, v3) = 1 and B(v1, vk) = B(vk, vk) = 0 for k = 2, 3, with
respect to which the isomorphism Φ can be written as in Section 5, where ζ ̸= 0 coincides with
q(v3, v3). In this case Φ−1 is given by

Φ−1 =

η 0 0
0 ν −ζν2
0 0 ν

(16)

where η = 1/µ and ν = 1/λ. As previously done, fix an element z ∈ sl(2,R) and let (z1, z2, z3)
stand for its coordinates with respect to the basis v = (vk). From Lemma 5.2 there follows that the
Euler-Arnold vector field is written, in the affine coordinates (z1, z2, z3) ∈ R3, as

E = ζν2z23
∂

∂z1
+ z1

(
(ν − η)z2 − ζν2z3

) ∂

∂z2
+ (η − ν)z1z3

∂

∂z3
.(17)

7.1. Characterization of geodesically complete metrics. The characterization of the geodesi-
cally complete left-invariant pseudo-Riemannian metrics is given, in this case, not only in terms of
the eigenvalues of Φ (or, equivalently, Φ−1) but also in terms of ζ = q(v3, v3). To be more precise,
the following can be said.

Theorem 7.1. The left-invariant pseudo-Riemannian metric q is geodesically complete if and only
if (η − ν)ζ ≤ 0.

To prove Theorem 7.1 we may consider separately the cases where (η−ν)ζ > 0 and (η−ν)ζ ≤ 0.
As in the previous Section, we will prove the existence of the so-called idempotents in the case where
(η−ν)ζ > 0. As to the case where (η−ν)ζ ≤ 0 the proof has to be different from the corresponding
one where Φ is diagonalizable. In fact, we will see that in this case the leaves although complete
are not contained in a compact subset of R3. The proof of the theorem is then divided into the two
following propositions.

Proposition 7.2. If (η − ν)ζ > 0 then there exists at least one geodesic that is incomplete.

Proof. Consider the rational extension of the Euler-Arnold vector field to RP(3). The plane at
infinity ∆∞ is invariant by the foliation F induced by this extension since the Euler-Arnold vector
field is a homogeneous polynomial vector field distinct from a multiple of the radial vector field.
Next, consider the affine coordinates (x1, x2, x3) nearby ∆∞ related to (z1, z2, z3) through the map
Ψ defined by (10). The Euler-Arnold vector field is given, in the coordinates (x1, x2, x3), by

(18) X =
1

x3

[
(b− ax21)

∂

∂x1
− x1(b+ 2ax2)

∂

∂x2
− ax1x3

∂

∂x3

]
,

where a = η − ν and b = ζν2. The assumption on the statement of the proposition translates, in
these new parameters, by ab > 0 and it can easily be checked that the intersection of the singular
set of F with ∆∞, in the considered affine chart, is constituted by 2 points, namely

p1 =

(√
b

a
,− b

2a
, 0

)
and p2 =

(
−
√
b

a
,− b

2a
, 0

)
.

The straight lines “above” each one of these singular points are regular leaves for F . In fact, the
restriction of X to each of these straight lines is a constant vector field. For example, the restriction
of X to the straight line (or, more precisely, leaf L) above p1 is given by XL = −a

√
b/a ∂

∂x3
. In

particular, XL is regular at the origin, which implies that L reaches the plane at infinity in finite
time. The corresponding geodesic is therefore incomplete and the result follows. □

Let us now consider the case where ab ≤ 0. In this case the following can be proved.
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Proposition 7.3. If ab ≤ 0 then all geodesics are complete.

Proof. The proposition can be easily proved in the case where ab = 0. In fact, assuming ab = 0 (or,
equivalently, a = 0 since b ̸= 0 by assumption), Φ has a unique eigenvalue, whose difference between
its algebraic and geometric multiplicity is equal to 1. The third component of X in (17) vanishes
identically and, hence, the Euler-Arnold vector field reduces to bk2 ∂

∂z1
− bkz1

∂
∂z2

, which is clearly
complete since the solution of the associated differential system is polynomial with respect to t.

Assume now that ab < 0. The first integrals I1(z) = B(z, z) and I2(z) = B(z,Φ−1z) for F are
given in coordinates (z1, z2, z3) by I1(z1, z2, z3) = z21+2z2z3 and I2(z1, z2, z3) = ηz21−ζν2z23+2νz2z3,
which are clearly linearly independent since ζ ̸= 0. Consider then the linear combination of the
present first integrals given by I = νI1 − I2

I(z1, z2, z3) = (ν − η)z21 + ζν2z23 = −az21 + bz23 ,

and which is also a first integral for F . Note that I is a quadratic positive definite first integral
for the system in the variables z1 and z3 formed by the first and third equations associated with
the Euler-Arnold system. This means that the projection of every leaf of F through the map
π(z1, z2, z3) = (z1, z3) is contained in a compact part of R2 (although the leaf itself may escape to
infinity). This means that every solution of the Euler-Arnold system is such that the expression
of (z1, z3) = (z1(t), z3(t)) is defined for every t. The completeness of the solution (z1, z2, z3) =
(z1(t), z2(t), z3(t)) of the Euler-Arnold system thus depends on the second equation. This equation,
in turn, can be seen as a first order non-homogeneous linear differential equation in the variable
z2. In fact, it corresponds to the differential equation ż2 = f(t)z2 + g(t) where f and g are the
differential functions on R given, respectively, by f(t) = (ν − η)z1(t) and g(t) = −ζν2z1(t)z3(t).
The general solution of such a differential equation takes on the form

z2(t) = (G(t) + C) eF (t)

where F is a primitive function of f , G is a primitive function of g(t)e−F (t) and C a real constant.
Since f and g are differentiable functions defined on R so are their primitive functions and, conse-
quently, so is z2 = z2(t). We thus conclude that (z1, z2, z3) = (z1(t), z2(t), z3(t)) is complete. □

In what follows, we will use the method above to give an alternative proof for the characterization
of the geodesically complete metrics. Furthermore, in the case of incomplete metrics, we will present
the maximal domain of definition of every single geodesic.

