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Abstract. Wildfires are increasing in scale, frequency and longevity, and are affecting
new locations as environmental conditions change. This paper presents a dataset col-
lected during a community evacuation drill performed in Roxborough Park, Color-

ado (USA) in 2019. This is a wildland–urban interface community including
approximately 900 homes. Data concerning several aspects of community response
were collected through observations and surveys: initial population location, pre-

evacuation times, route use, and arrival times at the evacuation assembly point. Data
were used as inputs to benchmark two evacuation models that adopt different mod-
elling approaches. The WUI-NITY platform and the Evacuation Management Sys-
tem model were applied across a range of scenarios where assumptions regarding pre-

evacuation delays and the routes used were varied according to original data collec-
tion methods (and interpretation of the data generated). Results are mostly driven by
the assumptions adopted for pre-evacuation time inputs. This is expected in commu-

nities with a low number of vehicles present on the road and relatively limited traffic
congestion. The analysis enabled the sensitivity of the modelling approaches to differ-
ent datasets to be explored, given the different modelling approaches adopted. The

performance of the models were sensitive to the data employed (derived from either
observations or self-reporting) and the evacuation phases addressed in them. This
indicates the importance of monitoring the impact of including data in a model
rather than simply on the data itself, as data affects models in different ways given
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the modelling methods employed. The dataset is released in open access and is

deemed to be useful for future wildfire evacuation modelling calibration and valida-
tion efforts.

Keywords: Evacuation, WUI, Wildfire, Egress, Fire safety, Drill

1. Introduction

Wildfires are an important safety issue in many parts of the world. Such fires
threaten both rural and urban areas. These fires may affect the short-term (life
safety, infrastructure and the economy—e.g., the case of the Fort McMurray Fire
in Canada) and long-term (environmental conditions, social connectivity, commu-
nity health, tourism, etc.), potentially even affecting the viability of a community
(e.g., Paradise in the USA) [10, 33]. The wildfire issue is likely to get worse in the
future, due to climate change and population growth in wildland–urban interface
(WUI) locations [21]. The wildfire threat is changing and becoming more serious
given several physical and environmental factors: (a) more frequent, larger and
intense fires, (b) hotter/drier summers affecting larger areas, (c) more severe thun-
derstorms and associated lightning strikes potentially starting new fires, and (d)
stronger winds encouraging the progress of fire fronts. This also means that the
regions exposed to wildfires are expanding beyond those historically affected given
changing environmental conditions (e.g., South America, Africa and Northern
Europe [12].

The size of the population living in and moving to WUI areas is increasing, as
it combines rural and suburban conditions deemed to be attractive. Residential
populations are therefore growing near/in the wilderness [5]. This means that there
are a larger number of residents (especially those with limited direct experience of
wildfire events) living in areas vulnerable to wildfires. In addition, the population
of many industrialized countries is ageing. This has an impact on a population’s
resources and their capacity to respond [2, 17]. Communities are also becoming
more diverse making the social and cultural attributes of our communities more
complex along with their response [19, 30].

The future expansion of the WUI poses severe challenges to community safety
from an evacuation perspective. Large wildfires are associated with severe negative
consequences including mass community evacuation, property and livelihood los-
ses, social disruption, damage to infrastructure, as well as evacuee and responder
casualties [10]. This has implications for example on the residents of such areas,
community planners, emergency managers, the construction industry, and the
insurance industry. Such a community might be required to evacuate to a place of
relative safety in response to the conditions faced. The time for the community to
reach safety is crucial as it determines whether residents avoid worsening (and
possibly untenable) conditions [11, 32]. The time for a community to reach a place
of safety is an emergent property of its response, the infrastructure available, the
information available, and the fire conditions experienced.

It is not possible to extract an accurate estimate of the threat posed by an inci-
dent simply by examining any one aspect of a wildfire in isolation.1 It is similarly
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not possible to extrapolate from the performance of one community to another
with any confidence, or to a different scenario (e.g., a different location), given
that outcomes are extremely sensitive to local conditions. Any assessment requires
a coupled approach to provide insights into the vulnerability of certain communi-
ties and better inform the preparatory or response actions required. Assessing
evacuation performance is key to emergency planning and real-time emergency
response. This includes estimating how conditions evolve, how resources are allo-
cated, and quantifying community evacuation given the procedures and routes
available.

Previous attempts to map the areas vulnerable to wildfires may become out-
dated—given the evolving wildfire landscape and associated conditions—affecting
community planning and resource allocation. Risk analysis entirely based on his-
torical data is undermined given the speed at which the conditions are evolving
leading to very different scenarios being faced [9]. Conclusions drawn from appar-
ently similar previous fires are becoming less relevant—as the underlying factors
diverge. The complexity of wildfire events makes it extremely difficult to derive
outcomes analytically, and now real-world event-level outcomes (e.g., from histori-
cal incidents) are providing fewer directly translatable insights. To understand
how these scenarios might evolve now requires (1) a more fundamental under-
standing of the factors that contribute to the outcome of wildfire evacuations and
(2) the development of tools that can assess such events (e.g., quantify them) by
taking such factors into account and therefore support regulatory structures that
help ensure good practice in this domain. The development of those tools relies on
the availability of data. For instance, trigger buffer models need information con-
cerning the time needed by a community to evacuate [16].

