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Image segmentation is one of the fundamental problems in image processing.

The goal is to partition a given image into regions that are uniform with respect

to some image features and possibly to extract the region boundaries. Recently

methods based on PDEs have been found to be an effective way to address this

problem. These methods in general fall under the category of shape optimization,

as the typical approach is to assign an energy to a shape, say a curve in 2d, and to

deform the curve in a way that decreases its energy. In the end when the optimization

terminates, the curve is not only at a minimum of the energy, but also at a boundary

in the image.

In this thesis, we emphasize the shape optimization view of image segmenta-

tion and develop appropriate tools to pursue the optimization in 2d and 3d. We

first review the classes of shape energies that are used within the context of image

segmentation. Then we introduce the analytical results that will help us design

energy-decreasing deformations or flows for given shapes.



We describe the gradient flows minimizing the energies, by taking into ac-

count the shape derivative information. In particular we emphasize the flexibility

to accommodate different velocity spaces, which we later demonstrate to be quite

beneficial. We turn the problem into the solution of a system of linear PDEs on

the shape. We describe the corresponding space discretization based on the finite

element method and an appropriate time discretization scheme as well.

To handle mesh deterioration and possibly singularities due to motion of nodes,

we describe time step control, mesh smoothing and angle width control procedures,

also a topology surgery procedure that allows curves to undergo topological changes

such as merging and splitting. In addition we introduce space adaptivity algorithms

that help maintain accuracy of the method and reduce computational cost as well.

Finally we apply our method to two major shape energies used for image

segmentation: the minimal surface model (a.k.a geodesic active contours) and the

Mumford-Shah model. For both we demonstrate the effectiveness of our method

with several examples.
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Chapter 1

Introduction

Shape optimization problems are ubiquitous in science, engineering and indus-

trial applications. They can be formulated as minimization problems with respect

to the shape of a domain Ω in Rd. If y(Ω) is the solution of the following equation

in Ω or on ∂Ω

Ly(Ω) = 0, (1.1)

where L is a differential or integral operator, and J(Ω, y(Ω)) is a cost functional or

energy, then we consider the minimization problem

Ω∗ ∈ Uad : J(Ω∗, y(Ω∗)) = inf
Ω∈Uad

J(Ω, y(Ω)), (1.2)

where Uad is a set of admissible domains in Rd. If the problem is purely geometric,

namely there is no state constraint (1.1), then we simply denote the functional J(Ω).

The main goal of this thesis is to derive a variational method which explicitly and

clearly leads first to design a sequence {Ωn}∞n=0, starting from an initial configuration

Ω0 to a relative minimum Ω∞, that decreases the function n 7→ J(Ωn, y(Ωn)), and

next to discretize in time and space, thereby obtaining a natural descent direction. In

the end we will demonstrate the method with two examples from image processing,

in this way, devise a novel technique to effectively address these problems.

The optimization problem cast in this way may strike us as unusual at first,

as the variable in the minimization is not a point in a finite dimensional space,

1



but a shape, which is infinite-dimensional, and the space for such objects is not

obvious. Still problems of this type are quite common in engineering. A typical

example would be the optimal design of the aerodynamic profile for a body in a

fluid stream [46]. Several other examples from engineering disciplines can be found

in [2, 9, 58, 69, 52].

It turns out that this framework is the right abstraction for a number of natural

phenomena as well. Crystal growth [65, 66], soap bubbles [5], shapes of biological

vesicles [37] are some examples, where nature seems to have chosen to obtain the

equilibrium shapes through the minimization of some geometric functionals. These

phenomena have been studied in detail. In particular extensive work has been done

on the mathematics of these processes in material science. We refer to [4].

Recently image processing has emerged as another area spawning many inter-

esting applications of shape optimization. These have mostly been related to image

segmentation, where we try to identify objects or object boundaries in given images.

Often one can formulate the segmentation problem in such a way that the sought

objects in a given image correspond to the minima of a specified shape energy. We

take a closer look at these models in §1.1. The shape optimization models used for

image segmentation are the main focus of this thesis.

Shape optimization is a multifarious subject with many sides to it, both at

theoretical levels and practical levels. Hence it has attracted the attention of several

analysts, computational mathematicians and physical scientists. In particular, on

the mathematical side, it is connected to many classic areas, such as calculus of

variations, differential geometry, geometric measure theory and free boundary prob-
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lems. On one hand it is natural to link shape optimization to calculus of variations

as both study optima in infinite-dimensional spaces. Nonetheless they are different

in that typically in calculus of variations, the variable is a function as opposed to,

say, a curve or surface in shape optimization.

Given a shape optimization problem, there is a number of relevant questions,

which we need to comment on:

• Well-posedness of the problem, i.e. existence and uniqueness of an optimal

shape;

• Derivation of a flow Ωn+1 = TΩn to obtain a sequence of shapes {Ωn}∞n=0 that

converge to the optimal shape;

• Representation of the shapes;

• Numerical procedures to compute the sequence of shapes {Ωn}∞n=0 minimizing

the given energy.

Existence and uniqueness of optimal shapes. Unlike calculus of varia-

tions, the results on this aspect of shape optimization are very limited. Although

some work exists addressing this question under specific circumstances [14, 17, 22],

the issues are technically challenging, and, in fact, for several innocent choices of

shape energies, an optimal shape does not exist. We refer to the monograph by

Bucur and Buttazzo [13] as a comprehensive review of the available results. Let us

also quote the following excerpt from [13] conveying the essence of the problem:

”It must be noticed that the class Uad of admissible domains does not
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have any linear or convex structure, so in shape optimization problems it

is meaningless to speak of convex functionals and similar notions. More-

over, even if several topologies on families of domains are available, in

general there is not an a priori choice of a topology in order to apply the

direct methods of the calculus of variations, for obtaining the existence

of at least an optimal domain.

We want to stress that, as it also happens in other kinds of optimal

control problems, in several situations an optimal domain does not exist;

this is mainly due to the fact that in many cases the minimizing sequences

are highly oscillating and converge to limit objects only in the relaxed

sense. Then we may have, in these cases, only the existence of a relaxed

solution that in general is not a domain, and whose characterization may

change from problem to problem.”

”However, the existence of an optimal domain in the following cases:

i) when severe geometrical constraints on the class of admissible domains

are imposed (see §5.1 of [13]);

ii) when the cost functional fulfills some particular qualitative assump-

tions (see §5.4 of [13]);

iii) when the problem is of a very special type, involving only the eigen-

values of the Laplace operator, when neither geometrical constraints nor

monotonicity of the cost are required (see §5.6 of [13]).”

Shape sensitivity analysis. This addresses the question of finding energy-
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decreasing deformations of the shape. The core of shape sensitivity analysis is

perturbing the shape and examining how the shape energy changes under the per-

turbation. We can then use this information to select a specific deformation that

will decrease the shape energy. There has been a substantial amount of work on

this aspect of shape optimization in the last three decades and now there exists a

practical set of analytical tools that can be applied to large classes of problems. For

these we refer to the books [25, 34, 47, 57, 64]. We review some of this material

in §2 and demonstrate their application on a number of generic shape energies that

are relevant for image segmentation.

Representation of the shapes. This is one of the critical components of

shape optimization problems. It has implications both on the analytical side and

the computational side. Traditionally parametric shape representation has been a

choice, widely used [41, 47, 33]. The shape is defined as a mapping from a d − 1

dimensional domain to a d-dimensional domain. This has been a very popular rep-

resentation in image processing as well [44, 48]. It is desirable for its computational

efficiency and relative ease of use. Recently the level set method, introduced by

Osher and Sethian ([54]), has gained significant popularity in shape optimization.

In this case, we represent the shape as the zero level set of a higher dimensional

function. One major advantage of this approach is its ability to handle topological

changes, such as merging and splitting, automatically. We refer to [53, 61] as gen-

eral level set references, to [15, 16] for elaborating the use of the level set method in

shape optimization context. Also we refer to [1, 35, 36, 55, 69] for some applications

of this approach. A diffuse interface representation is another possibility that falls

5



into the Eulerian category like the level set method. The main idea is to represent

the shape with a diffuse characteristic function. We refer to [24] for an overview of

these representations specifically within the context of geometric flows.

In this thesis we pursue a Lagrangian approach and represent the shapes as

polygons in 2d and polyhedra in 3d. In this sense our choice of representation is

close to parametric methods. But it is different in that we do not have an explicit

parametrization. For the 2d case, we also introduce special procedures in Chapter

4 to add the capability to handle topological changes.

Numerical implementation. The key issues for the numerical implementa-

tion are the space discretization and the time discretization. The space discretization

is naturally tied to the shape representation. In particular, it depends on what we

have chosen as the primary target of our optimization scheme; the domain or the

boundary, and how we decide to track it, for example, embedded in an implicit rep-

resentation such as a level set function or given by a set of polygons or polyhedra.

Furthermore we may need to solve integral or differential equations in the domain

or on the boundary as well. Then we need to make a choice on how we discretize the

equation. This involves numerical quadrature as well as standard techniques such as

finite elements, finite difference, spectral methods, etc. Related issues are accuracy

of the scheme, computational efficiency, stability and convergence. The choices to

make are very much dependent on the problem at hand. We refer to [41], [33], [47],

[15], [16] for some practical examples and details of the corresponding scenarios.

For this work, where image segmentation is the main emphasis, we have chosen

to track the boundary, which is a polygon in 2d or a polyhedron in 3d. Whenever
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we need the domain for specific computations (in 2d), we generate a triangulation

that approximates the domain and use that to pursue our computations. We use the

finite element method to solve the PDEs that arise on these during the optimization

(details in Chapter 3). Additionally we introduce appropriate space adaptivity

procedures in Chapter 4 to better leverage accuracy and computational efficiency.

Time discretization is the other critical aspect. One is often inclined to liken

the shape optimization problems to geometric evolution problems. However this

analogy is not accurate as the time step in shape optimization is artificial. In fact it

is more appropriate to view it as a step size in the descent direction. Then the goal

is to reach the optimum in as few time steps as possible. A crucial point is to enforce

energy decrease at each step. This is a classic problem in nonlinear optimization

and procedures such as line search and backtracking are widely used to address this

in shape optimization. We mention these in Chapter 3.

In the rest of the introduction we briefly describe our basic model problems

and the notion of gradient flow. They are widely used models of image segmentation

with distinct behavior and requirements, which can still be studied within a unified

framework. We make also explicit the concept of shape derivative of J(Ω) in the

direction of a normal velocity V , namely

dJ(Ω;V ) =

∫

Γ

GV dS, (1.3)

but derive the expressions of G in §2.2 for each case. We then indicate how to exploit

this information to design a gradient flow. Note even at this point that if we have

an explicit representation of G available, then the choice of velocity V = −G would
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set dJ(Ω;V ) 6 0 and give us an energy-decreasing flow. Throughout the thesis we

will denote with Γ that part of the boundary of Ω which is free to deform, with

κ the sum of the principal curvatures of Γ and with ν the unit outer normal of Γ;

thus V := ~V · ν. We use the sign convention that a circle with outward normal has

positive mean curvature. The symbol 〈·, ·〉 stands for either the L2-scalar product

or a duality pairing on Γ.

1.1 Shape Optimization Problems in Image Processing

In image processing we see applications of shape optimization within the con-

text of image segmentation, where the goal is to partition the image into regions

that are uniform with respect to some image features. For example, in medical

imaging one might seek regions of uniform intensity representing different tissues.

In computer vision, the goal could be segmentation of natural images with respect

to texture or possibly more sophisticated features. As often as the regions or the

image objects are the targets, one is equally interested in also capturing the region

boundaries. An example where the boundaries are the primary target is 3D medical

image segmentation, to visualize the biological structures (say organs) in the im-

ages. Apart from its significance on its own, image segmentation is also critical for

several more sophisticated image processing tasks, for example, image understand-

ing or surgery planning; segmentation is their first step. The literature on image

segmentation is overwhelming and it is not possible to review it within the scope of

this work. We will instead revisit those that have shape optimization as their main
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theme.

Many approaches have been taken to address this problem of image segmen-

tation, building upon various mathematical tools. A relatively recent approach that

has gained popularity is based on partial differential equations (PDEs). PDE-based

methods have been employed successfully, specifically within the context of bound-

ary extraction. Traditionally edge detector filters are used to distinguish object

boundaries. However these serve more as boundary indicators and do not really

provide a boundary representation. The PDE approach to this problem has been to

use curve evolution (or surface evolution in 3D) techniques to capture the bound-

aries. Its main advantage is that it directly provides a representation as its outcome.

The first work that takes the curve evolution perspective is the Kass, Witkin,

Terzopoulos model [38], also known as the snakes model. In their work Kass et.

al. start with a parametric curve close to the sought region boundary and evolve

it with respect to some forces computed from image features and some regularity

constraints. The curves essentially try to minimize the following energy:

J(Γ) =

∫ b

a

|Γ′(p)|2dp+c1

∫ b

a

|Γ′′(p)|2dp+c2

∫ b

a

h(|∇I(Γ(p))|)dp, c1, c2 > 0, (1.4)

where Γ : [a, b]→ U , U is the 2d image domain; I(x) is the image intensity function.

The first two terms in (1.4) constitute the internal energy imposing regularity of the

curve. The last term is the external energy, where h(|∇I(x)|) is a suitable function

to enable attraction of the curve to region boundaries. These are signalled by high

gradients of image intensity.

Although (1.4) is the first step in the image processing community towards
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shape optimization, it is not a truly geometric optimization problem. The reason

for this is that the energy (1.4) depends on the parametrization of the curve. For

different parametrizations we may get different energy values for the same shape.

Still (1.4) has been a very popular method, especially in medical image processing,

and many extensions and variations (including parametric surfaces) have been pro-

posed. See [44, 48, 63] for an extensive review of the parametric approach to image

segmentation. The first truly geometric shape optimization model is the geodesic

active contour model of Caselles, Kimmel and Sapiro [18]. We review it in the next

section.

1.1.1 The Minimal Surface Models

Caselles, Kimmel and Sapiro proposed the following energy for curves in [18]

J(Γ) =

∫ b

a

h(|∇I(Γ(p))|)|Γ′(p)|dp (1.5)

where h(s) := 1
1+s2/λ2 , λ > 0. The function h(|∇I(x)|) serves as an edge indicator

function and λ is an edge contrast parameter. In Figure 1.1 we give a simple image

example and the corresponding edge indicator function. Equation (1.5) is essentially

a weighted length formula and the curve that minimizes this energy is the one with

minimal length given by this formula. The minima often coincide with an object

boundary in the given image. Caselles et al. proposed the 3d version of this model

in [19]. They apply the same idea as weighted surfaces to capture boundaries in 3d

volume images. An important advantage of the energy (1.5) is that it is intrinsic,

i.e. it does not depend on the parametrization of the curve. Also the idea easily
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translates to any number of dimensions. For this reason, we consider the following

more general version of the energy

J(Γ) =

∫

Γ

H(x)dS + γ

∫

Ω

H(x)dx (1.6)

where Γ is a closed d−1 dimensional surface in d-dimensional space, Ω is the volume

enclosed by Γ, and dS denotes the surface measure; H(x) > 0 is generic weight

function, possibly equal to h(|∇I(x)|). The second term is often added to speed up

the computation and to help detection of concavities. Let us remark that models

similar to (1.6) had already been studied extensively (see for example [4], [24] and

the references therein) before its introduction to the image processing community.

We will see that the explicit form of the shape gradient of (1.6) is given by

G = H(x)κ+ ∂νH(x) + γH(x)

and one can use this to derive an energy-decreasing deformation for the surface Γ

for example given by the following velocity

~V = −Gν = − (H(x)κ+ ∂νH(x) + γH(x)) ν.

In [39], Kimmel and Bruckstein propose an anisotropic version of the active contour

model. They point out that the geodesic contour model does not perform well

on images with varying image gradients on the background, in particular, it has

difficulty detecting object concavities. To improve behavior in these situations,

they introduce an edge alignment term 〈∇I, ν〉 that will push the curve to align

its normal with the image gradient to achieve better positioning of the curve. The
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I(x) h(|∇I(x)|)

Figure 1.1: A synthetic image example and the corresponding edge indicator func-
tion. The dark areas in the right figure indicate small values of h(|∇I(x)|).

generic form of the energy is as follows

J(Γ) :=

∫

Γ

H(x, ν)dS. (1.7)

Keriven and Faugeras work with another model of the same form in [30], where they

try to reconstruct a 3d scene from given 2d camera images. The energy (1.7) has

been studied in other contexts too [66]. The explicit form of the shape gradient G

for this energy is

G = H(x, ν)κ+ ∂νH(x, ν) + divΓ(Hy(x, ν))Γ

where Hy(·, ·) is the gradient with respect to the second vector variable, i.e. the

normal ν, divΓ is the tangential divergence and (~ω)Γ denotes the restriction of the

vector ~ω to the tangent plane of the surface Γ.

The energy (1.7) is distinct from (1.6) in that the optimization not only de-

pends on a given external weight function, but also on the geometry of the shape.

Another possible interaction with the geometry could be through its mean curvature,
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κ. The generic form of such a functional is

J(Γ) :=

∫

Γ

H(x, κ)dS. (1.8)

Leventon et al. consider a functional of this form in [42], where they try to force the

curves to conform to some prescribed curvature within the context of medical image

segmentation. Note that H(x, κ) = κ2 gives the well-known Willmore functional

(see [68]) and as another possibility, one can use this as an intrinsic regularization

term with other functionals. The explicit form of the shape gradient G for this

energy is

G = −∆Γ (Hz(x, κ)) +H(x, κ)κ−Hz(x, κ)
∑

i

κ2
i + ∂νH(x, κ)

where Hz(·, ·) is the derivative with respect to the second variable, i.e. the mean

curvature κ, ∆Γ is the Laplace-Beltrami operator or the tangential Laplacian and

κi are the principal curvatures.

1.1.2 Models with Integrals and Statistics

The models we mentioned in §1.1.1 have one significant drawback in practice.

As they are minimal length formulas (for curves in 2D), the algorithms based on

these may fail to increase the length of the curves where it is necessary to get a

complete segmentation. For example this may happen when we try to detect con-

cavities of objects in images. This difficulty manifests itself often in medical imaging

when the target is thin and long structures in the image. A possible approach to

circumvent this issue is to consider an average of the edge indicator over the curve,
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rather than its integral. Then the energy has the following form

J(Γ) =
1

|Γ|
∫

Γ

H(x)dS.

This is proposed in [31] by Fua and Leclerc. Following this, Desolneux et al. argue

in [27] that one should instead optimize the average of an edge alignment term,

which results in an energy of the form

J(Γ) =
1

|Γ|
∫

Γ

H(x, ν)dS.

As we define |Γ| := ∫
Γ
dS, these models have now modified the energies (1.6), (1.7)

by adding integral quantities. These create additional dependency of the energy on

the shape Γ as the integrals themselves also depend on the shape.

Integrals in shape energies are adopted for implementation of more sophisti-

cated segmentation ideas too. For example, in segmentation of natural images, one

often seeks to incorporate the statistics of the region inside the curve and the region

outside the curve. In general these statistics are computed as integrals over the

regions. Examples of these can be found in [21, 8, 56, 59]. A simple example of

statistics that can be used for this purpose is the mean value of the image intensity

in the regions. Chan and Vese propose a method based on this idea in [21]. They

minimize the following energy

J(Ω, µ) =
∑
i=1,2

∫

Ωi

(I(x)− µi)
2 + γ

∫

Γ

dS

where

µ = µ1χΩ1 + µ2χΩ2 , µi =

∫

Ωi

I(x)dx, i = 1, 2,

14



Ω1 denotes the region inside the curve Γ and Ω2 = D−Ω1 denotes the region outside

Γ. This method is particularly suited for two-phase images, i.e. images that can

be decomposed into a background and a foreground, each with roughly constant

intensity.

Rather than examining each of these separately, we will consider two forms

that we think are general representatives of shape energies with integrals. The first

is a boundary energy:

J(Γ, Iw(Γ)) =

∫

Γ

H(x, Iw(Γ))dS, Iw(Γ) =

∫

Γ

w(x)dS. (1.9)

The second one is a domain energy:

J(Ω, Iw(Ω)) =

∫

Ω

H(x, Iw(Ω))dx, Iw(Ω) =

∫

Ω

w(x)dx. (1.10)

We could certainly add more integral quantities to these energies as I1
w1

(Ω), I2
w2

(Ω),

. . ., In
wn

(Ω) or add higher level of dependence on the domain, such as having w =

w(x,Ω) in Iw(Ω). These are discussed in some detail in [8]. However, for our

purposes we do not see that this additional complexity brings any additional insight,

so we stick to the compact versions, (1.9) and (1.10). We will see the shape gradients

for these energies are given by

G =
(
H(x, Iw(Γ)) + IHp(Γ)w(x)

)
κ+ ∂νH(x, Iw(Γ)) + IHp(Ω)∂νw(x)

and

G = H(x, Iw(Ω)) + IHp(Γ)w(x)

for the boundary and domain energies respectively; Hp denotes the derivative of H

with respect to its integral variable.
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I(x) discontinuities foreground background

Figure 1.2: Using the Mumford-Shah model to perform simultaneous segmentation
and denoising on a synthetic image. From left to right, the figures show the orig-
inal noisy image, the set of discontinuities obtained, the denoised foreground, the
denoised background.

1.1.3 The Mumford-Shah Model

In addition to integrals, we can use PDEs to estimate quantities in the regions.

