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a b s t r a c t

In this paper, we derive and study a new mathematical model that describes
the onset of angiogenesis. This new model takes the form of a nonlocal Burgers
equation with both diffusive and dispersive terms. For a particular value of the
parameters, the equation reduces to

∂tp −
1
2

(−∆)(α−1)/2H∂tp = −
1
2

(−∆)α/2p + p∂xp − ∂xp,

where H denotes the Hilbert transform. In addition to the derivation of the new
model, the main novelty of the present paper is that we also prove a number
of well-posedness results. Finally, some preliminary numerical results are shown.
These numerical results suggest that the dynamics of the equation is rich enough
to have solutions that blow up in finite time.
© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The motion of cells in response to different values of chemical concentrations is known as chemotaxis.
On the one hand, when the chemical is diffusible, the resulting problem has been heavily studied by many
different authors since the pioneer work of Patlak [33]. On the other hand, in the case of non-diffusible signals
that are deposited by the cells the resulting system of partial differential equations is⎧⎨⎩ ∂tu = −(−∆)α/2u + χ∂x

(
u

∂xw

w

)
,

∂tw = uw,

for x ∈ T, t ≥ 0, (1)

here T = [−π, π] with periodic boundary conditions and (−∆)α/2 with 0 ≤ α ≤ 2 is the fractional Laplacian
efined in Fourier variables with the multiplier |k|α (see the notation section below). Here u describes the
oncentration of cells and w describes the density of the chemical. In this paper we will assume that χ > −1.

In the case when α = 2 and χ < 0, this system was proposed by Othmer & Stevens [36, Equation (78)]
o model cells moving randomly that deposit a non-diffusible signal that modifies the local environment
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or subsequent movement. For instance, one can consider the movement of myxobacteria or ants. Indeed,
yxobacteria produce slime over which other myxobacteria can move easily and ants can follow trails left
y other ants. Such a chemotactic motion is a crucial step in many different biological phenomena ranging
rom slime mold aggregation [23] to the formation of new blood vessels from pre-existing blood vessels in a
rocess that is called angiogenesis [25].

Angiogenesis is a very complicated phenomenon that appears in many different biological situations. Due
o its importance, it has been studied by many different authors in the mathematical community (see for
nstance [12,14,16,17,25–29,37] and the references therein). Angiogenesis is also a key step during tumor
rowth. Roughly speaking (see [26] for a more detailed description), endothelial cells are located in the
nner part of blood vessels, lying over a part of the extracellular matrix called the basal lamina. Then, during
ertain stage of tumor growth, the tumor induce angiogenesis by releasing angiogenic factors. Activated by
hese chemicals, endothelial cells in nearby capillaries thicken and accumulate in certain regions. Following
ctivation, cell-released proteases degrade the basal lamina adjacent to the activated endothelial cells. The
ndothelial cells loosen their contact with their neighbor cells and begin to penetrate the basal lamina. Then
he vessel wall dilates as the endothelial cells accumulate and a sprout is formed. This sprout is composed
f endothelial cells where the angiogenic stimulus has reached a threshold. This new capillary network then
upplies nutrients to the tumor colony and allow for further tumor expansion.

The purpose of this paper is to derive and study new mathematical models to describe angiogenesis. In
articular, the main novelty elements of the article are from the analytical point of view. In that regards,
ystem (1) serves as a starting point. In particular, (1) were also derived by Levine, Sleeman & Nilsen-
amilton [26, Equation (7.2.1)] (to obtain (1) from equation (7.2.1) take θ ≡ 0 and rename the parameters
nd unknowns) to describe the initial step of capillary formation in tumor angiogenesis (see also Levine,
leeman [35]). Similar equations were also derived in [25, Equations (4.1) and (4.2)] and [26, Equation
2.2.8)]. In these works, the movement of endothelial cells is modeled using the idea of reinforced random
alks and the extracellular matrix is modeled with only one of its components, fibronectin [26]. Fibronectin
lays an important role in the attachment and migration of cells. In this framework, u describes the

concentration of endothelial cells and w describes the density of capillary wall, represented by fibronectin [25].
The core of the idea is that the accumulation of endothelial cells in certain region along a capillary is
stimulated by low levels of fibronectin [26].