Based on these premises, we present data collected from a community evacua-
tion exercise. This data is compiled such that can be employed within evacuation
models. Here, two such models (WUI-NITY [31] and evacuation management sys-
tem, EMS [4] are configured using this data to simulate the original exercise, to
establish the capacity of such models to capture the complexity of wildfire evacua-
tion (and explore the underlying dynamics driving these events), and to examine
the sensitivity of such models to different interpretations and use of real-world
datasets. This should provide insights into the suitability and robustness of such
models to community evacuation scenarios and associated engineering applica-
tions.

2. General Approach: Data Collection and Model
Application

The objective of the work presented here is threefold:

– To present data in a format for future wildfire evacuation modelling,
– To demonstrate how models might be used to explore evacuation scenarios,

1 The same can be said of all fire scenarios—and all emergency scenarios.
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– To explore and compare the results produced by these models—to determine
their stability and applicability to such scenarios.

We gathered data from a community evacuation drill (discussed in Sect. 4).
This involved conducting observations and surveys to capture results on key
response variables: initial delays, route use and arrival times. The data collected
was used to configure the initial conditions within the two models applied (WUI-
NITY and EMS)—primarily addressing population size and distribution, initial
resident delays, routes available and used, and the target for the evacuating resi-
dent population. The original conditions were approximated by simulating nine
scenarios based on the different data available (to establish the sensitivity of the
model to underlying datasets), or interpreting this data in slightly different ways.
This primarily applied to the pre-evacuation times and the use of the available
routes. In all scenarios, the original population size involved in evacuation exer-
cise was employed—allowing the results to be directly compared against the evac-
uation times produced during the exercise.

The following approach was adopted—with data collection explicitly designed
to enhance our understanding and to allow the configuration of evacuation mod-
els. Initially, we identified a set of factors that might affect the performance of the
community evacuation. We developed a data collection plan that focused on col-
lected data on these factors. Data on these factors were collected during the event
by staff positioned at key points in the community (e.g. near to the communities
and at the assembly point) and through surveying those involved (with surveys
completed on the same day). This data was then analysed to quantify the factors
previously identified, and also produced in a format that is amenable for model
configuration. The data collected was then used to configure the simulation tools
employed here. The data was derived from the two sources (direct observation
and survey responses) and in some cases produced subtly different indications of
performance. This variation was reflected in the model configuration—producing
the nine scenarios examined. Each scenario was simulated by the two models
allowing comparison—both in their capacity to capture the key evacuation
dynamics and their sensitivity to changes in the initial conditions simulated. The
modelling approach in use is the so-called ‘‘specified calculation’’ approach [15] in
which the user is able to have a detailed description of model inputs, with the
goal of performing a comparison of the underlying algorithms in the models.

3. Model Descriptions: WUI-NITY and EMS

Based on the objectives of this work, two models (WUI-NITY [25, 31] and EMS
[6] have been selected to represent the conditions observed in the drill. The selec-
tion of those models was based on their availability and their diverse approaches
in modelling the evacuation processes. The intention is to show that different
approaches might be used to capture the evacuation process and that useful
insights can be gained assuming a suitable understanding of the modelling
assumptions made.
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3.1. The WUI-NITY Model

WUI-NITY is a simulation platform developed using the game engine Unity 3D.
WUI-NITY represents three different modelling layers, namely (1) a fire spread
model, (2) a pedestrian response and movement model, and (3) a traffic model.
The current implementation of the tool includes macroscopic sub-models for all
three modelling layers. In this work, the pedestrian response and movement model
and the traffic model have been used. The pedestrian response can be calibrated
adopting user-defined curves while the traffic model used in this application is a
simple macroscopic traffic model [7]. The traffic model is implemented using time-
step intervals. Route choice modelling is performed adopting the open source tool
Itinero,2 which is able to represent dynamic route choice making use of different
overall assumptions (e.g. shortest path or quickest path). The WUI-NITY plat-
form is able to produce a range of outputs, including the number of vehicles at
destination or in the road network, the vehicular density, therefore being able to
produce evacuation time curves at each destination. Cumulative distributions can
be introduced to represent key inputs (e.g. pre-evacuation times, pedestrian walk-
ing speeds).

