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HOW WELL–CONDITIONED CAN

THE EIGENVECTOR PROBLEM BE?

CARLOS BELTRÁN, LAURENT BÉTERMIN, PETER GRABNER,
AND STEFAN STEINERBERGER

Abstract. The condition number for eigenvector computations is a well–
studied quantity. But how small can it possibly be?: Specifically, what ma-

trices are perfectly conditioned with respect to eigenvector computations? In

this note we answer this question for n× n matrices, giving a solution that is
exact to first-order as n→∞.

1. Introduction and Result

1.1. The condition number. The sensitivity of the solution to a numerical prob-
lem under perturbations in the input can often be quantified by the condition
number. Following [4, Overture], we first briefly recall the general definition of
condition number that has its origins in the work of Turing, Von Neumann and
Goldstein [10, 12]. Let ϕ be any mapping codifying the output of a numerical
problem. For example, ϕ could take a square nonsingular matrix A and send it to
x = ϕ(A) = A−1b, the solution of Ax = b where b is fixed a priori. Consider now

the perturbed output x̂ = ϕ(Â) for a perturbed input Â ≈ A. The condition num-

ber of ϕ measures ‖x− x̂‖ compared to ‖A− Â‖, for appropriate choices of norms
(or distance functions) in the input and output spaces. Formally, the standard
definition for the condition number is (see for example [4, Def. (O.1)]:

(1) κ(ϕ,A) = lim
ε→0

sup
‖A−Â‖≤ε

‖x− x̂‖
‖A− Â‖

,
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or, more generally, for distance functions (for example, metrics of relative error)
instead of norms,

κ(ϕ,A) = lim
ε→0

sup
distance(A,Â)≤ε

distance(x, x̂)

distance(A, Â)
.

This definition is obviously equivalent to: κ(ϕ,A) is the smallest number with the

property that, for ‖A− Â‖ very small,

‖x− x̂‖ ≤ κ(ϕ,A)‖A− Â‖+ o(‖A− Â‖).

When ϕ is fixed to be ϕ(A) = A−1b, we usually drop it for the notation, writing
only κ(A). When solving for Ax = b with b fixed, it is customary to choose the
operator norm (‖ · ‖op) or the Frobenius norm (‖ · ‖F ) in the space of matrices and
to measure distances in relative error, which yields respectively Turing’s [10] and
Demmel’s [6] condition numbers

κ(A) = ‖A‖op ‖A−1‖op and κD(A) = ‖A‖F ‖A−1‖op.

Sometimes ϕ is only defined locally. For example if ϕ sends a matrix A to some
eigenvalue λ, then perturbing A will produce another matrix Â with (in principle)

several eigenvalues, but we must denote by λ̂ only the eigenvalue of Â that is
obtained by continuation from λ (so, if λ has algebraic multiplicity 2 or higher, in

general we cannot expect λ̂ to be well–defined and the condition number is set to
∞ in this case). It is usual to make this fact explicit in the notation, so that κλ(A)
will measure the sensitivity of the eigenvalue λ under perturbations in A, but A
may well have another eigenvalue λ′ with a different value for κλ′(A). A similar
reasoning applies to eigenvectors.

1.2. The condition number for the eigenproblem. The sensitivity of eigen-
value and eigenvector computations is a well–studied topic in the Linear Algebra
literature, see for example [1, 5, 13]. Throughout this paper, we measure the sta-
bility of an eigenvalue problem as follows: given Ax = λx and a nearby solution

Âx̂ = λ̂x̂, the difference between the eigenvalues is given by |λ − λ̂|. Eigenvectors
really describe subspaces which makes the angle between subspaces a natural no-
tion of distance: we will be interested in matrices where all eigenvalues are simple
which naturally leads to the angle ∠(x, x̂) defined by

cos (∠(x, x̂)) =
| 〈x, x̂〉 |
‖x‖ · ‖x̂‖

.

