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ABSTRACT
We propose a Bayesian approach to joint source separation and restoration for astrophysical
diffuse sources. We constitute a prior statistical model for the source images by using their
gradient maps. We assume a t-distribution for the gradient maps in different directions, because
it is able to fit both smooth and sparse data. A Monte Carlo technique, called Langevin sampler,
is used to estimate the source images and all the model parameters are estimated by using
deterministic techniques.

Key words: methods: statistical – techniques: image processing – cosmic background radia-
tion – diffuse radiation.

1 IN T RO D U C T I O N

Inferring the cosmic microwave background (CMB) radiation map
is an important task to estimate the cosmological parameters. The
foreground radiation contamination at related observation frequen-
cies, the noise degradation of the instruments and the blur caused
by the antenna apertures make this task very difficult. Under in-
dependent component analysis (ICA) framework, separation of the
CMB radiation from others has been done by Maino et al. (2002).
In Cardoso et al. (2002), Bedini et al. (2005) and Bonaldi et al.
(2007), the noise has been taken into consideration to find the sepa-
ration matrix, and the maps are obtained by using generalized least
square (LS) solution. Wilson, Kuruoglu & Salerno (2008), Eriksen
et al. (2008) and Kayabol, Kuruoglu & Sankur (2009) have used
Bayesian approach for separation and noise removal of the maps.
The point spread functions (PSFs) of the antennas are included in
Bedini & Salerno (2007) and Ricciardi et al. (2010) to estimate a
parametric mixing matrix, but they are not considered in the map
reconstruction process. Hobson et al. (1998) propose a Bayesian
maximum entropy method (MEM) in harmonic domain for dealing
with the different beams at different frequency channels.

In this study, we focus on the problem of multichannel source
separation and restoration from multichannel blurred and noisy ob-
servations with channel-variant PSF. The resolutions of the ob-
served channel maps are generally different, since the aperture of
the telescope beam depends on frequency. We perform the source
separation, the de-noising and the de-blurring (DB) processes to-
gether. By considering the previous studies (Bonaldi et al. 2007;
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Ricciardi et al. 2010), we assume that the non-linear parameters
of the mixing matrix are known with an error. Under this assump-
tion, we reconstruct the source maps in the pixel domain by using
a Monte Carlo (MC) technique that has been recently developed
and tested on the astrophysical source separation problem (Kayabol
et al. 2010). Our method is an extended version of the method in
Kayabol et al. (2010) to the convolutional mixture problem and has
also the ability to estimate the mixing matrix.

Studies on separation of convolutional or blurred image mixtures
can be found in the image processing literature. Castella & Pesquet
(2004) extended the contrast function based on ICA technique in the
case of blurring. Anthoine (2005) proposed to solve the same prob-
lem by adapting the existing variational and statistical methods and
modelling the components in wavelet domain. Tonazzini & Gerace
(2005) use the Markov random field (MRF) based image prior in
the Bayesian framework. Shwartz, Schechner & Zibulevsky (2008)
address a solution to the separation of defocus blurred reflections
in the natural scenes by using the sparsity of the short-time Fourier
transform coefficients as priors. In a recent study (Tonazzini, Gerace
& Martinelli 2010), multichannel separation and deconvolution is
proposed for document images. In Hobson et al. (1998), the linear
convolutional mixture problem in CMB and foreground separation
is defined in harmonic domain and, instead of a Gaussian prior of
traditional regularized Wiener filter, introduced a maximum entropy
prior for non-Gaussian components. Stolyarov et al. (2002) apply
the harmonic domain MEM to full-sky components separation. We
use a Bayesian formulation with non-Gaussian MRF prior to in-
clude the effects of the antenna apertures and spatial interactions
of the pixels, and solve the DB and map reconstruction problem
jointly. Since the PSFs of the antennas are known, we easily define
our likelihood function by resorting to them.

In a Bayesian framework, we define prior densities for the
source maps. Because of the blur and the noise, the reconstruction
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problem is very badly conditioned. It means that we have already
lost some detail information on the observed image. The lost infor-
mation in such a case is found in the high-frequency contents of the
images. While choosing our image prior, we consider this situation
and define a prior that models the distribution of the high-frequency
components of the image. We use the most basic high-frequency
components of the image, namely image differentials. We obtain
the image differentials by applying a simple horizontal and verti-
cal gradient operator. The intensities of the image differentials are
very sparse and have a heavy-tailed distribution. We exploit the
t-distribution as a statistical model for the image differentials. The
first examples of use of the t-distribution in inverse imaging prob-
lems can be found in Higdon (1994) and Prudyus, Voloshynovskiy
& Synyavskyy (2001). In Prudyus et al. (2001), it is reported that
the t-distribution approximates accurately the wavelet coefficients
of an image. In recent papers, it has been used for image restoration
(Chantas et al. 2008) and deconvolution (Tzikas, Likas & Galat-
sanos 2009).