This is exemplified by the work of Chan and Vese [20], and Tsai et al. [67]. These

two are very similar and both give a curve evolution solution for the Mumford-Shah

model, which we review briefly. The Mumford-Shah model was proposed in [49] by

Mumford and Shah. The goal is to find a set of discontinuities K and a smooth

approximation u to the image. This is to be achieved by the following optimization

problem

min
u,K

{
1

2

∫

D

(u− I)2dx+
µ

2

∫

D−K

|∇u|2dx+ γ length(K)

}
. (1.11)

The problem in this form is hard as two variables u,K of the optimization problem

are of very different nature. So one looks at a modified version of this energy. One

approach is to look for a diffuse set of discontinuities and we replace K with the a

function that represents the diffuse discontinuities. This idea was proposed in [6]

by Ambrosio and Tortorelli. An adaptive finite element solution for their model is

described in [12]. This approach addresses more of the image restoration aspect of
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the Mumford-Shah model. Still note that the original Mumford-Shah model in fact

aims at both image restoration and image segmentation.

Chan and Vese relate (1.11) to previous segmentation work based on active

contours. They constrain the discontinuity set to be a set of closed curves and in

this way they turn it into a traditional shape optimization problem. The Chan-Vese

approach to the Mumford-Shah problem consists of minimizing

J(Γ) =
2∑

i=1

1

2

(∫

Ωi

(ui − I)2 + µ|∇ui|2
)
dx+ γ

∫

Γ

dS. (1.12)

The Euler-Lagrange equation for Γ fixed reduces to





−µ∆ui + ui = I in Ωi

∂νi
ui = 0 on ∂Ωi

with i = 1, 2 where the curve(s) Γ partitions the domain into a foreground Ω1 (inside

the curve) and a background Ω2 (outside the curve). The explicit form of G for this

energy is

G =
1

2

[[|u− I|2]] +
µ

2

[[|∇u|2]] + γκ,

with [[f ]] = f1 − f2 indicating the jump of f across Γ.

1.2 Thesis Outline and Contributions

Let us first observe that in all the examples above, the function G in (1.3) has

the form

G = g(x,Ω)κ+ f(x,Ω) (1.13)

except for the case with curvature dependence in the energy.
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The explicit expression for G can be exploited to deform Ω in the direction

V of maximal decrease of the functional J(Ω, y(Ω)). To do this, we first introduce

a bilinear form b(·, ·) on Γ which induces a scalar product, and next consider the

gradient flow

b(V,W ) = −
∫

Γ

GW, ∀W, (1.14)

where Γ (and hence G) implicitly depend on ~V = V ν by means of a suitable system

of ODE describing the deformation of Ω through V . If B is a (elliptic) operator

such that 〈BV,W 〉 = b(V,W ), then (1.14) is equivalent to solving the elliptic PDE

on the surface Γ for the normal velocity V

BV = −G. (1.15)

We point out that so far we have not discretized the underlying problem but still

have been able to find a descent direction for the domain shape, the steepest de-

scent direction. The next step is to discretize in time explicitly or alternatively

semi-implicitly in order to retain the implicit computation of curvature in (1.13),

for stability purposes, but not the full geometry. This time discretization is fully

discussed in §3.2 and is followed by space discretization via finite element methods

in §3.3. The ensuing variational approach is rather flexible to accommodate several

scalar products b(·, ·) depending on the application, as discussed in §3.2.2 and §5.

This flexibility will prove to be beneficial as we will be able to compare traditional

choices of gradient flows in image processing with possible variations and we will

document the superiority of the latter.

The outline of the thesis is as follows:
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• In Chapter 1, we give a brief introduction to shape optimization and discuss

its relevance in image processing within the context of the image segmentation

problem. We describe the classes of shape energies used for this purpose.

• In Chapter 2, we review the basic tools of shape sensitivity analysis and demon-

strate how they apply to the shape energies we discuss in Chapter 1. We

survey existing shape calculus results for these energies and derive new results

to complement existing results, including first and second shape derivatives of

the energies.

• In Chapter 3, we describe the time and space discretization for energy-decreasing

flows. For this we represent the energy descent direction as the solution of a

system of linear PDEs and describe the notion of explicit and semi-implicit

time discretization within this system. We follow with the space discretization

based on the finite element method and we explain how to solve the resulting

linear system.

• In Chapter 4, we introduce a number of computational enhancements that

help maintain the quality of computations and to increase the effectiveness of

the method in terms of accuracy and computational efficiency. For mesh qual-

ity, we introduce time step control, mesh smoothing and angle width control

for surfaces. To improve effectiveness we describe geometry-driven and data-

driven space adaptivity procedures, and also a topology surgery procedure

that provides the capability to undergo topological changes such as merging

and splitting.
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• In Chapter 5, we consider two major models used for image segmentation: the

minimal surface model (a.k.a geodesic active contour model) and the Mumford-

Shah model. For these we put together the material of the previous chapters

and describe in detail how we address these models. We document the effec-

tiveness of the method with several experiments.

Our specific contributions are as follows:

• In Chapter 2, we derive the first shape derivatives of the general curvature

dependent boundary energy (1.8) and the boundary energy with integrals (1.9)

and the second shape derivatives of the anisotropic boundary energy (1.7), the

boundary energy with integrals (1.9) and the domain energy with integrals

(1.10). Moreover, this is the first work that provides an comprehensive listing

of the generic forms of shape energies used in image processing and gives the

corresponding shape sensitivity analysis.

• In Chapter 3, the time and space discretization for the gradient flows, albeit

inspired by [29, 11, 15], are completely novel. This was produced in collabo-

ration with P. Morin, R. H. Nochetto and M. Verani. An important feature of

the discretization is the flexibility to use different scalar products to constrain

the space of deformation velocities. In particular, one can introduce scalar

products addressing the specific needs of the given application. See [28] for

examples.

• In Chapter 4, we introduce space adaptivity to improve accuracy and efficiency.

The main ideas are not original. But their implementation in the way described
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is completely novel for the problem of image segmentation. To our knowledge,

there do not exist such procedures to address the shape functionals in image

segmentation. Moreover the algorithm for topological changes in 2d is novel.

There exists other work that include topological changes in 2d. But their

treatment of the problem is relatively superficial. None tackle the problem

in the generality that we do. In particular discussion of possible pitfalls and

pathological cases is largely omitted. Our algorithm, on the other hand, has

been tested with numerous experiments and simulations and has proven to be

a robust and reliable method.

• In Chapter 5, we give novel methods to address the minimal surface model

(1.6) and the Mumford-Shah model (1.12). Curve evolution approaches for

these models are based on the level set method. Our methods are radically

different from existing work in that we track the geometric objects explicitly

based on the discretization described in Chapter 3. In particular, the incorpo-

ration of the adaptivity procedures in Chapter 4, frees the method from the

image pixels and allows us to pursue the optimization with much fewer com-

putational elements than the image resolution would dictate. We demonstrate

the methods with several synthetic and real examples.
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Chapter 2

Shape Sensitivity Analysis

In §2.1 we introduce some elements of shape calculus, along with related ref-

erences, necessary to properly carry out the shape sensitivity analysis of the model

problems in §1.1.

2.1 Shape Differential Calculus

We start by briefly recalling some useful notions of differential geometry. Let

us be given h ∈ C2(Γ) and an extension h̃ of h, h̃ ∈ C2(U) and h̃|Γ = h on Γ where

U is a tubular neighborhood of Γ in Rd. Then the tangential gradient ∇Γh of h is

defined as follows:

∇Γh =
(∇h̃− ∂ν h̃ ν

)|Γ,

where ν denotes the unit normal vector to Γ. For ~W ∈ [C2(Γ)]d properly extended

to a neighborhood of Γ, we define the tangential divergence of ~W by

divΓ
~W =

(
div ~W − ν ·D ~W · ν)|Γ, (2.1)

where D ~W denotes the Jacobian matrix of ~W . Finally, if D2h̃ denotes the Hessian

of h̃, then the Laplace-Beltrami operator ∆Γ on Γ is defined as follows:

∆Γh = divΓ(∇Γh) =
(
∆h̃− ν ·D2h̃ · ν − κ ∂ν h̃

)|Γ. (2.2)
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2.1.1 The Velocity Method

We consider now a hold-all domain D, which contains Ω, and a vector field

~V defined on D, which is used to define the continuous sequence of perturbed sets

{Ωt}t≥0, with Ω0 := Ω. Each point x ∈ Ω0 is continuously deformed by an ODE de-

fined by the field ~V . The parameter which controls the amplitude of the deformation

is denoted by t (a fictitious time).

We now consider the system of autonomous ODEs

dx

dt
= ~V (x(t)), ∀t ∈ [0, T ], x(0) = X, (2.3)

where X ∈ Ω0 = Ω. This defines the mapping

x(t, ·) : X ∈ Ω→ x(t,X) ∈ Rd, (2.4)

and also the perturbed sets

Ωt = {x(t,X) : X ∈ Ω0}. (2.5)

We recall that the family of perturbed sets has its regularity preserved for ~V smooth

enough [64]: if Ω0 is of class Cr, r ≤ k, then for any t ∈ [0, T ], Ωt is also of class Cr.

2.1.2 Derivative of Shape Functionals

Let J(Ω) be a shape functional; examples of such functionals have been given

in §1.1. The Eulerian derivative, or shape derivative, of the functional J(Ω) at Ω,

in the direction of the vector field ~V is defined as the limit

dJ(Ω; ~V ) = lim
t→0

1

t

(
J(Ωt)− J(Ω)

)
. (2.6)
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Let B be a Hilbert space of perturbating vector fields. The functional J(Ω) is said

to be shape differentiable at Ω in B if the shape derivative dJ(Ω; ~V ) exists for all

~V ∈ B and the mapping ~V → dJ(Ω; ~V ) is linear and continuous on B. An analogous

definition can be introduced for functionals J(Γ) depending on a d − 1 manifold Γ

as an independent variable.

We now recall a series of results from shape differential calculus in Rd. We

start with the shape derivative of domain and boundary integrals of functions not

depending on the geometry.

Lemma 2.1.1 ([64, Prop.2.45]). Let φ ∈ W 1,1(Rd) and Ω ⊂ Rd be open and

bounded. Then the functional

J(Ω) =

∫

Ω

φdx (2.7)

is shape differentiable. The shape derivative of J is given by

dJ(Ω; ~V ) =

∫

Ω

div(φ~V )dx. (2.8)

If Γ = ∂Ω is of class C1 and V = ~V · ν, then

dJ(Ω; ~V ) =

∫

Γ

φV dS. (2.9)

Proof. Let Tt(X) = x(X, t) be the mapping defined by (2.3) and (2.4). We want to

compute

dJ(Ω;V ) =
d

dt
J(Ωt)|t=0

where Ωt := Tt(Ω) and

J(Ωt) =

∫

Ωt

φdx =

∫

Ω

φ ◦ TtJtdX.
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The Jacobian is given by Jt := detDTt(X). We compute the following intermediate

results omitting the details:

d

dt
φ ◦ Tt = (∇φ · ~V ) ◦ Tt,

dJt

dt
= ((div~V ) ◦ Tt)Jt.

Now we can compute the first shape derivative of the domain functional

dJ(Ω; ~V ) =

∫

Ω

(
d

dt
(φ ◦ Tt)Jt + φ ◦ Tt

dJt

dt

)
dx|t=0

=

∫

Ω

(
∇φ · ~V + φdiv~V

)
dx

=

∫

Ω

div(φ~V )dx

=

∫

Γ

φ~V · νdS.

Lemma 2.1.2 ([64, Prop. 2.50 and (2.145)]). Let ψ ∈ W 2,1(Rd) and Γ be of

class C2. Then the functional

J(Γ) =

∫

Γ

ψdS (2.10)

is shape differentiable and

dJ(Γ; ~V ) =

∫

Γ

(∇ψ · ~V + ψdivΓ
~V

)
dS =

∫

Γ

(
∂νψ + ψκ

)
V dS. (2.11)

Proof. As above let Tt(X) = x(X, t) be the mapping defined by (2.3) and (2.4).

Now we want to compute

dJ(Γ;V ) =
d

dt
J(Γt)|t=0
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where Γt := Tt(Γ) and

J(Γt) =

∫

Γt

ψdSt =

∫

Γ

ψ ◦ TtωtdS.

The change of variables brings ωt := Jt|∗DT−1
t ν|, where we denote the transpose of

DT by ∗DT . We compute the following intermediate results omitting the details:

d

dt
ψ ◦ Tt = (∇ψ · ~V ) ◦ Tt,

dJt

dt
= div~V − ν ·D~V · ν.

Now we can compute the first shape derivative of the boundary functional

dJ(ψ; ~V ) =

∫

Γ

(
d

dt
(ψ ◦ Tt)ωt + ψ ◦ Tt

dωt

dt

)
dS|t=0 (2.12)

=

∫

Γ

(
∇ψ · ν + ψ(div~V − ν ·D~V · ν)

)
dS (2.13)

=

∫

Γ

(∂νψ + κψ) ~V · νdS. (2.14)

The last line follows from Proposition 2.1.1.

Let us now consider more general functionals J(Ω). These are useful when we

consider some of the problems in §1.1.1, 1.1.2, 1.1.3. In particular we are interested

in computing sensitivities for functionals of the form

J(Ω) =

∫

Ω

φ(x,Ω)dx, or J(Γ) =

∫

Γ

ϕ(x,Γ)dS, (2.15)

where the functions φ(·,Ω) : Ω → R and ϕ(·,Γ) : Γ → R themselves depend on

the geometric variables Ω and Γ, respectively. To handle the computation of the

sensitivities of such functionals we need to take care of the derivatives of φ and ϕ

with respect to Ω and Γ.

First of all we recall the notions of material derivative and shape derivative.
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Definition 2.1.1 ([64, Prop.2.71]). The material derivative φ̇(Ω; ~V ) of φ at Ω in

direction ~V is defined as follows

φ̇(Ω; ~V ) = lim
t→0

1

t

(
φ(x(t, ·),Ωt)− φ(·,Ω0)

)
, (2.16)

where the mapping x(·, t) is defined as in (2.4). A similar definition holds for func-

tions ϕ(·,Γ) which are defined on boundaries Γ instead of domains Ω.

Definition 2.1.2 ([64, Def. 2.85, Def 2.88]). The shape derivative φ′(Ω; ~V ) of

φ at Ω in the direction ~V is defined to be

φ′(Ω; ~V ) = φ̇(Ω; ~V )−∇φ · ~V . (2.17)

Accordingly, for boundary functions ϕ(Γ) : Γ→ R, the shape derivative is defined to

be

ϕ′(Γ; ~V ) = ϕ̇(Γ; ~V )−∇Γϕ · ~V |Γ. (2.18)

With these notions we are able to calculate the shape derivatives for the above

shape functionals.

Theorem 2.1.1 ([64, Sect. 2.31, 2.33]). Let φ = φ(x,Ω) be given so that the

material derivative φ̇(Ω; ~V ) and the shape derivative φ′(Ω; ~V ) exist. Then, the cost

functional J(Ω) in (2.15) is shape differentiable and we have

dJ(Ω; ~V ) =

∫

Ω

φ′(Ω; ~V )dx+

∫

Γ

φV dS. (2.19)

For boundary functions ϕ(Γ), the shape derivative of J(Γ) in (2.15) is given by

dJ(Γ; ~V ) =

∫

Γ

ϕ′(Γ; ~V )dS +

∫

Γ

κϕV dS, (2.20)
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whereas if ϕ(·,Γ) = ψ(·,Ω)|Γ, then we obtain

dJ(Γ; ~V ) =

∫

Γ

ψ′(Ω; ~V )|ΓdS +

∫

Γ

(
∂νψ + κψ

)
V dS. (2.21)

Let us conclude this part with a Riesz representation theorem, the Hadamard-

Zolésio Theorem, that will play an important role in the sequel.

Theorem 2.1.2 ([64, Sect 2.11 and Th. 2.27]). The shape derivative of a

domain or boundary functional always has a representation of the form

dJ(Ω; ~V ) = 〈G, V 〉Γ, (2.22)

where we denote by 〈·, ·〉Γ a suitable duality pairing on Γ; that is, the shape derivative

is concentrated on Γ.

Let us point out that an implication of this theorem is that the shape derivative

dJ(Ω, ~V ) depends only on V = ~V ·ν, the normal component of the velocity. For this

reason, we will use V in our notation from now on and assume a normal extension

when we need the velocity extended to a neighborhood of the surface. Hence, without

loss of generality, we have the following assumptions on V and ~V

~V = V ν, ∂νV = 0 on Γ. (2.23)

2.1.3 Some Geometric Results

In this section we present some results that will be useful to compute the first

and second shape derivatives of the model problems.
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Lemma 2.1.3. The shape derivatives of the normal ν and the mean curvature κ of

a boundary Γ of class C2 with respect to velocity V are given by

ν ′ = ν ′(Γ;V ) = −∇ΓV , (2.24)

κ′ = κ′(Γ;V ) = −∆ΓV. (2.25)

Then the shape derivatives of ∂νf , ∇Γf and |∇Γf |2 for a C1 function f(x,Γ) are

(∂νf)′ = ∂νf
′ − ∂f · ∇ΓV (2.26)

(∇Γf)′ = ∇Γf
′ + ∂νf ∇ΓV + (∇Γf · ∇ΓV )ν (2.27)

(|∇Γf |2)′ = 2∇Γf · ∇Γf
′ + 2∂νf ∇Γf · ∇ΓV (2.28)

where f ′ = f ′(Γ;V ) is the shape derivative of f .

Proof. The main idea of proving the results for ν ′ and κ′ is to consider the signed

distance representation b(x) of the boundary Γ. It is defined as

b(x) =





dist(x,Γ) for x ∈ Rd − Ω

0 for x ∈ Γ

−dist(x,Γ) for x ∈ Ω

(2.29)

where

dist(x,Γ) = inf
y∈Γ
|y − x|.

The signed distance representation of Γ allows us to extend ν and κ smoothly in a

tubular neighborhood. We use the fact that

ν = ∇b(x)|Γ, κ = ∆b(x)|Γ, II = D2b(x)|Γ
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where II denotes the second fundamental form (see [25, Sect. 8.5]). Once we have

the extensions, it is relatively straight-forward to compute ν ′ and κ′. For this we

use the result [35] that

φ(·,Ω) ∈ H 3
2
+ε(Ω), φ(·,Ω)|Γ = 0,

implies existence of φ′(Ω;V ) in H
1
2
+ε(Ω) and

φ′(Ω;V )|Γ = −∂νφV |Γ.

Noting b|Γ = 0, we get

b′|Γ = ∂νb|ΓV = −∇b · ∇b|ΓV = −V.

On the other hand

0 = (1)′ = (∇b · ∇b)′ = 2∇b′ · ∇b,

gives

ν ′ = ∇b′|Γ = ∇Γb
′|Γ +∇b′|Γ · νν = ∇Γb

′|Γ = −∇ΓV.

Similarly we compute κ′ = ∆b′|Γ = −∆ΓV , whose derivation we omit.

Now given ν ′ and κ′ we can compute the shape derivatives of the normal and

tangential derivatives of f .

(∂νf)′ = (∇f · ν)′ = ∇f ′ · ν −∇f · ∇ΓV

= ∂νf
′ −∇f · ∇ΓV.
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From this

(∇Γf)′ = (∇f − ∂νfν)′

= ∇f ′ − (∂νf)′ν − ∂νfν
′

= ∇f ′ − ∂νf
′ν + (∇f · ∇ΓV )ν + ∂νf∇ΓV

= ∇Γf
′ + (∇f · ∇ΓV )ν + ∂νf∇ΓV.

Finally

(|∇Γf |2
)′

= 2∇Γf · (∇Γf)′

= 2∇Γf · ∇Γf
′ + 2∂νf∇Γf · ∇ΓV

since ∇Γf · ν = 0.

Lemma 2.1.4. The normal derivative of the mean curvature of a surface Γ of class

C2 is given by

∂νκ = −
∑

i

κ2
i (2.30)

where κi denote the principal curvatures of the surface. For a two-dimensional

surface in 3D, this is equal to

∂νκ = −(κ2
1 + κ2

2) = −(κ2 − 2κG)

where κG = κ1κ2 denotes the Gaussian curvature.

Proof. To prove this result, we will work with the signed distance representation
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b(x) of Γ (see (2.29)). Referring to (2.30) again, we proceed as follows

0 = ∆(1) = ∆(∇b · ∇b) = ∂xi
∂xi

(∂xj
b ∂xj

b)

= ∂xi

(
∂xixj

b ∂xj
b+ ∂xj

b ∂xixj
b
)

= 2∂xi
(∂xj

b ∂xixj
b)

= 2
(
∂xixj

b ∂xixj
b+ (∂xj

∂xixi
b) ∂xj

b
)

= 2
(
D2b : D2b+∇(∆b) · ∇b) .

Then

∂νκ = ∇(∆b) · ∇b|Γ = −‖D2b‖2F |Γ = −‖II‖2F = −
∑

i

κ2
i ,

where ‖ · ‖F denotes the Frobenius norm of a matrix. To get this result we used

the fact that squared Frobenius norm of a square matrix is equal to the sum of the

squares of its eigenvalues, also that the eigenvalues of the second fundamental form

correspond to the principal curvatures.