3.2. The EMS Model

The EMS model [6] was developed in.NET Framework 4.6.1. The architecture fol-
lows a client–server approach providing an API REST (representational state
transfer application program interface) able to integrate data from external ser-
vices and provide results to other systems. Routing is addressed by the assembly
points model (APM) that processes geographical information system (GIS) infor-
mation and discretizes the evacuation area to generate the locations where pedes-
trians access the vehicles by considering the population distribution,3 the points of
reference within the evacuation area (assumed to be close to the road network),4

and the random walking distances (from households to assembly points). The
shelter points model (SPM) provides a set of available shelters. The location of
shelters is slightly modified to well-known points of interest (Pois) close to the
road network and directions are indicated using the Open Route Service.5 The
routing model (RM) uses a local dedicated service to generate the evacuation
routes from assembly points to shelters while ensuring the allocation of evacuees
to the shelters. EMS simulates movement at the pedestrian and vehicle level (i.e.
microscopically), and treats the results stochastically. This means that results are
produced as a range of possible outcomes. Two real-time stochastic models based
on principles and approaches reported in Cuesta et al. [4] are used by the EMS to
simulate mass evacuations (representing pedestrian and vehicular movement). The
pedestrian simulation model (PSM) computes the number of individuals entering
the vehicular model over time. Each pedestrian is simulated using four random

2 https://www.itinero.tech/.
3 The default population distribution is taken from WorldPop (https://www.worldpop.org/), a project

data which uses both integrating census data and aerial imagery via satellite in which people counts and
density are provided with a resolution of 100 m2.

4 OpenRouteService (ORS) (https://openrouteservice.org/).

Roxborough Park Community Wildfire Evacuation Drill... 883

https://www.itinero.tech/
https://www.worldpop.org/
https://openrouteservice.org/


variables: (1) starting location, (2) response time, (3) walking speed (representing
movement between residence and vehicle) and (4) vehicle boarding time. The
vehicular evacuation model (VEM) simulates, via cellular automata, the current
traffic status of the routes and the interactions between vehicles [1, 18] and calcu-
lates the number of evacuated vehicles and people arriving to shelters (destina-
tions) over time and the traffic conditions per route (i.e., traffic density and
average speed). EMS implements the pre-evacuation times according to log-nor-
mal distributions.

4. Data Collection: Methodology and Results

Any evacuation model requires data for configuration, calibration and validation
[28]. This is essential for the model to be applied to specific scenarios of interest in
a credible manner, irrespective of the application type.

A community evacuation exercise was observed in 2019 and data collected on
various aspects of the community response: initial population location, pre-evacu-
ation times, route use, and evacuation times (i.e. arrival at the assembly point).
Although the intention of the prearranged drill was to enhance the community’s
evacuation performance, our data collection efforts were intended to provide
insights into the underlying evacuation dynamics and generate a dataset suit-
able for evacuation modelling, to quantify evacuation performance. As such, the
data collection effort was designed to answer practical and research questions.
This 2019 exercise involved the Roxborough Park community in Colorado (US).5

Roxborough Park is a WUI community that is surrounded by Roxborough State
Park on three sides (Roxborough Park Foundation 2007), including approxi-
mately 900 homes and covering approximately 8.98 km2 (see Figure 1). Roxbor-
ough Park was previously exposed to two wildfire events (the 1996 Buffalo Creek
Fire and the 2002 Hayman Fire), requiring officials to develop a wildfire protec-
tion plan that includes the use of evacuation strategies.

The conditions present at the time of the drill are now described. A full descrip-
tion of the original event can be found here [25]. The community had three pri-
mary egress routes (labelled as R, F and E in Figure 2), with an extra route across
a golf course (not used during the drill). These three routes were accessed via
gates located close to the community housing (identified as circles attached to the
community areas labelled A–C in Figure 2). Observations were conducted at these
gate locations. The observations at the gate are used as a conservative estimate of
pre-evacuation time. The gates were located very close to the communities (shown
in Figure 2), and so any overestimate would likely be very small. It should be
noted that the drill involved vehicle evacuation and no fire conditions were pre-
sent or simulated.

The residents had prior knowledge of the drill. A total of 133 households regis-
tered to participate with the event taking place on a Saturday morning. It is spec-

5 It should be noted that any results presented here beyond the original drill do not reflect the current
preparedness or vulnerability of Roxborough and are presented here purely to demonstrate the complexity
of wildfire evacuation—and the use of a model as a proxy for the complexity.
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ulated that another 5–10 households joined the drill during the event without reg-
istration (143 in total). Before the drill, registered participants received informa-
tion on the evacuation routes available. On the day of the drill, an alert was given
at 9.00 a.m. to the participants (via text, email, phone call, etc.). After receiving
the alert and occasionally engaging in preparatory actions, participants accessed
their vehicles and selected one of the evacuation routes available to reach the pre-
determined assembly point (at a local fire station). It is expected that the observed
delays are optimistic given the prior notice afforded the participants enabling ear-
lier preparedness.

Surveys were conducted to determine where people started, the routes they
used, and estimates of the time they left home by car and the time they arrived at
the assembly point. Survey results included 69 reported initial delays (pre-evacua-
tion times) and 75 arrival times at the assembly point (overall evacuation times).
Observations were made at the three gates (identifying the number of vehicles
using each route and arrival times as a proxy for initial delays) and at the assem-
bly point (as an estimate of the overall evacuation time). Observers compiled 107
data points for vehicles at the three gates and 53 arrival times were recorded at
the assembly point. Once the evacuation drill was completed, the participants then
met with the drill organizers at the assembly point to hand in their completed sur-
veys and participate in a drill debrief. The observations made during the drill were
used to configure the simulation tools to provide a benchmark against which
model performance might be compared.