In Kayabol et al. (2010), it is empirically shown that the image
differentials of the CMB, synchrotron and dust maps can be mod-
elled by t-distribution, which can be then used in Bayesian source
separation. Since the CMB is assumed to be a Gaussian random
field, the image differentials of CMB are smoother than the other
components. Although it might be modelled as a Gaussian, in this
study we model the CMB differential as a t-distribution by using
the fact that the t-distribution approaches a Gaussian, if its degree
of freedom (d.o.f.) parameter goes to infinity. In computer experi-
ments, we can deal with infinity by replacing it by large numbers.

Using the statistics of the image differentials as a prior for sepa-
ration and reconstruction does not introduce new information into
the data, but emphasizes some part of the data to help the solution
of the problem. The important part of the Bayesian image recon-
struction problem is determining the contribution of the prior to the
solution. If it is defined by the user, the expectations of the user
might be introduced into the solution. It can be useful for natural,
photographic and medical images that are enhanced by the user,
but in the case of astrophysical images, since some of the physical
parameters will be estimated after reconstruction, the contribution
of the prior must be controlled automatically. In this study, the d.o.f.
parameter of the t-distribution controls the contribution of the prior
to the solution, and we estimate this parameter from data along the
iterations. The dispersion (scale) parameter of the t-distribution is
also estimated in the algorithm.

The organization of the paper is as follows. We introduce the
astrophysical component separation problem in the case of convo-
lutional mixtures in Section 2. In Section 3, we define formally
the source separation problem in the Bayesian context, and out-
line the source model, the likelihood and the posteriors. The details
of the source maps and parameters estimations are given in Sec-
tion 4. A number of simulation cases including for five different sky
patches are given in Section 5, and finally conclusions are drawn in
Section 6.

2 C OMPONENT SEPARATION PRO BLEM:
C O N VO L U T I O NA L MI X T U R E S C A S E

Let the ith observed pixel at the kth channel be denoted by yk,i,
where i ∈ {1, 2, . . . , N} represents the lexicographically ordered
pixel index. We assume that the observed images, yk , k ∈ {1, 2, . . . ,
K}, are some linear combinations of source images, sl , l ∈ {1, 2, . . . ,
L}. Taking into account the effect of the telescope, the observation

model can be written as

yk = hk ∗
L∑

l=1

ak,l sl + nk, (1)

where the asterisk means convolution, and hk is the channel-variant
telescope PSF in the kth observation channel, here assumed as
Gaussian and circularly symmetric. The observation model is not an
instantaneous linear mixing, since hk changes for each channel. The
vector nk represents an independent and identically distributed (iid)
zero-mean Gaussian noise with � = σ 2

k IN covariance matrix, where
IN is an identity matrix. Although the noise is not homogeneous
in the astrophysical maps, we assume that the noise variance is
homogeneous within each sky patch and is also known.

3 BAY E S I A N FO R M U L AT I O N O F
A S T RO P H Y S I C A L C O M P O N E N T S E PA R AT I O N

3.1 Source model

We used the self-similarity based image model previously proposed
in Kayabol et al. (2010). In this model, we assume that the intensities
of the neighbouring pixels are closed to each other. To express a
pixel by using its neighbours, we write an auto-regressive source
model using the first order neighbours of the pixel in the direction
d:

sl = αl,dGd sl + t l,d , (2)

where the maximum number of first-order neighbours is eight but
we use only four neighbours, d ∈ {1, . . . , 4}, in the main vertical and
horizontal directions. The matrix Gd is a linear one-pixel shift oper-
ator, αl,d is the regression coefficient and the regression error t l,d is
an iid t-distributed zero-mean vector with d.o.f. parameter β l,d and
scale parameters δl,d. To penalize the large regression error occurred
in the sharp edge regions of the image, we use the t-distribution.
Generally in real images, except the Gaussian distributed ones, the
regression error is better modelled by some heavy-tailed distribu-
tion. The t-distribution can also model the Gaussian distributed
data. Therefore, it is a convenient model for data whose distribu-
tion ranges from Cauchy to Gaussian. In Kayabol et al. (2010),
t-distribution has been fitted to simulated CMB, synchrotron and
dust maps, and gives better results in the sense of mean square
error when compared to Gaussian and Cauchy densities. The mul-
tivariate probability density function of an image modelled by a
t-distribution with mean μl,d (αl,d ) = αl,dGd sl , scale δl,d and d.o.f.
β l,d can be defined as