Lemma 2.1.5. Let f = f(x, κ) be given such that f ∈ C2(Rd+1) and Γ be of class

C4. Then the Laplace-Beltrami operator on f is given by

∆Γ (f(x, κ)) = ∆Γf + fz∆Γκ+ fzz|∇Γκ|2 + 2∇Γfz · ∇Γκ

where fz and fzz denote the first and second derivatives of f with respect to its

curvature variable.

Proof. Recall the definition of the Laplace-Beltrami operator

∆Γf = ∆f − ν ·D2f · ν − ∂νfκ

or alternatively

∆Γf =
(
∆f −∇b ·D2f · ∇b−∇f · ∇b∆b) |Γ.
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Now let us compute each component of these expressions.

∂xj
(f(x,∆b(x))) = fxj

+ fz∂xj
∆b,

∂xi
∂xj

(f(x,∆b(x))) = fxjxi
+ fxjz∂xi

∆b+ fzxi
∂xj

∆b

+fzz∂xj
∆b∂xi

∆b+ fz∂xi
∂xj

∆b

∂xi
∂xi

(f(x,∆b(x))) = ∆f + (∇f)z · ∇∆b+∇fz · ∇∆b

+fzz(∇∆b) · (∇∆b) + fz∆∆b.

Then

∂xi
b ∂xi

∂xj
f ∂xj

b = ∇b ·D2f · ∇b+∇b · (∇f)z∇b · ∇∆b

+∇b · (∇fz)∇b · ∇∆b+ fzz(∇b · ∇∆b)2 + fz∇b ·D2∆b∇b,

∂xi
f∂xi

b∆b = ∇f · ∇b∆b+ fz∇b · ∇∆b.

Now we add these up. Recalling ∇Γh = (∇h− (∇b · ∇h)∇b) |Γ and reorganizing

the terms, we have

∆Γf = ∆f −∇b ·D2f · ∇b−∇f · ∇b∆b

+fz

(
∆∆b−∇b ·D2∆b · ∇b−∇∆b · ∇b∆b)

+fzz|∇Γ∆b|2 +∇Γfz · ∇Γ∆b+ (∇Γf)z · ∇Γ∆b.

Restricting this expression to Γ to get ν = ∇b(x)|Γ and κ = ∆b(x)|Γ and using the

definition (2.2) of the Laplace-Beltrami operator, we obtain

∆Γ (f(x, κ)) = ∆Γf + fz∆Γκ+ fzz|∇Γκ|2 + 2∇Γfz · ∇Γκ
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Proposition 2.1.1 ([25, Sect. 8.5.5, (5.27)]). For a function f ∈ C1(Γ) and a

vector ~ω ∈ C1(Γ)d, we have the following tangential Green’s formula

∫

Γ

fdivΓ~ω +∇Γf · ~ωdS =

∫

Γ

κf~ω · νdS. (2.31)

2.1.4 The Second Shape Derivative

We continue to use the scalar velocity fields V,W satisfying (2.23) to perturb

the domains and we define the second shape derivative as follows

d2J(Ω;V,W ) = d (dJ(Ω;V )) (Ω;W ). (2.32)

The second shape derivatives of functions φ(Ω), ϕ(Γ) can be defined similarly based

on Definition 2.1.2. Now we can use this to compute the second shape derivative

of the domain and the boundary functionals. We give these results below.

Lemma 2.1.6 ([35, Sect. 2.5]). Let φ ∈ W 2,1(Rd) and Γ be of class C2. Then

the second shape derivative of the functional

J(Ω) =

∫

Ω

φdx (2.33)

at Ω with respect to scalar velocity fields V , W is given by

d2J(Ω;V,W ) =

∫

Γ

(∂νφ+ κφ)VWdS. (2.34)

Proof. Recall that the first shape derivative of (2.33) is

dJ(Ω;V ) =

∫

Γ

φV dS. (2.35)
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If we let Φ = φV , then the second shape derivative of (2.33) is given by

d2J(Ω;V,W ) = d(dJ(Ω;V ))(Ω;W ) (2.36)

=

∫

Γ

Φ′dS +

∫

Γ

(∂νΦ + Φκ)WdS, (2.37)

where Φ′ = Φ′(Ω;W ). As neither of φ, V have shape dependence, we have Φ′ = 0.

Let us compute the second term.

∂νΦ = ∂νφV + φ∂νV. (2.38)

Note that the second term is zero because of the assumptions (2.23). Substituting

Φ and ∂νΦ in (2.37) gives the result.

Lemma 2.1.7 ([35, Sect. 5]). Let ψ ∈ W 3,1(Rd) and Γ be of class C2. Then the

second shape derivative of the functional

J(Γ) =

∫

Γ

ψdS (2.39)

at Γ with respect to scalar velocity fields V , W is given by

d2J(Γ;V,W ) =

∫

Γ

(
ψ∇ΓV · ∇ΓW +

(
∂ννψ + 2κ∂νψ + (κ2 −

∑
κ2

i )ψ
)
VW

)
dS.

Proof. The first shape derivative of (2.39) is

dJ(Γ;V ) =

∫

Γ

(∂νψ + κψ)V dS. (2.40)

If we let Ψ = (∂νψ + κψ)V , then the second shape derivative of (2.39) is given by

d2J(Γ;V,W ) = d(dJ(Γ;V ))(Γ;W ) (2.41)

=

∫

Γ

Ψ′dS +

∫

Γ

(∂νΨ + Ψκ)WdS. (2.42)
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where Ψ′ = Ψ(Γ;W ). Let us compute the first term:

Ψ′ = (∇ψ · ν ′ + ψκ′)V

= − (∇ψ · ∇ΓW + ψ∆ΓW )V,

using Lemma 2.1.3 and the fact that ψ, V do not depend on the shape. Integrate

Ψ′

∫

Γ

Ψ′dS = −
∫

Γ

∇Γψ · ∇ΓWV dS −
∫

Γ

ψV∆ΓWdS

=

∫

Γ

ψ∇ΓV · ∇ΓWdS,

using the tangential Green’s formula (2.31). Now reminding ∂νV = 0 by assumption

(2.23), we compute

∂νΨ = ∂ν (∂νψ + ψκ)V

=
(
∂ννψ + κ∂νψ − ψ

∑
κ2

i

)
V.

We have used the facts: ∂νν = 0 and ∂νκ = −∑
κ2

i from Lemma 2.1.4. Substi-

tuting Ψ′ and ∂νΨ in (2.42), we obtain the explicit expression for the second shape

derivative.

Now we employ Lemmas 2.1.6 and 2.1.7 and Definition 2.1.2 to state the

second shape derivative for more general functionals J(Ω). The assumptions (2.23)

are crucial in obtaining this result.

Theorem 2.1.3. Let φ = φ(x,Ω) be given so that the first and the second shape

derivatives φ′(Ω;V ), φ′′(Ω;V,W ) exist. Then, the second shape derivative of the
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domain functionals in (2.15) is given by

d2J(Ω;V,W ) =

∫

Ω

φ′′dx+

∫

Γ

(φ′WV + φ′VW ) dS +

∫

Γ

(∂νφ+ κφ)VWdS (2.43)

where φ′V = φ′(Ω;V ), φ′′ = φ′′(Ω;V,W ). For boundary functions ϕ(Γ) in (2.15)

with ϕ(·,Γ) = ψ(·,Ω)|Γ we obtain

d2J(Γ;V,W ) =

∫

Γ

ψ′′dS +

∫

Γ

((∂νψ
′
W + κψ′W )V + (∂νψ

′
V + κψ′V )W ) dS (2.44)

+

∫

Γ

(
ψ∇ΓV · ∇ΓW +

(
∂ννψ + 2κ∂νψ + (κ2 −

∑
κ2

i )ψ
)
VW

)
dS.

where ψ′V = ψ′(Γ;V )|Γ, ψ′′ = ψ′(Γ;V,W )|Γ.

Proof. For J(Ω) =
∫

Ω
φ(x,Ω)dx, the first shape derivative at Ω in direction V is

dJ(Ω;V ) =

∫

Ω

φ′(Ω;V )dx

︸ ︷︷ ︸
+

∫

Γ

φV dS

︸ ︷︷ ︸
.

J1 J2

To obtain the second shape derivative, we take the derivatives of J1 and J2.

dJ1(Ω;W ) =

∫

Ω

φ′′(Ω;V,W )dx+

∫

Γ

φ′(Ω;V )WdS

dJ2(Ω;W ) =

∫

Γ

φ′(Ω;W )V dS +

∫

Γ

(∂νφV + φV κ)dS.

Then

dJ(Ω;V,W ) = dJ1(Ω;W ) + dJ2(Ω;W )

and reorganizing the terms yields the results. We obtain the second shape derivative

for the boundary functional similarly.

More details on the structure of the second shape derivative can be found in

[25] and [51]. We should nevertheless point out that the use of assumptions (2.23)

has allowed us to derive the simpler forms in Theorem 2.1.3 (compared to [25] and

[51]).
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2.2 Shape Derivatives of the Model Functionals

For each shape functional introduced in §1.1 we compute the first and second

shape derivatives and obtain the explicit expressions of the shape gradient G.

2.2.1 Minimal Surface Energies

We compute the first and the second shape derivatives of the general form of

the active shape model (1.6)

J(Ω) :=

∫

Γ

H(x)dS + γ

∫

Ω

H(x)dx

Theorem 2.2.1. The first shape derivative of the general form of the active shape

model is given by

dJ(Ω;V ) =

∫

Γ

(
(κ+ γ)H(x) + ∂νH(x)

)
V dS.

Proof. The proof directly follows from Lemmas 2.1.1, 2.1.2.

Then the explicit form of shape gradient for (1.6) is

G = (κ+ γ)H(x) + ∂νH(x),

and has the form (1.13) with g = H(x) and f = γH(x) + ∂νH(x).

Theorem 2.2.2. The second shape derivative of the general form of the active shape

model is given by

d2J(Γ;V,W ) =

∫

Γ

H∇ΓV · ∇ΓWdS

+

∫

Γ

(
∂ννH + (2κ+ γ)∂νH + (κ2 −

∑
κ2

i + 2γκ)H
)
VWdS.
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Proof. The proof directly follows from Lemmas 2.1.6, 2.1.7.

Now we compute the first and the second shape derivatives of the anisotropic

boundary energy (1.7)

J(Γ) :=

∫

Γ

H(x, ν)dS

Theorem 2.2.3. The first shape derivative of the anisotropic boundary energy is

given by

dJ(Γ;V ) =

∫

Γ

(κH + ∂νH)V −Hy · ∇ΓV dS

=

∫

Γ

(κH + ∂νH + divΓ(Hy)Γ)V dS.

Proof. We use Theorem 2.1.1 with ψ = H(x, ν). Then

ψ′(Γ;V ) = Hy · ν ′ = −Hy · ∇ΓV

using (2.24); Hy is the derivative with respect to the second variable. Note also that

∂ν(H(x, ν)) = ∂νH(x, ν) since ∂νν = 0. Then substituting ψ′ in (2.21) yields

dJ(Γ;V ) =

∫

Γ

(κH + ∂νH)V −Hy · ∇ΓV dS

On the other hand we can apply the tangential Green’s formula (2.31) to the last

term of the integral.

∫

Γ

Hy · ∇ΓV dS = −
∫

Γ

V divΓHydS +

∫

Γ

κV Hy · νdS

Since divΓ(~ω)Γ = divΓ(~ω)− κ~ω · ν, we have

dJ(Γ;V ) =

∫

Γ

(κH + ∂νH + divΓ(Hy)Γ)V dS.
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Then the explicit form of the shape gradient for (1.7) is

G = κH + ∂νH + divΓ(Hy)Γ,

and has the form (1.13) with g = H and f = ∂νH + divΓ(Hy)Γ.

Theorem 2.2.4. The second shape derivative of the anisotropic boundary energy is

given by

d2J(Γ;V,W ) =

∫

Γ

∇ΓV · ((H +Hy · ν)Id+Hyy) · ∇ΓWdS

+

∫

Γ

(
∂ννH + 2κ∂νH + (κ2 −

∑
κ2

i )H
)
VWdS

−
∫

Γ

(κHy + νTHxy) · (∇ΓW V +∇ΓV W )dS.

Proof. We use Theorem 2.1.3 with ψ = H(x, ν). Then

ψ′(Γ;V ) = −Hy · ∇ΓV

ψ′′(Γ;V,W ) = − (Hy)′ · ∇ΓV −Hy · (∇ΓV )′

= ∇ΓV ·Hyy · ∇ΓW +Hy · ν∇ΓV · ∇ΓW

using (2.27) and (2.23). We collect the terms and obtain

ψ′′(Γ;V,W ) = ∇ΓV · (Hyy +Hy · ν Id) · ∇ΓW

where Id is the identity matrix. We also compute

∂νψ
′(Γ;V ) = −∂νHy · ∇ΓV −Hy · ∂ν∇ΓV

= −ν ·Hyx · ∇ΓV

since ∂ν∇ΓV = ∇Γ∂νV = 0 due to (2.23). The function Hyx is the Hessian obtained

by taking the derivative of H with respect to the second variable, then with respect
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to the first variable. Now we substitute these in (2.44) to obtain

d2J(Γ;V,W ) =

∫

Γ

∇ΓV · (Hyy +Hy · ν Id) · ∇ΓWdS

−
∫

Γ

(ν ·Hyx · ∇ΓW + κHy · ∇ΓW )V

−
∫

Γ

(ν ·Hyx · ∇ΓV + κHy · ∇ΓV )WdS

+

∫

Γ

(
H∇ΓV · ∇ΓW +

(
∂ννH + 2κ∂νH + (κ2 −

∑
κ2

i )H
)
VW

)
dS.

Reorganizing the terms yields the result.

Next we compute the shape derivative of the curvature dependent boundary

energy

J(Γ) :=

∫

Γ

H(x, κ)dS.

Theorem 2.2.5. The first shape derivative of the curvature dependent boundary

energy (1.8) is given by

dJ(Γ;V ) =

∫

Γ

(
−∆Γ (Hz) +Hκ−Hz

∑
κ2

i + ∂νH
)
V dS,

where Hz denotes the derivative with respect to the curvature variable and

∆Γ (Hz) = ∆ΓHz +Hzz∆Γκ+Hzzz|∇Γκ|2 + 2∇ΓHzz · ∇Γκ.

Note the nuance in the notation: ∂xi
H = ∂xi

H(x, κ) = Hxi
(x, κ) where as ∂xi

(H) =

∂xi
(H(x, κ)) = Hxi

(x, κ) +Hz(x, κ)∂xi
κ.

Proof. We use Theorem 2.1.1 with ψ = H(x, κ). Then

ψ′(Γ;V ) = Hzκ
′ = −Hz∆ΓV
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using (2.25). Let us also compute ∂ν(H(x, κ)):

∂ν (H(x, κ)) = ∂νH(x, κ) +Hz(x, κ)∂νκ

= ∂νH(x, κ)−Hz(x, κ)
∑

κ2
i .

The second line follows from (2.30). Then substituting ψ′ and ∂νψ in (2.21) we have

dJ(Γ;V ) = −
∫

Γ

Hz(x, κ)∆ΓV dS+

∫

Γ

(
∂νH(x, κ)−Hz(x, κ)

∑
κ2

i +H(x, κ)κ
)
V dS.

Integrating the first integral by parts twice with tangential Green’s formula (2.31),

we obtain

dJ(Γ;V ) =

∫

Γ

(
−∆Γ(Hz(x, κ)) + ∂νH(x, κ)−Hz(x, κ)

∑
κ2

i +H(x, κ)κ
)
V dS.

We can readily compute ∆Γ(Hz(x, κ)) using Lemma (2.1.5).

In this case the explicit form of the shape gradient for (1.8) is

G = −∆Γ (Hz) +Hκ−Hz

∑
κ2

i + ∂νH.

Note that this does not comply with the form (1.13). We need to compute the

principal curvatures, also derivatives of the curvature.

Corollary 2.2.1. The Willmore functional

J(Γ) =
1

2

∫

Γ

κ2dS

admits a first shape derivative dJ(Γ;V ) =
∫

Γ
GV with

G = −∆Γκ− κ
(∑

κ2
i −

κ2

2

)
.
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For surfaces in 3d, this is equal to

G = −∆Γκ− κ3

2
+ 2κG,

where κG = κ1κ2 is the Gaussian curvature.

Proof. The proof trivially follows from Theorem 2.2.5 by setting H(x, κ) = κ2

2
.

Then ∂νH = 0 and Hz = κ. Substituting these values and using (2.30) gives the

result.

2.2.2 Shape Energies with Integrals

We compute the shape derivatives for the boundary energies with integrals

(1.9), (1.10). The first shape derivative for (1.10) can be found in [8] as well, where

the authors also investigate the dependence of the energy on several integrals.

Theorem 2.2.6. The first shape derivative of (1.9), namely

J(Ω) =

∫

Ω

H(x, Iw(Ω))dx, Iw(Ω) =

∫

Ω

w(x)dx

is given by

dJ(Ω;V ) =

∫

Γ

(
H(x, Iw(Ω)) + IHp(Ω)w(x)

)
V dS,

where Hp denotes the derivative of H(x, Iw(Ω)) with respect to its second variable.

Proof. Let φ(x,Ω) = H(x, Iw(Ω)) in Theorem 2.1.1, and calculate φ′(Ω;V ).

φ′ = Hp(x, Iw)I ′w = Hp

∫

Γ

w(x̃)V dS.

We have used the fact that Lemma 2.1.1 applies to Iw, namely I ′w = dIw(Ω;V ).

Substitute φ′ in the general form (2.19)

dJ(Ω;V ) =

∫

Ω

Hp(x, Iw)

(∫

Γ

w(x̃)V dS

)
dx+

∫

Γ

H(x, Iw)V dS.
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Since IHp =
∫
Ω
Hp(x, Iw)dx, exchanging the order of integration we have

dJ(Ω;V ) =

∫

Γ

(
H(x, Iw) + IHpw(x)

)
V dS.

Then the explicit form of the shape gradient for (1.10) is

G = H(x, Iw) + IHpw(x),

and has the form (1.13) with g = 0 and f = H(x, Iw) + IHpw(x).

Theorem 2.2.7. The second shape derivative of (1.10) is given by

dJ(Ω;V,W ) =

∫

Γ

(
∂νH + IHp∂νw + κ(H + IHpw)

)
VWdS

+

∫

Γ

HpV dS

∫

Γ

wWdS +

∫

Γ

wV dS

∫

Γ

HpWdS

+ IHpp

∫

Γ

wV dS

∫

Γ

wWdS,

with H = H(x, Iw(Ω)), w = w(x) as above. Functions Hp and Hpp denote the first

and second derivatives of H with respect to its second variable.

Proof. Again let φ = H(x, Iw(Ω)) in Theorem 2.1.3. We have

φ′ = Hp

∫

Γ

w(x̃)V dS,

φ′′ = (Hp)′
∫

Γ

w(x̃)V dS +Hp

(∫

Γ

w(x̃)V dS

)′

= Hpp

∫

Γ

w(˜̃x)V dS

∫

Γ

w(x̃)WdS +Hp

∫

Ω

(∂νw(x̃) + κw(x̃))VWdS,

by Lemma 2.1.6. We substitute these in (2.43)

d2J(Ω;V,W ) =

∫

Ω

Hppdx

∫

Γ

wV dS

∫

Γ

wWdS +

∫

Γ

Hpdx

∫

Ω

(∂νw + κw)VWdS

+

∫

Γ

HpV dS

∫

Γ

wWdS +

∫

Γ

HpWdS

∫

Γ

wV dS

+

∫

Γ

(∂νH + κH)VWdS.
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Reorganizing the various terms yields the result.

Theorem 2.2.8. The first shape derivative of (1.9), namely

J(Γ) =

∫

Γ

H(x, Iw(Γ))dS, Iw(Γ) =

∫

Γ

w(x)dS,

is given by

dJ(Γ;V ) =

∫

Γ

(
(H + IHpw)κ+ ∂νH + IHp∂νw

)
V dS,

where Hp is the derivative of H(x, Iw) with respect to the second variable.

Proof. Let ψ(x,Γ) = H(x, Iw(Γ)) in Theorem 2.1.1. We calculate ψ′(Γ;V ) using

Lemma 2.1.2.

ψ′ = Hp(x, Iw)I ′w = Hp

∫

Γ

(∂νw + wκ)V dS

Substitute in the general form

dJ(Γ;V ) =

∫

Γ

HpdS

∫

Γ

(∂νw + wκ)V dS +

∫

Γ

(∂νH +Hκ)V dS.

By letting IHp =
∫
Γ
Hp(x, Iw)dS and reorganizing the terms, we obtain the result.

Then the explicit form of the shape gradient is

G = (H + IHpw)κ+ ∂νH + IHp∂νw,

and has the form (1.13) with g =
(
H(x, Iw) + IHpw(x)

)
and f = ∂νH + IHp∂νw.
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Theorem 2.2.9. The second shape derivative of (1.9) is given by

d2J(Γ;V,W ) =

∫

Γ

(H + IHpw)∇ΓV · ∇ΓWdS

+

∫

Γ

(
∂ννH + IHp∂ννw + 2(∂νH + IHp∂νw)κ

)
VWdS

+

∫

Γ

(∂νHp +Hpκ)V dS

∫

Γ

(∂νw + wκ)WdS

+

∫

Γ

(∂νw + wκ)V dS

∫

Γ

(∂νHp +Hpκ)WdS

+ IHpp

∫

Γ

(∂νw + wκ)V dS

∫

Γ

(∂νw + wκ)WdS.

