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Abstract: Microneedles (MNs) have been widely used in biomedical applications for drug delivery
and biomarker detection purposes. Furthermore, MNs can also be used as a stand-alone tool to be
combined with microfluidic devices. For that purpose, lab- or organ-on-a-chip are being developed.
This systematic review aims to summarize the most recent progress in these emerging systems, to
identify their advantages and limitations, and discuss promising potential applications of MNs in
microfluidics. Therefore, three databases were used to search papers of interest, and their selection
was made following the guidelines for systematic reviews proposed by PRISMA. In the selected
studies, the MNs type, fabrication strategy, materials, and function/application were evaluated. The
literature reviewed showed that although the use of MNs for lab-on-a-chip has been more explored
than for organ-on-a-chip, some recent studies have explored this applicability with great potential
for the monitoring of organ models. Overall, it is shown that the presence of MNs in advanced
microfluidic devices can simplify drug delivery and microinjection, as well as fluid extraction for
biomarker detection by using integrated biosensors, which is a promising tool to precisely monitor,
in real-time, different kinds of biomarkers in lab- and organ-on-a-chip platforms.

Keywords: microfluidic; microneedles; organ-on-a-chip; lab-on-a-chip; drug screening; biomarkers
detection

1. Introduction

Microfluidic technology is present in lab-on-a-chip and organ-on-a-chip platforms. In
order to enable high-throughput screening and automation, lab-on-a-chip (LoC) devices—
also known as multitasking devices—combine many (bio)chemical laboratory operations in
a single integrated chip that ranges in size from a few millimeters to a few square centime-
ters [1]. The most alluring benefits of these platforms are their capacity to autonomously
and efficiently execute a number of lab processes on a single chip with minimal external
inputs [2], as well as with low reagent consumption and high-throughput analysis [3]. To
offer an in-situ and quick result for an immediate diagnosis and treatment, point-of-care
testing (POCT) is required. For modern POCT diagnostic systems, sample-to-answer for-
mat, high sensitivity, and a short analysis time are the most crucial qualities. Since LoC
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can miniaturize and combine the majority of the functional modules used in central labs
into a tiny chip, LoC technologies have been regarded as one of the potential options that
can satisfy the needs of POCT [4]. For example, Samper et al., 2019, describe a 3D printed
chip to create a microfluidic biosensing portable system, where the data is transmitted via
Bluetooth [5]. Another example is the study of Zhang et al., 2020, which demonstrated the
integration of a smartphone detection into a microfluidic device (acoustofluidic platform)
for hemoglobin measurement. To detect the fluorescent signal, the researchers created a
quantum dot-based fluorescence test for hemoglobin and paired it with an integrated UV
irradiation source and a commercial smartphone [6].

Organ-on-a-chip (OoC) platforms replicate tissue and miniaturized organs, while
preserving tissue/organ-level function and homeostasis [7]. They are found on microfluidic
devices with perfused chambers that range from micrometers to millimeters in size, and are
fed by continuous media flow [8]. As a result of the continuous flow of cellular media, shear
flow conditions and nutrient/gas exchanges, OoC can be mimicked as in vivo, extending the
cell culture’s lifetime compared to static in vitro cultures [9]. Therefore, OoC can reproduce
important features of the complexity of organs and biosystems [10]. Several studies in the
literature use OoC to examine specific target organs, including the liver [11], heart [12],
brain [13], and kidneys [14], among others. The aim of many of the OoC is to facilitate
drug toxicity detection in healthy and diseased organ models. Because OoC can include
patient primary human cells or stem-cell-derived cells, the OoC system has the potential
to be designed as a model platform capable of predicting optimized and personalized
drug treatments [15]. However, important hurdles must be overcome to create a valid and
robust preclinical organ model. For that, appropriate organ scaling, tissue vascularization,
recapitulation of the immunological response, repeatability, organ monitoring, oxygenation,
pH, shear rate, cell viability, and cell density, are some of the parameters that need to be
considered when designing an OoC [16]. Among all these features, monitoring the OoC
platforms is a huge step to guarantee reproducibility and appropriate chemical, physical,
and cell analysis. Therefore, OoC and LoC can be combined, especially regarding the
integration of micro (bio)sensors of LoC into OoC, bringing advanced microfluidic devices
into a new era.