In this paper we derive the following Burgers equation with a dispersive term

∂tp − 1
2(−∆)(α−1)/2H∂tp = − 1

2ε
(−∆)α/2p + χp∂xp − β

ε
∂xp, (2)

here H is the Hilbert transform and (−∆)s/2 is the fractional Laplacian. These two are singular integral
perators that can also be defined using Fourier variables (see below for proper definitions). Setting

β = χ − 1
2 ,

a small parameter and
∂x log(w) = εp

q. (2) appears as an asymptotic model of (1) for near homogeneous values of endothelial cell density

u(x, t) = 1 + εh(x, t).

Burgers equations with nonlocal terms of diffusive type such as

∂ p = −(−∆)α/2p + p∂ p,
t x

2
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ave been the topic of study of different research groups in the last years. In terms of the dychotomomy
lobal well-posedness vs finite time blow up phenomena, Kiselev, Nazarov & Shterenberg [24] and Dong, Du

Li [13] established the global existence for large values of α together with a finite time singularity result
or small values of α (see also [7,11]). Other properties of the solution have also been the goal of different

research projects [1,4,22].
In the case of dispersive regularizations of Burgers equations, Linares, Pilod & Saut [30] and Molinet,

Pilod & Vento [31] studied the global solvability of a Whitham type equations

∂tp = (−∆)α/2∂xp + p∂xp.

ispersive Burgers equations are known to have singularities in finite time [9,21,34]. Particular mention must
e done to the dispersionless Burgers–Hilbert equation

∂tp = Hp + p∂xp.

here, the singularities occur [9,34] but they do at later times than suggested by standard energy esti-
ates [19,20]. Also, stability of traveling waves [10] and global existence of weak solutions are known [5].

.1. Notation

We introduce the Hilbert transform

Hf(α) = 1
2π

P.V.

∫
T

f(y)
tan((x − y)/2)dy.

his singular integral operator is the following multiplier operator in the Fourier variables

f̂(k) = 1√
2π

∫
T

f(x) e−ikxdx,

namely
Ĥf(k) = −isgn(k)f̂(k).

Finally, we introduce the fractional Laplacian operator,

ˆ(−∆)α/2f(k) = |k|αf̂(k).

The functional spaces that we will use in this paper are the L2-based homogeneous Sobolev spaces

Hα(T) =
{

u ∈ L2(T), ∥u∥2
Hα(T) :=

∑
k∈Z

|k|2α|û(k)|2 < ∞

}
.

and the homogeneous Wiener spaces Aα(T) as

Aα(T) =
{

u ∈ L1(T), ∥u∥Aα(T) :=
∑
k∈Z

|k|α|û(k)| < ∞

}
. (3)

2. Derivation

Let us begin with the derivation of (2) from (1). We start with the system (1) written for

q = ∂x log(w),{
∂tu = −(−∆)α/2u + χ∂x(uq),

for x ∈ T, t ≥ 0. (4)

∂tq = ∂xu,

3
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e fix ε a small parameter. After changing variables as follows

u = 1 + εh, q = εp

e find that

∂th = −(−∆)α/2h + εχ∂x(hp) + χ∂xp,

∂tp = ∂xh,

where 0 ≤ α ≤ 2. We use far field variables

ξ = x − t, τ = εt,

so
∂t = ε∂τ − ∂ξ, ∂x = ∂ξ.

hen, the previous system reads

ε∂τ h − ∂ξh = −(−∆)α/2h + εχ∂ξ(hp) + χ∂ξp,

ε∂τ p − ∂ξp = ∂ξh,

ifferentiating the equation for p in the τ variable, we find that

ε2∂2
τ p − ε∂ξ∂τ p = ε∂ξ∂τ h.