Following [11], we recall the explicit expression that arises from (1) in this setting:
for a matrix A ∈ Cn×n and an eigenpair (λ, x) ∈ C × Cn, the classical Schur
decomposition yields a unitary matrix Q such that

(2) QHAQ =

(
λ wH

0 B

)
,

where ·H denotes the Hermitian conjugate and w ∈ Cn−1 is a vector. Denoting by
y ∈ Cn the corresponding left eigenvector, the condition numbers for the eigenvalue
λ and eigenvector x, defined by the general approach (1), satisfy

κλ(A) =
‖y‖ ‖x‖
|yHx|

and κx(A) =
1

σmin(B − λ · Id(n−1)×(n−1))
,
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where σmin denotes the least singular value and Id is the identity matrix. In other

words, if we allow for an ε–size perturbation of A, the eigenpair (λ̂, x̂) of the per-
turbed matrix will satisfy

|λ− λ̂| ≤ εκλ(A) +O(ε2), ∠(x, x̂) ≤ εκx(A) +O(ε2),

and κλ(A) (resp. κx(A)) is the smallest number satisfying this property. We stress
that these numbers contain information on how one particular pair (eigenvalue,
eigenvector) changes under perturbations in the input. One can of course consider
the maximum of all these quantities to deduce how the whole eigenproblem behaves
under these perturbations. If the matrix A ∈ Cn×n is diagonal with pairwise
different entries z1, . . . , zn, we have κzi(A) = 1 for all i and the eigenvector condition
number admits a simpler expression

κei(A) =
1

min
j 6=i
|zi − zj |

,

where e1, . . . , en are the standard coordinate vectors.

1.3. Main result. In this note we investigate the following natural question: how
good can the eigenvector conditioning of an n × n matrix be? The answer has a
concrete application in the search for good starting points for homotopy methods
for the eigenvector problem, see [2], but it is just such a natural and basic question
that it deserves an answer on its own right! The answer is not trivial. For example,
if A = Idn×n we clearly have κx(A) = ∞ (and it is a rather well–known fact
that one can perturb the identity matrix Idn×n with very small changes to get any
desired collection of eigenvectors). In general, one is interested in perturbations
which are relative to the size of A, that is, perturbations of size ε‖A‖∗ where ‖A‖∗
is either the operator or the Frobenius norm. In other words, since the stability of
eigenvectors is given by

sup
Â:
‖A−Â‖∗
‖A‖∗

≤ε
∠(x, x̂) ≤ εκx(A)‖A‖∗ + o(ε),

the quantity of interest is precisely κx(A)‖A‖∗.

Problem. What is the optimal value for the relative–error perturbation eigenvector
conditioning of A ∈ Cn×n, that is, which matrix minimizes the quantity

κmax,∗(A) = max
x

(κx(A)‖A‖∗) ,

where x runs over all eigenvectors of A and ‖A‖∗ = ‖A‖F or ‖A‖∗ = ‖A‖op is the
Frobenius or the operator norm?

We recall the unit–side triangular (sometimes called hexagonal) lattice in C ≡ R2

which is the set of points of the form(
1 1/2

0
√

3/2

)(
a
b

)
, a, b ∈ Z.

Our main result states that the diagonal matrix whose entries range over the
triangular lattice, solves our problem to leading order.
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Figure 1. An extremal configuration (to leading order): a circle
at the origin and the points of a triangular lattice inside the circle.

Theorem (Main Result). Let {z1, . . . , zn} ⊂ Cn be first n points in the unit–
side triangular lattice, in increasing order of modulus (if two points have the same
modulus, we take any of them). Then, as n→ +∞,

κmax,F (Diag(z1, . . . , zn)) =
31/4

2
√
π
n+ o(n),

κmax,op(Diag(z1, . . . , zn)) =
31/4

√
2π

√
n+ o(

√
n).

Moreover, this diagonal matrix is asymptotically optimal in the sense that for any
matrix A ∈ Cn×n the equalities above give lower bounds for κmax,F and κmax,op.

It would naturally be interesting to have a better understanding of the error
terms and, in particular, to have a better understanding of the extremal configura-
tions. We believe it to be conceivable that our construction may perhaps be quite
close to optimal even with respect to lower order error terms.