Microneedles (MNs), which are based on the concept of miniaturized needles, are
increasingly used in biomedical technology. These have the ability to assess biological infor-
mation with minimal invasion, and are frequently used as a strategy to deliver drugs [17],
biomolecules such as proteins [18], RNA, or DNA [19] into cells with temporal and spatial
precision [20,21]. The dimensions of MNs may vary depending on the application. The most
common dimensions found in the literature have height ranges between 150 to 1500 µm, with
a base width of 50 to 250 µm and a tip diameter of 1 to 25 µm [22]. In terms of shape, needle
tips come in a variety of shapes, including triangular, cylindrical, and pentagonal [23]. The
design and size of MNs have been identified as the primary characteristics to be modified
for optimal performance of an MNs system. To maximize efficiency, the length of the MN
can be customized to achieve the desired depth of penetration. The shape, the number of
needles in an array, the height, the aspect ratio (the ratio of the base to the height of the
needle), the material, and the thickness of the backing block (if needed), are all criteria that
define MN design. In addition, the volume that can be collected and loaded by the array is
determined by these criteria. The volume, in turn, contributes to determining the type of MN
that best suits the desired application [24]. Based on applications, MNs can be categorized into
various types. MNs systems have mostly been developed for biomolecular/drug delivery and
microinjection [25–32]. The design of the MNs device is crucial for the efficient performance of
the system, and different materials can be used in MNs fabrication [33]. The two fundamental
designs that are employed to construct MNs are in-plane and out-of-plane (Figure 1A). In
contrast to out-of-plane MN arrays, which rise vertically from the base, in-plane MN arrays
are parallel to the top fabrication surface [34]. Typically, due to the numerous microstruc-
tures and variety of strategies for the delivery of drugs, MNs are divided into two main
categories: traditional needles (solid, coated, or hollow), and emerged needles (dissolving,
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hydrogel-forming) [35]. In terms of materials, MNs can be divided into degradable and
non-degradable materials, such as metal, silicon, ceramic and carbon for non-degradable
and natural polymers for degradable ones [36,37]. Figure 1B represents the two main
categories with the approaches of the six most used MNs. A more comprehensive review
of these MNs structural strategies can be found elsewhere [38].
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Concerning the fabrication methods, several have been described in the literature, but
the most commonly used are micro-molding, microfabrication technologies (e.g., lithogra-
phy, laser, etching), additive manufacturing (i.e., 3D printing), and layer-by-layer assem-
bly [39]. Briefly, microfabrication can also be divided into three main processes: deposition,
patterning, and etching. Deposition includes film formation by physical vapor deposition or
chemical vapor deposition. The patterning technique shapes the desired geometry on a film,
substrate, or wafer. Lithography is a common technique used for patterning, which consists in
transferring the mask into a coated photosensitive film using light to develop the exposed pho-
toresist. Although lithography allows the production of smaller feature sizes, it is considered a
more complex process that requires high-tech infrastructures and equipment [40]. Etching is
a technique that involves removing the unprotected sections of the substrate with a strong
caustic chemical to create a microneedle design of interest. A wet or dry etching technique can
be used, but the use of chemicals are required, which can contaminate the samples [41]. Laser
ablation and laser cutting are also reported to be used to fabricate metal and polymeric MNs.
Laser ablation removes material from a solid surface by irradiating it with a laser beam [42].
Laser cutting uses an infra-red laser to cut metallic sheets in the shape of MNs [43]. Both
techniques are simple, quick and precise, with no contaminations, but require higher power
consumption. Micro-molding is used to fabricate various polymeric MNs using cutting tools
to sculpt the mold. Afterwards, the polymeric material that comprises the MN is poured
into the micro-mold in a liquid or semi-liquid state and then solidified to achieve the desired
shape. It is a simple, low-cost, versatile process with high-resolution [44,45]. More recently,
3D printing has also emerged as a process to produce MNs with the potential to simplify
the fabrication of multilayer and materials in a few steps [46].

Overall, the microfabrication techniques to produce MNs and microfluidic devices are
identical. Hence, it is expected that microfluidic devices and MNs can be easily combined
using those fabrication techniques and in this way to create, in a synergetic way, an
advanced microfluidic device for drug screening and/or organ models monitoring [47,48].
Based on this expectation, the present systematic review aims to provide a broad vision on
the state-of-the-art of MNs combined with lab and/or organ-on-a-chip, especially focusing
on the MNs type, fabrication strategy, materials, and function/applications.
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2. Materials and Methods

This work was conducted taking into account the research guidelines for systematic
reviews proposed by PRISMA [49,50].

2.1. Data Sources and Search Strategy

The search was performed using three different databases: ScienceDirect, PubMed
and Scopus, until the 1st of December 2022. The search string used was (“organoids” OR
“organ-on-a-chip” OR “organ on a chip”) AND (“microneedle (s)”) AND (”lab-on-a-chip”
OR “microfluidics” OR lab on a chip”) AND (“microneedle (s)”).

2.2. Validity Assessment

Review articles, conference papers, short communications, and non-English written
articles were removed from the search results, either manually or using the filters from
the database. After the elimination of duplicates, the articles were selected based on the
relevance of their title in the context of this review. Further screening was performed to
evaluate which paper presented the defined inclusion or exclusion criteria presented below.
To avoid biases, the two first authors screened and selected the research papers separately
and then compared the classifications. Disagreements or doubts regarding the classification
were solved by a third author.

2.3. Inclusion and Exclusion Criteira

The studies included in this review followed the criteria:

• Published since 2000;
• Use of microfluidic platforms or organs-on-a-chip in combination with MNs;
• Use of microfluidic platforms or lab-on-a-chip in combination with MNs;
• MNs for media/ISF collection;
• MNs for cell injection;
• MNs for biomarkers detection.
• MNs for biofluid extraction, microneedle sensors, and analyte-capturing MNs, or

combinations thereof.

The study did not present the excluded criteria.