ue to the equation for h, we find that

ε2∂2
τ p − ε∂ξ∂τ p = ∂2

ξ h − (−∆)α/2∂ξh + εχ∂2
ξ (hp) + χ∂2

ξ p.

sing that
h = −p + ε

∫
∂τ pdξ,

e find that

ε2∂2
τ p − ε∂ξ∂τ p = ε∂ξ∂τ p − ∂2

ξ p − (−∆)α/2(ε∂τ p − ∂ξp) + εχ∂2
ξ

((
−p + ε

∫
∂τ pdξ

)
p

)
+ χ∂2

ξ p.

hen, if we neglect terms of order O(ε2), we obtain the equation

−2ε∂τ ∂ξp = (−∆)α/2∂ξp − ε(−∆)α/2∂τ p − εχ∂2
ξ (p2) + (χ − 1)∂2

ξ p.

ntegrating in ξ and changing back to our previous notation for the independent variables, we conclude

∂tp − 1
2(−∆)(α−1)/2H∂tp = − 1

2ε
(−∆)α/2p + χp∂xp − χ − 1

2ε
∂xp, (5)

hich is (2) after renaming the parameters. Once we have derived this model, the rest of the paper is devoted
o its mathematical study. Thus, from this point onwards, and for the sake of generality, we consider that
he parameter ε can take arbitrary values. To simplify the notation we consider the new variable

p = χp

nd consider the equation

∂tp − 1(−∆)(α−1)/2H∂tp = − 1 (−∆)α/2p + p∂xp − β
∂xp. (6)
2 2ε ε

4
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rom (6), we can further compute(
1 + 1

2(−∆)(α−1)/2H

) (
1 − 1

2(−∆)(α−1)/2H

)
∂tp

= −
(

1 + 1
2(−∆)(α−1)/2H

)
1
2ε

(−∆)α/2p +
(

1 + 1
2(−∆)(α−1)/2H

)
∂x

(
p2

2

)
− β

ε

(
1 + 1

2(−∆)(α−1)/2H

)
∂xp.

sing (
1 + 1

2(−∆)(α−1)/2H

) (
1 − 1

2(−∆)(α−1)/2H

)
= 1 + 1

4(−∆)α−1

o p solves

∂tp + 1
4(−∆)α−1∂tp = −β + 1

2ε
(−∆)α/2p − 1

4ε
(−∆)α−1/2Hp + ∂x

(
p2

2

)
+ (−∆)α/2

(
p2

4

)
− β

ε
∂xp. (7)

e observe that this equation resembles the classical BBM equation [3] or the Buckley–Leverett equation [6,
] (see also [32]).

. The case α = 0

In the case α = 0, Eq. (7) reads as follows

∂tp + 1
4(−∆)−1∂tp = − 1

2ε
p − 1

4ε
(−∆)−1/2Hp + ∂x

(
p2

2

)
+ p2

4 − β

ε

(
∂xp + 1

2p

)
.

aking −∆ of the previous equation and using that

(−∆)1/2H = −∂x,

e compute
− ∆∂tp + 1

4∂tp = 1 + β

2ε
∆p + 1

4ε
∂xp − ∂3

x

(
p2

2

)
− ∆

(
p2

4

)
+ β

ε
∂3

xp. (8)

or this equation we have the following well-posedness theorem:

heorem 1 (Strong Well-Posedness for α = 0). Let p0 ∈ H2 be a zero-mean initial data, β > −1 and ε > 0
e fixed constants. Then there exists a unique local solution to (8)

p ∈ C([0, Tmax), H2) ∩ L2(0, Tmax; H2)

or a small enough 0 < Tmax ≪ 1. Furthermore, there exists 0 < c0 such that if

∥∆p0∥L2 + 1
4∥∂xp0∥2

L2 ≤ c0,

hen we have that there exists a unique global solution to (8)

p ∈ C([0, T ), H2) ∩ L2(0, T ; H2) ∀ T > 0

manating from this initial data. Furthermore, the solution verifies

∥∆p∥L2 + 1∥∂xp∥2
L2 + β + 1 ∫ t

∥∆p(s)∥2
L2ds ≤ C(p0).
4 2ε 0

5
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roof. The proof follows from appropriate energy estimates after a standard regularization using for
instance a Galerkin approximation (see [2,18] for a similar approach using mollifiers). Thus, we focus on
obtaining the bona fide energy estimates. We start noticing that the zero-mean property is propagated in
ime. Testing (8) against −∆p, we find