1.4. Another type of stability. Another standard choice for quantifying the sta-
bility of eigenvector computations is given by the condition number of the eigen-
vector matrix divided by the eigenvalue gap, that is

infX κ(X)

minj 6=i |zi − zj |
,

where the infimum is taken over all X such that A = XDX−1 for some diagonal
D. This number has been recently exploited by Banks, Garza–Vargas, Kulkarni &
Srivastava [3] with great success in the search for algorithms for eigendecompositions
of matrices of norm at most 1. If the matrix A is normal and ‖A‖∗ = 1, the value
of this new condition number is

‖A‖∗
minj 6=i |zi − zj |

,

that is exactly equal to ours! All in one, for unit norm normal matrices, these
two notions yield the same result, and since the optimally conditioned matrix is
diagonal in both cases, our result actually applies to this other standard.

1.5. A General Inequality. Our Theorem will follow relatively quickly from the
following asymptotic inequality which may be of interest in its own right.
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Proposition. Let p > 0 be fixed. We have, for any z1, . . . , zn ∈ C, as n→∞,

1

min
i 6=j
|zi − zj |

(
n∑
i=1

|zi|p
)1/p

≥
(

2

p+ 2

)1/p
31/4

√
2π
n

1
2 + 1

p + o
(
n

1
2 + 1

p

)
,

and this bound is matched by z1, . . . , zn as in the Theorem.

Just as in the Theorem, it might be interesting to obtain a better understanding
of the lower-order terms. If optimal configurations are indeed close to a subset of
the hexagonal lattice, then this is strongly related to the Gauss Circle Problem
and these techniques might apply (we observe that the function z → |z|p is also
smoother than the cut-off function used in the Gauss circle problem, so Fourier-
based techniques might be useful).

2. Proofs

Section 2.1. gives the relatively short proof of the Theorem (assuming the Propo-
sition). Section 2.2 contains a simple geometric lemma. Proving the Proposition
will be the core of the argument, the proof is given in Section 2.3.

2.1. Proof of the Theorem.

Proof. From (2) it is clear that the eigenvector conditioning of a matrix is invariant
under conjugation by unitary matrices. From the Schur decomposition, we can thus
assume that A is upper–triangular. Now, for any eigenvector x the definition of
κx(A) does not involve w in (2), but w contributes to the norm ‖A‖∗, so the value
of κmax,∗ does not grow by setting w = 0 for all eigenvectors. It follows that the
matrix with optimal value of κmax,∗ can be chosen diagonal (of course, conjugating
it by any unitary matrix we obtain a normal matrix with identical conditioning).
Thus, to prove the last claim of the Theorem we can assume that A is diagonal,
but in this case we note that

κmax,F (Diag(z1, . . . , zn)) = max
i6=j

‖(z1, . . . , zn)‖2
|zi − zj |

,

κmax,op(Diag(z1, . . . , zn)) = max
i6=j

‖(z1, . . . , zn)‖∞
|zi − zj |

,

and the result is immediate from Proposition 1.5 for the cases p = 2 and p =∞. �

2.2. A Lemma. We denote a disk of radius r centered in the origin by

Br = {z ∈ C : |z| < r}.
We say that a set {z1, . . . , zn} ⊂ C is 1-separated if, for all i 6= j

|zi − zj | ≥ 1.

We also introduce the counting function N : [0,∞] → N as follows: N(r) is the
cardinality of the largest possible 1-separated set contained in Br. This quantity
was already studied by L. Fejes Tóth in 1940 who determined its growth.

Lemma (Fejes Tóth [7]). We have, as r → +∞,

N(r) =
2π√

3
r2 + o(r2).

Equality to leading order is attained for the unit–side triangular lattice in Br.
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We give a simple sketch why this would be the case – the simple geometric
argument makes use of Apollonian Circle Packings and the well–understood fact
that the asymptotically densest packing of circles in the plane is given by the
hexagonal lattice (which, not entirely coincidentally, is also a result of Fejes Tóth
[8]).

Sketch of Proof. The claim on the triangular lattice (which implies the lower bound
for the equality in the lemma) follows from [9, Eq. (1.6)]: for any lattice L ⊂ R2

(given by the set of points of the form T
(
a
b

)
with T ∈ R2×2 and a, b ∈ Z,

#{L ∩Br} =
πr2

det(T )
+O(r

1
3

√
log r), r → +∞,

where we use #S to denote the cardinality of a set S. In the case of the triangular
lattice, det(T ) =

√
3/2 and we obtain the desired result. As for the upper bound,

we argue by contradiction. Suppose that there exists ε > 0 such that there exists
a divergent sequence (rn)→∞ such that

N(rn) ≥
(

2π√
3

+ ε

)
r2
n.