3. Results
3.1. Data Collection Results

As previously mentioned, the authors followed the PRISMA-recommended guidance
to conduct systematic reviews. Based on the title, 91 potentially relevant articles were iden-
tified from the three databases selected. In total, 80 studies were included after removing
duplicates. After the evaluation of abstracts, 24 articles were dismissed due to a lack of
data and different study strategies; thus, 56 full papers were analyzed. In the end, a total of
35 full-text articles were selected. Figure 2 shows the PRISMA flow chart for the selection
process of studies incorporated in this systematic review.

Additionally, a metadata analysis was carried out using the Scopus database with
the searched keywords “MNs + microfluidic” and “MNs + organ-on-a-chip” and “MNs +
lab-on-a-chip” between 2000 (the year of the first work reported in the literature) and 2022,
which shows a total sum in this period of 82 papers (67 articles and 15 reviews) (Figure 3).

Among the included studies, 30% corresponded to studies that have addressed the
integration of MNs into microfluidic devices. The number of publications tended to increase
over the past 20 years, where the majority of the publications were original research articles.
This reflects researchers’ increased interest in combining MNs with lab/organ-on-a-chip.
Among the most published areas were Engineering, Material Sciences, and Physics and
Astronomy, representing a total of 63.4%.

Based on the selected articles from the defined criteria, 36 works were included in
this systematic revision, which had as main topic MNs applied in advanced microfluidic
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devices (i.e., lab/organ-on-a-chip), and subdivided into two main applications: (1) devices
for extraction and biomarker detection, and (2) devices for drug delivery and microinjection,
as follows in the sub-chapter.
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3.2. MNs Applied in Advanced Microfluidic Devices

An increased research effort has been focused on the use of MNs for direct or indirect
sensing. This new trend has germinated naturally from former efforts of the use of MNs for
OoC and LoC devices. As is possible to observe in Table 1, the majority of the applications of
MNs in the microfluidic field are LoC approaches (approximately 89% of papers analyzed).
Generally, an MN array is connected to a reservoir to serve as an interstitial fluid (ISF)
absorption device or connected with a reservoir to serve as drug storage to release drugs.

Hollow MNs are regarded as the best choice for extract/release systems, since they
provide the exact amount of drug needed at the desired location in a faster and controlled
way. Therefore, hollow MNs are the most common type of MN employed in microfluidic
devices, mostly made of silicon, but metals and glass are also used (Table 1). Such devices
act as a conduit to access dermal biofluids for on-chip analysis in microfluidic chambers [51].
However, besides hollow MNs, the application of porous and solid MNs in microfluidic
devices are also established (Table 1).

To identify the presence of a particular target analyte, microneedle-based biofluid
extraction products are mainly combined with downstream analytical techniques [52]. For
example, Wang et al., 2021 explored an MN patch for fast in vivo sampling and on-needle
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quantification of target protein biomarkers [53]. Microneedle-based in vivo sensors have been
used in diagnostic systems functioning as electrodes, particularly for glucose testing [54].
To overcome the gap between extracting ISF and further analysis, some authors proposed
solutions that incorporate the biosensor on the patch of porous MNs [55]. For example,
Kusama et al., 2021, proposed a porous MNs patch combined with anodes and cathodes
for efficient drug delivery (penetration) and analysis (extraction) [56].

Ultimately, MNs systems can provide results and detect different biomarkers in real-
time, which can be used to monitor in vivo tissues, or in vitro organoids and cell cultures.
The main advantage of MNs is that they can be repeatedly used to collect cellular contents
without causing cell lysis. They may also promote a decrease in lateral diffusion [57].

Overall, studies show that MNs are mainly used in microfluidic applications for
biomarker detection [58–68], cargo delivery [69–73], and cell microinjection [74,75]. Table 1
shows the types of MNs, materials, applications and hydrodynamic forces used in mi-
crofluidic devices. The works reviewed show that MNs are designed in two configurations,
in-plane and out-of-plane (as shown in Figure 1A). An in-plane MN configuration enables
the manipulation of the length and shape of MNs and the time required to produce it. It
simplifies the integration into an embedded microfluidic network resulting in a device with
fewer layers and steps process. Parameters, such as mechanical rigidity, can be easily tai-
lored by varying the subtract thickness or width of MNs [76–78]. As a result, these MNs are
often longer than out-of-plane MNs [79]. Out-of-plane MNs can also enhance the efficiency
of drug delivery/fluid extraction by increasing the MN array density. However, achieving
a higher length is more difficult because of the risk of clogging and collapsing [58,80,81].

Another interesting aspect in the design and application of MNs in microfluidic
devices is the type of hydrodynamic force mechanism employed, which can be passive,
such as capillary force, or active, such as by using micropumps. For instance, the detection
of analytes in fluids may be facilitated by the use of capillary action in a microneedle-assisted
biosensing [82]. In this case, capillary forces can propel the fluid to/from the reservoir and
then to a biosensor platform. However, in some cases a micropump can be requested to
supply specified volumes at higher flow rates, which in turn adds more complexity to the
system [83]. Nevertheless, in many designs, capillary forces are enough and allow the liquid
to flow through the MNs on its own, simplifying the manufacture and use of the device [84].
When natural hydrodynamic forces, such as capillary, are not enough, other components such
as pumps, valves, and bubble traps must be combined in order to achieve the system. This, as
already mentioned, can be challenging from a fabrication and integration standpoint [59]. In
some revised works, planar micropumps were used because of their advantage in being
simple to integrate and having the ability to change the flow operation (extraction/injection)
by just flipping the valve direction. For LoC devices with in-plane MNs, this approach is
further explored [60,70], although leaks between the inlet and outlet can occur.