1
2

d

dt

(
∥∆p∥2

L2 + 1
4∥∂xp∥2

L2

)
= −1 + β

2ε
∥∆p∥2

L2 +
∫
T
∆p∂3

x

(
p2

2

)
dx +

∫
T
∆p∆

(
p2

4

)
dx.

e have that

I1 =
∫
T
∆p∂3

x

(
p2

2

)
dx

= −1
2

∫
T

∂3
xp∂2

x

(
p2)

dx

= −1
2

∫
T

∂3
xp

(
2p∂2

xp + 2(∂xp)2)
dx

= 5
2

∫
T

∂xp(∂2
xp)2dx (9)

imilarly,

I2 =
∫
T
∆p∆

(
p2

4

)
dx

= 1
4

∫
T

∂2
xp

(
2p∂2

xp + 2(∂xp)2)
dx

= 1
2

∫
T

p(∂2
xp)2pdx. (10)

hen, we define
E(t) = ∥∆p(t)∥2

L2 + 1
4∥∂xp(t)∥2

L2 .

he zero-mean property leads us to
∥p∥L∞ ≤ 2π∥∂xp∥L∞ .

he previous inequality, Hölder’s inequality and Sobolev embedding, allow us to conclude the inequality

d

dt
E(t) ≤ −1 + β

ε
∥∆p∥2

L2 + C∥∂xp∥L∞∥∆p∥2
L2 ≤ CE(t)3/2,

here we have used
∥∂xp∥2

L∞ ≤ C∥∂xp∥L2∥∆p∥L2 ≤ CE(t).

he local existence follows from the previous inequality using a classical regularization procedure (see,
or instance, [2,8,18]). The uniqueness follows from a standard contradiction argument together with the
egularity of the solution. Similarly, using the previous computations, we can find the inequality

d

dt
E(t) ≤

(
C

√
E(t) − 1 + β

ε

)
∥∆p∥2

L2 .

s a consequence, if
E(0) ≪ 1

hen
d

dt
E(t) ≤ 0

nd the solution is global.

6
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Fig. 1. The solution for different times.

We can simplify the previous Eq. (8) and find that

∂tp = β + 1
2ε

K∂2
xp + 1

4ε
K∂xp − K∂3

x

(
p2

2

)
− K∆

(
p2

4

)
+ β

ε
K∂3

xp.

here
K̂(k) = 1

1
4 + k2 .

Written in this form, the equation is ready to be implemented using a Fourier collocation method to discretize
in space. Then, the integration in time can be carried out using a standard Runge–Kutta procedure. In
particular, after simulating the case α = 0 using a variable step Runge–Kutta 4–5 with N = 212 spatial
nodes, ε = 1, β = 2 and initial data

p(x, 0) = −2 sin(4x),

e obtain the solution plotted in Figs. 1 and 2. There we can see numerical evidence of finite time singularity
ormation as the solution seems to steepen up and the derivative seems to blow up.

. The case α = 1

In this section we consider the case α = 1. This case is critical in the sense that every differential operator,
regardless of its parabolic or hyperbolic character, is of order one. Then (7) reduces to

5
4∂tp = − 1

2ε
(−∆)1/2p − 1

4ε
(−∆)1/2Hp + ∂x

(
p2

2

)
+ (−∆)1/2

(
p2

4

)
− β

ε

(
∂xp + 1

2(−∆)1/2p

)
.

ecalling
(−∆)1/2H = −∂x,

e find the equation

5
∂tp = −β + 1(−∆)1/2p +

( 1
4 − β

)
∂xp + p∂xp + (−∆)1/2

(
p2 )

. (11)
4 2ε ε 4
7
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Fig. 2. (a) ∥p(t)∥L∞ as a function of time. (b) ∥∂xp(t)∥L∞ as a function of time.