T (sl |μl,d , δl,d , βl,d ) = �[(N + βl,d )/2]

�(βl,d/2)(πβl,dδl,d )N/2

×
[

1 + ||sl − μl,d ||2
βl,dδl,d

]−(N+βl,d )/2

, (3)

where �(.) is the Gamma function. Using a latent variable, i.e.
ν l,d, the t-distribution can also be written in implicit form using a
Gaussian and a gamma density (Liu & Rubin 1995):

T (sl |μl,d , δl,d , βl,d ) = (4)

∫
N

(
sl |μl,d ,

δl,d IN
νl,d

)
G

(
νl,d |βl,d

2
,
βl,d

2

)
dνl,d . (5)

We use the representation in (5) to estimate the parameters using
expectation maximisation (EM) method.
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1336 K. Kayabol et al.

We can write the density of sl by using the image differentials in
different directions, by assuming directional independence, as

p(sl |
) =
4∏

d=1

T [sl |μl,d (αl,d ), δl,d , βl,d ], (6)

where 
 = {α1:L,1:4, β1:L,1:4, δ1:L,1:4} is the set of all parameter.
We assume uniform priors for αl,d and δl,d and use uninformative

Jeffrey’s prior for β l,d; β l,d ∼ 1/β l,d.

3.2 Likelihood

Since the observation noise is assumed to be independent and iden-
tically distributed zero-mean Gaussian at each pixel, the likelihood
is expressed as

p( y1:K |s1:L,A) ∝
K∏

k=1

exp
{−W

(
s1:L| yk,A, σ 2

k

)}
(7)

W
(

s1:L| yk,A, σ 2
k

) =

∣∣∣∣∣∣( yk − Hk

∑L
l=1 ak,l sl

)∣∣∣∣∣∣2

2σ 2
k

, (8)

where y1:K and s1:L represent the set of all observed and source
images. The mixing matrix A contains all the mixing coefficients
ak,l introduced in (1). We assume uniform priors for ak,l. Matrix
Hk is the Toeplitz convolution matrix constituted by hk introduced
in (1).

3.3 Posteriors

By taking into account the parameters of the source priors, we write
the joint posterior density of all unknowns as

p(s1:L,A, 
| y1:K ) ∝ p( y1:K |s1:L,A)p(s1:L,A, 
), (9)

where p( y1:K |s1:L,A) is the likelihood and p(s1:L,A, 
) is the
joint prior density of unknowns. The joint prior can be factorized as
p(s1:L|α1:L,1:4, β1:L,1:4, δ1:L,1:4) p(A) p(β1:L,1:4) p(δ1:L,1:4) p(α1:L,1:4).
Furthermore, since the sources are assumed to be independent, the
joint probability density of the sources is also factorized as

p(s1:L|
) =
L∏

l=1

p(sl |
). (10)

For estimating all of the unknowns, we write their conditional
posteriors as

p(ak,l | y1:K, s1:L,A−ak,l
, 
) ∝ p( y1:K |s1:L,A)

p(αl,d | y1:K, s1:L,A, 
−αl,d
) ∝ p(sl |
)

p(βl,d | y1:K, s1:L,A, 
−βl,d
) ∝ p(sl |
)p(βl,d )

p(δl,d | y1:K, s1:L,A, 
−δl,d
) ∝ p(sl |
)

p(sl | y1:K, s(1:L)−l ,A, 
) ∝ p( y1:K |s1:L,A)p(sl |
), (11)

where ‘–variable’ expressions in the subscripts denote the removal
of that variable from the variable set.

The ML estimation of the parameters αl,d, β l,d and δl,d using
the EM method (Liu & Rubin 1995) is given in Section 4.3. To
estimate the source images, we use a version of the posterior p(sl |.)
augmented by auxiliary variables and find the estimate by means of
a Langevin sampler. The details are given in Section 4.

4 ESTIMATION O F A STRO PHYSICAL MAPS
A N D PA R A M E T E R S

In this section, we give the estimation of the mixing matrix, source
maps and their parameters.