Regarding fabrication strategies and materials, typically porous MNs are fabricated
using a PDMS mold followed by a leaching method to remove the porogenic casted mate-
rials [61,62], or by using a microfabrication process to directly obtain the MNs’ structure,
followed by leaching [64]. The majority of solid MNs are built of metallic components or
silicon, or a combination of both [65,73,85]. In the studied papers, the solid MNs were pro-
duced through micromachining processes, including the use of SU-8 photoresist. On the
other hand, coated MNs are in general solid MNs that suffer a process of coating. For ex-
ample, Trzebinski et al., 2012, developed a microfluidic device with enzyme-coated MNs
by immersing the MNs in a solution with the desired enzyme [67]. Kang et al., 2021 used a
silicon-coated MN with Cr/Au by deposition [71]. In contrast, different types of lithogra-
phy are commonly used in the case of hollow MNs [63,86,87]. Deep reactive ion etching
(DRIE) and sacrificial layer sharpening are two other techniques that have been extensively
researched in MNs and used in the investigated microfluidic devices [70,74–78,81]. New
fabrication processes, such as 3D printing, are starting to be developed as well. A com-
prehensive review concerning this fabrication methodology for the design of MN for
biomedical application can be found elsewhere [88].
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Table 1. Reviewed MNs-based systems concerning MN type, MN–chip connection, fabrication strategy, material, employed hydrodynamic force, function,
application and microfluidic system.

MNType In/Out-of-
Plane

MN–Chip
Connection

Fabrication
Strategy Material Chip/MN Forces Function Application Microfluidic

System Reference

Porous MNs Out-of-plane
MN integrated in
the inlets of the

microdevice

Microfabrication +
Leach method

Polylactic acid
(PLA)/PDMS Pump Biomarker

detection
ISF collection and
glucose detection Lab-on-a-chip [61,62]

Porous MNs Out-of-plane Integrated as MN
patch Mold + Leach method

PDMS/Ethoxylated
trimethylolpropane
triacrylate (ETPTA)

Capillary Action Biomarker
detection

Extraction and
detection of skin
interstitial fluid

biomarkers

Lab-on-a-chip [64]

Solid MNs Out-of-plane
MN integrated in
the inlets of the

microdevice

Microfabrication
(SU-8) PDMS/SU-8 Pressure Drug

delivery

Delivery functions
for

inflammation
treatment

Lab-on-a-chip [73]

Solid MNs In-of-plane

MN integrated
perpendicular to
the microfluidic

channel

Microfabrication Oxide layer + metallic
layer/Silicon - Biomarker

Detection

Microneedle
biosensor for

direct label-free
real-time protein

detection

Lab-on-a-chip [65]

Solid MNs Out-of-plane

MN integrated
perpendicular to
the microfluidic

channel

- PDMS/Tungsten +
parylene Syringe pump Cell

Detection

Detection of cells
in

suspension
Lab-on-a-chip [85]

Coated MNs Out-of-plane
MN integrated

above microfluidic
channel

Microfabrication PDMS/Silicon + Cr/AU Capillary Forces Delivery Chemical delivery
capability Lab-on-a-chip [71]

Coated MNs Out-of-plane MN integrated
above chamber

Microfabrication
(two-photon
lithography)

PDMS/Gold + enzyme
layer Syringe pump Biomarker detec-

tion/Biosensor

3D microspike
array-based
glucose and

lactate biosensor

Lab-on-a-chip [67]

Coated MNs Out-of-plane
MN integrated

above microfluidic
channel

SU-8 PDMS/SU-8 resin Syringe pump Biomarker detec-
tion/Biosensor

Drug delivery and
body fluid
sampling

applications

Lab-on-a-chip [68]

Hollow MNs Out-of-plane
MN integrated

above microfluidic
channel

Microfabrication - Micropump Biomarker
detection

Nonenzymatic
microfluidic

glucose sensor
Lab-on-a-chip [60]
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Table 1. Cont.

MNType In/Out-of-
Plane

MN–Chip
Connection

Fabrication
Strategy Material Chip/MN Forces Function Application Microfluidic

System Reference

Hollow MNs Out-of-plane MN integrated in
organoid chamber

Microfabrication
(Photolithography) PMMA/Silicon Pneumatic

interface
Biomarker
detection

Microfluidic
sampling system

for tissue analytics
Organ-on-a-chip [87]

Hollow MNs Out-of-plane
MN integrated

above microfluidic
channel

Microfabrication Pyrex/Silicon Capillary action
and evaporation Biomarkerdetection

Microneedle-
based glucose

monitor
Lab-on-a-chip [58]

Hollow MNs Out-of-plane
MN integrated

above microfluidic
channel

Microfabrication/
DRIE

Aluminum +
Silicon/Silicon Capillary forces Extraction ISF extraction Lab-on-a-chip [81]