Theorem 2 (Strong Well-Posedness for α = 1). Let p0 ∈ H2 be a zero-mean initial data, β > −1 and ε > 0
be fixed constants. Then there exists 0 < c0 such that if

∥p0∥A0 ≤ c0,

then we have that there exists a unique global solution to (11)

p ∈ C([0, T ), H2) ∩ L2(0, T ; H2) ∀ T > 0

manating from this initial data. Furthermore, the solution verifies

∥p(t)∥A1 + β + 1
5ε

∫ t

0
∥p(s)∥A2ds ≤ C(p0).

roof. As before, the well-posedness will follow from appropriate energy estimates and a regularization
pproach. As before, we start noticing that the zero-mean property is propagated in time. In order to obtain
he global existence of solution, we start estimating ∥p∥A0 . We have that

∂t|p̂(t, k)| = ℜ(p̂(t, k)∂tp̂(t, k))
|p̂(t, k)| ,

o, using the inequality
∥FG∥A0 ≤ ∥F∥A0∥G∥A0 ,

e have that
5
4

d

dt
∥p∥A0 + β + 1

2ε
∥p∥A1 ≤ ∥p∥A0∥p∥A1 + 1

4∥p2∥A1 .

sing the triangle inequality to find

∥p2∥A1 ≤
∑

k

|k|
∑

n

|p̂(k − n)∥p̂(n)| ≤
∑

k

∑
n

(|k − n| + |n|)|p̂(k − n)∥p̂(n)| ≤ 2∥p∥A0∥p∥A1 ,

e conclude
5 d ∥p∥ 0 + β + 1∥p∥ 1 ≤ 3∥p∥ 0∥p∥ 1 .
4 dt A 2ε A 2 A A

8
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hen, if the initial data is small enough, we conclude the estimate

∥p(t)∥A0 + β + 1
5ε

∫ t

0
∥p(s)∥A1ds ≤ C(p0).

epeating the computation for ∂xp, we find that

5
4

d

dt
∥p∥A1 + β + 1

2ε
∥p∥A2 ≤ ∥p∥A0∥p∥A2 + ∥p∥2

A1 + 1
4∥p2∥A2 .

e compute

∥p2∥A2 =
∑

k

|k|2
∑

n

|p̂(k − n)∥p̂(n)| ≤
∑

k

∑
n

C(|k − n|2 + |n|2)|p̂(k − n)∥p̂(n)| ≤ C∥p∥A0∥p∥A2 .

e now observe that (see [15])
∥p∥2

A1 ≤ C∥p∥A0∥p∥A2 .

Then,
d

dt
∥p∥A1 + 2β + 2

5ε
∥p∥A2 ≤ C∥p∥A0∥p∥A2 ,

nd, if the initial data is small enough,

∥p(t)∥A1 + β + 1
5ε

∫ t

0
∥p(s)∥A2ds ≤ C(p0).

ow we multiply (11) by ∂4
xp and integrate by parts to find

5
8

d

dt
∥p∥2

H2 + β + 1
2ε

∥p∥2
H2.5 ≤ −

∫
T

∂2
x

(
p2

2

)
∂3

xpdx +
∫
T

∂2
x

(
p2

4

)
(−∆)1/2∂2

xpdx.

urther integrations by parts together with Hölder and Sobolev inequalities show that

−
∫
T

∂2
x

(
p2

2

)
∂3

xpdx ≤ C∥∂xp∥L∞∥∂2
xp∥2

L2 .

he remainder nonlinear term can be estimated using a duality H1/2 − H−1/2 argument as follows