Let us pick a sufficiently large rn and let us tile R2 using disks of radius rn in the
fashion of a square or hexagonal lattice (it does not really matter). This allows us
to cover a large amount of space with very efficient 1-separated point sets.

Figure 2. Using more disks with smaller radii allows for more
precise approximation.

We then refine the disk packing by packing disks of smaller radius (see Fig.
2) between the big disks and use a standard hexagonal lattice to fill those disks.
We can iterate this construction until we capture ∼ 1− of the entire plane. Note
that, since rn can be chosen to be arbitrarily large, this can always be done with
a finite number of steps only depending on ε. However, this then allows us to
generate a period packing of disks whose asymptotic density exceeds π/

√
12 which

is a contradiction to the fact that the asymptotically densest packing is given by
the hexagonal lattice (see Fejes Tóth [8]).

�

2.3. Proof of the Proposition.

Proof. Let p > 0 and let {z1, . . . , zn} ⊂ R2 be a 1-separated set. Our goal is to
prove a lower bound on

1

min
i 6=j
|zi − zj |

(
n∑
i=1

|zi|p
)1/p

.
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We use invariance under dilation to assume without loss of generality that

min
i 6=j
|zi − zj | = 1

and this will be assumed in all subsequent arguments. We abbreviate

M := max
1≤i≤n

|zi|.

Note that the Lemma implies that M cannot be too small: there cannot be too
many 1−separated points close to the origin. Indeed, the Lemma implies that for
every ε > 0 there is an n0 such that for every n ≥ n0

(3) M >
31/4 − ε√

2π

√
n.

We now write
n∑
i=1

|zi|p = p

n∑
i=1

∫ |zi|
0

yp−1 dy

= p

∫ M

0

yp−1 ·# {1 ≤ i ≤ n : |zi| > y} dy

= p

∫ M

0

yp−1 · (n−# {1 ≤ i ≤ n : |zi| ≤ y}) dy

≥ p
∫ M

0

yp−1 max(n−N(y), 0) dy.

Using our lower bound on M , we have

n∑
i=1

|zi|p ≥ p
∫ 31/4−ε√

2π

√
n

0

yp−1 max

(
n− 2π√

3
y2 + o(y2), 0

)
dy

=

(
31/4 − ε√

2π

√
n

)p(
1− p

p+ 2

(31/4 − ε)2

√
3

)
n+ o

(
n
p+2
2

)
,

which implies the Proposition. For p = ∞, the assertion is just equation (3).
By observing that the bounds used for N(r) are sharp to leading order for the
hexagonal lattice, we see that all the inequalities are asymptotically sharp which
establishes the second half of the statement. However, the upper bound could also
be established using a direct computation, valid for p > 1, using the construction
in [2, Lemma 2.27]: For any given n, we take the first n points in the unit-side
triangular lattice, with increasing modulus (if two points have the same modulus,
we take any of them). We first note that the function z → |z|p is convex, hence by
Jensen’s inequality, for any regular hexagon H centered at zi we have

Ez∈H(|z|p) ≥ |Ez∈H(z)|p = |zi|p,
where E has to be understood as the expected value with respect to one Voronoi
cell in the hexagon. Since by construction the points are in the unit-side triangular
lattice, the Voronoi cells surrounding each zi are hexagons Hi and we thus have

n∑
i=1

|zi|p ≤
n∑
i=1

Ez∈Hi(|z|p) =
1

vol(H)

∫
⋃
iHi

|z|p dz.

(note that all the hexagons have the same area, which we denote by vol(H) =√
3/2). Now, from the Lemma it follows that in the disk of radius r there are at
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least 2πr2/
√

3+O(r1/3
√

log r) points of the unit–side triangular lattice. Therefore,

it follows that all the Hi are contained in a disk of radius rn := 31/4
√
n/
√

2π+o(n),
which yields

n∑
i=1

|zi|p ≤
1

vol(H)

∫
|z|≤rn

|z|p dz

=
2πrp+2

n

(p+ 2)vol(H)
=

4π3
p+2
4

√
3(p+ 2)(2π)1+p/2

n1+p/2 + o(n1+p/2),

which proves the upper bound. �
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