Proof. We use Theorem 2.1.3 with ψ = H(x, Iw(Γ)). Then

ψ′(Γ;V ) = Hp

∫

Γ

(∂νw + wκ)V dS,

∂νψ
′(Γ;V ) = ∂νHp

∫

Γ

(∂νw + wκ)V dS,

and

ψ′′(Γ;V,W ) = (Hp)′
∫

Γ

(∂νw + wκ)V dS +Hp

(∫

Γ

(∂νw + wκ)V dS

)′

= Hpp(x, Iw)

∫

Γ

(∂νw + wκ)V dS

∫

Γ

(∂νw + wκ)WdS

+ Hp(x, Iw)

∫

Γ

w∇ΓV · ∇ΓWdS

+ Hp(x, Iw)

∫

Γ

(
∂ννw + 2κ∂νw + (κ2 −

∑
κ2

i )w
)
VWdS,
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using Lemma 2.1.7. Now we substitute these in (2.44) to obtain

d2J(Γ;V,W ) =

∫

Γ

HppdS

∫

Γ

(∂νw + wκ)V dS

∫

Γ

(∂νw + wκ)WdS

+

∫

Γ

HpdS

∫

Γ

w∇ΓV · ∇ΓWdS

+

∫

Γ

HpdS

∫

Γ

(
∂ννw + 2κ∂νw + (κ2 −

∑
κ2

i )w
)
VWdS

+

∫

Γ

(∂νHp +Hpκ)WdS

∫

Γ

(∂νw + wκ)V dS

+

∫

Γ

(∂νHp +Hpκ)V dS

∫

Γ

(∂νw + wκ)WdS

+

∫

Γ

(
H∇ΓV · ∇ΓW +

(
∂ννH + 2κ∂νH + (κ2 −

∑
κ2

i )H
)
VW

)
dS.

Reorganizing the various terms yields the result.

2.2.3 Shape Energies with PDEs

In this section we consider the Chan-Vese approach to the Mumford-Shah

model [20] for a given image intensity function I ∈ L2(D):

J(Γ) =
2∑

i=1

1

2

∫

Ωi

(
(ui − I)2 + µ|∇ui|2

)
dx+ γ

∫

Γ

dS (2.45)

such that 



−µ∆ui + ui = I in Ωi

∂νi
ui = 0 on ∂Ωi,

(2.46)

where Ω1 = Ω ⊂ R2 is the domain inside the curve Γ and Ω2 = D−Ω is the domain

outside Γ. Hintermüller and Ring compute the first and second shape derivatives

in [36]. We recall them below. We also review the derivation of the first shape

derivative for the sake of completeness.
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Theorem 2.2.10. The first shape derivative of the Mumford-Shah energy (2.45) is

given by

dJ(Γ;V ) =

∫

Γ

(1

2

[[|u− I|2]] +
µ

2

[[|∇Γu|2
]]

+ γκ
)
V dS.

where [[f ]] = f1 − f2 stands for the jump of f across Γ.

Proof. Consider J(Ω) =
∑

i=1,2 Ji(Ωi) + J3(Γ) with

Ji(Ωi) =
1

2

∫

Ωi

(
(ui − I)2 + µ|∇ui|2

)
dx, J3(Γ) = γ

∫

Γ

dS.

First shape derivative of J2 follows from Lemma 2.1.2

J3(Γ;V ) = γ

∫

Γ

κV dS.

Since in our convention Ω1 = Ω and Ω2 = D−Ω, we have V1 = V , V2 = −V . Then to

calculate dJi(Ωi;Vi), we use Theorem 2.1.1 and we let φi(x,Ωi) = 1
2
(ui−I)2+ ν

2
|∇ui|2

so that

φ′(Ωi;Vi) = (ui − I)u′i + µ∇ui · ∇u′i,

where u′i = u′i(Ωi;Vi). So from Theorem 2.1.1 it follows that

dJ1(Ωi;Vi) =

∫

Ωi

((ui − I)u′i + µ∇ui · ∇u′i) dx+
1

2

∫

Γ

(
(ui − I)2 + µ|∇ui|2

)
V dS.

Also note ∇ui = ∇Γui since ∂νi
ui = 0 on Γ. So collecting all terms we have

dJ(Γ;V ) =
2∑

i=1

∫

Ωi

((ui − I)u′i + µ∇ui · ∇u′i) dx (2.47)

+
1

2

∫

Γ

([[
(u− I)2

]]
+ µ

[[|∇u|2]])V dS + γ

∫

Γ

κV dS.

Now let us investigate u′i(Ωi;Vi). Consider the weak form of (2.46)

∫

Ωi

(µ∇ui · ∇φ+ uiφ)dx =

∫

Ωi

Iφdx (2.48)
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for all φ ∈ H1(Ωi) and take the shape derivative (assuming φ is shape-independent)

∫

Ωi

(µ∇u′i · ∇φ+ u′iφ)dx+

∫

Γ

(µ∇ui∇φ+ uiφ)VidS =

∫

Γ

IφVidx.

One can argue that this equation has a unique solution u′i ∈ H1(Ωi) and we use it as

a test function in (2.48). In this way we see that the first integral in (2.47) vanishes,

which leaves us with the sought result.

Then the explicit form of the shape gradient is

G =
1

2

[[|u− I|2]] +
µ

2

[[|∇Γu|2
]]

+ γκ,

and has the form (1.13) with g = γ and f = 1
2

[[|u− I|2]] + µ
2

[[|∇Γu|2]].

Theorem 2.2.11. The second shape derivative of the Mumford-Shah energy (2.45)

is given by

d2J(Γ;V,W ) = γ

∫

Γ

∇ΓV · ∇ΓWdS

+
µ

2

∫

Γ

(
κ

[[|∇u|2]] + ∂ν

[[|∇u|2]])VWdS

+
1

2

∫

Γ

(
κ

[[|u− I|2]] + ∂ν

[[|u− I|2]])VWdS

+

∫

Γ

([[(u− I)u′W ]] + µ [[∇u · ∇u′W ]])V dS,

where u′i,W = u′i(Ωi;W ), the shape derivative of ui in Ωi with respect to the velocity

field W , satisfies





−µ∆u′i,W + u′i,W = 0 in Ωi

∂u′i,W
∂ν

= divΓ(W∇Γui) + 1
µ
(I − ui)W on ∂Ωi.
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Chapter 3

Discrete Gradient Flows

Now we start describing a discrete strategy to address the shape optimization

models that we presented in §1. Our goal is to build a sequence of shapes {Ωn}n>0

such that J(Ωn+1) 6 J(Ωn). First we will elaborate on the choice of gradient descent

directions available for energy minimization. This choice along with some geometric

relationships will result in system of PDEs. Then we will introduce the appropriate

time discretization for this system. At this point we should remark that the shape

optimization problem is inherently discrete in time. Unlike the approximation of

geometric flows, we do not consider the behavior as the time step goes to zero,

because this would serve against our goal of reaching the optimal shape with as

few iterations as possible. Then having the time discretization and an appropriate

time step selection strategy, we will describe a space discretization using the finite

element method. We will also comment on the resulting linear system and the

solution strategy.

3.1 Choosing the Descent Direction

Let us recall that for a given shape functional J(Ω), the shape derivative would

be of the form

dJ(Ω;V ) =

∫

Γ

GV dS, (3.1)
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where we prefer to write the shape gradient G as

G = g(Ω)κ+ f(Ω). (3.2)

In order to do the minimization, the usual choice in the image processing community

is the so-called gradient descent direction

V = −g(Ω)κ− f(Ω). (3.3)

It is easy to show that this choice gives dJ(Ω;V ) 6 0. However this descent direction

is not the only possible choice. If we take a Hilbert space B(Γ) of scalar functions

defined on Γ and the associated scalar product b(·, ·), we can solve the following

equation to obtain other descent directions

b(V,W ) = −dJ(Γ;W ), ∀W ∈ B(Γ). (3.4)

If B is an (elliptic) operator such that 〈BV,W 〉 = b(V,W ), this is equivalent to

solving the following elliptic PDE on Γ

BV = −g(Ω)κ− f(Ω). (3.5)

Again one can show that the velocity V computed this way satisfies

dJ(Γ;V ) = −b(V, V ) = −‖V ‖2B(Γ) 6 0, (3.6)

where ‖ · ‖2B(Γ) is the norm induced by b(·, ·).

A straight-forward choice for b(·, ·) is the L2(Γ) scalar product. This gives

〈V,W 〉 = −
∫

Γ

GWdS, ∀W ∈ B(Γ). (3.7)
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Note the usual choice (3.3) in image processing corresponds to the strong form

of the L2 gradient flow. A possible drawback with this choice is related to the

well-posedness of the descent direction (3.3), because (3.3) is a backward-forward

parabolic-type equation, depending on the sign of the function g(Ω). It is locally

backward (ill-posed) in regions where g < 0 and forward otherwise.

This brings us to a second possibility; we can choose b(·, ·) to coincide with a

weighted H1(Γ) scalar product. Then we solve

〈α∇ΓV,∇ΓW 〉+ 〈βV,W 〉 = −
∫

Γ

GWdS, ∀W ∈ B(Γ), (3.8)

where α = α(x,Ω), β = β(x,Ω) are some positive functions. This equation in the

strong form would be

−divΓ(α∇ΓV ) + βV = −g(Ω)κ− f(Ω). (3.9)

One benefit of this scalar product is that we can use this to stabilize an ill-posed

L2 gradient flow with a suitable choice of α and β. Moreover we observe that the

bilinear forms given by the second shape derivatives are often in the form of weighted

H1 inner products or can be adjusted to be in this form. These result in inexact

Newton-type optimization methods.

A third possibility is to choose b(·, ·) to coincide with the H−1(Γ) scalar prod-

uct. If we choose g(Ω) = γ = const for simplicity, the corresponding velocity

equation in the strong form would be

V = −γ∆Γκ+ ∆Γf. (3.10)

The geometric law V = ∆Γκ is called surface diffusion. This is pursued in detail
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in [11] and [28]. By integrating this over Γ, it is easy to see that this flow has the

volume preserving property. However the advantage of this choice for the image

segmentation models is not obvious. Therefore we will not pursue it. See [15] for

the possibility of using other scalar products.

Given a surface Γ, (3.4) by itself is not enough. We need a way to approximate

the mean curvature κ and eventually we need a vector velocity ~V to move the surface.

Recalling some basic differential geometry (as in [28]), we introduce the following

system of differential equations

~κ = −∆Γ
~X (3.11)

κ = ~κ · ~ν (3.12)

BV = −g(Ω)κ− f(Ω) (3.13)

~V = V ~ν. (3.14)

In the equation for ~κ, we use the minus sign to be consistent with the convention

that a circle with outward unit normal ν has positive curvature. Now solving this

system of PDEs, we can compute ~V to evolve the surface. The first identity in (3.11)

has been first used by G. Dziuk [29] to discretize the mean curvature flow.

3.2 Time Discretization

We will now describe the time discretization for the gradient flows. Let us

point out once more that the gradient descent process is inherently discrete in time.

Hence our statements about the time discretization refer to a discretization choice

rather than an approximation in time. The choice is between an explicit and a semi-
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implicit scheme. By explicit and implicit, we mean whether the velocity and the

curvature (also possibly the geometric operators divΓ,∇Γ, 〈·, ·〉Γ) will be computed

on the current surface Γn or the next surface Γn+1. Each has its advantages and

disadvantages and we can choose depending on our application.

3.2.1 The Explicit Case

Given the system of equations (3.11) to compute ~V , one straight-forward

approach is to assume ~X (the current surface) given and to compute as follows:

~κn ← ~Xn, κn ← ~κn, Vn ← (κn, ~Xn), finally ~Vn ← Vn and to update the surface

with ~Xn+1 = ~Xn + τ ~Vn, where τ is the time step. While this is a relatively efficient

way of computing the velocity, it may be prone to stability issues. This is because

the velocity equation (3.5) includes the mean curvature term, also known as the

geometric diffusion term. Note however that using a weighted H1(Γ) scalar product

may have stabilizing effect on the flow. So for practical purposes we propose the

explicit time discretization

~κn = −∆Γn
~Xn (3.15)

κn = ~κn · ~νn (3.16)

BnVn = −g(Ωn)κn − f(Ωn) (3.17)

~Vn = Vn~νn. (3.18)

Then the update for the surface is

~Xn+1 = ~Xn + τn~Vn. (3.19)
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3.2.2 The Semi-Implicit Case

We will now describe the semi-implicit time discretization. We will show that

it has desirable stability properties. We will start with an implicit time discretization

following the ideas of Luckhaus [43] and Almgren et al. [3]. For this, we aim to

compute the velocity and all geometric quantities on Γn+1. As this proves to be an

impractical endeavour, we then opt for a semi-implicit scheme by introducing an

explicit linearization.

An implicit scheme requires us to specify the time step τn before we compute

the velocity. Still whether τn is the best choice or even an energy-decreasing choice

is not obvious a priori. But we show that the sequence of pairs {(τn, Vn+1)}n≥0

computed in this way with the implicit time discretization ensure energy decrease

property of the sequence {Ωn}n≥0. Still for the semi-implicit case we may need to

test several time step candidates to enforce energy decrease.

3.2.2.1 Implicit Time Discretization

We start with the implicit time discretization. Given a variable time step

τn, let the domain Ωn+1 be the solution of the following penalized minimization

problem:

argminΩn+1

(
J(Ωn+1) +

1

2τn
d2(Ωn+1,Ωn)

)
, (3.20)

where the ”distance term” 1
2τn
d2(Ωn+1,Ωn) penalizes the distance between Ωn+1 and

Ωn. In order to specify the distance function d(·, ·), we consider ~Vn+1 := ~V ( ~Xn+1)
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to be the implicit Euler approximation of (2.3):

~Xn+1 = ~Xn + τn~Vn+1; (3.21)

Note that Ωn+1 is described by the set of points ~Xn+1 and that ~Vn+1 is defined in

Γn+1, so (3.21) does not specify ~Vn+1 directly.

Let Vn+1 ∈ B(Γn+1). Then a natural choice

d(Ωn+1,Ωn) = ‖τnVn+1‖B(Γn+1),

converts (3.20) into the following minimization problem for ~Vn+1 = Vn+1~νn+1:

argmin~Vn+1

(
J(Ωn + τn~Vn+1) +

1

2τn
‖τnVn+1‖2B(Γn+1)

)
. (3.22)

The optimality condition reads as follows

dJ(Ωn+1; τn ~W ) +
1

τn
bn+1(τnVn+1, τnW ) = 0, ∀W ∈ B(Γn+1), (3.23)

in terms of the variation ~W = W~νn+1 of ~Vn+1. Such a condition, via Hadamard-

Zolésio Theorem 2.1.2, is equivalent to

〈Gn+1, τnW 〉Γn+1 = − 1

τn
bn+1(τnVn+1, τnW ), ∀W ∈ B(Γn+1).

This yields the following ideal equation for Vn+1

bn+1(Vn+1,W ) = −〈Gn+1,W 〉Γn+1 , ∀W ∈ B(Γn+1), (3.24)

which is implicit in that the domain Ωn+1 is unknown and thus part of the problem.

A crucial consequence of (3.22) important for theory is

J(Ωn+1) = J(Ωn + τn~Vn+1) ≤ J(Ωn + τn~Vn+1) +
τn
2
‖Vn+1‖2B(Γn+1)

≤ J(Ωn), (3.25)
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as results from taking ~Vn+1 = 0 in (3.22). Consequently,

J(Ωk) +
1

2

k∑
i=1

τi−1‖~Vi‖2B(Γi)
≤ J(Ω0), ∀k ≥ 1.

Solving the nonlinear problem (3.24) is unaffordable directly and would require

iteration. The following linearization technique may either replace the implicit solve

or be used as one step in an iterative process.

3.2.2.2 Explicit Linearization

The key idea is to replace in (3.24) the new surface Γn+1, which is unknown,

by the current one Γn. This gives rise to the following elliptic PDE on Γn: find

Vn+1 ∈ B(Γn) such that

bn(Vn+1,W ) = −〈Gn,W 〉Γn , ∀W ∈ B(Γn). (3.26)

Then Γn+1 results from the explicit update ~Xn+1 = ~Xn + τ ~Vn+1, but the energy

decrease property (3.25) is no longer valid. Nevertheless, (3.26) still provides a

weaker energy decrease property that follows from (3.6). Hence it is possible to

obtain energy decrease by choosing the time step small enough.

3.2.2.3 Semi-Implicit Time Discretization

To derive an effective algorithm, we still need to address one critical issue:

Computing geometric quantities such as curvature and normal ve-

locity implicitly, but most of the geometry explicitly, thereby reach-

ing a compromise between the schemes of §§3.2.2.1 and 3.2.2.2;

(3.27)
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To deal with (3.27) we let Bn denote the linear operator defined by the scalar product

bn(·, ·) on Γn, namely,

〈BnV,W 〉 = bn(V,W ) ∀V,W ∈ B(Γn).

Recalling the special form (3.2) of G, we thus propose the following semi-implicit

computation of Vn+1 and κn+1:

BnVn+1 + g(Ωn)κn+1 = −f(Ωn). (3.28)

For consistency with (3.28) we enforce the geometric relationships semi-implicitly

−∆Γn
~Xn+1 = ~κn+1, κn+1 = ~κn+1 · ~νn, ~Vn+1 = Vn+1~νn.

To close the system we must relate position ~Xn+1 of Γn+1 and velocity ~Vn+1. We

impose

~Xn+1 = ~Xn + τn~Vn+1, (3.29)

whence we get the semi-implicit scheme: find (~κn+1, κn+1, Vn+1, ~Vn+1) such that

~κn+1 + τn∆Γn
~Vn+1 = −∆Γn

~Xn (3.30)

κn+1 − ~κn+1 · ~νn = 0 (3.31)

BnVn+1 + g(Ωn)κn+1 = −f(Ωn) (3.32)

~Vn+1 − Vn+1~νn = 0. (3.33)

3.2.3 Choosing the Time Step

We have said that we update the surface as follows once we have computed

the velocity ~V :

~Xn+1 = ~Xn + τ ~V . (3.34)
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However we have not explained how we choose the value of τ to ensure J(Ωn+1) 6

J(Ωn) or better. On the other hand, since we have dJ(Ωn; ~V ) 6 0, then

J(Ωn+1) 6 J(Ωn) + τdJ(Ωn; ~V ) + o(τ) 6 J(Ωn) (3.35)

for small enough τ . Hence one time step selection strategy would be to use very small

time steps. Obviously this would result in too many computations. In any case,

how small the time step should be is not always easy to figure out. In particular,

a time step that seems very small at the beginning of the optimization may turn

out to be too big close to the optimum. For these reasons, we describe two classic

time step selection schemes from nonlinear optimization. They both satisfy one

crucial property: they guarantee energy decrease at each step and result in global

convergence.

3.2.3.1 Backtracking

The idea of backtracking is very simple. We take the current time step and

check how it changes the energy. If it increases the energy, we bisect the time step

and check again. We do this until we find a time step that decreases the energy.

Note that this strategy results in a sequence of pairs {(τn,Ωn)} such that not only

J(Ωn), but also τn always decreases. It may be desirable to allow the time step to

increase too. In this case we start checking with twice the current time step. See

Algorithm 1.
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Algorithm 1 : Backtracking

compute Jn = J(Γn)
let τ = τn or 2τn
iter = 0
repeat
iter = iter + 1
Γ̃n+1 = Γn + τ ~V
compute J̃n+1 = J(Ω̃n+1)
if J̃n+1 > Jn then
τ = τ/2

recompute ~V if ~V depends on τ
end if

until J̃n+1 < Jn or iter > maxiter

3.2.3.2 Line Search

Another classic approach to ensure energy decrease at each iteration is to

perform a line search over possible time steps. The method we describe is based on

the Armijo-Goldstein rule (see [50]). The method, in essence, tries to balance the

expected decrease in energy, ∆exp, with the effective decrease in energy, ∆eff , where

∆exp = τdJ(Ωn;V ), ∆eff = J(Ωn+1)− J(Ωn). (3.36)

For this, at each iteration we try to choose a time step, τ , such that

α∆exp 6 ∆eff 6 β∆exp (3.37)

is satisfied, with 0 < α < β < 1. We give the details of the method in Algorithm 2.

3.3 Finite Element Discretization

We now discuss the finite element discretization of (3.15)-(3.18) and (3.30)-

(3.33). Let T = Tn be a shape-regular but possibly graded mesh of triangular finite
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Algorithm 2 : Line search

choose 0 < α < β < 1 and 0 < ε¿ 1
2

iter = 0
a = τmin, b = τmax

repeat
r = b− a
choose τ̃ ∈ (a+ εr, b− εr)
Γ̃n+1 = Γn + τ ~V
compute J̃n+1 = J(Ω̃n+1)
let ∆eff = J̃n+1 − J(Ωn)
let ∆exp = τ̃ dJ(Ωn;V )
if ∆eff > ∆exp then
b = τ̃

else if ∆eff < ∆exp then
a = τ̃

else
τ = τ̃

end if
iter = iter + 1

until α∆exp 6 ∆eff 6 β∆exp or iter > maxiter

elements over the surface Γ = Γn, which, from now on, is assumed to be polyhedral.