1
2

∫
T
(p∂2

xp + (∂xp)2)(−∆)1/2∂2
xpdx ≤ C∥p∂2

xp∥H1/2∥(−∆)1/2∂2
xp∥H−1/2 + C∥∂2

xp∥L2∥(∂xp)2∥H1

From the previous inequality, we obtain that

5
8

d

dt
∥p∥2

H2 + β + 1
2ε

∥p∥2
H2.5 ≤ C∥∂xp∥L∞∥p∥2

H2.5 ≤ C∥p∥A1∥p∥2
H2.5 .

f the initial data is small enough then we conclude

∥p(t)∥2
H2 + β + 1

ε

∫ t

0
∥p(s)∥2

H2.5ds ≤ C(p0).

his concludes with the global existence part. The uniqueness follows using a standard contradiction
rgument using the regularity of the solutions.

A numerical study of the equation with values N = 210 spatial nodes, ε = 1, β = 2 and initial data

p(x, 0) = −4 sin(10x)

an be seen in Fig. 3. There the solution appears to exists globally and decay towards the flat equilibrium
tate. We think that is the case for initial data for which the linear part is dominant, however, we think that
n ill-posedness result for large data should also be true. This is left for a future work.
9
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Fig. 3. ∥p(t)∥L∞ as a function of time.

5. The case α = 2

In this section we consider the case α = 2. Then Eq. (7) reads

∂tp − 1
4∆∂tp = 1 + β

2ε
∆p − 1

4ε
∂3

xp + p∂xp − ∆

(
p2

4

)
− β

ε
∂xp. (12)

heorem 3 (Strong Well-Posedness for α = 2). Let p0 ∈ H2 be a zero-mean initial data, β > −1 and ε > 0
e fixed constants. Then there exists a unique local solution to (12)

p ∈ C([0, Tmax), H2) ∩ L2(0, Tmax; H2)

or a small enough 0 < Tmax ≪ 1. Furthermore, there exists 0 < c0 such that if

∥p0∥2
L2 + 1

4∥∂xp0∥2
L2 ≤ c0,

hen we have that there exists a unique global solution to (12)

p ∈ C([0, T ), H2) ∩ L2(0, T ; H2) ∀ T > 0

manating from this initial data. Furthermore, the solution verifies

∥∂xp(t)∥2
L2 + 1

4∥∆p(t)∥2
L2 + β + 1

2ε

∫ t

0
∥∆p(s)∥2

L2ds ≤ C(p0).

roof. We observe that the zero-mean property is propagated in time. We focus on obtaining the
ppropriate energy estimates. Testing (12) against −∆p and integrating by parts, we find that

d

dt

(
∥∂xp∥2

L2 + 1
4∥∆p∥2

L2

)
= −β + 1

ε
∥∆p∥2

L2 −
∫
T

p∂xp∆pdx +
∫
T
∆

(
p2

4

)
∆pdx.

f we define now
E(t) = ∥∂xp(t)∥2

L2 + 1
4∥∆p(t)∥2

L2 ,

sing (10) and another integration by parts, we conclude the inequality

d
E(t) ≤ −β + 1∥∆p∥2

2 + C(∥p∥L∞ + ∥∂xp∥L∞)E(t) ≤ E(t)3/2,

dt ε L

10
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rom where the local existence follows using a classical regularization procedure (see, for instance, [2,8,18]).
he uniqueness follows using a standard contradiction argument using the regularity of the solutions. To
btain the global existence now we test Eq. (12) with p and integrate by parts. We find that

d

dt

(
∥p∥2

L2 + 1
4∥∂xp∥2

L2

)
= −β + 1

ε
∥∂xp∥2

L2 +
∫
T
∆

(
p2

4

)
pdx.