Hollow MNs Out-of-plane
MN integrated

above microfluidic
channel

Microfabrication
(two-photon
lithography)

PDMS/Eshell 300 Pump Analysis

Sensor for on-chip
potentiometric

determination of
K+

Lab-on-a-chip [63]

Hollow MNs Out-of-plane

MN integrated
perpendicular to
the microfluidic

channel

Soft lithography PDMS + SU-8/Glass Valve actuation Micro-injection
Single cells

microinjection
system

Organ-on-a-chip [74]

Hollow MNs Out-of-plane
MN integrated

above microfluidic
channel

Direct laser writing PMMA/Photosensitive
material Syringe Extraction/

delivery

A system for fluid
injection and

extraction
Lab-on-a-chip [86]

Hollow and sharp
MNs Out-of-plane

MN integrated
above microfluidic

channel
Laser Ablation Glass/SU-8 Syringe pump Perfusion 3D micro

perfusion system Organ-on-a-chip [89]

Hollow MNs Out-of-plane Integrated as MN
patch Soft lithography PDMS/metal Pressure Extraction Extraction and

transport of blood Lab-on-a-chip [90]

Hollow MNs Out-of-plane Integrated as MN
patch Soft lithography PDMS + paper sensor Pressure Biomarker

detection

POCT biosensors
for quantification

of glucose and
cholesterol in

blood

Lab-on-a-chip [66]

Hollow MNs Out-of-plane

MN integrated
perpendicular to
the microfluidic

channel

3D printing + DRIE PDMS/Glass Vacuum pump Microinjection

Microfluidic
device for
localized

microinjection

Lab-on-a-chip [75]
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Table 1. Cont.

MNType In/Out-of-
Plane

MN–Chip
Connection

Fabrication
Strategy Material Chip/MN Forces Function Application Microfluidic

System Reference

MN with open
capillary In-plane

Connected with
microfluidic

device

DRIE +
photolithography Silicon Pressure Insertion into skin Extraction/delivery Lab-on-a-chip [76,77]

MN with open
capillary In-plane

Connected with
microfluidic

device

DRIE +
photolithography Titanium Pressure Insertion into skin Extraction/delivery Lab-on-a-chip [78]

MN with open
capillary In-plane

Connected with
microfluidic

device

MEMS + glass cover
on silicon technology Silicon Syring pump Drug

Infusion
System for brain

drug infusion

Lab-on-a-
chip/organ-on-a-

chip
[72]

MN with open
capillary In-plane

Connected with
microfluidic

device
MEMS + DRIE Silicon Planar

Micropump
Drug

Delivery

Continuous
on-chip

micropumping for
microneedle

enhanced drug
delivery

Lab-on-a-chip [70]
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3.2.1. Devices for Extraction and Biomarker Detection

The use of microfluidic components combined with MNs for glucose measurement has
received the greatest attention [67,91]. As is possible to observe in Table 1, and as mentioned
above, hollow MNs are the most developed for fluid extraction that serve for biomarker
detection. In general, such devices act as a conduit to access dermal biofluids for on-chip
analysis. Historically, the first LoC devices were designed with hollow MNs [58,81]. For
instance, Mukerjee et al., 2004 integrated a hollow MN array with microchannels to measure
glucose levels in situ. The fabrication process was a combination of DRIE and isotropic etching
to produce out-of-plane hollow MNs integrated with microchannels and reservoirs. The chip
was designed to draw fluid from the MN tip to microchannels by capillary forces. To achieve it,
the surface tension was optimized by studied geometry, contact angle and an MN cross-section,
and it was concluded that the best silicon MN profile for extracting fluid was the “snake
fang”. The device was able to successfully pierce the skin and extract fluid, and glucose was
measured by calorimetry with the fluid in the reservoir (Figure 4A) [81]. However, the study
reported that an inflammatory response was observed. Another extraction system was
described by Lee et al., 2012, in which the system integrated an ultrahigh-aspect-ratio (UHA)
microneedle with a novel elastic self-recovery actuator. This device successfully extracted
and transported blood from a rabbit [90]. In addition, biosensors started to be combined
into the microfluidic system/device with microneedles. As described by Zimmermann
et al., 2003, a disposable minimally invasive self-calibrating sensor for continuous glucose
monitoring was developed, consisting of hollow out-of-plane MNs to sample ISF from the
epidermis that was placed in a shallow flow channel. Capillary action and evaporation drove
the ISF through the MNs into the integrated glucose sensor. However, it was a prototype
test, and the authors suggested that more investment was needed for the fluid to reach the
biosensor. In addition, it was reported that the passing fluid gradually washed away the
immobilized enzyme [58].

As a possible solution, Najmi et al., 2022, developed and simulated a nonenzymatic
glucose detection device by integrating a microfluidic system and a semi-permeable mem-
brane located at the MN base to separate the dialysis fluid from the waste fluid. In this
case, an amperometric sensor was used [60]. However, some leakage was observed from
outlet-to-inlet (Figure 4B).