4.1 Mixing matrix

We assume that the prior of A is uniform between 0 and ∞. From
(11), it can be seen that the posterior density of ak,l only depends on
the Gaussian likelihood in (7). We can find the maximum likelihood
estimate of ak,l as

ak,l = 1

sT
l HT

k Hk sl

sT
l HT

k

(
yk − Hk

L∑
i=1,i �=l

ak,i si

)
u(ak,l), (12)

where u(ak,l) is the unit step function.

4.2 Astrophysical map estimation

We simulate the astrophysical maps from their posteriors using
a Markov Chain Monte Carlo (MCMC) scheme. In the classical
MCMC schemes, a random walk process is used to produce the
proposal samples. Although random walk is simple, it affects the
convergence time adversely. The random walk process uses only
the previous sample for producing a new proposal. Instead of a ran-
dom walk, we use the Langevin stochastic equation, which exploits
the gradient information of the energy function to produce a new
proposal. Since the gradient directs the proposed samples towards
the mode, the final sample set will mostly come from around the
mode of the posterior. The Langevin equation used in this study is
written as

sk+1
l = sk

l − 1

2
Dg

(
sk

1:L

) + D1/2wl , (13)

where g(sk
1:L) = [∇sl

E(s1:L)]s1:L=sk
1:L

, ∇sl
is the gradient with

respect to sl and the diagonal matrix D1/2 contains the dis-
crete time-steps τ l,n, n = 1 : N. The total energy function E(s1:L)
is proportional to the negative logarithm of the posterior as −
log p(sl | y1:K, s(1:L)−l ,A, 
). For the ith pixel, the diffusion coef-
ficient is Dn,n = τ 2

l,n. Here, matrix D is referred to as the diffusion
matrix. We determine it by taking the inverse of the diagonal of the
Hessian matrix of E(s1:L). Rather than the expectation of the inverse
of Hessian matrix, we use its diagonal calculated by the value of
sl at the discrete time k as (Becker & Le Cun 1989; Kayabol et al.
2010)

D = 2
[〈
H

(
sk
l

)〉]−1
, (14)

where H(sk
l ) = diag {H(sl)}sl=sk

l
and the operator diag{.} extracts

the main diagonal of the Hessian matrix.
Since the random variables for the image pixel intensities

are produced in parallel by using (13), the procedure is faster
than the random walk process adopted in (Kayabol et al. 2009).
Equation (13) produces a candidate map sample by taking into ac-
count the noise, the channel-variant blur and the mixing matrix.
Unlike LS solution, this equation does not contain any matrix inver-
sion. The derivation details of the equation can be found in Kayabol
et al. (2010).

After the sample production process, the samples are applied
to a Metropolis–Hastings (Hastings 1970) scheme pixel-by-pixel.
The acceptance probability of any proposed sample is defined as
min{ϕ(sk+1

l,n , sk
l,n), 1}, where

ϕ
(
sk+1
l,n , sk

l,n

) ∝ e−E
(

sk+1
l,n

)
q

(
sk
l,n|sk+1

l,n

)
q

(
sk+1
l,n |sk

l,n

) , (15)
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where E(sk+1
l,n ) = E(sk+1

l,n ) − E(sk
l,n) and E(sk

l,n) = W (sk
1:L,n) +

U (sk
l,n). For any single pixel, U(sl,n) can be derived from (3) and (6)

as

U (sl,n) =
D∑

d=1

1 + βl,d

2
log

[
1 + φd (sl,n, αl,d )

βl,dδl,d

]
. (16)

The proposal density q(sk+1
l,n |sk

l,n) is obtained, from (13), as

N
[
sk+1
l,n

∣∣sk
l,n + τl,n

2
g

(
sk
l,n

)
, τ 2

l,n

]
. (17)

The Metropolis–Hastings steps and the Langevin proposal
equation are embedded into the main algorithm, as detailed in
Appendix A. With this algorithm, we approach the solution iter-
atively, avoiding the inversion of the convolution matrix Hk and the
mixing matrix A.