To simplify the notations we hereafter drop the subscripts n and n+ 1. Let T ∈ T

be a typical triangle and let ~νT = (νi
T )d

i=1 be the unit normal to T pointing outwards.

We denote by ~ν the outward unit normal to Γ, which satisfies ~ν|T = ~νT for all T ∈ T ,

and is thus discontinuous across inter-element boundaries. Let {φi}Ii=1 be the set

of canonical basis functions of the finite element space V(Γ) of continuous piecewise

polynomials P k of degree ≤ k over T for k ≥ 1; we also set ~V(Γ) := V(Γ)d. We thus

have a conforming approximation V(Γ) of H1(Γ).

61



3.3.1 The Explicit Case

We multiply equations (3.15)-(3.18) by test functions φ ∈ V(Γ) and ~φ ∈ ~V(Γ)

and integrate by parts those terms involving ∆Γ. We thus arrive at the fully discrete

problem: seek ~V ,~κ ∈ ~V(Γ), V, κ ∈ V(Γ), such that

〈~κ, ~φ〉 = 〈∇Γ
~X,∇Γ

~φ〉 ∀~φ ∈ ~V(Γ), (3.38)

〈κ, φ〉 = 〈~κ · ~ν, φ〉 ∀φ ∈ V(Γ), (3.39)

〈α∇ΓV,∇Γφ〉+ 〈βV, φ〉 = −〈gκ, φ〉 − 〈f, φ〉 ∀φ ∈ V(Γ), (3.40)

〈~V , ~φ〉 = 〈V, ~φ · ~ν〉 ∀~φ ∈ ~V(Γ). (3.41)

3.3.2 The Semi-Implicit Case

We multiply equations (3.30)-(3.33) by test functions φ ∈ V(Γ) and ~φ ∈ ~V(Γ)

and again integrate by parts. We obtain the fully discrete problem: seek ~V ,~κ ∈

~V(Γ), V, κ ∈ V(Γ), such that

〈~κ, ~φ〉 − τ〈∇Γ
~V ,∇Γ

~φ〉 = 〈∇Γ
~X,∇Γ

~φ〉 ∀~φ ∈ ~V(Γ), (3.42)

〈κ, φ〉 − 〈~κ · ~ν, φ〉 = 0 ∀φ ∈ V(Γ), (3.43)

〈α∇ΓV,∇Γφ〉+ 〈βV, φ〉+ 〈gκ, φ〉 = −〈f, φ〉 ∀φ ∈ V(Γ), (3.44)

〈~V , ~φ〉 − 〈V, ~φ · ~ν〉 = 0 ∀~φ ∈ ~V(Γ). (3.45)

3.4 Solvability and Stability

We will now show the well-posedness of the linear systems resulting from the

finite element discretization. We will also provide some stability results. Let us first
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give the following lemma, which will be useful to prove the results.

Lemma 3.4.1 (Area inequality [10]). Let d = 2, 3 and Γ, Γ̃ be d−1–dimensional,

closed, regular C0,1–manifolds embedded in Rd. Moreover let ~Y : Γ→ Γ̃ be a home-

omorphism with D~Y , (D~Y )−1 ∈ L∞. Then, if ~X denotes the position vector of the

integration variable, the following inequality holds:

〈∇Γ
~Y ,∇Γ(~Y − ~X)〉 > |~Y (Γ)| − |Γ|.

The proof of the above lemma is rather technical and can be found in [10].

3.4.1 The Explicit Case

Theorem 3.4.1. The system of equations (3.38)-(3.41) corresponding to the finite

element discretization of the explicit case has a unique solution.

Proof. We consider (3.38)-(3.41) with the right hand side equal to zero

〈~κ, ~φ〉 = 0 ∀~φ ∈ ~V(Γ), (3.46)

〈κ, φ〉 = 0 ∀φ ∈ V(Γ), (3.47)

〈α∇ΓV,∇Γφ〉+ 〈βV, φ〉 = 0 ∀φ ∈ V(Γ), (3.48)

〈~V , ~φ〉 = 0 ∀~φ ∈ ~V(Γ). (3.49)

It suffices to show that the solution is 0. Testing (3.46) with ~φ = ~κ gives ‖~κ‖ = 0.

Testing (3.47) with φ = κ gives ‖κ‖ = 0.

Testing (3.48) with φ = V gives 0 6 minΓ(α, β)‖V ‖H1(Γ) 6 〈α∇ΓV,∇ΓV 〉 +

〈βV, V 〉 = 0.
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Testing (3.49) with ~φ = ~V gives ‖~V ‖ = 0.

3.4.2 The Semi-Implicit Case

We prove that the semi-implicit scheme is unconditionally stable for the L2

flow, provided that g > mg > 0.

Theorem 3.4.2 (Unconditional Stability for L2 flow). Let α= 0, β = 1, g >

mg>0. Let (V n, κn, ~V n, ~κn)N
n=1 be the solution of the fully discrete equations (3.42)–

(3.45) and let Γn be the corresponding embedded surfaces. Then for all 1 ≤ m ≤ N

we have

|Γm|+ 1

2
mg

m−1∑
n=0

τn‖κn+1‖2L2(Γn) ≤ |Γ0|+ 1

2mg

m−1∑
n=0

τn‖fn‖2L2(Γn) (3.50)

Proof. We start by testing (3.44) with φ = κn+1, thereby obtaining

〈V n+1, κn+1〉+ 〈gnκn+1, κn+1〉 = −〈fn, κn+1〉

Combining (3.45) with ~φ = ~κn+1 and (3.43) with φ = V n+1, we easily arrive at

〈~V n+1, ~κn+1〉 = 〈V n+1, ~κn+1 · ~ν〉 = 〈κn+1, V n+1〉,

whence

〈~V n+1, ~κn+1〉+ 〈gnκn+1, κn+1〉 = −〈fn, κn+1〉. (3.51)

On the other hand, testing (3.42) with ~φ = τn~V
n+1 and observing that, according

to (3.29), τn~V
n+1 = ~Xn+1 − ~Xn yields

τn〈~V n+1, ~κn+1〉 − 〈∇Γ
~Xn+1,∇Γ( ~Xn+1 − ~Xn)〉 = 0. (3.52)
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Multiplying (3.51) by τn and substituting into (3.52) we infer that

〈∇Γ
~Xn+1,∇Γ( ~Xn+1 − ~Xn)〉+ τn〈gnκn+1, κn+1〉 = −〈fn, κn+1〉.

Since we have g > mg > 0, we can write

〈∇Γ
~Xn+1,∇Γ( ~Xn+1 − ~Xn)〉+ τnmg‖κn+1‖2 6 −τn〈fn, κn+1〉.

Applying the inequality ab 6 εa2 + 1
4ε
b2 with ε = mg

2
, a = κn+1, b = −fn

〈∇Γ
~Xn+1,∇Γ( ~Xn+1 − ~Xn)〉+ τnmg‖κn+1‖2 6 τn

mg

2
‖κn+1‖2 +

τn
2mg

‖fn‖2

whence, using Lemma 3.4.1,

|Γn+1| − |Γn|+ τn
mg

2
‖κn+1‖2 6 τn

2mg

‖fn‖2.

Summing up over n, from 0 to m− 1, yields the asserted result.

3.5 Matrix Formulation

We turn our attention to an equivalent matrix formulation to the fully discrete

problem. Given the matrix entries

Mgi,j := 〈gφi, φj〉, Mβi,j := 〈βφi, φj〉, Mi,j := 〈φi, φj〉, ~Mi,j := Mi,j
~Id,

~Ni,j := (Nk
i,j)

d
k=1 := 〈φi, φjν

k〉dk=1,

Ai,j := 〈∇Γφi,∇Γφj〉, Aαi,j := 〈α∇Γφi,∇Γφj〉, ~Ai,j := Ai,j
~Id,

with ~Id ∈ Rd×d being the identity matrix and (~ek)d
k=1 the canonical basis of Rd, the

mass and stiffness matrices are

Mg := (Mgi,j)
I
i,j=1, Mβ := (Mβi,j)

I
i,j=1, M := (Mi,j)

I
i,j=1, ~M := ( ~Mi,j)

I
i,j=1,

~N := ( ~Ni,j)
I
i,j=1,

Aα := (Aαi,j)
I
i,j=1, A := (Ai,j)

I
i,j=1,

~A := ( ~Ai,j)
I
i,j=1.
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We point out that ~M, ~A and ~N possess matrix-valued entries and therefore the

matrix-vector product is understood in the following sense

~M ~V =
( I∑

j=1

~Mi,j
~Vj

)I

i=1
,

each component ~Vi of ~V, as well as each of ~M ~V, is itself a vector in Rd.

We use the convention that a vector of nodal values of a finite element function is

written in bold face: V = (Vi)
I
i=1 ∈ RI is equivalent to V =

∑I
i=1 Viφi ∈ V(Γ).

3.5.1 The Explicit Case

We are now in a position to write the matrix formulation of (3.38)-(3.41).

Upon expanding the unknown scalar functions V,K ∈ V(Γ) and vector functions

~V , ~K ∈ ~V in terms of the basis functions and setting φ = φi and ~φk = φ~ek, we easily

arrive at the linear system of equations

~M ~K = ~A~X

MK = ~NT ~K

(Aα +Mβ)V = −MgK−f

~M ~V = ~NV.

(3.53)

3.5.2 The Semi-Implicit Case

Now we write the matrix formulation of (3.42)-(3.45). Upon expanding the

unknown scalar functions V,K ∈ V(Γ) and vector functions ~V , ~K ∈ ~V in terms of

the basis functions and setting φ = φi and ~φk = φ~ek, we have the following linear
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system of equations

−τ ~A~V + ~M ~K = ~A~X

MK− ~NT ~K = 0

(Aα +Mβ)V +MgK = −f

~M ~V − ~NV = ~0.

(3.54)

3.6 Solving the Linear System

3.6.1 The Explicit Case

Given the explicit system (3.53), we can solve for the velocity ~V as follows

~K = ~M−1 ~A~X

K = M−1 ~NT ~K

V = (Aα +Mβ)−1(−MgK−f)

~V = ~M−1 ~NV.

(3.55)

If (Aα+Mβ) is well-conditioned, this system of equations can be solved in a straight-

forward manner. In particular, for curves in 2D, the matrices can be organized in

tridiagonal form. Then the time complexity for the whole solution will be linear in

the number of elements.
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3.6.2 The Semi-Implicit Case

The solution of the semi-implicit system (3.54) is a bit more involved compared

to the explicit system. Let us rewrite the system in the following way



~M 0 0 − ~N

0 M − ~NT 0

−τ ~A 0 ~M 0

0 Mg 0 Aα +Mβ







~V

K

~K

V




=




0

0

~A~X

−f




, (3.56)

or equivalently, with obvious notation and X1 = (~V,K)T ,X2 = (~K,V)T ,



Z N

C Ã







X1

X2


 =




0

h


 . (3.57)

Invoking the equalities

X1 = −Z−1NX2 (3.58)

(−CZ−1N + Ã)X2 = h, (3.59)

we see that (3.59) is equivalent to



~M −τ ~A ~M−1 ~N

MgM
−1 ~NT Aα +Mβ







~K

V


 =




~A~X

−f


 . (3.60)

Finally we write the Schur complement as follows

(τMgM
−1 ~NT ~M−1 ~A ~M−1 ~N + Aα +Mβ)V = −f −MgM

−1 ~NT ~M−1 ~A~X. (3.61)

Hence we obtain the velocity by solving this system at each time step. Note that if

we multiply (3.61) with MM−1
g , we obtain

(
τ ~NT ~M−1 ~A ~M−1 ~N +MM−1

g (Aα +Mβ)
)

V = −MM−1
g f − ~NT ~M−1 ~A~X. (3.62)
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For the L2 inner product, we have α = 0 and β = 1, thus

(
τ ~NT ~M−1 ~A ~M−1 ~N +MM−1

g M
)

V = −MM−1
g f − ~NT ~M−1 ~A~X, (3.63)

so that the coefficient matrix of the linear system is symmetric. This is also the case

if we have g = 1, then

(
τ ~NT ~M−1 ~A ~M−1 ~N + Aα +Mβ

)
V = −f − ~NT ~M−1 ~A~X. (3.64)

In these cases, since the linear system is symmetric, we can solve them efficiently

using the Conjugate Gradient method. On the other hand (3.61) is a nonsymmetric

system and we would use GMRES to solve it.
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Chapter 4

Computational Enhancements

When we evolve a surface using a Lagrangian approach, maintaining an accu-

rate representation of the geometry becomes an important issue. We may start with

a surface of good quality. But the evolution computed, say, for shape optimization

may be rough and may deteriorate the mesh representing the surface. We may lose

resolution in some regions and the surface elements may cluster in other regions.

Even more dramatic effects are possible: nodes of the mesh may become entangled

with each other or topological changes may take place, such as merging and splitting

of components.

In this chapter, we will describe procedures that will help us address these

issues. We will start with some simple procedures and safeguards to maintain the

quality of the mesh through the evolution. Then we will describe space adaptivity

procedures that automatically adjust the resolution of the mesh to capture the

geometry and the data. This will balance accuracy and computational cost. Finally

we will give a detailed description of a method to perform topological changes for

curves in 2d.
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4.1 Maintaining Mesh Quality

In this section we describe three procedures that help us maintain a good

quality mesh through the evolution. These are:

1. Time step control: checks the time step against node entanglements,

2. Mesh smoothing: equidistributes the nodes of the surface,

3. Angle width control: a correction method for triangles becoming too thin.

4.1.1 Time Step Control

In general one should avoid taking too large time steps for surface evolu-

tion. This is true even though the underlying evolution may be unconditionally

stable. Large time steps bring the risks of mesh distortion and mesh entanglement

by neighboring nodes crossing each other. To avoid these risks, we present the time

step control scheme proposed by Bänsch, Morin and Nochetto in [11], also used in

[28]. The main idea of this scheme is not to allow the nodes of an element a relative

tangential displacement greater than the size of the element. For this, we take the

velocities ~Vi, ~Vj at the ith and jth nodes of the element respectively and compute the

relative tangential displacement as

τ
∣∣∣(~Vi − ~Vj) · ~t

∣∣∣

where τ is the time step and ~t is the unit tangent vector from node i to node j. This

quantity should be less than a fraction of h, the local mesh size. Noting that the
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tangential gradient ∇Γ
~V can be approximated by

(~Vi−~Vj)

h
·~t, we obtain the following

check for τ

τ |∇Γ
~V | 6 ετ .

Hence ρ, the maximum time step allowed by time step control can be computed by

ρ =
ετ

max |∇Γ
~V |
.

The time step control procedure is given in Algorithm 3.

Algorithm 3 : Time step control

compute ρ = ετ

max |∇Γ
~V |

if current τ > ρ then
recompute τ , possibly choosing a fraction of ρ

end if
set τ = max(τ, τmin)
set τ = min(τ, τmax)

4.1.2 Mesh Smoothing

Ideally, for our Lagrangian method, we would like to have some kind of space

adaptivity to guide us in adjusting the resolution of the mesh. Still at initial stages

of shape optimization, when we are far away from the optimum, we may opt for

uniform resolution, which may be more practical from a computational point of

view. The evolution may nevertheless tend to cluster the nodes and deteriorate

mesh resolution in certain regions. So we may need some kind of node redistribution

algorithm. For this reason, we describe the mesh smoothing procedure introduced

by Bänsch, Morin and Nochetto in [11], and further used in [28]. The goal of the

method is to equidistribute the nodes of the surface. It has two critical properties:
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1) It is realized in the form of a tangential motion and it does not affect normal

motion, 2) It is volume-preserving. We describe the mesh smoothing procedure in

Algorithm 4. It is executed in the form of Gauss-Seidel updates.

Let us express caution on one aspect of the method. In practice the mesh

smoothing procedure tends to perturb the surface slightly. So it is better to switch

it off when the surface is close to the optimum. Otherwise it may work against us

by continuing to perturb the surface at the optimum. In our experiments we used

mesh smoothing only in conjunction with angle width control, which we describe

next.

Algorithm 4 : Mesh smoothing

for each node z of the mesh do
compute a normal νz to the node z
compute a weighted average ẑ of all vertices of the star centered at z
take a line l passing through ẑ in dir νz

replace z with the point on l keeping the volume unchanged
end for

4.1.3 Angle Width Control

In 3d, the mesh is represented as a triangulated surface and the quality of the

triangles becomes an important factor in the accuracy of the computation. Very

thin triangles with large obtuse angles create difficulties. For this reason we make

use of the angle width control procedure as Bänsch, Morin and Nochetto do in [11],

and also Doǧan et al. in [28]. This consists of a single splitting of elements with

angles wider than a given threshold θmax (120o in our computations). The newest-

vertex bisection rule is used for the splitting. The splittings are followed by nMS
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mesh smoothing sweeps. The pseudo-code is given in Algorithm 5.

Algorithm 5 : Angle width control
repeat

mark elements with angles > θmax

split all marked elements
if elements are split then

perform nMS mesh smoothing sweeps
end if

until no more elements are marked

4.2 Space Adaptivity

In this section we describe space adaptivity procedures that will help us tune

the resolution of the mesh with respect to the geometry and the data. The goal is

to balance accuracy and computational cost by refining where resolution is needed

and keeping a coarse mesh where fine resolution is not needed. For this, we give

three procedures, Algorithms 6, 7 and 8.

Sometimes we need to use more than one of these in conjunction. This hap-

pens, for example, in the case of the minimal surface model, where we use both

Algorithms 6 and 7. In such cases, the rule is to refine the mesh if any one of the

three algorithms signals refine and to coarsen if all of them signal coarsen.

4.2.1 Geometry-driven Adaptivity

The main idea of space adaptivity introduced by Bänsch, Morin and Nochetto

in [11] and further used in [28] is to have more nodes where the surface varies more

geometrically and to have fewer nodes where the surface varies less. For a surface,
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a local measure of variation is the magnitude of the second fundamental form given

by |∇Γν|. We can estimate this quantity as follows

|∇Γν| = |ν1 − ν2|
hS

≈ θS

hS

,

where ν1, ν2 are the normals of two adjacent elements T1, T2 ∈ T sharing a side (node

in 2d) S, and θS is the angle between ν1 and ν2. Recall that the pointwise accuracy

of the mesh is proportional to h2
S|∇Γν|. Requiring h2

S|∇Γν| 6 εgeom translates to

the following condition

hSθS 6 εgeom.

We can then define the geometric variation measure for element T as

ηG
T =

∑
S⊂T

hSθS.

Introducing refinement and coarsening parameters γG
R , γ

G
C > 0, we obtain Algo-

rithm 6 for geometry-driven space adaptivity.

Algorithm 6 : Geometry-driven adaptivity
repeat

compute ηG
T for all T ∈ T

let ηG
max = maxT∈T ηG

T

if ηG
max > εgeom then

mark elements T with ηG
T > γG

Rη
G
max

bisect marked elements d− 1 times
end if
mark elements T with ηG

T < γG
Cη

G
max

coarsen the marked elements
until mesh is not modified any more
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4.2.2 Data-driven Adaptivity

In general shape optimization problems may interact with user-specified data

in two possible ways:

1. integrating given functions over the boundary or the domain,

2. solving PDEs, whose solution depend on the given functions.

In either case, the accuracy of the computation depends on sufficient resolution of

the data. For this reason, we will introduce some error indicators that will help us

evaluate local mesh resolution.

In the case of integrals, it is natural to consider adaptive integration to ensure

the accuracy of the computation. This is a well-established topic in numerical

analysis and is covered in many standard numerical analysis textbooks (e.g. [7]).

The main idea here is to try to share the specified error tolerance εdata between the

elements proportional to their sizes. Given a uniformly continuous function f over a

domain (or boundary) U such that U =
⋃

T∈T T , we can compute the exact integral

by the following

If (U) =
∑
T∈T

If (T ) =
∑
T∈T

∫

T

f(x).

On the other hand, the approximate integral on T is given by

Ih
f (T ) =

nQ∑
i=1

wif(xi)

where we use quadrature Q with positive weights wi, and xi are the quadrature

points mapped to element T .
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The local resolution criterion is

∣∣If (T )− Ih
f (T )

∣∣ 6 εdata
|T |
|U | .

Since we do not know If (T ), we replace it with another approximation Ĩh
f (T ) that is

evaluated with a higher order quadrature Q̃. So Ĩh
f (T ) gives a better approximation

to If (T ) and we test for

∣∣∣Ĩh
f (T )− Ih

f (T )
∣∣∣ 6 εdata

|T |
|U | .

We refine T if this condition is not satisfied. The pseudo-code for data-driven

adaptivity for integrals is given in Algorithm 7.

Algorithm 7 : Data-driven adaptivity for integrals
repeat

compute ηI
T = |Ĩh

f (T )− Ih
f (T )| for all T ∈ T

let ηI =
∑

T∈T η
I
T

if ηI > εint then
mark elements T with ηI

T >
|T |
|U |εint

bisect marked elements d− 1 times
end if

until mesh is not modified any more

In the case of PDEs, one is inclined to consider a posteriori error estimators to

guide the adaptivity. This may seem appropriate since we deal with elliptic PDEs

for our examples and the results on a posteriori error estimation are well-developed

for elliptic PDEs. However it is questionable whether such an off-the-shelf approach

would be suitable for shape optimization. There are two major issues:

1. It is possible to go through very “bad” domains in the intermediate stages

of the optimization and one may waste unnecessary computational effort by

concentrating on recovery of an accurate solution to the PDE in these domains.
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2. In shape optimization, we always have an approximation to the domain and

no direct clue of the exact domain. In such a case pretending to have the

exact domain may be counter-productive. For example, reentrant corners on

the polygonal approximation may not really exist on the exact domain and we

could be refining in vain.