Mansor et al., 2017, created a device for the detection of cells in suspension. The microflu-
idic chip consists of two MNs integrated at both sides of the channel to detect impedance
measurements of passing cells through the applied electric field. The MNs can be reused,
but each PDMS microchip can only be used for one cycle. Due to the low fabrication cost
and more than one functionality (solution detection and cell concentration detection), this
device was described as suitable for various applications, such as cancer cell detection and
water contamination [85] (Figure 4C).

Miller et al., 2014, developed an ion-sensitive microfluidic chip with hollow MNs, one
approach that provides an attractive platform for an on-body sensing system for monitoring
potassium, which can be easily expanded to other relevant physiological markers for the next
generation of point-of-care diagnostic devices. This work was the first ion-selective-electrode
MN sensor integrated into a microfluidic device [63] (Figure 4D). A multi-diagnostic system
including a PDMS touch-switch, a paper multisensory, and a hollow MN was described by
Li et al. 2015 (Figure 4E). The cholesterol and glucose levels in rabbit blood were measured
using this device [66]. The main benefit of this method is that it only requires one finger
press to activate. With just one finger, enough pressure is applied to the PDMS touch-switch
to enable the MN entry into the blood vessel. The deformable chamber returns to its former
shape after the finger is released, creating a negative pressure that allows blood to be
extracted through the hollow MN and into the sensor-chamber [66]. Sarabi et al., 2021,
described an MN array integrated with a microchip for body fluid samples powered by
finger press, and the process of fluid flow and its transport across the device was modeled
and simulated with a finite model [92].
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Figure 4. Schematic compilation of MN microfluidic devices for extraction and biomarker detection
(A) Design of MN array. Reprinted from [81]. Copyright © 2023, with permission from Elsevier.
(B) Integrated device for regular glucose measurement. Reprinted from [60]. Copyright © 2023,
with permission from Elsevier. (C) 3D schematic diagram of design structure. Reprinted from [85].
Copyright © 2023, with permission from MDPI. (D) CorelDraw rendering of a cross-section of the K+

ion-sensitive electrode microfluidic chip. Reprinted from [63]. Copyright © 2023, with permission from
John Wiley and Sons, Ltd. (E) Schematic representation of the one-touch-activated blood multi-diagnostic
system. Reprinted from [66]. Copyright © 2023, with permission from Royal Society of Chemistry.
(F) Schematic of the proposed minimally invasive blood glucose monitoring system integrating an array
of porous MNs in a microfluidic chip. Reprinted from [61]. Copyright © 2023, with permission from
Springer. (G) Modified and improved system of 4F. Reprinted from [62] Copyright © 2023, with
permission from Springer. (H) Schematic of an array of horizontal microneedle biosensors in the
channel. Reprinted from [65]. Copyright © 2023, with permission from Elsevier.

Although hollow MNs are further explored, some devices incorporate other types of
MNs, such as porous MNs. The fundamental benefit of porous MNs is that biodegradable
polymers can be used, since their porous structure does not require the micromachining pro-
cedures used for hollow structures. Takeuchi et al., 2019, (Figure 4F) developed a microfluidic
system with a hydrodynamically designed interface between a porous PDMS MN array and
microchannels to enable a direct analysis of liquids extracted by the porous MN array [61].
A porous MN array connected to a microfluidic chip was inserted into agarose gel for
evaluation of the collected fluid. This strategy demonstrated a lower flow rate than in the
microchip itself, which can be due to the porous MN array increasing the hydraulic resis-
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tance of the fluidic connection from the gel to the assay chamber. More recently, a similar
system was improved by an additional interface to mechanically and fluidically connect
the MN array to microfluidic channels, and tested to show the potential of incorporating
MNs in a microfluidic device (Figure 4G) [62]. In another study, Yi et al., 2021, developed
a device with porous MNs for the extraction and detection of skin ISF. In this work, a
combination of porous MNs with aptamer immobilization was developed, which created
an innovative device [64]. In some devices, the detecting method is incorporated in the MN
itself, as described by Esfandyarpour et al., 2013, where a solid MN biosensor (with four
layers) was developed with the ability to directly measure biomolecular binding as a function
of time. This strategy is described as useful for measuring reaction kinetic constants for vari-
ous biomolecular species [65]. The MNs’ position in this platform differs from the standard
presenting horizontal MNs. The vertical construction is described to have the advantage of
increasing the transducer sensitivity due to the smaller sensing area, whereas the horizontal
form is preferable owing to the simplicity of production (Figure 4H). However, the use of
MNs integrated in microfluidic devices can have some limitations for the extraction and
detection of biomarkers. Typically, by using these MN-integrated microfluidic systems, a
limited volume of sample is collected by unit of time, which can cause a limited detection
of biomarkers. This can be particularly challenging for applications that require analysis
of biomarkers that are presented in low concentrations, and thus, need more volume to
achieve the limit of detection (LOD) in the biosensing unit. Additionally, the accuracy to
detect biomarkers in these devices, strongly depends on the specificity and sensitivity of the
detection method used. An example is the employment of electrochemical sensors, where their
sensitivity can decrease over time due to passing fluid that can wash away the immobilized
recognition molecule (antibody/aptamer), or by cleaning steps between readings. Therefore,
these limitations are important parameters that should to be taken into account for this
application.