From the surveys and the observed arrival times at the three gates (which given
their proximity to the starting locations were used as conservative estimates of the

Figure 1. The Roxborough Park community in Colorado, USA. Photo
from Perington Miller & Co.
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time for people to leave their properties), pre-evacuation delays were estimated to
range between 2 and 105 min (see Figure 3). Variations existed in the initial
delays—between the observations collected at the gates (which averaged at
23 min, ranging between 2 and 105 min) and the self-reported initial delays (which
averaged at 15 min, ranging between 0 and 90 min). This difference is evident in
Figure 3 (the black dots represent observed data, the grey dots represent the
reported data). Please notice that the number of arrivals is different given the fact
that two types of data collection methods were used (i.e. lower number of repor-
ted data by answering the survey compared to observations). The higher observed
times might have been influenced by the journey from the residences to the gate.

The survey indicated that the population split unevenly between the three avail-
able routes (24% used Route F, 45% used Route R, and 31% used Route E).
The use of the routes was sensitive to the starting location of the residents. From
the survey, 34% started in Area A, 20% in Area B, and 46% in Area C.

Figure 2. Area involved in the evacuation and incident timeline.
Shaded areas (A–C) show residential locations. Arrows show active
egress routes (labelled R, E and F), orange circles show approximate
location of gates and the inset shows location of Roxborough in
relation to Denver. Map source OpenStreetMap (Color figure online).
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Arrival times at the assembly point were generated from survey response esti-
mates and observations. The reported estimates are shown here as they are deter-
mined to be more consistent with the assumptions made in the simulations (for
instance, people moving directly to the assembly points). Both the survey and
observations of arrival times extended to over 135 min.6 The reported estimates
produced an average evacuation time of 31.1 min, ranging from 0 to 148 min. The
arrivals at assembly points are presented in Figure 4.

5. Evacuation Simulations

This section introduces the simulation work performed with WUI-NITY and
EMS to reproduce the scenario conditions observed in the drill. The scenarios are
first presented and then the results of the two models are compared against the
data collected. It should be noted that the simulations have been run a posteriori,
i.e., the model users were aware of the data available when calibrating the models.
This approach has been used since both models are at an initial stage of model
development, thus it was deemed useful to reduce the so call user effect, i.e., the
impact of modeller decisions on results [13]. This allows us to perform a system-
atic comparison of the predictive capabilities of the models and identify if the
order of magnitudes of the results produced are comparable among models and
against the data.
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Figure 3. Pre-evacuation times derived from gate observations (in
black) and reported in survey (in grey). The self-reported initial
delays could also be broken down into the starting locations of the
three areas within the community (A–C). Variation is apparent (see
also Table 1).

6 This included by the initial delays and the movement to the assembly point.
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5.1. Evacuation Scenarios and Modelling Assumptions

A list of assumptions has been used to configure the models. Population size in
terms both of number of people and vehicles on the road was set to resemble the
drill conditions. Two key variables have also been modified in different scenarios
in order to investigate their impact on results. These are the pre-evacuation time
distributions used and the evacuee route selection.

5.1.1. Population Size The number of vehicles in the simulation is assumed to
match the number of households that were present during the drill (this was
assumed equal to 143 households). This implies that each household evacuated
using only one vehicle. It should be noted that since the evacuation drill included
only private vehicles (e.g., cars), no public transportation means (e.g., buses) are
considered in the scenarios.

5.1.2. Pre-evacuation Time Distributions Three different sets of assumptions were
used for the pre-evacuation time distributions. These were based on the data col-
lection approaches used in the evacuation drill and the level of detail captured.
The first assumption (coded as PEvacES) uses data based on observations by each
gate (see Table 1). The second assumption employs a distribution generated from
the self-reported data derived from completed surveys (PEvacCSR). The third
assumption employs a combined cumulative curve from gate observations com-
bined across zones (PEvacCES).

5.1.3. Destination Usage Three different assumptions have been used for destina-
tion usage, namely (1) each group (A, B, or C) will go to destinations R, F, or E
according to survey route use from the drill (coded as DestDrill), (2) vehicles use
the closest destination as defined by the model (coded as DestClose), (3) vehicles
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Figure 4. Evacuation times shown as community arrivals over time.
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use the destination associated with the fastest route as defined by the model
(coded as DestFast).

The combinations of these assumptions result in a total of nine scenarios.
Table 2 reports the scenario names along with the assumptions in use.

5.1.4. Outputs A set of outputs are produced by the models. These include (1) the
average evacuation time per scenario for different percentages (95%, 99%, 100%)
of evacuated populations (these results are presented in ‘‘Online Appendix 2’’),
and (2) the aggregated evacuation time curves, i.e., number of vehicles evacuated
over time. Therefore, all three indicators (95%, 99%, 100%) are directly com-
pared and the characteristics of the entire evacuation curves are compared using
functional analysis. As both models adopt pseudo-random sampling from distri-
butions, a criterion was defined to ensure the convergence of the multiple runs is
met [24, 27]. In this case study, we assumed that convergence is met once the
average total evacuation time did not variate for more than 2% over at least 10
consecutive runs. This was estimated to be a reasonable value given the overall
uncertainty in the models and data in use.