7.2. Geodesics for ab < 0. Recall that F is given in the affine coordinates (x1, x2, x3) by the
vector field X in Equation (18). The foliation F∞ induced by F in ∆∞ is, in particular, represented
by the vector field

(19) X∞ = (b− ax21)
∂

∂x1
− x1(b+ 2ax2)

∂

∂x2

and it becomes clear that F∞ does not admit singular points in the present coordinates. However,
F∞ has two singular points namely, the origin of the affine coordinates (y1, y2) and the origin of
the affine coordinates (u1, u2) (with (y1, y2) and (u1, u2) as in Section 6). By calculating the vector
fields Y∞ and U∞, representatives of F∞ in the affine coordinates (y1, y2) and (u1, u2), respectively,
it becomes clear that the origin is a degenerate singular point for Y∞ while the origin is a saddle for
U∞. Furthermore, by taking the quotient of the two independent first integrals I1, I2 on the affine
coordinates (x1, x2, x3), it is clear that the leaves of F∞ are all contained in conics. The figures
below represent F∞ in the different affine coordinates.
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Dynamics on (x1, x2) Dynamics on (y1, y2) Dynamics on (u1, u2)

By using the quotient of the two first integrals I1 and I2, it can easily be checked that the leaves of
F over ∆∞ are given in coordinates (x1, x2) by x2 = αx21+β, with α = Kη−1

2(1−Kν) and β = − Kζν2

2(1−Kν) ,
which means that the leaves can be globally parameterized through the variable x1. Fix then a
leaf L∞ of F over ∆∞ and note that the cone above L∞ can naturally be parameterized through
(x1, x3). The pull-back of the Euler-Arnold vector field to the mentioned cone is given by

1

x1

[
(b− ax2a)

∂

∂x1
− ax1x3

∂

∂x3

]
.

Fixed a leaf L in the mentioned cone (and naturally away from ∆∞), we have that along L

(20)
dx3
dx1

= − x1
b− ax21

x3 so that x3 = x03

√
b− ax21

b− a
(
x01
)2 .

Now, since the time-form of the vector field along L is given by

dT =
x3(x1)

b− ax21
dx1 =

C√
|b− ax21|

dx1

for some non-zero real constant C, we can easily conclude that the integral of the time-form along
the entire leaf diverges. In fact, since∫ +∞

1

C√
|b− ax21|

dx1 =

∫ +∞

1

C

x1

√∣∣b/x21 − a
∣∣ dx1

and
√∣∣b/x21 − a

∣∣ is bounded in the interval of integration, we get that the latter integral diverges.
Furthermore, since the integrand is an even function, the integral of the time-form along the entire
leaf diverges as well. We thus conclude that the geodesic associated with L is complete.

Let us finally consider the leaves on the cone above the line at infinity of the affine coordinates
(x1, x2), which is invariant by F∞. To study the mentioned leaves, we should then consider the
affine coordinates (w1, w2, w3) related with (z1, z2, z3) through the map Λ on R3 \ {w1 = 0} defined
by (15), where divisor at infinity is given by {w1 = 0} and the invariant plane by {w3 = 0}. The
Euler-Arnold vector field given in these coordinates by

W =
1

w1

[
−bw1w

2
3

∂

∂w1
− (aw2 + bw3 + bw2w

2
3)

∂

∂w2
+ w3(a− bw2

3)
∂

∂w3

]
so that its restriction to the invariant plane {w3 = 0} is simply given by −aw2/w1 ∂/∂w2. The
variable w1 along every single leaf L in the mentioned plane is such that dw1

dw2
≡ 0 and, consequently,

w1 is constant for all t. This implies that L remains way from ∆∞ nearby the origin of the present
coordinates. The leaf is therefore, at least, R+ or R− complete. To decide on the completeness of
the leaf we should take the integral of the associated time-form along the part of the leaf escaping
from the domain of these charts.
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Recall that L is parameterized by H(w2) = (c, w2, 0) for some (non-zero) real constant c and
w2 > 0 or w2 < 0. Assume, for simplicity, that w2 > 0 along L. Since dw2/dT = −aw2/w1, the
time-form takes on the form

dT = − c

aw2
dw2

It becomes clear that
∫ +∞
1 dT diverges and, consequently, the geodesic associated with L is complete.

7.3. Geodesics for ab > 0. Proposition 7.2 ensures the existence of incomplete geodesics in the
case where ab > 0. To be more precise, it was proved that the straight line transverse to ∆∞ and
passing through p1 is associated with incomplete geodesics. Let us now investigate the domain of
definition of the remaining geodesics.

Consider the restriction of F to the divisor at infinity ∆∞ along with the affine coordinates
(x1, x2), (y1, y2) and (u1, u2) previously introduced. By considering the representative X∞ of the
mentioned foliation (cf. Equation (19)) in the affine coordinates (x1, x2), it can easily be checked
that F∞ possesses four singular points: two singular points in the affine coordinates (x1, x2) (that,
since distinct from the origin of these coordinates, they are also presented in the other two affine
coordinates) along with the origins of (y1, y2) and of (u1, u2). As previously mentioned, the quotient
of the first integrals I1 and I2 defines a first integral for F∞ and, since I1, I2 are homogeneous
polynomials of degree 2, the leaves of F∞ are conics in the different affine coordinates for ∆∞. The
figure below represents F∞ in the different affine coordinates.

Dynamics on (x1, x2) Dynamics on (y1, y2) Dynamics on (u1, u2)

The characterization of the domain of definition of the geodesics for ab > 0 are described in the
proposition below.

Proposition 7.4. Consider a leaf L of F and let L∞ stand for its projection onto ∆∞. The geodesic
associated with L is complete if L∞ is contained in the line at infinity of the affine coordinates (x1, x2)
and incomplete in the other cases. An incomplete geodesic is, in fact, R+ or R− complete if L∞ is
not contained in the bundle defined by −

√
b/a < x1 <

√
b/a or, in other words, if L∞ is not a leaf

joining the singular points p1 and p2.

Proof. Recall that if L∞ is a leaf of F∞ contained in the chart associated with (x1, x2), then its
points satisfy the equation (1−Kη)x21+2(1−Kν)x2 = −Kζν2 for some K ∈ R. In particular, the
leaves can be globally parameterized by the variable x1 with the exception of two that correspond
to the vertical straight lines given by x1 = ±

√
b/a. Assume first that L∞ is one of the parabolas

described above. We proceed as in the case ab < 0. More precisely, we start by noticing that a leaf
L in the cone above L∞ can be parameterized as H(x1) = (x1, x2(x1), x3(x1)), where

x2(x1) = x2 =
Kη − 1

2(1−Kν)
x21 −

Kζν2

2(1−Kν)
and x3(x1) = x3 = x03

√
b− ax21

b− a
(
x01
)2 ,

since x3 satisfies the differential equation (20). Suppose that L is such that the domain of definition
of the parametrization above is the bounded interval ]−

√
b/a,

√
b/a[. In this case, we have that L
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approaches the plane at infinity either when x1 approaches −
√
b/a or

√
b/a. The time needed to

go through L is given by ∫ √
b/a

−
√

b/a
dT =

∫ √
b/a

−
√

b/a

C√
|b− ax21|

dx1 .

The denominator of the integrand is given by
√√

b
a − x1

√√
b
a + x1, up to a multiplicative con-

stant, so that we conclude that the integral in question converges. The associated geodesic is then
incomplete, being defined in a bounded interval.

Assume now that the domain of the parametrization for L is ]
√
b/a,+∞[. It is easy to check

that the geodesic associated with L is incomplete. In fact, from the expression of x3 = x3(x1)

we know that L approaches ∆∞. Indeed, as previously seen, x3 goes to zero as x1 goes to
√
b/a.