4.3 Parameters of t-distribution

We find the mode estimates of the parameters of the t-distribution
using EM method. We can write the joint posterior of the
parameters αl,d, β l,d and δl,d such that p(αl,d , βl,d , δl,d |t l,d ,


−{αl,d ,βl,d ,δl,d }) = p(t l,d |
)p(βl,d ). In EM, rather than maximiz-
ing log

{
p(t l,d |
)p(βl,d )

}
, we maximize the following function

iteratively


k+1 = arg max



Q(
; 
k), (18)

where superscript k represents the iteration number and

Q(
; 
k) = 〈
log{p(t l,d |
)p(βl,d )}〉

νl,d |tkl,d ,
k , (19)

where p(νl,d |tk
l,d ,


k) is the posterior density of the hidden variable
ν l,d conditioned on parameters estimated in the previous step k, and
〈.〉νl,d |tkl,d ,
k represents the expectation with respect to νl,d |tk

l,d ,

k .

For simplicity, hereafter we use only the notation 〈.〉 to represent
this expectation.

In the E (expectation) step of the EM algorithm, the posterior
expectation of ν l,d is found as (in Kayabol et al. 2010)

〈νl,d〉 = N + βk
l,d

βk
l,d

[
1 + φd

(
sk
l , α

k
l,d

)
βk

l,dδ
k
l,d

]−1

. (20)

In the M (maximization) step, (19) is maximized with respect
to 
. To maximize this function, we alternate among the variables
αl,d, β l,d and δl,d. The solutions are found as

αl,d = sT
l GT

d sl

sT
l GT

d Gd sl

(21)

δl,d = 〈νl,d〉φd (sl , αl,d )

N
. (22)

The maximization with respect to β l,d does not have a simple
solution. It can be solved by setting its first derivative to zero:

−ψ1(βl,d/2) + log βl,d + 〈log νl,d〉 − 〈νl,d〉 + 1 = 0 (23)

where ψ1(.) is the first derivative of log �(.) and it is called digamma
function.

4.4 Technical details of the algorithm

We represent the proposed adaptive Langevin sampler (ALS) algo-
rithm in Appendix A. The symbol ‘←−’ denotes analytical update,
the symbol ‘←−0’ denotes update by finding zero and the symbol

‘∼’ denotes the update by random sampling. The sampling of the
sources is done by the Metropolis–Hastings scheme with Langevin
proposal equation. The random map produced by Langevin proposal
is applied to a threshold function to keep the intensities of the maps
in the physical margins. We have used the following margins for
CMB, synchrotron, dust and free–free, respectively, [−0.45, 0.45],
[0, 0.5], [0, 25] and [0, 0.1]. They are in antenna temperature (T)A

in mK same as the maps. We have determined these margins by
using five patches from our simulations.

4.4.1 Initialization

By considering previous studies (Bonaldi et al. 2007; Ricciardi
et al. 2010), we assume that the parametric mixing matrix is known
with an error. We initialize the mixing matrix by using the spec-
tral indices obtained in Bonaldi et al. (2007) and Ricciardi et al.
(2010). The parametric model is formed so that the columns of
synchrotron and dust only depend on one spectral index each. Pre-
vious experiments show that the error in spectral index of syn-
chrotron changes from patch to patch and takes a maximum value
of about 1.72 per cent. For spectral index of dust, the maximum
error is about 0.58 per cent. We have fixed the columns of CMB
and free–free as they are known. We obtain realistic observations
by mixing components with a mixing matrix which is formed by
using the spectral indices 2.9 for synchrotron and 1.8 for dust.
In the reconstruction part, we assume that the spectral indices
are estimated with an error of 1.72 per cent for synchrotron and
0.58 per cent for dust. So, we initialize the mixing matrix values to
maximum error case such that the spectral indices are equal to 2.85
for synchrotron and 1.7894 for dust.

To estimate the spectral indices, one can use the Fourier domain
correlated component analysis (FDCCA; Bedini & Salerno 2007)
method. Non-parametric mixing matrix estimation methods can be
used to find the initial mixing matrix, such as Fast ICA (FastICA;
Hyvarinen & Oja 1997) or spectral matching ICA (SMICA; Cardoso
et al. 2002).

To initialize the component maps, we ignore the antenna beams
and apply the inverse of the initial mixing matrix to the raw observa-
tions directly. If we denote the initial mixing matrix A0, we initial-
ize the maps with LS solution as s0(n) = ((A0)T A0)−1(A0)T y(n),
where the vector y(n) contains the observation intensities at nth
pixel. LS solution is not a good solution since it does not take the
noise and the resolutions of the observations into consideration, but
it provides a simple solution without any pre-processing interven-
tion. In this way, our algorithm starts with initial maps which are
some linear combination of the raw observations. The initial values
of αl,d can be calculated directly from image differentials. We ini-
tialized the β0

l,d = 20 and found the initial value of δl,d by equalling
the expectation in (22) to a constant; in this study, we take it to be
equal to 1.5. The initial value is found as δ0

l,d = 1.5φd (s0
l , α

0
l,d )/N .