Once the average evacuation times and aggregated evacuation time curves are
then produced with both models, those are plotted against the drill data to allow
visual qualitative comparison of the curves obtained. In addition, functional anal-

Table 1
Initial Delay Times by Community Area

Area Reported pre-evacuation times (min)

Overall 15.0 [0–90]

A 14.4 [0–90]

B 16.7 [0–60]

C 14.5 [1–90]

Table 2
Scenarios Investigated Considering Different Assumptions for Pre-
evacuation Time Distributions and Destination Usage

Scenario name Pre-evacuation time Destination usage

1_PEvacES_DestDrill PEvacES DestDrill

2_PEvacCSR_DestDrill PEvacCSR DestDrill

3_PEvacCES_DestDrill PEvacCES DestDrill

4_PEvacES_DestClose PEvacES DestClose

5_PEvacCSR_DestClose PEvacCSR DestClose

6_PEvacCES_DestClose PEvacCES DestClose

7_PEvacES_DestFast PEvacES DestFast

8_PEvacCSR_DestFast PEvacCSR DestFast

9_PEvacCES_DestFast PEvacCES DestFast
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ysis [20] is employed to perform a quantitative comparison of the results. This
method makes use of three different operators that can be applied to the evacua-
tion time curves, namely the (1) Euclidean relative distance (ERD), the (2) Eucli-
dean projection coefficient (EPC) and (3) the secant cosine (SC). ERC indicates
the average difference between curves. EPC is used to represent the projection of a
vector onto another, and it helps understanding the best possible agreement
between the curves. EPC represents a factor which when multiplied by each model
data point reduces the distance between the experimental data and the model. SC
indicates the similarity between the shapes of the curves by assessing the gradients
they produce. For instance, two curves with identical shapes (even if translated of
a given distance) would have an SC equal to 1. A more detailed discussion of
these concepts can be found in Ronchi et al. [24]. These produce three dimension-
less metrics: ERD (with a value of 0 indicating an exact match of the experimen-
tal and modelling results curve in magnitude), EPC (with a value of 1 indicating
an exact match, i.e. the difference between the model and experimental data are as
small as possible), and SC (with a value of 1 indicating an exact match between
experimental data and model results). These metrics are used to indicate similarity
of the simulated curves and the data collected.

5.2. WUI-NITY Simulation Results

The average results produced by WUI-NITY relative to the original drill data are
presented in Figure 5. It is apparent that the WUI-NITY model typically underes-
timated the original evacuation times, with some notable exceptions. Figure 5
includes the 95%, 99% and 100% of aggregated average evacuation times. The
evacuation times generated by WUI-NITY are reported in ‘‘Online Appendix 2’’.

Regardless of the scenarios under consideration, WUI-NITY results show an
overall better agreement to the 99th percentile of the drill evacuation time than
for the 95th and 100th percentiles (with differences ranging between 9 and 26%

100% 99% 95%
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Figure 5. Relative evacuation performance generated by WUI-NITY
in relation to the drill performance (SR_DRILL) (95%, 99% and
100%). WUIX indicates the model in use (WUI = WUI-NITY) and the
scenario under consideration (e.g., 1, 2, etc.).
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for 95th percentile, 1% and 20% for 99th percentile, and 27% and 40% for the
100th percentile, see Figure 5 and ‘‘Online Appendix 2’’). This is likely due to the
modelling approach employed where inputs are represented by a cumulative distri-
bution within WUI-NITY. The WUI-NITY model is also a macroscopic model.
As such the interactions between evacuating residents and vehicles are not repre-
sented at the individual level. Therefore, the consequences of individual interac-
tions are captured at the aggregate level—implying that the model is inherently
less sensitive to such factors.

Scenario WUI3 provides results directly comparable to the drill data for the
99% evacuation time percentile (with a difference below 1%). This scenario makes
use of the inputs that reflect drill conditions (route use is based on that observed
in the drill, and pre-evacuation times were derived from compiling arrival times
observed across all gates).

It is apparent that the results of Scenarios WUI2, WUI5 and WUI8 (all
PEvacCSR scenarios—employing self-reported pre-evacuation times) consistently
yield lower evacuation times—that deviate most from the drill results. This is to
be expected, given that these scenarios employ pre-evacuation time data from the
self-reported data, which have lower frequencies of occurrence towards the tail of
the distribution—making lower pre-evacuation times more likely to be assigned to
the simulated residents. They also might exclude movement between individual
properties and the local gate—where the vehicle effectively enters the widely traffic
system.

The remaining scenarios (WUI1, WUI4, WUI6, WUI7 and WUI9) that are not
entirely reliant on self-reported pre-evacuation times produce results that vary.
Nevertheless, they approximate the 99% reasonably well (falling within 5% of the
time recorded during the drill). Generally, WUI-NITY approximates the evacua-
tion times reasonably for those scenarios making use of inputs that most closely
resemble the drill conditions when compared against the 99% of the evacuation
times. Comparison is less satisfactory when compared against the 100% evacua-
tion time, although the final evacuation time during the original drill was very
sensitive to the arrival time of a single vehicle that was a significant outlier.