Furthermore, the argument presented above allows us to claim that
∫√b/a+ε√

b/a
dT converges for every

ε > 0. We then reach ∆∞ in finite time. The geodesic is, however, R+ or R− complete. In fact,
it can easily be checked that

∫ +∞√
b/a+ε

dT diverges. Note that the argument presented in the case
ab < 0 applies equally well in this case and the other case can be treated similarly.

Consider now the restriction of X to the invariant plane {x1 =
√
b/a} (the restriction to {x1 =

−
√
b/a} is analogous), which is given in the present coordinates by

1

x3

[
−
√
b

a
(b+ 2ax2)

∂

∂x2
− a

√
b

a
x3

]
.

It can easily be checked that x3 is given by

x3(x2) = x03

√
b+ 2ax2
b+ 2ax02

.

The expression of x3 allows us to say that every leaf L on the mentioned plane approaches ∆∞
when its projection L∞ approaches the singular point p1. The leaf L∞ then leaves the domain of
the present chart and accumulates at the origin of the affine coordinates (y1, y2). Since the affine
coordinates (x1, x2, x3) parameterize the entire leaf L, we will use them to estimate the integral of
the time-form along the leaf. Note that the time-form is given by

dT = − x3(x2)√
b
a (b+ 2ax2)

dx2 =
C√

|b+ 2ax2|
dx2

for some C ∈ R∗. It is clear that the integrals
∫ − b

2a
+ε

− b
2a

dT and
∫ +∞
− b

2a
+ε

dT , ε > 0, have different
nature. In fact, the first one converges while the second one diverges so that the associated geodesics
are R+ or R− complete.

It remains to consider the leaves contained in the invariant cone above the line at infinity of
the affine coordinates (x1, x2). The line in question is given in the coordinates (u1, u2) by u1 = 0.
Consider then the affine coordinates (w1, w2, w3) related with (z1, z2, z3) through the map Λ defined
by (15). In the present coordinates the divisor at infinity is given by {w1 = 0} and (w3, w2) coincides
with (u1, u2). The proof that the leaves in the invariant plane {w3 = 0} are complete goes word by
word as in the case ab < 0 in Subsection 7.2. In fact, the calculations involved do not depend on
the parameters a and b. □

8. Characterization of geodesics in cases 2 and 4

We will prove that every left-invariant pseudo-Riemannian metric in cases 2 and 4 is geodesically
incomplete by exhibiting an incomplete geodesic for each one of these metrics. As in the previous
cases, we will also characterize the maximal domain of definition of every single geodesic.
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8.1. Case 2. In the case where the isomorphism Φ has two non-real eigenvalues, there exists a
B-orthonormal basis v = (vk) with respect to which the isomorphism Φ takes on the form presented
in Section 5, with β ̸= 0. The isomorphism Φ−1 is then given by

Φ−1 =

η 0 0
0 γ ζ
0 −ζ γ


where η = 1/µ, γ = α/(α2 + β2) and ζ = −β/(α2 + β2). Since we are assuming β ̸= 0, we have
ζ ̸= 0 as well and, in this particular case, the following can be said.

Theorem 8.1. There exists at least one geodesic that is incomplete.

Proof. Let (z1, z2, z3) ∈ R3 stand for the coordinates of z ∈ sl(2,R) in the above mentioned B-
orthonormal basis v. In the present coordinates, the Euler-Arnold vector field is given by

(21) E = b(z22 + z23)
∂

∂z1
+ z1(az3 − bz2)

∂

∂z2
+ z1(az2 + bz3)

∂

∂z3
,

where a = γ − η and b = ζ (and, in particular, b ̸= 0). Consider now the usual affine coordinates
(x1, x2, x3) where ∆∞ ≃ {x3 = 0}. The vector field E is written in these coordinates as

X =
1

x3

[(
b(x22 − x21 + 1)− ax21x2

) ∂

∂x1
+ x1

(
a(1− x22)− 2bx2

) ∂

∂x2
− x1x3(ax2 + b)

∂

∂x3

]
and the induced foliation on this chart has two singular points p1, p2 over ∆∞. The position of the
singularities depend, however, on the parameters a and b. More precisely, in the case where a = 0,
the two singular points on ∆∞ are p1 = (1, 0, 0) and p2 = (−1, 0, 0). In turn, in the case where
a ̸= 0, we have that p1 = (ρ1, ρ2, 0) and p2 = (−ρ1, ρ2, 0), where

ρ1 =

√
2b(−b+

√
b2 + a2)/|a| and ρ2 = (−b+

√
b2 + a2)/a ,

if b > 0, and

ρ1 =

√
2b(−b−

√
b2 + a2)/|a| and ρ2 = (−b−

√
b2 + a2)/a

if b < 0. It can easily be checked that the restriction of X to the line above each one of the mentioned
singular points is a (non-zero) constant vector field meaning that the associated geodesic reaches
∆∞ in finite time. These geodesics are then incomplete. □

The study of this case is arduous since, as becomes clear from the proof of Theorem 8.1, not only
the cases a = 0 and a ̸= 0 should be considered separately; also in the case where a ̸= 0, we should
look separately at the cases b > 0 and b < 0. We will describe the foliation for the generic case where
a ̸= 0 and b > 0 and the figure below exhibits the leaves of F∞ in the case where 0 < η < γ < ζ.

Dynamics on (x1, x2) Dynamics on (y1, y2) Dynamics on (u1, u2)

The foliation F∞ has a total of three singular points, namely the two singular points p1, p2
mentioned above along with the origin of the affine coordinates (u1, u2), the latter being a saddle
for the mentioned foliation. It is clear from the picture that every leaf of F∞ accumulates at both
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singular points q1 and q2, with the exception of three of them, namely the straight line given, in the
affine coordinates (x1, x2), by x2 = (−b−

√
a2 + b2)/a and the two unbounded leaves contained in

the straight line x2 = (−b+
√
a2 + b2)/a. The three leaves in question are the unique leaves of F∞

accumulating at the origin of the coordinates (u1, u2). An analogous study to the one presented in
the previous sections allows us to state the following.

Proposition 8.2. The geodesic associated with a leaf L is complete if L is contained in the invariant
plane {x2 = (−b−

√
a2 + b2)/a} and incomplete in all the other cases. An incomplete geodesic is, in

fact, R+ or R− complete if and only if L is contained in the invariant plane {x2 = (−b+
√
a2 + b2)/a}

and its projection does not coincide with the line segment joining p1 and p2.