Another possibility in the PDE case is to have the resolution of the data as

the driving criterion for adaptivity. For this we take the interpolation Πhf of the

given function f in the current finite element space and check the L2 error between

Πhf and f . Then the test criterion is

‖f − Πhf‖L2(U) 6 εdata.

If this is not satisfied, we refine the elements with largest error. Let us introduce

refinement and coarsening parameters γP
R , γ

P
C > 0. Then the pseudo-code for data-

driven adaptivity for PDEs is given in Algorithm 8.

Algorithm 8 : Data-driven adaptivity for PDEs
repeat

compute ηP
T = ‖f − Πhf‖2L2(T ) for all T ∈ T

let ηP =
∑

T∈T η
P
T

let ηP
max = maxT∈T ηP

T

if ηP > εdata then
mark elements T with ηP

T > γP
Rη

P
max

bisect marked elements d− 1 times
end if
mark elements T with ηP

T < γP
Cη

P
max

coarsen the marked elements
until mesh is not modified any more
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4.3 Topological Changes in 2D

In this section we describe a general-purpose procedure to perform topological

changes, such as merging and splitting, for curves in 2d. The method is generic

in the sense that it can be used for any curve evolution that requires automatic

topological changes as long as two changes do not occur at same location at the

same time.

Algorithms for topological changes with curves have been introduced before,

especially within the context of image segmentation (see [26, 40, 45]). Our method

differs from previous work in two points:

1. It utilizes the well-known line sweeping algorithm to guarantee fast detection

in O(n log n) time where n is the number of elements,

2. It incorporates detailed procedures to handle complex scenarios with several

topological changes and possible pathological behavior, such as multiple ele-

ments intersecting each other.

In particular, the latter are not addressed in [26, 40, 45], which makes previous

work more suitable for curves with uniform element size and milder topology change

scenarios.

Our method is based on the assumption that we deal with simple closed ori-

ented curves. In this way, we can assign an inside and an outside to a curve. We

take the convention that the inside of a counterclockwise oriented curve corresponds

to a domain and the normal of the curve points outside. If, for example, we have a

curve inside another counterclockwise oriented curve, it has to be oriented clockwise.
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Then it corresponds to a hole inside the domain represented by the enclosing curve

(see Figure 4.9). This assumption allows us to perform topological changes for very

general evolutions without any ambiguity.

4.3.1 Topology-Specific Data Structures

On the algorithmic level, the curve is represented as a polygon that consists

of directed line segments, such that there is exactly one incoming and one outgoing

line segments or edge for each node. These are the elements. Then we represent all

the curves by a global list of elements. Each element in the list has a start node and

an end node. The elements also contain pointers to previous and next neighbors on

its curve (see Figure 4.1).

nextprev

Element(j−1)
X(j−1), X(j)

Element(j)
X(j), X(j+1)

nextprev nextprev

Element(j+1)
X(j+1),X(j+2). . . . . .

Figure 4.1: Each element stores its start node, end node and pointers to previous
and next elements in the curve.

While the list of elements is the central data structure for the method, at

certain stages of the algorithm we need to compute the information of components,

i.e. the information on individual closed curves. This information consists of the

component’s elements, its signed area, its parent (the enclosing curve if it is inside

one) and its children (the immediate curves it encloses if any). See Figure 4.2

illustrating the component structure.
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Comp

area

parent

first_element

children

Component(i)
Element(k)

prev next

Elem

Elem

Comp Comp

Figure 4.2: The component structure stores the following information of its curve: its
signed area, a pointer to its parent, a pointer to a list of its children and a pointer to
an arbitrary first element on its curve. The pointer to first element allows to access
all elements of its curve via its pointers to prev and next neighbors.
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4.3.2 Topological Changes

The topology algorithm has two phases: detecting the topological events and

performing the corresponding topology surgeries.

Detection of topological events is based on the detection of element intersec-

tions using the well-known line-sweeping algorithm [23] from computational geom-

etry. Given n elements, this algorithm is guaranteed to have O((n + I) log n) time

complexity where I is the number of intersections. We describe this algorithm in

§ 4.3.2.2.

Detection of topological events is followed by the corresponding topology surg-

eries. The topology surgeries consist of a number of steps, where we tune the time

step and the local resolution at the intersections, we reconnect the elements and

delete the phantom components post-reconnection. These operations have linear

time complexity.

4.3.2.1 Possible Topological Events

Although the topological events look the same locally at the element intersec-

tion level, they may correspond to qualitatively different events at the global level.

There are five basic possibilities (see Figure 4.3):

• merging : two different components touch each other and merge to create a

new component,

• inside opening : a curve inside another touches the enclosing curve and they

become one curve with a concavity,
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event type before event detection after event

merging

inside opening

splitting

self-merging

self-crossing

Figure 4.3: We illustrate all basic topological events. The examples show possible
configurations right before the event, at the time of detection and after the event
with the correct topology.

• splitting : the domain enclosed by the curve gets thinner and thinner in a

certain region and develops a pinch-off and the curve splits into two,

• self-merging : a curve touches itself and this results in another curve inside

which basically corresponds to a hole in the domain,

• self-crossing : a part of the curve may cross itself and form a loop, which is an

anomaly rather than a valid topological event and is thus removed.

4.3.2.2 Detection of Topological Events

Element intersections signal topological events. Note that each valid topologi-

cal event results in two intersections while a self-crossing yields only one intersection.
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A naive algorithm for intersection detection could be devised based on pairwise test-

ing of elements. This would result in O(n2) time complexity where n is the number

of elements. This is in a sense optimal as the running time cannot be less if each

element intersects every other element.

On the other hand we can try to exploit the inherent spatial ordering of the

elements in plane and in particular the fact that the number of intersections we

expect is small with respect to n. For this, we consider an imaginary line sweeping

the plane from left to right. This provides some ordering of the elements from

left to right. At one instant of the sweeping, the sweep line intersects some of the

elements and this gives another ordering for these elements from bottom to top (see

Figure 4.4). We can make use of this information to avoid unnecessary intersection

checks by testing only the elements in the vicinity of an element with respect to

these orderings.

The heart of the line-sweeping algorithm is the choice of the instants when we

do the intersection test (after all we cannot really simulate the continuous sweeping

of the line). These instants are called the events, specifically line sweep events. They

are initially given by the end points of the elements ordered from left to right. We

store these events in event queue. As we detect the intersections, we also add them

to the event queue in the right order.

In order to simulate the sweep line, we extract the events from the event queue

one by one. For each right (left) end point event, we update the sweep line status to

include (exclude) the corresponding element and we check for intersections with the

neighbors on sweep line. If there are intersections, we add them to the event queue
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as intersection events. The significance of the intersection events is that when the

sweep line hits an intersection event, the order of the intersecting elements on the

sweep line changes. See Algorithm 9 for a more detailed presentation.

Algorithm 9 : Detect element intersections

add end points of all elements to event queue in order from left to right

while event queue is not empty do

remove next event from event queue

if it is a left end point event then

add the element of the end point to sweep line status
check for intersection of element with its neighbors on sweep line

if there is an intersection then
add the intersection to event queue and intersection list

end if

else if it is a right end point event then

remove the element of the end point from sweep line status
check for intersection of element’s neighbors on sweep line

if there is an intersection then
add the intersection to event queue and intersection list

end if

else {it is an intersection event}
change the order of the intersecting elements in sweep line status
check these elements for intersection with their new neighbors on sweep line

end if

end while

return intersection list

In this algorithm, the event queue and the line sweep status, which keeps

track of the elements intersecting the sweep line, are realized as balanced binary

trees. Hence each operation in the algorithm has at most O(log n) cost resulting in

O(n log n) time complexity (plus O(I log n) to report the intersections). See [23] for

more details on the algorithm and some proofs of correctness. In Figure 4.4, we give

an example illustrating the algorithm.
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time event event queue sweep line status detected
t0 {} {X1, X2, X3, Y1, Y3, Y2} {} {}
t1 {X1} {X2, X3, Y1, Y3, Y2} {(X1, Y1)} {}
t2 {X2} {X3, Y1, Y3, Y2} {(X1, Y1), (X2, Y2)} {}
t2 {X2} {i1, X3, Y1, Y3, Y2} {(X1, Y1), (X2, Y2)} {i1}
t3 {i1} {X3, Y1, Y3, Y2} {(X2, Y2), (X1, Y1)} {i1}
t4 {X3} {Y1, Y3, Y1} {(X3, Y3), (X2, Y2), (X1, Y1)} {i1}
t4 {X3} {Y1, i2, Y3, Y2} {(X3, Y3), (X2, Y2), (X1, Y1)} {i1, i2}
t5 {Y1} {i2, Y3, Y2} {(X3, Y3), (X2, Y2)} {i1, i2}
t6 {i2} {Y3, Y2} {(X2, Y2), (X3, Y3)} {i1, i2}
t7 {Y3} {Y2} {(X2, Y2)} {i1, i2}
t8 {Y2} {} {} {i1, i2}
t9 {} {} {} {i1, i2}

Figure 4.4: We illustrate the intersection detection algorithm on a simple example.
The events including the intersections take place at instants ti, i = 1, . . . , 8. We
initialize the event queue with all end points. Then we extract each event from
event queue and process it according to Algorithm 9. We update the sweep line
status at each event. When we detect intersections, we add them to event queue
and the list of detected.
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4.3.2.3 Topology Surgery

Once we have detected element intersections, we should decide how to proceed

with the topology surgery, that is the correction of the curve for the new topology.

The topology surgery consists of the following steps:

1. take the curve back to the previous iteration,

2. adjust the time step for surgery,

3. move the curve forward with adjusted time step,

4. refine intersections before surgery,

5. reconnect intersecting elements,

6. compute component information,

7. remove phantom components.

Now let’s take a closer look at some of these steps.

Adjusting time step for surgery

Given a set of pending topological events, we may want to resolve them at

different levels. For example, for a physical simulation, we may want to realize

one topological event at a time. Then we make use of the fact that a single valid

topological event is signalled by two intersections and we try to reduce the time step

to capture this.

87



event type detection reconnection correction

merging

inside opening

splitting

self-merging

self-crossing

Figure 4.5: We illustrate the three main stages of topology surgery at the continuous
and discrete levels. These are 1)detection of intersections, 2)reconnection of the
intersecting elements, 3)correction by deletion of phantom components.
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We may also want to have a better resolution of an individual topological

event, in particular, we may want to capture the moment of touching. In this case

we try to reduce the time step to capture the time when only one node of each curve

has passed through the other, in other words, the intersections take place only at

neighboring elements for each curve. Still we should point out that it is not always

possible to catch or resolve a single first event. In that case we process the first

events that we obtain at the reduced time step.

On the other hand, for a shape optimization application like image segmenta-

tion, we may simply want to do the surgery for all pending events simultaneously.

Hence we do not adjust the time step and we take it as it is. We refer to Algo-

rithm 10 for more details and Figure 4.6 for an illustration of all these cases.

before intersection no adjust catch event resolve event

Figure 4.6: We illustrate different time step adjustment strategies with this example.
A large time step results in simultaneous collision of the three smaller curves with
the large curve. If we choose to do no adjustment, we do not change the time step.
If we choose to catch the first topological event, we reduce the time step to have
only two element intersections. If we choose to resolve the first event, we reduce the
time step to have only two intersections at neighboring locations.

Refining intersections before surgery

In order to do the reconnections correctly, some elements need to be refined.

This also helps to increase the quality of reconnections for robustness. The refine-
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Algorithm 10 : Adjust timestep for surgery

if timestep adjustment = NONE then
return intersection list and timestep unchanged

end if

k = 0
a = min timestep
b = timestep
while k < max iteration do

timestep = a+ (b− a)/2
compute new location of curve with timestep and current velocity
intersection list = the intersections on new location

if size of intersection list > 2 then
b = timestep

else if size of intersection list = 0 then
a = timestep

else if size of intersection list = 1 then
{it is a self-crossing}
exit while loop

else {we have size of intersection list = 2}
get the two intersections from intersection list

if timestep adjustment = RESOLVE FIRST EVENT and intersections do
not take place at neighboring elements then

b = timestep
else {either timestep adjustment = CATCH FIRST EVENT or intersec-
tions take place at neighboring elements}

exit while loop
end if

end if

k = k + 1

end while

return intersection list and timestep
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ment has two phases:

• Refine the elements with multiple intersections, so that we have a list of disjoint

intersections, i.e. no element is intersected more than once (see Figure 4.7 for

an illustration),

• Take each intersection and bring the elements of intersections to compara-

ble size. We do this to avoid cases where we may have a very long element

intersected by a very short element (see Figure 4.7).

Figure 4.7: We illustrate two phases of intersection refinement with this example.
Initially we cannot reconnect elements because one element is intersected by two
elements. So we refine the larger element. In the second phase we refine the in-
tersecting elements until they are of comparable size. The dotted lines in the last
figure show the result of the reconnection without executing the second phase.

It is also possible to enforce a topology resolution scale at the second phase by

refining the elements down to a prescribed size. See Algorithm 11 for the pseudo-

code.

Reconnecting intersecting elements
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Algorithm 11 : Refine intersections before surgery

compute count of intersections for each element in intersection list

while there are elements with count > 1 do
refine these elements
compute the intersections of the new elements
recompute count of intersections for new elements

end while

for all intersections in intersection list do

if both elements of the intersection are not of comparable size then
refine the larger until it compares to the smaller
update the intersection

end if

if a topology resolution scale is imposed then
refine both elements of the intersection to resolution scale
update the intersection

end if

end for

Given two directed line segments that are intersecting, reconnection simply

consists of interchanging their destination nodes. Hence upon reconnection, the end

point of the first line segment becomes the end point of the second element and vice

versa (see Figure 4.8).

Figure 4.8: This figure shows how the intersecting elements are reconnected. The
destination node of one element becomes the destination node of the other.

Computing component information

In order to finalize the topology surgery correctly, we need to compute certain

information about the components in the domain. These are the signed area of
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each component, the constituent elements of each component and the component

hierarchy, that is the parent and children of each component. Signed area encodes

both area and orientation information of the curve. See Figure 4.9 for an example

of component hierarchy encoding a given layout of curves.

Note that we can compute the area of a domain Ω enclosed by a polygonal

curve Γ from the contributions of individual elements Ti as follows:

Area =

∫

Ω

dx =
1

2

∫

Ω

divxdx =
1

2

∫

Γ

x · νdS =
1

2

∑
i

∫

Ti

x · νdS. (4.1)

We can make use of this identity, along with the element connectivity information,

to compute the components as in Algorithm 12. Then given the component list, we

can compute the component hierarchy with Algorithm 13.

Algorithm 12 : Compute components

add all the elements to an element list

while element list is not empty do

remove first element from element list
create a new component and assign first element to component
add area contribution of first element to component
add component to component list
current element⇐ next neighbor of first element

repeat
add area contribution of current element to component
remove current element from element list
current element⇐ next neighbor of current element

until current element = first element

end while

return component list

Algorithm 13 has O(kn) time complexity where k is the number of components

and n is the number of elements. It is possible to reduce the factor k further with

a line sweeping strategy. Another strategy would be to compute the component

93



Algorithm 13 : Compute component hierarchy

sort component list with respect to decreasing area

for each component taken from component list in order do

find the next smallest component enclosing current component
if there is such a component then

call it parent and update current component’s parent information
add current component to parent’s children list

else
add current component to outermost components list

end if

end for

children

Comp(1)

parent

children

Comp(1)

parent

children

Comp(2)

parent

children

Comp(3)

parent C1
children

Comp(4)

parent C2
children

Comp(5)

parent C2

children

Comp(6)

parent C5

Component
List

Outermost

C1

C 3

C2

C4
C5

C6

Figure 4.9: Example of some curves with the corresponding component hierarchy

hierarchy at the beginning and to update it as topological events take place.

Removing phantom components
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Reconnecting the intersecting elements creates the new components with the

right topology. But it also creates some extra components that we call phantom

components (see Figure 4.5). These are artifacts of the surgery and need to be

removed. Note that we can identify them easily as their orientation will be incom-

patible with the orientations of the valid components. Accordingly the following

key ideas form the basis of our correction algorithm:

• All the components that are not inside another component should have the

same orientation, which we call outermost orientation.

• A component inside another component should have orientation opposite to

that of the enclosing component. We should point out that the algorithm

yields the right topology as long as simultaneous topological events occur at

separate locations. If they occur at the same location, we may get different

results depending on the discrete realization of the event. An example of this

is given by a curve containing a curve that contains another curve, such that

all these curves touch each other at the same point at the same time. To

handle these correctly, we need to introduce additional assumptions to decide

the correct behavior.

See Algorithms 14, 15, 16 for the pseudocode.
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Algorithm 14 : Remove phantom components

for each component in outermost components list do
if component’s orientation 6= outermost orientation then

remove component and children( component )
else

for each child in component’s children list do
enforce orientation compatibility( child )

end for
end if

end for

Algorithm 15 : enforce orientation compatibility( component )

if component and its parent have the same orientation then
remove component and children( component )

else
for each child in component’s children list do

enforce orientation compatibility( child )
end for

end if

Algorithm 16 : remove component and children( component )

for each child in component’s children list do
remove component and children( child )

end for

remove component from parent’s children list
delete all elements corresponding to component

96



Chapter 5

Numerical Experiments

In this chapter we apply the results of the previous chapters to two major

shape energies used for image segmentation. These are the minimal surface model

(1.6) and the Mumford-Shah model (1.12). For these we implement the discrete

gradient flows of Chapter 3 using the finite element toolbox ALBERTA [60].

For each model we study the L2 flow and a weighted H1 flow. The weighted H1

flow is based on the second shape derivative and therefore corresponds to an inexact

Newton’s method. Note that given the first shape derivative dJ(Ω; ·) and the second

shape derivative d2J(Ω; ·, ·) of J(Ω), we can compute the Newton’s descent direction

by solving

d2J(Ω;V,W ) = −dJ(Ω;W ), ∀W ∈ B(Γ)

if d2J(Ω; ·, ·) is positive definite. B(Γ) is the Hilbert space induced by the scalar

product bN(V,W ) = d2J(Ω;V,W ). Even if d2J(Ω; ·, ·) is not positive definite; it

is often possible to introduce a positive definite bilinear form b(·, ·) by modifying

d2J(Ω; ·, ·). In practice we see that this still preserves in part the favorable conver-

gence properties of the Newton’s method. Following these ideas we introduce the

weighted H1 flows for both (1.6) and (1.12).

We compute the solutions given by these flows for a number of synthetic and

real examples. The favorable stability properties of the H1 flow allows us to use
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the explicit scheme (3.53) for (1.6), whereas we use the implicit scheme (3.54) for

the other experiments. For purposes of comparison, we choose the computational

domain for the synthetic experiments to be [−1, 1]2 in 2d and [−1, 1]3 in 3d. The

range of the image intensity function is [0, 1]. For experiments with real images we

map the shortest side of the image to [−1, 1] and scale the other sides keeping the

overall ratio fixed. We also scale the range of the image to [0, 1] from the usual

values of [0, 255]. The synthetic images are created to represent a sample of critical

features that object boundaries in real images may comprise, such as sharp corners,

cusps and concavities.

5.1 The Minimal Surface Model

In this section we will use the minimal surface energy

J(Γ) = γ0

∫

Γ

H(x)dS + γ

∫

Ω

H(x)dx (5.1)

where the edge indicator function H, given by

H(x) =
1

1 + |∇I(x)|2
λ2

,

is used to locate boundaries of objects in 2d and 3d images. We call the parameter

λ > 0 the edge strength. Recall that the first shape derivative is given by

dJ(Ω;V ) =

∫

Γ

(
(γ0κ+ γ)H(x) + γ0∂νH(x)

)
V dS,

whereas the second shape derivative is given by

d2J(Γ;V,W ) =

∫

Γ

γ0H∇ΓV · ∇ΓWdS

+

∫

Γ

(
γ0∂ννH + (2γ0κ+ γ)∂νH + (γ0κ

2 − γ0

∑
κ2

i + 2γκ)H
)
VWdS.
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Based on this we introduce a weighted H1 scalar product

〈V,W 〉H1 =

∫

Γ

γ0H∇ΓV · ∇ΓWdS

+

∫

Γ

(γ0∂ννH + (2γ0κ+ γ)∂νH + 2γκH)+ VWdS.

where (·) = max(·, ε) and we choose ε = 100 (because using lower values deteri-

orates the conditioning of the matrix Aα + Mβ introduced in §3.5; one can easily

get the intuition for this by examining the coefficient matrix corresponding to the

discretization of the simple differential operator Ly = ay′′ + by where a,b are con-

stants). As this is positive definite, we can set b(V,W ) = 〈V,W 〉H1 and solve the

system (3.4) to obtain an inexact Newton’s descent direction. We will illustrate this

H1 flow and the L2 flow with synthetic and real examples.

There are a few practical issues regarding the implementation. The first is time

step selection, which we handle using the line search procedure described in Algo-

rithm 2. The parameters α, β of line search are set to be 0.25 and 0.75 respectively.