The evacuation curves for each of the WUI-NITY scenarios examined were
compared against the drill curve using functional analysis (see Figure 6). It is
apparent that Scenarios WUI2, WUI5 and WUI8 consistently under-predicted the
drill evacuation times across the event. Scenarios WUI3, WUI6 and WUI9 more
closely approximate the evacuation time curves, while Scenarios WUI1, WUI4
and WUI7 provide overall more conservative results (considering the curve up to
99%). The results seem to indicate that—in this case study—results are mostly
driven by the assumptions adopted for pre-evacuation time inputs. This is reason-
able, given the relatively low number of vehicles present on the road which makes
results less dependent on route choice and traffic congestions.

The results obtained from the graphical inspection of aggregated evacuation
time curves are confirmed by the quantitative comparison with drill data per-
formed with functional analysis (see Table 3).7 The larger values for ERC can be
observed for Scenarios WUI2, WUI5 and WUI8 (ERD = 0.42, 0.48 and 0.52
respectively), while lower ERC values are reported for Scenarios WUI3, WUI6
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and WUI9 (ERD = 0.16, 0.18 and 0.19 respectively). As ERC is an indicator of
the overall agreement between the curves, these results are expected—and agree
with our previous findings regarding the most representative scenarios. According
to the underprediction of evacuation times, EPC values are higher in Scenarios
WUI2, 5 and WUI8 (EPC = 1.17, 1.20 and 1.21 respectively). The closest value
to 1 (indicating better agreement with the drill curve) for EPC is observed in Sce-
nario WUI3 (EPC = 1.01), followed by Scenario WUI6 (1.02) and Scenario
WUI9 (1.03).

The agreement between drill data and aggregated evacuation time curves is also
sensitive to the assumed inputs for pre-evacuation time. This results in the scenar-
ios making use of the estimated pre-evacuation times based on observed arrival
times per gate being associated with higher differences in curve shapes with the
drill data (SC = 0.61, 0.54 and 0.60), followed by the observed pre-evacuation
times based on observed arrival times across gates (SC = 0.67, 0.65, 0.60), with
the highest SC scores recorded for the self-reported pre-evacuation times (SC =
0.75, 0.79, 0.69). The best agreement in terms of curve shapes (drill data vs. sce-
narios) is found for Scenario WUI5 (SC = 0.79).

It is apparent that Scenario WUI3 has the best ERC and EPC score, and the
fourth best SC score (the best outside of scenarios with reported pre-evacuation
times). This represents the best overall performance, consistent with the earlier
findings.

5.3. EMS Model Simulation Results

Figure 7 shows the relative errors produced by the EMS for 95%, 99% and 100%
of aggregated average evacuation times compared with the drill data. Typically,
EMS overestimates the evacuation time, with a few notable exceptions. For clar-
ity, the scenarios in Figure 7 are grouped according to pre-evacuation inputs (ob-
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Figure 6. Aggregated evacuation time curves reported during the
drills compared to the results of the WUI-NITY evacuation simulation
platform.

7 Reference should be made to Sect. 5.1.4 for definitions of these terms.
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servations per gate, self-reported, observations compiled across all gates). Differ-
ences ranged between 4 and 38% for the 95th percentile, 1% and 78% for the
99th percentile, and 5% and 40% for the 100th percentile. The EMS overpredicts
the evacuation times (95%, 99%, and 100%) for scenarios with pre-evacuation
data derived from observations at the gates which included both the initial delay
and the travel times from house to vehicle and from vehicle to gate (PEvacES and
PEvacCES). Note that these times were assumed in the model to represent the
time when people left their properties and that the model represented the other
two additional time components explicitly (i.e., travel time to the vehicles and
boarding vehicle times), along with movement from the specific premises to the
community gate.

As shown in Figure 7 the model produced the largest relative differences (for
the 95th 99th and 100th percentiles of evacuation) for Scenario EMS1 (0.23, 0.23
and - 0.15), Scenario EMS4 (0.38, 0.57 and 0.16), and Scenario EMS7 (0.38, 0.78
and 0.20) in which pre-evacuation times were implemented according to observa-
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Figure 7. Relative evacuation performance generated by EMS in
relation to the drill performance (SR_DRILL) (95%, 99% and 100%).

Table 3
Quantitative Comparison Between Drill Data and WUI-NITY
Simulation Results

Scenario number ERC EPC SC

WUI1 0.29 0.87 0.61

WUI2 0.42 1.17 0.75

WUI3 0.16 1.01 0.67

WUI4 0.29 0.87 0.54

WUI5 0.48 1.20 0.79

WUI6 0.18 1.02 0.65

WUI7 0.29 0.87 0.60

WUI8 0.52 1.21 0.69

WUI9 0.19 1.03 0.60

Roxborough Park Community Wildfire Evacuation Drill... 893



tions by each gate (PEvacES). In addition, the EMS implements the pre-evacua-
tion times according to log-normal distributions while the gate arrival observa-
tions separately (route R, F, and E) did not fit against this distribution. This may
also contribute to the relatively large differences.