3.2.2. Devices for Drug Delivery and Microinjection

Microfluidic devices integrated with MNs can be used for drug delivery due to the
precise control of drugs released by means of microfluidic components, such as micropumps.
This strategy enhances continuous-on-chip drug delivery. Zhan et al., 2004, describe a
delivery system with in-plane MNs with a microchannel and an outlet. This design allows
for the decoupling of the mechanical and fluidic performance of the device (Figure 5A) [70].
For example, by using thicker substrates and/or larger shanks, needle shank stiffness can
be easily raised without compromising flow rate or inlet pressure. Similarly, by employing
larger substrates and more deeply etched channels, the flow rate can be enhanced without
increasing inlet pressure or lowering stiffness. Based on this design, but with a different
method of fabrication, Lee et al., 2015 proposed and demonstrated a MEMS MNs system
for deep brain drug infusion [72].

The first flexible microneedle patch incorporating microfluidic components for on-chip
loading and delivery control was produced by Xiang et al., 2015 [73]. The ease of use and
cost-effectiveness of the proposed microneedle-fluidic system allow it to be a suitable and
promising disposable medical device. Additionally, the device was used in the first in vivo
experiment where the local inflammatory phenomena were treated by delivering diclofenac
solution transdermally into tissues.

In another study, Kang et al., 2021, fabricated a flexible array base microfluidic neural
interface to add a chemical delivery capability to three-dimensional electrode arrays com-
prising a collection of MNs (a silicon MN coated with Cr/Au) positioned perpendicular
to the array base [71]. In this device, the fluid flows along the surfaces of MNs from the
base, resulting in fluid delivery directly to the brain surface, but indirectly to the electrodes
(Figure 5B). Thus, combining drug/chemical delivery with sensing.
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Figure 5. Schematic compilation of MN microfluidic devices for drug delivery and microinjection.
(A) Schematic of an integrated micropump/microneedle device. The top shows a closeup of a pla-
nar free floating directional microvalve. Reprinted from [70]. Copyright © 2023, with permission
from Springer. (B) The flexible penetrating microelectrode array is integrated with the microfluidic
interconnection cable (µFIC). Reprinted from [71]. Copyright © 2023, with permission from Nature.
(C) Assembled microinjection device. Reprinted from [74]. Copyright © 2023, with permission from
Royal Society of Chemistry. (D) Silicon microneedle structure showing the solvent injection and sam-
ple aspiration during microneedle extraction. Reprinted from [87]. Copyright © 2023, with permission
from American Institute of Physics. (E) A photomicrograph shows the microneedle array perfusing a
brain slice. The microfluidic perfusion system integrates microneedle arrays in a packaged system for
fluid containment. Reprinted from [89]. Copyright © 2023, with permission from Springer. (F) Schematic
illustration of the proposed 2D in-plane microneedle chip. Reprinted from [77]. Copyright © 2023,
with permission from Springer.

The first microfluidics-based microinjection system was suggested by Adamo et al.,
2008, in which single cells were propelled by fluid streams and subsequently injected via
MNs with the aid of flexible valve actuation (Figure 5C) [74]. In another strategy, this time
based on nanoneedles, Huang et al., 2019 used a microfluidic chip and a nanoneedle array
to disrupt the cell membrane, enhancing the passive transfusion of biomolecules to the
cytoplasm [93]. Using microinjection-microfluidic systems allows transferring of bioactive
agents to many cells in parallel, efficiently transfecting, and works in cell lines difficult
to transfect. Zabihihesari et al., 2020, demonstrated the first microfluidic platform that
enables immobilization and localized microinjection of a larva due to an integration of a
microneedle in the device [75].

As described above, the incorporation of MNs is more developed for LoC devices than for
OoC devices. Among the OoC examples is the work of Hokkanen et al., 2015, which developed
an automatic microfluidic sample system for tissue analysis. In this work, a microscope and
robot were used for positioning the MNs and samples for real-time biopsies (Figure 5D).
The blunt-tip silicon MN chips were used to measure indicative cancer biomarkers from the
tissues. This system is reported as able to be used to extract lipids from small biopsies [87].
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In another OoC study, Choi et al., 2007, described a microfluidic perfusion system
that integrates microneedle arrays in a packaged system for fluid containment. The hollow
MNs were made with a thin body, a sharp tapered tip, and a microfluidic port along the
tower’s side to deliver medium to the inside of the target area (Figure 5E) [89]. The 3D
perfusion design provides convective mass transport to the tissue interior for experiments
on large tissue preparations over extended time periods.

In-plane MN with an open capillary was another strategy developed for LoC. Jung
et al., 2015, fabricated in-plane MNs with side openings with a microchannel inside the MN
that connected to a reservoir (Figure 5F) [77]. The fabricated microdevice was described to
be applied for minimally invasive drug delivery or sample extraction.