τmin = 10−4, 10−2 and τmax = 10−2, 1 for L2 and H1 flows respectively. Another

important issue is the stopping criterion. There are two possibilities: tracking the

change in energy or tracking the shape derivative. We use the second approach for

most of the experiments. Then the stopping criterion is:

dJ(Ωk;Vk) 6 tolrel · dJ(Ω0;V0) + tol. (5.2)

For almost all the experiments, we chose to set tolrel = 0 and specified suitable tol

values.

Finally, in order to gain efficiency and accuracy simultaneously, we used the

geometry-driven space adaptivity and data-driven space adaptivity procedures de-
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scribed in Algorithms 6 and 7 respectively. The parameters for these were εgeom =

0.02, γG
R = 0.7, γG

C = 0.3, εint = 0.2. The time step control procedure described in

Algorithm 3 was also used with ετ = 0.8. However we turned off space adaptivity

in the synthetic experiments as we wanted to study the behavior of the model (5.1)

keeping the computational procedure as plain as possible.

5.1.1 Evaluating the Model

The energy (5.1) depends on two parameters γ and λ (γ0 = 1 for most of the

experiments). We examine the behavior of the model with respect to changing γ

and λ on smooth synthetic images in §5.1.1.1 and §5.1.1.2 respectively. We also

examine the effect of the image characteristics on model (5.1) in §5.1.1.3. One

critical variable is the edge width, εedge, which is the scale of the transition between

the image intensity values across the edge. For a discontinuity at the image we have

εedge = 0. But to be able to compute the first and second shape derivatives we need

the first and second derivative of H(x), hence up to third derivatives of the image.

For this reason, we need to have smooth transitions at the edges and εedge specifies

the scale of the transition. In addition to edge width, we examine the effect of a

nonuniform background in the image for computing the model (5.1). This includes

varying the image intensity linearly and adding oscillating texture patterns.
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εedge = 0.1 εedge = 0.05 εedge = 0.025 εedge = 0.01

Figure 5.1: The effect of varying the edge width parameter εedge illustrated with a
1d image. The top row shows the image intensity function I(x) and the bottom row
shows the edge indicator function H(x).

5.1.1.1 The Effect of Edge Width and Edge Strength

We present experiments demonstrating the effect of varying εedge and λ. The

synthetic images used are given in Figure 5.2. We start each experiment with a

circular curve of radius one centered at the origin. The initial energy of the curve is

J0 = 6.283. We use 256 nodes to represent the curve. The termination parameter

tol for the L2 and the H1 flows is set to be 10−4. For each experiment we list the

iteration number k and final energy J in the corresponding figures.

In the first set of experiments we set λ = 50 and γ = 0. We vary edge width

as εedge = 0.01, 0.025, 0.05, 0.1. The effect of this on the image function I(x) and

edge indicator function H(x) is illustrated in Figure 5.1. The sequence of synthetic

images created in this way is shown in Figure 5.2.

We observe that both L2 flow and H1 flow perform well for εedge = 0.025, 0.05

as shown in Figure 5.3. For εedge = 0.1, they miss the object boundary. But

setting λ = 10 increases the emphasis of the image derivatives in H(x) and edges

are perceived more strongly. This corrects the behavior as shown in Figure 5.4.
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εedge = 0.01 εedge = 0.025

εedge = 0.05 εedge = 0.1

Figure 5.2: The sequence of synthetic images created by varying the edge width at
the boundary, i.e. the width of the transition region.
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L2 flow L2 flow H1 flow H1 flow
εedge = 0.025 εedge = 0.05 εedge = 0.025 εedge = 0.05

k = 1026 k = 361 k = 693 k = 298
J = 0.488 J = 1.161 J = 0.509 J = 1.153

Figure 5.3: The segmentation results obtained with the L2 and H1 flows for different
edge widths. Both terminate successfully, but they miss the concavity.

Choosing to have sharp edges by setting εedge = 0.01, on the other hand, proves

to be challenging for the method. Both L2 and H1 flows miss the boundary. Edge

width is very small and the image derivatives are very sharp at the boundary. We

set λ = 400 to decrease the emphasis of the image derivatives in H(x). This does not

address the problem completely as the element size is not small enough to resolve

edge transition region. We see that using 1024 nodes instead of 256 nodes solves

this problem by quadrupling the computational cost. So we choose to switch on

space adaptivity. In this way we start with 32 nodes and gradually increase to ≈

700 nodes and the results are satisfactory as shown in Figure 5.5.

In the second set of experiments, we vary the edge strength λ by setting

λ = 10, 25, 50, 100. It is easy to see that for ∇I(x) 6= 0 fixed, H(x) approaches 1

if λ gets large. Similarly H(x) approaches 0 if λ gets small. This is illustrated in

Figure 5.6. For the experiments, we fix εedge = 0.05 and γ = 0.

The method performs well for λ = 25, 50 as shown in Figure 5.7. On the

other hand, setting λ = 100 decreases the edge strength too much and the L2 flow
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L2 flow L2 flow H1 flow
k = 3813 k = 280 k = 66
J = 1.949 J = 0.295 J = 0.291

Figure 5.4: The results of the segmentation for εedge = 0.1 Both L2 and H1 flows
miss the boundary of the object when λ = 50. By setting λ = 10, we obtain the
correct segmentation as shown in the second and the third images.

L2 flow L2 flow H1 flow
k = 4360 k = 16479 k = 4952
J = 1.409 J = 1.993 J = 2.072

Figure 5.5: The results of the segmentation for εedge = 0.01. Both L2 and H1

flows fail to detect the boundary of the object when λ = 50. The edge indicator
H varies too sharply in the narrow transition region. By setting λ = 400 and
turning space adaptivity on to ensure sufficient curve resolution, we obtain the
correct segmentation as shown in the second and the third images.

λ = 10 λ = 25 λ = 50 λ = 100

Figure 5.6: We fix εedge = 0.05 and vary λ. The effect of this on the edge indicator
function H(x) in 1d is as shown in the sequence.
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λ = 25 λ = 50 λ = 100

k = 245 k = 361 k = 3216
J = 0.449 J = 1.161 J = 1.855

k = 382 k = 298 k = 671
J = 0.467 J = 1.153 J = 2.475

Figure 5.7: The segmentation results obtained by varying the values of λ. The top
row shows the results for the L2 flow. The bottom row shows the results for the H1

flow.

misses the object boundary and stops at a local minimum. The H1 flow still gives a

reasonable result. Similarly for λ = 10, the edge strength is too large and it causes

large velocities in the transition region. This creates unstable behavior with the

L2 flow. Taking smaller time steps corrects this problem. Meanwhile the H1 flow

captures the boundary successfully with the time steps unchanged (see Figure 5.8).
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L2 flow L2 flow H1 flow
k = 433 k = 635 k = 118

J = 0.167 J = 0.191

Figure 5.8: The L2 flow fails for λ = 10 as the variation in the edge indicator
function H(x) is too sharp at the boundary of the object. The H1 flow, on the
other hand, captures the object boundary successfully. Taking smaller time steps
with L2 flow corrects the problem as shown in the middle figure.

5.1.1.2 The Effect of the Domain Term

In the experiments with γ = 0, we observe difficulty in detecting the concavities

of the object. Caselles et al. propose the extra force generated by choosing nonzero

γ in the original paper for geodesic active contours [18]. Note that γ > 0 provides an

additional force pushing the curve inwards whereas γ < 0 pushes the curve outwards.

We examine the effect of changing the magnitude of γ by a set of experiments

with γ = 0, 10, 20, 30. For these experiments we set εedge = 0.05. The initial curve is

a circle of radius one with the object at the center. We set tol = 10−4 and 5× 10−4

for L2 and H1 flows respectively. The number of nodes is 512. The main goal in

this set of experiments is to test the success in detecting the concavity. So to ensure

that we have enough resolution in the region of concavity, we turn on the mesh

smoothing procedure described in Algorithm 4 with nMS = 1. This equidistributes

the nodes throughout the evolution.
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The experiments complete successfully for γ = 0, 10, 20 as shown in Figure 5.9.

In particular with γ = 20, we detect the concavity completely. On the other hand

we observe γ = 30 to be too strong: both L2 and H1 flows miss the boundary

(Figure 5.10). This in fact is caused by the velocity being too large. So reducing

the time step will solve this problem. However this introduces another variable

that needs to be adjusted for the experimentation. Instead we find that it is more

practical to reduce the values of the paramters γ0 and γ while keeping their ratio

the same. Using γ0 = 0.2 and γ = 6 instead of γ0 = 1 and γ = 30, we capture the

boundary successfully. Accordingly, in our experiments with real images, we prefer

to keep γ = 1 and adjust the value of γ0. In this way we do not have to readjust the

time steps, because the order of magnitude is the same for all the velocities specified

this way.

5.1.1.3 The Effect of Nonuniform Background

In order to gain insight about the behavior of the method on images with

nonuniform background, we execute two sets of experiments. First we add a linearly-

changing intensity to the background. So given the original intensity value I(x1, x2)

at a background point (x1, x2), the new intensity value is

Ĩ(x1, x2) = I(x1, x2) +
m

4
(2 + x1 + x2).

m is a parameter specifying the rate of change. Then we test the effect of adding a

simple texture pattern. We add the oscillation given by

z(x1, x2) = A cos

(
πx1

Nεedge

)
(5.3)
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γ = 0, J0 = 5.655 γ = 10, J0 = 31.101 γ = 20, J0 = 56.547

k = 272 k = 97 k = 179
J = 0.454 J = 8.819 J = 16.337

k = 203 k = 62 k = 129
J = 0.454 J = 8.877 J = 16.343

Figure 5.9: The segmentation results for different values of γ. The top and bottom
rows show the results obtained by the L2 and H1 flows respectively.

L2 flow L2 flow H1 flow H1

γ0 = 1, γ = 30 γ0 = 0.2, γ = 6 γ0 = 1, γ = 30 γ0 = 0.2, γ = 6
k = 4, 15, 205 k = 382 k = 3, 20, 47 k = 442

Figure 5.10: The curves miss the boundary for γ = 30. We correct this by reducing
the weights of the integrals, but keeping their ratio the same. This is effectively the
same as taking smaller time steps. The initial energy is J0 = 16.399 in this case,
and is reduced to 4.845 by the L2 flow and to 4.851 by the H1 flow.
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to the background. We examine the impact of changing the amplitude A and the

frequency ∝ 1
N

.

Note that for a circular object with a given edge width εedge, the image deriva-

tive at the transition region will be proportional to − 1
εedge

(cos θ, sin θ). For θ = π
4

(in the direction of the top right corner) this is − 1
εedge

(1, 1), whereas for θ = 5π
4

(in the direction of the bottom left corner) it is 1
εedge

(1, 1). So if we add m
4

(1, 1) to

these, it will weaken the effect of the image derivative at θ = π
4

and strengthen its

effect at θ = π
4
. Fixing εedge = 0.05, λ = 25 and γ = 0, we set m = 1 and test the

scenario where the background intensity changes linearly from the minimum value

0 at (−1,−1) to the maximum value 1 at (1, 1). We terminate when the energy

change is below 10−6. We observe that qualitatively the result of this experiment is

the same as having m = 0. However as we increase the value of m, we observe the

expected behavior (see Figure 5.11). For m = 10, the result is still reasonable. For

m = 20, the methods fail to capture the concavities with edges facing the direction

(1, 1).

Next we examine the effect of adding the texture given by (5.3). We use the

same parameters in (5.1) as the previous experiment and set tol = 5 × 10−4. If

we choose A = 1 and N = 2, this results in a pattern where the period of the

oscillation is equal to 4εedge and this creates background derivatives comparable to

the edge derivatives in magnitude. Naturally we can expect this to create difficulties

in the segmentation. Indeed the curves keep getting stuck at the waves as shown in

Figure 5.12 and both L2 and H1 flows stop at local minima. However decreasing the

amplitude to A = 0.3 or increasing N to 4, we decrease the effect of the derivative
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m = 0, J0 = 4.398 m = 10, J0 = 3.332 m = 20, J0 = 1.929

k = 42 k = 145 k = 97
J = 0.356 J = 0.360 J = 0.784

k = 37 k = 61 k = 67
J = 0.353 J = 1.082 J = 0.785

Figure 5.11: The segmentation results for different values of the parameter m. The
background intensity changes from 0 at the bottom left corner to m at the top right
corner. The top and the bottom rows show the results for the L2 and H1 flows
respectively. Note that the change of the background intensity in the images does
not really reflect m. We use the same generic background for the four images on
the right, for purposes of illustration only.
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of the texture and we capture the boundary of the object completely.

5.1.1.4 Conclusions

Our experiments give us certain insight about the behavior of model (5.1).

We use this to guide our experimentation with real images. In particular they hint

at the need for a certain degree of preprocessing. The main conclusions from the

experiments with synthetic data are as follows:

• The method performs better if the minima in H(x) (corresponding to the

edges) are relatively well-behaved and are not too shallow or too steep. This

can be adjusted through λ.

• The method converges faster if edge width is larger. So very sharp edges in

images degrade the performance. It is necessary to apply some blurring or

smoothing to the images before using the method.

• To be able to detect concavities, it is necessary to choose a nonzero value for

γ (the weight of the domain term in (5.1)). A more practical way to do this

is to set γ = 1 and adjust γ0, the weight of the boundary term, in order to

get the desired behavior. In this way, we do not need to adjust the time step

scale as an additional parameter.

• Existence of varying patterns in the background make detection more difficult,

especially if their derivatives are comparable in magnitude to image derivatives

at edges. One may need to apply some preprocessing that wipes out the
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N = 2, A = 1.0 N = 2, A = 0.3 N = 4, A = 1.0

k = 100, 350, 550, 2500 k = 35, 50, 65, 101 k = 35, 50, 70, 104
J0 = 3.800 J0 = 5.852 J0 = 5.237
J = 0.411 J = 0.355 J = 0.346

k = 50, 200, 550, 2900 k = 35, 45, 55, 97 k = 30, 50, 65, 90
J0 = 3.800 J0 = 5.852 J0 = 5.237
J = 0.646 J = 0.341 J = 0.348

Figure 5.12: The segmentation results for images with oscillating patterns in the

background. The pattern is given by A cos
(

πx1

Nεedge

)
. The top and bottom rows show

the results for the L2 and H1 flows respectively. For each experiment we display the
curves for four of the iterations at different stages of the optimization. We observe
that, for N = 2 and A = 1, the variation of oscillation is comparable to the variation
at the edges. This causes the curves to get stuck along the background patterns.
However for the choices of N = 2, A = 0.3 and N = 4, A = 1, the segmentation
results are successful.
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patterns. Otherwise the method may perform poorly.

5.1.2 Experiments with Real Images

In this section we present experiments demonstrating the effectiveness of the

method on real images. We observed in §5.1.1.4 that some preprocessing is neces-

sary to increase the effectiveness of the method. For this we apply two smoothing

filters to the image consecutively. These are selective Gaussian blur and Gaus-

sian blur. The idea of selective Gaussian blur is to consider pixel neighborhoods

of radius ρSG and to apply a Gaussian blur if the variation between the pixel

and its surrounding pixels exceeds a given threshold δSG. We use this to destroy

weaker variations in the image while maintaining the sharp edges. Then we ap-

ply a Gaussian blur of radius ρG to smooth out the edges in order to improve the

performance. We compute the image derivatives by applying the Scharr deriva-

tive filter. We evaluate inter-pixel values of image intensity using linear inter-

polation. We experiment on four images: the large bacteria, the small bacteria,

the tiger and the vertebra images. The first two are from Wikimedia Commons

(http://commons.wikimedia.org), the third is from Berkeley Segmentation Data Set

(http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds), the last image

is from [32]. The parameters used for each experiment are as follows:
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image ρSG δSG ρG γ0 γ λ L2 tol H1 tol

large bacteria 30 20 10 0.005 1 1.0 10−2 10−5

small bacteria 30 20 5 0.01 1 1.0 10−3 10−6

tiger 30 50 10 0.01 1 1.0 10−2 10−4

vertebra 20 50 5 0.003 −1 0.5 10−4 10−4

The original images, the preprocessed images and the corresponding edge in-

dicator functions H are given in Figure 5.13. Now we describe each experiment and

the results obtained. I

Example 1: Large Bacteria. In this experiment we try to capture the

boundary of a single strip of bacteria. Both L2 and H1 flows terminate successfully.

We observe that H1 flow yields a smoother evolution and terminates in fewer itera-

tions. Moreover it captures the concavity better and results in a smaller final energy

(see Figures 5.14 and 5.15).

Example 2: Small Bacteria. This is the image of multiple disconnected

bacteria. To detect these the curve has to split into several separate curves. In this

way both L2 and H1 flows manage to capture the boundaries of all the bacteria

inside the initial curve. This is shown in Figures 5.16 and 5.17.

Example 3: Tiger. This is the image of a natural scene with a tiger. We

want to segment the tiger including the thin tail and the concavities. Both L2 and

H1 flows perform well, but the numbers of iterations for the two flows are comparable

in contrast to previous experiments (see Figures 5.18 and 5.19).
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Example 4: Vertebra. The last image we consider is from medical domain:

the vertebra image. The typical practice in medical imaging is to start with a number

seeds or initial curves that are inside the objects to be segmented. These expand

and capture the boundary of the objects. We follow this and present two sets of

experiments: one with a single seed and another with three seeds. We capture the

boundary completely in both cases. But the experiments with three seeds terminate

more quickly as all the seeds work locally at the beginning and then merge to capture

the complete boundary.

In all the experiments we observe that H1 flow converges faster (but not dra-

matically faster) than L2 flow. It also produces smoother evolutions.
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Figure 5.13: From top to bottom, the large bacteria image, the small bacteria image,
the tiger image and the vertebra image. The left column shows the images before
preprocessing. The middle column shows the images after processing. The right
column shows the corresponding edge indicator functions.

116



k = 1, J = 1.794 k = 131, J = 1.148

k = 321, J = 0.695 k = 421, J = 0.490

k = 631, J = 0.260 k = 865, J = 0.224

Figure 5.14: The evolution of the curve given by L2 flow for the large bacteria image.
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k = 1, J = 1.777 k = 41, J = 0.976

k = 71, J = 0.596 k = 91, J = 0.425

k = 131, J = 0.252 k = 276, J = 0.194

Figure 5.15: The evolution of the curve given by H1 flow for the large bacteria
image.

118



k = 1, J = 4.263 k = 81, J = 2.132

k = 131, J = 1.232 k = 171, J = 0.659

k = 201, J = 0.324 k = 453, J = 0.160

Figure 5.16: The evolution of the curve given by L2 flow for the small bacteria
image.
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k = 1, J = 4.263 k = 81, J = 2.092

k = 131, J = 1.198 k = 171, J = 0.622

k = 201, J = 0.265 k = 315, J = 0.125

Figure 5.17: The evolution of the curve given by H1 flow for the small bacteria
image.
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k = 1, J = 4.012 k = 31, J = 3.299

k = 91, J = 2.097 k = 131, J = 1.437

k = 171, J = 0.996 k = 231, J = 0.819

Figure 5.18: The evolution of the curve given by L2 flow for the tiger image.
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k = 1, J = 4.012 k = 31, J = 3.199

k = 91, J = 1.848 k = 121, J = 1.289

k = 151, J = 0.956 k = 202, J = 0.803

Figure 5.19: The evolution of the curve given by H1 flow for the tiger image.
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k = 1, J = −0.040 k = 111, J = −0.237

k = 241, J = −0.430 k = 361, J = −0.564

k = 431, J = −0.667 k = 581, J = −0.811

Figure 5.20: The evolution of the curve given by L2 flow for the vertebra image
starting with a single seed.
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k = 1, J = −0.040 k = 61, J = −0.227

k = 171, J = −0.437 k = 291, J = −0.597

k = 371, J = −0.711 k = 441, J = −0.832

Figure 5.21: The evolution of the curve given by H1 flow for the vertebra image
starting with a single seed.
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k = 1, J = −0.077 k = 61, J = −0.281

k = 111, J = −0.405 k = 191, J = −0.568

k = 271, J = −0.705 k = 451, J = −0.803

Figure 5.22: The evolution of the curve given by L2 flow for the vertebra image
starting with three seeds.
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k = 1, J = −0.080 k = 31, J = −0.332

k = 51, J = −0.450 k = 91 , J = −0.637

k = 131, J = −0.760 k = 191, J = −0.818

Figure 5.23: The evolution of the curve given by H1 flow for the vertebra image
starting with three seeds.
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5.1.3 Experiments with 3d Images

In this section we consider the model (5.1) for 3d volume images. This is

of importance particularly for medical imaging, but it is becoming more and more

relevant in other branches of science too as 3d data that need to be visualized

continue to be produced by various experiments and simulations.

We demonstrate our method on two synthetic experiments. For these we

use the H1 flow. Our preliminary 3d experiments follow our findings in the 2d

experiments. H1 flow produces smoother evolutions compared with L2 flow and

converge in fewer iterations. This makes the H1 flow the method of choice for the

more costly 3d experiments.

In the first experiment, we try to capture the boundary of two identical balls

touching each other. A distinct feature of this image is that there is a cusp around

the touching point. We start the evolution with a coarse surface and the surface

refines as it starts capturing the object. In the end the boundary of the object is

acquired very well including the region around the cusp. We present this result in

Figure 5.24.