In Scenarios EMS3, EMS6 and EMS9 the pre-evacuation times were repre-
sented by observations compiled across the gates. This produced lower relative
differences (for the 95th, 99th and 100th percentiles of evacuation) than those out-
lined above (Scenario EMS3 produced differences of 0.15, 0.18 and 0.04; Scenario
EMS6 produced differences of 0.24, 0.43 and 0.09; Scenario EMS9 produced dif-
ferences of 0.24, 0.35 and 0.09). This may have been due both to reduced speci-
ficity of the results (compiling across gates), leading to the PEvacCES data sample
fitting a log-normal distribution thus reducing the frequency and impact of
extreme values when generating pseudorandom inputs.

The best agreement between the EMS and the drill data was found for the
PEvacCSR scenarios, where pre-evacuation times were based on self-reported esti-
mates—more closely reflecting the elements included within the pre-evacuation
phase within EMS (i.e., the time from the warning to leaving property). The
model underpredicted the drill data in Scenario EMS2 (produced differences of -
0.04, - 0.15 and - 0.40), Scenario EMS5 (produced differences of - 0.04, 0.01
and - 0.09) and Scenario EMS8 (produced differences of - 0.04, 0.12 and -

0.16). As mentioned, a possible explanation for these underestimations may be the
self-reported data used with lower frequencies of occurrence towards the tail of
the distribution—making lower pre-evacuation times more likely to be assigned to
the simulated residents. However, although under-predictions, they were the best
estimates of the 100th percentile evacuation performance.

The comparison of the aggregated evacuation time curves is shown in Figure 8.
Results in Table 4 show a fair agreement for ERC values in scenarios (EMS1,
EMS2, EMS3, EMS5, EMS6, EMS8 and EMS9). The EPC values for all scenar-
ios were higher than 0.85 and lower than 1.03 whereas SC values (> 0.80) were
produced for scenarios (EMS3–EMS9) suggesting reasonable predictions of the
evacuation curves generated by the EMS.

The comparison between ERC, EPC and SC results is more complex for the
EMS results; however, it is apparent that generally, consistent with the findings
above, the best results were generated for those scenarios employing the self-re-
ported estimates of pre-evacuation (Scenarios EMS2, EMS5 and EMS8).

6. Discussion

This paper presents a new dataset concerning community evacuation. This is
deemed an original contribution to the research literature, as such type of datasets
for wildfire evacuation scenarios are rarely available (in contrast with data from
building evacuation drills which are much more common and reported in fire
engineering handbooks [8]. This work demonstrated that such data can be useful
not only for enhancing preparedness of a given community, but also to increase
the understanding of evacuation model predictive capabilities. The field of wildfire
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evacuation modelling is relatively new [23], thus it is recommended that such data
are for now used performing mostly a posteriori simulations, with the scope of
evaluating the overall agreement of the model results with known evacuation pro-
cesses. The process of input calibration also allows for testing the sensitivity of
models to different types of inputs, and in turn perform an evaluation of the field
of application of given models in relation to their modelling assumptions.

The evacuation dataset was applied to the WUI-NITY and EMS models that
adopt different modelling approaches: the former employs a macroscopic
approach while the latter applies a microscopic approach applied stochastically.
Results of both models show that the key variable influencing evacuation, time in
this particular case, is the response of the population; i.e. the pre-evacuation delay
modelled. This is not surprising given the fact that the WUI community under
consideration is in a rural area with a relatively low number of households—this
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Figure 8. Aggregated evacuation time curves reported during the
drills compared to the results of the EMS.

Table 4
Quantitative Comparison Between Drill Data and EMS Simulation
Results

Scenario number ERC EPC SC

EMS1 0.23 0.90 0.64

EMS2 0.18 1.02 0.72

EMS3 0.20 0.91 0.94

EMS4 0.26 0.87 0.85

EMS5 0.09 1.01 0.92

EMS6 0.24 0.88 0.85

EMS7 0.28 0.86 0.83

EMS8 0.11 1.01 0.87

EMS9 0.23 0.89 0.88
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means that the evacuating traffic demand does not overload route capacity, with
conditions being more sensitive to the departure profile than demand. In such sce-
narios, the response distribution instead has a dominant impact since congestion is
less apparent and outliers’ evacuees may significantly influence overall evacuation
time. In this context, route selection also had a relatively small impact on results.
This was also expected given the fact that the network capacity has not been
reached in the given scenarios.

This work represented an unusual, albeit fortuitous, opportunity to explore the
impact of using different datasets from the same incident on the use of two differ-
ent modelling approaches. Observations were made during the original inci-
dent—covering movement up to the arrival at a set of gates located near to each
sub-community. In addition, those arriving at the assembly point completed a sur-
vey where they estimated the time it took them to leave their properties. Although
similar, the former data includes a journey from the residence to the gate of the
community, while the latter only extends up to the point residents leave their
home (see Figure 9).