e can also compute ∫
T
∆

(
p2

4

)
pdx = −1

2

∫
T

p(∂xp)2dx ≤ C∥p∥L∞∥∂xp∥2
L2

urthermore, if we define
F (t) = ∥p(t)∥2

L2 + 1
4∥∂xp(t)∥2

L2 ,

obolev embedding and Young’s inequality lead us to

∥p∥L∞ ≤ C
√

F (t),

o we also find that
d

dt
F (t) ≤

(
C

√
F (t) − 1 + β

ε

)
∥∂xp∥2

L2 ,

nd we conclude the global uniform bound in H1

F (t) ≤ F (0),

or small enough initial data in H1. Once the global bound in H1 is achieved, we turn our attention to the
revious estimates in H2. A finer study together with Poincaré inequality shows that

d

dt
E(t) ≤ −β + 1

ε
∥∆p∥2

L2 + C∥p∥L∞∥∆p∥2
L2 .

s a consequence
d

dt
E(t) ≤

(
C

√
F (0) − β + 1

ε

)
∥∆p∥2

L2 .

rom where we can conclude the global existence for small data with a standard continuation argument.

Eq. (12) can be equivalently written as

∂tp = 1 + β

2ε
J∆p − 1

4ε
J ∂3

xp + J (p∂xp) − J∆

(
p2

4

)
− β

ε
J ∂xp.

ith
Ĵ (k) = 1

1 + k2
4

.

sing this formulation, we can run simulations using the previously mentioned Fourier collocation to
iscretize in time and Runge–Kutta 4–5 to advance in time. Then, if we fix N = 212 spatial nodes, ε = 1,
= 2 and initial data

p(x, 0) = −6 sin(4x2),

e obtain the plots 4. We see that the solution seem to exists globally and to decay towards the flat
quilibrium. This is also the case for a number of different initial data that we also considered. Based on
his we are tempted to say that the solution is probably globally defined regardless of the size of the initial
ata, however, the proof of this claim is left for a future work.
11
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Fig. 4. (a) ∥p(t)∥L∞ as a function of time. (b) ∥∂xp(t)∥L∞ as a function of time.

6. The case with general α

In this section we prove the well-posedness of (7) for general value of α:

Theorem 4. Let α ≥ 0, β > −1 and ε > 0 be fixed constants. Define

r = max{2, 1 + α}.

Let p0 ∈ Hr be a zero-mean initial data. There exists 0 < c0 such that if

∥p0∥2
H2 + 1

4∥(−∆)(α−1)/2p0∥2
H2 ≤ c0,

hen we have that there exists a unique global solution to (7)

p ∈ C([0, T ), Hr) ∩ L2(0; T ; H2+ α
4 ) ∀ T > 0

emanating from this initial data. Furthermore, the solution verifies

∥p(t)∥2
H2 + 1

4∥(−∆)(α−1)/2p(t)∥2
H2 + β + 1

2ε

∫ t

0
∥(−∆)α/4∂2

xp(s)∥2
L2ds ≤ C(p0).

roof. As before, we focus on obtaining appropriate energy estimates. Similarly, the solution maintains
he zero-mean property. Multiplying (7) by p and integrating by parts to find

1
2

d

dt

(
∥p∥2

L2 + 1
4∥(−∆)(α−1)/2p∥2

L2

)
= −β + 1

2ε
∥(−∆)α/4p∥2

L2 +
∫

(−∆)α/2
(

p2

4

)
pdx

≤ −β + 1
2ε

∥(−∆)α/4p∥2
L2 + C∥p∥L∞∥(−∆)α/4p∥2

L2 ,

here we have used the fractional Leibniz rule

∥(−∆)s/2(FG)∥Lq ≤ C
(

∥(−∆)s/2F∥Lq1 ∥G∥Lq2 +∥(−∆)s/2G∥Lq3 ∥F∥Lq4

)
,

ith s > max{0, 1/q − 1}
1 = 1 + 1 = 1 + 1 where 1/2 < q < ∞, 1 < pi ≤ ∞.

q q1 q2 q3 q4

12
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imilarly, if we now multiply (7) by ∂4
xp, we obtain that