Overall, these papers show the vast potential and versatility of applications for MN in
microfluidic devices. However, in general, these devices are made using time-consuming
fabrication processes that involve numerous steps and additional sealing layers to enhance
the total thickness of the structures. The width of microchannels is frequently constrained
by small openings created for successful sealing, making it difficult to reliably seal long
microchannels. To overcome this fabrication constraint, Trautmann et al., 2019 described
a POCT system combining femtosecond laser-generated microfluidic channels and direct
laser-written MN arrays that simplify the fabrication process in only a few processing
steps. This is an advantage over multiple processing methods [86]. With this method, hollow
MNs of various designs were created, and a flow test using rhodamine B was performed to
validate the microchip. Nevertheless, there are some other limitations that must be considered
when designing MN-integrated microfluidic platforms for drug delivery and microinjection.
For instance, the limited volume of drug that may be administered or injected by unit of
time must be considered. This can be especially difficult for applications requiring high
therapeutic dosages. In addition, many drug treatments require specific formulations and
combinations of formulations, which can pose a challenge for researchers and pharma-
ceutical companies to adapt to MN administration. This includes using an MN-system
applying soluble MNs with specific kinetic drug release. Additionally, for this application,
the selected material that will act as MNs must be adequate to not react with the drug
formulation. As an example, PDMS is known to capture hydrophilic molecules, which can
decrease the release of available drug [94]. Considering the application of MN to be used
in OoC or to act as drug delivery in a biological matrix, a challenge that may develop is
the MN breaking and clogging during the insertion/extraction of MNs into the biological
tissue, which can compromise the functionality of the device. Therefore, the selection and
specificity of the material chosen to act as MNs and to be integrated within the microfluidic
device is one of the most important parameters in the fabrication of such platforms.

4. Conclusions

Microfluidic devices with MNs are a relatively novel and appealing method of fluid
transport that offers numerous benefits and applications. Because of the multiple possi-
ble applications in the field of biomedicine, the attention to these devices has increased
significantly in recent years, as shown by the increasing number of published of lab/organ-
on-a-chip systems with MNs. These combined structures are compatible with the current
biotech requirements for both operation and assessment, including automated liquid man-
agement, plate shuttling, biomarker detection and delivery features. Some of the described
LoC devices were tested pre-clinically, which shows the end-use applicability of them.
However, systems integration and manufacturing MNs present substantial challenges (e.g.,
clogging effect, biocompatibility, fluid leakage, numerous fabrication steps and high costs).
This inherent complexity can negatively influence the manufacture of such devices’ depend-
ability and repeatability. One of the challenges in the integration of MNs with microfluidic
devices is ensuring that the MNs are precisely aligned with the fluidic channels. This is
necessary to guarantee that the fluid flows smoothly through the device and the MNs
are able to perform their intended function. Another challenge is ensuring that the MNs’
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material corresponds to the practical demands of the application that the device is being
developed for, as previously outlined in this work.

Overall, the integration of MNs with microfluidic devices is a complex process that
requires careful consideration of a number of factors, including design of the MNs, man-
ufacturing techniques, possible functionalization of MN surfaces, and combination or
integration with (bio)sensing and actuation systems. As researchers continue to develop
new techniques to fabricate MNs-integrated microfluidic devices, the potential application
for these devices is expected to expand. As a result, simple fabrication methods and new
materials are being explored.

Among MNs, hollow MNs are the ones most employed in microfluidic devices, due to
their capability to collect and release higher amounts of fluid. Regarding the MN material,
different types of materials from metallic to non-metallic were described in the literature
reviewed, which are highly dependent on their application. For instance, MNs designed to
penetrate the skin or tissue must be fabricated with materials that provide enough strength
and biocompatibility.

Among the microfluidic type of devices, LoC systems with MNs are being explored for
extraction, biomarker detection, microinjection, and drug delivery, which can be combined
for two or more of these applications in the same device. On the other hand, MN-fluidic sys-
tems for OoC/cell-culture monitoring are in the early stages of development. Nevertheless,
its potentiality for cell/tissue monitoring is high, as MN structures can measure protein
levels directly inside a living cell, without lyse and at real-time. For that, a thin MN can
be inserted into a living cell, or in a cluster of cells (tissue), to assess its microenvironment
and homeostasis. This can be used for a variety of purposes, including protein expression
monitoring, homeostasis assessment, precise drug delivery, and DNA or RNA therapy.
Similarly with LoC, one of the most significant advantages of OoC is the versatility of
these devices for multiple applications, which has a wide scope for further development.
However, the intricate structure of microfluidic devices, as well as challenges in integrating
with other devices and fabrication requirements, all contribute to an untapped potential
for MNs in the biomedical field. Nevertheless, work is being conducted to overcome this
challenge, as shown by a recent published Patent WO/2022/180595, which presents a
multiorgan-on-a-chip containing an MN-(bio)sensing platform for the validation and study
of nanomaterials, drugs, or mixtures thereof, intended to be used in biomedical and/or
pharmaceutic applications [95].

In addition, several researchers are focusing their efforts on developing simpler and
low-cost fabrication methodologies to create powerful MN-microfluidic devices, where
the integration of the different components, such as biosensing modules, are more easily
achieved. One of the newest approaches is the development of microfluidic devices and
biosensors using bioprinting technology, which can fabricate in a few steps. This technol-
ogy, although promising, is also in its first stages. Therefore, there is plenty of room for
the MN-microfluidic technology to progress, from material science and microfluidics to
tissue engineering. Furthermore, a wide range of applications can be explored, not only
biomedical, but also in the sea and in space.
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