4.4.2 Stopping criterion

We observe the normalized absolute difference εk
l = |sk

l −
sk−1
l |/|sk−1

l | between sequential values of sl to decide the con-
vergence of the Markov Chain to an equilibrium. If the average
ε̄k
l = 1

k

∑k
t=1 εt

l ≤ 5e − 2, we assume that the chain has converged
to the equilibrium for sl and denote this point as Tl = k. Since we
have L parallel chains for L sources, the ending point of the burn-in
period of the whole MC chain is Ts = max lTl. We assume that the
minimum value of Ts is 50. Finally, the ending point of the burn-in
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1338 K. Kayabol et al.

period is defined as Ts = max{50, max lTl}. We ignore the samples
before Ts. We keep the iteration going until Te that is the ending
point of the post burn-in period simulation. In the experiments, we
have used 100 iterations after burn-in period, so Te = Ts + 100.

At the end of the simulation, the final estimates of the component
maps are calculated as

ŝl,n = 1

Te − Ts

Te∑
k=Ts

sk
l,n (24)

5 SIMULATION R ESULTS

In order to test our ideas, we have used a set of realistic simulations
obtained from the Planck sky model (PSM), a set of maps and
tools developed by the Planck Working Group 2 (WG2) team as a
fundamental part of the preparation for the Planck mission (Tauber
et al. 2010). Apart from the CMB itself, the PSM contains state-
of-the-art simulations of all the relevant Galactic and extragalactic
astrophysical components; for this work we use a simplified set of
simulations that contains CMB and Galactic (synchrotron, free–free
and dust) components only, plus instrumental noise. We have used
simulations of the nine Planck frequencies. The main characteristics
of the simulations are listed in Table 1.

We have tested our algorithm on five different 128 × 128 patches
distributed along the central galactic meridian, and centred at Galac-
tic coordinates (00, 00), (00, 20), (00, 40), (00, 60) and (00, 80).
The actual size of the patches on the sky is 14.◦65 and the pixel size
is 6.87 arcmin. The maps are in antenna temperature (T)A in mK.
The related noise levels are presented in Table 1. We model the blur-
ring functions as Gaussian-shaped functions according to antenna
apertures. Their standard deviations in pixels are given in Table 1.
The simulations were performed on a PC with Intel core2 duo CPU
2.26 GHz. The time required by the algorithm is between 2 and
13 min for minimum 150 and maximum 1000 number of iterations,
respectively.

We use three different performance measures defined in the pixel
domain to evaluate the success of the proposed algorithm among
the others. The peak signal-to-noise ratio (PSNRpix) in the pixel
domain is defined as

PSNRpix = 20 log

[√
N max(s∗

l )

||RE||

]
, (25)

where RE = s∗
l − ŝl is the reconstruction error between the ground-

truth s∗
l and the estimated image ŝl . We use this error measure

instead of the absolute difference between the ground-truth and the
estimate, because we need a normalized error to compare the error
in large variations of the intensities of the different components.
The logarithm gives a good observation possibility for the values
varying in a large scale. Figs 1, 2 and 3 show the estimated maps
located at the coordinates of (0,0), (0,20) and (0,60).

We compare our proposed ALS method with the S+LS and
DB+LS solutions. S+LS solution is obtained by smoothing the
observed data to the resolution of the lowest resolution channel and
then applying the inverse of the mixing matrix to the equal resolu-
tion maps. In DB+LS, we first apply a DB process to observation
channels. For DB, we apply Wiener filter separately to each channel
using the known PSF and the noise level. We find the DB+LS solu-
tion by applying the inverse of the mixing matrix to the de-blurred
maps.

For the patch (0,0), we obtained a good reconstruction for CMB
with the proposed method (Fig. 1). In the middle of the map, the
effect of the dust has been already seen. The effect of the dust also
exists in the synchrotron map. The free–free component radiation
map in the patches (0, 0), (0, 20) and (0, 40) cannot be estimated by
any method, since its intensity is very weak. For all the patches, the
proposed method reconstructs better the CMB and the foreground
maps in the sense of PSNRpix.