1
2

d

dt

(
∥∂2

xp∥2
L2 + 1

4∥(−∆)(α−1)/2∂2
xp∥2

L2

)
= −β + 1

2ε
∥(−∆)α/4∂2

xp∥2
L2 + I1 + I2

with
I1 =

∫
T

p∂xp∂4
xpdx ≤ 5

2∥∂xp∥L∞∥∂2
xp∥2

L2

I2 =
∫
T
(−∆)α/2

(
p2

4

)
∂4

xpdx,

here we have used (9). Similarly, we compute that

I2 = −
∫
T
(−∆)α/4+1

(
p2

4

)
(−∆)α/4∂2

xpdx

≤ C∥p∥L∞∥(−∆)α/4∂2
xp∥2

L2

s a consequence, we conclude that

d

dt

(
∥p∥2

H2 + 1
4∥(−∆)(α−1)/2p∥2

H2

)
≤ −β + 1

ε
∥(−∆)α/4p∥2

L2 + C∥∂xp∥L∞∥(−∆)α/4p∥2
L2

− β + 1
ε

∥(−∆)α/4∂2
xp∥2

L2 + C∥∂xp∥L∞∥(−∆)α/4∂2
xp∥2

L2 .

sing the Sobolev embedding, we find that

∥∂xp∥L∞ ≤ C∥p∥H3/2+δ ∀ δ > 0.

aking δ = 1/2 we conclude that

d

dt

(
∥p∥2

H2 + 1
4∥(−∆)(α−1)/2p∥2

H2

)
≤ −β + 1

ε
∥(−∆)α/4p∥2

L2 + C∥p∥H2∥(−∆)α/4p∥2
L2

− β + 1
ε

∥(−∆)α/4∂2
xp∥2

L2 + C∥p∥H2∥(−∆)α/4∂2
xp∥2

L2

≤ −β + 1
ε

∥(−∆)α/4p∥2
L2

+ C

(
∥p∥2

H2 + 1
4∥(−∆)(α−1)/2p∥2

H2

)1/2
∥(−∆)α/4p∥2

L2

− β + 1
ε

∥(−∆)α/4∂2
xp∥2

L2

+ C

(
∥p∥2

H2 + 1
4∥(−∆)(α−1)/2p∥2

H2

)1/2
∥(−∆)α/4∂2

xp∥2
L2 .

nd, if the initial data is small enough, we find

d

dt

(
∥p∥2

H2 + 1
4∥(−∆)(α−1)/2p∥2

H2

)
+ β + 1

2ε
∥(−∆)α/4∂2

xp∥2
L2 ≤ 0,

rom where we conclude the global existence.
The uniqueness follows using a standard contradiction argument using the regularity of the solutions.

. Discussion

In the present paper we have derived (6) (equivalently (7)). For this equation with parameters taking
alues in certain range we have proved several well-posedness results. In the cases α = 0 and α = 2 we
13
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rove the local well-posedness for arbitrary initial data and the global well-posedness if the initial data is
mall enough in appropriate spaces. Similarly, for the general case α ̸= 0, 2, our result establish the global

well-posedness for initial data satisfying a size restriction. In our opinion, the more challenging case is the
case α = 1. In this case the equation reads

5
4∂tp = −β + 1

2ε
(−∆)1/2p +

( 1
4 − β

)
ε

∂xp + p∂xp + (−∆)1/2
(

p2

4

)
,

nd it is easy to check that it is invariant by the scaling

pλ(x, t) = p(λx, λt).

or the case α = 1 we prove the global well-posedness for initial data satisfying a smallness condition in the
iener algebra. We observe that the Wiener algebra is a critical space for the equation in the sense that its

orm is invariant by the scaling of the equation.
There are a number of future research perspectives. For the case α = 1, the question of local well-posedness

or arbitrary initial data (or ill-posedness for large initial data) in the critical space is still an open question.
imilarly, the question of possible finite time singularity formation remains open.
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