Idea of the proof. Fix a leaf L∞ of F∞ accumulating at both p1 and p2 and let L be a leaf of F
projecting onto L∞ and distinct from L∞. It can be checked that if H(θ, x3) = (h1(θ), h2(θ), x3)
stands for a parametrization of the the cone above L∞, the pull-back of the Euler-Arnold vector
field always takes on the form

u(θ)

x3

∂

∂θ
+
u′(θ)

2

∂

∂x3

for some function u = u(θ) vanishing at θ1 and θ2, where θ1 and θ2 are such that H(θ1, 0) = p1 and
H(θ2, 0) = p2. In particular, the function x3 = x3(θ) is such that

dx3
dθ

=
u′(θ)

2u(θ)
x3

so that x3(θ) = x03
√
u(θ)/u(θ0). Since u = u(θ) vanishes at p1 and p2, so does x3 = x3(θ). In

particular, the leaves L accumulate at both p1 and p2. In order to discuss the completeness of the
leaves, the time-form has to be considered. In fact, recall that the geodesic associated to the leaf
L is complete if and only if both integrals

∫ θ
θ1
dT and

∫ θ
θ2
dT diverge for θ arbitrarily close to θ1

and θ2, respectively. Up to a multiplicative constant, the time-form of X along L takes on the form
dT = 1/

√
|u(θ)| dθ. The expression of u = u(θ) depends on the type of the leaf L∞ but they are

similar to the expressions obtained in the previous two sections. In particular, we are able to prove
that both of the integrals above converge. The geodesic associated with L is then incomplete (being
neither R+ nor R− complete) and the result follows in this generic case.

Assume now that L is contained in the invariant plane {x2 = (−b−
√
a2 + b2)/a} and distinct from

L∞. We claim that L is contained in a compact subset of R3. In fact, since L contains no singular
points in the chart (x1, x2, x3), the “height” function is bounded from below by a strictly positive
constant on any compact subset of it. The projection of the complement of a compact subset of
L is necessarily contained in a compact subset of the domain of definition of the affine coordinates
(u1, u2) for ∆∞. With respect to the coordinates (w1, w2, w3) (where (u1, u2) is identified with
(w3, w2) and ∆∞ ≃ {w1 = 0}), the invariant plane becomes {w2 = w3(−b −

√
a2 + b2)/a} and it

can easily be checked that the “height” function over this complement of L is also bounded from
below by a strictly positive constant. Indeed, the leaf converges to a point on the line above the
origin, distinct from the origin itself. Since L is contained in a compact subset of R3, its associated
geodesic is complete.

Finally, it remains to consider the leaves whose projection L∞ on ∆∞ belong to an unbounded
part of the straight line through p1 and p2. Note that L∞ becomes a line segment joining p1 or
p2 to the origin in the affine coordinates (w2, w3). By re-writing the Euler-Arnold vector field in
the coordinates (w1, w2, w3) and restricting it to the invariant plane above L∞, we can easily check
that the “height” function |w1| is bounded from below by a positive constant. To be more precise, L
converges to a point in the singular set of F given by {w2 = w3 = 0}, with w1 ̸= 0. Furthermore, the
geodesics associated with each point in the singular set in question are then naturally complete. □

8.2. Case 4. Let us finally consider case 4, i.e. the case where the isomorphism Φ possesses a (real)
eigenvalue λ such that ma(λ)−mg(λ) = 2. In this case there exists a B-pseudo-orthonormal basis
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v = (vk) with respect to which the isomorphism Φ takes on the form presented in Section 5, where
ζ can be assumed strictly positive. The isomorphism Φ−1 then takes on the form

Φ−1 =

 ν 0 −ζν2
−ζν2 ν ζ2ν3

0 0 ν


where ν = 1/λ.

Theorem 8.3. There exists at least one geodesic that is incomplete.

Proof. If (z1, z2, z3) ∈ R3 stands for the coordinates of z ∈ sl(2,R) in the above mentioned B-
pseudo-orthonormal basis, the Euler-Arnold vector field is given in these coordinates by

(22) E = ζν2
[
z3(−ζνz3 + z1)

∂

∂z1
+ (z2z3 − z21 + ζνz1z3)

∂

∂z2
− z23

∂

∂z3

]
.

In turn, in the affine coordinates (x1, x2, x3), the Euler-Arnold vector field becomes

X =
ζν2

x3

[
(2x1 − ζν)

∂

∂x1
+
(
ζνx1 − x21 + 2x2

) ∂

∂x2
+ x3

∂

∂x3

]
and the induced foliation on this chart has a unique singular point over ∆∞, namely p =

(
ζν
2 ,−

ζ2ν2

8 , 0
)
.

The restriction of X to the invariant straight line “above” p is the constant vector field ζν2 ∂
∂x3

and,
since it is non-zero, the result follows. □

The foliation induced by F on ∆∞ possesses two singular points: the point p in the previous
lemma and q, the origin of the affine coordinates (y1, y2). Furthermore, it can be checked that every
single leaf of ∆∞ accumulates at both p and q, with the exception of the leaf that in the coordinates
(y1, y2) is given by y2 = 0. The latter accumulates uniquely at q. The figure below exhibits the
leaves of F∞ in the case where 0 < ν < ζ.

Dynamics on (x1, x2) Dynamics on (y1, y2) Dynamics on (u1, u2)

Proposition 8.4. The geodesics associated with leaves in the invariant plane {y2 = 0} are all com-
plete. The remaining ones are incomplete. Moreover, they are R+ or R− complete since, although
all of them approach ∆∞ as their projections go to p and to q, they reach ∆∞ in finite time as their
projections approach p but not when they approach q.

Proof. The leaves of F over ∆∞ are given in the affine coordinates (x1, x2) by

x2 = −1

2
x21 −

Kζν2

1−Kν
x1 +

Kζ2ν3

2(1−Kν)
,

which means that in the present coordinates they are all parabolas, with the exception of a unique
leaf that is the straight line given by {x1 = ζν/2}. Fix a generic leaf for F∞, i.e. a parabola, and take
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the natural parametrization of the cone above L∞ by (x1, x3). The pull-back of the Euler-Arnold
vector field to the mentioned cone is given by

ζν2

x3

[
(2x1 − ζν)

∂

∂x1
+ x3

∂

∂x3

]
.

Fixed a leaf L in the mentioned cone (and naturally away from ∆∞), we have that along L

dx3
dx1

=
x3

2x1 − ζν
and, consequently, x3 = x03

√
2x1 − ζν

2x01 − ζν
.

There immediately follows that the leaf L in the fixed cone goes to ∆∞ as its projection goes to p.
Now, since the time-form of the vector field along L is given by

dT =
C√

|2x1 − ζν|
dx1 ,

for some non-zero real constant C, we can easily conclude that
∫ ζν/2
ζν/2±ε dT converges, while

∫ ζν/2±ε
±∞ dT

diverges, for every ε > 0. The leaves are then R+ or R− complete.
It remains to study the leaves in the invariant plane {x1 = ζν/2} and in the plane “above”

the line at infinity of the present chart. The study for such leaves will be done in the affine
coordinates (v1, v2, v3), where the mentioned cones are given, respectively, by S1 = {v1 = (ζν/2)v3}
and S2 = {v3 = 0}. By taking the natural parametrization of S1 through (v1, v2), the pull-back of
the Euler-Arnold vector field is given by

v1
v2

[
v1(−4ν − ζν2v1)

∂

∂v1
+ v2(−2ν − ζν2v1)

∂

∂v2

]
.