We also estimate the error in the maps. Using MC samples, we
can find the uncertainty in the estimation. We call this MC error and
calculate its standard deviation for single pixel as

σMC =
[

1

Te − Ts

Te∑
k=Ts

(
ŝl,n − sk

l,n

)2

]1/2

(26)

where the number Te is the ending point of the simulation. We
use 100 iterations after convergence, so in this study Te = Ts +
100.

We obtain another error measure by fitting a Gaussian to the pos-
terior of the source image using the Laplace Approximation (LA)
method and calculating the standard deviation, σ LA, of the approx-
imated Gaussian. Table 2 lists the average standard deviations σ RE,
σ MC and σ LA of the reconstruction, the MC and the LA errors,
respectively. The reconstruction error is always greater than the es-
timated errors. MC and LA errors are quite close to each other.
The minimum errors for CMB are found in the patches (0, 20) and
(0, 40).

The plots in Fig. 4 compare the angular power spectrum, C� de-
fined as C� = (� + 1)�C�/2π, of the ground-truth CMB maps
and those obtained by S+LS, DB+LS and the proposed ALS
methods. To plot C�, we sample it by taking

√
N/2 + 1 sam-

ples in the interval [0, �max ], where �max = 180/14.65
√

N .
All the patches, the power spectra found by the proposed ALS
method fit the ground-truth spectra more tightly than those found
by the others. The S+LS method gives bad results in the high-
frequency regions of the spectrums because of smoothing. The
DB+LS method causes an amplification in the low-frequency
regions. The rms error between the ground-truth angular power
spectrum of CMB and those obtained by S+LS, DB+LS and
proposed ALS methods are presented in Table 3. The proposed
method provides 1 order of the magnitude better fit than the
others.

Table 1. Channel frequencies, the standard deviations of the related Gaussian PSFs and the noise standard deviations
in (T)A (mK).

Channel
frequencies (GHz) 30 44 70 100 143 217 353 545 857
PSF std
(pixels) 7.0069 4.8836 2.9726 2.1233 1.5075 1.0617 1.0617 1.0617 1.0617
Noise std
(T)A (mK) 0.0259 0.0248 0.0233 0.0074 0.0038 0.0032 0.0023 0.0019 0.0009

C© 2011 The Authors, MNRAS 415, 1334–1342
Monthly Notices of the Royal Astronomical Society C© 2011 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/415/2/1334/1038633 by U
niversidad de C

antabria user on 29 D
ecem

ber 2022



Joint Bayesian separation and restoration 1339

Figure 1. The estimated 128 × 128 astrophysical maps at 100-GHz reference frequency from blurred and noisy observations with the S+LS, DB+LS and
proposed ALS methods. The location of the patch is 0◦ Galactic longitude and 0◦ latitude. The PSNRpix values are denoted under the each map.

Figure 2. The estimated 128 × 128 astrophysical maps at 100-GHz reference frequency from blurred and noisy observations with the S+LS, DB+LS and
proposed ALS methods. The location of the patch is 0◦ Galactic longitude and 20◦ latitude. The PSNRpix values are denoted under the each map.
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1340 K. Kayabol et al.

Figure 3. The estimated 128 × 128 astrophysical maps at 100-GHz reference frequency from blurred and noisy observations with the S+LS, DB+LS and
proposed ALS methods. The location of the patch is 0◦ Galactic longitude and 60◦ latitude. The PSNRpix values are denoted under the each map.

Table 2. Average standard deviations of RE, MC uncer-
tainty and LA uncertainty.

CMB Synchrotron Dust Free–free

(0◦, 0◦)

σRE 30.49e-3 13.82e-3 15.04e-3 16.32e-3
σMC 2.38e-3 0.42e-3 0.08e-3 1.50e-3
σLA 3.38e-3 0.14e-3 0.06e-3 1.28e-3

(0◦, 20◦)

σRE 14.83e-3 2.26e-3 1.03e-3 12.80e-3
σMC 2.81e-3 1.04e-3 0.03e-3 2.10e-3
σLA 3.37e-3 0.92e-3 0.06e-3 1.46e-3

(0◦, 40◦)

σRE 14.22e-3 2.47e-3 0.17e-3 12.25e-3
σMC 2.88e-3 1.28e-3 0.03e-3 1.96e-3
σLA 3.37e-3 1.12e-3 0.02e-3 1.48e-3

(0◦, 60◦)

σRE 10.72e-3 2.85e-3 0.06e-3 8.27e-3
σMC 2.72e-3 1.34e-3 0.02e-3 2.05e-3
σLA 3.37e-3 1.05e-3 0.02e-3 1.53e-3