In the second experiment, we want to capture a rectangular prism. We start

with the unit sphere. This result is given in Figure 5.25. We see again in this

example how space adaptivity refines the mesh as the surface captures the mesh. In

particular we see that the method adds more resolution at the sharp features, such

as the edges and the corners. But it coarsens the mesh at the faces where a smaller

number of elements is enough to represent the object accurately.
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k = 12 k = 20
J = 1.802 J = 0.926

k = 25 k = 30
J = 0.590 J = 0.407

k = 35 k = 59
J = 0.317 J = 0.278

Figure 5.24: Detection of a 3D object consisting of two touching balls with weighted
H1 flow. Note the effect of space adaptivity; we start with a relatively coarse
spherical surface and the mesh refines as it detects the object boundary.
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k = 5 k = 50
J = 10.831 J = 4.441

k = 85 k = 125
J = 2.780 J = 1.517

k = 160 k = 241
J = 0.500 J = 0.024

Figure 5.25: Detection of a prism in 3d with weighted H1 flow. We can see the
effect of space adaptivity: the mesh is finer at edges and corner, but coarser at the
faces.
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5.2 The Mumford-Shah Model

In this section we use the Mumford-Shah functional in the form

J(Γ) =
2∑

i=1

1

2

∫

Ωi

(
(ui − I)2 + µ|∇ui|2

)
dx+ γ

∫

Γ

dS. (5.4)

This leads to the pair of boundary value problems (essentially the optimality con-

ditions with respect to ui)





−µ∆ui + ui = I in Ωi

∂νi
ui = 0 on ∂Ωi

with i = 1, 2 to segment a given image into foreground objects and a background

region represented by Ω1 and Ω2 respectively. This separation of foreground and

background will also yield a piecewise smooth approximation to the image given by

u = u1χΩ1 + u2χΩ2 .

Recall that the first shape derivative of (5.4) is given by

dJ(Γ;V ) =

∫

Γ

(1

2

[[|u− I|2]] +
µ

2

[[|∇Γu|2
]]

+ γκ
)
V dS.

The second shape derivative is

d2J(Γ;V,W ) = γ

∫

Γ

∇ΓV · ∇ΓWdS

+
µ

2

∫

Γ

(
κ

[[|∇u|2]] + ∂ν

[[|∇u|2]])VWdS

+
1

2

∫

Γ

(
κ

[[|u− I|2]] + ∂ν

[[|u− I|2]])VWdS

+

∫

Γ

([[(u− I)u′W ]] + µ [[∇u · ∇u′W ]])V dS.
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We use this to introduce a weighted H1 scalar product

〈V,W 〉H1 = γ

∫

Γ

∇ΓV · ∇ΓWdS

+
1

2

∫

Γ

(
κ(

[[|u− I|2]] + µ
[[|∇u|2]]) + ∂ν

[[|u− I|2]])
+
VWdS

where (·) = max(·, ε) and we choose ε = 0.01. Similar to the case with the H1

flow for the minimal surface model, the main motivation for this choice is to ensure

well-conditioning of Aα +Mβ and such small values for ε are acceptable as γ, which

weights Aα, is even smaller. Now since we have positive definiteness of the scalar

product, by setting b(V,W ) = 〈V,W 〉H1 , we can solve the system (3.4) and obtain

an inexact Newton’s descent direction. This will be our choice in the optimization

as our experiments will demonstrate the superiority of the weighted H1 flow to L2

flow.

Let us mention some of the practical issues related to implementation. The

first is the time step selection procedure, which we have chosen to be backtracking

described in Algorithm 1. We set τmin = 0.05, 0.005 and τmax = 1.0, 0.1 for L2 and

H1 flows respectively. As stopping criterion, we use the shape derivative criterion

(5.2) with tolrel = 0 and suitable tol values.

As we choose a Lagrangian approach to move the boundary, we need a way

to track the domain. We choose to generate a triangulation of the domain at each

time step using the 2d mesh generation program TRIANGLE by Shewchuk [62]. In

general this tends to create meshes that are very coarse away from the surface and

this brings the possible problems of accuracy. To compensate for this we employ

the data-driven space adaptivity procedure described in Algorithm 8 to refine the
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domain mesh when necessary. For the curve we use the geometry-driven space

adaptivity procedure described in Algorithm 6. The parameters for these are εdata =

5× 10−2, εgeom = 0.02, γG
R = 0.7, γG

C = 0.3. The time step control routine is used as

well with ετ = 0.8.

Furthermore we have found a multilevel approach to be very beneficial for this

optimization problem. The main idea for this is to keep the computations as coarse

as possible when we are far away from the optimum and to refine the computations

as we get closer. The motivation is twofold. First from the time step side: very

careful time steps at the beginning of the optimization is not worth the effort. This

is in particular true with backtracking as we may need to solve the domain PDE

several times to compute the energy as part of backtracking. So we prefer to use

Ncoarse number of fixed time steps at the beginning. This hopefully brings us closer

to the optimum. In this stage, space adaptivity in domain is also switched off and

space adaptivity on the curve is executed with εcoarse = Ccoarseεgeom, Ccoarse > 1.

So these initial iterations are cheap. Another very important benefit of this coarse

stage is that it helps avoid local minima.

After the initial coarse stage, we take a continuation approach to tighten the

tolerance parameters of the space adaptivity procedures. We enforce better resolu-

tion as we approach the minimum. However an important matter here is that we

do not really have a concrete way of determining whether we are close to the mini-

mum. Nevertheless we have a clue, which is the shape derivative. Since the shape

derivative becomes small close to the minimum, we can use this as a means of de-

termining when we should enforce higher resolution. For this we choose a sequence
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of derivative thresholds ∞ = dn > dn−1 > . . . > d1 > d0 = 0 and corresponding

adaptivity tolerance factors Cn > Cn−1 > . . . > C1 > C0 = 1 and corresponding

time steps τn > τn−1 > . . . > τ1. Then at a given iteration k, if the magnitude

of the shape derivative |dJ(Γk;Vk)| is the interval [di, di+1], i > 0, the adaptivity

tolerance is set to be Ci times the original tolerance and the time step is set to be

τi. If |dJ(Γk;Vk)| is in [d1, d0], we use backtracking for time step selection. The

multilevel method obtained this way for (5.4) is described in Algorithm 17. In our

experiments we found that the use of two levels gives satisfactory results.

Algorithm 17 : Solver for Mumford-Shah

switch off adaptivity in domain
set εcoarse = Ccoarseεgeom for the curve, Ccoarse > 1
for iter = 1 to Ncoarse do

adapt the curve Γ with εcoarse

solve PDE in Ω1 and Ω2

solve for velocity V on Γ
move curve Γ with V and τcoarse

end for

switch on adaptivity in domain
compute dJ(Ω;V )

repeat
if di 6 |dJ(Γ;V )| < di+1, i = 0, . . . , n− 1 then

adapt the curve Γ with relaxed tolerance Ciεgeom

end if
solve PDE in Ω1 and Ω2

solve for velocity V on Γ
if di 6 |dJ(Ω;V )| < di+1, i = 1, . . . , n− 1 then

set τ = τi
else { 0 6 |dJ(Γ;V )| < d1 }

use backtracking to choose τ
end if
move curve Γ with V and τ

until |dJ(Γ;V )| < tol
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5.2.1 L2 flow vs H1 flow

In our first set of experiments, we compare the convergence properties of the

L2 flow and the H1 flow. In §5.1 we observed that the H1 flow for model (5.1) yields

superior results compared to the L2 flow, in terms of number of iterations and

smoothness of the evolution. We make the same observation with the Mumford-

Shah model as well.

As a test image, we use the electron microscopy image of three pneumonia bac-

teria that we obtained from Wikimedia Commons (http://commons.wikimedia.org).

We run the optimization for both L2 and H1 flows. The stopping tolerances are 10−5

and 10−3 respectively. The model parameters are µ = 5 × 10−3, ν = 1.5 × 10−3.

The multilevel parameters are Ncoarse = 150, C1 = C2 = Ccoarse = 1, d1 = 5 tol,

d2 = 20 tol. The time steps are τ1 = 0.1, τ2 = 0.2, τcoarse = 1 for L2 flow, τ1 = 0.01,

τ2 = 0.02, τcoarse = 0.1 for H1 flow.

We present the image sequences showing the evolution of the curves for L2

and H1 flows in Figures 5.26 and 5.28 respectively. The evolution of the piecewise

smooth approximations to the image are given in Figures 5.27 and 5.29. We see

that H1 flow terminates in 165 iterations, approximately one fourth the number of

iterations for the L2 flow. We find this to be a typical contrast between the two

flows. In general the computation time for a single L2 iteration is comparable to an

H1 iteration (as we can also deduce by examining the linear systems in Chapter 3).

For this reason, we use the H1 flow for the remaining experiments.

We also give the domain meshes used to solve the PDE in Figures 5.30 and
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5.31. Figure 5.30 shows Ω2, whereas Figure 5.31 shows Ω1. In particular we can

see how the mesh is affected after space adaptivity is switched on. In Figure 5.31,

we see that the mesh is very coarse at the beginning. After the initial phase, as

adaptivity is executed, the mesh becomes finer at the boundaries of the bacteria

where the image varies more. It remains coarser elsewhere.

5.2.2 Denoising Properties

In this section we test the denoising properties of the Mumford-Shah model

(5.4). We use the image of two jets flying, made available by Phillip Treweek at

http://www.kiwiaircraftimages.com. From this we obtain a sequence of noisy images

by applying white noise at levels of 0.1, 0.25 and 0.5 of image intensity. The original

image and the sequence of noisy images are given in Figure 5.32.

The model parameters used for the experiments are: µ = 5× 10−3, ν = 1.5×

10−3; termination tolerance is tol = 1× 10−3; multilevel parameters: Ncoarse = 150,

C1 = 1, C2 = 2, Ccoarse = 3, d1 = 5 tol, d2 = 20 tol; time steps: τ1 = 0.02, τ2 = 0.04,

τcoarse = 0.1.

The result of the experiment for noise level 0.1 is given in Figures 5.33 and 5.34.

As we run experiments for higher noise levels, we observe that the method takes

more and more iterations to reach the optimum. In fact with second image at noise

level 0.25, the experiment terminates prematurely using the termination tolerance

of the previous experiment, tol = 1× 10−3. The result is shown in Figure 5.35. We

lower the tolerance to tol = 2 × 10−4 to obtain the expected result. The results
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k = 1, J = 0.0291 k = 121, J = 0.0228

k = 331, J = 0.0175 k = 441, J = 0.0162

k = 671, J = 0.0157 k = 841, J = 0.0130

Figure 5.26: The evolution of the curve Γ given by L2 flow for the bacteria image.
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k = 1, J = 0.0291 k = 121, J = 0.0228

k = 331, J = 0.0175 k = 441, J = 0.0162

k = 671, J = 0.0157 k = 841, J = 0.0130

Figure 5.27: The evolution of the smooth approximation and domains Ω1 and Ω2

for the bacteria image given by L2 flow.
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k = 1, J = 0.0291 k = 31, J = 0.0201

k = 71, J = 0.0156 k = 91, J = 0.0160

k = 131, J = 0.0149 k = 165, J = 0.0127

Figure 5.28: The evolution of the curve Γ given by H1 flow for the bacteria image.
TheH1 flow completes in much fewer iterations than the L2 flow given in Figure 5.26.
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k = 1, J = 0.0291 k = 31, J = 0.0201

k = 71, J = 0.0156 k = 91, J = 0.0160

k = 131, J = 0.0149 k = 161, J = 0.0127

Figure 5.29: The evolution of the smooth approximations and the domains Ω1 and
Ω2 for the bacteria image given by H1 flow.
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k = 1 k = 121

k = 331 k = 441

k = 671 k = 841

Figure 5.30: Snapshots of the background mesh for Ω2 through iterations of the L2

flow. Note that the mesh is locally refined in the last four images as adaptivity in
domain is switched on after Ncoarse = 150 coarse iterations.
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k = 1 k = 121

k = 331 k = 441

k = 671 k = 841

Figure 5.31: Snapshots of the foreground mesh for Ω1 through iterations of the L2

flow. Note in particular that after 150 iterations, space adaptivity is switched on and
the mesh is refined at the object boundaries to capture the image function better.
The mesh is coarser elsewhere.
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original image noise level 0.1

noise level 0.25 noise level 0.5

Figure 5.32: The original jet image and the sequence of noisy images at noise levels
of 0.1, 0.25, 0.5 from top left to bottom right respectively.

for different noise levels are shown in Figure 5.36. As the method slows down with

increasing noise, we chose to take Ncoarse = 500 coarse iterations for the the last

image. Our interpretation for the decreasing performance is as follows. As the

amount of noise increases, the background and the foreground become less and less

dissimilar; therefore, it becomes more difficult for the method to obtain a proper

separation.

5.2.3 Dependence on the Model Parameters

In this section we examine the sensitivity of the model (5.4) with respect to

the model parameters µ and γ. Recall that µ is used to adjust the smoothness of the

approximation to the image obtained with (5.4) whereas γ is a regularity parameter
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k = 1, J = 0.0604 k = 11, J = 0.0541

k = 21, J = 0.0422 k = 41, J = 0.0308

k = 61, J = 0.0257 k = 171, J = 0.0197

Figure 5.33: The evolution of the curve Γ given by H1 flow for the noisy jet image
with noise level 0.1.
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k = 1, J = 0.0604 k = 11, J = 0.0541

k = 21, J = 0.0422 k = 41, J = 0.0308

k = 61, J = 0.0257 k = 171, J = 0.0197

Figure 5.34: The evolution of the piecewise smooth approximation and the domains
Ω1 and Ω2 for the noisy jet image with noise level 0.1.

k = 161 k = 161

Figure 5.35: The results obtained for noise level 0.25 by using the same termination
tolerance as for noise level 0.1. The method terminates prematurely.
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k = 171 k = 171

k = 681 k = 681

k = 921 k = 921

Figure 5.36: The results obtained for noise levels 0.1, 0.25, 0.5 from top to bottom.
The left column shows the locations of the final curves and the right column shows
the final smooth approximations. We see that as noise level increases, the method
takes more iterations to terminate. We report k for each example.
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for the curves and increasing γ results in shorter curves.

For the experiments, we use a galaxy image that we obtained from Wikimedia

Commons (http://commons.wikimedia.org). This is a challenging example, because

it does not have clear boundaries as in the previous examples. On the contrary,

the intensity of the object gradually fades away to blend in with intensity of the

background. Nevertheless it is possible to extract this object using the Mumford-

Shah model (5.4), because the model utilizes global information of the image. The

segmentation process is realized in the form of a pursuit to obtain a separation of the

image into a background and a foreground given by two distinct smooth functions.

For the experiments we set the model parameters to be: µ = 0.2, γ = 5×10−4;

termination tolerance tol = 5 × 10−4; multilevel parameters: Ncoarse = 200, C1 =

1, C2 = 2, Ccoarse = 3, d1 = 5 tol, d2 = 20 tol; time steps: τ1 = 0.02, τ2 = 0.04,

τcoarse = 0.1. We start the experiments with three oval initial curves. We see

in Figure 5.37 that these quickly merge and split to capture a rough outline of

the shape. Then they gradually converge to what we find to be an acceptable

segmentation.

Next we explore the effect of changing the model parameters. We increase µ

to 0.5, but this causes the initial curves to shrink and eventually vanish. The final

approximation is a grayish image that is almost constant. When we decrease µ to

0.02, we get a segmentation that looks reasonable, but not as satisfying as the one

obtained with µ = 0.2. Still computationally the result is correct and the curves are

at a minimum. We also see that µ = 0.02 yields an approximation that is somewhat

less smooth than those with higher µ values. These results are shown in Figure 5.39.
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k = 1, J = 0.0614 k = 11, J = 0.0393

k = 21, J = 0.0320 k = 81, J = 0.0287

k = 141, J = 0.0293 k = 273, J = 0.0267

Figure 5.37: The evolution of the curve Γ given by H1 flow for the galaxy image.
The parameters of the model are: µ = 0.2, γ = 5× 10−4.

Finally we execute a set of experiments varying the value of γ. We increase

γ to 0.002 and see that this causes the small curves at the bottom of the image to

vanish. Therefore, we are only able to capture the salient core of the galaxy. When

we decrease γ to 2×10−4, we obtain the previous result for γ = 5×10−4 plus another

strip at the top. We also see that the final curves are not as smooth. This is because

by using a smaller value for γ, we relax the length penalty on the curve and it has

more freedom to fit local variations. These results are given in Figure 5.40.
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k = 1, J = 0.0614 k = 11, J = 0.0393

k = 21, J = 0.0320 k = 81, J = 0.0287

k = 141, J = 0.0293 k = 273, J = 0.0267

Figure 5.38: The evolution of the smooth approximation and domains Ω1, Ω2 to
the galaxy image given by H1 flow. The parameters of the model are: µ = 0.2,
γ = 5× 10−4.
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µ = 0.5, k = 21 µ = 0.5, k = 21

µ = 0.2, k = 273 µ = 0.2, k = 273

µ = 0.02, k = 149 µ = 0.02, k = 149

Figure 5.39: The segmentation results obtained by varying the parameter µ. The
curves shrink and disappear completely when we increase µ to 0.5 (see top row).
Decreasing µ to 0.02 still gives a reasonable result (see bottom row). We can also
see that the approximations get somewhat less smooth as we decrease µ. For the
highest value the final approximation is almost a constant gray value.
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γ = 2× 10−3, k = 163 γ = 2× 10−3, k = 163

γ = 5× 10−4, k = 273 γ = 5× 10−4, k = 273

γ = 2× 10−4, k = 301 γ = 2× 10−4, k = 301

Figure 5.40: The segmentation results obtained by varying the parameter γ. These
experiment clearly show how the length term in the Mumford-Shah model constrain
the curves. For the highest value of the parameter, γ = 2× 10−3, we obtain shorter
and smoother curves. For the lowest value, γ = 2 × 10−4, we obtain longer curves
that are much less smooth.
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5.2.4 Choice of Initial Curves

In this section we examine the sensitivity of the solution with respect to the

choice of initial curves. We run our tests on the image of a single dandelion with

a cluttered background. The image is from Wikipedia (http://www.wikipedia.org).

The parameters of the model are: µ = 0.02, ν = 0.001; termination tolerance

tol = 0.001; multilevel parameters: Ncoarse = 100, C1 = 1, C2 = 2, Ccoarse = 3,

d1 = 5 tol, d2 = 20 tol; time steps τ1 = 0.02, τ2 = 0.04, τcoarse = 0.1.

As the Mumford-Shah energy (5.4) is nonconvex, one cannot expect strict in-

dependence of the solution from the initial curve. Nevertheless in our experiments

we observe a certain degree of robustness with respect to the initial curve. We doc-

ument this with three experiments. In the first experiment we start with an initial

curve that contains the dandelion. The curve shrinks and captures the object (see

Figure 5.41). In the second experiment, we start with a curve that is completely

inside the object. The curve expands outward and captures the boundary see (Fig-

ure 5.42). In the third experiment, we start with a curve that partially overlaps

with the object. We see that it is sucked inside to end up at the boundary of the

object (see Figure 5.43).

One point we should emphasize is that we did not modify the model parameters

to obtain these various results. This is in contrast with the minimal surface model,

where we had to adjust the coefficient γ of the domain term to get a shrinking or

expanding evolution. We should caution however that this is not supposed to be

behavior under all circumstances. For example, if we choose γ large enough in (5.4),
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it becomes very hard to obtain expanding evolutions.

Our last example once again reveals us the nonconvex nature of this problem.

We start with an initial curve inside the object. But in contrast to the second

example, the curve does not result in a separation of only foreground and background

(see Figure 5.44). It separates the dandelion into two regions as well. As much as

this might look wrong with regard to what we expect. This result is just fine from

a shape optimization standpoint. The resulting configuration corresponds to a local

minimum; in particular, the shape derivative is below the tolerance.
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k = 1, J = 0.0673 k = 1, J = 0.0673

k = 11, J = 0.0520 k = 11, J = 0.0520

k = 31, J = 0.0404 k = 31, J = 0.0404

k = 100, J = 0.0281 k = 100, J = 0.0281

Figure 5.41: The evolution of the curve given by H1 flow for the dandelion image.
The initial curve is outside the object.
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k = 1, J = 0.0520 k = 1, J = 0.0520

k = 31, J = 0.0595 k = 31, J = 0.0595

k = 51, J = 0.0453 k = 51, J = 0.0453

k = 120, J = 0.0351 k = 120, J = 0.0351

Figure 5.42: The evolution of the curve given by H1 flow for the dandelion image.
The initial curve is inside the object.
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k = 1, J = 0.0635 k = 1, J = 0.0635

k = 11, J = 0.0544 k = 11, J = 0.0544

k = 31, J = 0.0440 k = 31, J = 0.0440

k = 113, J = 0.0339 k = 113, J = 0.0339

Figure 5.43: The evolution of the curve given by H1 flow for the dandelion image.
The initial curve partially overlaps with the object.
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k = 1, J = 0.0577 k = 1, J = 0.0577

k = 41, J = 0.0404 k = 41, J = 0.0404

k = 91, J = 0.0338 k = 91, J = 0.0338

k = 210, J = 0.0353 k = 210, J = 0.0353

Figure 5.44: The evolution of the curve given by H1 flow for the dandelion image.
The initial curve is inside the object. Notice that the energy at k = 91 is lower
than that at k = 210. What happens is that the curve moves away from the local
minimum around k = 91 with the coarse iterations since there is no check on the
energy or the shape derivative during the coarse phase. Eventually the iterations
terminate at another local minimum at k = 210.
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