There immediately follows that

v2(v1) = v02

√
v1(−4− ζνv1)

v01(−4− ζνv01)
,

which means that every leaf in S1 goes to ∆∞ as its projection approaches p and q. Note that the
time-form along a leaf of F in S1 (and not contained in ∆∞) is given by

dT =
C

|v1|
√
| − 4− ζνv1|

dv1

for some non-zero constant C ∈ R. The integral
∫ ε
0 dT naturally diverges for ε arbitrarily close

to zero while
∫ −4/(ζν)+ε
−4/(ζν) dT converges for ε arbitrarily close to zero (note that the point p has

coordinates (−4/(ζν), 0,−8/(ζν)2) in the present chart). The result follows in this case.
Finally, let us consider the invariant plane S2. The restriction of the Euler-Arnold vector field to

S2 is a multiple of the radial vector field. In fact, it is given by
ζν2v21
v2

[
v1

∂

∂v1
+ v2

∂

∂v2

]
and so, its associated leaves naturally satisfy v2(v1) = kv1 for some constant k ∈ R. The time-form
along a leaf L in S2 (and not contained in ∆∞) then takes on the form

dT =
C

v21
dv1

for some non-zero constant C ∈ R and the integral
∫ ε
0 dT clearly diverges for ε arbitrarily close

to zero. To claim that the associated geodesic is complete, it suffices to notice that a leaf in S2
through a point r = (r1, r2, 0) with r1 > 0, goes through “the infinity” of the present coordinates
and “returns” to the present coordinates as a leaf in S2 passing through a point s = (s1, s2, 0) with
s1 < 0. □
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Remark 8.5. A classical result by J. Lafuente, [15], states that for a locally symmetric Lorentzian
manifold, the three types of causal incompleteness (timelike, lightlike and spacelike) are equivalent.
Our approach allowed us to check, case-by-case, that the same result holds for the Lie group SL(2,R).
It follows from Lebnitz’s rule that idempotents are always null geodesics. It is also interesting to
observe that, for this particular space, they are the only ones.

9. The Lie group SL(2,C)

A full classification and characterization of pseudo-Riemannian metrics on SL(2,R), by explicitly
writing the Euler-Arnold vector field, was attainable since there are only four normal forms for the
matrix of Φ, certain orthogonality conditions can be derived (see Lemma 5.2) and, moreover, the
possibilities for the basis in which the matrix of Φ is written are very controlled (as proved in Lemma
5.3). This is essentially due to the fact that the orthogonal group of the Killing form modulo the
automorphism group of sl(2,R) is isomorphic to Z2, a finite group with only two elements.

Considering the space F of all B-orthogonal basis of sl(2,C), the orthogonal group of B, OB =
O(3, 3) acts transitively and freely on F turning it into a principal homogeneous space. Any Lie alge-
bra automorphism is preserved by the Killing form B and Aut(sl(2,C)) is a closed subgroup of OB.
Moreover, two orthonormal basis will have the same bracket relations if and only if they are in the
same orbit under the action of Aut(sl(2,C)) on O(3, 3). From [5, Chapter 7, Section 3], Aut(sl(2,C))
is the image of SL(2,C) under the adjoint representation Ad : SL(2,C) −→ GL(sl(2,C)). Thus the
orbit space O(3, 3)/Aut(sl(2,C)) ≃ O(3, 3)/Ad(SL(2,C)) is a homogeneous space of dimension 15
- 6 = 9, which means that we have an infinity of ways of writing the Lax-pair equations.

These considerations mean, therefore, that a similar direct approach to the study of completeness
of pseudo-Riemannian metric on SL(2,C) is perhaps an unfeasible project.

We now turn our attention to the case of holomorphic metrics on SL(2,C). Considering the
complex Lie algebra sl(2,C), we remark that the Killing form B is now a non-degenerate complex
bilinear form.

Clearly the Killing form corresponds to a complete holomorphic metric, since the Lax-pair system
is simply given by ż = 0. However, complete metrics in the holomorphic case are “very rare”. To
precise the claim, recall that in the case of (real) orthogonal Lie groups we were able to find an
open set of Rn, n = dimG, with respect to which every left-invariant pseudo-Riemannian metric
associated with an isomorphism Φ having eigenvalues in this open set is complete, cf. Theorem
4.5. Nevertheless, the same cannot be said in the holomorphic case. In fact, we have a complete
characterization of completeness holomorphic metrics on SL(2,C), as follows.

Theorem 9.1. Let q be the holomorphic metric on sl(2,C) defined by q(X,Y ) = B(ΦX,Y ), where
B is the Killing form and Φ a B-self-adjoint isomorphism. Then, q is a complete holomorphic
metric if and only if Φ has an eigenvalue whose eigenspace has dimension at least 2.

Proof. The proof of this theorem is divided in 3 cases, namely the cases where
(a) Φ is diagonalizable;
(b) Φ has an eigenvalue λ such that ma(λ)−mg(λ) = 1;
(c) Φ has an eigenvalue λ such that ma(λ)−mg(λ) = 2.

As is well-known from Sylvester’s rigidity theorem, there is only one non-degenerate complex
bilinear form in each dimension, up to isomorphism. However, since this will be convenient in what
follows, we will retain the terminology of orthonormal and pseudo-orthonormal basis from Definition
5.1.

The proof of Lemma 5.3 applies equally well to the present case. In fact, where in the original
argument we have used the positive sign of B(v1, v1) (and of similar expressions), when the ground
field is C, all that is required is to have these terms different from zero. Close reading through the
proof shows that the arguments used in Lemma 5.3 still work and the proof becomes in fact simpler.
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As for the proof of Lemma 5.2, the arguments adapt as well and a similar result holds but we
need to be more precise. The already mentioned Sylvester’s theorem implies that the group of
isometries of the Killing form corresponds to O(3,C). As in the real case, any automorphism φ
of the Lie algebra preserves the Killing form and Aut(sl(2,C)) is a closed subgroup of O(3,C).
Writing the equation [φx, φy] = φ[x, y] and considering M the matrix of φ with respect to the
standard basis (e1, e2, e3), we get, by direct computation that, c(M) = M , where c(M) is the
cofactor matrix of M . Similiar arguments to those of Lemma 5.2, show that Aut(sl(2,C)) is then
SO(3,C). Therefore, the bracket relations of bases satisfying certain orthogonality conditions are
therefore parametrized by O(3,C)/SO(3,C) ≃ Z2. From the discussion above, we can conclude
that the Lax-pair differential system for a holomorphic metric on sl(2,C) is nothing other than the
complexification of the corresponding system in cases (a), (b) and (c).