(0◦, 80◦)

σRE 10.29e-3 3.21e-3 0.06e-3 7.40e-3
σMC 2.83e-3 1.43e-3 0.02e-3 2.11e-3
σLA 3.37e-3 1.11e-3 0.02e-3 1.54e-3

6 C O N C L U S I O N S

We have introduced a Bayesian joint separation and estimation
method for astrophysical images. The method is based on an MC

technique and gives better reconstruction in the pixel domain and
frequency domain than two competitor methods. The algorithm
works quite well at high latitudes. If we approach the Galactic
plane, the estimation results get worse. Especially at the Galactic
plane, we have obtained the worst results.

Our new goal is the application of the proposed algorithm to
whole-sky maps. We plan to use Wilkinson Microwave Anisotropy
Probe (WMAP) 7-yr data with resolution Nside = 512. In first ex-
periments, we will consider only the spatially varying uncorrelated
noise. To avoid the difficulties inherent in this problem, we plan
to use the ‘nested numbering’ structure provided by the HEALPIX

(Gorski et al. 2005) package. In this format, we can reach the indexes
of the eight neighbours of each pixel on the sphere. To calculate the
pixel differences, we will implement a gradient calculation method
on the sphere by taking the non-homogeneous spatial distances
between the pixels on the sphere into consideration.
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Figure 4. Comparison of the standard power spectrum of the ground-truth
maps located at (a) (0◦, 0◦), (b) (0◦, 20◦) and (c) (0◦, 60◦) with those obtained
by S+LS, DB+LS and proposed ALS methods.

Table 3. Rms error between the ground-truth standard power spectrum of
CMB and those obtained by S+LS, DB+LS and proposed ALS methods at
patches (0◦, 0◦), (0◦, 20◦), (0◦, 40◦), (0◦, 60◦) and (0◦, 80◦).

S+LS DB+LS ALS

(0◦, 0◦) 2.1798e+3 7.4638e+3 0.1894e+3
(0◦, 20◦) 2.1867e+3 0.5742e+3 0.0605e+3
(0◦, 40◦) 2.2902e+3 1.5089e+3 0.0436e+3
(0◦, 60◦) 2.2261e+3 1.5380e+3 0.0462e+3
(0◦, 80◦) 2.1598e+3 1.4089e+3 0.0513e+3
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A P P E N D I X A : A L G O R I T H M

One cycle of ALS for source separation. The symbol ‘←−’ de-
notes analytical update, the symbol ‘∼’ denotes update by random
sampling.

(i) Find the initial mixing matrix with FDCCA (Bedini & Salerno
2007).

(ii) Find the initial source images using the LS solution.
(iii) Initialize the parameters α0

l,d , β0
l,d and δ0

l,d

(a) for all source images, l = 1 : L
(b) for all directions, d = 1 : D

〈νl,d〉 ←− N+βk
l,d

βk
l,d

[
1 + φd

(
sk
l ,αk

l,d

)
βk

l,d δk
l,d

]−1

αl,d ←− sT
l G

T

d sl

sT
l G

T

d Gd sl

δl,d ←− 〈νl,d〉 φd (sl ,αl,d )
N

βl,d ←−0 [−ψ1(βl,d/2) + log βl,d + 〈log νl,d〉 − 〈νl,d〉 + 1 = 0]

wl ∼ N (wl |0, I)
H(sk

l ) ←− diag {H(sl)}sl←−sk
l

D ←− 2[〈H(sk
l )〉]−1

g(sk
1:L) ←− [∇sl

E(sl)]sl=sk
l

produce z ←− sk
l − 1

2 Dg(sk
1:L) + D1/2wl from (13)

apply threshold to z
(c) for all pixels, n = 1 : N

calculate ϕ(zn, s
k
l,n)

if ϕ(zn, s
k
l,n) ≥ 1 then sk+1

l,n = zn

else produce u ∼ U(0, 1).
if u < ϕ(zn, s

k
l,n) then sk+1

l,i = zn,
else sk+1

l,i = sk
l,i

(d) for all elements of the mixing matrix, (k, l) = (1, 1) :
(K, L)
ak,l ←− 1

sT
l H

T

k Hk sl

sT
l HT

k ( yk − Hk

∑L
i=1,i �=l ak,i si)u(ak,l)

This paper has been typeset from a TEX/LATEX file prepared by the author.
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