WUI-NITY does not represent movement to vehicles or vehicle boarding explic-
itly and is seen to typically underestimate the total evacuation times in this case.
Therefore, the movement stages represented in the observed arrival at the gates is
a better fit given that it includes elements not explicitly captured in the WUI-
NITY model. This is borne out by the simulated evacuation times that employed
the CES pre-evacuation times (compiled across the gate observations) producing
the best estimates of the drill evacuation.

EMS simulates movement at a more granular level—it is able to explicitly rep-
resent local movement that reflects the delay inside the property, movement to the
vehicle, vehicle boarding and then vehicle movement. Conceptually, it appears
that EMS is then better suited to the self-reported data—which excludes move-
ment to the edge of the community. EMS represents pre-evacuation performance
using a log-normal distribution. This provides an additional difference with obser-
vations at the gate, given that this distribution deviates somewhat from a strict
log-normal shape. These results are borne out in the comparisons made above.

Bearing in mind the differences in modelling approaches adopted by the two
models in use, different models may be used in some cases side-by-side for com-
parison. This could possibly provide a better understanding of the evacuation pro-
cess and in turn allow for more accurate predictions. A multi-model approach has
indeed been already recommended in the pedestrian evacuation domain [22] with
the scope of making an optimal use of the strengths of each model.
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Figure 9. Performance elements included in the observed and
reported data.
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It should also be noted that, given the methodology employed for data collec-
tion, results should be analysed considering that uncertainty is also present in out-
liers reported in the drill data themselves. There was an outlier in the original
results, with the last vehicle arriving 48 min (nearly 3000 s) after the previous
vehicle—twice as long as any of the preceding gaps between arriving vehicles.
Looking at the results of the WUI-NITY model, it is therefore not surprising that
a better agreement is observed excluding this outlier arrival—comparing between
the 99th percentile results. Although this outlier was a real data point, WUI-
NITY currently makes use of a macroscopic approach which might not be expec-
ted to capture such outliers as well as a microscopic approach. EMS was shown
to be more sensitive to the double representation of parts of the pre-evacuation
phase, while being better able to address the outlier challenge, given the more
granular, stochastic approach. However, this led to some instances in which over-
predictions of evacuation times were observed. This is contrast with the WUI-
NITY results where the closest approximation was obtained with the pre-evacua-
tion assumption of a combined cumulative curve from estimated data.

The analysis reported here demonstrates that the assumptions adopted by the
models make them more or less sensitive to different inputs and the way evacua-
tion datasets are incorporated into model inputs. This implies that the process of
configuration of a tool requires dedicated efforts, to consider the most appropriate
inputs in relation to the assumptions adopted. The user might need to use slightly
different datasets to produce equivalent scenario conditions given the use of differ-
ent models. In other words, data might have different implications on the outcome
produced, i.e., leading to more or less conservativism and being sensitive to cer-
tain inputs to a larger or smaller extent. Once a user is aware of those limitations,
they may be counter-balanced through the use of safety factors or the adoption of
a more conservative use of data.

The results produced are encouraging—in that although the datasets that pro-
duced the best estimates are different, the differences reflect differences in the
modelling logic, functionality or level of granularity. In addition, the best results
produced in each of the models occur when credible assumptions of the original
drill conditions are made. When these are made, the model estimates (for the 99th
percentile for WUI-NITY and the 100th percentile for EMS) are within 5% of the
drill time. This is considered encouraging—given that the sensitivity of each model
to the datasets used (performance elements reflected in the data, the distribution
type, and existence of outliers within the data) is understood and reflected in data
selection and model configuration.

It is desirable that the presented dataset represents a starting point—promoting
more data collection efforts of this kind. Despite several efforts to collect data,
those are generally obtained by actual events through surveys [3, 29, 30, 34], GPS
data [35, 36] or social media data [14]. In contrast, evacuation data from commu-
nity drills allow higher control in the variables to be observed. It is therefore
desirable that such type of data collections is facilitated by wildfire safety pro-
grammes (e.g., FireWise in the US or FireSmart in Canada) as they may have a
positive impact on the predictive capabilities of wildfire evacuation models.
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7. Conclusion

A dataset obtained performing observations and a survey during a community
evacuation exercise conducted in Roxborough Park (Colorado, USA) is presented
and data are published in open access. The dataset has been used to calibrate two
models, WUI-NITY and EMS. The use of such data for wildfire evacuation mod-
elling has been demonstrated by varying key input configurations on route use
and pre-evacuation. Results show that pre-evacuation is the dominant factor in
rural wildfire evacuation scenarios with a small number of households.

These results imply that the impact of data on a model performance is sensitive
to the methods used within the model—and how these methods apply to different
stages of the evacuation process. It is not sufficient just to configure different
models using the same dataset to ensure that they are representing the same con-
ditions. It is necessary to understand the combination of model and data, requir-
ing detailed knowledge of both—to fully appreciate the implications of using the
data and the extent of calibration necessary.
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