Consider first the case where Φ is diagonalizable and assume that Φ−1 = diag (ν1, ν2, ν3). As seen
in Section 6, the Euler-Arnold vector field is given by (9)

E = az2z3
∂

∂z1
+ bz1z3

∂

∂z2
+ cz1z2

∂

∂z3
,

where now z1, z2, z3 ∈ C. Furthermore, we still have a = ν2−ν3, b = ν3−ν1 and c = ν2−ν1 = a+b.
Assume that Φ has an eigenvalue whose eigenspace has dimension at least 2, i.e. there exist i ̸= j
such that νi = νj . This is equivalent to saying that abc = 0. The proof goes as in the first part
of Proposition 6.3. To be more precise, assuming, without loss of generality that a = 0, the first
equation of the differential system (8) reduces then to ż1 = 0. Thus z1(t) = k, with k ∈ C, for all
t ∈ C and the Euler-Arnold differential system reduces to a linear system in the variables z2, z3,
which is clearly complete.

Assume now that Φ has no eigenvalues whose eigenspace has dimension at least 2, which is
equivalent to saying that abc ̸= 0. Recall that, E being a polynomial vector field on C3, it admits a
meromorphic extension to CP(3). Again, if we consider the affine coordinates (x1, x2, x3) related to
(z1, z2, z3) through the map Ψ on C3 \ {x3 = 0} taking on the form (10), the Euler-Arnold vector
field in the new coordinates is given by (11). Since abc ̸= 0, the intersection of the singular set of
F , the foliation induced by X, with the plane at infinity ∆∞ has exactly 5 points, namely

(0, 0, 0),
(√

a/c,
√
b/c, 0

)
,
(√

a/c,−
√
b/c, 0

)
,
(√

a/c,−
√
b/c, 0

) (
−
√
a/c,−

√
b/c, 0

)
.

The straight line {x1 =
√
a/c, x2 =

√
b/c} is invariant by F and the restriction of X to it is a

(non-zero) constant vector field. The associated geodesic is then incomplete.
Consider now the case where Φ has an eigenvalue λ such that ma(λ) −mg(λ) = 1. Consider a

B-pseudo-orthonormal basis where Φ−1 takes on the form (16) and the Euler-Arnold vector field is
written as (17)

E = bz23
∂

∂z1
− z1 (az2 + bz3)

∂

∂z2
+ az1z3

∂

∂z3
,

where a = η − ν and b = ζν2. If Φ has an eigenvalue whose eigenspace has dimension at least 2,
then a = 0. The third equation of the differential system (17) reduces then to ż3 = 0, which means
that z3(t) = k, for some k ∈ C and for all t ∈ C. Hence, the Euler-Arnold vector field reduces to
bk2 ∂

∂z1
− bkz1

∂
∂z2

, which is clearly complete since the solutions of the associated differential system
are polynomial in t. Assume then that Φ has no eigenvalue whose eigenspace has dimension at
least 2. By following the calculations in Proposition 7.2, it becomes clear that the singular set of
the foliation induced by the Euler-Arnold vector field reduces to two points in the chart associated
with the coordinates (x1, x2, x3). The points in question are given by p1 =

(√
b/a,−b/(2a), 0

)
and

p2 =
(
−
√
b/a,−b/(2a), 0

)
. The straight lines “above” each one of these singular points are regular

leaves for F since the restriction of X to them is a (non-zero) constant vector field. The associated
geodesics are then incomplete.
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Finally, consider the case (c). Note that in the present case there is no eigenvalue whose eigenspace
has dimension at least 2. Furthermore, Theorem 8.3 applies equally well to the present case, thus
the corresponding metrics are incomplete. □

It is a well-known fact that any complex semisimple Lie algebra is built out of copies of sl(2,C)
in a certain way (by means of root systems). This allows us to prove the following corollary, whose
proof is completely analogous to that of the real case (cf. Corollary 5.5).

Corollary 9.2. Let G be a complex semisimple Lie group. Then G can be equipped with incomplete
holomorphic metrics.

To finish this paper, let us consider again the previous family of holomorphic metrics. Albeit
their geodesic flow not being complete in general, it turns out to always being semicomplete as it
will be seen below (Theorem 9.3). In fact, as mentioned in the Introduction, their Euler-Arnold
vector fields give rise to a 2-parameter family of iso-spectral quadratic vector fields on C3 which, in
addition, are semicomplete and naturally associated with certain elliptic surfaces birational to the
complex projective plane, cf. [12].

Theorem 9.3. Let q be the holomorphic metric on sl(2,C) defined by q(X,Y ) = B(ΦX,Y ), where
B is the Killing form and Φ is a B-self-adjoint isomorphism. Then the associated Euler-Arnold
vector field is semicomplete on C3.

The argument used in the proof is adapted from an unpublished manuscript by J. Rebelo [23].
We thank J. Rebelo for making his notes available to us.

Proof. Again, the proof of this theorem is divided into the three cases (a), (b) and (c) listed in
the proof of Theorem 9.1. Let us begin with the diagonalizable case. As previously mentioned, the
Euler-Arnold vector field is given by Formula (9). As already seen, if abc = 0, then the Euler-Arnold
vector field is complete on C3 so there is nothing to prove. Thus, let us assume from now on that
none of a, b and c is zero.

Consider then the meromorphic extension of E to CP(3) and let F stand for the associated
foliation. As previously seen, F possesses seven singular points in ∆∞. Three of these singular
points are given by the intersection of ∆∞ with each of the coordinate axis of the initial coordinates
(z1, z2, z3). These axes are, in fact, fully constituted by singular points of F . The three projective
lines determined by the mentioned coordinate axes along with the remaining 4 singular points
(denoted by p1, p2, p3 and p4 in Section 6) in ∆∞ make up for the singular set of F . The three
points of ∆∞ determined by the coordinate axes of (z1, z2, z3) are denoted by qx, qy and qu.

Fix a leaf L of F not contained in ∆∞. Recall that L is a Riemann surface contained in an
algebraic curve of CP(3). By following the calculations presented in Section 6, we know that
whenever the projection of L on ∆∞ approaches the singular points qx (resp. qy, qu), then the leaf
L itself accumulates at a singular point of F lying in the coordinate axis z1 (resp. z2, z3) different
from qx itself (resp. qy, qu). In particular, locally, the leaf L remains away from infinity so that the
vector field restricted to the leaf L is holomorphic around the singularity in question.

It remains to study the restriction of the Euler-Arnold vector field to L nearby the singular points
pi, i = 1 . . . 4. It is enough to consider the case of p1 since the case of the other singular points are
analogous. Recall from the calculations in Section 6 that a leaf L whose projection in ∆∞ approaches
p1 defines a separatrix of F through p1. Furthermore, since the eigenvalues of F at p1 are 2, 2, 1,
whereas the eigenvalue associated with the direction transverse to the ∆∞ is 1, there follows that
the separatrix induced by L is smooth and admits an irreducible Puiseux parametrization σ(t) of
the form σ(t) = (σ1(t), σ2(t), t), where σ1(0) = σ2(0) = σ̇1(0) = σ̇2(0) = 0.

Consider next the restriction E|L of E to L and its pull-back σ∗E|L by σ. In particular, σ∗E|L
is a vector field defined on a punctured neighborhood of 0 in C.

Claim: The vector field σ∗E|L admits a holomorphic extension as a regular vector field to 0 ∈ C.
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Proof of the Claim. Let σ∗E|L = F (t)∂/∂t. Owing to Riemann’s Theorem, it suffices to prove that
the limit of F at 0 exists and is non-zero. Consider then local coordinates (x, y, z) nearby p1 where
p1 ≃ (0, 0, 0) and ∆∞ ≃ {z = 0}. It can be easily checked that in these coordinates, the vector field
E takes on the form

1

z

[
(2x+ h.o.t.)

∂

∂x
+ (2y + h.o.t.)

∂

∂y
+ (z + h.o.t.)

∂

∂z

]
,

up to a (non-zero) multiplicative constant. Thus the pull-back of the restriction of E to L by σ is
given by

(1 + h.o.t)
∂

∂t
up to the same multiplicative constant. This means that σ∗E|L is regular at 0 ∈ C as we intended
to prove. □

The normalization L̂ of the compactification of L in CP(3) is a (compact) Riemann surface
equipped with a globally defined holomorphic vector field. This vector field if therefore complete
on L̂. Since the restriction of E to L is identified with the restriction of the mentioned vector field
to the complement of finitely many points in L̂, it must be semicomplete as the restriction of a
complete vector field to an open set. This holds for an arbitrary leaf of F , we conclude that E is
semicomplete on C3.

Consider next the case where Φ has an eigenvalue λ such that ma(λ)−mg(λ) = 1 and consider
a B-pseudo-orthonormal basis where Φ−1 takes on the form (16), so that the Euler-Arnold vector
field is written as (17)

E = bz23
∂

∂z1
− z1 (az2 + bz3)

∂

∂z2
+ az1z3

∂

∂z3
,

where a = η − ν and b = ζν2. As previously seen, if Φ has an eigenvalue whose eigenspace has
dimension at least 2, i.e. if a = 0, then the Euler-Arnold vector field is complete on C3. Thus it is
semicomplete on C3 as well. Assume then that a ̸= 0.

Given the preceding construction, it suffices to show that whenever a leaf L of F induces a
separatrix for a singularity of F lying in ∆∞, the restriction of X to the resulting separatrix is
holomorphic. In the present case, F possesses four singular points in ∆∞, namely

(i) p1 =
(√

b/a,−b/(2a), 0
)

and p2 =
(
−
√
b/a,−b/(2a), 0

)
in the affine coordinates (x1, x2, x3).

The eigenvalues of F at these points are 2, 2, 1, where 1 is the eigenvalue associated to the
direction transverse to ∆∞. These points can be treated exactly as the points with the same
eigenvalues in the previous case.

(ii) The intersection of ∆∞ with the axis z1, denoted by p3. The eigenvalues of F at these
points are 1, −1, 0, where 0 is the eigenvalue associated to the direction transverse to ∆∞.
In particular, the foliation induced on ∆∞ has a saddle behavior. This implies that the leaves
in the invariant planes defined by the two separatrices though p3 are the only leaves that can
accumulate at p3. By expressing the Euler-Arnold vector field in the affine coordinates, it
can easily be checked that a leaf L in these invariant planes never accumulates at p3 unless
it is totally contained in ∆∞. Summarizing, no leaf of F induces a separatrix at p3 so that
this singular point plays no further role in the present discussion.

(iii) The intersection of ∆∞ with the axis z2, denoted by p4. The foliation has a singular point
of order 2 at p4. In particular all eigenvalues are zero. This case is discussed in detail below.

Consider the affine coordinates (v1, v2, v3) where (v1/v2, 1/v2, v3/v2) = (z1, z2, z3). The first
integrals I1 and I = νI1 − I2 (cf. Section 7) in these coordinates are given by

I1 =
v21 + 2v3

v22
and I =

−av21 + bv23
v22

.

From I1, we have that v3 is a function of v1 and v2. In fact, v3 = (kv22 − v21)/2 so that the
corresponding invariant surfaces for F pass through the origin for every k ∈ C and they are tangent
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to the plane {v3 = 0} at the point in question. In turn, by substituting v3 = v3(v1, v2) we can check
that, indeed, the leaves pass through the origin and that they are transverse to ∆∞ (locally given by
{v2 = 0}). The leaf L admits then a Puiseux parametrization of the form σ(t) = (t, αt+h.o.t, t2+
h.o.t.), for some α ∈ C∗. Noticing that the Euler-Arnold vector field in the affine coordinates
(v1, v2, v3) is given by

1

v2

[(
av21 + bv3(v

2
1 + v3)

) ∂

∂v1
+ v1v2(a+ bv3)

∂

∂v2
+ v1v3(2a+ bv3)

∂

∂v3

]
,

the pull-back of the restriction of E to L by σ can be holomorphically extended to 0 ∈ C as a
vector field of the form F (t)∂/∂t, with F (0) = 0 and F ′(0) ̸= 0. We then conclude that L may be
compactified as an algebraic Riemann surface equipped with a global holomorphic vector field, so
that it is complete.

Finally, consider case (c) and the B-pseudo-orthonormal basis with respect to which the isomor-
phism Φ takes on the form presented in Section 5. If (z1, z2, z3) ∈ C3 stands for the coordinates of
z ∈ sl(2,R) in the mentioned B-pseudo-orthonormal basis, the Euler-Arnold vector field is given in
these coordinates by

(23) E = ζν2
[
z3(−ζνz3 + z1)

∂

∂z1
+ (z2z3 − z21 + ζνz1z3)

∂

∂z2
− z23

∂

∂z3

]
.

We keep the preceding notations so that F stands for the corresponding singular holomorphic
foliation in CP(3). The singular set of F consists of

(i) an isolated singular point p ∈ ∆∞ given in the affine coordinates (x1, x2, x3) by p =(
ζν
2 ,−

ζ2ν2

8 , 0
)
. The eigenvalues of F at p are 2, 2, 1, where 1 is the eigenvalue associ-

ated to the direction transverse to ∆∞. This point can be treated exactly as the points with
the same eigenvalues in the previous cases.

(ii) the projective line arising from the z2-axis. The intersection point of this projective line with
∆∞ will be denoted by q and coincides with the origin of the affine coordinates (v1, v2, v3).
We detail below how to treat the leaves L of F yielding a (local) separatrix for F at q.

In the coordinates (v1, v2, v3) the foliation F is determined by the (two independent) first integrals

I1 =
v21 + 2v3

v22
and I2 = νI1 +

ζ2ν3v23 − 2ζν2v1v3
v22

.

In particular, if L is a leaf of F whose projection onto ∆∞ approaches q, then the actual leaf L has
to approach q. Following the same argument used in case (b), a separatrix induced by L is smooth
at q and admits an irreducible Puiseux parametrization of the form σ(t) = (t, αt+h.o.t, t2 +h.o.t),
for some α ∈ C∗. Finally, by noticing that the Euler-Arnold vector field in the present coordinates
takes on the form

V =
ba2

v2

[
(v31 − abv21v3 − abv23)

∂

∂v1
+ v2(v

2
1 − v3 − abv1v3)

∂

∂v2
+ v3(v

2
1 − 2v3 − abv1v3)

∂

∂v3

]
there follows that σ∗V |L admits a holomorphic extension to 0 ∈ C of the form F (t)∂/∂t, for some
F such that F (0) = F ′(0) = 0 and F ′′(0) ̸= 0. Again, this shows that the restriction of the Euler-
Arnold vector field to the normalization of the compactification of L is holomorphic and ends the
proof of the theorem. □

Acknowledgements.
The authors are grateful to Julio Rebelo for providing us with a copy of his unpublished manu-

script [23] and would also like to thank Ilka Agricola, Miguel Sánchez and Abdelghani Zeghib for
their valuable comments on this manuscript.

The first author was financed by FCT - Fundação para a Ciência e Tecnologia, I.P. (Portugal)
- through the PhD scholarship PD/BD/143019/2018. The second author was partially supported
by FCT through the sabbatical grant SFRH/BSAB/135549/2018 and through CMAT under the



34 A. ELSHAFEI, A.C. FERREIRA & H. REIS

project UID/MAT/00013/2013. The third author was partially supported by CMUP, member
of LASI, which is financed by national funds through FCT under the project UIDB/00144/2020
and also by CIMI through the project “Complex dynamics of group actions, Halphen and Painlevé
systems”. Finally, all three authors benefited from CNRS (France) support through the PICS project
“Dynamics of Complex ODEs and Geometry”.

References

[1] V. Arnold, Sur la géometrie différentielle des groupes de Lie de dimension infinie et ses applications à
l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier (1966), 319–361.

[2] V. Arnold, Mathematical methods of classical mechanics, Springer-Verlag, New York, second edition (1989).
[3] I. Biswas, S. Dumitrescu, holomorphic-Riemannian metric and fundamental group, Bull. Soc. Math. Fr. 147, no.

3 (2019), 455–468.
[4] S. Bromberg, A. Medina, Geodesically complete Lorentzian metrics on some homogeneous 3 manifolds, SIGMA

Symmetry Integrability Geom. Methods Appl. 4 (2008), Paper 088, 13 pp.
[5] N. Bourbaki, Lie groups and Lie Algebras, Chapters 8-9, Elements of Mathematics, Springer (2005).
[6] S. Dumitrescu, Métriques riemanniennes holomorphes en petite dimension, Ann. Inst. Fourier 51, no. 6 (2001),

1663–1690.
[7] S. Dumitrescu, A. Zeghib, Global rigidity of holomorphic-Riemannian metrics on compact complex 3-manifolds,

Math. Ann. 345, no.1 (2009), 53–81.
[8] A. Elshafei, On completeness of Halphen systems and of pseudo-Riemannian geodesics flows, PhD Thesis,

University of Porto, April 2022.
[9] A.C. Ferreira, J.C. Rebelo, H. Reis, Palais leaf-space manifolds and surfaces carrying holomorphic flows. Mosc.

Math. J. 19 (2019), no. 2, 275-305
[10] S. Gautier, Quadratic centers defining elliptic surfaces, J. Differential Equations 245, no. 12 (2008), 3545–3569
[11] M. Guediri, J. Lafontaine, Sur la complétude des variétés pseudo-riemanniennes, J. Geom. Phys. 15, no. 2 (1995),

150–158.
[12] A. Guillot, Semicompleteness of homogeneous quadratic vector fields, Ann. Inst. Fourier, 56, no. 5 (2006), 1583-

1615
[13] A. Guillot, Sur les exemples de Lins Neto de feuilletages algébriques, C. R. Acad. Sci. Paris, Ser I 334 (2002),

747-750
[14] A. Knapp, Lie Groups Beyond an Introduction, Birkhauser, second edition (2002).
[15] J. Lafuente López, A geodesic completeness theorem for locally symmetric Lorentz manifolds, Rev. Mat. Univ.

Complut. Madrid 1 (1988) 101–110.
[16] C. LeBrun, Spaces of complex null-geodesics in complex-Riemannian geometry, Trans. Amer. Math. Soc. 278,

no. 1 (1983), 209–231.
[17] D.H. Lee, The structure of complex Lie groups, Chapman & Hall/CRC (2002).
[18] J. E. Marsden, On completeness of pseudo-Riemannian manifolds, Indiana Univ. Math. J. 22 (1973), 1065–1066.
[19] A. Medina, P. Revoy, Algébres de Lie et produit scalaire invariant, Annales Scientifiques de l’É.N.S, 4e série,

tome 18, no. 3 (1985), 553–561.
[20] B. O’Neill, Semi-Riemannian geometry with applications to relativity, Academic Press (1983).
[21] R. Palais, A global formulation of the Lie theory of transformation groups, Mem. Amer. Math. Soc., no. 22 (1957)
[22] J.C. Rebelo, Singularités des flots holomorphes, Ann. Inst. Fourier, Vol. 46, no. 2 (1996), 411-428.
[23] J.C. Rebelo, On the structure of singularities of holomorphic flows, manuscript.
[24] J.C Rebelo, H. Reis, Local theory of holomorphic foliations and vector fields, available at arXiv:1101.4309 (2011).
[25] J.C Rebelo, H. Reis, Uniformizing complex ODE’S and applications, Revista Matemática Iberoamericana, Vol.

30, no. 3 (2014), 799–874
[26] M. Sánchez, On the completeness of trajectories for some mechanical systems, In: Chang, D., Holm, D., Patrick,

G., Ratiu, T. (eds) Geometry, Mechanics, and Dynamics. Springer, vol. 73 (2015), 343–372.
[27] N. Tholozan, Uniformisation des variétés pseudo-riemanniennes localement homogènes, PhD. Thesis, Univ. Nice-

Sophia Antipolis (2014).

Ahmed Elshafei, Centro de Matemática da Universidade do Porto, Centro de Matemática da Universidade do
Minho, Portugal, a.el-shafei@hotmail.fr

Ana Cristina Ferreira, Centro de Matemática da Universidade do Minho, Campus de Gualtar, 4710-057 Braga,
Portugal, anaferreira@math.uminho.pt

Helena Reis , Centro de Matemática da Universidade do Porto, Faculdade de Economia da Universidade do
Porto, Portugal, hreis@fep.up.pt


